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Abstract

Evolutionary robotics has yet to achieve mainstream status within the
robotics research community, and among the reasons for this is the relative
low maturity of the field. Most of the current research is still done in the
scope of fundamental research, and has yet to be used to solve a wide
range of real world problems, although much of it shows great promise.
Conventionally designed and controlled robots solve an ever increasing
number of tasks. For evolutionary robotics to catch up with, or even
outperform traditional robotics techniques, a wide array of functional real
life robots built on the foundation of evolutionary techniques is required.

This thesis proposes an evolutionary framework for evolving both
morphology and control for a six legged robot. It features a parameterized
3D model with adaptable servo placement, base size, leg lengths, and a
possibility for adding two more legs or tool holders to the front. It is also
integrated into a simulation environment for evolutionary experiments. The
algorithm tested is able to produce a varied set of solutions with different
weights and speeds, and shows promise for solving more complex tasks or
fitness functions.

The thesis also tests whether co-evolution of control and morphology is
a feasible technique for robot design, by comparing the performance of a
manually designed instance of the robot to two evolved models, both in
simulation and reality. Machine learning is also used to lessen the reality
gap present between the simulations and the physical experiments. Co-
evolution of control and morphology shows a significant improvement over
the manually designed morphology and gait, producing a robot which is
3% lighter and 49% quicker.
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Chapter 1

Introduction

1.1 Motivation

Robot design is an eclectic discipline, requiring insight into fields like
mechanics, electronics, informatics, and mathematics. When designing
robots, nature is often used as an inspiration. Consider for instance snake-
like rescue robots [1], multi-joint robotic fish [2], spider inspired climbing
robots [3], and humanoid robots designed for space maintenance and
exploration [4]. Nature is an amazing source of inspiration, but solutions
for all robot problems can not be found among the trees of the Amazon
rainforest, in the depths of the Great Barrier Reef, or on the islands of
Galapagos. Every product of natural evolution, be it plant or animal, has
gone through millions of years of adaptation to its specific environment,
and features thought to be advantageous in other situations might not be
transferable to a robots morphology, control, and environment. Copying the
processes of nature themselves, instead of trying to copy the results, offers
an even greater reward, and is the basis for evolutionary robotics as a field
of research.

Evolutionary computing, and specifically the field of evolutionary
robotics, is slowly making its way into mainstream robotics research and
development [5]. Most of the research on evolutionary robotics has been
concerned with the automatic design of robot control [6, 7]. Goals for control
evolution include object following or avoidance, herding, goal homing,
foraging, hole avoidance, phototaxis, pursuit and evasion, object pushing,
wall avoidance, circling, and many others [8]. This is evaluated on custom
robots [9, 10, 11], general robot platforms [12, 13], or robot platforms made
specifically for evolutionary experiments [14, 15]. A common denominator
between most of the robot platforms used for evolutionary research is the
lack of mechanical power and complexity required to perform relevant and
useful real life tasks.

Although evolution of both control and morphology was proposed several
years ago, current research focuses primarily on evolution of control alone
[8]. Much of the work on evolution of morphology has been inspired

1



1.2. GOAL OF THE THESIS

by the seminal work of Karl Sims’ virtual creatures [16] and the evolved
robots’ leap into reality through the Golem project [17]. In contrast to
the number of development platforms available for research on evolution
of control systems alone, very few robot platforms exist for evolutionary
experiments involving both morphology and control. Automatic design
of both morphology and control is an exciting field, but is mostly limited
to evolution in simulation [18, 19], or on custom robot platforms [20, 21].
Some research is, however, starting to appear using simple modular robot
systems [22, 23]. The problem is, again, that these robots are made for very
basic tasks, and lack the flexibility and adaptability for relevant real world
use. A robot is only as good as its goal, or fitness objective, and as the field
of evolutionary robotics matures, so will the goal of its robots. Evolvable
robot platforms, capable of performing complex tasks and adapting to a
wide range of environments, should be made available to researchers and
the public to encourage research and use of the many opportunities given
by new evolutionary techniques and tools.

1.2 Goal of the thesis

The first goal of this thesis is to make a robust framework for evolutionary
experiments, both for gait development and optimization of design. Many
of the robotic systems used for evolutionary experiments today are simple,
and lack the flexibility and adaptability for more advanced goals and fitness
functions. The developed platform should have a parametric physical
design, and be customizable to suit a multitude of different goals and fitness
functions, both simple and advanced. I hope to be able to make the robot
and related work open source, and by doing this, contribute to the growing
field of evolutionary robotics. In summary, the first aim of the thesis is to:

1. Design, implement, test and document a parameterizable legged robot
for use in evolutionary experiments involving both morphology and
control.

A second goal is to test whether using evolutionary algorithms to
automatically improve parametric robot models is a feasible method for
optimization of physical robots. Some research has been done on this in the
past, but this has often been restricted to abstract robots or optimization of
robots using few parameters. Optimization of both morphology and control
system using a pre-defined parameterizable robot platform featuring 6 or
8 legs is an interesting case for evolutionary methods, due to the complex
control requirements, and the adaptability to different real world objectives.
In summary, the second aim of the thesis is to:

2. Investigate whether evolution of morphology and control is a feasible
technique for realistic robot design.

2



1.3. OUTLINE

1.3 Outline

The thesis is divided into seven chapters: introduction, background, tools
and engineering processes, implementation, evolutionary experiments and
results, physical experiments and results, and discussion.

Chapter 2 gives an introduction to the theory used in the thesis work, and
a survey of the past work done. Chapter 3 contains an overview of tools
and techniques used for making and testing the robots, or other practical
aspects of the thesis work. Chapter 4 describes the implementation of both
the evolutionary simulation environment, and the robotic platform used for
the experiments.

Chapter 5 outlines the experiments done using the evolutionary
simulation environment, and presents the results, along with a short
discussion where appropriate. Chapter 6 describes the physical experiments
done using the evolved robots, while chapter 7 contains a general discussion,
along with a conclusion of the thesis and suggestions for future work.

3
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Chapter 2

Background

This chapter attempts to give an overview of the field of evolutionary
robotics relevant to this thesis. Robot and gait design are presented
first, along with evolutionary algorithms, as they are both essential in
evolutionary robotics, which is presented towards the end of the chapter.

2.1 Physical robot design

A popular place to get inspiration for robotic design is from nature.
Countless robots have been designed with animals or nature as a guide,
two of which can be seen in figure 2.1, but simply copying what is seen in
nature has its pitfalls. A great part of an animal’s body and mind may have
evolved for part of its life separate from what a robot would experience.
Simply copying an animal may therefore include features evolved as part
of a tradeoff that does not exist for the robot, an example being secondary
sexual characteristics, which most likely won’t help a robot complete its
task. By analyzing how and why animals evolved the way they did, one can
isolate the features solving the problem at hand, although this can be very
challenging as animal behavior and physiology are very complex systems.
This is partly why evolutionary computing has become such a large research
field - focusing on the processes of nature, instead of the results from those
processes, yields results more directly transferable to new environments or
goals.

Legged robots Legged robots have been the target of robotic research for
many years, mainly due to their ability to traverse rough terrain or obstacles.
Legged robots are, however, much more costly to develop and produce,
and are generally slower and less energy efficient than their wheeled
counterparts [26]. Earlier commercial robots, especially in the consumer
market, were for these reasons mainly wheel-based. This is starting to
change, and we see an increase in the market for legged robots, both in
toys and for hobby use. Legged robotics, and especially gait generation,
has also been used to study biological phenomena and learning. Legged
robots are often defined by the number of degrees of freedom - the number
of parameters defining the state of each actuator.
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(a) An image of Salamandra Robot-
ica 2 [24], a robot inspired by
salamanders being developed at
École Polytechnique Fédérale de
Leusanne.

(b) One of several fish-inspired
robots in the uwmfaus project [25]
at the University of Washington.

Figure 2.1: Two robots both inspired by animals and the biological processes
behind their movement and behavior.

2.2 Gait design

When designing gaits for robots, the first consideration is what type of
actuators is used. DC motors require a voltage that is converted internally
to a torque; a servo motor requires a goal angle that is sent to the motor
control algorithm, while linear motors typically require a goal distance, in
much the same way as a servo. A controller has to be designed to control the
robot actuators, and serve as an interface between the physical layer and the
control layer. Gait design typically involves both the design of the controller,
and the optimization of the controller parameters, as seen in figure 2.2.

2.2.1 Gait types

Gaits are divided into two main groups, static and dynamic. A static gait is
characterized by the walker being in balance throughout the gait sequence,
while a dynamic walker will be out of balance during parts of the walk [27].
Whether the walker is in balance or not affects several different aspects of
walking.

Static gaits An important trait of static gaits is that they can be paused
at any time, with the robot still being in balance. A dynamic gait cannot
be paused when not in balance, without continuing the current movement.
This gives robots with static gaits more time to act on changes to tasks or
from the environment, and is therefore less computationally expensive.
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Parameter 2

Parameter 1

Parameter 3

Controller Actuator 2

Actuator 1

Actuator 3

...
...

Figure 2.2: Flow chart of gait control.

Dynamic gaits One of the most important aspects of the dynamic gait is
that a dynamic walker will, when not in balance, be under the influence of
gravity. Dynamic gaits can therefore be made to exploit this fact, and let
gravity do some of the work otherwise left up to the actuators of the robot.
Because of this, most dynamic walkers expend less energy walking than
their static counterparts. The addition of the force of gravity on the robot
can also be exploited or higher speeds, if this is preferable over lower power
consumption.

2.2.2 Controllers

There is an almost unlimited amount of different controllers available for
robot control. Among the most used in evolutionary robotics, are variations
of the pose controller, and the wave controller.

Pose controller The simplest way of programming the gait of a robot, is to
record it as a set of poses with individual durations. This can be done by the
jog-and-learn technique, driving each motor to a new position and recording
it, the lead-and-learn technique, moving the robot manually and recording
the new position, or using offline programming, utilizing a program or
script to generate the robot poses [28]. These programs are often given
parameters, and gaits generated can then be optimized by these parameters,
instead of changing poses individually.

Wave controllers The problem with pose controllers is that they are hard
to modify directly without having to change all motor values. A commonly
used parameterizable controller is the wave controller. This takes the input
of one or more wave signals (usually sine-waves), and calculates outputs to
the motors by applying functions to the inputs with different parameters
to modify the different output channels. These parameters can be set
manually by engineers or designers, be set by optimization algorithms
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before programming, or be continuously optimized during runtime of the
robot using online optimization methods.

Other controllers Another way of generating walking gaits from parame-
ters is to make individual mathematical functions for each limb angle, and
simply apply these functions to the limb actuators. There are many ways
to generate both functions and parameters other than traditional optimiza-
tion algorithms, including learning algorithms [29], spline generators [30],
neural networks [31], central pattern generators [32, 33], HyperNEAT [34],
evolutionary algorithms [35], or a mix of techniques[36]. This is only some
of the other techniques used for parameter optimization of robot controllers,
but shows the diversity of tools available to a robot designer.

Multi direction controllers The problem with pose controllers, wave
controllers, and specialized parameterizable controllers in general, is that
they typically produce a gait moving the robot in a single direction, typically
forward. This lowers the use for the gait in real-world problems considerably.
General wave controllers which can control the robot in several directions
have been made, but are typically much harder to hand design, learn, or
evolve. Research has been done on making evolving or learning a collection
of specialized controllers, instead of a single generalized controller. This
enables shorter evolution or learning time, while still enabling the robot
to walk in different directions or employ different walking techniques [37].
This is still a relatively new technique, and variants of this will most likely
be used more extensively as robots become more mature, and the need for
real world applicable controllers rise.

2.2.3 Forward/inverse kinematics

Forward and inverse kinematics are mathematical formulas used to
calculate robot configuration or position. Forward kinematics are used
to calculate position and orientation of the robot, given the angles or
displacement of the joints. Inverse kinematics are used to get the angles or
displacements of the joints, given a position and orientation.

Denavit-Hartenberg convention When calculating the forward kinemat-
ics, the Denavit-Hartenberg convention is a commonly used method for
simplifying the kinematic analysis [28]. Each transformation is simplified to
four basic transformations, given in equation (2.1).

Ai = Rotz,θi × Transz,di × Transx,ai × Rotx,αi (2.1)

Each parameter defines one physical feature of each joint; ai defines link
length, αi (or ri to more easily distinguish it from ai) defines link twist, di
defines link offset, while θi defines joint angle. Three are always static, while
a fourth parameter is dynamic. Link length is dynamic for prismatic joints,
where motion is linear, while joint angle is dynamic for joints with rotations,
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called revolute joints. To enable a simplification like the DH convention
is, two constraints must be applied to the axis systems, given in equations
(2.2).

The axis Zi is perpendicular to the axis Xi−1 (2.2)

The axis Xi intersects Zi−1

After setting up axes systems according to the constraints, the forward
kinematics of all joints can be calculated by making the correct rotation
and translation matrices and multiplying them together, resulting in a final
forward kinematics matrix seen in equation (2.3).

cos(θ1) −sin(θ1)cos(α1) sin(θ1)sin(α1) r1cos(θ1)
sin(θ1) cos(θ1)cos(α1) −cos(θ1)sin(α1) r1sin(θ1)

0 sin(α1) cos(α1) d1
0 0 0 1

(2.3)

Inverse kinematics Inverse kinematics calculate joint parameters based on
position and orientation of the end point of the limb, and can be derived by
many different techniques. Kinematics on simple robots may be determined
by traditional geometric analysis, while more advanced kinematics may be
solved by using approximations or numerical methods.

Using inverse kinematics for robot control The inverse kinematics only
output the needed angles or displacements needed to reach a given end
effectors position. To allow a robot to follow a calculated gait, several steps
need to be completed. Generation of a gait is the first step, and involves
analysis and calculation of the walking method. This generates a set of
poses the robot needs to achieve. A path planning script calculates how
the robot needs to move between these poses, and generates a number of
intermediary positions for all limbs. These positions are fed into the inverse
kinematics calculation to convert positions to actuator commands, which
are sent to the actuators through a control interface. The cycle can be seen in
figure 2.3.

Gait generation Positions Path planning Inverse
kinematics

Actuator
control

Figure 2.3: The basic work flow of using inverse kinematics for controlling
revolute joints in executing a gait.

2.3 Evolutionary algorithms

Evolutionary computing has been steadily gaining popularity since it was
created in the 1940s and 1950s [38]. It is a part of the field artificial intelligence,
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and is mainly used in search and optimization problems. Evolutionary
algorithms are parts of a class of algorithms that iteratively optimizes a
problem, referred to as meta-heuristic optimization algorithms. It is a
population-based approach, and uses operators like recombination and
mutation on the individuals of the population to improve the current subset
of solutions.

2.3.1 Overview of process

A typical run of an evolutionary algorithm is shown in figure 2.4, and
starts with generation of an initial population. This can be done randomly,
although initialization using problem-specific knowledge, or using previous
solutions, are also common. Every individual or solution in the population
is evaluated and assigned a fitness-value based on their quality. The main
loop consists of a selection of solutions for recombination or mutation, most
often based on their fitness values, but also age or other characteristics can
be used. New individuals are generated based on the selected parents, and
various recombination or mutation operators are applied to generate new
solutions. Some of these solutions are then selected by the survivor selection,
and a new population is made, often combined by the old parents and the
new offspring. This loop runs until a stop-criterion, often based on time, age,
change per n generations, or number of generations without improvement.

Initialize
population

Evaluation of
population

Parent
selection

Recombination
/ mutation

Survivor
selection

Terminate?

No

Yes

Figure 2.4: Flow chart of the basic EA process.
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2.3.2 Genotype and phenotype

The distinction of genotype and phenotype is much used in evolutionary
robotics, and stem from biology and genetics. Genotype is the hereditary
information, while phenotype is the actual observed features of a solution.
Each individual is represented in genotype space on the computer, and
represents a solution in phenotype space. Each element of an individual
in genotype space is often called an allele or gene. In evolutionary robotics,
the term genotype space is used for the space where the actual search
is taking place, often called the chromosome of the solutions. This is
the digital representation of an individual, and is chosen by the designer
of the algorithm. The phenotype space is the space of solutions in the
original problem context, and involves the actual individuals posing a
solution to the problem being solved. In a typical evolutionary robotics
experiment, genotype includes binary information of control parameters,
while the phenotype is the actual robots being represented by the genotype
information.

2.3.3 Evolutionary operators

There is a multitude of different ways to generate new individuals. These
are generally divided into two groups, depending on the number of inputs.
Unary operators are often called mutation, and take one solution as input,
and modifies it to produce a new individual. An operator with more
than one input is often referred to as crossover or recombination, and is
typically done on two parents to produce one or two new individuals,
called offspring.

Mutation of floating point numbers There are many different mutation
techniques available for mutation of computer representations of real values.
One of the most common mutation techniques is the non-uniform mutation,
using a fixed distribution. Each gene has a given mutation probability. If
mutated, a number is drawn from a probability distribution with a given
standard deviation, and added to the gene value. The normal (or Gaussian)
distribution is the most commonly used statistical distribution for non-
uniform mutation. This mutation operator ensures a non-zero chance of
large mutations, while small mutations happening most of the time. The
parameter controlling the amount of mutation is referred to as mutation
step size, and can be the standard deviation of the normal distribution, or
any other parameter controlling the statistical distribution from which the
mutation is drawn from. An example of the mutation operator can be seen
in table 2.1.
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Allele1 Allele2 Allele3

Original individual 1.50 1.29 0.96
Drawn number -0.04 0.35 0.07
Resulting individual 1.46 1.64 1.03

Table 2.1: Example of mutation of floating point numbers using the normal
distribution with mean 0 and standard deviation 0.1.

Mutation of discrete values Mutation of floats with discrete values is
normally not done the same way as continuous floats. Discrete values are
typically represented in floating point numbers, or in integers and a factor
or function that translates between integers and discrete values. A division
size is often included to show the difference between discrete values, given
a linear distribution. Non-uniform mutation could be used, and a simple
truncation or rounding could be done to limit the numbers to the specified
discrete values. An easier and more predictable way of mutating floats
representing discrete values, is to step up or down to the next discrete step
according to a given fixed probability, p. The probability of stepping up
or down is the same, given by the mutation probability parameter p. If
stepping occurs, the probability is applied again, and there is therefore a big
probability of a small number of steps, while many steps are possible, yet
unlikely. This is referred to as a one dimensional lazy random walk problem
in statistics, an example of a Markov chain. An example of a probability
distribution of this type of mutation is given in table 2.2. This technique is by
many preferred for its ease of use, low computational cost, and statistically
predictable behavior.

Steps -4 -3 -2 -1 0 1 2 3 4
Prob. .30% 1.11% 4.15% 15.51% 57.85% 15.51% 4.15% 1.11% .30%

Table 2.2: Table showing a subset of the statistical distribution of mutation
of discrete values, with p = 0.5.

Random reset mutation Random reset mutation can be used regardless of
representation, and involves resetting one or several alleles to a new random
value. The probability is typically chosen to be low, since this mutator has
the power to move individuals very far in the search space, and hence the
algorithm might quickly lose much of the exploitation aspect of the search. A
common way of performing this mutation is to use an individual probability
for each allele, but other variations including a probability of performing a
fixed number of allele resets are also commonly used.

Uniform crossover for non-discrete floats Among the simplest and most
commonly used recombination techniques, is the uniform crossover. This
technique works on each individual allele, and has a chance p to inherit the
gene from one parent, and the chance 1-p to inherit from the other parent.
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Other crossover techniques may exhibit positional bias, varying chances of
including genes based on the position. Uniform crossover does not have
a positional bias, but exhibits distributional bias, a bias towards selecting a
certain number of genes from each parent (given by the parameter p). An
example of the mutation operator can be seen in table 2.3.

Parent 1: 0.60 -0.75 2.3 1.1 -1.05 1.35 1.40 0.25
Parent 2: 1.25 -1.25 1.3 -2.1 -2.30 -1.31 0.85 -1.55
Random: 0.91 0.42 0.65 0.98 0.60 0.86 0.15 0.25
Offspring 1: 1.25 -0.75 1.3 -2.1 -2.30 -1.31 1.40 0.25
Offspring 2: 0.60 -1.25 2.3 1.1 -1.05 1.35 0.85 -1.55

Table 2.3: Table showing an example of uniform crossover with p = 0.5.

Arithmetic recombination for non-discrete floats When working with
floats, an alternative to selecting one of each allele for the new offspring,
is taking an average value between the different values. This sets the new
allele somewhere along the geometric line in genotype space between the
two alleles of the parent. Whole arithmetic recombination sets all alleles to a
weighted sum with some parameter α deciding where on the line between
the two parents, the offspring should be placed. Another way of doing
arithmetic recombination, is having a chance p of doing recombination on
an allele, and a parameter α deciding where on the line the new offspring
should be placed (typically also random, or 0.5). This results in a function
(2.4) being run a number of times given by p.

Allelechildn = α×Alleleparent n + (1− α)×Alleleparent m (2.4)

Parent 1: 0.60 -0.75 2.3 1.1 -1.05 1.35 1.40 0.25
Parent 2: 1.25 -1.25 1.3 -2.1 -2.30 -1.31 0.85 -1.55
Random p: 0.7 0.4 0.4 0.5 0.1 0.8 0.6 0.2
Random α1: 0.80 0.99 0.25 0.36 0.31 0.67 0.26 0.35
Random α2: 0.67 0.26 0.47 0.58 0.44 0.72 0.57 0.44
Offspring 1: 0.73 -0.75 2.3 -0.95 -1.05 0.47 0.99 0.25
Offspring 2: 1.04 -1.25 1.3 -0.76 -2.30 -0.57 1.09 -1.55

Table 2.4: Table showing an example of arithmetic crossover, with p = 0.5.

2.3.4 Parent and survivor selection schemes

Parent selection There is a multitude of different methods for selecting
individuals from the population that is then used as parents for offspring
generation. The main role of parent selection schemes is to select the best
individuals from the population to perform the evolutionary operators on.
Most algorithms use a probabilistic function to give a small chance for low-
scoring individuals to advance, while still rewarding individuals with high
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fitness scores with high probabilities of advancement. This ensures a higher
degree of exploration than simply selecting the best individuals, and helps
fight premature convergence.

Survivor selection Survivor selection schemes often rely on fitness value,
age, diversity, or other measurements. Survivor selection is most often
deterministic, and does not rely on probabilities, like parent selection.
Keeping the best individuals unchanged for the next generation is referred
to as elitism, and is often applied to inhibit losing the best solutions. This
ensures that a number of the best solutions are always carried on to the next
iteration, and is generally considered beneficial [39].

2.3.5 Parameter control and tuning

Evolutionary algorithms are still not (perhaps excluding modern
evolutionary strategies) considered mature enough to be used effectively
for black box optimization by many scientists. One of the main reasons for
this is the lack of thoroughly tested or widely used methods for tuning
of the parameters controlling the evolutionary run1 [40]. Methods for
improving parameters of evolutionary algorithms work on one of two areas,
called parameter tuning and parameter control. Parameter tuning is the
act of finding good parameters before the run is performed, and keeping
the values fixed during execution of the search. Parameter control is, in
contrast, a technique where parameters are changed during a run, either
deterministically, adaptively or self-adaptively [41]. Figure 2.5 shows an
overview of methods of parameter tuning and control.

Parameter setting

Parameter control

Self-adaptiveAdaptiveDeterministic

Parameter tuning

before the run during the run

Figure 2.5: Flow chart of parameter optimization methods.

2.3.6 Exploration and exploitation

Any search or optimization algorithm may be classified by their degree of
exploration and exploitation. Exploration involves testing solutions from new
areas of the search space, and a random search is an excellent example of this,

1As in parameters controlling mutation or crossover types and probabilities, not problem-
related parameters.
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where new random solutions from the whole search space are selected for
each iteration. Exploitation involves using previously acquired information
to improve solutions. Good examples of exploitation heavy algorithms are
hill climbing algorithms, which iteratively improves solutions by searching
close to already known solutions.

No free lunch The no free lunch theorems state that finding optimal
parameters for a wide range of problems is impossible [42], which shows
the need for techniques for both parameter control and tuning. This is
also why it is generally considered hard to set initial values for parameters,
because good values for a seemingly similar problem might not perform
well for the other. There has been done research on grouping problems into
classes by various statistical methods, which in theory should share some
common optimal and sub-optimal parameters and operators [43]. If these
techniques continue maturing, they may one day be able to give a set of
starting parameters based on what works for statistically similar problems,
or at least lessen the need for manual parameter tuning.

2.3.7 Fitness

The quality of the solutions or individuals in a population is referred to as
their individual fitness. A fitness function is a function returning the fitness
score by estimating how close a solution is to a given goal or objective[8]. It
is generally considered important that the fitness function gives an accurate
evaluation of solutions. It is, however, for some problems more important
that it is quick and easy to calculate, to lessen computational requirements.
This results in the use of fitness approximation functions, which uses an
approximate fitness model when the correct model is too computationally
expensive, or if an explicit fitness function doesn’t exist [44].

Fitness landscape The fitness landscape is often referred to when talking
about the performance of search or optimization algorithms. This is the
geometric space made up by the quality of the different solutions, and can
be expressed as a function of the genotype space. Optimizing a problem
can be seen as traversing this fitness landscape and finding a maximum or
minimum point. Different variations of evolutionary algorithms are better
or worse at escaping local optima, ridges, plateaus and other performance
inhibiting effects. The fitness landscape is, of course, highly problem-
specific, and this is one of the main reasons for the high number of different
algorithms in use for optimization problems today. There is a wealth of
different fitness functions in use for different problems, and which one to
use has to be carefully chosen to maximize solution quality [8].

2.3.8 Diversity

Diversity is the measure of difference, spread, or variance within an
evolutionary population [45]. High diversity shows a generation with
individuals spread out over large areas of the genotype space. Low
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Local optimumLocal optimum

Global optimum

Fitness

Dimension 1 Dimension 2

Figure 2.6: An example of a fairly simple three dimensional fitness landscape,
including two local optimums.

diversities typically comes from grouped individuals in a fairly small part
of the genotype space. An early loss of diversity can end in premature
convergence on local optima [46, 47], so ensuring high diversity throughout
the run can be beneficial. Methods such as analyzing neighborhoods, islands,
niches, crowding and sharing are all techniques used for encouraging
diversity through selection, replacement or mating [48]. Careful use
of mutation and crossover methods can also ensure a wanted diversity
development throughout the run. There is, however, no standard way
of measuring diversity in a population, and the success of methods for
calculation of diversity is problem specific [49].

2.3.9 Multi objective optimization

Many problems involve more than one measurement of success or quality,
and several objectives may need to be defined for the algorithm to find
optimal or near-optimal solutions. The problem with using multiple
objectives is that for most problems, no single optimal solution exists. There
are normally several solutions that feature different trade-offs between
the different objectives, and a manual analysis of the results is more
often required than with conventional single objective problem (except for
evolutionary aided design, described in section 2.4.1). Since multi objective
algorithms produce a multitude of different solutions, which might not
explicitly outperform each other, some advocate for its use in what has
traditionally been considered single objective problems. Innovization is a
technique that uses multi objective algorithms and an analysis of resulting
individuals as a design tool, and it is argued that conflicting objectives
and the analysis of the solutions to these often produce better results than
solutions typically found by single objective optimization [50].
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Scalarisation An easy way of including several objectives within one
fitness function is to merge several fitness functions together, using a weight
for each function. This is often referred to as scalarisation. This is a quick
way of expanding a simple fitness-based evolutionary algorithm into a
multi objective solving algorithm, but it has several drawbacks. The most
important drawback is that the weights must be decided before the runs,
and setting weights before being aware of possible solutions is hard, and
might damage the quality of final solutions.

Dominance One way to solve the limit of a single fitness function is to
introduce the concept of dominance. A solution is said to dominate another
solution if all objectives are at least equal, and at least one objective is better.
With this concept, several fitness functions can be active at the same time
without having to merge them using weights. This enables the algorithm
to keep solutions with different trade-offs between objectives. The set of
non-dominated solutions is referred to as the Pareto Front. See figure 2.7 for
an example of a Pareto front.
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Figure 2.7: An example of a two dimensional Pareto front, where
minimization of weight and maximization of distance is the goal. All points
that are part of the Pareto set are colored red, while every dominated point
is colored black.

NSGA-II An example of one of the most well known multiobjective
algorithms in use today, is the nondominated sorting genetic algorithm
2, NSGA-II [51]. Before NSGA-II, no single multiobjective evolutionary
algorithm was widely accepted, but rather a handful of different algorithms
were in use for different types of problems. Among them was the original
NSGA algorithm, which was among the top performing algorithms at
the time [39]. There were several problems with previous algorithms,
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including high computational complexity, a need for specifying the sharing
parameter used for the diversity function, and a lack of elitism for some of
the algorithms. NSGA-II fixed all these [51], and by doing so, established
itself as one of the most widely used multiobjective algorithms today, along
with SPEA-2 [52] and MO-CMA-ES [53]. The algorithm selects survivors
from both parents and offspring based on both fitness and spread, without
the need for parameters defining the diversity function.

2.3.10 Other algorithms from evolutionary computation

There is a variety of different techniques and extensions in evolutionary
computing, in addition to evolutionary algorithms, used for a wide array
of different problems. Three of the most commonly used in evolutionary
robotics, are the evolutionary strategies, simulated annealing, and memetic
algorithms.

Evolutionary strategies Evolutionary strategies were introduced in the
1960s [54], but changed greatly with the addition of self-adaption in 1977
[55], which has now grown to be one of the defining features of evolutionary
strategies. Self-adaption involves placing some of the parameters of the
search algorithm into the genes, which are then co-evolved with the
solutions. This typically involves mutation step sizes of recombination
probabilities, and enables an adaptation of these parameters throughout
the runs. This enables evolutionary strategies to customize parameters for
the fitness functions, and even enables efficient search through changing
fitness landscapes [56]. Evolutionary strategy algorithms are often defined
by their survivor selection scheme, represented as (µ / ρ +, λ). ρ represents
the number of parents used for the creation of one offspring, and is often
omitted from the function if no recombination is done. µ is the size of the
parent pool, while λ is the size of the offspring pool. Plus is used in the
function to signify survivor selection from both parent and offspring pool,
while comma signifies a selection of survivors from the offspring pool alone.

Simulated annealing Simulated annealing is a probabilistic generate-and-
test search technique [57]. It uses the Boltzmann selection mechanism, which
changes the selection pressure according to a pressure schedule, which
enables the balance between exploration and exploitation to change during
the search. The idea is that exploration is more essential early in the search,
and that the reward from exploitation rise as a larger part of the search space
is tested. Simulated annealing works by testing a neighborhood solution,
and moving to the new individual if it is an improvement. Inferior solutions
are accepted in accordance with a probability given by a temperature
function. Parameters typically defined for simulated annealing, is the
cooling function with initial temperature value, the number of moves
performed at each temperature called the epoch length, the function for
finding new individuals, and the probability of allowing inferior solutions.
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Memetic algorithms Problem-specific algorithms often surpass evolution-
ary algorithms in performance, but are often tuned to very specific scenarios
or problems, and can be very time consuming to develop and test. They
are also more dependent on engineering principles and the humans de-
signing and programming the algorithm. A balance between a general
solver and the use of problem-specific knowledge can be achieved by using
memetic algorithms. Memetic algorithms are the combination of evolution-
ary algorithms with problem-specific algorithms, often in the form of smart
initialization, problem specific operators, or local improvement of solutions
by various search algorithms, as seen in figure 2.8.

Initialize
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Recombination
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selection

Terminate?
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Selective initialization
Previously found solutions
Local search
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mutation or recombination

Use of problem-speci�c
selection operators

Local search

Use of problem-speci�c
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Figure 2.8: The memetic algorithm process, as compared to figure 2.4, with
changes indicated in red. Various variations of local search algorithms are
often chosen as problem specific algorithms.

2.3.11 Evaluation of EA performance

Evolutionary algorithms are most often non-deterministic. This is because
of the randomness of the operators used, and results will therefore vary
between different runs. This is an intended feature, since better results
could potentially be produced by doing several runs. A problem with
the random nature of evolutionary algorithms is that comparing results
can be challenging. The law of large numbers describes that as more
experiments are conducted, the closer the results get to the expected value.
This theorem transfers to evolutionary algorithms by requiring several runs
of each algorithm to be able to draw a conclusion on performance with any
degree of certainty. Many scientists do several runs, and compare average
performances, but without at least including a confidence interval, a realistic
conclusion is hard to defend. More advanced statistical methods need to be
employed, to conclude on performance with a high degree of certainty.
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Box plot The box plot is a much used way to visualize data from
evolutionary runs to make it easier to compare results, see figure 2.9 for
the general structure of the plot. It shows the three quartiles, the set
of points dividing the data set into four, while showing maximum and
minimum values using whiskers on each side of the box. It also filters
the data by classifying all points beyond 1.5 times the interquartile range
below or above the first or third quartile as outliers, commonly referred
to as a Tukey filter. These whiskers are often referred to as fences in
statistics. Whether points beyond the fences are actually considered as
outliers depends on the problem, the testing environment, and the degree
of noise in the measurements. A notch is sometimes added around the
median with size being proportional to the interquartile range of the sample,
and inversely proportional to the size of the sample. It is typically used to
distinguish whether differences in medians are statistically significant or
not by comparing differences in notches, not medians directly [58].

IQR

Q1 Q3

Q1-1.5 x IQR Q3+1.5 x IQR

Median (Q2)

Figure 2.9: An overview of the box plot structure.

Rank-sum test The Wilcoxon rank-sum test, also called the Mann-Whitney
U test, is a test of the hypothesis that two populations are the same. It
does not assume any distribution or structure of the data, and is therefore
considered non-parametric, in contrast to the much used Student’s t-test.
Non-parametric tests are generally considered better suited for evolutionary
robotics than parametric tests [59], and the Wilcoxon rank-sum test is among
the most widely used tests, in addition to the analysis of variance test
(ANOVA) [60]. The method involves sorting the observations, and for
each observation from sample one, counting and adding the number of
observations from sample two with lower ranks. This result in a U statistic
that indicates at what certainty the null hypothesis of similar populations
can be rejected. A P value can be calculated, and indicates the possibility of
obtaining a result at least as extreme as the one that was observed, assuming
the null hypothesis is true. The null hypothesis can then be rejected if this
value is less than a certain significance level, typically 0.01. The rank-sum

20



2.4. EVOLUTIONARY ROBOTICS

test does, however, only allow comparison of medians of two unknown
distributions, and can not be used for comparing the mean difference or
other interesting parameters, or comparing more than two populations
simultaneously [61].

Peak and average performance A problem faced when comparing results
from several runs of evolutionary algorithms, is whether to compare peak
or average performance. A high average performance is typically the goal
if the algorithm developed needs to be used in an environment or for a
problem that only allows a single run of the algorithm before a solution is
needed. This is typically the case for repetitive problems, like calculating
postal routes throughout the day, or the real time placement of stock in a
warehouse. The problem, however, arises when there is time for several runs
of an algorithm, and it is easy to select the best performing individual. This
is the case in most scientific research, and in design problems in the industry
with high computational resources. Peak performance is less statistically
significant since it is based on a single data point from each evolutionary
run, while the average performance is based on all individuals from the last
generation. It is therefore harder to compare peak performance throughout
the work on designing and tuning an evolutionary algorithm. It is therefore
important to be aware of whether the algorithm will be used for design
problems or repetitive problems, and compare and develop algorithms and
operators accordingly.

2.4 Evolutionary robotics

Manually designing robot controllers or morphology can be very challeng-
ing. Automatic design and optimization is a growing field, especially as
the complexity of robotic systems increase, along with demands for solving
more advanced tasks. The field of evolutionary robotics is mainly concerned
with using evolutionary computation for creating robot controllers. Op-
timization of artificial neural networks, central pattern generators, wave
controllers, or a variety of different parameter-based controllers is typically
done with evolutionary techniques.

2.4.1 Evolutionary robotics processes

Doncieux et al. [62] distinguishes four different uses of EAs in robot
development:

• parameter optimization

• evolutionary aided design

• online evolutionary adaptation

• automatic synthesis
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Parameter optimization Parameter optimization is the most common way
of using evolutionary algorithms in ER, and consists of optimizing one
or more parameters towards one or more pre-defined goals. Common
parameters to optimize are control parameters [12, 37, 63], design parameters
[20, 9, 35], or parameters for artificial intelligence or learning algorithms [11,
64, 65, 36] running on the robot. Parameters found are often transferred to
the control system or physical robot, and is typically not analyzed further
before transferral.

Evolutionary aided design Evolutionary aided design shares several
features with parameter optimization, but differs in how the results from
the algorithm is applied to the robot or control system. While a parameter
optimization process usually involves using the evolutionary results directly,
evolutionary aided design instead uses the parameters found to aid analysis
and optimization of the problem - often done by experienced engineers,
before manually designing the final solution. This is a more complicated
process than parameter optimization, but often leads to better results [50].
This process is also often used for analyzing Pareto fronts to decide on
design strategies early in the process, and help engineers understand the
different objectives and their relative requirements.

Online evolutionary adaption Online evolutionary adaption is most
commonly done on the actual robot after design and manufacture. It is
done to customize control or morphology to new environments, situations,
or goals. This is normally done less aggressively than both parameter
optimization and evolutionary aided design, since the performance of the
robot while optimization is running might be of importance. The goal is
often a slow adaptation and improvement of the working robot, while not
inhibiting the day-to-day operation to a large extent. This is still a relatively
new use of evolutionary robotics, but promising results are starting to
emerge [66, 67].

Automatic synthesis Automatic synthesis is the process of designing the
whole robot, including morphology and control, completely by evolutionary
algorithms. Parts or modules are often hand designed before the algorithm
combines these into different morphologies and tests different control
systems. Human intervention is minimized, and generated robots can also
be subject to an online evolutionary adaption. This is a field that, according
to many, started with the previously mentioned work of Karl Sims [16], but
has not since seen many major breakthroughs.

2.4.2 Evolving control

The most commonly evolved part of robots is the controller. Among evolved
controller types are neural networks [31, 68, 69], gait parameter controllers
[9, 12, 37], evolvable hardware (FPGAs) [70, 71], fuzzy logic controllers [11,
72], and spline controllers [30, 73], which is only a small selection of the

22



2.4. EVOLUTIONARY ROBOTICS

controller types evolved in ER research. There is a wide range of objectives
and fitness functions used, and several robot platforms have been made
specifically for evolutionary experiments [14, 15, 74]. Most of the research
done on evolving robot controllers use parameter optimization, though
the use of evolutionary aided design and online evolutionary adaption has
grown the last couple of years.

2.4.3 Evolving morphology

Among the early uses of evolutionary computation for robotics, was the
seminal research done by Karl Sims [16], in which he used evolutionary
algorithms to develop morphology and control. These virtual creatures were
fairly abstract, and accomplished tasks like walking, following, jumping
and swimming. The Golem project [17] took evolutionary robotics and the
virtual creatures into the physical world by using rapid prototyping to build
the machines and test them in real life. The robots were rather abstract,
but the work contributed to the initiation and growth of morphological
evolution within evolutionary robotics.

Robots for evolution of morphology Much of the research in evolution
of morphology since, use custom modular robot systems, like the fairly
abstract robotic life forms of Lipson and Pollack [21] or Samuelsen [20].
Other researchers try to use openly available general robot platforms like
the tinkerbot robots [22] or lego-servo modular robots [23], which enables
evolution of simple modular systems. There is, however, a lack of robotic
platforms enabling evolution of morphology for common robot designs,
which produce legged robots able to solve real world objectives and complex
tasks.

2.4.4 Search complexity

Many techniques in ER require many iterations to produce good results,
and continuous testing on a physical robot can be very time consuming,
and often suffer from noisy measurements caused by external causes.
One of the greatest advantages of simulating is that you can exclude
external disturbances that might otherwise serve as noise in your test data.
Simulation ensures consistent test data, and removes elements like worn
out servos or parts, temperature, environmental conditions etc, from the
evaluation process. Earlier evaluations within an evolutionary run can be
done using a lowered resolution or tolerance to speed up the search, while
not significantly degrading final results [75].

Environment The environment in which a robot is simulated or tested
can have an impact on the resulting complexity on both controller and
morphology. Higher complexity of the environment leads to a higher
evolutionary pressure, which again leads to more complex controllers or
body forms [76]. Auerbach et al. also posit that more degrees of freedom or
more sophisticated controllers reduce the need for complex morphologies
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when given the same goals in the same environment. This shows that as
the evolutionary robotics field mature, and both environments and goals of
the robots gets more complex, search spaces might grow exponentially, to
facilitate the added complexity to both controllers and morphology. There
are, however, several techniques to avoid searching through massive search
spaces. Evolving for novelty, and completely disregarding fitness, has
been shown to work by not misdirecting the search towards suboptimal
solutions [77]. This is often referred to as diversity-based evolution. Another
technique involves an incremental approach to evolution, where the problem
is divided into sub problems which can be solved more easily, then combined
[78]. This is only two of a wide array of techniques that will likely be used
more as robotics technology mature.

Reuse and modularity Many robot morphologies used for evolution has
been divided into building blocks that together form a complete robot. Using
a hierarchy of a group of evolvable parts enables simpler construction of
the finished robot, enable reuse of modules across different projects, and
enables single modules to be changed without having to modify the rest of
the system. Using an evolvable hierarchy of parts adds a tradeoff between
modularity and regularity, modularity reducing the amount of information
by duplicating parts, while regularity increasing the extent of changes by
affecting all copies of the module on the robot [79].

2.4.5 Reality gap

Reality gap is the difference between simulated fitness, and the fitness
experienced in the real world [80]. A perfect simulation of the reality is
practically impossible, and errors early in a simulation cause discrepancies
between simulation and reality that grow exponentially as time passes by, as
given by chaos theory. There are several methods to reduce the significance
of the reality gap.

Reality gap reduction One of the easier methods of crossing the reality
gap, although not as effective, is to add random noise in specific ways to all
aspects of the simulation to ensure robots that work well in simulation also
work in reality [81]. Usage of the physical robot performance for adaptation
of the simulation parameters has also been successful [82, 83]. A more recent
approach that has shown great promise, it to calculate a transferability score
for a subset of solutions, approximate a transferability function, and use this
to favor solutions that exhibit a low difference in simulator behavior to real
world behavior [84]. This might, however, discourage solutions that utilize
movements that are hard to simulate accurately, but that might perform
well in reality.
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Chapter 3

Tools and engineering
processes

This chapter attempts to give an introduction to the different tools and
processes used throughout the thesis. The background chapter lays the
theoretical groundwork, while this chapter focuses on the physical work
done, and the engineering parts of the thesis, including 3D design of the
physical robots, choice of parts, simulation in evolutionary systems, and the
testing, validation, and verification methods used in the thesis. Table 3.1
shows an overview of tools and software used.

Tool Name Version
FDM 3D printer Fortus 250mc
Photopolymer 3D printer Objet 500
Servos Dynamixel AX12 and AX18
Battery Turnigy Nano-tech 2200mah
Wireless module Xbee Series 1, 1mw
Microcontroller Arduino Uno R2
Microcontroller Arbotix RoboController
Microcontroller programming Arduino 1.0.5
Data capture and analysis Processing 2.1
CAD package Solidworks 2013 Educational version
Slicer Insight 9.1
Motion capture software Arena 1.7.3000
Statistics and graphing package Matlab 2013a

Table 3.1: Table showing the tools used in the work on the thesis. The first
part shows hardware used, while the second part includes software.

3.1 3D design

Solidworks1, made by Dassault Systèmes, is a fully featured 3D computer
aided design package (CAD), including simulation and rendering toolboxes.

1http://www.solidworks.com/
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It is among the most popular CAD packages, both for full 3D modeling,
2.5D modeling, and 2D drawing. 2.5D modeling involves sketching features
in 2 dimensions, and projecting this into the third dimension. This limits
the available geometry slightly, but makes the models far easier to both 3D
print and mill. Solidworks also feature parametric modeling through design
tables, linked dimensions, and equations. Parametric models enables the
design files to be edited and customized without in-depth CAD knowledge,
which in turn encourages open source models and easier verification of
research by enabling scientists to duplicate experiments involving changing
variables or conditions.

3.2 3D printing

Use of 3D printing The use of 3D printing has increased in popularity the
last couple of years, and is used more and more in robotics research and
development. 3D printing is an additive process used to construct parts or
assemblies out of different materials, plastics like ABS or PLA being most
common. It allows a developer to quickly produce physical parts from 3D
models and drawings. The ability to do rapid prototyping lowers the price
and time constraints of many projects, and affects the entire design and
manufacture process. 3D printing also encourages collaboration between
developers and scientists by enabling different people or groups to quickly
and easily replicate parts or setups in a very similar fashion.

Model preparation Once the designs are made with practically any 3D
CAD package, it has to be converted into commands for the 3D printer.
The process of generating tool paths for the 3D printer from a 3D model
is called slicing, because the first process of generating tool paths includes
slicing the complete model into horizontal layers. Examples of popular free
slicers available today are Slic3r2, Cura3 and Kisslicer4. Each perimeter is
then calculated, and these paths make out the shell of the component. After
calculating the perimeter of the part, the infill has to be generated. There
are several different infill types. Solid infill fills the model with material,
and gives a strong and heavy model that takes a lot of time to print. Other
infills typically fill a given percentage of the area, and give a quicker print
with close to full strength. Popular non-solid infill patterns include lines or
rectilinear patterns. Honeycomb, Hilbert curves or different types of spirals
are also popular.

Printing process There are a number of different types of 3D printers in
use, but the most common, both in hobby use and for professionals, are FDM
printers - fused deposition modeling (or FFF, fused filament fabrication).
FDM is an additive method that works by extruding a plastic or metal wire

2http://slic3r.org/
3http://wiki.ultimaker.com/Cura
4http://kisslicer.com/
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and melting the material onto the model. Models are built one layer at a time
in succession. Since the process of 3D printing consists of depositing strands
of material, models with features hanging in the air, like bridges or crosses,
are hard to print. This is often done by adding support under the affected
areas, either by using another material that can more easily be removed, or
by printing in the same material, but using a pattern that doesn’t attach to
the final model itself. This enables a 3D printer to print features in mid-air,
but requires removal of the support after printing. As with infill, there is
a multitude of different patterns and techniques for generating support
material, two of which can be seen in figure 3.1.

Figure 3.1: An example of two different support patterns for the same part,
with breakaway style on the top and smart style on the bottom.

3.3 Electronics and mechanics

Microcontroller Arduino5 has, since the release of the first board in
2005, become among the most popular and widely used single-board
microcontrollers available for hobby use. Arbotix6 is an Arduino compatible
robot controller designed to be easy to interface to motors and servos, and is
compatible with Arduino, an already widely used system for most robotics
departments or hacker spaces.

Servos There is a massive amount of different servos on the marked, and
they each target one of many different market segments. Professional
servos are typically at a price range not available to hobby or scientific
use, but high end hobby servos exist, and perform comparable to the
cheapest professional servos. Evolutionary robotics often include closed
loop controllers, where sensory data is fed back into the controller, so the
ability to read servo positions is vital for many projects. Several servos
include a way of outputting the positions through PWM on the data lines,
but this is not easy to read with the Arbotix (or any other Arduino board),

5http://arduino.cc
6http://www.vanadiumlabs.com/arbotix.html
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and a digital bus-style servo is preferred in most cases. The Dynamixel7

range of servos from Robotis features low cost, high power, and an easy to
use bus interface highly compatible with the Arbotix or other Arduino-based
system. The servos can be controlled by position, speed and torque, and
work in continuous rotation mode if needed, which enables a wide range of
controller outputs. Position, speed, load and temperature can also be read
from each servo through the digital bus, which is a big plus when using
closed loop controllers, since this reduces the need for other external sensors.
The Dynamixel range of servos is considered an excellent choice when both
precision control and dynamic operation are needed [85], and is extensively
used in robotics research, especially for small humanoid robots[86, 87, 88].

Wireless communication When it comes to control of legged walking
robots, wireless control is the norm. This can be achieved by many different
technologies or techniques, but use of xBee8 wireless RF Modules are
certainly among the most popular among hobby and research users. They
are normally used in a point to point network as a direct replacement for
a TTL serial cable, but can also be used in other network topologies like
star, mesh or cluster tree networks. The most popular xBee boards work on
2.4GHz, 900Mhz, bluetooth or wireless computer networks. All modules
have a common pinout and are interchangeable, given the correct supply
voltage. Popular alternatives for the xBee modules include simple radio
frequency transmitter/receiver pairs on 315MHz, but these typically involve
more work, as modulation and a communication protocol with checksum
calculation has to be implemented to get good performance.

Power When considering power needs, an analysis of the power
requirements of all individual components involved has to be conducted.
Typical voltages required for motors and servos range from 5-12v, while
microcontrollers typically run on 3.3v-5v. Several different voltages can be
combined in the same system, given a common ground connection. When
doing extensive testing of robots, a tethered connection with communication
and power is mostly used. This removes error sources like wireless
communication and power systems while testing. When running the system
wirelessly, a battery has to provide power for the whole system. If different
voltages are required, a voltage regulator is normally added to reduce
the complexity and added weight of carrying several different batteries.
Among rechargeable batteries (often referred to as secondary cells), lead acid,
lithium, NiCad and NiMH are the most common. Use of NiCad batteries is
declining because of memory effects, a loss of energy capacity after charging
cycles, and the toxic cadmium core. NiMH is equally declining due to
high self-discharge rates. Lead acid batteries have been used extensively
for bigger robots due to the ease of recharging, low price, relatively low
internal resistance (and therefore large current output), and high availability.
They have, however, lost marked shares the last couple of years due to

7http://www.robotis.com/xe/dynamixel_en
8http://www.digi.com/xbee/
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high weight and size, and the rise of better lithium batteries. Lithium
batteries, often called LiPo or Li-ion, have been steadily gaining market
shares, especially in areas of RC use and robotics. They feature comparable
energy storage capacity to NiMH batteries, comparable output current to
NiCad batteries, no memory problems, and considerably lower weight than
all previously mentioned batteries. They are, however, held back by high
price and complex charging requirements.

3.4 Testing

Validation and verification are both important to consider when it comes to
product development. Validation relates to whether the product developed
meets the needs of the intended users, while verification involves an
evaluation of whether the product satisfies the given requirements or
specifications. Verification of robot design plans often include a structural
analysis of all parts, showing stress or deformation under various loads,
and potentially uncovers material failure, structural instability or inefficient
designs. Verification of finished robots is typically done by comparing the
performances to the predefined goals of the development.

3.4.1 FEM simulation

Finite element analysis is a function in Solidworks that utilizes the
finite element model (FEM) to calculate strain, stress, and displacement
on parts, both under internal and external forces. This is used to verify the
model against known external forces inflicted under typical use. Especially
important is the generated stress graphic, which shows stress intensity
throughout the model. The three principal stresses in each axis is combined
to form what is referred to as Von Mises Stress, which can be compared
to the yield stress of a material to predict material failure. This is used to
reinforce the model where needed, and gain a better balanced form. Factor
of safety, or FOS (or factor of ignorance, as some refer to it as) is a calculated
factor that states how much stronger the model is than it has to be, for the
simulated load (3.1). Any number under one indicates it would not be able
to handle the load specified (given a perfect simulator), while any number
above one gives a margin of safety equal to the factor of safety minus one
(3.2).

Factor of safety =
Material Strength

Design Load
(3.1)

Margin of safety = Factor of safety− 1 (3.2)

Problems with using FEM on 3D printed models The problem with
doing a FEM simulation on 3D printed objects is that the objects are not
uniform. The printer deposits the print material in a continuous path, and
does not necessarily have 100% infill for the whole model, as seen in figure
3.2. Models are also much stronger in the plane they were printed in, as
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more force is needed to break the continuous lines of plastic, than to split
the model between two layers. This causes yet another source of inaccuracy
between simulation and real life. In theory, the software to prepare the
model for 3D printing could output the model with the right paths, and
simulation could be done on the new model, but that is not yet supported
in any major CAD package.

Figure 3.2: Drawing of the print path for a given layer of a printed model.

3.4.2 Motion capture equipment

There are various methods of testing the movement of robots. One of
the most popular methods among researchers and professional users is
using motion capture equipment to record position and orientation of the
robot. Typical professional equipment gives a precision in the scale of
millimeters to sub-millimeters. Motion capture systems work on a variety
of different technologies, but most are optical systems that rely on either
passive or active markers. Passive markers are reflective balls that reflect
light at a higher ratio than the other materials on the scene, so a simple
threshold of the incoming light can decide the position of the markers. A
problem with passive markers is the difficulty in differentiating between
different markers. This is not the case with active markers, where the
markers typically consist of light emitting diodes that can be switched
on sequentially. Several cameras capture the scene at the same time, and
the positions of the markers on each 2D image is used to generate the 3D
positions of the markers.

Setup at UiO The motion capture setup used at the University of Oslo
consists of eight OptiTrack Flex 3 cameras with infrared lights, and passive
reflective markers. Data recording and analysis is performed by version 1.7.3
of the Arena software package, which handles all point cloud calculations.
The cameras run at 100 frames per second, sending a 640×480 precision
grayscale image to the software by USB. Rigid body orientation and position
is streamed from Arena to the simulation environment.
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Figure 3.3: Screenshot from the motion capture software showing all cameras
and the rigid robot body.

Alternatives Alternatives to motion capture equipment when dealing with
robotics applications vary, depending on the need for accuracy. Using
an accelerometer and a gyro to estimate position by integrating linear
acceleration twice gives low accuracy, but may be improved by using kalman
filters or other techniques. Many researchers have used onboard sensors
like ultrasound, laser range finders or stereo vision systems to successfully
estimate movement. Other alternatives include use of light, sound, or
magnetic fields. Wireless signals like RFID or normal computer-based
wireless networks can also be used. To get an accurate indoor positioning
system, a hybrid algorithm combining different techniques should be used,
and fusion and analysis of data from different sensors has grown into a big
research field.

3.5 Simulation environment

The evolutionary simulation framework developed at the University of Oslo
relies on PhysX for physics simulations, and ParadisEO for the evolutionary
functions. It enables distributed simulations across the network, and has
been used in several ER research projects [20, 35].
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Physx The real-time physics engine PhysX9 is released and maintained by
Nvidia, one of the top two developers of graphic cards, along with AMD.
PhysX and its source developer kit is free for both commercial and non-
commercial use on windows, and is in use by a wide range of computer
games and other projects requiring physics simulations. It allows developers
to rely on a framework for physics simulations that enables simple high level
coding to integrate high end physics simulations with hardware acceleration
support into existing projects without particular knowledge in physics or
simulations.

ParadisEO ParadisEO10 is a free white-box object oriented metaheuristic
framework implemented in C++. It also includes a variety of probability
functions, and includes support for hybrid, parallel and distributed
metaheuristic calculations.

ROBIN framework overview An overview of the framework can be seen
in figure 3.4. When doing evolutionary runs, a set of randomized initial
encodings are made. These generate a controller and a simulation model,
which are given as specifications to the PhysX simulator. The simulator
returns one or several fitness scores to the evolutionary framework, which
uses ParadisEO to modify the encodings, and start the cycle again for new
generations. A single initial encoding is the starting point for hardware
runs, and this encoding generates a single hardware model with controller,
which is sent as a specification to the hardware control. The controller
then sends signals to the robot. The motion capture equipment sends back
scores, which is used by the learning system to modify the controller of the
hardware model. This is repeated for a number of evaluations defined by
the learning algorithm used. Every red box contains model-specific code,
and needs to be changed when new robots and controllers are added.

9http://www.nvidia.com/object/physx_faq.html
10http://paradiseo.gforge.inria.fr/
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Figure 3.4: Flow chart of the evolutionary simulation environment. All
custom parts are colored red.
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Chapter 4

Implementation

This chapter gives an overview of the work done to develop the
evolutionary system, including the parameterizable model, the physical
robots with gaits, the simulation environment, and the evolutionary
framework. Some section might contain minor experiments and results, but
these are small, and considered a part of the implementation phase of the
work. The main goal of the design was to make a legged robot suitable for
evolutionary experiments involving both morphology and control. This
requires parameterization of all critical dimensions of the robot. To be
adaptable to a wide range of objectives and environments, a six legged
design was chosen. This enables high manoeuvrability and ability to walk
in harsh terrain, and gives good lifting capability, balance, and speed, as
opposed to two or four legged robots, or their wheeled counterparts. The
chapter begins with the design of the robot platform. Manual choice of
parameters for the initial model is then shown, before gait design and the
evolutionary setup is discussed.

4.1 Design of robot platform

Even though the final robot models are generated using the evolutionary
system, the parameterizable model has to be made manually and parameters
has to be chosen for a manually designed version to be used as a reference
when testing performance. Two different leg configurations were made to
give a wider field of application for the robot. All link names are taken
from biology, specifically arachnid legs. Three degrees of freedom (DOF) is
considered standard for legged robots, and is shown in figure 4.1a. Another
DOF is added in the leg showed in figure 4.1b. Only the 3DOF legs are used
in this thesis, and the axis system is defined in section 4.3, where gait and
kinematics are calculated. The first sketch of the robot can be seen figure 4.2,
which includes servo IDs for the optional front legs.
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(a) Drawing of the 3DOF leg.
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(b) Drawing of the 4DOF leg, typically
used in front.

Figure 4.1: Drawings of the two leg configurations.

4.1.1 Choice of evolvable parameters

The parametric robot model needs to be customizable, while still
containing as few parameters as possible, to reduce computational
requirements, driven by the curse of dimensionality. Lengths for the femur
and tibia of each leg were chosen as parameters. Servo sizes and angle limits
were assumed to be static (but could be changeable if several servo models
were available), and minimum lengths for all parameters were chosen to
be as small as possible while still having a robot with feasible real world
relevance. Maximum lengths were chosen as the largest parts still able to
fit on a typical professional 3D printer tray, to enable other researchers or
collaborators to more easily reproduce the model and research. Lengths for
all femurs and tibia resulted in 16 parameters.
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Figure 4.2: Drawing showing servo placement and IDs. Front legs are
colored gray as they are not used in this thesis.

Base To enable a wider range of robot morphologies and robot configura-
tions, the base plate was also made customizable. It hosts eight servos, and
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the parameters chosen were distances between the centers of certain servo
horns, seen in figure 4.3. Six of the side servos were chosen to hold legs,
while the front servos were not added in this thesis, due to the increased
complexity of simulations and computational requirements. This parame-
terization results in 5 different parameters, hopefully making the base plate
adaptable to a wide range of different scenarios and morphologies. An
additional limit was set on the length parameters to simplify the creation of
the 3D model and the calculation of the weight. This states that servos 9, 12,
18, 21 and 24 are always at the sides, or in other words, that parameter B1
defines the width of the base plate, and B0 can only occupy the given space.
This results in the limit given in equation (4.1).

B0 + 21.5mm× 2 < B1 (4.1)

Base servo orientation 21.5mm in equation 4.1 comes from the fact that
servos 1 and 5 are rotated 90 degrees compared to the servos on each side,
and the centre of the servo horns on the side is therefore further from the
edge of the base plate than the front servos. More parameters could be
added to allow for arbitrary rotation of servos on the ends of the plate, but
this configuration was chosen to limit the number of parameters.

0

481114

17 20 23
21.5mm

Figure 4.3: Drawing of the base, showing all parameters.

Movement sectors One disadvantage to locking the servo orientations
is that the evolution has less control of the available space for each
servo movement. Most traditional gaits require legs to alternate between
backward and forward positions in opposite phases, so leg paths cannot
intersect, or else the legs would crash. This has typically been solved by
assigning each leg its own sector, as seen in figure 4.4. The sectors can then
be used to calculate angle limits to restrain each leg from exiting its own
sector. Sectors of maximum size can be achieved with a circular robot, but
a circular robot is often considered sub-optimal, perhaps evident from the
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4.1. DESIGN OF ROBOT PLATFORM

lack of large circular animals in nature. Because so many six- or eight legged
walking robots feature a configuration of legs on two sides, it was decided
to lock the servo orientation to keep the solution space minimal. Individual
sectors can still be modified by different gaits, but this will simply move or
resize the sectors relative to each other, not increase total movement space
across all sectors.

Figure 4.4: Drawing of a possible sector diagram showing the available
servo movement space for each servo.

4.1.2 Design of parts

Each part was designed in Solidworks 2013 using simple 2.5D techniques
(see section 3.1 for a description of 2.5D design). The design was done
from the center of the robot and outwards, starting with the base, then coxa,
femur, tibia, and then the trochanter used only in the front.

Base plate

The base plate was designed to be lightweight, and to provide a stable
foundation for the 8 servos. This allows six legs plus two servos holding
sensors or tools, or a total of eight legs, giving maximum strength and agility
to the robot, allowing traversal of rough terrain or carriage of heavier loads.
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4.1. DESIGN OF ROBOT PLATFORM

(a) Rendered image from Solid-
works

(b) Image of the printed base, with
motion capture markers and cable
gland.

Figure 4.5: Images of the 3d printed robot base.

Coxa

The coxa serves as the interface between the trochanter and the femur
in the front legs, or the base and the femur in the other six legs. It serves
as a link between two servo horns, and gives a rotation of 90 degrees,
as seen in figure 4.6. A model featuring the required rotation, while not
restricting servo movement or adding too much material and weight, can
be challenging. It was, for this reason, decided to test the design by doing a
FEM simulation.

(a) Rendered image from Solid-
works.

(b) Image of the printed coxa.

Figure 4.6: Images of the 3d printed coxa.

Coxa FEM simulation A FEM simulation was done on the Coxa to ensure
that the right strength and rigidity was achieved, as seen in figure 4.7. The
study was done with 3kgf force on one end, and a static fixture on the other.
It resulted in a factor of safety of 18.3 and fairly even Von Mises stress,
indicating a structurally strong and stable design.
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(a) Von mises stress for the coxa.
Blue areas show the lowest
level of stress, while red areas
show the highest levels.

(b) Factor of safety for the coxa.
Red areas show the lowest FOS,
while green and blue show the
highest.

Figure 4.7: FEM simulation results for the coxa.

Femur

Several different configurations were tested during the design of the
femur. A simple rectangular cuboid or a circular cylinder would suffice
mechanically, but the overall aim of the design was to minimize weight by
using as little material as possible. This also contributes to a lower cost and
less print time, encouraging the use of this robotic framework for projects
with lower budgets. Designs were based on truss techniques - commonly
used when constructing bridges, electricity pylons, buildings, or other
structures. The different designs were compared by weight, displacement,
strain, and factor of safety. A custom material was used in Solidworks,
derived from the standard material ABS. This is not an exact match to the
non-uniform material of the parts printed by the 3D printer. It is, however,
a good measure for relative performance. The test was done with a femur
middle length of 150mm, standard gravity, and 5kgf applied at one end of
the femur.

Model Weight Displacement Strain FOS
Reference 43.97g 1.55mm 0.00214 6.91
Pratt truss 39.52g 1.58mm 0.00566 2.08
Whipple truss 38.54g 1.66mm 0.00434 3.93
Brown truss 42.12g 1.41mm 0.00369 4.42

Table 4.1: Performance of the different femur designs.
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4.1. DESIGN OF ROBOT PLATFORM

(a) Displacement of reference model (b) Equivalent strain of reference
model

(c) Displacement of Pratt truss de-
sign

(d) Equivalent strain of Pratt truss
design

(e) Displacement of whipple truss
design

(f) Equivalent strain of whipple
truss design

(g) Displacement of Brown truss
design

(h) Equivalent strain of Brown truss
design

Figure 4.8: FEM simulation results

Reference model A hand designed model was made without using any
common truss technique, to get a base to compare the traditional truss
designs with. The design was drawn with simple engineering intuition,
without any reference designs or truss design experience. The performance
can be seen at the top of table 4.1. Figure 4.8a shows the displacement graph,
and figure 4.8b the strain graph.
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Pratt truss There is a variety of different truss techniques, and one of the
most commonly used techniques is the Pratt truss. Figure 4.8c shows the
displacement graph, while figure 4.8d shows the strain graph. Compared
to the custom model, weight is lower; displacement is higher, while factor
of safety is far less. The relatively low decrease in weight (less than 5g, or
40g for the whole robot) does not justify the increase of 165% in equivalent
strain and a loss of factor of safety in the area of 70%.

Whipple truss An extension of the Pratt truss is adding vertical nodes
through the diagonal members. The implementation seen in figures 4.8e
and 4.8f shows that the implementation is not a perfect Whipple truss, since
it is missing an angled member at each end. This should, however, not
affect the performance to a high degree. This design features an even lower
weight than the Pratt truss design, but there is still an unacceptable increase
in equivalent strain and loss of factor of safety, even though strain improved
when compared to the Pratt truss.

Brown truss The Brown truss was the last truss type chosen for testing,
and can be seen in figures 4.8g and 4.8h. This truss type is known for its
economical use of materials, and should therefore give a light model when
compared to structural support. The weight loss is less significant than the
other two models, but the displacement is better than both the reference
model and the other truss types. Equivalent strain and factor of safety are
better than the other two truss designs, but still considerably worse than the
reference model.

Final choice of femur design A more detailed analysis could have been
done if the differences between the models were greater. A continued
analysis would have included redesigning the models so they all had the
same weight, and thereby enabling a more precise and direct comparison.
Since the weight difference between the best and worst was less than the
weight of a single servo given six legs, the hand designed model was chosen
for the high factor of safety, and was made parameterizable.

(a) Rendered image of the femur (b) Image of the printed femur

Figure 4.9: Images of the 3d printed femur design.

42



4.1. DESIGN OF ROBOT PLATFORM

Tibia

The tibia is at the end of the leg, and connects to servo hubs. It was designed
to be as light weight as possible, and feature three holes in each horizontal
beam for mounting of tools, sensors, or other objects.

(a) Rendered image from Solid-
works

(b) Image of the printed part

Figure 4.10: Images of the 3d printed tibia.

Trochanter

The trochanter was designed to serve as the interface between the servo
horn at the base, and the coxa. It enables rotation of the legs so they can
serve as grippers or dynamic tool holders, and can be seen in figure 4.11.
The trochanter is only needed for the optional front legs, and is not used in
this thesis. It was, however, designed to enable others to use it for future
research and experiments.

(a) Rendered image from Solid-
works.

(b) Image of the printed trochanter.

Figure 4.11: Images of the 3d printed trochanter.

4.1.3 Parametric weight

Since the simulator relies on weights for the parameterized parts, functions
for the weight of both femur and tibia have to be determined. If the simulator
used high resolution 3d models, a simple mass density would likely suffice,
but since the simulator works on a simplified robot model for speed and
efficiency, an individual mass function call is used to apply the correct
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Part Weight in real world (±0.1g) Weight in Solidworks
AX12 servo 54.7g -
AX18 servo 57.8g -
Servo holder 19.1g 22.81g
Trochanter 29.5g 38.93g
Coxa 24.2g 32.91g

Table 4.2: Weights of all static robot parts

weight to all parts. Static weight is defined in table 4.2, while parametric
weight is calculated for the femur, tibia, and base. (See chapter C in the
appendix for a table of weights of the different parts at various phases of
the project.)

Femur

Figure 4.12: Drawing of the femur, with a total length of 150mm to the left
and 200mm to the right.

Printing two different lengths and then interpolating the weights would
have been the preferable method of making a weight function, but
since printing is costly and takes time, weights were interpolated using
Solidworks, and then multiplied with a Solidworks to physical world
constant, calculated from one printed sample. This results in a low accuracy
weight, but higher accuracy would be impossible without also including the
tool path generating software for the 3D printer, as parts are non-uniform
due to the printing process. Weights given in table 4.3 are the weights of
the middle part of the femur recorded in Solidworks. Only the middle part
of the model scales with length, while servo holders stay static, as seen in
figure 4.12.
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Middle length Total length Solidworks weight Printed weight
70mm 150mm 29.00g -
120mm 200mm 38.32g -
150mm 230mm 43.97g 35.9g
174mm 254mm 48.5g -

Table 4.3: Weights of the femur from Solidworks.

After using linear regression, the following function is generated:

femur_weightSW = 0.187g/mm× x + 15.858g/mm

The printed femur has a total length of 230mm, which results in the following
calculation to get the weight of the middle part:

74.1g− 2× servoholders_weight
=74.1g− 2× 19.1g
=35.9g

This leads to a weight in the real world (rw) to weight in Solidworks (sw)
constant of:

Crw/sw =
35.9g

43.97g
= 0.81647

This in turn makes a final function for the weight of the femur:

Crw/sw × ((length− 80mm)× 0.187g/mm + 15.858g/mm) + 2× 19.1g

Tibia

The tibia is the second of the two parametric parts used in the legs. As
with the femur, only one printed sample was available at time of calculation.
Only the outer part of the tibia is scaled when the length is increased,
while the inner part stays constant at 66mm long, as seen in figure 4.13.
Calculations are done identically to the femur calculations.

tibia_weightsolidworks = 0.136g/mm× x + 13.58g/mm

Crw/sw =
40.8g

46.22g
= 0.88273
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Figure 4.13: Drawing of the tibia, with a total length of 150mm to the left
and 200mm to the right.

End length Total length Solidworks weight Printed weight
84mm 150mm 33.96g -
134mm 200mm 40.81g -
174mm 240mm 46.22g 40.8g
188mm 254mm 48.10g -

Table 4.4: Weights of the tibia from Solidworks.

The calculations result in a final function for the weight of the femur:

Crw/sw × ((length− 55mm)× 0.136g/mm + 13.58g/mm)

Base plate

As can be seen in figure 4.14, the base plate is of a fairly simple
construction, with 8 servo holders and a thin plastic construction covering
the empty spaces. All five parameters are also seen. Five dimensional
regression analysis is not a viable technique due to a high requirement of
data points, but since the construction is so simple, a calculation of the total
area is a feasible method, and should be very accurate, even when only
given a single printed sample.

Ablue = (B1− 83mm)× (B2 + B3 + B4 + 69mm) (4.2)

Ared = 152mm× (B2 + B3 + B4)− 24776mm2

Atotal = (B1− 0.083m)× (B2 + B3 + B4 + 0.069m)

+ 0.152m× (B2 + B3 + B4)− 0.024776m2
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Figure 4.14: Drawing of the base plate, with lengths from robot1.

For the initial printed base model, the function yields the following result:

22mm× 277mm + 152mm× 208mm− 24776mm2

=6094mm2 + 31616mm2 − 24776mm2

=12934mm2 = 0.012934m2

Printed weight is 177.4g, but that includes 8 servo holders. Total weight is
given by:

177.4g− (8×weightservo holder) = 177.4g− 8× 19.1g = 24.6g

This means the constant for weight to area can be calculated by the
function below (4.3). This constant is used together with the function for
area (4.2) and the weight of the servo holders, to define the total weight of
the base plate. See figure 4.15 for the colored zones.

24.6g/0.012939m2 = 1901.23g/m2 ≈ 1.9kg/m2 (4.3)
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Figure 4.15: Drawing of the base plate, with marked area calculation zones.

4.1.4 Increasing friction

Grip tape The ABS plastic used for the parts of the robot has a low friction
on both the floor at the robotics lab, and the carpets used in the motion
capture lab at UiO. A low friction is typically harder to simulate than a high
friction, and there are several different approaches to increasing friction. The
first and quickest way used to increase friction, was to apply both friction
tape and grip tape to the end of the legs. Friction tape is a thin tape used for
hockey sticks and other sporting goods, while grip tape is a thicker, coarser
tape, which is used in hobby projects and DIY. The robot legs were designed
to make it easy to attach different tools or objects, so the tape was applied
without any effort, as seen in figure 4.16. Friction tape did not offer much
difference on the floor, but showed promising results on the carpet. The
thick grip tape increased friction significantly on both surfaces, though not
as much as originally hoped.

Testing setup Since different solutions to the friction problem were to be
tested, a friction testing setup was made. The setup was only used for
comparing different friction increasing designs, so an absolute friction force
measurement was not required. The main goal of the test was therefore a
relative score, with good precision, while accuracy was a secondary objective.
Dynamixel servos were the motors readily available, and allow digital
control of the torque, which was used actively throughout the testing. A
simple carriage was designed to hold two batteries for weight, and had
the same hole placement as the robot legs to enable similar attachment. A
pulley was designed, printed, and attached to the servo, pulling the rope
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(a) An image showing the friction
tape applied on one side of the tip
of a tibia, with bare abs plastic on
the other side.

(b) An image showing the grip tape
applied on one side of the tip of a
tibia, with friction tape on the other
side.

Figure 4.16: Images of the two types of friction increasing tape used.

attached to the carriage, as seen in figure 4.17a. The Arbotix microcontroller1

was programmed to run the motor system. Logging of the position of the
carriage was done through a Processing2 sketch. This allowed for a gradual
increase of the torque of the motor, and recording of the movement of the
system at the same time. The test was done up to five times for each solution,
and returned a relative fitness score. When running the actual test, the vice
was holding the servo to a table leg, while the carriage was pulled across
the floor.

(a) An image showing the testing
setup, including the carriage, servo,
pulley and vice.

(b) An image showing a friction pad
test up close.

Figure 4.17: Images of the friction pad testing setup.

Friction pads The photopolymer 3D printer we have at the University of
Oslo is able to print in a flexible material called Tango Plus3, which offers
much higher friction on both the floor of the university and the carpet in
the motion capture lab, compared to untreated printed ABS plastic. Several
different designs of friction pads were made and printed in pure Tango
black plus, and a friction testing setup was made to test and compare the

1http://vanadiumlabs.com/arbotix.html
2http://processing.org/
3http://www.stratasys.com/materials/polyjet/rubber-like
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performance of the different models and materials. This resulted in a friction
pad that can be attached directly to the legs of the robot, as seen in figure
4.18. These showed a significant increase in friction, both on the floor and on
the carpet. As seen from figure 4.17b, the friction pads were flexible enough
to deform and give a higher area of contact for increased friction, much like
the tires on a car.

(a) An image showing nine of the
different friction pads.

(b) A close up image of two friction
pads, printed in Tango black plus,
showing the details of the texture.

Figure 4.18: Images of the single material friction pads.

Multi material friction pads It became apparent after the first friction
tests that the 100% Tango black plus material produced pads too weak for
continuous use on the robot. While providing good friction, the soft model
tore where the screws and washers attached it to the end of the robot legs.
The 3D printer is able to print in different materials for parts of the model,
and even using an arbitrary mix of different materials. New models were
designed where the whole part was printed in a mix of hard and flexible
materials, producing a single semi-flexible part. Parts with flexible domes
and non-flexible back plate were also printed and tested.

(a) An image showing multi mate-
rial friction pads. Three different
material mixes are used on the three
topmost pads, while the back of the
multi material pads can be seen in
the bottom of the image.

(b) A close up image showing how
the hard back plate is attached to
the flexible front, and the difference
in the size of the holes on the dome
and the back plate.

Figure 4.19: Images of the multi material friction pads.
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Conclusion The single material friction pads of 100% Tango black plus
performed best, but were too weak for use on the robot. The Multi material
friction pads with a flexible dome and non-flexible back plate performed
slightly worse on friction, but showed no signs of deterioration through five
tests of each pad. Availability of the Tango black plus material did, however,
stop the manufacture of a full set of friction pads. Grip tape was therefore
used for the duration of the thesis, with friction tape below, to provide better
grip to the ABS plastic parts.

4.2 Manual choice of parameters

After choosing evolvable parameters and designing the parts, values
for the first iteration of the robot had to be chosen. No optimization or
simulation was used, as this robot serves as the manually designed baseline
for comparisons to evolved robots. Sizes were limited by the available 3D
printer tray size, but also by the strength of the servos. Any static gait needs
at least three legs in contact with the ground at all times. As long as the
center of mass is within the triangle defined by the three legs, the robot
will be in balance, and the gait will be specified as static. Any additional
legs in contact with the ground extend the area of the triangle, and give a
higher number of available static poses. Each servo controlling the femur
is rated at a stall torque of 18.3kg/cm force. Given a static gait on a robot
weighing about 3kg, each servo has to support at least 1kg each. This results
in a maximum length between the inner servo of the femur to the end of the
tibia of 18.3cm.

Calculation of forces for different lengths Given a maximum length
between femur and tibia of 18.3cm, a minimum force required to stand
and a maximum servo angle can be calculated. The calculations are done
in chapter A.1 in the appendix, but the results have been shortened and
presented in table 4.5. Sizes of 230mm were calculated first. It showed a
minimum force required fairly close to the stall torque, so smaller sizes of
150mm were also tested. This resulted in a minimum torque required of
approximately half the stall torque, and was chosen as initial lengths for
the legs. Base parameters were chosen intuitively, giving a relatively small
distance between all servos, and can be seen in table 4.6.

Femur Tibia Distancemin Torque requiredmin Anglemax
230mm 230mm 147mm 14.7kg×cm 133◦

150mm 150mm 94mm 9.4kg×cm 105◦

Table 4.5: Leg lengths and corresponding force requirements to stand on
only 3 legs, given a robot of 3kg.
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B0 B1 B2 B3 B4 Femur Tibia
62mm 105mm 71.5mm 65mm 71.5mm 150mm 150mm

Table 4.6: Parameters chosen for the manually designed robot.

4.3 Gait design

Designing a gait from a path planning program by making use of the inverse
kinematics of each leg was done to produce a manually designed gait
that can serve as a base line when evaluating the performance of evolving
morphology. The evolutionary setup, including simulation model, hardware
control, and control system, was implemented to enable evolution of both
morphology and control.

4.3.1 Forward kinematics

The forward kinematic matrix was derived using the Denavit-Hartenberg
conventions, as described in section 2.2.3. The forward kinematics were
calculated to establish the axis system for all links, to enable mathematical
verification of the inverse kinematics, and to use for experimentation on
the robot platform before path planning and inverse kinematics were
implemented. The full calculation can be seen in section A.2 of the appendix.

Figure 4.20: The Denavit-Hartenberg compatible coordinate system chosen
for the robot legs. Axis colors are the standard (X, Y, Z) = (Red,Green,Blue).

4.3.2 Inverse kinematics

Inverse kinematics are generally harder to calculate than forward kinematics,
as there is no widely used method of calculation. The kinematics were
derived for the robot using simple geometrical functions.
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Calculation of θ1 Calculating the coxa angle is the easiest, since the leg
can be reduced to two dimensions by looking at the leg from the top. This
makes the problem a simple trigonometry problem, solved by calculating
the inverse tangent, as seen in the equations (4.4) and figures 4.21.

(a) This is the reduced problem of finding θ1, solved by
equations (4.4).

(b) A sketch of the inverse kinematics problem of finding
θ1, showing a robot leg from above. P0 is the inner coxa
hub center, and P1 is the outer hub center. P2 is the inner
tibia hub center, and P3 is the center of the end of the tibia,
as seen in figure 4.20.

Figure 4.21: Drawings of the inverse kinematics problem of θ1.

tan(A) =
a
b

(4.4)

tan(θ1) =
P3y

P3x

θ1 = tan−1(
P3y

P3x
)

Calculation of θ3 The calculation of the two femur angles is slightly more
complicated than the coxa angle. The geometry is seen from the side of the
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leg to simplify the problem, and is therefore considered two dimensional.
Firstly, the three dimensional Euclidean distance L1→3 is calculated, and
then used in the law of cosines to calculate the angle θ3, as seen in equation
(4.5) and figures 4.22.

L1→3 =
√
(L1→2)2 + (L2→3)2 − (L1→3)2 (4.5)

cos(C) =
a2 + b2 − c2

2ab

cos(C) =
(L2→3)2 + (L1→2)

2 − (L1→3)
2

2× L1→2 × L2→3

θ3 = cos−1(
(L2→3)2 + (L1→2)

2 − (L1→3)
2

2× L1→2 × L2→3
)

(a) This is the reduced problem of finding θ3, solved by
equations (4.5).

(b) A sketch of the inverse kinematics problem of finding
θ3, showing a robot leg from the front of the robot.
Coordinate systems are as defined in 4.20.

Figure 4.22: Drawings of the inverse kinematics problem of θ3.
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Calculation of θ2 The calculation of θ2 is the most complicated of the three
angles. Two angles are created to aid the calculation, θbottom

2 and θtotal
2 . See

figure 4.23a for the problem sketch. Calculating θbottom
2 can be done using the

inverse tangent function, since a right triangle is used (see equation (4.6)).
θtotal

2 is calculated using the law of cosines, as used when calculating θ3 (see
equation (4.7)). θ2 is then given by equation (4.8), as seen in figures 4.23.

(a) This is the reduced problem of finding θ2, solved by
equations (4.8).

(b) A sketch of the inverse kinematics problem of finding
θ2, showing a robot leg from the front of the robot.
Coordinate systems are as defined in 4.20.

Figure 4.23: Drawings of the inverse kinematics problem of θ2.
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tan(θbottom
2 ) =

c
a

(4.6)

a =
√
(P3x − P1x)2 + (P3y − p1y)2

tan(θbottom
2 ) =

P1z − P3z√
(P3x − P1x)2 + (P3y − p1y)2

θbottom
2 = tan−1(

P1z − P3z√
(P3x − P1x)2 + (P3y − p1y)2

)

cos(θtotal
2 ) =

a2 + b2 − c2

2× a× b
(4.7)

cos(θtotal
2 ) =

L2
1→2 + L2

1→3 − L2
2→3

2× L1→2 × L1→3

θtotal
2 = cos−1(

L2
1→2 + L2

1→3 − L2
2→3

2× L1→2 × L1→3
)

θ2 = θtotal
2 − θbottom

2 (4.8)

4.3.3 Manual gait from inverse kinematics

A gait based on the inverse kinematics was calculated for the manually
designed robot. The inverse kinematics were implemented in Matlab, and a
script was written that generates a conventional tripod-gait[89]. The robot
has three legs on the ground at all times, as seen in figure 4.24. This provides
a triangle shaped base of support for the robot. The line of gravity is within
these bases at all times, and ensures a stable gait. Parameters were added for
defining leg height over the ground, stride length, leg starting positions, and
a safety margin between legs. A forward skew was also added, since legs
are mounted on the back and sides of the robot only. Different parameters
were tested and optimized. Resulting parameters and code can be seen in
section B.7 in the appendix.
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Robot front Robot front

Figure 4.24: Graph showing the tripod gait. Legs on the ground are drawn
with black circles, while legs in the air are white. The triangled base of
support is shown with the dashed lines.

4.4 Evolutionary setup

Implementing the evolutionary setup is an important part of the thesis,
and involves defining fitness functions, implementing robot control system,
definition of genotype, and implementation of evolutionary operators and
parameters.

4.4.1 Fitness functions

A fitness function is a function returning a fitness score by estimating how
close a solution is to a given goal, and is described in more detail in section
2.3.7. The C++ code for all fitness functions can be seen in the appendix
(section B.1). The main objective of the robot development was to make the
robots move as fast as possible. Several fitness functions were, however,
implemented as part of the thesis work.

Total weight A fitness function returning weight is used as a helper
objective to ensure the evolutionary setup is able to generate a wide range of
different morphologies to choose from. It could also, however, be used for
evolving small robots to save on material costs or print time. Even though
the morphology evolved in the robots used in this thesis have the same
number of servos and legs, it was decided to develop the fitness function for
general use. This includes looking at the total weight of the robot, including
servos, other actuators, electronics, and other physical features. The function
works by calling a robot-specific function in the simulation environment.
This enables different robots to implement different weight functions. The
robots in this thesis simply return the sum of weight of all parts from PhysX,
as this is parametrized and includes all parts of the robot. A search is
typically run with minimization of this function as a goal.
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Forward movement The fitness objective rewarding speed was chosen
to be the distance moved in the robot’s forward direction at the end of
the eight seconds of simulation. This was done as continuously deriving
position to get speed, and then calculating the average speed throughout the
simulation, is computationally expensive, and prone to rounding errors or
noise. This does not explicitly favor straight gaits by punishing movement
in other directions, although it implicitly does so by only rewarding positive
movement along the forward axis for eight seconds.

Sideways movement A fitness function for sideways movement was
also implemented, and is implemented in the same way as the forward
movement function. The only difference is that this function rewards
movement in the axis perpendicular to the length of the robot. Which way to
be favored, left or right, can be changed by switching between maximization
and minimization of this function.

Total movement A fitness function for total movement was also imple-
mented, and measures the Euclidean distance travelled in the ground plane
at the end of the eight seconds of simulation. This function can be mini-
mized when no movement is wanted, as it is used when evolving turning
gaits, or maximized, to enable evolution of gaits that walk in all directions.

Turning The last fitness function implemented in the work of this thesis, is
a function designed for evolving turning gaits. It calculates the total counter
clockwise(CCW) rotation of the robot throughout the evaluation. Since it
returns the total turning angle CCW, a high negative value signifies a high
performing clockwise turn. It can therefore be used with both minimization
and maximization for evolving gaits that turn the robot either way.

4.4.2 Control system

The objective of the robot optimization is a high forward movement speed,
which should be able to do with a simple repeating gait. It was decided
to implement an open-ended controller, as closed-loop controllers are
significantly more complex than open-loop versions, and require simulation
of the inputs or feedback to the control system as well.

AmpPhase controller A controller that has previously proved effective in
developing gait for six legged robots is a wave controller with amplitude
and phase parameters [35, 63, 68]. Since natural gaits typically keep legs on
the ground for some time, a simple wave controller based on sine waves is
inefficient. This would mean constant movements, and low contact times
between each leg and the ground. A solution to this was proposed by Koos
et al. [63], and results in a control function that enables more stable gaits by
restricting the movement to a smaller part of the gait period. The function
consists of two parameters for each controlled joint, defining the control
function γ (4.9), where t is time, α is amplitude, and φ is phase shift.
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γ(t, α, φ) = α× tanh(4× sin(2× π × (t + φ))) (4.9)

AmpOffPhase controller The AmpPhase controller generates a function
that alternates between the center of the two angle limits of the servo,
and this may reduce the range of robots this controller can be used for.
To generalize, an offset can be added to enable the controller to control
movements symmetrical around any given angle. A modified function κ is
given (4.10), including an offset β. Any robot gait achievable by the modified
control function could also be achieved with the original function, but the
center would have to be set manually outside of the control functions or in
hardware. The new modified function (4.10) includes an offset, and therefore
enables the center of movement to be more easily included in evolutionary
runs or other optimization techniques, as a feature of the control system.
The two control systems can be seen in figure 4.25.

κ(t, α, φ, β) = α× tanh(4× sin(2× π × (t + φ))) + β (4.10)
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Figure 4.25: Graph showing the AmpPhase controller (4.9) in blue with
amplitude α = 0.25 and phase shift φ = 0.25. The AmpOffPhase controller
(4.10), in green, features the same amplitude and phase, but includes an
offset β of 0.5. A reference sine is included in red, given as sin(t).

MinMaxPhase One of the difficulties of controlling a robot with the
AmpOffPhase controller, is that limiting the control function to a given
set of limits effectively, may be hard. Randomizing the parameters and then
limiting them may result in a near-zero amplitude since the offset is near
the limits, or amplitude above the available range of motion beyond the
offset. If mutation pushed the movement beyond the limits, it is also unclear
whether amplitude or offset should be affected, and how this should be
done effectively without affecting the statistical distribution of the mutation.
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I therefore propose yet another modified controller, that is easier to limit,
and displays the same result as the original controller (4.9). Instead of
amplitude and offset, two parameters ν and ω serve as the two angles of
end movement. This simplifies limitation of actuation, since as long as the
two parameters ν and ω are within the limits, the movement will be as well.
To enable simple interaction with previous projects, controllers based on the
original AmpPhase or AmpOffPhase can be converted to the MinMaxPhase
controller by applying the functions given in equation (4.11). A comparison
of the control functions can be seen in figure 4.26. The functions can be
used to convert between the new amplitudes and offsets and the two limit
parameters, or the complete function χ (4.12) can be implemented directly
in the control system.

α =
(ν−ω)

2

β =
(ν + ω)

2

(4.11)

χ(t, ν, ω, φ) =
(ν−ω)

2
× tanh(4× sin(2× π× (t + φ))) +

(ν + ω)

2
(4.12)
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Figure 4.26: Graph showing the MaxMinPhase controller compared to the
AmpOffPhase controller. The AmpOffPhase signal is the same as figure 4.25,
while the MaxMinPhase has been generated with ν = −0.25 and ω = −0.75.
They are able to produce identical output, but the parameter values needed
are different. A reference sine is included in red, as in figure 4.25.

4.4.3 Reduction of the search space

The search space for the morphology alone is very large for this robot,
even in terms of typical evolutionary robotics applications [90]. 6 legs with
two parameters for lengths yield 12 parameters, along with 5 parameters
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from the base. 18 servos, each requiring several control parameters, makes
the search space for control much larger than for morphology. Table
4.7 shows the size of the search space, with min and max values for all
parameters. The high number of dimensions makes any attempt at brute-
force infeasible, and even evolutionary algorithms, which only test a fraction
of the search space, may suffer. Large search spaces give a need for longer
evolutionary runs, and yields a lower probability of finding near-optimal
solutions.

Parameter # Lower Upper
Tibia length 6 0.080 0.254
Femur length 6 0.080 0.254
Base length1 1 0.05265 0.094
Base length2 1 0.083 0.284
Base length3 1 0.0615 0.254
Base length4 1 0.05265 0.254
Base length5 1 0.0615 0.254
Tibia movement 6 -2.49 2.49
Coxa movement1 4 -0.81 1.64
Coxa movement2 2 -1.64 1.64
Phases 18 −π π

Table 4.7: Table showing search space for morphology at the top and control
at the bottom. Coxa movement1 is movement along the side of the robot
(servos 8,11,20,23), while Coxa movement2 is movement on the edges of the
robot (servos 0,4,14,17)

Reduction of dimensions Most of the parameters are related to control
of the legs, so this was the focus area of size reducing measures. Gaits
rewarded for moving in straight lines have been shown to perform better
when the morphology of the robots themselves are symmetric [65, 91], and
all legs were therefore divided into pairs of servos, as seen in figure 4.27.
The problem with symmetric gaits is that several symmetries can be used,
and choosing one limits the number of resulting gaits greatly. This can be
solved by using encodings or methods encouraging or imposing symmetry
[92, 91, 34]. A simple side mirror symmetry was used for this robot, as the
goal of the thesis was not to achieve the best results, but test a method of
design. This increased the parameter requirement from three to four, but
the four parameters now control two servos. This reduced the number of
dimensions used for control from 54(18×3) to 36(18/2×4), a decrease by
1/3.

4.4.4 Design of robot in simulator

Introducing the robot to the simulation environment requires coding of a
simplified three dimensional model. The Nvidia PhysX library works on
solid bodies and links, and the whole morphology of the robot was designed
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Figure 4.27: Drawing showing the servo pairs. Front legs are colored gray
as they are not used in this thesis.

using simple three dimensional boxes. All boxes were given appropriate
positions, sizes, and weights, and connected to each other by links. Servo
forces for both types of servos were calculated, and applied to all links.

(a) Image of robot1 in simulator with
bounding box and axes for each part.

(b) Image of robot1 walking in simu-
lation, with an overlaid graph of joint
movements.

Figure 4.28: Images of the simulation environment.

4.4.5 Operators and parameters

No functions for evolutionary operators were available in the evolutionary
framework that was used, so all operator functions were made from scratch
using C++. They can be seen in sections B.2 and B.3 in the appendix.

Mutation operators Non-uniform mutation was implemented for both
discrete and non-discrete floats (see section 2.3.3 for description of float
types and operators for evolutionary algorithms). Random reset mutation
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was also implemented for both types of floats. The parameters for these
operators were decided through experiments, seen in chapter 5.

Crossover operators There is a wide range of different crossover operators,
and a small subset was implemented in code. The simplest was the uniform
crossover, with custom probability and parent distribution. Simple-, single-,
and whole arithmetic recombination were also implemented, along with a
customized crossover operator named servo pair swap recombination. This
crossover operator chooses a random pair of servos from each parent, and
swaps all control signals for the chosen legs between the parents.

4.5 Result interpretation tools

Interpreting results from evolutionary runs can be a time consuming task.
Tools for calculations of statistical values are essential, and Matlab was used
for its statistical packages and since the integrated graphing possibilities
would be beneficial for analysis of the results. The evolutionary framework
produces plain text files with fitness values for all individuals of each
generation of the run. A Matlab function to iterate through all text files and
extract fitness information was implemented, and functions for comparing
whole runs, or even groups of runs, were also written. This enables easy
comparisons of both individual runs using the same parameters, and
groups of runs with different evolutionary parameters. This is used in
the experiments to decide between which parameters to use, and the effects
of their change.

Pareto graph A function to graph the Pareto set from a group of runs
was implemented. It features automatic classification of the Pareto front,
has features for marking individual runs for analysis of sub-fronts, and
shows which run the individuals came from, and which file it resulted in.
This enables the user to see differences between individual runs, and gives
insight into the Pareto front of each individual run in relation to the global
Pareto front. An example of a graph generated by the script can be seen in
figure 4.29.
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Figure 4.29: An example of a plot generated by the Pareto graph script. A
single individual is chosen, with a datatip showing the file containing the
individual. All other individuals from the same run are colored green.
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Chapter 5

Evolutionary experiments and
results

Experiments using the evolutionary framework were the first experiments
done, and included improving parameters of the evolutionary algorithms
used, the simulation environment, and the robot models themselves. The
first section describes the parameter search done for evolving the control
system, while the next section describes the parameter search for co-
evolution of both control and morphology. The third section shows the
experiments done on evolving the new morphologies, while new control
systems for the chosen evolved morphologies are evolved in section four.
The last sections evolves turning and sideways walk, as a test of the
versatility of the evolutionary framework. The appendix contains table
D.1 showing parameters of all runs, and table D.2 for the results. Distance
walked was used as the main objective, while total weight served as a helper
objective, which was not analyzed to the same degree as distance (see section
4.4.1 for more details on the fitness functions).

5.1 Parameter search for evolving control system

When applying evolutionary algorithms to a new problem, a variety of
different parameters need to be chosen. There are several methods for
parameter search for evolutionary algorithms, but no one method has gained
enough use to be considered standard, and as such, a simple manual search
was conducted (see section 2.3.5 for background on parameter search).

5.1.1 Uniform crossover experiments

Evolution of
Control

Objectives
Distance travelled

Optimization of
Uniform crossover value p

Other parameters
Non-uniform mutation probability: 1
Non-uniform mutation step size: 0.3
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The first crossover operator to be tested was chosen to be a uniform
crossover operator, described in section 2.3.3. A p value of 0.5 is the most
common, as this combines approximately half of each parent. Parameters
less than 0.5 means the offspring consists of a bigger part of one of the
parents, and a parameter close to 0 gives an offspring approximately equal
to only one of the parents. As it was infeasible to run a search using only a
crossover operator, the test was done with a static non-uniform mutation
operator, to ensure a minimum of diversity in the population.

Run Param. Rank Distarithmetic median Distmean Distmean(max) Distmax

180-216 0 2 0.9031m 0.9336m 1.5275m 1.9363m
217-252 0.5 3 0.7946m 0.8281m 1.4104m 1.7580m
253-274 0.25 3 0.7918m 0.8265m 1.4618m 2.2075m
275-291 0.1 4 0.7919m 0.8239m 1.3416m 1.4631m
292-295 0 1 0.9146m 0.9445m 1.5343m 1.6628m
296-304 0.05 4 0.7870m 0.8201m 1.3586m 1.6104m
305-318 0.02 3 0.7981m 0.8306m 1.3606m 1.4751m

Table 5.1: Results from uniform crossover experiments showing that the
reference runs performed statistically significantly better than all parameters
tested.

Results As seen from table 5.1, all parameters tested resulted in
significantly worse average performance than the reference runs, given
by the Wilcoxon rank sum tests with significance levels 0.01. Runs 292-295
were made to ensure no changes in the simulator code had affected the
performance negatively, as the results were considerably lower than without
recombination. This was shown not to be the case, and the experiment was
completed with 5 different parameters being tested against no crossover.

Analysis Since no parameter was found where uniform crossover
performed better than no recombination, it was decided to pursue a
mutation only evolutionary setup. Testing other types of crossover operators
might have given better results, but the low performance of this relatively
commonly used operator indicates a low reward for the added exploration
offered by recombination, which does not justify the added time and
computational requirements of testing other crossover operators. An
interesting feature of the results is the increase in max distance travelled
of parameter 0.25, even though the mean of all max values is lower than
the runs without recombination. This might only be caused by the low
number of runs, but may indicate that recombination is better suited for an
algorithm where peak performance was the goal, while average performance
is highest without the operator. Due to higher statistical significance on
average performance, and the time and computational constraints in this
thesis, average performance is given higher priority in this thesis.
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5.1.2 Non-uniform mutation experiments

Evolution of
Control

Objectives
Distance travelled

Parameter tuning of
Non-uniform mutation step size

Other parameters
Non-uniform mutation probability: 1

When it was decided that only mutation were to be used, the non-uniform
mutation step size used before had to be optimized (see section 2.3.3 for an
overview of non-uniform mutation and step size). The size was kept at 0.3
throughout the testing of recombination, so values both above and below
this was tested.

Run Step size Rank Distmedian Distarithmetic mean Distmean(max) Distmax

180-216 0.3 5 0.9031m 0.9336m 1.5275m 1.9363m
319-330 0.15 4 1.2785m 1.2942m 1.8727m 2.0576m
331-337 0.45 6 0.8134m 0.8486m 1.3966m 1.6027m
338-357 0.6 7 0.7569m 0.7908m 1.3123m 1.5659m
358-377 0.05 2 2.0297m 2.0755m 2.3122m 2.9099m
378-397 0.1 3 1.6463m 1.6125m 2.0286m 2.2995m
398-417 0.025 1 2.0204m 2.0943m 2.2343m 2.8969m
418-437 0.038 2 1.9661m 2.0758m 2.2707m 2.9648m

Table 5.2: Table of results from experiments with different non-uniform
mutation step sizes.

Results As seen in table 5.2, a mutation step size of 0.025 performed best,
according to the Wilcoxon rank-sum test with a significance level of 0.01.
The original value of 0.3 performed fifth, only beating two other values
tested.

Analysis A small mutation step size results in a smaller search radius
during the exploitation part of the evolutionary run, while a high size
widens the search area. Mutation step sizes allowing long jumps in solution
space can add an exploration effect to mutation, even though mutation is
originally considered more exploiting in nature by many, as it typically
features shorter jumps than recombination, given high diversity. Very small
mutations can give artificially good results, by having populations centered
on small local optima, driving the mean and median fitness values up.
Without recombination or high mutations, though escaping these local
optima is unlikely, and long runs have a tendency to stagnate early. Since
both step sizes with rank two have the highest max distance (0.038 and
0.05), it was decided not to continue trying lower values, and instead use
the highest ranked step size, 0.025. It seems to be a good tradeoff between
the exploitative nature of small mutations, while still being high enough to
escape local optima and guide the search to new parts of the solution space.
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5.1.3 Random reset mutation experiments

Evolution of
Control

Objectives
Distance travelled

Parameter tuning of
Random reset probability

Other parameters
Non-uniform mutation probability: 1
Non-uniform mutation step size: 0.025

Random reset mutation was tested as a way of increasing the degree of
exploration in the search.

Run Prob. Generations Rank Distmedian Distarth. mean Distmean(max) Distmax

398-417 0 200 6 2.0204m 2.0943m 2.2343m 2.8969m
438-457 0.02 200 2 2.5711m 2.4695m 2.6454m 3.1241m
458-477 0.04 200 4 2.3266m 2.3048m 2.5192m 2.8275m
478-497 0.01 200 5 2.3032m 2.2506m 2.4258m 2.9616m
498-517 0.03 200 3 2.3246m 2.2982m 2.4977m 3.1748m
518-537 0.02 1024 1 2.8052m 2.6587m 2.7813m 3.0964m

Table 5.3: Table of results from experiments with different random reset
probabilities. Dist. is short for the distance traveled. Note that simulations
518-537 were run for 1024 generations, while the others were run at 200
generations.

Results As seen in table 5.3, all probabilities tested gives an operator
resulting in better individuals, according to the Wilcoxon rank-sum test
with a significance level of 0.01. Different probabilities were tested, and
a group of runs were conducted at the end of the experiment with 1024
generations. This was done to see if the heightened degree of exploration
would extend well for more generations. Median and mean distances were
improved with more generations, but max distance found was not.

Analysis The non-uniform mutation experiments resulted in a relatively
low mutation step size, which, in addition to the lack of crossover, makes
the search use a higher degree of exploitation than exploration. It was
suspected that an operator increasing the degree of exploration in the
search might improve the quality of solutions, and this was confirmed
when all parameters tested resulted in an increase in solution quality.
The improvement in median and mean from running the search for 1024
generations instead of 200 was significant. The max distance found was,
however, not improved. This shows that 200 generations is a good tradeoff
between quality and computational requirements, especially when the runs
are only used for relative comparisons between different parameters. The
increase in mean max distance does, however, suggest the need for more
than 200 generations when doing final runs for control systems.
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5.1.4 Discrete mutation experiments

Evolution of
Control

Objectives
Distance travelled

Other parameters
-

Parameter tuning of
Division sizephase
Division sizeposition
Non-uniform mutation probability
Number of forced non-uniform mutations
Random reset probability

Because of the massive size of the solution space, any decrease in size
of genotype should lessen the computational requirements of the search.
Several features have been added to facilitate this, one of them being support
for setting a specified division size of all solution parameters. Equation (5.1)
was used for limiting the parameters, with a special case for zero step_size,
which returned an unchanged parameter. This was used to allow disabling
of the rounding function via the parameters. The division size was initially
set to a low number, to try to not exclude too many solutions from the search
or alter the continuity and roughness of the fitness landscape. Since addition
of division sizes to parameters affects the genotype so drastically, a separate
non-uniform mutation for parameters with discrete values was used instead
of the mutation operator used with non-discrete float values (see section
2.3.3 for a description of the operator). The new operator uses a recursive
mutation probability, instead of a mutation step size. Separate division sizes
were added for phases and positions.

parameterdiscrete = round(
parameteroriginal

division_size
)× division_size (5.1)

Run Div. sizephase Div. sizepos Probnon-uniform Numforced Probreset Distancemean(max)

438-457 0 0 0 0 0.02 2.2343m
525 0.001s 0.001rad 0.15 3 0.02 0.8319m
526 0.001s 0.001rad 0.15 5 0.05 0.7170m
527 0.001s 0.001rad 0.25 5 0.05 1.1770m
528 0.0001s 0.0001rad 0.5 5 0.05 1.2959m
529 0.01s 0.01rad 0.1 5 0.05 1.5887m

Table 5.4: Table of results from experiments using discrete parameters.

Results After only a couple of generations of the first run featuring
discrete parameters, the entire population was made up of only a few
different individuals. The problem causing this was a fairly high probability
of zero mutation, and therefore cloning of individuals. The experiment
was therefore stopped, and several actions were taken to prevent this.
A parameter called numforced was added to do a minimum number of
mutations on each individual, heightening the probability of different parent
and offspring drastically. Mutation probability was also increased while
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division size was lowered, to increase the chance of mutation happening,
while lowering the degree of change done by the operator on the individual.
This enabled runs to go on for 200 generations without any individuals
taking over all of the population. There were still many similar individuals
after run 525, consisting of only three to five unique individuals in the
population. Numforced was increased by two, and the probability of random
reset mutation was increased substantially as well. This had some effect, but
there were still several duplicates, and the performance of the search was
far below what experienced without discrete parameters. An even larger
increase of mutation probability for run 527 did not help much, and while a
mutation probability of 50% removed all duplicates, performance was still
far below non-discrete float representation, as seen in table 5.4. Another
run with far courser division sizes was also tested, but did not show results
deemed good enough to pursue through further testing.

Analysis The problem with adding discrete parameters is that the
conversion to discrete values effectively removes a large number of solutions
from the search space. Many of the optimal or near-optimal solutions might
be removed, but even removal of sub-optimal solutions might affect the
fitness landscape so much that the search is not able to traverse the solution
space effectively [90]. Large irregularities or lack of continuity because of
the removed solutions might make exploitation ineffective by not having the
required connection between position in space and quality, and might leave
exploration as the only working search tactic. Since computational power is
fairly easily available, and the results are significantly worse than runs on
non-discrete floats, use of discrete parameters was not pursued further.

5.2 Parameter search for evolving morphology

Evolving morphology in addition to the control system increases the
search space immensely, but does not necessarily require new evolutionary
parameters (see section 4.4.3 for more information on search space size).
Since an optimal process is not required, a quick parameter search was
performed to assure that feasible solutions were generated with the
evolutionary parameters found during the parameter tuning of the control
evolutionary runs. Individual mutation step sizes were used for mutation
of lengths, given by (M) in the tables used throughout the section. (C)
denotes control-specific parameters. A number of runs were first done to
test the overall evolution of morphology, and several tweaks were done.
Evolution of control system was again tested with the new settings before
final parameter tuning. Some errors were also found and fixed, before the
final morphology runs were conducted.
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5.2.1 Initial parameter tuning

Evolution of
Control
Morphology
-

Objectives
Distance travelled
Total weight

Parameter tuning of
Static friction
Dynamic friction
Servo forces

Other parameters (control)
Random reset mutation probability (C): 0.02
Non-uniform mutation probability: 1
Non-uniform mutation step size (K): 0.025
Non-uniform mutation step size (M): 0.0001

The first runs including evolution of morphology were runs 530-549.
Mutation of base parameters, femur, and tibia lengths, were selected based
on the performances of parameters on the control system, so a non-uniform
mutation with a standard deviation of 0.001 was chosen as the initial
parameter, corresponding to 1mm on the robot. Both dynamic and static
friction were raised after the initial runs and a number of single evolutionary
runs were then done to ensure whether the raised friction had the wanted
effect.

Results A table of results is not shown, as qualitative comparisons were
done exclusively during this experiment, in contrast to the other parameter
tuning experiments, which included quantitative data on distance travelled.
Both static and dynamic friction constants on the robot base were initially
raised from 0.3 to 1 to encourage lifting of the base from the ground, along
with a slight decrease in servo forces. The friction constants were later
increased incrementally, to a final value of infinity. This showed a significant
improvement in inspected individuals, which walked with the base off the
ground, and with more intuitively correct servo power.

Analysis Setting the friction constants to infinity might seem excessive,
but Nvidia’s PhysX library clamps the value internally, so friction constants
of infinity ensure the highest friction possible. Friction was not raised on the
floor, as this would require new friction constants for the rest of the robot
parts, and setting friction constants for the base material seemed to solve the
problem. Setting the servo force lower than previously calculated produced
more plausible gaits, and is also supported by the fact that the servos do not
perform as well as their specifications [85].
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5.2.2 Re-testing control system evolution

Evolution of
Control

Objectives
Distance travelled

Parameter tuning of
-

Other parameters
Random reset mutation probability: 0.02
Non-uniform mutation probability: 1
Non-uniform mutation step size: 0.025

By changing such a large part of the simulation parameters, any result
from previous runs was not comparable to new simulations done after the
adjustment. A robot simulated with the old settings would not be affected
by the same frictions or have the same motor forces as a robot in the new
environment. After seeing morphology runs 554-559 producing feasible
results, 20 runs of evolving the controller for robot1 was performed. This
was done for two main reasons. The first and most important reason was to
see that the changes done to the simulator to improve morphology runs did
not affect control evolution negatively. The second reason was to get a new
baseline score to compare it with both earlier scores and all scores for new
morphologies.

Results The results from two groups of runs with similar parameters, but
on different sides of the simulation adjustments are listed below in table
5.5. As seen in the table, the distance travelled in simulation went down
considerably with the changes. When inspecting the performance of the
individuals in the simulation viewer, gaits seemed more plausible, and
had similar solutions as found before the simulation adjustment, only now
having the base above the ground and more feasible motor forces.

Run Distancemed Distancemean Distancemean max Distancemax

Old: 438-467 2.5711m 2.4695m 2.6454m 3.1241m
New: 560-579 1.6016m 1.5885m 1.7192m 2.1586m

Table 5.5: Table of results from evolutionary runs with the same parameters,
but different simulation settings.

Analysis Lower distances were expected as servo forces were lowered
while friction was increased, both affecting the distance travelled negatively.
Seeing similar solutions before and after the adjustments was encouraging,
and indicates that having the base on the ground does not affect the rest of
the gait to a large degree. This also supports the notion that the near-optimal
parameters found before are still performing well, and that there is no need
for a new parameter tuning cycle for the control system evolution.
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5.2.3 Final parameter tuning

Evolution of
Control
Morphology

Objectives
Distance travelled
Total weight

Parameter tuning of
Non-uniform mutation step size (M)
Generations

Other parameters
Random reset mutation probability (C): 0.02
Non-uniform mutation probability: 1
Non-uniform mutation step size (C): 0.025

A group of morphology runs were conducted after the simulator
adjustments and subsequent control system evolution to check the feasibility
of generated solutions and see if there was a need for additional parameter
tuning. A number of evolved morphologies and gaits were inspected, and
all seemed feasible. The mutation step size for morphology still needed a
tuning, and a new value of 0.01 was tested. Since the parameters were set
for both control and morphology evolution during this experiment, runs
to test for the right number of generations was also done as part of this
experiment.

Results The new mutation value performed statistically significantly
better than the value of 0.001, as shown in table 5.6, and was therefore
chosen as the new mutation step size. Runs were then conducted for 256,
512 and 1024 generations, to see how more generations affect the quality
of evolved individuals. The progress of the run with 1024 generations
can be seen in figure 5.1. Not until 1024 generations do we start to see a
flattening of the average best distance travelled. As figure 5.1 shows, 1024
generations gives an increase to the average best distance of about 33.4%
over 256 generations, and an increase of 16.9% of 512 generations over 256.
The gain of doubling the run time from 512 to 1024 only gives a fitness
increase of approximately 14.1%.

Run Mutation size Distmedian Distarithmetic mean Distmean(max) Distmax

580-599 0.001m 1.0014m 1.0305m 1.7968m 2.7665m
600-619 0.01m 1.1540m 1.1887m 1.9338m 2.7257m

Table 5.6: Table of results from evolutionary runs with different morphology
mutation step sizes.

Analysis Since the adjustment of the mutation step size resulted in such a
low increase in mean and median distance travelled, it was decided to finish
the parameter tuning, and select the better of the two. The results of the
last runs showed that the improvement of running searches for more than
1024 generations would most likely be low, since both average distance and
average best fitness were close to flat at 1024 generations. It was therefore
chosen to use 1024 generations for final morphology runs.
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Figure 5.1: A graph showing the distance travelled over 1024 generations
from runs 640-656, with markers for 200, 500, and 1024 generations.

5.2.4 Verifying morphologies

Evolution of
Control
Morphology

Objectives
Distance travelled
Total weight

Parameter tuning of
-

Other parameters
Random reset mutation probability (C): 0.02
Non-uniform mutation probability: 1
Non-uniform mutation step size (C): 0.025
Non-uniform mutation step size (M): 0.01

Runs 640-656 were done as a final test of morphology runs after the
parameter tuning, and ran for 1024 generations. The top 10 individuals from
each run were then inspected closely in the viewer, to ensure that everything
worked correctly. Graphs for fitness development and the Pareto front were
also inspected.

Results When inspecting the final Pareto front of runs 640-656, showing
the distance travelled by solutions from all final generations, an error was
found. As seen in figure 5.2a, all minimum sizes are along a vertical line,
which is to be expected, but the line shows a weight of 2.06kg, which is
well above the minimum weight of the robot. The inspected individuals
along this line also showed different lengths of the femurs, even though
they all indicated the same weight. The problem turned out to be an error
in the simulation environment, where the weight was calculated, but not
applied to the part. Weights in PhysX works by applying a separate weight
or density to each shape in a joint, then applying the combined weight of all
shapes to the link, thereby calculating weight distribution and converting to
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5.2. PARAMETER SEARCH FOR EVOLVING MORPHOLOGY

the internal representation of weight. This had not been done to the femurs,
and they therefore had the same constant weight regardless of physical size.
Three evolutionary runs were done with only 512 generations to ensure that
the change worked. The search now found individuals from the current
lowest weight and upwards, as seen in figure 5.2b, and generated a number
of feasible solutions.
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(a) The Pareto front of runs 640-656, showing errors in the morphology code. The
dashed line shows the minimum weight of the robot.
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(b) The Pareto front of runs 657-659, showing a more plausible distribution of
weights.

Analysis Since the weight has a minimum optimal value, a clear line of
individuals can be seen in both Pareto fronts. The wrong placement of the
first Pareto front line indicated the error found, but a weight difference
of only about 100g from lightest to heaviest robot also seemed unlikely.
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Run Distmed Distarithmetic mean Distmean(max) Distmax

640-656 1.6778m 1.7272m 2.7012m 3.6236m
657-659 1.2264m 1.2710m 2.2030m 2.3871m

Table 5.7: Table of results comparing evolutionary runs before and after
fixing a bug in the femur parametric weight function.

The new Pareto front seemed more plausible, and showed a wide range
of different weights and speeds. It also follows a fairly linear line, though
the low number of runs and generations makes it impossible to get any
statistically significant conclusions.

5.3 Evolving new morphologies

Evolution of
Control
Morphology

Objectives
Distance travelled
Total weight

Parameter tuning of
-

Other parameters
Random reset mutation probability (C): 0.02
Non-uniform mutation probability: 1
Non-uniform mutation step size (C): 0.025
Non-uniform mutation step size (M): 0.01

After getting good results in runs 657-659, the main morphology runs
were started. 20 runs of 1024 generations of 256 individuals were conducted
with settings chosen from earlier experiments.

Results As seen in figure 5.3, only small increases in the highest distance
travelled were achieved after around generation 400. The average distance
travelled does, however, still show a relatively high improvement. The
Pareto front for the morphology runs is fairly linear, as seen in figure 5.4

Analysis The average distance is still improving at the end of the run,
which shows that longer runs could potentially still be worth the increase in
computational time. An even higher linearity than experienced in the Pareto
front would likely be achieved if more runs had been done. The linear shape
makes automatically choosing a solution hard, due to the high number of
Pareto-optimal individuals. This does, however, show that the evolutionary
algorithm used is able to produce a wide and varied subset of morphologies.
Since the evolutionary run resulted in such a high number of Pareto optimal
solutions, it was decided that manual selection would be best. An automatic
choice of the best robot is be beneficial for a number of scenarios, but this
type of selection is not the aim of this thesis.

Selection of robots It was decided to randomly select three robots smaller
than the manually designed robot (referred to as robot1), and three heavier
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Figure 5.3: The distance travelled for final morphology runs 660-679.
Highest fitness across all runs is shown in green, while the blue line shows
the average of the maximum fitness for all runs. Average distance is seen in
red.

Robot Weight Distance travelled
2 1.97647kg 1.623m
1 2.04037kg -
3 2.06179kg 2.429m

Table 5.8: Table showing characteristics of the two chosen robots. Distance
was not included for robot1, as it was not a result of a comparable
evolutionary run.

robots, from the Pareto front. These were then inspected, and the one with
the qualitatively highest chance of success was chosen for real life testing.
The smaller robot (referred to as robot2) was chosen from the three randomly
selected individuals, and seems to walk with a tripod-like gait, though this
may change when new gaits are evolved. The weight is slightly lower than
robot1, as seen from table 5.8. A heavier robot (referred to as robot2) was
also selected. This robot intuitively seemed too large for the servos selected,
but was still chosen for its interesting morphology. It featured long front
legs, with small side legs being able to fit under the front legs when they
intersected. This configuration overcomes the classical restrictions posed
by the servo sector model (see section 4.1.1 for a description of the servo
sector model). This configuration has not been seen in previously designed
six legged robots or robotics related scientific research.
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Figure 5.4: The Pareto front of final morphology runs 660-679, showing a
nearly linear Pareto front.

(a) Robot 1 (reference) (b) Robot 2 (small) (c) Robot 3 (large)

Figure 5.5: Images of all three robots in the simulator. Robot 1 is the manually
designed robot, while the other two are the selected evolved morphologies.

5.4 Evolving new control systems

Evolution of
Control

Objectives
Distance travelled

Parameter tuning of
-

Other parameters
Random reset mutation probability (C): 0.02
Non-uniform mutation probability: 1
Non-uniform mutation step size (C): 0.025
Non-uniform mutation step size (M): 0.01
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Robot1, the manually designed robot seen in figure 5.7, was not part of
the runs evolving morphology. New runs evolving control alone on this
robot was done to give a base line for comparisons to the evolved robots. It
was decided to also evolve control systems for the two evolved robots, to
ensure a fair comparison between the robots. The morphology runs consist
of a much larger solution space, and evolved gaits might improve when
evolved alone, with a locked morphology.

5.4.1 Evolving control system for robot1

Past evolutionary runs were done with 200 generations, but it was chosen
to run the search for 1024 generations, to evaluate as many solutions as the
morphology evolving runs.

Results Maximum distance walked in simulation is:

• Calculated to a speed of 0.299m/s.

• An increase in 3.2% over the speed of a robot from the Pareto front of
the morphology evolving runs with similar weight.

As seen in figure 5.6, only small improvements in maximum distance are
achieved after generation 300. Table 5.9 shows the performance statistics of
the runs.

Run Distmedian Distarithmetic mean Distmean(max) Distmax

740-759 1.9804m 1.9563m 2.0597m 2.3931m

Table 5.9: Table showing the result of runs 740-759, where the control system
for robot 1 was evolved.

Analysis Figure 5.6 shows a relatively small difference between average
distance and average best distance throughout the runs. The close trailing
between average best distance and average distance likely shows a search
tactic relying on local search through small mutations, more than long jumps
through recombination or high mutations. This is because improvements
through local search typically comes gradually, while the sudden high jumps
in maximum fitness typically happen when finding superior individuals
in new areas of the search space. An increase in 3.2% over a comparable
model with similar weight evolved in the morphology runs is a fairly low
improvement, and can not be shown to be statistically significant with the
relatively low number of simulations run.
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Figure 5.6: Graph showing the fitness progression of runs 740-759.

Figure 5.7: Image of the printed and assembled robot1. The face was added
when it was presented at the Oslo Maker Faire, to make the robot seem less
frightening to children.
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5.4. EVOLVING NEW CONTROL SYSTEMS

5.4.2 Evolving control system for robot2

The small evolved robot (referred to as robot 2) feature long front legs, and
shorter back legs, and can be seen in figure 5.8. A single gait was evolved
simultaneously as the morphology, but a new group of evolutionary runs
with locked morphology was performed to see if results would improve
when the control system evolved alone.

Figure 5.8: Image of the printed and assembled robot2.

Results Maximum distance walked in simulation is:

• Calculated to a speed of 0.234m/s.

• An increase in 15.5% over the speed found in the morphology evolving
runs.

• 21.7% lower than the longest distance walked by robot1 in simulation.

Evolving only control system produced better distance scores for 3717
of the 5120 individuals from the final generations of the runs, 73.6%, when
compared to the original fitness score received in the morphology evolving
run. As seen from figure 5.9, the average fitness has nearly stopped
improving, so the received scores are most likely close to the highest score
achievable with the evolutionary parameters chosen.

Analysis As the morphology runs were still improving when they were
stopped, they might have found a gait comparable to the new best gait,
given more time. This is, however, impossible to say without doing new
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5.4. EVOLVING NEW CONTROL SYSTEMS

morphology runs with a greatly increased number of generations. Doing
evolutionary runs only including control on the evolved morphologies
did, however, show a significant improvement over the past gait, and also
produced a number of different gaits. This is also an important feature, as
these might have different reality gaps and walking techniques, and could
be manually or autonomously inspected and evaluated for different tasks or
goals than they were evolved for.

Run Distmedian Distarithmetic mean Distmean max Distmax

700-719 1.6858m 1.6629m 1.7329m 1.8747m

Table 5.10: Table showing the result of runs 700-719, where the control
system for robot 2 was evolved.
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Figure 5.9: Graph showing fitness progression of runs 700-719.

5.4.3 Evolving control system for robot3

The large robot, referred to as robot3, can be seen in figure 5.10. As with
robot2, an evolved gait was already made when morphology was evolved,
but an additional run with locked morphology was done.

Results Maximum distance walked in simulation is:

• Calculated to a speed of 0.339m/s.

• An increase in 11.7% over the speed found in the morphology evolving
runs.

• 13.4% further than the longest distance walked by robot1 in simulation.

• 44.9% further than the longest distance walked by robot2 in simulation.
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Figure 5.10: Image of the printed and assembled robot3.

Evolving only control system produced better distance scores for 2252
of the 5120 individuals from the final generations of the runs, 44.0%, when
compared to the original fitness score received in the morphology evolving
run. As seen from figure 5.11, the average fitness has close to stopped
improving. This was also seen with the previous two robots, and shows that
the received scores are most likely close to the highest score achievable with
the evolutionary parameters chosen.

Run Distmedian Distarithmetic mean Distmean(max) Distmax

720-739 2.3271m 2.2194m 2.3227m 2.7138m

Table 5.11: Table showing the result of runs 720-739, where the control
system for robot 3 was evolved.

Analysis As with robot2, the higher performance when compared to
the evolutionary runs including morphology might only be caused by
an insufficient number of generations. However, an improvement was
experienced yet again, so this is definitely an interesting development that
should be checked by future research. Inspection of solutions showed a
wide range of feasible different gaits, some qualitatively similar to the gait
generated in the previous runs, some very different.
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Figure 5.11: Graph showing fitness progression of runs 720-739.

5.4.4 Analysis of control system evolution

It can be hard to distinguish the performances of the three robots when
analyzing each robot gait individually. It was therefore decided to plot the
performance of each robot’s group of control system evolutionary runs, into
the Pareto front generated from the morphology evolutionary run. The
green lines seen in the graph include the complete final generations from all
control evolutionary runs of the three robots.

Results Figure 5.12 shows the Pareto front from the final morphology runs,
with the results from the control system runs for each robot plotted in green.
Robot1 (middle green line) shows a speed ranging from slightly above
the morphology runs to well below the mass of the dominated solutions.
Both evolved morphologies shows speeds well above the Pareto front,
and even has their slowest individuals fairly close to center mass of the
dominated solutions. This graph shows that the reference morphology
performs significantly worse than the evolved morphologies when used for
evolution of the gaits.

Analysis These results shows, as also seen in past results, that evolution
of control after runs co-evolving control and morphology, has the ability to
improve solutions significantly. The other, and perhaps more interesting
feature seen from the results, is that robot1 had a much lower performance
boost when compared to the morphology evolving runs than both evolved
robots. This suggests that the morphology of the robot is inferior to
the morphologies found in evolution, and gives support to the notion of
evolution of morphology and control as an effective design tool in robotics.
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Figure 5.12: The Pareto front of the final morphology runs, run 660-679,
compared to the three groups of evolutionary runs for the robot control
systems.

5.5 Evolving control system for turning

Evolution of
Control

Objectives
Min/max turning
Min total movement

Parameter tuning of
-

Other parameters (control)
Random reset mutation probability (C): 0.02
Non-uniform mutation probability: 1
Non-uniform mutation step size (K): 0.025
Non-uniform mutation step size (M): 0.0001

The robots need to be able to turn around, and to keep walking within
the perimeter of the tracking equipment, when using the motion capture
equipment for testing the performance of gaits on the physical robots. Two
new fitness functions were implemented, one that gave a score based on
rotation, and one that gave a score based on total displacement in the ground
plane (in contrast to the fitness goal used in other simulations, which only
rewarded forward movement). More details can be seen in section 4.4.1.
These functions should produce a gait that rotates the robot as much as
possible, around a given point as close to the robot center as possible. Since
this is only used to facilitate motion capture experiments, there were low
requirements to the performance of the gaits. Therefore, only 10 runs were
done for each robot, 5 in each direction. One direction could be evolved
and mirrored for each robot type, but this was not done, as parameterizable
mirroring was beyond the scope of this thesis.
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5.5. EVOLVING CONTROL SYSTEM FOR TURNING

Results As seen from figures 5.13a and 5.13b, very different Pareto fronts
were achieved, when compared to runs evolving morphology and control.
This is the Pareto fronts from robot1, but comparable results were found
for the other two robots (Pareto fronts for the all robots can be found in
section D.3 in the appendix). The figures show that accepting very small
movements results in a much higher turning rate, up to a total movement of
about 0.01m, or 1cm.
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(a) The Pareto front of runs 760-764, evolving turning left for robot 1.
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(b) The Pareto front of runs 765-769, evolving turning right for robot 1.

Figure 5.13: Two Pareto fronts when turning is evolved.

Analysis The number of Pareto optimal solutions was fairly high, but the
number of feasible solutions that was decided to test in reality was low.
Only a few individuals with high turning radius and movements around
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0.01m was selected, and measures could be done to ensure a wider range
of Pareto optimal individuals in this area. Since evolution of turning gaits
was simply a means to do continuous and autonomous testing, time was
not spent to improve performance or diversity of feasible solutions.

5.6 Evolving sideways walk

Evolution of
Control

Objectives
Min/max turning
Min total movement

Parameter tuning of
-

Other parameters (control)
Random reset mutation probability (C): 0.02
Non-uniform mutation probability: 1
Non-uniform mutation step size (K): 0.025
Non-uniform mutation step size (M): 0.0001

As a test of the versatility of the evolutionary framework, a new group
of runs were conducted to see if a varied group of feasible gaits and robots
were still being found, even with new goals. Several people seeing the
robots compared them to crabs, and sideways movement like many crabs
do was therefore decided as a new objective to test. A new fitness function
rating sideways movement speed was implemented, which should require
different gaits and changed morphology.

Results Runs 680-699 ran with similar parameters as the final morphology
run, and the result statistics were surprisingly very similar. Even so
similar that the Wilcoxon rank sum test showed no significant difference in
performance between forward and sideways movement, given a significance
level of 0.01. The distinct objectives would intuitively lead to different
results, but the quantitative data was very similar, even when the gaits
were qualitatively very different. The Pareto fronts were not identical, as
the new Pareto front followed a steeper rise of distance travelled to weight.
Inspecting generated individuals from the Pareto front showed several
promising candidates, though this was not pursued further in this thesis.

Analysis The steeper Pareto front indicates that an increase in weight
is more rewarding for sideways gaits than for forward gaits, given this
evolutionary setup. The generation of feasible candidates for this new goal
shows some of the adaptability of both the evolutionary framework and the
method of using evolution of morphology and control for robot design.
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Figure 5.14: The Pareto front of runs 680-699, evolving a sideways movement.
The green line is the Pareto front from the final morphology runs, run 660-
679.
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Chapter 6

Physical experiments and
results

Experiments on the physical robots were done using the motion capture
equipment to estimate the speed. The first section describes the setup
of the motion capture equipment, and the work done to ensure accurate
results. The second section describes the experiments done on the manually
designed gait for robot1. The third section shows testing of the crude gaits
evolved in simulation, on the physical robots. To correct for the reality
gap present, two different learning algorithms were run on the robots, and
the experiments and results from these algorithm runs are described in the
two subsequent sections. Gait verification analysis has to be done to get
comparable data on the results from the learning runs, and this is addressed
in the last section of the chapter.

Experiment parameters Earlier tests showed that the servos used have a
chance of shutting down with an overload error when torque applied gets
near the limit of the servos. This, combined with the fact that they stall at
about 75% of their rated torque [85], prompted the decision to reduce the
max torque to 50%. Servo speed was set to 50% of max speed to reduce the
strain on the motors, and reduce the chance of breaking the plastic parts of
the robots.

Evaluation of learning runs Since two different learning runs are used,
there is a need for measurements able to distinguish the performance of
different runs. As the distribution of performance can not assumed to be
either normal or lacking outliers, the median is preferred to mean. Two
features have been chosen as comparable measurements, the highest fitness
achieved throughout the run, and the fitness value at the end of the run.
Standard deviation and max values are also calculated, although max value
is more vulnerable to noise than the median, and is also less stable across
different runs, which is why these are only used as guides.

Enabling autonomous tests The goal when using the motion capture
setup is enabling autonomous testing without human intervention. All

89



tests in the thesis was done under observation, but there are several reasons
why making sure the system runs by itself is important. The most important
reason for excluding the engineer from the process is that humans make
errors and affect the accuracy and precision of the measurements. Things
like placement of robots, time taking, or even recoding or transcription of
data heightens the probability of errors, when compared to a fully automatic
system. It also frees up the time of the observer to observe the gait and
development of the learning runs, rather than focus on a number of tasks
that needs to be performed. The biggest challenge of running continuous
and autonomous motion capture tests on a robot is making sure the robot
stays inside the camera area, and that cable tangling or twisting, or legs
catching on the cables, are prevented. This was solved by evolving turning
gaits for both left and right turning, and alternating between these each time
the robot reached the edge of the defined capture area. This ensured that
the robot did not exit the area, and prevented cable twisting by alternating
turning directions.

Motion capture harness To stop the wire from tangling or otherwise
interfering with the robot, a wired testing setup needed to be made. There
was no need to add complexity to the system by sending commands
wirelessly, since power would have to be supplied by cable either way.
Since the robot needs to move, a wiring harness needs to be made that
affects the robot in the least possible way. This was done by using two
different cable management techniques. A pulley system was constructed,
as seen in figure 6.1b. Weight was added to both sides of the system by
putting a number of metal nuts into plastic bags. A fairly high weight was
added to make sure the weight of the varying length of cable on each side of
the pulley was as insignificant as possible. A ball bearing was added with a
3d printed cable guide attached. This provided a fairly frictionless setup,
but reacted slowly to changes to the cable. To enable a quicker and more
fluid reaction to the robot movement, a self retracting reel system was added
to the lower part of the cable, as seen in figure 6.1a. The reel was a modified
self retracting key reel, which is cheap and easily available. The system put
a relatively low force on the cable to the robot, with the reel allowing fast
movements, acting as a spring intermediary for the pulley system, which
allows retraction for the full length of the cable.
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6.1. TESTING AND TWEAKING OF THE MOTION CAPTURE SETUP

(a) An image of the robot connected
to the reel system in the wiring
harness.

(b) An image of the pulley system
used in the wiring harness.

Figure 6.1: Images of the wiring harness used for motion capture
experiments.

6.1 Testing and tweaking of the motion capture setup

There are various options available for tweaking the motion capture setup,
including settings and locations of the cameras, point cloud solver, and
streaming or visualization of the data. The goal is to reduce position
vibration, mainly caused by small inaccuracies in the cameras affecting the
point cloud solution, and reduce the number of wrongly reported positions
or orientations, mainly caused by misidentification of markers. These goals
are somewhat conflicting, as settings making markers visible on a smaller
number of cameras lower noise that cause position vibrations, caused by
minor differences in point positions from different cameras. They do,
however, also increase misidentification problems, as a smaller number of
point sources are available to distinguish different orientations and positions
of the robot.

Decreasing wrong point cloud calculations The biggest problem in the
initial motion capture runs, were measurements of wrong position or
orientation. The position would jump a couple of cm along the ground, or
the software would report wrong orientation, and therefore also position.
Effective placement of the reflective markers is challenging, as they all need
to occupy the small space available on the robot, but still be as far apart
as possible with unique distances between all markers. Initial placement
of three markers on the base of the robot proved ineffective, so the total
number of markers were increased to four, while two makers were mounted
on threaded rods of different heights above the robot, to feature markers
in the full three dimensional space, rather than in a plane. The marker
placement for all robots can be seen in figures 5.7, 5.8, and 5.10. In addition
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to this, new software was installed that featured a new point cloud solver,
and a new strobe mode for the IR lights in the cameras. This resulted in
stronger lights and clearer reflections, thereby increasing the effective range
of each camera, making the camera overlap larger. This resulted in stable
and correct measurements in the middle of the capture area, but the system
still struggled near the edges of the capture area, due to the lower number of
cameras in view. To overcome the negative effects of low camera coverage,
the minimum number of lines required to estimate the position was lowered
from four to two, while the minimum distance between calculated points
for each camera was lowered from 10mm to 3mm. This change led to good
performance for all three robots across the whole capture area. Table 6.1
shows the settings used for all motion capture experiments. Other settings
not mentioned in the table are settings dependant on individual camera
setup.

Software version OptiTrack Arena 1.7.3
Point cloud solver V2.0
Camera processing mode Precision grayscale
IR setting High power, Strobed
Roundness filter 60
Min line 2
Residual 4mm

Table 6.1: Settings used for all motion capture experiments.

Measurement of noise When plotting the graph of the first runs featuring
identical gaits, it is apparent that there is a great deal of noise in the
measurements. Noise is defined here as any data point not representing a
correct absolute measurement of the gaits speed. As seen in figure 6.2a, the
results vary between a speed of about 0.06m/s to 0.18m/s while executing
the same gait. The noise also seems to increase and decrease in a somewhat
repetitive way. To check for any fixed frequency noise oscillations, a Fourier
analysis was done on the measurements, but as seen from figure 6.2b, there
does not seem to be any apparent frequencies of noise in the system. To
see whether the noise was too high for successful evaluation of gaits, the
measurements were sorted and graphed, to more easily see the distribution
of measurements. Figure 6.3 shows the sorted data from the two runs. The
lines are fairly linear, but feature a couple of outliers on each side of the
distribution. To remove these, a simple filter was applied by removing
15% of the data from each side of the distribution. This should remove any
outliers caused by negative factors like slippage or harness exaggerations,
and any potentially positive outliers like measurement errors or manual
movement of the robot by human intervention. In addition to this passive
filtering, a Tukey filter was applied to the data (see section 2.3.11 for more
info on Tukey filtering).
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Figure 6.2: Results from the first two runs of identical gaits using robot1.
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Figure 6.3: Graph showing motion capture performance of two identical
gaits from simulation, running on robot 1.

6.1.1 Motion capture analysis

More runs would need to be made to draw a statistically valid conclusion
that the 128 evaluations are enough for an absolute measurement, but the
small difference between the two lines seen in figure 6.3 suggests consistent
measurements. It was therefore decided that single runs of 128 evaluations
were enough for measurement of absolute gait performance. There are still
a number of sources of measurement noise, even with a perfectly working
motion capture setup. Among the highest sources of inaccuracies, is the
physical behavior of the servos. The coreless DC motors within, all have
slightly different speed and torque characteristics, and they all change over
time due to heat, humidity, wear, and other factors. Another common
source of speed variations is the inaccuracy in the servo movement. The
robot sometimes works right on the edge legs of crashing into each other,
and due to the low accuracy, sometimes does. The problem with this is that
some of the parts have a tendency to get stuck to each other, and this may
ruin a whole evaluation of four seconds, or even several evolutions in a row.
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6.2. TESTING MANUALLY DESIGNED GAIT ON ROBOT1

Another problem with continuous testing of gaits is that gaits are started
in the middle of another gait. If these two gaits involve poses which is
hard or impossible to transition between, the last gait might end up with a
lower score than it might have received, if all gaits started from a common
initial position. This, however, would require substantially longer test times,
and does not affect similar gaits or gaits with compatible poses. It was
therefore acknowledged and accepted as a source of noise, but not dealt
with due to already long evaluation times. The test harness of the robot also
contributes to the variations and inaccuracies in the measured speeds. It
adds a non-linear friction from both the pulley system and the reel system.
The Fourier transform in figure 6.2b shows no dominating frequencies which
could indicate an oscillation present in the harness, but there is still a speed
and orientation specific friction constant added to the robot. There is also
a multitude of smaller sources of noise, like uneven carpets, control bus
overload or communication errors, small differences in printed parts, timing
issues of computer or communication. These are, however, negligible to
the above mentioned sources, along with the fairly large inaccuracies in the
motion capture equipment.

6.2 Testing manually designed gait on robot1

A manually designed gait was made early in the project as a way of
testing the mechanical and electrical setup of the first robot. The gait
was represented as a set of six poses with individual durations, and was
generated by a very simple path planning script in Matlab using the inverse
kinematics of the robot. This gait was controlled using the Arbotix micro
controller board. To enable a similar evaluation as evolved gaits, the
controller was also implemented in the simulation environment to run the
manually designed gait on the physical robot. This removes any execution or
evaluation difference present between the simulation environment and the
Arbotix, and ensures measurements with the same accuracy and precision.

Experiment To test the performance of the manually designed gait, a run
was performed without any learning algorithm modifying the gait. As seen
in figure 6.4, the measurements are fairly close, except for a clear dip in
speed towards the end of the run. Table 6.2 shows a significant change of
minimum value as filtering is applied, with a smaller cut happening to the
maximum value. This does, however, not affect the mean to a large degree,
and the median is left unchanged as the same amount is removed from top
and bottom.

Analysis The temporary dip in speed measurements towards the end of
the run was most likely caused by the imperfect pulley system, twisting
or tangling of the cables, or other external causes. This should not affect
the evaluation of the gait, and shows the use for a filtering technique. The
red line seen in figure 6.4 shows the speed measurements after sorting and
removal of 15% of the data points on each side, and appears close to linear,
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6.3. CRUDE GAIT EXPERIMENTS

Min Mean Median Max SD
Unfiltered 0.059 0.122 0.125 0.143 0.014
.15 filtered 0.106 0.123 0.125 0.134 0.008
Tukey filtered 0.096 0.123 0.125 0.143 0.011

Table 6.2: Table showing the results of the manually designed gait for robot1
from the motion capture equipment. All numbers are given in m/s.
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Figure 6.4: Graph showing motion capture performance of the manually
designed gait on robot 1.

suggesting a fairly accurate evaluation of the gait speed. As seen in table
6.2, the mean remains fairly constant before and after the filtering, and
together with the non-skewed distribution of the filtered results, should
make for a good measure of the performance of the gait. The median is
also used in comparisons with future gaits as a control, as it should give a
good indication of performance, also if the distribution is skewed in future
experiments.

6.3 Crude gait experiments

Gaits evolved in simulation, without any change or modification, is referred
to as crude gaits. Crude gaits are typically expected to perform worse when
tested on the physical robots, as the reality gap tends to favor the simulator,
and the lack of external disturbances there. A single gait was selected
for each robot from the control system evolutionary runs, and was tested
twice for each robot to ensure a good baseline measurement for comparison
against the manual gait, simulation, and learning runs.
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6.3. CRUDE GAIT EXPERIMENTS

Robot Filter Min Mean Median Max SD Rank
1(M) Unfiltered 0.059 0.122 0.125 0.143 0.014 2
1(M) .15 filtered 0.106 0.123 0.125 0.134 0.008
1(M) Tukey filtered 0.09 0.123 0.125 0.143 0.011
1 Simulation 0.257
1 Unfiltered 0.059 0.126 0.125 0.184 0.021 2
1 .15 filtered 0.100 0.126 0.125 0.149 0.012
1 Tukey filtered 0.073 0.127 0.125 0.184 0.021
2 Simulation 0.224
2 Unfiltered 0.032 0.119 0.122 0.189 0.024 3
2 .15 filtered 0.088 0.120 0.122 0.143 0.014
2 Tukey filtered 0.062 0.120 0.122 0.171 0.022
3 Simulation 0.336
3 Unfiltered 0.115 0.164 0.161 0.241 0.022 1
3 .15 filtered 0.141 0.162 0.161 0.191 0.013
3 Tukey filtered 0.115 0.163 0.161 0.220 0.021

Table 6.3: Table showing motion capture performance of the crude gaits on
all robots. All speed measures are given in m/s. Performance of the manual
gait is included for convenience. All numbers other than rank are given as
m/s.
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Figure 6.5: Box plot of the speeds from the motion capture of crude gaits
on all robots. The green dashed line indicates the speed of the robot in
simulation.
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6.3. CRUDE GAIT EXPERIMENTS

6.3.1 Robot1 results

Median speed is:

• 51.4% lower than the crude gait in simulation.

• The same as the median speed of the physical manual gait1.

The top performing gait from run 750 was chosen for physical tests on
robot1. The gait was among the fastest individuals from control evolving
runs 740-759, and featured a gait similar to the tripod gait, with alternating
legs in the air and touching the ground. Figure 6.5 shows two low outliers
being cut by the Tukey filter, and a significant spread in measurement data.

6.3.2 Robot2 results

Median speed is:

• Median speed is 45.5% lower than the crude gait in simulation

• Significantly better than the physical crude gait on robot12.

The top performing gait from run 700 was chosen for the physical tests on
robot2. As the gait selected for robot1, this also moves similar to the tripod
gait. Figure 6.5 shows four low outliers and one high outlier being cut by
the Tukey filter, and as with robot1, significant spread in measurement data.

6.3.3 Robot3 results

Median speed is:

• Median speed is 52.1% lower than the crude gait in simulation

• Significantly better than the physical crude gait on both robot1 and
robot23.

The top performing gait from run 727 was chosen on robot3. Contrary
to the past two robots, this gait did not resemble the classic tripod gait. The
two front legs move in sync, and in opposite phase to the two side legs.
The back legs each move in sync with one of the two other leg pairs. Since
three legs are still resting on the ground at all times, a three dimensional
base of support is still being maintained. The difference in base of support
is very high during this gait, being about half the length of the robot. This
can therefore not be considered a static gait since, opposed to the other two
robots, the line of gravity is outside the base of support during the gait.
Figure 6.5 shows a single high outlier being cut by the Tukey filter, and
comparable spread in measurement data to the two other robots.

1According to a Wilcoxon rank sum test with significance level 0.01.
2According to a Wilcoxon rank sum test with significance level 0.01.
3According to a Wilcoxon rank sum test with significance level 0.01.
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6.3. CRUDE GAIT EXPERIMENTS

6.3.4 Crude gait analysis

As seen in table 6.3, median speed for all robots remains unchanged for
all filtering methods. This implies that filtering is not needed when only
comparing the medians, but it is kept for convenience since not all future
experiments may behave the same way. The evolved gait for robot1 and
the manually designed gait have received the same rank, as there is no
statistically significant difference between the populations, according to a
Wilcoxon rank sum test with significance level 0.01. This still bodes well for
the evolvable controller, as the reality gap of the gait high, and should be
reduced by the use of machine learning runs. Figure 6.5 shows a fairly large
reality gap of about 50% on all evolved gaits. There are many differences
between the simulator and reality that causes this, but the largest differences
is in force calculation for the motors in simulation, the friction calculation
in simulation, and the different environment in reality, including the cable
pulley system and imperfect walking surface.

Manual vs evolved gait The perhaps most apparent difference between
the physical crude gait and the learned gaits, is the difference in spread of
measurements. As seen in table 6.3, the manual gait has a spread of 0.047m/s
between max and min tukey filtered speed, while the other robots have
differences of 0.111m/s, 0.109m/s and 0.105m/s respectively, interestingly
very close to each other. This can also be seen in the difference in standard
deviations, from 0.011 in the manual gait to 0.121-0.122 in the evolved
gaits. Differences in morphology can not be said to be the cause, since
the evolved gait on robot1 has the same spread as the other two, while
the manual gait for robot1 had a different spread than the evolved gait
running on the same hardware. One major difference is that the manual
gait includes several margins of error on both angles, durations and torque,
either by design or introduced unintentionally. The evolved gaits having
been designed to fully utilize all available torque, and is therefore much
closer to the maximum torque limits of the servos. By operating on the edge
of available torque, small changes due to factors like model inaccuracies, leg
slippage, motor temperature, or higher friction on the cable pulley system
can affect the speed to a much higher degree than if there was a small factor
of safety between the torque used in the simulation, and what was available
in real life. Another reason which often affects the spread of measurements
is whether a gait is static or dynamic. The manually designed gait was
designed to be completely static, which in its nature is less affected by
external factors. Robot3 has a gait which is out of balance for a longer
duration than the two others. The dynamic gait can therefore not be said to
be the only reason for the difference in spreads, since the gait of robot3 does
not show a higher difference than the other two evolved gaits, although it
could be a contributing factor.

98



6.4. ONE PLUS LAMBDA EXPERIMENTS

6.4 One plus lambda experiments

One plus lambda was chosen for its use of reevaluations, and the hope
that this would help mitigate the problem of noisy measurements. The
algorithm was run with lambda set to four, and reevaluations happening if
no improvement has been seen for five evaluations. Reevaluations results
in the score of the individual being set to the arithmetic mean of the new
measurements and all previous scores. This should in theory lessen the
degree of noise for every reevaluation of an individual. Eight runs of 128
four second evaluations were done on each of the selected crude gaits, which
in practice resulted in about 8 hours of continuous testing.

Robot SD(max) Median(max) Max SD(last) Median(last) Max(last)
1 0.015 0.205 0.213 0.015 0.170 0.185
2 0.015 0.187 0.207 0.026 0.147 0.201
3 0.013 0.236 0.248 0.020 0.156 0.191

Table 6.4: Table showing the results of running all one plus lambda learning
algorithms on all robots. All numbers are given as m/s.

6.4.1 Robot1 results

Median last value is:

• 36.0% higher than the median speed of the crude gait

• 33.8% lower than the crude gait in simulation

In addition to this, a significant loss of performance is experienced during
the runs, as seen in the difference in median max and median last of table
6.4. This can also be seen in figure 6.6, where runs have a fairly stable max
value from evaluation 10, although gaits are reevaluated and replaced by
better performing gaits throughout the runs.
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Figure 6.6: Graph showing the current best individual of the one plus
lambda learning algorithms for robot1.

6.4.2 Robot2 results

Median last value is:

• 20.5% higher than the median speed of the crude gait

• 34.4% lower than the crude gait in simulation

As seen in figure 6.7, the runs of this robot also achieve close to the
maximum speed after only 10 evaluations. As with robot1, reevaluations
and improvements are done throughout the runs.
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Figure 6.7: Graph showing the current best individual of the one plus
lambda learning algorithms for robot2.

6.4.3 Robot3 results

Median last value is:

• 3.1% lower than the median speed of the crude gait

• 53.6% lower than the crude gait in simulation

As seen from figure 6.8, these runs behave slightly differently than the
runs of the previous two robots. As before, max values are achieved after
about ten evaluations, but there is a distinguishable, fairly constant, decline
in speed experienced throughout the run. The median fitness of the last
individuals ends up below the original fitness of the crude gait which it uses
as a starting point for learning. This can also be seen in table 6.4, as robot3
has the highest decrease in max to max last of all the robots by 33.9%, to
21.4% for robot2 and 17.1% for robot1.
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Figure 6.8: Graph showing the current best individual of the one plus
lambda learning algorithms for robot3.

6.4.4 OPL analysis

One plus lambda is an algorithm that in theory never loses the best
individual, and as such should not lose performance during the run. This
algorithm does, however, do a reevaluation of the best individual if no
improvement is seen for 5 new individuals. This is to discourage noisy
readings from forcing premature convergence to a false local optima by
giving individuals with overly optimistic measurements new evaluations.
The mean of all measurements are then set as the new fitness value. Figures
6.6 and 6.7 show runs of robot1 and robot2 having fairly constant fitness
from evaluation 10, most likely caused by quite frequent overestimations
and following reevaluations. Figure 6.8 does, however, show a different
progression of the search. The graph shows a steady decline of fitness
throughout the run. The most probable explanation is that the size of robot3
affects the speed by requiring a higher amount of torque, which in turn
causes the servos to heat up more quickly. DC motors have a fairly high
change of characteristics as temperature is changed, as a hot motor has a
higher idle speed, but lower stall torque than a cold motor. The AX18 servos
even has coreless DC motors, which from the lack of metal mass in the core
heat up even quicker than DC motors with the normal solid metal core. The
steady decrease in speed makes the median last fitness artificially low, but
should not affect the results of the learning algorithm considerably, since
reevaluations ensure a constant readjustment to the lower performance.

Improvement over crude gaits As seen when testing the crude gait, noise
was not a factor after doing two complete runs on the same run without
learning applied. Noise is, however, a much bigger problem for the gaits
generated in the learning run, some of which might only have received a
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single evaluation. This implies that the improvement of the new individuals
over the crude gaits can be considered to be directly comparable. The
improvements seen for all three robots can therefore be said to be promising,
although not conclusive, without verification from experiments done in the
same way as the crude gaits.

6.5 Simulated annealing experiments

Simulated annealing was chosen as the second learning algorithm due to
the fact that the start of the algorithm features very low selection pressure
and a high degree of exploration, which hopefully handles the noise in
the measurements, even though no reevaluations are used. As the run
progresses, the probability of accepting inferior solutions lower, leading to a
higher degree of exploitation. As with OPL, eight runs of 128 four second
evaluations were done on each robot, using its crude gait as a starting point.

Robot SD(max) Median(max) Max SD(last) Median(last) Max(last)
1 0.020 0.166 0.198 0.017 0.144 0.173
2 0.029 0.173 0.188 0.032 0.173 0.180
3 0.016 0.242 0.254 0.012 0.200 0.222

Table 6.5: Table showing the results of running all simulated annealing
learning algorithms on all robots. All numbers are given as m/s.

6.5.1 Robot1 results

Median last value is:

• 15.2% higher than the median speed of the crude gait.

• 44.0% lower than the crude gait in simulation.

• 15.3% lower than the median last value when using OPL.

As seen from figure 6.9, the speeds vary greatly in the beginning of each
run, while stabilizing towards the last quarter of the evaluations. Some
runs stabilize earlier, like SA3 and SA1, which stabilize between evaluation
50 and 70, effectively cutting the number of used evaluations from the
run in half. This is in contrast to the OPL runs on the same robot, which
progress throughout all evaluations. Table 6.5 shows a smaller difference in
max and max last, possibly showing a smaller degree of rejection of noisy
measurements than OPL.
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Figure 6.9: Graph showing the current best individual of the simulated
annealing learning algorithms for robot1.

6.5.2 Robot2 results

Median last value is:

• 41.8% higher than the median speed of the crude gait.

• 22.8% lower than the crude gait in simulation.

• 17.7% higher than the median last value when using OPL.

As seen from figure 6.10, several of the runs reach stable values far
earlier than using OPL, which was also seen when using SA on robot1. It
also shows a higher increase in fitness during the run than for robot1. When
comparing to the OPL learning on robot2, five of the best performing SA
runs end up with similar speed, close to the maximum speed, while the
OPL runs result in a grouping of six runs closer to the minimum speed. This
affects the median last fitness value, perhaps making SA seem better than it
is.
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Figure 6.10: Graph showing the current best individual of the simulated
annealing learning algorithms for robot2.

6.5.3 Robot3 results

Median last value is:

• 24.2% higher than the median speed of the crude gait.

• 40.5% lower than the crude gait in simulation.

• 28.2% higher than the median last value when using OPL.

As seen in figure 6.11, most of the runs prematurely converge on a stable
value. This is happening quicker than for the previous robots, and the run
does not suffer the steady decline as seen in the OPL learning runs for the
same robot.

105



6.5. SIMULATED ANNEALING EXPERIMENTS

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

Evaluation

S
pe

ed

 

 

SA1
SA2
SA3
SA4
SA5
SA6
SA7
SA8

Figure 6.11: Graph showing the current best individual of the simulated
annealing learning algorithms for robot3.

6.5.4 SA analysis

As seen in figures 6.9 and 6.10, both runs on robot1 and robot had a
high exchange of individuals early in the run, showing the low selection
pressure during the start of SA runs, which typically results in higher
genetic diversity. Runs on robot1 tended to stabilize around evaluation
80, while robot2 seemed to reach the stable values later, for some runs
even improving until the end. This might indicate less noisy data from the
simulated annealing runs on robot2, or even that the morphology is better
suited for the exploitation being done in the last phase of the simulated
annealing run.

Lack of reevaluations In contrast to one plus lambda, simulated annealing
never reevaluates individuals during the runs. An apparent problem with
this is clearly seen in figure 6.10, where improvements are, for most runs,
only done in the first half of the evaluations. The cause of this can be seen
when comparing to the graph of the OPL runs for the same robot in figure
6.8. The steady decline in performance is caused by the motors heating up,
but is handled by the reevaluations of the algorithm. Since the probability
of accepting inferior individuals decreases continuously when using SA,
no new solutions will be accepted after about half the evaluations, as all
new individuals are performing poorer than the individuals tested earlier
because of the lower torque caused by the temperature change.

Noise Another suspected problem of simulated annealing is that overly
optimistic measurements due to noise would be dominant, due to combined
effect of noisy measurements and lack of reevaluations. SA runs on robot3
resulted in higher median last speed than the OPL runs, but this seems
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unlikely to be correct, as only about half the evaluations were effectively
used by the search algorithm. This can not be said for certain, without
verifying the gaits and comparing the speeds given during learning to the
median speed through a whole run without a running learning algorithm.

6.6 Gait verification experiments

Both learning algorithms are susceptible to noise. OPL does reevaluations
if no improvement is found for a number of evaluations, but there is
no guarantee of several measurements on the same individual if a new
and improved individual is found close to the end of the run. Simulated
annealing never reevaluates any solutions, so should, in theory, be more
sensitive to the noisy environment. Because of this, a large uncertainty exists
for the speed of the individuals measured during the learning algorithms.
For this reason, two individuals from the sixteen individuals generated of
each robot are tested without learning, in the same way as the crude gait was
tested. This ensures measurements without substantial noise, and makes it
possible to compare the performance of the new gaits to the original crude
gait, and calculate whether a difference is statistically significant or not. One
individual from each learning algorithm was chosen from each robot for
gait verification, and the tests were done identical to the tests run in the
crude gait experiments.

Robot Gait Min Median Max Rank
1 Manual Tukey filtered 0.096 0.125 0.143 4
1 Crude Tukey filtered 0.073 0.125 0.184 4
1 SA3 Tukey filtered 0.080 0.119 0.164 5
1 OPL8 Tukey filtered 0.128 0.173 0.213 2
2 Crude Tukey filtered 0.061 0.122 0.175 5
2 SA1 Tukey filtered 0.131 0.173 0.209 2
2 OPL8 Tukey filtered 0.141 0.186 0.217 1
3 Crude Tukey filtered 0.115 0.161 0.222 3
3 OPL2 Tukey filtered 0.125 0.181 0.240 1
3 SA1 Tukey filtered 0.127 0.187 0.246 1

Table 6.6: Table showing the results of the motion capture performance of
all learned gaits selected for verification. Crude gait performance is given in
gray to ease comparison. All numbers other than rank are given as m/s.
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Figure 6.12: Box plot showing all verification runs on all robots. The
performance in simulation is shown in green.

Robot1 Robot2 Robot3
OPL8 SA3 OPL8 SA1 OPL2 SA1
-3.9% -31.2% -6.5% -3.9% -5.2% -15.8%

Table 6.7: Table showing the median of the resulting individuals from all
learning runs compared to their measured speed during the respective
learning runs.

Robot1 Robot2 Robot3
OPL8 SA3 OPL8 SA1 OPL2 SA1
+38.4% -4.8% +52.5% +41.8% +12.4% +16.1%

Table 6.8: Table showing the median of the verified individuals from all
learning runs compared to the median speed of the respective robots’ crude
gait.

6.6.1 Robot1 results

The individual SA3 was selected for having the highest score of all SA
individuals. The best performing gait from OPL walked with a very
curved trajectory, which means tests take considerably longer, and are
more sensitive to noise in the measurements. The individual was therefore
rejected, and replaced by the second best individual from the OPL runs,
OPL8. Table 6.6 shows OPL8 outperforming the manual gait, the physical
crude gait, and SA3. SA3, however, is significantly worse than all other
verified gaits on robot1. Table 6.7 shows a high difference in loss of
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Robot1 Robot2 Robot3
OPL8 SA3 OPL8 SA1 OPL2 SA1
-32.7% -53.7% -17.0% -22.8% -46.1% -44.3%

Table 6.9: Table showing the median of the resulting individuals from all
learning runs compared to the speed of the crude gait in simulation.

performance when compared to the results during the learning run of 27.3
percentage points. This greatly affects the performance of the two gaits, as
seen in table 6.8, where OPL8 outperforms the crude gait, and SA3 actually
loses speed when compared to the physical crude gait. This change can also
be seen when comparing the median speed to the original gait in simulation,
as seen in table 6.9, where OPL performs significantly better.

6.6.2 Robot2 results

Individuals SA1 and OPL8 were both selected for having the highest speed
recorded during their learning runs. As seen in table 6.7, both performed
slightly below their original speed measurements by about 5%. Table 6.8
shows a fairly large improvement in both individuals of above 40%, but
as seen in table 6.9, they are still both under the speed of the crude gait in
simulation by over 15%, although they are the two gaits closest of the six
selected gaits.

6.6.3 Robot3 results

As with robot2, the highest performing individual from each learning
algorithm run was selected for verification, OPL2 and SA1. As seen in
table 6.7, the OPL individual only had a 5% lower speed than measured
during the run, while the SA individual had a nearly 16% loss, about thrice
the loss of the OPL individual. Even with this higher loss, the median of
SA1 is still higher than OPL2, and has the highest rise of speed of the two,
when compared to the crude gait, as seen in table 6.8. As shown in table 6.9,
both gaits performed about 45% below the speed experienced in simulation,
better than the 50% in robot1, but far below the 20% experienced in robot2.

6.6.4 Gait verification analysis

It is hard to draw general conclusions from the physical experiments, since
only one gait from each learning run was selected and verified. There are,
however, some interesting indications. OPL8 on robot2 performed as well
as both learned gaits on robot3, According to a Wilcoxon rank sum test with
significance level 0.01, which is an excellent result considering the difference
in weight and size of the two robots. Robot2 is also lighter and smaller than
robot1, yet outperformed the manually designed gait, the crude gait from
simulation, and the two learned gaits, according to a Wilcoxon rank sum
test with significance level 0.01. Since the torque had to be lowered by 50%,
it is impossible to say whether robot3 would have had a higher benefit of
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the added torque than the two other robots, and outperformed them like it
did in simulation. Figure 6.12 shows that robot2 almost reached the speed
experienced in simulation, and might actually have achieved it given full
torque. This shows that machine learning is able to at least reduce the reality
gap considerably.
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Chapter 7

Discussion

This chapter concludes the thesis with a discussion of the results and related
issues, conclusive summary, and finally describes possibilities for future
work.

7.1 General discussion

Re-evolution of control The results from chapter five, and specifically
figure 5.12, shows that the evolution of control systems done on the
morphologies from the main runs increases the quality of individuals
considerably, which goes against the expected performance increase from
co-evolving morphology and control. All three robots outperformed their
co-evolved control systems. The increase in performance could, however,
be caused by the smaller solution spaces when only evolving the control
system, and full runs with a more sophisticated end criteria could result in
equal, or even better performance, from the co-evolutionary runs.

Manually designed robot and gait The manually chosen parameters for
robot1 were the result of looking at comparable robots, engineering intuition,
and very simple force calculations. A professionally designed robot platform
might perform considerably better, which might skew the results of this
thesis. The manually designed gait could also be improved further, though
the tripod gait is by many considered among the top performing gaits for
six legged robots. The evolutionary system was, however, designed on the
same premises as the manually designed robot and gait, and might improve
to a comparable degree, if designed or improved by professional engineers
or researchers.

Robot platform Figure 2.7 from chapter 5 shows that the evolutionary
platform is able to produce a wide range of morphologies. The tests of the
evolved individuals also showed a diverse group of qualitatively different
gaits. Being able to successfully adapt to objectives of both turning and
walking sideways, as evident from the results seen towards the end of
chapter five, also shows the platform being capable of adjusting to different
goals.
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Improvement by learning algorithms Chapter six shows the high reality
gap experienced when transferring to reality. Much of the gap is closed by
learning, and tuning of learning parameters or use of other algorithms might
improve the results even further. Both evolved morphologies outperformed
the manually designed robot, and the evolved gait outperformed the
manually designed gait on robot1 as well. This shows that evolution of
morphology and control is a feasible design technique, and outperformed
the traditional design approach in this single case. The successful use of the
algorithm would allow a robot designer to either get the same speed from a
lighter robot, or get higher speed from a robot with the same weight.

Addition of front legs or tools The robot initially had front legs, but it
was decided that these would be removed to lessen the weight and reduce
the solution space for the evolutionary search. Front legs could again be
added, but would not affect speed on a normal surface, since eight legs
over four would still result in two walking phases with continuous forward
movement, using a tripod style gait. It would, however, increase balance
and load capacity, and might increase speed if using a closed loop control
and walking on a demanding surface. Other tools or sensors could be added
instead if needed.

Fitness functions Speed was the main measure of quality used for the
robots in this thesis. Weight was also added to ensure a greater variation of
individuals, and to have two partially conflicting objectives, as this often
enhances the quality of available solutions [50]. A positive side effect of
lower robot weight is lower costs and shorter production time. A problem
seen on some of the evolved solutions, were that they moved in a long arc,
rather than in a straight line. Since the fitness function only rewarded for
maximum forward movement, this was not penalized in simulation, but
made the gait infeasible in reality. A new fitness goal that recorded the
absolute sideways displacement could be made, and a minimization of this
new fitness function should help eliminate the problem of robots walking in
circles. Another fitness function that might aid the search is to reward gaits
that lift the whole body of the robot. Friction was heightened for the base
alone to encourage this behavior, but a goal of lifting the base to a certain
height would most likely give smaller ground friction and higher speeds,
both in simulation and reality. Another problem with some of the gaits, is
an uneven movement along the direction of travel. A constant velocity is
traditionally seen as the quickest way to move, and is observed in the classic
tripod gait. A fitness goal of constant velocity could be added to encourage
even, fluid movements.

7.2 Conclusion

This thesis presented the development of a robotic platform for
evolutionary experiments. The robot has six legs, with the possibility of
adding two more servos to the front for tools or additional legs. It was
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integrated into a physics simulation environment used at the University of
Oslo, and a parameter search for both control evolution, and evolution of
control and morphology, was conducted to give a starting point for other
researchers using parts of the proposed framework. The analysis of the
evolved robots showed a wide range of different morphologies and gaits,
which is promising for solving more demanding fitness goals than speed.
This shows that the designed platform works for different goals, and can
serve as a valuable tool for evolutionary experiments.

A manually designed instance of the robotic platform was made, and was
thoroughly tested against the two evolved models in both simulation and
reality. Analysis of the evolved gaits for all three robots showed a higher
quality than the evolved controllers for the manually designed robot in
simulation. Evolving morphologies resulted in a wide range of both robots
and controllers to choose from, which in itself is advantageous over the few
resulting robots of conventional robot design. This improvement leaves
the robot designer free to conclude on all trade-offs in the system, which
may very well change during the development phase. One of the evolved
morphologies also showed a novel approach to legged walking, bypassing
the traditional limitation of servo sectors.

A single gait was selected from each robot for testing in real life, and
was run through two learning algorithms to lessen the reality gap. Each
robot gait went through eight runs of one plus lambda learning and eight
runs of simulated annealing. One resulting gait was selected from each
algorithm type and verification of speed showed the manually designed
robot being outperformed by both evolved robots. The smaller evolved robot
outperformed the manually designed robot in speed and weight, while the
larger evolved robot outperformed it in speed, with a slight increase in
weight. This shows that evolution of morphology was able to make a robot
both smaller and faster than the manually designed robot, and has therefore
served as a successful tool for robot design in this thesis.

7.3 Future work

The first goal of this thesis was to design a framework for evolutionary
experiments, and this opens up for a fairly large amount of future work.

Parameter tuning and control Manual parameter tuning was done in this
thesis, but using statistical methods for optimization of parameters before
the run has the potential of improving the speed of the algorithm, and
the quality of evolved solutions[40]. Parameter control, i.e. changing key
parameters during the run[41], would also be an interesting addition to the
framework.
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Conventional robotics The manually designed robot used as a baseline
in this thesis was mainly designed without many of the tools used in
conventional robotics. Usage of techniques and engineering know-how
from other areas of robotics could be used to design a new robot using
the parameterizable model, and new comparisons could be done to the
evolved solutions found in this thesis, or new evolved solutions found after
optimization of the evolutionary system as well.

Novel legged design The morphology of the large evolved robot showed
a novel design of legged robots, by enabling intersection of legs in a gait.
This has not been seen in any previous work, and should be investigated
further by conventional robotics techniques and tools.

Reality gap reduction Several techniques exist for the reduction of the
reality gap, and these could be used in conjunction with the framework,
as the reality gap was shown to be as high as a performance loss of 50%.
Techniques like noise generation [81], adaption of simulator parameters [82,
83], or transferability approach [84] could al be used on the evolutionary
framework developed in this thesis.

Other control systems The control system used was a modified version of
the controller used by Koos et al. [63], made symmetric and easier to evolve
and limit. This controller was strictly open-loop, getting no feedback from
the robot itself. Using more advanced controllers, and especially closed-loop
controllers, would be an interesting study. This would enable sensors to
affect the gait (and even the evolution of morphology), and would enable
more complex behaviors.

Fitness functions Two fitness functions were used during the evolution in
this thesis; speed, and weight. Speed was the main goal, while total weight
was used to control the runs and ensure diversity in the solutions through
innovization[50]. One of the goals when creating the robotic platform
was to make an adaptable platform capable of more complex tasks. It
would therefore be interesting to test the robot on more complicated fitness
functions. This could be tied to sensors or tools the robot could carry, or to
the environment around the robot, given a closed-loop controller.

Co-evolution and incremental evolution Results showed a significant
improvement when doing evolution of control systems alone on the
morphologies resulting from the co-evolutionary runs. This should be
verified or invalidated by further experiments. This would open up
new exciting research possibilities of doing incremental evolution on the
designed platform, and could potentially lead to even higher performance
increases than seen in the simple incremental evolution used in this
thesis. The work of this thesis included an initial co-evolutionary run of
morphology and control, and then a control only evolutionary run. Being
able to cut the computationally expensive co-evolutionary run and instead
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do several runs of control or morphology individually, might improve the
quality of solutions and the time used for evolution, but raises several
questions about the loss of co-evolution and it’s perceived benefits.

Evolutionary aided design The work in this thesis involved first manually
designing a model, then doing parameter optimization on that model using
evolutionary algorithms. Evolutionary aided design takes the process one
step further, and analyses the output of the parameter optimization, before
manually designing a new model based on the lessons learned by evolution.
This involves analyzing the Pareto front in several dimensions, in contrast
to the two fitness dimensions used in this thesis. An analysis would then
show the significance of the different lengths and sizes of the robot, and ease
the many decisions faced when manually designing a legged robot.

Online evolution Machine learning was used to lessen the reality gap, but
this was only intended to get back some of the lost fitness from moving from
the simulation. Online evolutionary adaption is an evolutionary process
done during operation of the robot, and makes the robot able to adjust to
new tasks or environments by changing its behavior. Many researchers
argue that this is a necessary part of an evolutionary design process, and
that the high quality of evolutionary processes seen in nature requires a
period of adjustment and habituation [5]. This could also be combined with
the principles of simulated annealing, to do a higher degree of adjustment
out of the box, and then adapt in smaller increments as time progresses.

Self modifying hardware in ER When the Golem project [17] brought
evolved robots into the real world in 2000, the field of evolutionary
robotics was changed forever. With the progression of technology, and the
advancements in robot construction and evolution of morphology, it might
be time to take one step further. By designing robots that can modify their
hardware as done in simulations, one would not be limited to an adaption
of the control system for new tasks or environments, but could also change
the morphology of the robot in a process similar to online evolutionary
adaption. This would open up a new dimension to evolutionary robotics,
and might give the push the field needs to be fully accepted in the robotics
community. The platform proposed in this thesis could be expanded to
include self-modifying hardware, like variable length femurs and tibias, and
be subjected to an online optimization of morphology as well as control.
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Appendix A

Calculations

A.1 Force calculations

Stride length is constant between different lengths, given a weight of the
robot of 3kg and 3 legs in the ground at all times. This is constant since the
max length between coxa servo center and end of tibia is the same.

Lengthmax = Lengthbase→coxa + Lengthcoxa→tibia

Lengthmax = 59mm + 183mm
Lengthmax = 242mm

Using the cosine rule and the maximum angle of rotation by the coxa, this
gives a maximum stride length of:

c2 = (242mm)2 + (242mm)2 − 2× (242mm)(242mm)× cos(0.81)

c2 = 58564mm2 + 58564mm2 − 117128mm2 × cos(0.81)

c2 = 36368mm2

c = 190.7mm

Femur: 230mm, tibia: 230mm

Minimum length Minimum length between femur servo center and tibia
end for femur and tibia lengths of 230mm is given in equation A.1. The law
of cosines is used for calculating the distance, and π-2.490 comes from the
angle limit of the femur/tibia servo.
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c2 = a2 + b2 − 2ab× cos(C)

c2 = (230mm)2 + (230mm)2 − 2(230mm)(230mm)× cos(π − 2, 490)

c2 = 52900mm2 + 52900mm2 − 105800mm2 × (0.795)

c2 = 21676.416mm2

c =
√

21676.416mm2

c = 147mm

Maximum angle Maximum angle for AX18 servo in femur, given femur
and tibia lengths of 230mm, a robot weight of 3kg, and 3 supporting legs:

cos(C) =
a2 + b2 − c2

2ab

cos(C) =
(230mm)2 + (230mm)2 − (183mm)2

2(230mm)(230mm)

cos(C) =
52900mm2 + 52900mm2 − 33489mm2

105800mm2

cos(C) =
72311mm2

105800mm2

C = cos−1(
72311
105800

)

C ≈ 0.818rad ≈ 46.9deg

This angle is converted into the coordinate system of the servo by the
following formulas:

Anglecalculations = π −Angleservo

Anglecalculations = π − 0.818
Anglecalculations ≈ 2.323rad ≈ 133deg

Femur: 150mm, tibia: 150mm

Length Minimum length between femur servo center and tibia end for
femur and tibia lengths of 150mm is given in equation A.1. The law of
cosines is used for calculating the distance, and π-2.490 comes from the
angle limit of the femur/tibia servo.
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c2 = a2 + b2 − 2ab× cos(C)

c2 = (150mm)2 + (150mm)2 − 2(150mm)(150mm)× cos(π − 2, 490)

c2 = 22500mm2 + 22500mm2 − 45600mm2 × (0.795)

c2 = 8748.00mm2

c =
√

8748.00mm2

c ≈ 94mm

Maximum angle Maximum angle for AX18 servo in femur for a femur
and tibia lengths of 150mm is calculated in equation A.1.

cos(C) =
a2 + b2 − c2

2ab

cos(C) =
(150mm)2 + (150mm)2 − (183mm)2

2(150mm)(150mm)

cos(C) =
22500mm2 + 22500mm2 − 33489mm2

45000mm2

cos(C) =
11511mm2

45000mm2

C = cos−1(
11511
45000

)

C ≈ 1.31rad ≈ 75.2deg

This angle is converted into the coordinate system of the servo by the
following formulas:

Anglecalculations = π −Angleservo

Anglecalculations = π − 1.31
Anglecalculations ≈ 1.83rad ≈ 105.0deg

A.2 Forward kinematics

Link ai/ri αi di θi
1 59mm π/2 -26.33mm θ∗1
2 L1→2 0 0 θ∗2
3 L2→3 0 0 θ∗3

Table A.1: DH parameter table for the back legs
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First link (Coxa):

A1 =

cos(θ1) −sin(θ1)cos(α1) sin(θ1)sin(α1) r1cos(θ1)
sin(θ1) cos(θ1)cos(α1) −cos(θ1)sin(α1) r1sin(θ1)

0 sin(α1) cos(α1) d1
0 0 0 1

A1 =

cos(θ∗1 ) −sin(θ∗1 )cos(π/2) sin(θ∗1 )sin(π/2) 59mm ∗ cos(θ∗1 )
sin(θ∗1 ) cos(θ∗1 )cos(π/2) −cos(θ∗1 )sin(π/2) 59mm ∗ sin(θ∗1 )

0 sin(π/2) cos(π/2) −26.33mm
0 0 0 1

A1 =

cos(θ∗1 ) 0 sin(θ∗1 ) 59mm ∗ cos(θ∗1 )
sin(θ∗1 ) 0 −cos(θ∗1 ) 59mm ∗ sin(θ∗1 )

0 1 0 −26.33mm
0 0 0 1

Second link (femur):

A2 =

cos(θ2) −sin(θ2)cos(α2) sin(θ2)sin(α2) r2cos(θ2)
sin(θ2) cos(θ2)sin(α2) −cos(θ2)sin(α2) r2sin(θ2)

0 sin(α2) cos(α2) r2
0 0 0 1

A2 =

cos(θ∗2 ) −sin(θ∗2 )cos(0) sin(θ∗2 )sin(0) L1→2 ∗ cos(θ∗2 )
sin(θ∗2 ) cos(θ∗2 )sin(0) −cos(θ∗2 )sin(0) L1→2 ∗ sin(θ∗2 )

0 sin(0) cos(0) L1→2
0 0 0 1

A2 =

cos(θ∗2 ) −sin(θ∗2 ) 0 L1→2 ∗ cos(θ∗2 )
sin(θ∗2 ) 0 0 L1→2 ∗ sin(θ∗2 )

0 0 1 L1→2
0 0 0 1

Third link (tibia):

A3 =

cos(θ3) −sin(θ3)cos(α3) sin(θ3)sin(α3) r3cos(θ3)
sin(θ3) cos(θ3)sin(α3) −cos(θ3)sin(α3) r3sin(θ3)

0 sin(α3) cos(α3) r3
0 0 0 1

A3 =

cos(θ∗3 ) −sin(θ∗3 )cos(0) sin(θ∗3 )sin(0) L2→3 ∗ cos(θ∗3 )
sin(θ∗3 ) cos(θ∗3 )sin(0) −cos(θ∗3 )sin(0) L2→3 ∗ sin(θ∗3 )

0 sin(0) cos(0) L2→3
0 0 0 1

A3 =

cos(θ∗3 ) −sin(θ∗3 ) 0 L2→3 ∗ cos(θ∗3 )
sin(θ∗3 ) 0 0 L2→3 ∗ sin(θ∗3 )

0 0 1 L2→3
0 0 0 1

All three links:
A1 ∗ A2 ∗ A3
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Appendix B

Code

B.1 Fitness functions

bool MoveEval :: onSimulationStep(sim:: Simulator*, float next_sim_t)
{

_score = scenario()-> waypointDistance ();
return next_sim_t < 8;

}

bool TotalMoveEval :: onSimulationStep(sim:: Simulator*, float next_sim_t)
{

_score = sqrt(pow(abs(scenario()->xDistance ()) ,2)+ pow(abs(scenario()->zDistance ()) ,2));
return next_sim_t < 8;

}

bool SidewaysMoveEval :: onSimulationStep(sim:: Simulator*, float next_sim_t)
{

_score = scenario()->xDistance ();
return next_sim_t < 8;

}

bool LeftTurnEval :: onInclusion(sim:: Simulator* sim)
{

auto qVector = scenario()->machine ->pose ().R[2];
lastBasePlaneVector = (qVector * float3 (1 ,0 ,1)). normalized ();
return true;

}

bool LeftTurnEval :: onSimulationStep(sim:: Simulator* givenSim , float next_sim_t)
{

auto qVector = scenario()->machine ->pose ().R[2];

auto basePlaneVector = (qVector * float3 (1,0,1)). normalized ();

auto currentRotationMagnitude = cross(basePlaneVector , lastBasePlaneVector ).y;
auto currentRotation = -asin(currentRotationMagnitude );

_score += currentRotation;
lastBasePlaneVector = basePlaneVector;

return next_sim_t < 8;
}

bool TotalWeightEval :: onInclusion(sim:: Simulator* s)
{

_score = scenario()->machine ->getTotalWeight ();
return true;

}

tonnesfn_machine :: getTotalWeight () const{
float totalWeightToReturn = 0.0f;

for (int i = 0; i < _body ->linkCount (); i++){ // Traverse all links
for (int j = 0; j < _body ->link(i). shapeCount (); j++){ // Traverse all shapes

totalWeightToReturn += _body ->link(i).shape(j).mass ();
}

}
return totalWeightToReturn;

}
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B.2 Crossover operators

Uniform crossover

void uniformCrossover(Tonnesfn_genes a, Tonnesfn_genes b){
auto testa = a.control ->param;
auto testb = b.control ->param;

for (int i = 0; i < 36; i++){
if (rng.uniform (0.0f,1.0f) <= evo_parameters (). a_m_nonuniform)

a.control ->param[i] = b.control ->param[i];
if (rng.uniform (0.0f,1.0f) <= evo_parameters (). a_m_nonuniform)

b.control ->param[i] = a.control ->param[i];
}

}

B.3 Mutation operators

Non-uniform mutation of non-discrete floats

float nonUniformMutation(float numberToMutate) {
if (rng.uniform (0.0f,1.0f) <= evo_parameters (). p_m_nonuniform) {

numberToMutate += float(rng.normal(0, evo_parameters (). a_m_nonuniform ));
}
return numberToMutate;

}

Random reset mutation of non-discrete floats

float randomResetMutation(float numberToMutate , float lowerLimit , float upperLimit) {
if (rng.uniform (0.0f,1.0f) <= evo_parameters (). p_m_reset ){

numberToMutate = (float) rng.uniform(lowerLimit ,upperLimit );
}
return numberToMutate;

}

Non-uniform mutation of discrete values

float nonUniformMutationOfDiscreteValues(float numberToMutate , float divisionSize ){
float numberToReturn = numberToMutate;
while (true){

if (rng.uniform (0.0f,1.0f) > evo_parameters (). p_m_nonuniform_p ){
return numberToReturn;

}

if (rng.random (2) == 0){
numberToReturn += divisionSize;

}else{
numberToReturn -= divisionSize;

}
}
return numberToReturn;

}

Random reset mutation of discrete values

float randomResetMutationWithDiscreteValues(float numberToMutate ,
float lowerLimit , float upperLimit , float stepSize ){

if (rng.uniform (0.0f,1.0f) <= evo_parameters (). p_m_reset ){
numberToMutate = roundToNearest(

(float) rng.uniform(lowerLimit ,upperLimit), stepSize );
}
return numberToMutate;

}

B.4 Controller

MaxMin symmetric controller

void MaxMinSymmetryController :: update(Controllable* s, float time)
{

for (auto i : count_to(_pairs.size ()))
{

const int joint [2] = { _pairs[i].first , _pairs[i]. second };
const auto j = i*4;
const float a = param[j];
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const float b = param[j+1];

const float amp = (a-b)/2;
const float offset = (a+b)/2;
float phase = 0;

for (int k = 0; k < 2; ++k)
{

phase += param[j+k+2];
float target = amp * tanh (4* sin(2*FPI*(time+phase ))) + offset;
s->output[joint[k]] = isPositional () ? target

: p_ctrl(target - s->state[joint[k]], K_P , 0.005f);
}

}
}

B.5 Servo code

void TonnesfnMachine :: velocityTarget(int id, float target)
{

static float sta_f = 0.15f;
static float noload_vel;
static float stall_trq;

if (id == 1 || id == 4 || id == 7 || id == 10 || id == 13 || id == 16){
// AX18
noload_vel = 10.15f; //97rpm = 10.15 rad/s
stall_trq = 1.8f; //Nm

}else{
// AX12
noload_vel = 6.18f; //59rpm = 6.18/s
stall_trq = 1.5f; //Nm

}

static const float vel_cap = 0.3f;
static const float dyn_f = (stall_trq -sta_f )/ noload_vel;

auto link = _body ->link(id+1);
const float current_pos = link.jointPosition ();
const float current_vel = link.jointVelocity ();

link.jointDrive (0 ,600* std::max(0.f,noload_vel*vel_cap -fabs(current_vel )));
link.velocityTarget(clamp(target ,-1,1)* noload_vel*vel_cap ,0 ,0);

}

B.6 Learning algorithms

One plus lambda

(This code was not written as part of this thesis, but is included for
documentation)
void OnePlusLambda :: evaluate(float score)
{

if (auto current = param ())
{
textlog << format("score:␣%.3f␣", score );
textlog << format("(%.3f,␣%.3f,␣%d)␣", _best_score , calc_gms(_best_sigma)

, _agenda.size ()-1);
if (_reign == 0)
{

_best_score = !_finite(_best_score) ? score
: (_best_score *( _reevalc) + score )/( _reevalc +1);

++ _reevalc;
if (_reevalc > 1)

textlog << format("mean␣score␣%.3f␣(%d)␣", _best_score , _reevalc );
_best_param = _agenda.back (). param;
_best_sigma = _agenda.back (). sigma;

}
else if (_best_score < score)
{

textlog << "new␣best!␣";
_best_score = score;
_best_param = _agenda.back (). param;
_best_sigma = _agenda.back (). sigma;
_reign = 0;
_reevalc = 1;

}
_agenda.pop_back ();
++ _reign;
if (_agenda.empty ()) // new generation
{

if (_reign >= _max_reign)
{
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textlog << "reeval␣";
for (auto& s : _best_sigma)

s *= 0.95f;
_reset ();

}
else
{

_agenda.resize(_lambda );
for (auto& e : _agenda)
{

e.param = _best_param;
e.sigma = _best_sigma;
float gmean = 1;
for (auto& sp : both(e.sigma ,e.param))
{

gmean *= sp.first *= (float)exp(rng.normal (0.5f));
sp.second += (float)rng.normal(sp.first );

}
gmean = pow(gmean ,1.f/e.sigma.size ());

}
}

}
textlog << std::endl;
param(_agenda.back (). param );

}
}

Simulated annealing

(This code was not written as part of this thesis, but is included for
documentation)
void SimulatedAnnealing :: evaluate(float score)
{

if (auto current = param ())
{

textlog << format("score:␣%.3f␣(%.3f)␣", score , _best_score );
++ _iteration;
const float temp = 1.0f/_iteration;
const float sigma = SCALE*sqrt(temp);
textlog << format("#%d␣-␣sigma:␣%.5f␣", _iteration , sigma);
if (_best_score <= score)
{

_best_score = score;
_best_param = *current;
textlog << "better␣";

}
else
{

const float pA = exp( (score -_best_score )/( temp *0.5f) );
textlog << format("pA:␣%.3f␣", pA);
if (pA > rng.uniform ())
{

_best_score = score;
_best_param = *current;
textlog << "exchange␣";

}
else

textlog << "keep␣";
}
param_vector next = _best_param;
for (auto& v : next)

v += (float)rng.normal(sigma);
param(next);
textlog << "\n";

}
}

B.7 Gait generation script

B.7.1 Matlab main script

z_l = -130;
z_h = -30;

stride_length = 50.0;
stride_half_distance_safety_margin = 10;

back_start = 150.0;
side_start = 150.0;
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forward_skew = 50.0;

% --------------- 1: FN BO FN BO FN BO

inverse(side_start ,stride_length+stride_half_distance_safety_margin + forward_skew ,
z_l , false , true); %B3, FN

inverse(side_start ,-stride_length -stride_half_distance_safety_margin + forward_skew ,
z_h , false , false); %B4, BO

inverse(back_start ,stride_half_distance_safety_margin ,
z_l ,false ,false ); % B5, FN

inverse(back_start+stride_length ,-stride_half_distance_safety_margin ,
z_h ,false ,true); % B6 , BO

inverse(side_start ,stride_half_distance_safety_margin - forward_skew ,
z_l , false , true); %B7, FN

inverse(side_start ,-stride_half_distance_safety_margin - forward_skew ,
z_h , false , false); %B8, BO

% --------------- 2: BN FO BN FO BN FO

inverse(side_start ,stride_half_distance_safety_margin + forward_skew ,
z_l , false , true); %B3, BN

inverse(side_start ,-stride_half_distance_safety_margin + forward_skew ,
z_h , false , false); %B4, FO

inverse(back_start+stride_length ,stride_half_distance_safety_margin ,
z_l ,false ,false ); % B5, BN

inverse(back_start ,-stride_half_distance_safety_margin ,
z_h ,false ,true); % B6 , FO

inverse(side_start ,stride_length+stride_half_distance_safety_margin - forward_skew ,
z_l , false , true); %B7, BN

inverse(side_start ,-stride_length -stride_half_distance_safety_margin - forward_skew ,
z_h , false , false); %B8, FO

% --------------- 3: BN FN BN FN BN FN

inverse(side_start ,stride_half_distance_safety_margin + forward_skew ,
z_l , false , true); %B3, BN

inverse(side_start ,-stride_half_distance_safety_margin + forward_skew ,
z_l , false , false); %B4, FO

inverse(back_start+stride_length ,stride_half_distance_safety_margin ,
z_l ,false ,false ); % B5, BN

inverse(back_start ,-stride_half_distance_safety_margin ,
z_l ,false ,true); % B6 , FO

inverse(side_start ,stride_length+stride_half_distance_safety_margin - forward_skew ,
z_l , false , true); %B7, BN

inverse(side_start ,-stride_length -stride_half_distance_safety_margin - forward_skew ,
z_l , false , false); %B8, FO

% --------------- 4: BO FN BO FN BO FN

inverse(side_start ,stride_half_distance_safety_margin + forward_skew ,
z_h , false , true); %B3, BO

inverse(side_start ,-stride_half_distance_safety_margin + forward_skew ,
z_l , false , false); %B4, FN

inverse(back_start+stride_length ,stride_half_distance_safety_margin ,
z_h ,false ,false ); % B5, BO

inverse(back_start ,-stride_half_distance_safety_margin ,
z_l ,false ,true); % B6 , FN

inverse(side_start ,stride_length+stride_half_distance_safety_margin - forward_skew ,
z_h , false , true); %B7, BO

inverse(side_start ,-stride_length -stride_half_distance_safety_margin - forward_skew ,
z_l , false , false); %B8, FN

% --------------- 5: FO BN FO BN FO BN

inverse(side_start ,stride_length+stride_half_distance_safety_margin + forward_skew ,
z_h , false , true); %B3, FO

inverse(side_start ,-stride_length -stride_half_distance_safety_margin + forward_skew ,
z_l , false , false); %B4, BN

inverse(back_start ,stride_half_distance_safety_margin ,
z_h ,false ,false ); % B5, FO

inverse(back_start+stride_length ,-stride_half_distance_safety_margin ,
z_l ,false ,true); % B6 , BN

inverse(side_start ,stride_half_distance_safety_margin - forward_skew ,
z_h , false , true); %B7, FO

inverse(side_start ,-stride_half_distance_safety_margin - forward_skew ,
z_l , false , false); %B8, BN

% --------------- 6: FN BN FN BN FN BN

inverse(side_start ,stride_length+stride_half_distance_safety_margin + forward_skew ,
z_l , false , true); %B3, FO
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inverse(side_start ,-stride_length -stride_half_distance_safety_margin + forward_skew ,
z_l , false , false ); %B4, BN

inverse(back_start ,stride_half_distance_safety_margin ,
z_l ,false ,false ); % B5, FO

inverse(back_start+stride_length ,-stride_half_distance_safety_margin ,
z_l ,false ,true); % B6 , BN

inverse(side_start ,stride_half_distance_safety_margin - forward_skew ,
z_l , false , true); %B7, FO

inverse(side_start ,-stride_half_distance_safety_margin - forward_skew ,
z_l , false , false ); %B8, BN

B.7.2 Matlab Inverse kinematics function

function [array] = inverse(L12 , L23 , x, y, z, ~, left)

t1 = atan(y/x);

p1_x = cos(t1)*59;
p1_y = sin(t1)*59;
p1_z = -26.33;

L13 = sqrt((x-p1_x )^2+(y-p1_y )^2+(z-p1_z )^2);

t3 = pi-acos((L12^2+L23^2-L13 ^2)/(2* L12*L23 ));

L13xy = sqrt((x-p1_x )^2+(y-p1_y )^2);
L13z = p1_z -z;

t2_m_a = atan(L13z/L13xy);

t2 = t2_m_a - acos((L12^2+ L13^2-L23 ^2)/(2* L12*L13));

if left
t2 = -t2;
t3 = -t3;

end

t1_servo = rad2dyn(t1);
t2_servo = rad2dyn(t2);
t3_servo = 1024- rad2dyn(t3);

if left
t2_servo = 1024 - t2_servo;
t3_servo = 1024 - t3_servo;

end

array = [t1_servo t2_servo t3_servo ];

end

B.7.3 Matlab radian to dynamixel function

function angle = rad2dyn(givenRadValue)
angle = round( (512 * givenRadValue / (3.14*(150/180))) + 512);

end
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Appendix C

Part dimensions and weight

C.1 Femur

Robot Lengthmiddle Lengthtotal WeightSW Weightprinted
2 80mm
2 97mm
3 103mm
1 70mm 150mm 29.00g
3 168mm
2 170mm
3 120mm 200mm 38.32g
- 150mm 230mm 43.97g 35.9g
- 174mm 254mm 48.5g

Table C.1: Weights of simulated or printed femurs.

C.2 Tibia

Iteration Lengthend Lengthtotal WeightSW Weightprinted
2 80mm
2 89mm
3 100mm
3 103mm
1 84mm 150mm 33.96g
2 163mm
- 134mm 200mm 40.81g
- 174mm 240mm 46.22g 40.8g
3 188mm 254mm 48.10g

Table C.2: Weights of simulated or printed tibias.
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Appendix D

Experiment parameters and
results

This chapter includes parameters and results for all evolutionary runs,
including graphs for the runs evolving turning gaits. It also features graphs
of motion capture results, and the results from the learning runs.
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D.3 Turning evolution results
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(a) The Pareto front of runs 760-764, evolving turning right for robot 1.
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(b) The Pareto front of runs 765-769, evolving turning left for robot 1.
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(a) The Pareto front of runs 770-774, evolving turning right for robot 2.
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(b) The Pareto front of runs 775-779, evolving turning left for robot 2.
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(a) The Pareto front of runs 780-784, evolving turning right for robot 3.
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(b) The Pareto front of runs 785-789, evolving turning left for robot 3.
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D.4 Motion capture graphs
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Figure D.4: Graph showing the motion capture recordings of all gaits run
on robot1.
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Figure D.5: Graph showing the motion capture recordings of all gaits run
on robot2.
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Figure D.6: Graph showing the motion capture recordings of all gaits run
on robot3.

D.5 Learning run result tables

1 2 3 4 5 6 7 8
Max 0.213 0.177 0.199 0.207 0.171 0.210 0.209 0.202
Last 0.185 0.136 0.169 0.154 0.171 0.177 0.152 0.176

Table D.3: Table showing the results of each run of the one plus lambda
learning algorithm on robot1.

1 2 3 4 5 6 7 8
Max 0.161 0.127 0.187 0.198 0.164 0.169 0.159 0.170
Last 0.140 0.124 0.173 0.168 0.139 0.149 0.130 0.167

Table D.4: Table showing the results of each run of the simulated annealing
learning algorithm on robot1.

1 2 3 4 5 6 7 8
Max 0.184 0.207 0.191 0.190 0.163 0.162 0.183 0.199
Last 0.142 0.201 0.146 0.127 0.135 0.146 0.150 0.199

Table D.5: Table showing the results of each run of the one plus lambda
learning algorithm on robot2.
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1 2 3 4 5 6 7 8
Max 0.188 0.143 0.106 0.118 0.175 0.172 0.179 0.180
Last 0.180 0.124 0.096 0.114 0.174 0.172 0.179 0.177

Table D.6: Table showing the results of each run of the simulated annealing
learning algorithm on robot2.

1 2 3 4 5 6 7 8
Max 0.234 0.217 0.236 0.235 0.248 0.204 0.240 0.240
Last 0.160 0.191 0.161 0.152 0.117 0.151 0.152 0.172

Table D.7: Table showing the results of each run of the one plus lambda
learning algorithm on robot3.

1 2 3 4 5 6 7 8
Max 0.254 0.247 0.236 0.234 0.240 0.245 0.198 0.245
Last 0.222 0.213 0.198 0.202 0.205 0.188 0.186 0.191

Table D.8: Table showing the results of each run of the simulated annealing
learning algorithm on robot3.
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