UNIVERSITY OF OSLO
Department of Informatics

Creating a
GStreamer plugin
for low latency
distribution of
multimedia
content

Master thesis

Jan Vorcak

May 6, 2014

Acknowledgement

I would like to thank my supervisors, Thomas Plagemann and Hans Vatne Hansen
for their invaluable feedback and guidance. Thank you for the supervision of the
thesis and for the opportunity to work on this project.

I am most thankful to my family and friends who supported my studies and all
the decisions I have made. I would like to especially thank Marta Lajtova for her
patience and support during my studies.

Jan Vorcak
University of Oslo
May 2014

Abstract

Electronic devices such as personal computers, tablets and smart phones have
recently become more available for the majority of users. These devices differ in
multiple aspects including their screen size, processing power and other properties
like mobility and usability. Since each of these devices has different advantages,
these computing devices can collaborate and share data to provide a better user
experience. By separating an application into several components, we are able to
run these components on different devices where they can perform best.

We have designed, implemented and evaluated a development tool for creating
distributed applications which run in a community of heterogeneous devices. When
it comes to popularity and user’s demands, multimedia applications are also becom-
ing an essential part of systems used on personal devices. We have therefore focused
our work on processing multimedia content. Even though our tool is tailored to the
needs of multimedia applications, it can handle any type of data stream.

Several collaboration platforms have been proposed that allow data sharing in
a distributed environment. We have analysed these platforms with respect to their
latency and throughput. Based on this analysis, we have chosen the one which is
optimized to work with multimedia - TRAMP Data Exchanger.

In order to make development of such an application faster, we have analysed
several multimedia frameworks that can provide a higher abstraction for this col-
laboration platform. The role of a multimedia framework is to provide an intuitive
API for processing multimedia content on a computer and through a network. We
have chosen one of them - GStreamer to serve as a wrapper for underlying the
propagation system. We have designed, implemented and evaluated a GStreamer
plugin which wraps the functionality of the TRAMP data sharing platform. When
using this plugin, it is easy for application programmers to develop multimedia
applications distributed over several devices while taking advantage of the powerful
GStreamer features and plugins. Since the concept of TRAMP Data Exchanger
is a work in progress, our GStreamer plugin also helps to test and evaluate this
collaboration platform.

We do evaluation by using measurements in a distributed environment. We run
these measurements on various hardware on top of different operating systems to
demonstrate the ability to run on heterogeneous devices.

Our evaluation shows that when using our tool, the development process is

easier and faster for application programmers while keeping the requirements
for multimedia applications within the acceptable levels. The latency overhead
introduced by our system is under 100 milliseconds, which is acceptable even for
real-time multimedia applications. We have managed to send various multimedia
streams at different bit rates up to SMbit/s. Using these experiments, we have
demonstrated that our plugin is usable in the context of multimedia applications and
consequently allows them to run in a distributed environment.

Contents

| Acknowledgement]

[_Abstractl

(L Introduction|

2.3 TRAMP Data Exchanger|
[2.3.1 Application Component API}

[2.3.2 Internal messages|.

2.4 TEAMECT] . . & v v v v e e e e e e e e e e e e e e

[2.4.7 Capabilities negotiation types|

[2.4.8 Capabilities negotiation process|
[2.4.9 Renegotiation|. L.

2.5 VLCmediaplayer|.

15
15
16
17
18

3

3.4 Detailleddesign| 000,

3.4.5 Capsnegotiation|
[3.4.6 Communication between pipelines|.
[3.4.7 Proxy implementation|
[3.4.8 Datarephcation|. L.
[3.4.9 Using multiple TRAMP Source elements|
[3.5 Analysing TRAMP Data Exchanger]
[3.5.1 Updating peers with inconsistent data|
[3.5.2 Rebalancing distribution trees|
[3.5.3 Subscribing to the data segment that 1s not yet published| .
[3.5.4 Copying memory to the shared data segment|

4 Implementation|

5.1 Evaluationgoals|.,
[5.2 Evaluation approach|

[5.3.1 Node specifications|.
5.3.2 Networkspeed|
15.3.3 Maximum buffer size of TRAMP Data Exchanger

...........................
15.4.2 Processed buffers per time interval|
BA3 " CPUToad o o o oot
544 Memoryload
5.4.5 Comparison with the UDPplugin|
B3 _ReSUlfSl. . . . v o oot e e e
...........................
[5.5.2 Processed buffers per time interval|

6

[3.5.3 CPU/Memoryload|

[5.5.4 Comparison with the UDP plugin|

APPENDICES

A" Deployment]

|A.1 Compiling RPM packages|

IA.2 Installation|

A Usage

[B_Source code]

89
89
90

91

95

95

97
97
98
98

99

List of Figures

[1.1 ~ Simple Raspberry PI camera system| 16
[2.1 ~ Building distribution trees in TRAMP Data Exchanger| 24
[2.2° TRAMP Data Exchanger architecture overview| 26
[2.3 Detailed design of TRAMP Data Exchanger| 27
[2.4 Connection thread functionality| 28
[2.5 Example of GStreamer pipeline|. 30
[2.6 Example of GStreamer pipeline with different value of a videotestsrc |
| pattern property| e e 31
2.7 Example of a GStreamer pipeline with different communication flows| 32
[2.8 Negotiation between two elements| 34
[2.9 Renegotiation between two elements| 35
[3.1 Architecture of oursystem| 45
3.2 Architecture overviewl. 46
3.3 Example of two GStreamer pipelines interacting using TRAMP |

daemon| 47
[3.4 Using GStreamer labels with TRAMP Data Exchanger] 48
[3.5 Using additional shared data segment to share the capabilities mfor- |

MAtIoONl .+ .« v o e e e e e e e e e e e e e e e e 50
[3.6 Internal buffer used by our plugin| 51
[3.7 Proxying events & queries| 52
[3.8 Proxy implementation|. Lo, 54
[3.9 TRAMP: Example of data propagation with replication| 55
[3.10 TRAMP: Example of data propagation without replication| 55
[5.1 Measuring the Round triptime] 73
[5.2° Measuring latency on two machines with synchronized clocks| . . 74
5.3 Setup for measuring CPU/Memory load| 77
[5.4 Setup for comparing the plugin to the UDP Plugin{. 78
............................... 79
[5.6 Different miss values depend on the value of MTU| 80
[5.7 Missed data segments with different values of M'TU property| . . . 81

9

[5.8 Number of missed data segments with size of the shared buffer] . . 82
[5.9 Number of missed data segments - comparing nodes with different |

performance capabilities] 83
[5.10 CPU load of the consuming/replicating process| 84
[5.11 Memory load of the consuming/replicating process| 84
5.12 Distribution tree built with TRAMPN 84
15.13 Network history of the consumer - replicator|. 85

10

List of Tables

PRI _Tinda APl 21
2.2 TRAMP Application Component API| 23
[2.3 Internal message structure| 29
24 Listof GStreamer element internal functions|. 36
2.5 VLCmoduletypes| 38
[3.1 Comparison of data sharing platforms| 43
[3.2 Important events toproxy|. 51
[3.3 Important queries toproxy| 53
[3.4 Structure t_message|. 53
[3.5 Sending capabilities query downstream| 54
3.6 TRAMP APl extension| 59
[5.1 Node specifications| 71

11

12

List of Listings

2.1 Releaseconsistency|. 20
2.2 Behaviourof outfunctionmlundal 21
[2.3 Publishing data segment using TRAMP Data Exchanger] 23
[2.4 Retrieving data segment using TRAMP Data Exchanger] 23
[2.5 Choosing a specific video outputin VLC|. 37
2.6 Code structure of VL.Cmodulef 38
[3.1 Setting a property on the sink element) 48
4.1 Defining constants and types| 62
4.2 Imtializing meta data and function pomnters| 63
¥.3 Initialization of a new sink elementinstancef 64
|4.4 Implementation of gst_trampsink_set_caps function| 64
|4.5 Implementation of gst_trampsink_render function| 65
|4.6 Implementation of gst_trampsrc_render function| 66
|4.7 Implementation of gst_trampsink_render function| 66
|4.8 Implementation of gst_trampsink_render function| 67
4.9 Implementation of gst_trampsink_render function| 67
[5.1 GStreamer pipelines used in Setup #1| 86
[5.2 GStreamer pipelines used in Setup #2| 86
|A.1 Running GStreamer TRAMP plugin| 98
|IA.2 Installing TRAMP GStreamer plugin on Fedoraf 98
[B.1 Downloading our version of TRAMP Data Exchanger]. 99
[B.2 Fetching the source code of GStreamer TRAMP plugin| 99

13

14

Chapter 1

Introduction

1.1 Background

In today’s world, we are surrounded by an enormous number of heterogeneous
devices. Devices such as personal computers, laptops, tablets and smart phones have
increased in popularity and availability. These devices differ in their capabilities,
processing power, screen size and other properties like mobility and battery life.
That means we are no longer forced to run one application per device, but we can
think of taking advantage of several devices we own and use those devices to serve
our applications.

We can for instance control a presentation or video conference with an easy-
to-use tablet, while still having a presentation displayed on a high resolution LCD
screen. For this to be feasible an application needs to be separated into several parts
that are able to run on different devices, these are called the components. One or
more collaborating components can form an application. The components need to
communicate and exchange data amongst themselves. The main benefit of splitting
an application into several components is that each component can run on the device
where it can perform the best.

There is a need for a collaboration platform that can handle a wide range of
applications - starting from simple applications that need to have their components
running on several devices ending with real-time distributed multimedia applications
that have strict deadlines. Programmers should be able to work with memory
distributed over several devices where the application’s components run.

Distributed Shared Memory (DSM) is an abstraction where physically separated
parts of the memory can be accessed as if they are part of one logical address space.
While there are several hardware systems which work on the architectural level, we
focus on software DSM systems which require a runtime system to work. Focusing
on software DSM systems allows us to write multi-platform applications which are
easy to install on several stand-alone devices.

15

1.2 Motivation

When writing an application distributed over multiple nodes, it would be beneficial
for programmers to have an abstraction of linear address spaces so they can focus
on the application’s logic, instead of the underlying data propagation. There should
be easy-to-use API available for programmers, so that they do not need to know
where the data is located or in what way the data is distributed among devices.
While some DSM systems provide programmers with friendly API that fulfill these
requirements, there is still a possibility to provide programmers with even higher
abstraction. Since multimedia applications have recently increased their popularity,
we have decided to make it easier for application programmers to use these DSM
systems in their multimedia applications. We have chosen one DSM system which
is the most suitable for writing multimedia applications and integrated it with a
multimedia framework by developing a plugin for it. Once the DSM system is
integrated with the multimedia framework, application programmers are provided
with powerful tools of multimedia framework while working with the distributed
shared memory.

Our multimedia plugin allows application programmers to easily write multime-
dia applications distributed over several machines. We claim that such applications
enhances the overall user experience.

Accessibility of today’s cheap hardware [6] with the combination of this easy-to-
use multimedia plugin makes it easier for developers to create distributed multimedia
applications. An example of such an application is a simple camera system taking
advantage of today’s minicomputers illustrated in Figure[T.T} A set of minicomputers
can interact with each other by recording and sharing various multimedia streams
e.g. video captured by a camera. These streams can be played in real-time or stored
on other devices within this system. With our plugin, such a system can be easily
set up using command line tools only, with no need to write a single line of code.

@ —————————————— video stream 1 ———————————— l—“)-@————

Raspberry Pi with Camera Module

video streams 1/3

.__}?

video streams 1/3/4

Raspberry Pl connected to LCD screen

————— video stream 2 @

Raspberry Pi with Camera Module

Figure 1.1: Simple Raspberry PI camera system

16

Other possible use cases can be found everywhere where streaming/multimedia
content needs to be transmitted within a group of devices e.g. video chat applications,
gaming devices, etc.

1.3 Requirements

Our main goal is to determine if our system can be used for real-time multime-
dia applications running on multiple devices. We present the following specific
requirements for our system:

1. Performance Our plugin should able to handle any type of data stream, but it
should be tailored to the needs of multimedia applications. It is necessary for
our system to fulfill these requirements in terms of latency and throughput.

For real-time applications such as gaming or video conferencing, we want to
keep latency as low as possible. In order to support these kind of applications,
we want to keep the latency overhead less than 100 ms [13].

2. Multi-platform Since we want to support as many devices as possible, our
system should not be bound to one specific operating system or architecture.

In the future, components will be able to move from one device to another.
Therefore, our collaboration platform should not be bound to one operating
system. It should ideally support personal computers as well as mobile
devices.

3. Ease of use It should be possible to create multimedia applications running on
several devices without the need to take care of underlying data propagation.
The knowledge of a chosen multimedia framework should be sufficient for a
programmer to set up a distributed multimedia application.

4. Minimal overhead in terms of scalability. Our system should support the
same number of devices as an underlying DSM system. It should not decrease
the scalability of this underlying system, so the application programmer does
not need to trade simplicity of code for scalability.

Our plugin serves as a wrapper for an underlying DSM system to make the
programmer’s work easier. The component which takes care of data propagation is
the DSM system. It is therefore crucial that it is fast, efficient and stable.

In consequence to this requirement, another goal is to analyse the design and
code of the underlying DSM system to ensure it fulfils these requirements. The
multimedia plugin also serves as a tool to easily analyse this DSM system with real
multimedia data.

17

1.4 Outline

This thesis is organized as follows: Chapter [2] gives an introduction to the DSM
systems and multimedia frameworks we considered to use as part of our system.
Chapter [3|describes our design goals. Based on these goals we chose the underlying
DSM and multimedia frameworks. At the end of the chapter, we provide an in-depth
analysis of chosen DSM framework with respect to our requirements. In Chapter 4]
we write about the implementation of our system. The implementation is evaluated
in Chapter [5| with reference to the requirements. We conclude our work and discuss
issues to be solved in the future in Chapter|[6]

Appendix A contains information about the deployment to RPM-compatible
platforms. Appendix B provides the link to the git repository along with important
instructions on dependencies and system configuration.

18

Chapter 2

Background and Related Work

In the first part of this chapter we analyse DSM systems providing data in the
distributed environment. These include Munin discussed in Section[2.1] Linda in
Section [2.2]and TRAMP Data Exchanger in Section[2.3] The second part of this
chapter contains the analysis of multimedia frameworks - GStreamer in Section[2.4]
and VLC in Section

There have been several DSM systems proposed. They differ in speed, the way
data is propagated to other devices and in the way they guarantee consistency. There
are several optimization techniques possible. One approach is to replicate data.
Another is to not share the whole address space, but to select data we want to share -
usually by letting the application programmer to annotate shared variables [29].

For an application that takes advantage of several devices and is working with
multimedia data, we require shared memory systems to be fast, non-blocking and
with minimal latency.

Since in our case, applications running their separate components on several
devices are expected to run on a small number of personal devices, a DSM system
does not have to be highly scalable.

There are several DSM systems that are trying to solve this issue.

Some systems like Munin [3]] or Midway [4] use specific variables that are
shared among different systems. Others like Linda [11] are object based, so that
the system offers a higher degree of abstraction and runtime control, over what is
shared.

2.1 Munin

Munin is a DSM system based on sharing software variables, which are explicitly
annotated by the shared keyword.

At start-up, Munin root thread registers itself with the kernel as the address space
page fault handler. Therefore programmers can access these variables normally
using read [23]]/write [24] calls. In case any data is not locally accessible, retrieving

19

data is handled by a page fault handler. In order to guarantee consistency and
minimal bandwidth, Munin uses release consistency [12] and supports four types of
shared data variables.

* read only - immutable variables
* migratory - one thread can access the shared object at a given period of time

» write-shared — the shared object can be written by multiple threads at the
same time

* producer-consumer — the shared object has one producer generating data and
several consumers reading the variable

The type of the shared variable is determined from the annotation that is provided
by the application programmer for each data type. Using the producer-consumer
variable type is the most suitable approach for writing distributed multimedia
applications running on several devices. Multimedia content is usually produced
by one node only while being consumed by several nodes at the same time. This
protocol guarantees to update the object instead of invalidating it. That causes
elimination of read misses by consumer processes. Until producer process releases
the lock, all changes to these objects are buffered.

Release consistency model As stated above, Munin uses release consistency
model to guarantee consistency in a distributed environment. This consistency
model provides us with two accesses - acquire and release as seen in Listing
Acquire is used to notify the memory system that a calling process is about to enter
a critical section. Release says that a calling process has left a critical section. After
acquire it is successfully completed, changes to the shared variables can be done
locally. At this time, changes are not propagated to other machines. Once the
machine has finished processing the critical section, it calls release, which causes
all changes to the shared variables being propagated to other machines.

Listing 2.1: Release consistency

process @ machine 1

shared_var=1; f— > machine 2
release (lock); — shared_var propagated to other machines
f + o\ > machine 3

| acquire (lock) |
| |
| |

Release consistency has a lot of advantages in a distributed environment. It
postpones propagation of changes to the shared variables until release it has finished.
This decreases the number of messages sent among machines. However once release
has finished, all messages are propagated to all other machines in the system. Lazy

20

—

release consistency [[15] is the improvement of release consistency which lazily
pulls modifications only when they are needed by other machines instead of pushing
them to all machines by the machine completion of the release call.

Release consistency model used by Munin is useful for parallel programs where it
is important to decrease the number of messages sent among nodes, thus decreasing
the bandwidth. However, this is achieved at the cost of higher latency which is not
acceptable for multimedia applications.

2.2 Linda

Linda [[11]] is a DSM object based system which allows us to share data tuples
similar to fuple [9]] in Python [8]] or struct in C. These tuples are put into one tuple
space which is shared by all nodes in the system. Programmers are provided with
six operations shown in Table Searching for available data tuples is done based
on the type and the content of the elements in the tuple.

in removes a tuple from the tuple space

out | places a tuple into the tuple space

rd get a tuple from the tuple space without removing it
inp | non-blocking version of in

rdp | non-blocking version of rp

eval | evaluate function passed as an argument

and places its return value to the tuple space

Table 2.1: Linda API

If there is no available tuple in the tuple space, the process blocks and waits for
another process to insert a corresponding tuple to the tuple space. This blocking
behaviour does not suit multimedia real-time applications very well, because of
the increased latency. We could avoid blocking by using non-blocking functions
inp and rdp. As seen in Listing [2.2] out function is asynchronous. After successful
execution of out function, we are not guaranteed that the value is in the tuple space.

Listing 2.2: Behaviour of out function in Linda

out("example_tuple", 55)
ret = rdp("example_tuple", ?x) // x can be 55 or NULL
in("example_tuple", ?y) // y will eventually be 55

There are several Linda based implementations in various programming lan-
guages. Some of them like JavaSpaces [10] are not suitable for our application,
because of their centralized design. One node is usually responsible for all data.

21

Since our application operates in personal device federations, this design is not
suitable because of inherent churn in this environment.

Another approach of storing tuples in Linda is the broadcasting of tuples to all
nodes. The S/Net Linda [[7]] system uses this implementation. Each node stores
tuples locally and every operation is broadcasted to every other node in the system.
As already stated above in this thesis, our aim is to handle multimedia content
with high throughput and low latency. Design based on broadcasting every data
chunk does not scale very well and would drastically increase bandwidth in the
environment.

Another solution is presented in [[16]]. In this implementation, tuple space is
divided into disjointed subspaces which are distributed over all of the nodes in the
system. Nodes are logically organized in a grid. Once out is performed, tuple is
broadcasted to all of the nodes in the current row of the current machine. When
in call is performed, the template is broadcasted to all of the nodes in the current
column. The node which is included in the row as well as in the column, handles
the request. Since we want to achieve low latency for our system, broadcasting the
template every time we want to get the data segment is not efficient.

2.3 TRAMP Data Exchanger

Another system for sharing memory segments called TRAMP Data Exchanger has
been proposed as part of the TRAMP project [|13[], which uses distribution trees to
share data among different devices. Data segments in this system are associated
with labels, so that each of the shared data structures has its own identifier. The
system automatically builds distribution trees based on latency. Distribution trees
are built per data segment.

Each of these shared data segments can have one producer generating data
and one or more consumers. The system is meant to work in small federations of
personal devices and trades off performance for scalability. Devices in these small
federations are organized in a full mesh topology. In a full mesh topology, there are
direct connections between all connected devices, thus we gain high performance.
That is important if we want to support multimedia applications with a high data
transfer rate and low latency requirements. On receiving a data segment, consumers
also act as replicators of the data and inform all other nodes about this fact.

This design has several advantages, mostly for sharing multimedia data. Since
consumers also replicate data, each node can subscribe to get the needed data
segment from the node with the lowest latency for this data segment.

The system uses broadcasting to inform other nodes what type of data segments
it can provide. The system is meant to minimize latency, it does not scale very well
because of the full mesh topology. When used in the federation of personal devices,
scalability of this solution is sufficient. Since distribution trees are built per data
segment and are built when the data segment is requested, they are not very adaptive
to latency changes in the network.

22

AWM —

AWM —

2.3.1 Application Component API

From the application programmer’s point of view, TRAMP Data Exchanger provides
us with API containing four functions for handling shared data segments listed in

Table 2.2

Initialize | Association of data segment with a label
Publish Publishing data segment for all components
Get Getting a reference to the data segment
Subscribe | Subscribing to data segments updates

Table 2.2: TRAMP Application Component API

Data segments in TRAMP Data Exchanger are associated with labels. Let’s sup-
pose we have several machines connected together using TRAMP Data Exchanger
as illustrated in Figure We can publish a data segment on one machine with
label AUDIO_BUFFER using the code in Listing [2.3]

Listing 2.3: Publishing data segment using TRAMP Data Exchanger

charx audio_label = "audio_buffer";
char =xbuffer = \

(char =) tramp_initialize (audio_label , BUFFER_SIZE) ;
tramp_publish (audio_label , BUFFER_SIZE) ;

Listing 2.4: Retrieving data segment using TRAMP Data Exchanger

char+ audio_label = "audio_buffer";
char xbuffer = \

(char =) tramp_initialize (audio_label , BUFFER_SIZE);
tramp_get(audio_label , BUFFER_SIZE) ;

On all of the other machines we can access this buffer using tramp_get or
tramp_subscribe as shown in Listing

The framework takes care of building underlying distribution trees based on
latency. Listing[2.3|shows the code which causes the behaviour illustrated in Fig-
ure Node #1 publishes the data segment with label AUDIO_BUFFER. In this
case, if Node #3 wants to get this data segment using tramp_get or tramp_subscribe,
it gets the originator of the data segment (Node #I in this case) and all the replica-
tors (no replicators in this case) and choose the node with lowest latency for this
data segment. It therefore gets the data segment from Node #1 as illustrated in
Figure [2.Tb] because it’s the only node that owns this data segment.

Let us consider another situation illustrated in Figure Node #2 decides to
subscribe for the data segment AUDIO_BUFFER. Since it subscribes to this data

23

N &

PUB(AUDIO_BUFFER")
7 ams ams
e 4 GET['AUDIO_BUFFER
. PUBCAUDIO, BUFFER - - Iatency = 10ms
10ms :
N
1ms
A

o e

Node #1 PUBCAUDIO_BUFFER")
Node #4 Node #4

Node #3 Node #1

(a) Node #1 publishes data segment (b) Node #3 gets data with 10ms latency

Node #2

Node #2

I
S

Node #4

(c) Node #2 subscribes to data and replicates
it (d) Node #3 gets data with 7ms latency

Figure 2.1: Building distribution trees in TRAMP Data Exchanger

segment, it is updated on every data segment memory change. That allows it to
become a replicator for this data segment. Therefore it broadcasts this information
to all nodes using tramp_publish call.

After Node #2 became a replicator, Node #3 no longer asks Node #1 for data. It
considers the originator of the data segment (Node #1) and all the replicators (Node
#2) and chooses the one with lowest latency. In consequence it gets the data from
Node #2 with a latency of 7ms.

2.3.2 Internal messages

API calls mentioned above are visible to the application programmer. Inside the
middleware, there are six control messages taking care of the underlying data
propagation and defining the system behaviour. API calls visible to the application
programmer wrap these internal messages so that application programmer does not
need to have knowledge of the framework’s internal calls.

In the following paragraphs, we list and describe internal calls of the framework.

24

PUB: Sender informs receiver that it can deliver the data segment identified by a
label passed as an argument. Receiver stores this information about availability of
the data segment if it has not done so already.

LOOKUP: Sender checks whether receiver owns the data segment identified by a
given label. Receiver first checks if he is the producer of the requested data segment.
If the data segment is produced by the receiver itself, it sends corresponding YEP
message with delay set to 0. If the receiver is the replicator, it replies with the YEP
message with the information about the latency from the original producer.

YEP: YEP is an answer to the LOOKUP: message, by sending YEP, node informs
the receiver that he owns the data segment with a given label. It also informs the
receiver about inherited delay - time that it takes him to retrieve the data from the
producer. This delay is equal to O in case the node is the originator of the data
segment.

GET: The sender asks the receiver for the data segment identified by a given label.
The receiver answers with DAT a message containing the actual data. If the receiver
has no data associated with a given label, it does nothing.

SUB: The sender asks receiver to continuously send him updates of the data
segment. The receiver creates a new thread for this purpose. The created thread
continuously checks for memory changes in the data segment. If the data segment
is changed, it sends DAT a message to the sender of the SUB message.

DAT: This control message includes data sent by the producer. Receiver parses
the message and retrieves the requested data.

2.3.3 Multimedia content

The main advantage of TRAMP Data Exchanger is that it has been designed to
efficiently handle multimedia content [|13]].

The most important feature is that subscribing to a data segment uses the write-
driven strategy. Therefore producers and replicators immediately send data to its
subscribers whenever the data segment is changed. That is very important for
multimedia applications because of the low latency we achieved by implementing
this design.

2.3.4 Architecture of TRAMP Data Exchanger

In this subsection, we analyse design details of TRAMP Data Exchanger and
describe its implementation.

TRAMP Data Exchanger is a collaboration platform implemented as an user-
space daemon in C language. It runs as a stand-alone process and it communicates

25

fia W

TRAMP Data Exchanger Lk} - network--{>} TRAMP Data Exchanger
DBUS DBUS
Application Application Application Application

Figure 2.2: TRAMP Data Exchanger architecture overview

with applications using DBUS Session Bus as illustrated in Figure [2.2] If a process
needs to exchange data with the process located on another machine, this machine
needs to run TRAMP Data Exchanger daemon. These daemons communicate
together over the network.

Figure [2.3] shows that TRAMP Data Exchanger initially runs two threads -
DBUS listen thread and Server listen thread.

DBUS listen thread listens to the applications calls from the current machine
delivered by a session bus. Application is dynamically linked with /ibtramp the
library which provides us with four functions:

* tramp_initialize

tramp_publish
* tramp_get

* tramp_subscribe

Function tramp_initialize allocates shared memory segment and returns a pointer
to a corresponding address in a local memory. Other functions are wrappers for
sending corresponding messages to the message bus. These functions allow us to in-
struct TRAMP Data Exchanger daemon to run handle_rpc_publish, handle_rpc_get,
handle_rpc_subscribe handlers. We describe these calls later in this chapter.

Server listen thread listens on a certain port and connects new instances of
TRAMP Data Exchanger running on other machines. For each accepted connection,
it creates the connection thread responsible for communication with a remote
daemon.

26

4‘9

TRAMP Data
Exchanger

Application TRAMP Data Exchanger

T

I

1
send DBUS message
{PUBLISH/GET/SUBSCRIEE)

connect

:) wait for connection |
(accept) |

peaiy
NILSIT sNag

D wait for accept

send DBUS message _
(PUBLISH/GET/SUBSCRIBE)

v 3 ¢

| handle_rpe_publish | | handle_rpe_get | | handle_rpc_sunscrmel

>

peai
NOLLDINNOD
peaiIy
NOLLDINNOD
peaiy
NOLLDINNOD

Figure 2.3: Detailed design of TRAMP Data Exchanger

Connection thread

Connection thread is responsible for handling remote messages sent from other
TRAMP Data Exchanger daemons. Its responsibility is to react to all internal
messages described in Subsection [2.3.2] as illustrated in Figure[2.4] It parses the
message sent through the network and invokes corresponding functions based on
the type of the message. If necessary, it replies with another message to the calling
daemon.

Data thread

According to [[13]], subscribing is used whenever a consumer wants to control when
to update the data segment,

"The data propagation with Subscribe uses a write-driven strategy where pro-
ducing and replicating devices immediately send data to their subscribers whenever
new data becomes available" (p. 4).

Data thread is a thread created as a consequence of subscribe call. It compares
a data segment to the shared memory segment and whenever it notifies a change in
the memory, it sends a DAT message to the consumer.

27

4‘@

TRAMP Data <|‘
Exchanger |>L__

TRAMP Data Exchanger

connect

e creates connection thread . ___

} wait for message (recv)

parse message
-]I handle_pub_msg |
handle_lookup_msg b
]
]
handle_yep_msg 1

fereates connection thread

1 -

-
handle_sub_msg N
handle_dat_msg

PE3IY
NOLLDINNOD

- check for
-7 1’ data change

pealy
viva

<

send YEP message send DAT message

m—————————

Figure 2.4: Connection thread functionality

Publish/Get/Subscribe RPC handlers

As we can see in Figure[2.3] PUBLISH, GET and SUBSCRIBE functions invoked
by an application call handle_rpc_publish, handle_rpc_get, handle_rpc_subscribe
handlers respectively. In this subsection, we describe their functionality in more
detail.

handle_rpc_publish function creates a PUB message and broadcasts it over the
network to all connected TRAMP Data Exchange daemons. Their connection thread
parses the message and saves a given label to an internal structure.

handle_rpc_get broadcasts a LOOKUP message to all connected daemons. It
waits for YEP messages from daemons that own the data segment. It is followed by
calculating the lowest latency and sending the GET message to the node with the
lowest latency.

handle_rpc_subscribe behaves in the similar way as handle_rpc_get. 1t also
broadcasts a LOOKUP message and calculates the lowest latency, but instead of
sending a GET message to the node with the lowest latency, it sends a SUB message,
therefore a data thread is created in the remote daemon as illustrated in Figure [2.4]

28

Latency is not calculated every time we want to retrieve a data segment. It is
calculated and cached only once.

Internal messages structure

We have already presented the way how TRAMP Data Exchanger communicate
using internal messages. Now we examine the structure of these internal messages.

PUB PUB;label

LOOKUP | LOOKUP;label;size

YEP YEP;label;inherited-delay
GET GET:label;size

SUB SUB;label;size

DAT DAT:label;size

Table 2.3: Internal message structure

The structure is illustrated in Table [2.3] Every message is divided into multiple
parts separated by a semi-colon. The first part describes the type of the message.
The second part provides the label that the data segment message is used for. Based
on the type of the message, additional information can be provided, for instance the
size of the data segment or inherent delay.

Once the message is received, connection thread parses the message and calls
all corresponding functions to handle the message.

2.4 GStreamer

2.4.1 Foundations

GStreamer [31] is pipeline based multimedia framework which helps programmer’s
to write multimedia applications.

The key idea of GStreamer’s design is its pipeline which defines the data flow.
A pipeline is formed by various elements, as shown in Figure [2.5] Elements are
included in the framework or written by third party programmer’s. GStreamer
handles management of these elements, data flow and negotiation of the formats. It
is not restricted to handle multimedia formats only. It can handle any type of data
stream.

2.4.2 Elements

Element is the most important entity in the GStreamer design. Every single
GStreamer application is formed by a pipeline consisting of GStreamer elements.

By constructing a pipeline, we define the application behaviour. There are three
main types of elements in GStreamer - sources, filters and sinks.

29

pipeline 1 @ machine 1

sink| vorbis-decoder audio-sink
ogg-demuxer
theora-decoder video-sink

Figure 2.5: Example of GStreamer pipeline

filesource

sources

Sources are special types of elements that generate data. The source element is
linked as a first element in the pipeline and its role is to fill the pipeline with data.
Examples of sources are audiotestsrc which produces audio at a certain frequency
or gtkitvideosrc which provides the pipeline with a video stream recorded using a
camera.

filter-like elements

Filter-like elements are elements that receive a data stream, process it and provide it
for other elements in the pipeline. This includes filters, codecs, muxers, demuxers
and elements for protocol handling. A typical example of a filter is a videoflip
element which flips and rotates a video. Another is videobalance which adjusts
contrast, saturation, hue and brightness on a video stream. These types of elements
can be linked with multiple elements. A ogg-demuxer, for example, is linked with
several elements as illustrated in Figure [2.5]

sinks

Sinks are in the role of consumers in the pipeline. They receive data streams and
perform an action, usually to output the stream to a sound card, or display the video
on a screen. They do not provide data for other elements in a pipeline.

By constructing a pipeline, we define the behaviour of multimedia applications.
Suppose we want to write an application which records a video from a web camera
and displays it on a screen. An application can be written by constructing a pipeline
with two plugins - video recorder plugin and video sink plugin.

In every GStreamer pipeline, there is at least one source element and at least
one sink element.

30

2.4.3 Plugins

Plugins are loadable blocks of code which contain one or more elements. Elements
are packed into plugins so we can use them in GStreamer pipelines. Plugins are
usually shipped in the form of a dynamically linked library or a shared object file.

2.4.4 Pads

Elements produce and consume data once they are linked in the pipeline. The way
data flow is produced or consumed by the plugin is defined using Pads. Pads are
objects associated with elements through which data flows in or out of an element.
They handle negotiation of the formats so they can restrict the type of data that
flows through the elements. There are two types of pads in GStreamer - source pads
and sink pads. They are pictured in Figure 2.3

2.4.5 Properties

Most GStreamer elements have a set of customizable properties. These properties
are useful in two ways. They can be used to determine the elements internal state or
to modify the elements behaviour.

Since GStreamer elements are all derived from GObject [27], properties can be
set using g_object_set and retrieved using g_object_get function calls.

Figure 2.6: Example of GStreamer pipeline with different value of a videotestsrc
pattern property

To demonstrate properties functionality, let’s consider a simple pipeline consist-
ing of two elements. videotestsrc and ximagesink.

Videotestsrc element creates a simple video stream for testing purposes. Xima-
gesink element renders a video stream in the window on X window system.

Figure [2.6|demonstrates the different behaviour of two pipelines. On the left
side of the picture, we have set the pattern property of videotestsrc element to snow,
while on the right side the property is set to the default value - smfpe which makes
an element to produce standard SMTPE test pattern video stream.

31

2.4.6 Communication

GStreamer provides several mechanisms for communication and data exchange
between the application and the pipeline as seen in Figure 2.7}

buffers are objects used to deliver streamed data from one element to another.
Since streaming is always done from sources to sinks, these objects always go
downstream.

events are objects used for communication between elements or between an appli-
cation and elements. Since, in some cases, communication needs to be performed
both upstream and downstream, events can travel in both directions. In addition,
downstream events can also be synchronized with the data flow.

queries are objects used to query an element about specific information. They
are similar to events described above, but unlike events, queries are always syn-
chronously answered. Queries can be used by the elements or the application to
query information about the current state of an element or the whole pipeline. They
can travel both upstream and downstream. Example of a query is a capabilities
query. It returns information about possible capabilities an element can process in
its current state. Another example of a query can be a query used to find out the
information about the duration of a video stream.

application

bus meceaces
pipeline
events queries
\ Y
file-source ogg-demuxer vorbis-decoder audio-output

I 3

Y
Yy

A
\A J

buffers

Figure 2.7: Example of a GStreamer pipeline with different communication flows

Source: [30]

2.4.7 Capabilities negotiation types

GStreamer framework is not restricted to handle multimedia only. It can handle
any type of data stream. Therefore it is required to have a control over the data that
flows through the pipeline. Objects describing the data stream are called capabilities
objects.

32

Capabilities of a pad object specify what kind of data stream can pass through
the pad. They are stored in the structure GstCaps describing a set of media formats.
They can also be expressed as plain text.

Capabilities negotiation is the process of finding media formats between two
elements that both elements can handle. There are three types of negotiation in
GStreamer.

* Fixed negotiation
* Transfrom negotiation

* Dynamic negotiation

Fixed negotiation

In this type of negotiation, an element can produce one format only. The type of the
format is usually hard-coded in the code. Examples of elements producing fixed
formats are some of the source elements that can produce one media format only
and thus cannot be renegotiated.

Transform negotiation

In this technique, the output format depends on the input format and optionally on
the elements properties. Transform negotiation is used by converting elements like
encoders and decoders when output format is dependent on input format. Another
group of elements where transform negotiation is used is the group of elements that
want to operate in a pass-through mode - they don’t change input format, but pass it
to the next element.

Dynamic negotiation

Dynamic negotiation is the most complex GStreamer negotiation technique. Format
is negotiated based on the format the consumer element can handle. The chosen
format is usually the one that requires the least amount of effort to produce than
the others. Dynamic negotiation is used in some source elements that can produce
streams in multiple formats e.g. videotestsrc or v412src.

2.4.8 Capabilities negotiation process

There are two ways that data can flow through the pipeline in GStreamer.

* push mode

* pull mode

33

In the push mode, an upstream element invokes the pushing of a buffer into the
downstream element. In the pull mode, a downstream element asks the upstream
element for the data. Each of these modes has its advantages and disadvantages.
Discussing the difference between pull mode and push mode is out of the scope of
this thesis. For simplicity we focus on a pull mode.

In pull mode, negotiation works as illustrated in Figure [2.8}

1. upstream asks downstream for data it can handle

2. downstream suggest formats it can handle

3. upstream decides on the format it will produce

4. upstream checks if downstream can really handle the chosen format
5. downstream answers that it can handle the chosen format

6. once the format is chosen and downstream can handle it, upstream instruct
downstream to reconfigure itself for a chosen format

7. buffers starts to flow through the pipeline

———— data —— upstream element src I data >| sink downstream element |——— data -—-{>

| query possible caps ———/

+——suggest formats ————

upstream decides on
the output format

p———accepts chosen format? ——#

true
optional

e yourself
for this format

sending actual data——»

- ————
€ ————

Figure 2.8: Negotiation between two elements

2.4.9 Renegotiation

Let’s assume we have a simple video application. The pipeline consists of two
elements. The first element records the video stream using a web camera while the
second element renders this stream on the screen. In certain circumstances, the user

34

can decide to resize a window where the video is being rendered. Since the video
output itself is not capable of rescaling, video sink needs to ask upstream to change
the format. This process is called renegotiation. The process of renegotiation is
illustrated in Figure

———— data——-{>{ upstream element sre data >| sink downstream element |——— data ——>

downstream element
need renegotiation
({e.g. window has
«+——accepts NEW format? ——— been resized), we
need NEW format

1
true »|
1

+— send RECONFIGURE event——|
1

query p caps

suggest formats,
choose new format, prioritise NEW format 1
try to prioritise NEW

format

|——reconfigure to the new format —»|
1 1
1 1
|—————send actual data———|

' v

=

Figure 2.9: Renegotiation between two elements

In the first step, downstream element decides that it wants to receive a different
format. Typical use cases include resized video window or some change in a video or
audio configuration. Downstream element asks upstream whether it can accept the
new format. It continues suggesting new formats until it receives a positive answer.
This is followed by sending a special type of event called a RECONFIGURE event.
As a consequence, upstream element knows that is should repeat the negotiation
phase. It repeats all the steps visible in the Figure [2.8] The only difference is that
the downstream element now answers differently, prioritizing a new format.

Elements that operate in the fixed negotiation mode drop the RECONFIGURE
event, because their format is fixed and thus cannot be renegotiated. Elements
operating in the transform negotiation mode can handle the RECONFIGURE event
and recursively send it upstream. Elements using dynamic negotiation first check
if they can produce a new format. If so, they reconfigure themselves to handle it.
Otherwise, they pass the RECONFIGURE event upstream [28]].

2.4.10 Structure of GStreamer elements

We have implemented the GStreamer plugin which includes two elements. The
following subsection describes the basic structure of sink and source elements
in GStreamer from the plugin developer’s view. The most important functions
described in this subsection are listed in Table

35

plugin_init called to initialize the plugin
gst_<name>_class_init | one time only initialization of the class
gst_<name>_init initliaze current instance of the plugin

query handles queries

event handles events

render used by a sink element to output a data buffer
create used by a source element to insert data to a pipeline
get_property gets an element’s property

set_property set a property for an element

Table 2.4: List of GStreamer element internal functions

Element metadata

In Subsection we have described what is a GStreamer element. A GStreamer
element defines number of metadata information. These include:

* The name of the element
* The type of the element
* A short description of the element

¢ Author of the element

This information is statically set during the initialization of the plugin.

Pad template

Subsection describes the role of Pads in the GStreamer framework. Pad
template defines properties of pad objects which include the short name of the pad,
the type of the pad (downstream/upstream) and its supported capabilities.

Constructing an element

To construct an element, plugin_init function is called as soon as the plugin is
loaded. This function returns information that is stored in the central registry of
the GStreamer framework. It also returns the name, which is used to call two other
initialisation functions.

gst_<name>_class_init This function registers the elements metadata and pad
templates. It also defines functions that are implemented at a later stage.

gst_<name>_init Initialize function instantiates pads from the elements pad tem-
plates. We can also initialize all the important variables in this function.

36

2.5 VLC media player

VLC is a free open source multimedia framework created by the VideoLAN organi-
zation. Its most important feature is modularity. VLC framework is multiplatform
and runs on the majority of the most popular operating systems and platforms such
as Windows, OS X and Linux. The VLC framework is based on modules that
provide frameworks with needed functionality. These modules can be of various
types - decoders, muxers, demuxers, filters, etc. Several collaborating modules form
an application.

The core VLC framework is used to wire these modules together. Its most
important structure is called libVLCcore. It manages modules, threads and is
responsible for synchronizing audio and video tracks. Modules communicate using
a certain interface. They are built against libVLCcore.

VLC module In this paragraph, we describe the basic structure of the VLC
module. Each VLC module contains two important properties:

* the capability
* the score

The capability is used to determine the category of the module and its function-
ality. The score is used to set the priority of the plugin within the same class.

For example, when the VLC needs a demuxer, it search for a module with a
demuxer capability. It prioritises modules with a higher score within this category. It
loads them by calling Open() function. If it succeeds, it uses a module as a demuxer.
If it does not succeed, it tries to open another module with lower score. [/1]]

In order to choose a module with a specific name, we must instruct the VLC to
use its passing modules name. The way how we specify it on the command line is

shown in Listing

Listing 2.5: Choosing a specific video output in VLC

vlc video.avi —vout caca

VLC Module types There are several main types of VLC modules. We list the
most important ones in table [2.5]

Each of these module types implements a different functionality. In the follow-
ing paragraphs, we describe each category and its responsibity.

Access modules handle the input and the output. They usually implement
access to a device such as a web camera or access data using various protocols e.g.
http.

37

Type Short description

Access handling I/O
Demux demuxers
Decoder decoding a stream

Video filter video filters
Video output | outputting video
Audio filter audio filters
Audio output | outputting audio

Table 2.5: VLC module types

Demuxers are modules responsible for extracting the content of a given for-
mat. Once VLC opens a file or a stream, it tries to automatically choose the right
demuxer.

Decoders are responsible for decoding a stream and passing it to the corre-
sponding output device. Example of a decoder is ffinpeg video/audio decoder which
is able to decode .mpyg files.

Video/Audio filters modify decoded video/audio streams. Examples of such
functionality can be the rotation of a video stream and various video effects including
brightness and contrast adjustment.

Video/Audio output modules pass decoded video/audio to the corresponding
hardware such as a video card.

Internal structure of a VLC Module In order to develop a VLC module, we
should understand the structure of the code. Following text describes the implemen-
tation details of a VLC module.

Listing [2.6]shows the VLC module sample [2]].

Listing 2.6: Code structure of VLC module

#include <stdlib .h>

/% VLC core APl headers =/
#include <vlc_common.h>
#include <vlc_plugin.h>
#include <vlc_interface .h>

/% Forward declarations =/
static int Open(vlc_object_t =);

static void Close(vlc_object_t =);

/% Module descriptor =/
vlc_module_begin ()

38

set_shortname (N_("ShortName"))

set_description (N_("Description"))

set_capability ("access", 0)

set_callbacks (Open, Close)

set_category (CAT_INPUT)

// optionally define an attributes

add_integer (name, value, text, longtext, advanced)
vlc_module_end ()

/3 %

% Starts our example interface.
x/

static int Open(vlc_object_t =xobj)
{

// allocate internal state
msg_Info(intf, "Hello_%s!", who);
return VLC_SUCCESS;

error:
// deallocate internal resources
return VLC_EGENERIC;

}

/% %

x Stops the interface.

*/

static void Close(vlc_object_t =*obj)

{
msg_Info(intf , "Good_bye %s!");

// deallocate internal resources

First of all, all VLC modules need to identify themselves by setting their descrip-
tion. This description starts with vic_module_begin() and ends with vic_module_end().
All VLC modules need to have their short-name and description defined along with
their category, capability and score.

As seen in the code, functions set_shortname(), set_description sets the mod-
ule short name and description respectively. These are followed by function
set_capability which sets the capability of the module to access, which means
that the module is of access type providing I/O. set_capability also sets the score of
the module to 0. That means if we need this specific module we need to explicitly
specify it using its short name, because of its low priority.

Configuration category is set by set_category() function. The VLC framework
comes with the integrated user interface that can help us configure the program.
Category for instance defines where the module appears in the configuration UI
panel.

Each modules behaviour can be modified by setting various properties and
parameters. These parameters can be set on the command line or in the user

39

interface. In order to define the modules parameter, we have to set this parameter
in the module definition. This can be done by functions add_integer, add_string,
add_bool, etc. as seen in the code sample.

Open function is called by the VLC framework to open a module. This function
should initialize all variables and return VLC _SUCCESS in case a module can be
used. All modules need to have this function implemented.

Close function is another mandatory function required by the VLC framework.
It is called once the module needs to be unloaded.

Other functions needs to be specified based on the type of the module. For
instance access modules need to implement the seek(), control() and read()/block()
functions. Modules used for demuxing need to implement demux() and control()
functions. The type of the function which needs to be implemented for a specified
module can be found in the documentation for each module type.

40

Chapter 3

Design

In this chapter, we present the design of our multimedia plugin which is able to
handle multimedia content distributed over several machines in a small federation
of devices. In Section [3.1] we start by describing our goals with respect to our
requirements presented in Section|[I.3] Section [3.2] presents reasons for choosing the
underlying data propagation framework. We choose a multimedia framework for
our plugin in Section[3.3] In Section [3.4] we wire these two frameworks together by
introducing the design of our multimedia plugin.

3.1 Goals

This section presents the goals of our design with respect to our requirements and
findings in Chapter 2] Our main goal is to make an easy-to-use tool able to manage
multimedia content distributed over multiple machines. With this tool the user is
able to play synchronized multimedia streams on several machines.

Our first goal is to choose a data propagation framework that fulfils our require-
ments as well as a multimedia framework that serves as a wrapper for this data
propagation tool. The next goal is to integrate these two frameworks together.

The result of our work is a multimedia framework plugin. With our plugin, the
knowledge of this framework is sufficient to write distributed multimedia applica-
tions.

3.2 Data propagation framework

One of the tasks is to choose a data propagation framework for our plugin, because
it is responsible for providing content in a distributed environment. Since our
multimedia plugin serves as a wrapper for this tool, it inherits some of its properties
like portability and performance.

We compare frameworks introduced in Chapter [2] with respect to the require-
ments we presented in Chapter [I] focusing on performance and portability. We
chose a data propagation framework that fulfils these requirements. Another aspect

41

mentioned in the requirements is how easy-to-use is the chosen framework. Since
our main contribution is making the work with this framework easier for application
programmers, this aspect is not as important as for example, performance. In spite
of that we analyse how easy-to-use each of these frameworks are, so we can find
out whether integration into multimedia frameworks is useful and if it can eliminate
the complexity of a DSM platform for application programmers.

Performance TRAMP Data Exchanger is optimized to work with multimedia
content. It internally builds latency-based distribution trees so we can retrieve data
segments from the node with the lowest latency for this data segment. Unlike Linda,
its operation does not block. That is very important for multimedia applications
because of the possibility of increased latency. Low latency is neither guaranteed in
Munin, because of release consistency, which can postpone the propagation of data.

Portability Since Munin is implemented as a page fault handler which needs to
be registered with the kernel, it can be problematic to use on multiple different
platforms and operating systems. TRAMP Data Exchanger is implemented as a
user space daemon which is more easy and convenient to use in a multiplatform
environment. Most of the Linda implementations are also multiplatform, so it
does not take too much effort to develop and deploy systems on multiple operating
systems.

Easy-to-use TRAMP Data Exchanger may not be so easy to use for application
programmers because of the fact that shared data segments need to be allocated by
the framework. Memory allocated by other frameworks and libraries cannot be used
by the framework without manually copying memory blocks. We further address
this issue in Subsection

With Linda, we need to explicitly put data segments into the tuple space and
use the specific APL

The advantage of Munin is that we only need to annotate shared variables,
and we can use regular read/write operations. Kernel’s page fault handler handles
underlying data propagation for us.

It is hard to define the term "easy-to-use"” in this context. While working with
TRAMP and Linda, we need to explicitly call their API, the advantage of Munin is
that we can work with the memory using regular library calls. A need to explicitly
call the framework’s API made us classify TRAMP and Linda as less user friendly
than Munin.

Table [3.1]illustrates advantages and disadvantages of these platforms with respect
to our requirements.

To decide about data propagation framework, the most important factor for us is
performance and ability to run on multiple platforms. From our perspective, it is not

42

Munin | Linda | TRAMP Data Exchanger
Good performance X X v
Portability X v v
Easy to use v X X

Table 3.1: Comparison of data sharing platforms

so important how easy-to-use the framework is, because it will be wrapped by our
multimedia plugin. Therefore this information is not relevant for the endpoint users.

Based on these facts, we have chosen TRAMP Data Exchanger as the data
propagation framework for our plugin.

3.3 Multimedia framework

3.3.1 Overview

TRAMP Data Exchanger provides us with the abstraction of linear address space
distributed over several nodes and is tailored to the needs of multimedia applications.
Linear address space is the natural way for programmers to work with the memory.

We claim that for writing multimedia applications, even higher abstraction
is needed. Writing a multimedia application could be easier for application pro-
grammers if the framework provides them with more functionality. In the current
state TRAMP provides functions to allocate, read and write to the shared memory.
There are several multimedia frameworks like GStreamer or VLC which provides
programmers with useful tools e.g. clock synchronization and multimedia format
negotiation. They also provides plenty of plugins and modules which includes
video/audio filters, codecs, muxers, demuxers etc.

There is a need for integration with some of these multimedia frameworks.
Since TRAMP Data Exchanger is a software DSM which makes it possible to write
multiplatform applications, we should choose a framework which is not tied to
one specific platform or operating system. Such a multimedia framework makes
programmer’s development of multimedia applications easier.

3.3.2 GStreamer

One possible choice is GStreamer. It has been ported to a wide range of processors
and operating systems like Microsoft Windows, OS X, Linux or other mobile
operating systems including Symbian OS, Android and iOS.

The key advantage of GStreamer is its pipeline based design. As previously
described in Chapter [2] GStreamer defines an interface for elements which are
connected together and form a pipeline. Because of this well-defined interface,
any functionality can be supported in GStreamer by building a customized plugin.
These plugins contain elements that are used in the pipeline and cooperate with
other elements. Even the functionality of other multimedia frameworks is ported to

43

GStreamer. An example is GStreamer FFMpeg plug-in, which contains decoders
and conversion elements wrapping the functionality of FFMpeg libraries. Once
we implement a plugin with support for TRAMP Data Exchanger, applications
can easily combine functionality of this data sharing platforms with the benefits of
GStreamer just by plugging our element into the pipeline.

3.33 VLC

Another option is to integrate TRAMP Data Exchanger into the VLC framework.
VLC also comes with a clean modular design. TRAMP can be integrated as a VLC
module linked against [ibVLCcore. VLC is multiplatform and supports a wide range
of operating systems. One of its advantages is its user interface which provides a
friendly way to control media streams.

TRAMP Data Exchanger can be implemented as a access module. There are
several access VLC modules that send streams using HTTP protocol. Our VLC
plugin would send data using TRAMP Data Exchanger instead.

3.3.4 Choosing the multimedia framework

Both GStreamer and VLC frameworks provide us with the functionality needed for
writing multimedia applications. They both have a modular design that allows us to
write an extension. While GStreamer provides us with its pipeline and possibility
to write customized elements, VLC provides an opportunity to write a module to
integrate TRAMP.

Both frameworks are widely used and in both cases, customized user interfaces
can be easily built to interact with the media in a more easier way.

One of the most important reasons to integrate TRAMP into multimedia frame-
works is to verify that it can be used by multimedia applications. After trying both
frameworks, we have chosen GStreamer for TRAMP Data Exchange integration,
because it provides us with better tools for testing the daemon. Using its pipeline
design, we can easily modify an application on the command line as illustrated in

Listing

3.4 Detailed design

In the previous section, we have chosen GStreamer as a multimedia framework that
we develop a plugin for, and also TRAMP Data Exchanger as our data propagation
framework. This section presents design details of our multimedia plugin and
presents important GStreamer features that are useful for interaction with TRAMP
Data Exchanger. It mostly focuses on how these two frameworks interact with each
other.

Figure [3.1] illustrates the usage of our plugin and the most important aspects
of our design. In this figure, our plugin is used to build an application which
plays a video file located on the Machine 1. The application has three components

44

Application's component #1
— decoder tramp-sink
' -|>| I_Dl label = "audio_stream" |<Ir 1
filesrc :_E demuxer I
| prv I—Dl tramp-sink |<|' _____}
- ecoder =" " 1
L DI label="video_stream publish(audio_sream)
publish{video_stream)
i
1
TRAMP Data Exchange -+
JAY a
node #1
Vi AV
TRAMP Data Exchange o TRAMP Data Exchange
subscribe(video_stream) subscribe{audio_stream)
1 [
Application's component #2 Application's component &2
T T
I [
node #2 node #3

Figure 3.1: Architecture of our system

distributed over three different machines. Component #1 is used to read a source
video file, Component #2 renders video frames and Component #3 takes care of
handling audio output.

34.1 TRAMP plugin

Support for additional features in GStreamer is implemented in the form of ele-
ments. Elements can then be plugged into the pipeline and extend the pipeline’s
functionality. These elements are packed together as a package. For instance previ-
ously mentioned GStreamer FFMpeg plugin contains several GStreamer elements
including decoders, demuxers, elements for colour-space conversion and others.

The output of our work is a GStreamer plugin — a loadable block of code
containing two elements - GstTrampSink and GstTrampSrc. This GStreamer
plugin is shipped in the form of a dynamically linked library. GstTrampSink is a
sink element consuming data in one pipeline and making it accessible for several
GstTrampSrc source elements, which act as producers in other pipelines.

45

3.4.2 Architecture overview

In order to send multimedia content using our plugin, TRAMP daemon needs to
be running on each device and GStreamer framework needs to be installed. The
application can communicate with TRAMP daemon directly using its API, use the
GStreamer plugin or both. Architecture overview is illustrated in Figure [3.2] Our
plugin has two dependencies - TRAMP Data Exchanger libraries and GStreamer.

Application Application
ik
T > : 2

|

: TRAMP API TRAMP API]
i i i i
|

: V4 VA .
| |
| |
] TRAMP Data TRAMP Data I
| TRAMP artPl Exchange [Pl exchange [tramp ARl |
1 |

P i
| I 1 1
1 |

TRAMP
GStrea_mer GStreamer GStreamer GStreamer
plugin .
plugin

Figure 3.2: Architecture overview

3.4.3 TRAMP GStreamer elements

GStreamer is a powerful framework and if we want to have a pipeline operating on
several devices, there are several plugins we can use. An UDP plugin containing
UdpSink/UdpSource elements E|is able to transmit streams over the network from
one device to another one.

By using UpdSink/UdpSource elements, we can send packets from one pipeline
to another pipeline possibly located on different machines using UDP protocol.
What we want instead is to support features of TRAMP Data Exchanger and take
advantage of its features e.g. building underlying latency-based distribution trees.

With GStreamer plugin supporting TRAMP Data Exchanger functionality, appli-
cation programmers do not need to allocate data segments and take care of handling
data streams. All they need to do is to link GstTrampSink at the end of the pipeline

"http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-good-plugins/html/gst-
plugins-good-plugins-udpsink.html

46

pipeline 1 @ machine 1

filesource sink| ogg-demuxer

sink vorbis-decoder tramp-sink |-——
theora-decoder video-sink

TRAMP Data Exchanger ———————————————

pipeline 2 @ machine 2

‘Q tramp-source audio-sink

p-

Figure 3.3: Example of two GStreamer pipelines interacting using TRAMP daemon

and link GstTrampSrc at the beginning of the other pipeline. That means program-
mers are able to work with the daemon in the same way as they are used when using
the UDP plugin.

Data received in the sink is available in the source element on the other pipeline.
The plugin and runtime system takes care of building underlying distribution trees
and data propagation. The player illustrated in Figure [2.5] taking advantage of
GStreamer plugin with TRAMP Data Exchanger support is shown in Figure [3.3]

3.4.4 Labels

As shown in Figure 3.3 GstTrampSink and GstTrampSrc elements are not neces-
sarily part of the same pipeline. Thus, we cannot use standard GStreamer linking
mechanisms mentioned in Section 2.4.4

The problem was already present in the case of the UDP GStreamer plugin.
Authors of GstUdpSink and GstUdpSrc the elements solved this problem by setting
properties on the GStreamer elements, discussed in Section [2.4.5]In this case, a
programmer can set host and port properties and thus define an address where the
UDP elements communicate.

Since we implement the GStreamer wrapper for the TRAMP Data Exchanger,
we can take advantage of labels associated with data segments we discussed in
Section[2.3.1] We use the GStreamer properties to pass the element an information
about the label of the data segment it should work with.

An example of code used by application programmer is shown in Listing [3.1]

47

Listing 3.1: Setting a property on the sink element

g_object_set (gst_tramp_audiosink, "label", "audio_stream", NULL);

Figure [3.4] illustrates how TRAMP runtime system can be instructed to use
different data segments using GStreamer labels.

machine 1

tramp-sink
label =
"audio_stream”

tramp-sink
theora-decoder label="video_str
eam”

vorbis-decoder

filesource sink| ogg-demuxer

machine 2 machine 3

tramp-src
audio-sink label =
"video_stream"

tramp-src
label =
"audio_stream

video-sink

Figure 3.4: Using GStreamer labels with TRAMP Data Exchanger

3.4.5 Caps negotiation

In this subsection, we discuss the type of negotiation technique we use in our plugin.
We need to choose one negotiation technique from those mentioned in Subsec-
tion[2:4.7} Our GStreamer plugin is not bound to any specific format and supports
any type of data stream. Therefore the chosen negotiation technique should not
restrict it to any specific type of data and should not affect the pipeline behaviour.
Applications using our plugin should run in the same way as if they ran on the same
machine without using a DSM system.

In the following paragraphs we discuss possible advantages and disadvantages
of using various negotiation techniques by our plugin.

Fixed negotiation does not fulfill the requirement that our plugin should handle
any type of data stream. If we use a fixed negotiation, the type of data stream would
be hard-coded into the plugin. Our plugin could support, for instance, only specific
types of audio streams.

48

Dynamic negotiation is the most flexible negotiation technique. Our element
operates in the pass-through mode, it does not modify the stream. Therefore it does
not have to modify the capabilities of the stream. It passes the same data through the
DSM system. Dynamic negotiation depends on downstream capabilities, it usually
does a CAPS query to find the appropriate transform. This is not needed by our
plugin and it would increase the complexity of our code.

Transform negotiation is the best fit for our plugin. Our GStreamer TRAMP
plugin operates in the pass-through mode, because we do not want to change the
format of the data, but transfer it from one pipeline to another. The type of media
format received on the sink pad of the GstTrampSink is proxied to the GstTrampSrc
element. In case renegotiation is needed, we proxy all required queries and events
in both directions (upstream and downstream).

3.4.6 Communication between pipelines

Our GStreamer plugin virtually connects two separate GStreamer pipelines. In order
to achieve this, the pipeline needs to be able to access any information about the
data from the other pipeline. The basic principles of GStreamer’s communication
mechanisms are described in Subsection

We introduce the problem using the situation illustrated in Figure 3.4 In
this example the application is composed of three pipelines distributed over three
different machines. The stream source is the file located on Machine 1. The
application decodes this file and sends the audio stream to the Machine 2 and the
video stream to the Machine 3 where these streams are processed.

Once tramp-sink element is linked in the pipeline on the first machine, it receives
information about the capabilities of the stream in order to identify what kind of
data it will handle. Since it distributes this stream to Machine 2, it needs to share this
information with the tramp-src element located in the other pipeline on Machine 2.

Another use case where information needs to be shared among pipelines can be
also found in Figure[3.4] Let’s assume that video-sink located on Machine 3 renders
the video stream using X Window System. Once the user decides to resize this
window, the video-sink element receives a RECONFIGURE event which instructs it
to change the format of the video stream. It needs to pass this event upstream to the
producer of data - tramp-sink located on Machine 1.

In this chapter, we discuss how we can pass information from one pipeline to
another. The most important metadata we need to send is the capabilities informa-
tion, so the downstream pipeline can configure itself to receive this data. We also
need to pass information about different events and queries our elements receive.

There are many ways to pass the capabilities information from GstElementSink
to GstElementSrc. We discuss three of them.

1. Using additional data segment

2. Piggybacking

49

3. Proxying events & queries

Additional data segment can be shared using the TRAMP Data Exchanger. We
could define a convention that each shared data segment has its capabilities stored
in the data segment published with label prefixed with _tramp_capabilities._.

Shared data segments

data segment buffer << audio_stream) data segment buffer W

_tramp_capabiIities_audio_st@
Capabilities: audio/x-
raw-int, endianness:
Capabiliies: video/x- S)
raw-yuy, format: .. @_capabllltles_vldeo_streaD

1234, ...
Figure 3.5: Using additional shared data segment to share the capabilities informa-
tion

If GstTrampSink and GstTrampSrc have their label property set to video_stream.
GstTrampSink publishes the capabilities information in the data segment with
the label _tramp_capabilities_video_stream from where it can be retrieved by
the GstTrampSrc element with the TRAMP daemon’s get call. This situation is
illustrated in Figure

We have chosen this prefix because of the convention that functions prefixed
with underscore are in general considered to be private (e.g. in Python) or not
recommended (man 2 _exit).

Piggybacking information into the shared buffer is another possible implementa-
tion of how to send information about the capabilities.

Data buffer containing shared multimedia data could also include information
about the capabilities. There are several advantages of this approach. The most
important one is that the capabilities in GStreamer can dynamically change and be
renegotiated. Therefore it should be possible for the element to determine what
kind of data is in the specific buffer. Another advantage of this approach is its
simplicity, we set information about the capabilities to the location after data block
as illustrated in Figure

Proxying events & queries is the most convenient way that information about
the capabilities can be sent from one pipeline to another. Since our elements operate
in the pass-through mode, their responsibility is to proxy relevant queries and

50

1 byte seq_no
4 bytes buffer_size
buf;e;éize buffer_data
string -
. capabilities
terrtr:;lnﬁéad {data type in the buffer)

Figure 3.6: Internal buffer used by our plugin

events. The most important queries and events we need to support are illustrated in
Figure[2.9]

Once the pipelines are connected together, the source element in the downstream
pipeline sends the RECONFIGURE event to the upstream pipeline which is then
proxied upstream to the source of the data. All of the relevant queries and events
that follow are proxied as illustrated in Figure [3.7]

Another advantage of this solution is that once we implement support for proxy-
ing queries & events, any two elements in two connected pipelines can communicate
using whatever query they need. We list some of the important queries that are
useful to proxy in Table[3.2]and Table[3.3]

Name Description

End of Stream Sent when the stream is finished

Capabilities Sent to instruct downstream to reconfigure to given format
Reconfigure Sent to upstream to start renegotiation

Gap Sent to downstream if there is no data for

a certain amount of time

Quality Of Service | Event containing information about
the real-time performance of the stream

Table 3.2: Important events to proxy

We implement two versions of our plugin. The first simple version implements
communication between our elements using additional data segment. The second,
more complex solution implements the proxy for events and queries. Even though

51

!

data

AV

upstream el K ry

src

I d
sen
query possible reconfigure to

dqta RECONFIGURE caps suggest formats the new format

i event
| sink |
L J
TRAMP Sink A4
A A
RECOSI:'F‘It:sURE query possible reconfigure 1o gond actual data
event caps suggestformats thg new format
TRAMP Source 4 ry 4

sre
I

data query possible reconfigure to
1 caps suggest formats the new format

| sink |
an Y v v

H

data

Figure 3.7: Proxying events & queries

the second solution is more generic, we have not managed to fully implement it
because of several unresolved issues of the TRAMP Data Exchanger. We discuss
these issues later in this chapter. Therefore implementation of the first simple
version allows us to improve the TRAMP exchanger platform and evaluate our
design.

In the following paragraphs, we focus on the design of the second, more complex
version. We discuss the renegotiation process which is possible in case a proxy for
events and queries is implemented.

Renegotiation Let’s assume we have a simple video application. The video source
is located on Node A, while the video window displaying the output is located on
node B. The user controlling node B decides that he wants to change the dimensions

52

Name Description

Position Query the current position of playback

Duration Query the total length of the stream

Capabilities | Query the possible capabilities that downstream element can
accept in the current state

Accept caps | Query to find out whether specific capabilities are accepted
by an element

Table 3.3: Important queries to proxy

of this window. Since the video output itself is not capable of rescaling, video sink
needs to ask upstream to change the format. This is handled by the renegotiation
process mentioned in Subsection[2.4.9]

This perfectly works within one pipeline. What we need to guarantee is that
everything works in the same way when using our plugin.

As seen in Figure 2.8 and Figure[2.9] elements linked together exchange data
about the format with two important queries - ACCEPT and CAPS queries. The
solution to our problem is to proxy these queries.

The upstream element also sends CAPS event to instruct the downstream to
reconfigure itself for given capabilities object. In Subsection(3.4.5] we claim that our
elements use transform negotiation. Therefore we also need to pass RECONFIGURE
event to the upstream element. Our plugin thus needs to proxy RECONFIGURE
and CAPS events as well.

3.4.7 Proxy implementation

In the previous Subsection [3.4.6] we have decided to proxy all relevant queries and
events. In this subsection, we explain how this proxy is designed in more detail.

Type Name Description

unsigned char counter The message number

enum QUERY, EVENT, REPLY | type type of the message

int metadata Metadata specific for each type
char[SIZE] data buffer | Data buffer containing event/query data

Table 3.4: Structure t_message

We have created a data structure ¢_message to achieve this. This data structure
is described in Table Both sink and source elements publish this data structure
and listen to each other as illustrated in Figure [3.8]

Every time an element updates its buffer, it increases the counter variable by
one. Any other element that is subscribed to this buffer periodically checks this
variable. Once it detects that the variable is incremented, the subscriber can read
the contents of the buffer and wait for another change again. The element that reads

53

the buffer then identifies the type of the message based on the type variable. It can
represent query, event or reply to the query.

Each of these queries and events have specific types as listed in Table [3.2]and
Table 3.3] The type of query/event is stored in metadata variable. Data buffer
contains additional parameters for the query/event, for instance capabilities string.

rtramp_publish—l— up‘s—‘;ggsnfagﬁﬁer ———————— ramp_subscribe ———
— |
TRAMP Sink —'.ramp_publish—b data buffer e = rAM P SUDSCriDE b TRAMP Source
le J
| t
I . t_message)
==framp subscribg == ===} —
tramp_subscribe downstraam_ buffer tramp_publish

data flow > ——— events, qUeries, query responses —e

Figure 3.8: Proxy implementation

Figure [3.8]shows that we use a separate buffer for sending data and a separate
buffer for sending events and queries from upstream. Since both of these buffers
deliver data in the same direction, they could be merged into one buffer. To make
the design more clear, we have decided to use two separate buffers.

Let’s give an example of sending a capabilities query from upstream. Since we
want to send query downstream. We change the upstream_buffer, because that’s
what the downstream element is subscribed to.

Name Value
counter counter + 1
type QUERY

metadata GST_QUERY_CAPS
data buffer | video/x-raw, width=(int)624, height=(int)352, ...

Table 3.5: Sending capabilities query downstream

We set the type to QUERY, set metadata to GST_QUERY_CAPS and copy the
string representation of the capabilities to the data buffer. Once we are done we
increment the counter variable by one, letting downstream read our message. We
illustrate the contents of the buffer published by the upstream element in Table 3.5]

3.4.8 Data replication

One of the key features of TRAMP Data Exchanger which helps us to decrease
latency is replication of data and building distribution trees based on latency. In

54

other words, if we subscribe to a given data segment, we subscribe to an owner of
this data segment with the lowest latency possible.
Component can own data segment in two cases.

1. It is the producer of a given data segment

2. Itis subscribed to a given data segment, thus it always owns the latest updated
version of this data

As shown in Figure [3.9]and Figure[3.10] if Node #2 subscribes for data segment
audio_stream, it can replicate it for Node #3. Node #3 can thus receive this data
segment with the lowest latency.

node #1 < latency Bms node #3
publish{audio_stream) <|,, Iatencystﬁ-[> ode #2 L~ latency 5ms 74{> subscribe(audio_stream)
node
subscribe(audio_stream) Y
A
audio_stream_data audio_stream_data

Figure 3.9: TRAMP: Example of data propagation with replication

node #1 <t latency 8ms node #3

publish{audio_stream) <|,, Iatencystﬁ-[> L~ latency 5ms 74{> subscribe(audio_stream)
node #2

audio_stream_data

Figure 3.10: TRAMP: Example of data propagation without replication

3.4.9 Using multiple TRAMP Source elements

This approach works if data from our TRAMP Sink element is sent to at most
one TRAMP Source element. If we want to send data to multiple TRAMP Source
elements, we would need to duplicate the stream and create a new TRAMP Sink
element. That would not make much sense since we would publish the data stream
with a different label and we would lose the valuable feature of the TRAMP Data
Exchanger - replication of data and building latency-based distribution trees.

In the simple implementation of our plugin, GstSrcElement reads the upstream
data without sending any type of messages to the upstream, so multiple elements of
this type can subscribe to one GstSinkElement without any problems. In the second,
more complex implementation, communication between several elements needs to
be coordinated in a more complex way. Designing such a solution is left for future
work.

55

3.5 Analysing TRAMP Data Exchanger

As we already mentioned in the Chapter [I] the features of the DSM system we
chose are very important for the final performance of our plugin. We have described
TRAMP Data Exchanger’s design and implementation in Section[2.3] In this section,
we point out some of the issues we found during the development of the multimedia
plugin. After presenting an issue, we offer several possible solutions how the
problem can be fixed. One of the goals of our thesis is to verify that TRAMP can
be efficiently used in the multimedia applications domain. Identifying important
issues that prevent us to do so is therefore very important. Another reason to list
and describe these issues is that some of them need to be necessarily fixed in order
to implement the complex version of our plugin with the support for renegotiation
and communication between elements in both directions.

3.5.1 Updating peers with inconsistent data

As illustrated in Figure[2.4] on each SUB message a daemon accepts, additional
data thread is created which is responsible for pushing data to the subscribers
immediately after they change.

Algorithm 1 Data thread pseudocode

1: shm < shared_memory_segment(label)

2: reply_content < NULL

3: while T'rue do

4 if shm # reply_content then

5 reply_content <— shm

6: reply < new_dat_msg(reply_content)
7 SEND(reply)

8 end if

9: end while

Algorithm [T] presents the pseudocode of the data thread shown in Figure[2.4] It
is executed in the context of the TRAMP Data Exchanger daemon.

The variable SHM is a reference to the shared memory segment. This memory
segment is shared with the application process in Algorithm[2] Data thread compares
this data segment with the part of the memory that was last sent to the subscriber
with memcmp [21]] as presented in Algorithm I]line

Consumers usually subscribe to data segments because they want to receive the
latest consistent version. For example, in the context of multimedia applications,
they want to receive the latest video frame generated by the producer. In case the
producer is not completely ready to copy the latest video frame to the shared data
segment, memcmp notifies the change in the part of the shared memory segment
and sends incomplete, corrupted data to the consumer.

56

Algorithm 2 Example of multimedia application
1: shm <« tramp_initialize(label)
2: tramp_publish(label)
KHE
4: shm <+ new_video_buf fer()
50 ..

Considering that Algorithm [T|runs as part of the data thread in data sharing
daemon and Algorithm 2] runs as a standalone process, a problem can occur if
Algorithm 2] is interrupted in the middle of processing on line] Meanwhile
Algorithm [T| compares the memory segment and sees that it has changed, which
leads to sending corrupted data to the subscriber. We need to somehow prevent the
daemon from doing this. Following paragraphs discuss possible ways for achieving
this.

Notifying daemon about memory change is one possible way we can prevent
this problem from happening. The producer would not create a data thread for each
subscriber, but instead an additional API function tramp_push would be called from
the multimedia application to instruct the daemon that the memory has changed.
Replicators would push an updated data segment on arrival of the DAT message.

However, this approach has several weaknesses. First of all, tramp_push would
need to block until a daemon is ready with the propagation of the data to the
consumer. Otherwise the application could modify the data segment before a
daemon completes this task. Since communication is done through the message
bus, it would need to wait for the DBUS message confirming the successful delivery
from the daemon. Otherwise, a daemon could create a temporal copy of this data
and process it asynchronously. If not necessary, we want to avoid copying memory
blocks because of increased latency.

Another drawback about this solution is that the application programmer would
need to explicitly notify the daemon about the changed data segment.

Mutual exclusion Another possible way of doing this is mutual exclusion. Data
exchange daemon runs concurrently with the application and communicates using
the system message bus. Therefore using synchronization primitives can solve this
issue. We must make sure that the memory segment is changed atomically and that
the data sharing daemon does not propagate changes of the data segment until the
application is done modifying it.

Even though we want to avoid blocking in our application, this mutual exclusion
is needed and never blocks for a long period of time. We have considered using
named semaphores or file locks. We prefer to use file locks to named semaphores,
mostly because they are auto-released in case the application crashes or receives
a signal. It is true that a signal can be caught and resource can be released in the

57

signal handler, however some signals like SIGKILL [19] and SIGSTOP [19] cannot
be caught or ignored.

Algorithm 3 Data thread pseudocode with file locking support
1: lock fd < open(FLOCK_NAME)
shm < shared_memory_segment(label)
reply_content < NULL
while T'rue do
LOCK(lock fd)
if shm # reply_content then
reply_content <— shm
reply < new_dat_msg(reply_content)
SEND(reply)
end if
UNLOCK(lock fd)
: end while
. close(lock fd)

D A

— =
w N = O

Algorithm 4 Example of multimedia application with file locking support
1: lock fd < open(FLOCK_NAME)

: shm < tramp_initialize(label)

. tramp_publish(label)

: LOCK(lock fd)
shm « new_video_buf fer()
: UNLOCK(lock fd)

. close(lock fd)

Algorithms [3] and 4] show a way how to put file locks in the code to prevent
race conditions. This solution requires an application programmer to use file locks
explicitly in the code of the application. Instead we decided to add three additional
TRAMP API calls which wrap this code. They are listed in Table

3.5.2 Rebalancing distribution trees

TRAMP Data Exchanger is optimized for multimedia applications. When the
application needs a data segment, it broadcasts a LOOKUP message and then
waits for any YEP messages from those who own it. The YEP message contains
the information about the delay from the original producer. The application then
chooses the data segment with the lowest latency.

Latency in the network can change, for example because of the churn, mobility
or an unstable network. The TRAMP Data Exchanger does not react to latency

58

int tramp_lock_init
(tramp_lock_t *lock, const char* label) | initialize the lock for given label
int tramp_lock(tramp_lock_t *lock) locks a data segment

int tramp_unlock(tramp_lock_t *lock) unlocks a data segment

Table 3.6: TRAMP API extension

changes in the network. From [[13]] "Changes in network conditions may require
subsequent re-organization of the distribution tree. Re-balancing the distribution
tree in such events is left for future work." (p. 3).

Solution

TRAMP Data Exchanger stores the label for each data segment it is subscribed
to, together with the opened connection to the provider of this data segment. The
provider is the replicator with the lowest latency from the original source. A possible
solution is to continuously broadcast a LOOKUP message. A LOOKUP message
could be broadcasted in one of the following ways.

1. An additional thread can be created which broadcasts LOOKUP messages in
certain time intervals, with the exception of the original producer

2. An LOOKUP message can be broadcast on every n-th access for current data
segments.

We claim that the first option has better performance. Broadcasting on every
n-th access can keep the latency outdated for rarely accessed data segments.

3.5.3 Subscribing to the data segment that is not yet published

TRAMP allows only one producer per data segment as stated in [13]], "We allow
only one producer per data segment as an alternative to locks. This avoids blocking,
but application developers need to be aware of this in advance and implement their
components accordingly, e.g., by adding a dynamic suffix to the label." (p.3).

It is up to the application to make sure that any data segment is published before
anyone can subscribe to it. Figure[3.8 shows the scenario where no such behaviour
is possible. For instance if two applications want to subscribe to each other’s data
segment at start-up, the application which starts first is not able to locate a data
segment of the other application. In the current state TRAMP cannot handle such a
situation.

Solution

There are several possible solutions for this problem:

59

1. While trying to subscribe, we can continuously broadcast LOOKUP message
until we succeed

2. Implement error handling in TRAMP Data Exchanger, right now all the
library functions return void pointer, they could return an error code on failure

3. Once re-balancing of distribution trees is implemented, this problem disap-
pears, because we continuously send LOOKUP messages in certain time
intervals, after we subscribe. Once the producer application publishes its data
segment, LOOKUP message succeeds and we receive YEP reply.

We claim that the combination of a second and third solution is the best one.
TRAMP Data Exchanger misses system for error handling which would allow
applications to decide how they want to react to certain situations. The first solution
could block the application for a very long time or forever in the worst case.

3.5.4 Copying memory to the shared data segment

Once data segment is requested from TRAMP, it gives us a pointer to a shared
memory segment. We can work with this chunk of memory as it is regular memory
allocated by the malloc [20] call. We can read and modify this piece of memory
and changes are propagated to the other peers by the TRAMP framework.

In case we allocate memory in our application on our own, we can just replace
malloc-like calls with tramp_initialize. The problem occurs when a data segment
we work with is allocated by a library and we cannot change the way how the data
is allocated. If this data needs to be shared with other nodes, we need to copy the
data between these two locations, for instance using memcpy [22]]. Coping memory
in this way is expensive, time consuming and can cause increased latency in a
multimedia application.

In spite of this fact, in the current implementation of our plugin we copy memory
allocated by GStreamer to the shared memory allocated by the TRAMP framework.
We are unable to find an alternative solution to deal with this problem.

60

Chapter 4

Implementation

In this chapter, we describe the implementation of our GStreamer plugin. In
Section 4.1 we present an overview of our implementation. Section .2 describes
design details of the elements included in our plugin.

4.1 Overview

We have implemented our project as a GStreamer plugin in C programming language.
It is shipped in a form of a plugin represented as dynamically linked library. This
GStreamer plugin contains two elements - trampsink and trampsrc. 1t is tested on
Linux and OS X platforms. A version for Windows and mobile platforms is possible
but not yet implemented. In order to use our plugin in the GStreamer pipeline,
programmer uses shared libraries with sink and source elements.

We have implemented two versions of our project in two separate branches.

Stable branch In the stable branch, we implemented a simple version of our
plugin. The main purpose of this implementation is to verify the correctness of our
design and demonstrate that with TRAMP, the multimedia content can be shared
between several nodes while fulfilling our requirements.

In this version, the elements use the transform negotiation technique without the
support for events/queries proxy described in Subsection We use additional
data segments to provide downstream with the capabilities of the stream. In this
version, multiple consumers can subscribe to get data segments from one producer
element. That means that data is published with the same label, which allows a
distribution tree to be built based on the latency in the network.

The name of the stable branch is origin/master in our Git repository. The access
to our Git repository is described in Appendix [B]

Development branch The development branch is the experimental branch which
is not fully implemented yet. This complex version of our plugin uses transform
negotiation and supports the proxy for GStreamer events and queries. Therefore,

61

instead of publishing capabilities information using additional data segments as
we do in the stable branch, capabilities are negotiated thanks to the events/queries
proxy. This version supports the renegotiation process as well.

When working with pipelines on the same machine, the plugin in the develop-
ment branch works as anticipated. In the situation where pipelines are located on
different nodes, TRAMP Data Exchanger needs to be used to propagate shared data
segments to the consumers. Unresolved issues discussed in Section [3.5]cause that
this branch is not fully functional in its current state. We have therefore used the
stable branch to evaluate our design.

The name of the development branch is origin/devel in our Git repository.

4.2 Implementation details

In this section, we present implementation details of the stable branch. This section
describes how the most important aspects of our design are implemented in C.
The complete implementation of our development branch contains some additional
functionality. It can be reviewed from our Git repository referenced in Appendix [B]

In order to describe the implementation of our plugin in a detailed way, we
describe the three most relevant files we have written. Files gsttrampsink.c and
gsttrampsrc.c implement sink and source elements respectively. The header file
gsttrampcommon.h defines shared macros and data structures used in both of the
afore mentioned files. We separately describe the design of sink and source elements.

Shared resources Listing 4.1 describes the file named gsttrampcommon.h which

defines macros and the types used in our implementation. GST_TRAMP_MAXBUFFERSIZE
defines the maximum size of the buffer we share using the TRAMP platform.
GST_TRAMP_MAXCAPSSIZE defines the maximum size the buffer we use to
provide downstream with the capabilities information. GST_TRAMP_LABEL is a

tramp label we use to share data segments with TRAMP.

Listing 4.1: Defining constants and types

#define GST_TRAMP_MAXBUFFERSIZE 55000
#define GST _TRAMP_MAXCAPSSIZE 1000
#define GST_TRAMP_LABEL "AUDIO_LABEL"
#define GST_TRAMP_CAPS_LABEL "CAPS"

typedef struct t_message {

unsigned char seq_no;

uint32_t size;

char data [GST_TRAMP_MAXBUFFERSIZE] ;
} t_message;

Structure ¢t_message is the C analogy of the buffer that is shared using TRAMP
which is illustrated in our design in Figure The seq_no variable is the number

62

representing the ID of the message. It is incremented by an upstream when a new
message is ready to be read by the downstream element. Variable size represents
the size of the GStreamer buffer we send using this data structure. Pointer data is
the pointer to the actual data we send.

Sink element implementation In Subsection[2.4.10] we have described the basic
structure of every GStreamer element. In the following paragraphs, we present the
implementation of relevant functions from Table [2.4]

plugin_init & gst_trampsink_class_init functions are called in order to ini-
tialize function pointers, meta data and register our plugin with GStreamer. We set
the meta data, pads and initialize function pointers to set_caps and render functions
which are used to send the capabilities and data to the downstream element. We
describe the implementation of these functions in Listings 4.4 and .9

Listing 4.2: Initializing meta data and function pointers

static void
gst_trampsink_class_init (GstTrampsinkClass = klass)

{
GObjectClass =gobject_class = G_OBJECT_CLASS (klass);
GstBaseSinkClass xbase_sink_class = GST_BASE_SINK_CLASS (klass);

gst_element_class_add_pad_template (GST_ELEMENT_CLASS(klass),
gst_static_pad_template_get (&gst_trampsink_sink_template));

gst_element_class_set_static_metadata (GST_ELEMENT CLASS(klass),
"GStreamer_TRAMP_Sink _element", "GStreamer TRAMP_ plugin", "
GStreamer_support_for_ TRAMP",
"Jan_Vorcak_<janvor@ifi.uio.no>");

base_sink_class —>set_caps = GST_DEBUG_FUNCPTR (
gst_trampsink_set_caps);
base_sink_class —>render = GST_DEBUG FUNCPTR(gst_trampsink_render
)3
}

static gboolean
plugin_init (GstPlugin % plugin)
{
return gst_element_register (plugin, "trampsink", GST_RANK NONE,
GST_TYPE_TRAMPSINK) ;

gst_trampsink_init function initialize a new instance of a sink element. As
shown in Listing[4.3] we first initialize a sink pad. In the second step, we allocate new

63

shared memory segments for data and capabilities and publish it to all connected
devices. As a last step, we initialize lock in order to avoid consistency issues
mentioned in Subsection [3.5.1]

Listing 4.3: Initialization of a new sink element instance

static void
gst_trampsink_init (GstTrampsink strampsink)
{
// initialize sink pad
trampsink —>sinkpad = gst_pad_new_from_static_template (&
gst_trampsink_sink_template
, "sink");

// initialize and publish data buffer

trampsink —>seq_no = 0;

trampsink —>msg = (t_message =) tramp_initialize (GST_TRAMP_LABEL,
sizeof (t_message));

bzero (trampsink —>msg—>data , GST_TRAMP_MAXBUFFERSIZE) ;

tramp_publish (GST_TRAMP_LABEL, sizeof (t_message));

// initialize and publish capabilities buffer

trampsink —>caps = (char =) tramp_initialize (GST_TRAMP_CAPS_LABEL
, GST_TRAMP_MAXCAPSSIZE) ;

bzero (trampsink —>caps , GST_TRAMP_MAXCAPSSIZE) ;

tramp_publish (GST_TRAMP_CAPS_LABEL, GST_TRAMP_MAXCAPSSIZE) ;

// initialize the lock
trampsink —>lock = tramp_lock_init (GST_TRAMP_LABEL) ;

gst_trampsink_set_caps function is used to send the capabilities to the
downstream element. Our sink element receives them in a form of GstCaps*
caps pointer from the upstream element. Our implementation copies this informa-
tion to the published memory segment so that the downstream element can retrieve
them with tramp_get API call.

Listing 4.4: Implementation of gst_trampsink_set_caps function

static gboolean
gst_trampsink_set_caps (GstBaseSink = sink, GstCaps % caps)
{
GstTrampsink =trampsink = GST_TRAMPSINK (sink);
GST_DEBUG_OBIJECT (trampsink, "set_caps");
strcpy (trampsink —>caps, gst_caps_to_string(caps));
return TRUE;}

64

gst_trampsink_render function is the most important function in our im-
plementation, because it actually sends data downstream. It is invoked by the
GStreamer framework when new data is received from the upstream e.g. video
source element.

It first locks the shared data segment, so that TRAMP Data Exchanger daemon
does not propagate data to other peers until we have finished updating it. It reads the
GStreamer buffer and copies its contents to the shared memory. By incrementing a
sequence number, we let the source element know that new data is available.

Listing 4.5: Implementation of gst_trampsink_render function

static GstFlowReturn
gst_trampsink_render (GstBaseSink # sink, GstBuffer = buffer)

{
GstTrampsink =xtrampsink = GST_TRAMPSINK (sink);
GST_DEBUG_OBJECT (trampsink , "render");

tramp_lock (trampsink —>lock);

// copy sequence number

trampsink —>msg—>seq_no = trampsink —>seq_no;
trampsink —>seq_no++;

// map the buffer
GstMapInfo info;
gst_buffer_map (buffer , &info, GST_MAP_READ) ;

// copy buffer size to the shared memory segment
trampsink —>msg—>size = info.size;

// copy actual buffer content
memcpy (trampsink —>msg—>data, info.data, info.size);

// unmap
gst_buffer_unmap (buffer, &info);
tramp_unlock (trampsink —>lock) ;

return GST FLOW_OK;
1

Source element implementation In the following paragraphs, we show how
source element handles data in our plugin.

plugin_init & gst_trampsrc_class_init functions functions are implemented
in a similar way as plugin_init & gst_trampsink_class_init functions in the sink
element. The only difference is that we set pointers to different functions - get_caps
and create, which are supposed to retrieve data from the upstream.

65

Listing 4.6: Implementation of gst_trampsrc_render function

static void
gst_trampsrc_class_init (GstTrampsrcClass = klass)

{
GObjectClass =gobject_class = G_OBJECT_CLASS (klass);
GstBaseSrcClass xbase_src_class = GST_BASE_SRC_CLASS (klass);

gst_element_class_add_pad_template (GST_ELEMENT CLASS(klass),
gst_static_pad_template_get (&gst_trampsrc_src_template));

gst_element_class_set_static_metadata (GST_ELEMENT CLASS(klass),
"GStreamer_TRAMP_Source_element", "GStreamer TRAMP_plugin",
"GStreamer _support_for TRAMP",
"Jan_Vorcak_<janvor@ifi.uio.no>");

base_src_class —>get_caps = GST_DEBUG_FUNCPTR (
gst_trampsrc_get_caps);
base_src_class —>create = GST_DEBUG_FUNCPTR (gst_trampsrc_create)

}

static gboolean
plugin_init (GstPlugin * plugin)
{
return gst_element_register (plugin, "trampsrc", GST_RANK NONE,
GST_TYPE_TRAMPSRC) ;

gst_trampsrc_init function initializes a source pad as well as shared data
segments for the data and the capabilities.

Listing 4.7: Implementation of gst_trampsink_render function

static void
gst_trampsrc_init (GstTrampsrc xtrampsrc)

{
trampsrc —>srcpad = gst_pad_new_from_static_template (&
gst_trampsrc_src_template
sre"):

gst_pad_use_fixed_caps (trampsrc —>srcpad);

trampsrc —>msg = (t_message *) tramp_initialize (GST_TRAMP_LABEL,
\
sizeof (t_message));
trampsrc —>init = 0;
tramp_subscribe (GST_TRAMP LABEL, sizeof(t_message));

trampsrc —>caps = (char=) tramp_initialize (GST_TRAMP_CAPS_LABEL,
GST_TRAMP_MAXCAPSSIZE) ;

66

trampsrc —>lock = tramp_lock_init (GST_TRAMP_LABEL) ;
start = time (NULL) ;

gst_trampsrc_get_caps function is used to retrieve the capabilities data pub-
lished by sink’s set_caps function, so that our source element can inform other
elements what kind of data it provides. This is done by reading shared data segments
using tramp_get API call.

Listing 4.8: Implementation of gst_trampsink_render function

static GstCaps =
gst_trampsrc_get_caps (GstBaseSrc # src, GstCaps = filter)

{
GstTrampsrc strampsrc = GST TRAMPSRC (src);
GST_DEBUG_OBJECT (trampsrc, "get_caps");

tramp_get (GST_TRAMP_CAPS_LABEL, GST_TRAMP_MAXCAPSSIZE) ;

return gst_caps_from_string (trampsrc —>caps);

gst_trampsrc_create function is the function that provides the downstream
elements with data. The main purpose of this function is to wait for a memory
change in a shared data segment. Once a memory change is detected, it reads
data from the shared data segment, sends it to the allocated GStreamer buffer and
provides this buffer to the downstream element.

Listing 4.9: Implementation of gst_trampsink_render function

static GstFlowReturn
gst_trampsrc_create (GstBaseSrc = src, guint64 offset, guint size,
GstBuffer #x buf)

{
GstTrampsrc strampsrc = GST TRAMPSRC (src);

GST_DEBUG_OBIJECT (trampsrc, "create");

if (!trampsrc —>init) {
g_print("Initialized\n");

trampsrc —>counter = trampsrc —>msg—>seq_no;
trampsrc —>init = 1;
while (trampsrc —>msg—>seq_no == trampsrc —>counter);

67

tramp_lock (trampsrc —>lock);
uint32_t buffer_size = trampsrc —>msg—>size;

xbuf = gst_buffer_new () ;
GstMemory #memory = gst_allocator_alloc (NULL, buffer_size , NULL)

gst_buffer_append_memory (+buf, memory);

GstMapInfo info;

gst_buffer_map (xbuf, &info, GST_MAP_WRITE) ;

memcpy (info .data, trampsrc —>msg—>data, buffer_size);

unsigned char miss = trampsrc —>msg—>seq_no — trampsrc —>counter;
trampsrc —>counter = trampsrc —>msg—>seq_no;

gst_buffer_unmap (xbuf, &info);

tramp_unlock (trampsrc —>lock) ;

return GST FLOW_OK;

68

Chapter 5

Evaluation

In this chapter we evaluate the performance and usage of our multimedia plugin.
In Section 5.1 we present the basic goals of our evaluation. Section[5.2]discusses
different evaluation techniques that are used to evaluate technical aspects. Various
factors that affect the results are presented in Section[5.3] We describe the chosen
metrics and setups we used to evaluate these metrics in Section[5.4] We present our
results in Section [5.5| which is followed by a discussion at the end of this chapter.

5.1 [Evaluation goals

The main goals for our evaluation are to verify that our multimedia plugin can
be used for real-time multimedia applications and evaluate this plugin in different
scenarios. We evaluate the performance and usability of our multimedia plugin with
respect to the requirements presented in Section [I.3]

* Goal 1: We check that our multimedia plugin can be used for multimedia
applications. The minimal requirements are to keep the latency overhead
under 100ms and support the bit rate of minimum 3.75Mbit/s in order to be
able to transmit MPEG-2 encoded video stream [13]. We observe and analyse
important metrics such as latency, bandwidth, CPU and memory usage which
influence the performance of our multimedia plugin.

* Goal 2: To show that our framework is not dependent on a specific platform
we set several pipelines running on different operating systems to work
together.

* Goal 3: In order to demonstrate that our plugin makes it easier for application
programmer to write distributed multimedia applications, we construct several
GStreamer pipelines using GStreamer command line utilities. By doing
this, we show that integration into a multimedia framework makes the work
with TRAMP Data Exchanger easier, because changing the behavior of an

69

application is as easy as modifying a pipeline - either by adding/removing
elements in the pipeline or modifying their properties.

* Goal 4: Compare the performance of our plugin to the GStreamer’s UDP
plugin. Our plugin has the similar role as an already existing GStreamer
UDP plugin, but instead of using an UDP protorol, we take advantage of
the TRAMP data sharing platform. Therefore, comparing these two plugins
can reveal the scenarios where using TRAMP platform is more efficient than
using UDP protocol.

5.2 Evaluation approach

When working on an evaluation, there are two key steps that need to be performed -
selecting an evaluation technique and selecting evaluation metrics. There are three
main evaluation techniques that can be chosen - analytical modelling, simulation
and measurement [|14].

Analytical modelling is a theoretical technique which presents a mathematical
model and calculates performance for a solution. Simulation is a way to test a
solution in a simulated environment which can often be controlled during the
process of an evaluation. The third option are measurements performed on a real
implementation. The first two approaches can be used mostly for simple projects,
because the model or the simulation of a complex solution can also become complex
and error-prone.

Each of these techniques has its advantages and disadvantages and can be
chosen based on multiple factors. According to [14] there are seven key criteria
when choosing an evaluation technique: stage of the project, time it takes to perform
an evaluation, availability of tools, accuracy, cost, saleability and the probability of
random events influencing the results. In the following paragraphs, we describe two
that we consider to be the most important ones for our evaluation.

Stage of the project is an important criterion when choosing an evaluation ap-
proach. While analytical modelling and simulation can be used in all of the stages,
measurement can only be performed once we have implemented at least a functional
prototype.

Accuracy is another important factor. When evaluating a complex system, an
analytical model needs to be simplified, which often leads to inaccurate results. Sim-
ulations can be more detailed than analytical models and their results are often more
accurate. The most accurate results are achieved while measuring an implemented
solution or its prototype, even though the environment where measurements run can
also differ from reality.

Describing all the factors for choosing the right technique is out of the scope of
this paper. [14]] describes all of them in more detail. Since we have implemented a

70

working prototype of a multimedia plugin for the TRAMP data sharing platform,
we have decided to use measurement as an evaluation technique. It allows us to test
this system on real hardware and get the most accurate results.

5.3 Evaluation factors

When it comes to evaluating the performance and usage of the GStreamer TRAMP
plugin, there are several aspects which influence the behaviour of the system. These
include the hardware specifications of the collaborating nodes, network speed and
the maximum size of the shared data segments configured in the TRAMP Data
Exchanger. In this section, we describe these factors and their influence on the
results.

5.3.1 Node specifications

The specifications of nodes can affect the behavior of our plugin. We have used two
types of nodes with various specifications in order to find out if there is any influence
on processing power and the results. We present the variety of used hardware in

Table[5.11

Desktop computer Laptop

Operating system Fedora release 20 OS X Mavericks
(Heisenbug) (Version 10.9.2)

CPU Intel(R) Core(TM) i7 Intel(R) Core(TM) i5
2.93GHz 2.5 GHz

Memory 4 GB 1333 MHz DDR3 | 4 GB 1600 MHz DDR3

Total Number of Cores | 4 2

Table 5.1: Node specifications

Our main goal is to measure the influence of used hardware on the number
of processed buffers in certain time intervals. We want to find out in what way
computational resources affects the number of buffers TRAMP can process for a
given period of time.

5.3.2 Network speed

In our evaluation, network speed has an impact on the latency and the quality of the
transmitted multimedia content. The main purpose of using TRAMP for multimedia
is transmitting real-time data with minimal latency. We want to find out in what
way a network speed influences the results and what kind of multimedia streams
can be shared using network interfaces with different capacity.

By testing our plugin in the network with different latency between each pair
of nodes, we want to demonstrate that when using our plugin, TRAMP builds
distribution trees based on the latency in the network.

71

5.3.3 Maximum buffer size of TRAMP Data Exchanger

Another important aspect is the configuration of the TRAMP Data Exchanger and
the maximum size of the shared data segment. As we have already described in
Chapter [2] a publisher of the data segment publishes the data segment of a certain
size. All the changes to this buffer are then sent over reliable TCP connections if
needed. In the situation where the shared data segment is smaller than the maximum
allowed size, the message is padded with zero bytes to the maximum size of the
buffer. Therefore performance is not dependent on the size of the actual data we
send, but on the maximal size of the buffer.

We evaluate the impact of this variable on the overall performance of the plugin
and inspect what kind of data streams we can send using TRAMP.

5.4 Metrics

Every element in GStreamer influences the overall performance of the whole
pipeline. Therefore, we must focus on the following objectives during the de-
velopment.

* We want to make sure that our elements can handle as many data streams as
possible in order not to restrict a pipeline to a specific format.

* We want to handle the data as efficiently as possible and to avoid adding any
additional latency for the data flowing through the pipeline.

We evaluate the GStreamer plugin, which serves as a wrapper for TRAMP.
Therefore bad performance can be either caused by our plugin or the TRAMP Data
Exchanger. We measure important performance metrics of our plugin and identify
the possible sources of bad performance. These include:

» Latency
* Processed buffers per time interval
e CPU load

* Memory load

In order to evaluate different metrics, we need to use different scenarios. After
introducing a metric we describe and illustrate different setups used to measure it.

5.4.1 Latency

The latency in GStreamer is the time it takes for a data buffer to travel from the
source element to the sink element.
We distinguish two types of latency in GStreamer - internal and external latency.

72

Internal latency is introduced by buffer processing by each element in the
pipeline. External latency is influenced by a network delay or delay caused by
various hardware.

Our plugin does not include any element that processes the stream. It provides
sink and source elements instead. These two elements need to make sure they
communicate as fast as possible and in the most efficient way.

Increased internal latency can be caused by an element performing unnecessary
computations, repeating the same computation, synchronously performing a task
that could be done asynchronously, etc.

Increased external latency is caused by a network delay or hardware.

When optimizing a GStreamer plugin, we want to focus on decreasing internal
latency. In our case-study, we examine latency as the time difference between a
buffer entering a sink element and the same buffer leaving the source element in
the other pipeline. However this latency includes the network delay and the time it
takes for a processor to do a context switch.

In general there are two ways we can measure latency:

Measuring the Round-Trip time is the technique we send a buffer to a different
pipeline which immediately sends it back. We measure the time it takes for a buffer
to return and calculate the latency. A setup for measuring such a task is illustrated

in Figure[5.1]

framp-sink
riph264pay label =
"video_stream"™

machine 1
Si
filesource decodebin
audioconvert autoaudiosink

tramp-src - —)
Iabe"\rdeostreamZ" riph264depay avdec_hzad, autovideosink

machine 2 framp-src tramp-sink

" ja0alig ,‘ sre label="video_stream2"
video_stream!

Figure 5.1: Measuring the Round trip time

73

Synchronizing clock on two machines is another possibility. Once we are sure
that clocks on both machines are synchronized, we can send the buffer and measure
the time difference. The advantage of this approach is its simplicity. The disadvan-
tage is that if the synchronization between the two machines is not precise, it affects
the results of the measurement.

Since Network Time Protocol can be used to synchronize two machines with
very high precision [26]], we decided to measure latency using the second approach.
By synchronizing the clocks before each experiment, we make sure that the time
difference is within the milliseconds limitations. Therefore it is acceptable for our
results. We illustrate this setup in Figure[5.2]

Evaluation setup

In the first scenario, we measure the latency which is introduced by the network
along with the latency introduced by our plugin and TRAMP. As we already de-
scribed above, there are two possible setups to evaluate the latency - measuring the
round trip time and synchronizing clocks on two different machines.

:
H
tramp-sink
o p— i
ideo_stream”
.
time t1
.
:
audioconvert autoaudiosink :
H
:
:
:

machine 1

filesource sink decodebin

machine 2 fime t2

tramp-sre

label = riph2éddepay avdec _h2864 autovideosink

“video_stream’

Figure 5.2: Measuring latency on two machines with synchronized clocks

We have decided to measure latency using the setup in Figure [5.2] We have
created a setup with two connected desktop computers. The latency between these
two computers is approximately 0.5 milliseconds. We have measured the average
latency between these two machines using the ping tool. It is important to understand
that the ping tool operates on the network layer. Therefore it does not include the
time it takes for a scheduler to perform a context switch or additional overhead
caused by a transport layer.

We measure the latency by subtracting the time when the buffer appeared in
the sink pad of the TRAMP source element (time tI) to the time when the very
same buffer appeared in the source pad of the TRAMP sink element (time t2). If
we subtract the real network latency from this number, we get the additional delay

74

introduced by our plugin including the overhead on the transport layer and the time
it takes to do a possible context switch.

In the setup we have chosen, we open a file, encode it using H264 encoder
and packetize it using the rtph264pay plugin. The Rtph264pay plugin encodes the
stream into RTP packets. As we have already stated in our requirements, the internal
latency should not exceed 100 milliseconds.

5.4.2 Processed buffers per time interval

This metric shows how many buffers can be processed by our plugin during a
certain time interval. The TRAMP Data Exchanger works in a way that a producer
publishes a data segment while the subscriber is trying to detect any change in the
memory and processes the memory in case it has changed.

The problem occurs when the consumer does not have enough time to process
every single buffer and misses some buffers while processing the others. The
number of missed buffers is dependent on the update frequency of the shared buffer.

Let’s consider a situation where we want to send 100MB of data from one
machine to another. If we use a 1MB buffer, we need to send one hundred buffers of
size IMB. It takes some time for IMB of buffer to be copied to the shared memory
buffer. Consumers thus have enough time to detect any change in the memory.
Copying the memory needs to be done because of the design aspect mentioned in
Subsection

In the case where we slice the same 100MB to 10® buffers of size 1 byte, a
problem can occur since the consumer is not guaranteed to detect every single
memory change. Since it tries to detect the memory change using an infinite loop,
it can for instance, end up waiting in the ready queue of the scheduler while the
shared memory segment is changed.

In our scenario, we evaluate this metric by sending H264 encoded video pack-
etized by the rtph264pay plugin. We change the MTU property of this plugin
causing different frequencies of updating shared memory segments. By logging the
incoming buffers on the consumer side, we can compare the number of received
and expected buffers for a certain video sample.

Evaluation setup

While developing and evaluating our elements, we have found out that the TRAMP
Data Exchanger is limited by the number of buffers it can handle per certain time
interval. These problems occur even in case two pipelines run on the same machine,
so we can argue that this issue is not caused by a slow network. However it can be
influenced by the performance of the node.

We reuse the scenario from Figure [5.2] The only difference from Figure [5.2]
is that in this case two pipelines run on the same node. We have decided to reuse
this scenario because of the presence of rtph264pay and rtph264depay elements.
These elements have a very useful MTU property. By modifying this property, we

75

can set the maximal size of the buffer to be sent from this element. By controlling
this property, we can increase or decrease the frequency of updating shared memory
segment by TRAMP.

Every buffer we send has a unique ID which constantly increases. The consum-
ing element can therefore identify how many buffers it managed to process and
report the number of missing buffers per certain time interval.

In our test, we send 280 seconds of H264 encoded video stream with different
MTU sizes - 26 bytes, 1400 bytes (default value of rtph264pay), 6000 bytes and
10000 bytes.

Since we want to identify the source of this problem, we inspect the influence
of hardware performance as well as the maximum size of shared buffer configured
in the TRAMP. Therefore we execute this experiment on two different machines
described in Table

TRAMP should be able to process the MTU of lower sizes which corresponds
to the high update frequency of the shared buffer.

5.4.3 CPU load

Increased CPU load can be caused by the following:

* Unnecessary computation
* Synchronous computation of possibly asynchronous task
* Inefficient code/algorithm

* Unnecessary manipulation with the memory - allocating unnecessary memory
blocks, unnecessary memicpy, etc.

We measure CPU load using the fop [18] utility available on UNIX platforms.
The fop utility is an important tool for identifying potential problems with CPU load.
It periodically displays CPU statistics of all running processes. It is a tool used for
debugging and system administration. Apart from other statistics, the top measures
and reports the CPU load of the process. A single thread can achieve 100% of CPU
load. Multithreaded applications can therefore achieve more than 100% of CPU
load. In order to visualize the load of the CPU, we use the gnome-system-monitor
tool. This tool also visualizes important metrics like memory usage, swap history
and network bandwidth in both directions.

5.4.4 Memory load

Measuring memory load can identify several problems in the application’s code.
The most common problems we can identify are as follows:

* Memory leaks causing increasing memory consumption by a process

* Allocating unnecessary memory blocks

76

* Unnecessary memcpy calls

* Inefficient reusing of the memory

We have concern about these issues because they can increase the latency of the
multimedia application, but they can also make the application unstable. The most
important tools for measuring memory load are top, gnome-system-monitor and
widely used Valgrind [25]]. Valgrind is a tool which is commonly used to identify
existing memory leaks in the application. It can also be used as a memory and cache
profiler.

Evaluation setup

We measure the CPU and memory load of our plugin in the same way using two
different scenarios. In the first scenario we measure the CPU/Memory load of the
sink element. In the second scenario we inspect the CPU/Memory load of the source
element.

We have set up two machines running Fedora described in Table [5.1]and we
share the audio stream using our plugin. The setup is illustrated in Figure[5.3] For
simplicity, we don’t illustrate the pipeline anymore. The type of the multimedia
stream does not influence the load of the CPU/Memory, since our plugin treats all
the streams in the same way.

o w

| TRAMP Data Exchanger <} —-network——| > TRAMP Data Exchanger |

- _— L I
Application Q_| Application (§

Figure 5.3: Setup for measuring CPU/Memory load

In order to measure the CPU/Memory load of our element, we measure the
CPU/Memory load of the same pipeline with and without our element. We compare
the load of these two pipelines in order to measure the overhead added by our
plugin.

Another important experiment is to measure possible memory leaks of our
plugin. We do that by running the valgrind tool as well as checking the memory
usage using the fop tool for a longer period of time. Possible memory leaks could
make our application crash or increase the internal latency in case we don’t properly
reuse allocated space.

77

5.4.5 Comparison with the UDP plugin

GStreamer provides a gst-good-plugins package which includes the UDP Plugin we
already mentioned in the Chapter[2] The UDP Plugin also connects several different
pipelines possibly running on different nodes. It uses UDP protocol to broadcast
the multimedia. The goal of this experiment is to compare the performance of our
plugin to the UDP plugin.

@ latency ~= 0.5ms ®
| TRAMP Data Exchanger -——-net\.rork——— 1 TRAMP Data Exchanger >

Node #1 Mode #2

Application Q_| Application ; I

latency ~= 3ms latency ~= 0.5ms

]
i
]

Vi

TRAMP Data Exchanger

MNode #3

Application m

Figure 5.4: Setup for comparing the plugin to the UDP Plugin

Evaluation setup

We illustrate the setup in Figure [5.4] For the sake of simplicity, there are three
machines in this setup. That is because it is the minimal number of machines we
need to use in order to demonstrate our concept of building distribution trees.

When using the UDP plugin we expect the Node #1 to broadcast the UDP stream
to the nodes #2 and #3. When using TRAMP plugin, we expect the distribution tree
to be built based on the latency in the network. In that case the Node #1 sends the
audio stream to the Node #2 and the Node #2 also replicates the stream to the Node
#3.

We have used the Traffic control utility available on UNIX platforms, which
comes with the fc command line tool. With this tool, it is possible to emulate higher

78

latency, buffer loss in the network for certain interfaces. It is also possible to modify
the behaviour of the network interface for a specific IP address. We have used this
functionality to emulate increased latency between Node #1 and Node #3.

In this setup we have inspected whether the distribution tree is built based on
latency. Figure[5.4]shows that if Node #3 wants to subscribe to data located on Node
#1 with the lowest latency possible, Node #2 has to replicate the data.

We have published a video stream by Node #1 and subscribed to it with Nodes
#2 and #3 respectively.

5.5 Results

This section presents the results of our evaluation. At first we present the measure-
ment results. Later we compare our plugin to the GStreamer UDP plugin. Last
but not least, we demonstrate that the features of GStreamer can be combined with
TRAMP when using our plugin making the application programmer’s work easier
during development of multimedia applications.

wu
=]

~
o

w
o

0 500 1000 1500 2000 2500 3000 3500

Figure 5.5: Latency

5.5.1 Latency

We evaluate latency using the setup from Figure [5.2] We send a H264 encoded
video stream and compare time stamps on two synchronized machines. The results

79

can be found in Figure[5.5] We illustrate the ID of the sent buffer on the horizontal
axis. There is a corresponding latency for each buffer on the vertical axis.

The graph shows that the maximum latency is around 68ms which is less than
100ms we set up as a requirement. Buffers with such latency are exceptional and
the higher latency is possibly caused by a context switch.

The network latency between these two nodes is approximately 0.5ms and we
measured it using the ping tool. The time difference between the data segment
entering our plugin and leaving it is within the range of 6-7ms. If we subtract
the real network latency we notice that the latency introduced by our plugin is
approximately 5.5-6.5ms, which is below the requirement of 100m:s.

Most of the time delay we introduce in our plugin is caused by copying the
memory block containing multimedia buffer to the shared memory block allocated
by TRAMP. The introduced delay is therefore dependent on the maximum size of
the buffer. It is important to mention that this 5-6ms delay also includes overhead
by the transport layer and a time it takes to do a context switch. This means that our
plugin can be used to implement real-time multimedia applications.

5.5.2 Processed buffers per time interval

25000 T T T T

20000 | .

15000+ 1

10000 + .

5000 .

0 2000 4000 6000 8000 10000

Figure 5.6: Different miss values depend on the value of MTU

The x axis illustrates the MTU value, y axis shows the number of missed buffers per certain time
interval.

80

Desktop computer with high performance

In this setup, we use two pipelines illustrated in Figure [5.2] running on the same
Desktop machine described in Table[5.1] We found that our plugin has a problem
handling a multimedia stream with a very low MTU. Figure 5.7 shows that lower
MTU values mean a higher miss count by the consumer. On the vertical axis we
illustrate the number of missed buffers for each second, shown on the horizontal
axis. We have performed the test using a video with a duration of 180 seconds.

100

80
40
20
0
0 50 100 150 20

100 0

(a) MTU =28 (b) MTU = 1400
(c) MTU = 6000 (d) MTU = 10000

Figure 5.7: Missed data segments with different values of MTU property

The x axis illustrates the video duration while the y axis shows the number of missed buffers in certain
time.

The default MTU value of the riph264pay packetizer is 1400 bytes, while the
minimal is 28 bytes. Figure and Figure [5.8a] show the miss ratio is too high
while using these MTU values. This fact prevents us from transmitting packetized
H264 encoded video on the same machine, but also from sharing it using TCP
connections. As seen in the figures, we would loose too many buffers while using
these MTU values, because the receiver would not have enough time to detect the
memory change of the sent buffer. We have managed to send good quality video
stream starting with the values of MTU 6000 and higher.

81

Figure [5.6] shows the impact of MTU size on the number of missed buffers by
a consumer. We have measured the number of missed buffers in the video sample
of 180 seconds. We have constructed this graph based on measurements with the
following MTU values: 250, 500, 1000, 1400, 1800, 2500, 4000, 6000 and 10000
bytes.

100 120

100

0

0 50 100 150 200 0 50 100 150 200

(a) MTU = 1400, buffer size = 22 500 bytes (b) MTU = 1400, buffer size = 55 000 bytes
Figure 5.8: Number of missed data segments with size of the shared buffer

The x axis illustrates the video duration while the y axis shows the number of missed buffers in certain
time.

Maximum size of a shared buffer In this part, we inspect whether the maximum
size of the shared buffer in TRAMP influences the miss ratio at different MTU
values. We have run all of the experiments with a buffer size of 22,500 bytes.
In the second run we have doubled the buffer size to 55,000 bytes and run all
measurements again. We found out that the miss ratio is approximately within the
same range. We provide Figure [5.8| where we compare two runs with MTU set to
1,400 bytes but with a different buffer size. We have chosen to present this specific
value because it is the default MTU value of the rtph264pay element.

Desktop computer with low performance

In this part of the evaluation, we try to find out whether performance of the hardware
has an impact on the number of reads missed by the consumer. We have re-run all
the experiments with the same values on different hardware. Figure shows that
the number of missed buffers decreases with the speed of the processor.

5.5.3 CPU/Memory load

We have separately evaluated the source element and sink element of our plugin
with respect to the CPU and memory load.

82

160

140

120

100

80

60

40

20

0
0 50 100 150 200 0 50 100 150 200

(a) MTU = 1400, High performance node (b) MTU = 1400, Low performance node

6000

0
0 50 100 150 200

(c) MTU = 28, High performance node (d) MTU = 28, Low performance node

Figure 5.9: Number of missed data segments - comparing nodes with different
performance capabilities

The x axis illustrates the video duration while the y axis shows the number of missed buffers in certain
time.

CPU load

We have evaluated the CPU load on the Desktop computer running Fedora described
above. Figure shows the CPU load of the consumer who is replicating the data
for the other node in the network.

We can observe that an element in the role of a producer uses around 10%
of the processor’s resources. This 10% is mostly consumed by the memcpy call
responsible for copying GStreamer buffers into shared memory segments. This
measurement shows that the producing element does not cause very high CPU load.

One of the cores is constantly using 100% of the resources. That is caused by
the implementation of the source element which is constantly checking for memory
change inside the infinite loop. TRAMP does not currently have any mechanism
to asynchronously notify the consumer about any processes of the incoming data
buffer. Therefore naive pooling for memory change inside an infinite loop is the
only choice for now. Implementation of a solution which would notify the consumer

83

CPU History

|] V)
‘ ‘

e e = ——— = =
W v 7ax oz sox cru3 7.0 cPus 1022
crus 00 crus 40 cru7 1000% T crus sox

Figure 5.10: CPU load of the consuming/replicating process

about any processes is left for future work.

Memory load

Memory and Swap History

Memory Swap
767.3MB (9.7%) of 7.7 GB Obytes (0.04) of 7.5 GB

Figure 5.11: Memory load of the consuming/replicating process

We have not found any issues regarding the design or the implementation of our
plugin when it comes to memory usage. Figure[5.11]illustrates the memory load of
the consuming process which also acts as a replicator. The graph also includes the
memory load by TRAMP daemon. We have measured the memory load using the
gnome-system-monitor. Memory usage was constant during the whole experiment.
All checks performed by the valgrind did not report any memory leaks.

5.5.4 Comparison with the UDP plugin

audio/x-raw, ... >
Node #1 (===~~~ latency == 0.5 m§ ———————— | Noderz
" 7
N, s
N //
A /
Ky s
N\ s
. s y
latency ~= 3 ms latency ~=0.5ms /
N P
~ - audiofx-raw, ..
\\ /} 7
\\ J’/
Y //
N /
¥
x
Node #3 ()

Figure 5.12: Distribution tree built with TRAMP

84

In this subsection, we present the results of our experiment described in Subsec-
tion[5.4.5] Figure shows the network traffic of Node #2 during the experiment,
while Figure [5.10]shows the CPU load of Node #2. Both figures demonstrate that
the distribution tree is built by a TRAMP daemon.

We have measured the corresponding network and CPU loads of Node #1 and
Node #3 and their bandwidth correspond to the Figure[5.13]

In the case of the UDP Plugin, the stream is broadcasted using UDP directly.
That means we have managed to deliver data with lower latency by building a
distribution tree. A distribution tree that has been built is shown in Figure[5.12]

This means that our plugin can deliver real-time data within deadlines in situa-
tions where UDP protocol would be inefficient and consume too much bandwidth.

BO0.0 KB/

—_— e — e . —
400K/

48008/
320K/

160048/

00k

)
@ Receiving 672.6 KiBfs @ Sending 672.5 KiB/s
Total Received 18.4 GiB Total Sent 683.2 MiB

Figure 5.13: Network history of the consumer - replicator

5.5.5 User friendliness

In this Subsection, we present a couple of pipeline setups which can be easily
built using our multimedia plugin. By presenting these examples we point out
that an application programmer with little knowledge of the GStreamer framework
can easily write distributed multimedia applications. Thanks to the GStreamer
command line tools, it is possible to construct and run a pipeline using a single
shell command. That means an end-point user can interact with the TRAMP Data
Exchanger in a number of various ways with no need to compile any code. Changing
the behavior of the pipeline is as easy as modifying the property of a chosen element
or adding/removing an element to/from the pipeline.

Setup 1

In the first setup we prove that our plugin can play multimedia content on several
machines in real-time. This setup includes three nodes. The first node is the node
where the video file is located and serves as a producer. The other two nodes are in
the role of consumers - the second node playing the video stream, the third node
playing the synchronized audio stream.

85

We illustrate the setup in Figure [3.T]and present the pipelines in Listing[5.1]

Listing 5.1: GStreamer pipelines used in Setup #1
// Node #1 providing other nodes with data

$ gst—launch —1.0 filesrc location=/input_movie.avi ! decodebin
name=dec ! trampsink label=videostream dec. ! audioconvert !
audioresample ! trampsink label=audiostream

// Node #2 playing video stream
$ gst—launch —1.0 trampsrc label=videostream ! videoconvert !
autovideosink

// Node #3 playing audio stream
$ gst—launch —1.0 trampsrc label=audiostream ! autoaudiosink

During the development, we have used this setup to test the TRAMP Data
Exchanger’s ability to handle multimedia data. We have also managed to use this
setup as a simple broadcasting solution. We managed to connect other machines
to this setup resulting in decreased latency because of the distribution tree built by
TRAMP.

Running this setup using a command line is just one way to construct these
pipelines. In case more functionality is needed, a separate C program can be linked
with the shared library of our plugin and GStreamer.

Setup 2

In order to present more interactive example, in the second setup we present a
simple video conferencing program built using our system.

In this setup, we connect two personal computers. The first one is the producer
recording the video input using a web camera. The second node receives this stream
and plays it to the user or saves it to a file. Once the TRAMP issue mentioned in
Subsection [3.5.3]is resolved, they can subscribe to each other’s multimedia stream
and create a fully functional video conference possibly with more nodes interacting.

Listing[5.2] shows how video and audio streams recorded on the first node can
be saved to a file in real-time on the other node.

Listing 5.2: GStreamer pipelines used in Setup #2

// Node #1 recording audio/video stream and providing it for the
consumers

$ gst—launch —1.0 v412src ! "video/x—raw, format=(string)I420, width
=320,height=240,framerate=(fraction)25/1" ! queue ! mux.
autoaudiosrc ! audioconvert ! "audio/x-raw,rate=44100,channels
=2" ! queue ! mux. avimux name=mux ! trampsink

// Node #2 receiving the stream and saving it as an .avi file

86

$ gst—launch —1.0 trampsrc ! filesink location=file.avi

5.6 Discussion

In the previous section, we have presented the results of our experiments. We have
fulfilled the goals we set up in the first section of this chapter.

Goal1 We have tested our multimedia plugin with various types of multimedia
content and we have managed to simultaneously play this content on several ma-
chines in the real-time. We have managed to share multiple different multimedia
streams including real-time audio and video content. We identified issues that
need to be solved to send encoded and packetized multimedia content and we have
addressed the most important one in Subsection[5.4.2] Resolving this issue is left
for future work.

By sharing various types of multimedia streams, we help to evaluate TRAMP
Data Exchanger with the real multimedia data. As of today, it has been tested with
non-multimedia content only, therefore using multimedia data during an evaluation
is beneficial for the development of this data sharing platform.

Goal 2 We have evaluated the latency overhead which is within the range of
100ms, which fulfils our requirements for multimedia applications. When sending
non encoded multimedia streams, we have managed to handle more than 6Mbit/s
bitrate, which is sufficient for transmitting high-quality video streams. We have
managed to achieve these results with the hardware presented in Table

We have evaluated the CPU and memory load of both sink and source elements
while producing, consuming and replicating data. These values were within the
acceptable range and we have not experienced any unexpected behavior causing
bad performance.

Goal 3 We have listed two examples of the GStreamer pipeline with the usage
of our plugin. We have shown that the GStreamer framework allows us to modify
the pipeline on the command line. That makes it easier to test and evaluate the
TRAMP Data Exchanger. We have also stated several additional advantages of using
GStreamer like time-stamping or automatic generation of GUI for a pipeline. Since
pipeline design gives us the power to create endless number of pipeline variations,
we claim that supporting TRAMP in this framework makes TRAMP easier to use.

Goal4 We have evaluated our plugin on two operating systems - Fedora release
20 (Heisenbug) and OS X Mavericks. Even though both of these systems are UNIX
based, they differ in a high number of properties. Since we have focused on identify-
ing design and performance issues, evaluation of our plugin on Windows operating

87

system and mobile platforms is left for future work. During the implementation,
we have used libraries and tools which are available for these platforms. Therefore
adding support for these operating systems is not difficult.

Goal 5 We compared the GStreamer TRAMP plugin to the UDP plugin because
they both deal with the same task while using different underlying protocols. The
task is to efficiently deliver data from one pipeline to another one. We have used the
scenario with three connected nodes. We presented how latency-based distribution
trees are built per data segment in order to decrease latency. We have verified the
functionality of TRAMP data replication by inspecting CPU and network load while
playing an audio stream.

88

Chapter 6

Conclusions

In this chapter, we conclude our work and discuss the results we achieved. In
Section [6.1] we present our contributions. In Section [6.2] we discuss possible
improvements that are left for future work.

6.1 Contribution

We have designed and implemented a tool for handling multimedia content in a
distributed environment. The main goal of our work was to integrate data sharing
platform with multimedia framework in order to provide application programmers
with efficient development tool for implementing distributed multimedia applica-
tions. We have analysed several data sharing platforms and multimedia frameworks
and picked those that fulfilled our requirements presented in Section[I.3] We have
chosen the TRAMP Data Exchanger as an underlying framework for providing data
in a distributing environment and GStreamer as a multimedia framework which
wraps the functionality of this data sharing platform.

The most important result of our work is a GStreamer plugin for the TRAMP
data sharing platform. We aimed to make it easier for an application programmer to
create distributed multimedia applications using TRAMP and allow them to take
advantage of valuable features of GStreamer at the same time. During the whole
development, we kept in mind that wrapping the functionality of TRAMP into the
multimedia framework should not decrease its performance or other features like
portability.

We have implemented two versions of this plugin. The first one is the simple
implementation of our design making it possible to share real-time multimedia
streams between several machines. The second implementation aims to support
advanced features of GStreamer. Currently, we have not managed to fix all of the
TRAMP Data Exchanger issues. This restricted us to successfully test and evaluate
the first implementation only.

By designing and implementing this solution, we have helped to reveal rele-
vant issues and bugs in the TRAMP Data Exchanger program which is still being

89

developed. In Section [3.5] we have described and analysed these issues and of-
fered possible solutions. We have fixed some of those issues in the TRAMP Data
Exchanger implementation.

The TRAMP Data Exchanger is currently being developed and has not yet
been tested as part of a multimedia application. We have made it possible to
easily test the TRAMP Data Exchanger with different types of multimedia streams
and managed to send real-time video and audio streams using this platform while
keeping latency overhead under 100ms. We have managed to share multimedia
streams using our plugin at different bit rates up to 6Mbit/s. We have demonstrated
that when using our plugin, an application programmer can take advantage of
latency-based distribution trees that are built by the TRAMP Data Exchanger. That
allows application programmers to share multimedia streams in scenarios where
low latency is required and using latency-based distribution trees is more efficient
than broadcasting using the UDP protocol.

6.2 Future work

There are two categories of problems that are left for future work. The first category
includes the problems and fixes in the TRAMP Data Exchanger. The second
category consists of problems with multimedia plugin itself.

TRAMP Data Exchanger The only fatal problem is addressed in Subsection[5.4.2]
that is the number of processed buffers per time interval. Since this problem has not
yet been fixed, it did not allow us to use our plugin with compressed and packetized
streams and only allowed us to test our platform with uncompressed multimedia
data causing increased bandwidth as described in the Evaluation chapter.

Other issues that need to be fixed are mostly minor problems that would allow
better performance or allow our system to be used in even more use cases. Rebal-
ancing a distribution tree in case of latency change would significantly increase
the performance and overall user experience. It would also solve the problem
addressed in Subsection [3.5.3|making it possible to create a fully functional video
conference where two users subscribe to each others video streams as described in
our evaluation.

TRAMP GStreamer plugin Once these TRAMP Data Exchanger issues are
fixed, implementation of the plugin supporting more GStreamer features will be
possible. What is left for future work is completing the details of our second
implementation including the support for dynamic negotiation and various types of
GStreamer events and queries.

90

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Documentation: Vlc modules loading. https://wiki.videolan.org/
Documentation:VLC_Modules_Loading/, October 2012. [Online;
accessed 22-February-2014].

Hacker Guide/How To Write a Module. https://wiki.videolan.
org/Hacker_ Guide/How_To_Write_a_Module/, 2013. [Online;
accessed 23-February-2014].

J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: distributed shared
memory based on type-specific memory coherence. SIGPLAN Not., 25(3):168—
176, February 1990.

Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The midway
distributed shared memory system. Technical report, Pittsburgh, PA, USA,
1993.

Robert D. Bjornson. Linda on distributed memory multiprocessors. PhD
thesis, New Haven, CT, USA, 1993. UMI Order No. GAX93-29333,

J. Dean Brock, Rebecca F. Bruce, and Marietta E. Cameron. Changing the
world with a raspberry pi. J. Comput. Sci. Coll., 29(2):151-153, December
2013.

Nicholas Carriero and David Gelernter. The s/net’s linda kernel. ACM Trans-
actions on Computer Systems (TOCS), 4(2):110-129, 1986.

Python Software Foundation. Python programming language. https://
www.python.org/. [Online; accessed 29-November-2013].

Python Software Foundation. Tuples and sequences. https:
//docs.python.org/2/tutorial/datastructures.html#
tuples—and-sequences. [Online; accessed 29-November-2013].

Eric T Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces: Principles,
Patterns and Practices. Addison-Wesley Professional, 1999.

David Gelernter. Generative communication in linda. ACM Trans. Program.
Lang. Syst., 7(1):80-112, January 1985.

91

https://wiki.videolan.org/Documentation:VLC_Modules_Loading/
https://wiki.videolan.org/Documentation:VLC_Modules_Loading/
https://wiki.videolan.org/Hacker_Guide/How_To_Write_a_Module/
https://wiki.videolan.org/Hacker_Guide/How_To_Write_a_Module/
https://www.python.org/
https://www.python.org/
https://docs.python.org/2/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/2/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/2/tutorial/datastructures.html#tuples-and-sequences

[12]

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy. Memory consistency and event order-
ing in scalable shared-memory multiprocessors. SIGARCH Comput. Archit.
News, 18(2S1):15-26, May 1990.

Hans Vatne Hansen, Francisco Veldzquez-Garcia, Vera Goebel, and Thomas
Plagemann. Efficient data sharing for multi-device multimedia applications. In
Proceedings of the Workshop on Multi-device App Middleware, Multi-Device
"12, pages 2:1-2:6, New York, NY, USA, 2012. ACM.

Raj Jain. The art of computer systems performance analysis. John Wiley &
Sons, 2008.

Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release consistency
for software distributed shared memory. In Proceedings of the 19th Annual
International Symposium on Computer Architecture, ISCA *92, pages 13-21,
New York, NY, USA, 1992. ACM.

V. Krishnaswamy, S. Ahuja, N. Carriero, and D. Gelernter. The architecture
of a linda coprocessor. SIGARCH Comput. Archit. News, 16(2):240-249, May
1988.

Kai Li. Shared virtual memory on loosely coupled multiprocessors. PhD
thesis, New Haven, CT, USA, 1986. AAI8728365.

The Linux man-pages project. Top(l) man page. http://man7.org/
linux/man-pages/manl/top.1.html, September 2002.

The Linux man-pages project. Kill(2) man page. http://man7.org/
linux/man-pages/man2/kill.2.html} September 2013.

The Linux man-pages project. Malloc(3) man page. http://man7.org/
linux/man-pages/man3/malloc.3.html, December 2013.

The Linux man-pages project. Memcmp(3) man page. http://man7l
org/linux/man—-pages/man3/memcmp. 3.html, March 2013.

The Linux man-pages project. Memcpy(3) man page. http://man7.org/
linux/man-pages/man3/memcpy.3.html, March 2013.

The Linux man-pages project. Read(2) man page. http://man7.org/
linux/man-pages/man2/read.2.html, February 2013.

The Linux man-pages project. Write(2) man page. http://man7.org/
linux/man-pages/man2/write.2.html} January 2013.

The Linux man-pages project. Valgrind(1) man page. http://man7.org/
linux/man-pages/manl/valgrind.l.html, April 2014.

92

http://man7.org/linux/man-pages/man1/top.1.html
http://man7.org/linux/man-pages/man1/top.1.html
http://man7.org/linux/man-pages/man2/kill.2.html
http://man7.org/linux/man-pages/man2/kill.2.html
http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/memcmp.3.html
http://man7.org/linux/man-pages/man3/memcmp.3.html
http://man7.org/linux/man-pages/man3/memcpy.3.html
http://man7.org/linux/man-pages/man3/memcpy.3.html
http://man7.org/linux/man-pages/man2/read.2.html
http://man7.org/linux/man-pages/man2/read.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man1/valgrind.1.html
http://man7.org/linux/man-pages/man1/valgrind.1.html

[26]

[27]

(28]

[29]

[30]

(31]

David L. Mills. On the accuracy and stablility of clocks synchronized by the
network time protocol in the internet system. SIGCOMM Comput. Commun.
Rev., 20(1):65-75, December 1989.

The GNOME Project. Gobject — the base object type.
https://developer.gnome.org/gobject/unstable/
gobject-The-Base—-0Object-Type.html, 2005.

Steve Baker Richard John Boulton, Erik Walthinsen et al. GStreamer Plu-
gin Writer’s Guide (1.2.3). http://gstreamer.freedesktop.org/

data/doc/gstreamer/head/pwg/pwg.pdfl [Online; accessed 23-
December-2013].

Andrew S Tanenbaum and Maarten Van Steen. Distributed systems, volume 2.
Prentice Hall, 2002.

Wim Taymans, Steve Baker, Andy Wingo, et al. GStreamer Application De-
velopment Manual (1.2.3). http://gstreamer.freedesktop.org/
data/doc/gstreamer/head/manual/manual .pdf. [Online; ac-
cessed 23-December-2013].

GStreamer Team. Gstreamer: open source multimedia framework. http:

//gstreamer.freedesktop.orqg/. [Online; accessed 04-November-
2013].

93

https://developer.gnome.org/gobject/unstable/gobject-The-Base-Object-Type.html
https://developer.gnome.org/gobject/unstable/gobject-The-Base-Object-Type.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/pwg.pdf
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/pwg.pdf
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/manual.pdf
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/manual.pdf
http://gstreamer.freedesktop.org/
http://gstreamer.freedesktop.org/

94

Glossary

API Application Programming Interface.

CPU Central Processing Unit.

DBUS Desktop Bus.

DSM Distributed Shared memory.

HTTP Hypertext Transfer Protocol.

MTU Maximum transmission unit.

RPC Remote procedure call.

RPM Red Hat Package Manager.

RTP Real-time Transport Protocol.

SHM Shared memory.

SMTPE Society of Motion Picture & Television Engineers.
TCP Transmission Control Protocol.

TRAMP TRAMP Real-time Application Mobility Platform.
UDP User Datagram Protocol.

V4L2 Video4Linux.

95

96

Appendix A

Deployment

A.1 Compiling RPM packages

In order to easily use and test our GStreamer plugin, it should be possible to easily
install it in the operating system.

We have created two RPM packages - the tramp-data-exchanger, and the
gstreamer-plugins-tramp package, so the project can be easily installed and used
on any RPM-based Linux distribution. These include for example Fedora, Red Hat
Linux, Mandriva and SUSE Linux.

By creating RPM packages, we wanted to prove that the system can be packaged
and used on a personal computer. Creating other formats such as .deb and .exe is
possible, but it is out of the scope of this paper.

RPM package tramp-data-exchanger contains TRAMP Data Exchanger and
installs two important command line utilities.

* trampd - TRAMP Data Exchanger Daemon used to start a DSM daemon
process

* shm-clear.sh - Bash script used to clear unused DSM data segments on the
machine

RPM package gstreamer-plugins-tramp is a package which installs shared li-
braries so we can use our elements in the GStreamer console pipeline as shown in
Listing It is packaged using RPM and autotools. It also contains header files
needed to compile C program with the usage of our plugin.

97

Listing A.1: Running GStreamer TRAMP plugin

machine 1 $ gst—launch filesrc ! ogg—demuxer name=t ! vorbis—
decoder ! trampsink label=tramp_label t. ! theora—decoder !
video—sink

machine 2 $ gst—launch trampsrc label=tramp_label ! audio_sink

A.2 Installation

We can install RPM files on any RPM-based Linux distribution. For instance on
Fedora, we can install the system by adding a repository and installing gstreamer-
plugins-tramp. Yum takes care of dependencies such as tramp-data-exchanger and
installs the plugin as shown in Listing[A.2]

Listing A.2: Installing TRAMP GStreamer plugin on Fedora

rpm —import http://janvor.at. ifi.uio.no/JAN-VORCAK—-GPG-KEY

yum—config—manager —add—repo http://janvor.at. ifi.uio.no/tramp—
repo

yum install gstreamer—plugins—tramp

A.3 Usage

In order to use TRAMP GStreamer plugin, you just need to connect trampsink and
trampsrc elements to the pipeline as shown in Listing

If these two processes are run on different machines, we need to make sure that
TRAMP Data Exchanger is running. It can be executed with trampd command.

98

Appendix B

Source code

The source code of the improved version of TRAMP Data Exchanger can be
downloaded as shown in Listing [B.1]

Listing B.1: Downloading our version of TRAMP Data Exchanger

$ wget http://janvor.at. ifi.uio.no/tramp—daemon. tar
$ tar —xvpf tramp—daemon. tar
$ cd tramp_data_exchanger

In order to fetch the source code of our GStreamer plugin, use the commands
from Listing[B.2]

Listing B.2: Fetching the source code of GStreamer TRAMP plugin

$ http://janvor.at. ifi.uio.no/gst—plugin.tar
$ tar —xvpf gst—plugin. tar
$ cd gst—plugin/src

99

	Acknowledgement
	Abstract
	Introduction
	Background
	Motivation
	Requirements
	Outline

	Background and Related Work
	Munin
	Linda
	TRAMP Data Exchanger
	Application Component API
	Internal messages
	Multimedia content
	Architecture of TRAMP Data Exchanger

	GStreamer
	Foundations
	Elements
	Plugins
	Pads
	Properties
	Communication
	Capabilities negotiation types
	Capabilities negotiation process
	Renegotiation
	Structure of GStreamer elements

	VLC media player

	Design
	Goals
	Data propagation framework
	Multimedia framework
	Overview
	GStreamer
	VLC
	Choosing the multimedia framework

	Detailed design
	TRAMP plugin
	Architecture overview
	TRAMP GStreamer elements
	Labels
	Caps negotiation
	Communication between pipelines
	Proxy implementation
	Data replication
	Using multiple TRAMP Source elements

	Analysing TRAMP Data Exchanger
	Updating peers with inconsistent data
	Rebalancing distribution trees
	Subscribing to the data segment that is not yet published
	Copying memory to the shared data segment

	Implementation
	Overview
	Implementation details

	Evaluation
	Evaluation goals
	Evaluation approach
	Evaluation factors
	Node specifications
	Network speed
	Maximum buffer size of TRAMP Data Exchanger

	Metrics
	Latency
	Processed buffers per time interval
	CPU load
	Memory load
	Comparison with the UDP plugin

	Results
	Latency
	Processed buffers per time interval
	CPU/Memory load
	Comparison with the UDP plugin
	User friendliness

	Discussion

	Conclusions
	Contribution
	Future work

	Bibliography
	Glossary
	APPENDICES
	Deployment
	Compiling RPM packages
	Installation
	Usage

	Source code

