

i

Abstract

The concept of Service Oriented Architecture, and its most common implementation method

Web services, has not seen widespread use on wireless mobile systems and smart devices.

NATO seeks to incorporate these communication standards, and military research and

development groups aim to utilize Commercial Off-The-Shelf devices because of cost and

versatility. Android is one of the largest open-source operating systems for smart devices, but

lacks native support for the SOAP protocol. SOAP is the backbone protocol of Web services,

but has a large overhead due to its XML structure.

This thesis expands the third-party SOAP library ksoap2-android with the possibilities of using

different transport protocols other than HTTP/TCP and using compression to reduce the size

of SOAP messages. The additional transport protocols are UDP and AMPQ, and the

compression tools added are gzip and EXIficient, an XML-specific tool that implements the

Efficient XML Interchange format. The expanded ksoap2-android library was used in a Web

service client application installed on an unrooted Samsung Galaxy tablet using the 4.2.2

version of the Android operating system. The Web service client was tested against different

Web services with different transport and compression combinations, using a proxy server to

adapt the messages to a COTS server. The testing was done over both mobile broadband and

Wi-Fi to examine the effects the different combinations had on CPU load and battery usage

of the Android device, and the network load.

The testing showed that while EXIficient compressed slightly better than gzip, it caused a

much greater CPU load and battery usage that gzip, causing the expenses to absorb the profits.

Both UDP and the AMPQ implementation RabbitMQ performed better than HTTP, especially

when focusing on achieving a higher goodput. This thesis concluded that using gzip together

with RabbitMQ is the better option when it comes to reducing network overhead while

simultaneously maximizing battery lifetime of reliable SOAP communication on an Android

device.

ii

iii

Preface

This master thesis is written at the Department of Electrical Engineering of Bergen University

College (HIB) in collaboration with the Department of Informatics of University of Oslo (UIO)

in 2013/2014. The Norwegian Defence Research Establishment (FFI) provided the thesis topic.

I would like to use this opportunity to thank my academic supervisors at FFI, Dr. Frank Trethan

Johnsen and Cand.Scient. Trude Hafsøe Bloebaum, for guidance, support and suggestions

during the work with this thesis. Thanks also go to my supervisor at UIO, Prof. Dr. Josef Noll,

and my supervisor at HIB, Prof. Dr. Knut Øvsthus.

Furthermore, I would like to thank Birthe Marie Roang for her proofreading effort.

Bergen, May 2014

Dag Ove Eggum

iv

v

Table of Content

Abstract .. i

Preface ..iii

Table of Contents .. v

List of Abbreviations ... viii

1 Introduction ... 1

1.1 Motivation .. 2

1.2 Scenarios .. 2

1.3 Problem Statement .. 3

1.4 Scope and Technological Challenges ... 4

1.5 Research Method ... 5

1.6 Contribution ... 6

1.7 Outline of Remainder of Thesis .. 6

2 Background / State Of The Art .. 7

2.1 Android ... 7

2.1.1 An open-source mobile operating system .. 7

2.1.2 Android devices in military settings .. 9

2.1.3 Requirements specification .. 10

2.2 Web Services .. 11

2.3 Service Oriented Architecture .. 12

2.4 The SOAP Protocol ... 13

2.4.1 SOAP limitations.. 14

2.5 SOAP Optimizations: Compressing Data .. 15

2.5.1 General data compression .. 15

2.5.2 XML-specific compression. ... 16

2.5.3 Survey of comparisons of Binary XML solutions ... 18

2.6 SOAP Optimizations: Different Transport Method .. 19

2.6.1 Transport protocols for SOAP ... 19

2.6.2 Surveys of alternative transport protocols for SOAP 23

vi

2.7 SOAP Library for Android ... 24

2.8 Using a Proxy Server ... 24

3 Design & Implementation ... 25

3.1 Optimizing .. 25

3.1.1 Compression techniques... 25

3.1.2 Transport layer protocols ... 25

3.1.3 Proxy ... 26

3.2 Design ... 27

3.2.1 Main architecture ... 27

3.2.2 ksoap2-android ... 29

3.2.3 The Web service client .. 31

3.2.4 The proxy server ... 32

3.3 Implementation .. 34

3.3.1 Changes in ksoap2-android ... 34

4 Testing and Evaluation .. 43

4.1 Profiling for Android ... 43

4.1.1 Method profiling ... 44

4.1.2 Network traffic tool .. 45

4.2 Testing .. 47

4.2.1 Hello Web service ... 48

4.2.2 Upload NFFI data Web service .. 49

4.2.3 Exchange Picture Web service .. 50

4.3 Test Measurements.. 51

4.3.1 CPU load .. 51

4.3.2 Battery usage .. 51

4.3.3 Network load .. 51

4.4 Test Results .. 52

4.4.1 Test 1 & 2: Hello Web service ... 52

4.4.2 Test 3 and 4: Upload NFFI data Web service .. 53

4.4.3 Test 5 and 6: Exchange Picture Web service .. 54

4.4.4 Compression results .. 55

vii

4.5 Evaluation ... 56

4.5.1 CPU load .. 56

4.5.2 Battery usage .. 58

4.5.3 Network load .. 59

4.5.4 Goodput .. 61

4.5.5 Comparing gzip and EXIficient compression ... 64

4.6 Summary .. 66

5 Conclusion and Future Work ... 67

5.1 Conclusion .. 67

5.2 Future Work ... 68

References .. 69

Appendix A – Attempt at enabling SCTP on Android .. 75

viii

List of Abbreviations

Abbreviation Meaning

ADT Android Development Tools

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

APP Application

ASN.1 Abstract Syntax Notation One

BSD Berkeley Software Distribution

CEI Collective Environment Interpretation

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

DARPA Defence Advanced Research Projects Agency

DDMS Dalvik Debug Monitor Server

ECN Encoding Control Notation

EXI Efficient XML Interchange

FFI Norwegian Defence Research Establishment

GPS Global Positioning System

HIB Bergen University College

HTTP Hypertext Transfer Protocol

HSPDA High-Speed Downlink Packet Access

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IP Internet Protocol

ISO International Organization for Standardization

ITU-T International Telecommunication Union-Telecommunication

JAXB Java Architecture for XML Binding

JPEG Joint Photographic Experts Group

MEP Message Exchange Pattern

MIDP Mobile Information Device Profile

NATO North Atlantic Treaty Organization

NDK Native Development Kit

NFFI NATO Friendly Force Information

NIST National Institute of Standards and Technology

OS Operating System

PDF Portable Document File

PNG Portable Network Graphics

PNT Position, Navigation and Timing

PPP Point-to-Point Protocol

PSTN Public Switched Telephone Network

ix

R&D Research and Development

REST Representational State Transfer

RMI Remote Method Invocation

RPC Remote Procedure Call

SCTP Stream Control Transmission Protocol

SDK Software Development Kit

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

STANAG Standardization Agreement

TCP Transmission Control Protocol

TransApps Transformative Apps

UDP User Datagram Protocol

UIO University of Oslo

UMTS Universal Mobile Telecommunications System

URL Uniform Resource Locator

US United States

W3C World Wide Web Consortium

WAP Wireless Application Protocol

WBXML WAP Binary XML

WSDL Web Services Description Language

XML Extensible Markup Language

x

1

1 INTRODUCTION

Service Oriented Architecture (SOA) [2] is a software architectural design pattern for

constructing and deploying application functionality based on loosely coupled components

(see Section 2.3 for further information on SOA). Web services [3] is a much-used technology

for implementing applications based on a SOA, and achieving interoperability between

different systems (see Section 2.3 for further information on Web services).

Web services are usually realized on computer systems where processing resources and

network bandwidth1 are not a limitation, and haven’t been widely employed to mobile

systems that are characterized by less computational resources (e.g. small computing devices

and limited power), and wireless networks characteristics (e.g. low bandwidth, often ad hoc

and unreliable).

Even though computing power and memory capacities of mobile devices are constantly

improving, the dependency on battery power and wireless networks calls for improved

solutions when implementing SOA on wireless systems. To interact with Web services, SOAP

[4] messages are used (see Section 2.4 for further information on SOAP). SOAP relies on the

Extensible Markup Language (XML) Information Set [5] for its message format. XML has a

large information overhead, which is a challenge in the context of mobile devices.

Much research has been done and is still being conducted on how to enable Web services in

the world of mobile devices, mainly on how to compress the messages being sent, but also

looking at different ways of sending the messages. The topic is especially interesting for

military use, since SOA and Web services are among open and accepted standards that should

be used by the North Atlantic Treaty Organization (NATO) in the future [6].

1 Bandwidth has several meanings, dependent on the context. This thesis uses bandwidth in the computer-
networking context, where bandwidth is a measurement of data communication, expressed in bits, bytes or
kilobytes per second, unlike in signal processing where bandwidth is the difference between upper and lower
frequencies.

2

1.1 MOTIVATION

Today’s smart devices are like Swiss Army Knives of the information age. They can be used as

cell phones, video cameras, GPS trackers, sensors, and have the possibility to access the

Internet using mobile or Wi-Fi [7] technology. Compared to traditional military

communications equipment they are very light and handy, and easily carried by a single

person. It is also of importance that unlike traditional military information systems, they are

mass-produced and come at a reasonable price.

Android is an operating system (OS) for mobile platforms that has become very popular.

Unlike other major mobile OS’s like iOS and Windows Mobile, Android is an open source

platform. Being open source is important for both the Web service community and the

military research and development (R&D) community, in regards of information sharing and

security considerations. In addition, many different smart device companies employ Android,

meaning that Android platforms comes in a wide price range. These reasons make Android

an interesting choice when exploring the possibilities of enabling Web services on a mobile

device.

Recent trends within NATO seek to leverage the rapid pace of Commercial Off-The-Shelf

(COTS) platforms for military use. A challenge in this context is the security aspect of using

commercial platforms, both in regards to software and hardware. The United States (US)

military has large resources, enabling them to review and modify commercial platforms in

order to use them in accordance with their military security specifications. Smaller NATO

countries, like Norway, does not have as much resources, but are also experimenting (for

example with commercial software like Web services).

To reduce development time and cost to deploy systems, the goal is to make use of COTS

components when possible, integrating custom and military-off-the-shelf components as

necessary.

1.2 SCENARIOS

A military use-case scenario of using Web services on a mobile device could consist of using

the device’s sensors and mobility to report information back to a central or headquarter. As

NATO is moving into network-centric warfare the need for information sharing is growing.

In Simanta et al. [8] a set of prototypes are described which demonstrate the use of SOA in

tactical environments in which users are employing handheld devices to obtain situational

awareness data. Situational awareness can be described as the level of knowledge of a given

situation in regard of time and space, and how others and owns actions might affect it. In

3

military operations, more accurate and timely information enables decision makers to make

better decisions. This information can could be text, pictures, video, map annotations,

observations etc.

Another scenario would be to use the GPS receiver in devices to enable Blue Forces Tracking,

a military term for providing military commanders and forces with location information about

friendly (and sometimes hostile) military forces. In NATO, the colour blue typically denotes

friendly forces. A Blue Force Tracking system could be as simple as a handheld device

periodically sending location data back to base using Web services, not even requiring a

response or acknowledgement.

NATO Friendly Force Information (NFFI) is a standard for Blue Forces Tracking, developed for

use in Afghanistan. NFFI is an XML-based NATO standardized agreement, and consists of a

message definition and message protocols [9]. Enabling Web services on a mobile device

would enable sending standardized NFFI messages using COTS equipment, for example a

smart phone.

1.3 PROBLEM STATEMENT

Web services have not seen widespread use on mobile devices. While being mobile has many

advantages, it also has drawbacks like dependency on battery power and the need of a

wireless network. Especially the battery power can be problematic, and solutions to provide

more effective Web services (as reducing the size of exchanged data) can save power usage.

Reducing the vendor cost of using privately owned mobile links is also an important aspect.

When developing an effective app2 for mobile devices many aspects need consideration. In

this thesis, the focus will be on how to most efficiently handle and send SOAP messages using

compression techniques and various transport protocols, and isolate this perspective

separate from other mobile device challenges.

The two main parameters to be examined are bandwidth usage and battery consumption.

Bandwidth usage is important in a military setting, since good mobile coverage and high

transmission rates are rarely the case in military operations. In addition, sending data over

the mobile network often comes with an economic cost. Battery usage is equally important,

since a soldier out in the field has to focus on other things than constantly recharging his

device.

2 App is short for application, often used in the context of mobile applications.

4

1.4 SCOPE AND TECHNOLOGICAL CHALLENGES

Many papers and theses on how to enable or optimize Web services on mobile platforms

exist. In Johnsen et al. [10] potential gains from replacing the Hypertext Transfer Protocol

(HTTP) [11] and the Transmission Control Protocol (TCP) [12] with alternative transport

protocols for Web services in limited capacity networks were investigated, and in Johnsrud’s

thesis [13] different XML compression techniques were tested on a mobile device in order to

reduce the size of SOAP messages.

The focus of this thesis is on how a combination of using different compression algorithms

and a different transport protocol instead of HTTP/TCP may improve the battery life time and

bandwidth usage of a mobile device employing Web services.

This thesis uses an Android tablet as mobile

platform for Web services. One important

reason for choosing Android is that it has

become the dominant operating system for

mobile smartphones (Figure 1.1), and is

growing in the tablet market.

One of the self-imposed limitations of this

thesis is that the Android device is unrooted3.

This is because rooting the device would

make it harder to use in military settings,

because of security issues.

A challenge when it comes to deploying and

testing Web service functionality on an

Android device is that the official Android API

(Application Programming Interface) does

not offer a SOAP library, which is essential for Web services communication (for more on

SOAP and Web services see Section 2.2). A third-party SOAP library therefore needs to be

included.

This thesis focuses on aspects of the technical possibilities related to SOAP on the Android

platform. Though security issues need to be addressed in a production system, security

concerns are beyond the scope of this thesis.

3 Android rooting is the process of allowing users of smartphones, tablets, and other devices running the
Android mobile operating system to attain privileged control (known as "root access") within Android's sub-
system.

Figure 1-1 Smartphone market share Q3 2013 [1]

5

1.5 RESEARCH METHOD

There exist several scientific approaches for the computer science discipline. In Denning et al.

[14] the authors define three main scientific approaches for the computer science discipline:

theory, abstraction and design. These approaches all follow an iterative process, but the

process steps differ from approach to approach.

The theory approach is based on mathematics, and consists of the following four stages: 1)

Characterize and define the objects of study, 2) form hypothesized theorems of relationships

between the objects, 3) determine the truth of each relationship by means of proofs, and 4)

interpret the results.

The abstraction approach is based on the experimental scientific method, and consists of the

following four stages: 1) Form hypothesis, 2) construct a model and make predictions, 3)

design, accomplish and measure experiments, and 4) analyse the results.

Finally, the design approach is based on engineering. This process also consists of four stages:

1) Perform requirements analysis, 2) derive a specification based on the requirements, 3)

design and implement the system, 4) test the system. In the engineering approach the

hypothesis is that, the system fulfils the specification and thereby meets the requirements.

This thesis follows the design approach. Section 1.4 (Scope and Technological Challenges) and

Chapter 2 (Background / State Of The Art) cover the first step of performing the requirement

analysis; whereas the second step of deriving a specification is stated in Section 2.1.3

(Requirements specification). The design and implementation of the system is included in

Chapter 3 (Design and Implementation), and the results of testing comes in Chapter 4 (Testing

and Evaluation).

6

1.6 CONTRIBUTION

This thesis aims to contribute to the ongoing effort to optimize SOAP communication,

specifically for use on smart devices with Android. The main part of this contribution will be

to evaluate using alternative transport mechanisms, as well as different compression

techniques, up against the bandwidth usage and battery usage. The goal is to recommend a

path or solution for supporting SOAP on Android.

In order to facilitate the above-mentioned goal, a third party SOAP library is used as the basis,

and expanded with the possibility for different transport mechanisms and compression

techniques.

The resulting library will be given back to the open source community in the spirit of open

source programming.

1.7 OUTLINE OF REMAINDER OF THESIS

Chapter 2 covers an introduction to Android, Service Oriented Architecture, SOAP, Web

services, different transport solutions and compression techniques, and a third party SOAP

library for Android.

Chapter 3 describes the technical solution of this thesis, and design choices made in order to

support the goal of the thesis.

Chapter 4 presents profiling tools, the test scenarios and finally presents the results.

Chapter 5 consists of the conclusion, and suggestions for future work.

7

2 BACKGROUND / STATE OF THE ART

Military R&D centres have investigated the possibility of using smart devices in military

settings for years, and Android devices are no exception.

XML is used to define the entire suit of Web services standards. Optimizing XML has been a

matter of research for many years, since XML is recognized by much overhead/metadata. The

benefits of XML include being both human-readable and machine-readable, and can be used

for documents as well as representing arbitrary data structures.

This chapter presents Android, the operating system used in this thesis, as well as an

introduction to Service Oriented Architecture, Web services and SOAP. Different transport

solutions for SOAP are described, in addition to a short survey of compression techniques

focusing on compressing XML. At the end of this chapter, a third party SOAP library for

Android is presented.

2.1 ANDROID

Android is an operating system for mobile platforms, which has become in widespread use

the last few years.

2.1.1 An open-source mobile operating system

Android, Inc. was founded in 2003, aiming to develop “smarter mobile devices that are more

aware of its owner’s location and preferences” [15]. In 2005 Google acquired Android Inc.,

and in 2007 the Open Handset Alliance (a consortium of technology companies, including

Google) announced “the development of Android, the first truly open and comprehensive

platform for mobile devices” [16]. Android can be described as a complete set of software for

mobile devices; it delivers an operating system, middleware and key mobile applications.

Unlike other major mobile OS’s like iOS and Windows Mobile, Android is an open source

platform. Although based on other open source technologies, like Linux and Java, Android

differs slightly from these in various ways. Figure 2-1 shows the system architecture of

Android.

Android is built on a Linux kernel, but does not include a full set of Linux utilities. The reason

for choosing Linux was the memory and process management Linux offers, in addition to the

8

permission-based security model and support for shared libraries. Another reason was that

Linux already was open source.

Android’s libraries, Bionic libc, is a derivation of the C library BSD (Berkeley Software

Distribution), optimized for embedded use. The reason for developing a different version of

C library code was size, CPU speed and licencing reasons. It is not compatible with the

common GNU C Library (glibc) [17].

Android’s virtual machine, in which the applications run, is called Dalvik. Android applications

are written in Java, and then compiled to byte code before they are converted to Dalvik-

compatible .dex files at build time. Dalvik is a custom-made virtual machine. The Java used in

Android is not entirely similar to the Standard Edition Java Platform, instead it uses a subset

of Apache Harmony [18], an open source Java implementation developed by the Apache

Software Foundation.

Figure 2-1 Android System Architecture [17]

9

2.1.2 Android devices in military settings

The US military has already started to incorporate Android smart devices. In the US Army they

have specified interfaces and infrastructure for PNT-enabled (Position, Navigation and

Timing) applications on COTS devices running Android, enabling them to communicate with

military-grade PNT devices. Prototype implementations have successfully demonstrated

Android applications using PNT data from external positioning service receivers [19].

Another example from the US is Transformative Apps (TransApps). This is a DARPA (Defence

Advanced Research Projects Agency) funded program whose goal is to develop a range of

militarily relevant software applications to enhance the operational-effectiveness of military

personnel on (and off) the battlefield. Evaluation of 50+ tactically relevant applications

operating on numerous Android-powered platforms has been conducted by the National

Institute of Standards and Technology’s (NIST) [20].

An interesting example from Norway is the CEI-system (Collective Environment

Interpretation) [21], a "social tactical reporting system" written for Android, intended to

strengthen collective understanding and interpretation of situations. The Norwegian Defence

Research Establishment (FFI) developed it to demonstrate smartphone technologies and

related technologies with relevance for the Norwegian Defence. The system consists of an

Android mobile application, a server, a web-application and a small scripting language.

The CEI-application is a map application intended for smartphones and tablets. The

application allows users to share positions and observations with text, pictures and other

elements in a uniform way to other users of the CEI-service. It has been tested by the

Norwegian Home Guard on several occasions, most recently at “Øvelse Hovedstad” in

September 2013. The application has interesting functionality, which can be useful for

different parts of the Norwegian Defence, especially to demonstrate the usefulness and the

possibilities of mobile technology. The usability of such a system increases proportionally

with the battery life span of the mobile unit.

Users of the Android CEI-application can share positions and observations to the rest of the

CEI-system, using several device sensors to provide accurate information: Compass, GPS,

accelerometer, Wi-Fi, mobile network location and camera. The CEI-server exposes an API

based on Representational State Transfer (REST), which the clients can reach over HTTP to

share information. REST is an alternatively architectural style for distributed hypermedia

systems in regards to SOAP and Web services [22].

Among the drawbacks of using REST instead of SOAP and Web services is a lack of

interoperability against NATO standards such as NFFI, forcing the use of proprietary solutions.

Enabling the possibility of using SOAP on Android devices could increase the interoperability

of Android against other NATO systems and standards.

10

2.1.3 Requirements specification

From the discussions in Section 1.4 (Scope and Technological Challenges), and up until now

in this chapter, a list of requirements can be identified. The resulting system must be able to

use relevant open standards, as well as be compatible with COTS services. Four premises can

also be stated from 1.4; the platform should be Android, the platform should be unrooted,

the network load should be minimized and battery lifetime should be maximized. The goal of

this thesis is to implement library support for Android that fulfils the demands stated in Table

2-1 System requirements. The rest of this chapter presents relevant information used as basis

for designing a solution (for the design, see chapter 3).

Property Implication Importance

Support SOAP on Android Further develop existing library Premise

Minimize network load Evaluate optimization techniques Premise

Maximize battery lifetime Evaluate battery usage of optimization
techniques

Premise

Maintain security and
integrity

Device unrooted Premise

Support COTS services Must be able to connect to COTS server Requirement

Support relevant open
standards

Use Web services specifications Requirement

Table 2-1 System requirements

11

2.2 WEB SERVICES

As mentioned in the introduction, a Web service is a technology that can be used for

implementing clients and services based on a SOA, achieving interoperability between

different systems (see Section 2.3 for more details of SOA).

The Reference model for service oriented architecture 1.0, OASIS standard, October 2006 [2]

defines a service as:

“A service is a mechanism to enable access to resources, where the access is provided using

a prescribed interface and is exercised consistent with constraints and policies as specified by

the service description.”

When a service is accessible over the Internet, it is called a Web service. Figure 2-2 shows a

simple illustration of a Web service. The Web Services Glossary [23] defines a Web service as:

 “A Web service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web service in a manner prescribed by

its description using SOAP-messages, typically conveyed using HTTP with an XML serialization

in conjunction with other Web-related standards.”

Figure 2-2 A Web service

12

2.3 SERVICE ORIENTED ARCHITECTURE

The Reference model for service oriented architecture 1.0, OASIS standard, October 2006 [2]

defines SOA like this:

“Service Oriented Architecture is a paradigm for organizing and utilizing distributed

capabilities that may be under the control of different ownership domains. It provides a

uniform means to offer, discover, interact with and use capabilities to produce desired effects

consistent with measurable preconditions and expectations.”

Figure 2-3 Service Oriented Architecture [3]

Figure 2-3 shows a typical illustration of SOA. The essential part of Web services is the

relationship between the service provider and the service requestor (the client). A service’s

actual implementation is often hidden from the service requestor. What is shown is

information and behaviour models exposed through the service interface, and the

information required by service requestors to determine whether a given service is

appropriate for their needs. The interaction between the service requestor and the service

provider is the essential defining element of Web services [24].

The service provider offers a service, accessible over the Internet using common protocols

like HTTP and XML to facilitate the interaction. The service provided could be application-

13

components like currency conversion, weather reports, language translation, database

queries, as well as connecting existing software; exchanging data between different

applications and different platforms.

In some cases, the service requestor wanting to use a Web service does not know the location

of it. Before the service requestor can find a specific Web service offered by a service provider,

the service provider must publish the Web service (see Figure 2-3). The Web service is

published as a XML document called Web Services Description Language (WSDL) [25]. A WSDL

is written in XML, and it specifies the location of the service and the operations (or methods)

the service exposes.

When the service requestor knows the location and parameter of the service (found in the

WSDL), it can request to use the Web service offered. The interaction between the service

requestor and the service provider is in most cases facilitated by HTTP transportation of XML-

encoded messages, using the SOAP protocol.

2.4 THE SOAP PROTOCOL

The tutorial Unravelling the Web services web: an introduction to SOAP, WSDL, and UDDI

presents a simple introduction to the SOAP protocol [26]. SOAP [4] is an XML-based protocol

for messaging and remote procedure calls (RPCs). Rather than define a new transport

protocol, SOAP works on existing transports, such as HTTP, Simple Mail Transfer Protocol

(SMTP) [27], and Advanced Message Queuing Protocol (AMQP) [28]. At its core, a SOAP

message has a very simple structure: an XML element with two child elements, one of which

contains the header and the other the body. The header contents and body elements are

themselves XML. Figure 2-4 shows a SOAP envelope’s structure.

Figure 2-4 SOAP envelope

14

At the basic functionality level, SOAP works as a simple messaging protocol. SOAP messages

are in Web service context predominantly carried by HTTP requests and responses. Figure 2-

5 shows a SOAP message carried by HTTP.

Figure 2-5 SOAP message carried by HTTP

The HTTP headers are above the SOAP:Envelope element. The POST header shows that the

message uses HTTP POST, which web browsers also use to submit forms. Following the POST

header is an optional SOAPAction header that indicates the messages’ intended purpose. If a

response follows the request, the HTTP response would be of type text/xml, as declared in

the Content-Type header, and could contain a SOAP message. Alternatively, the recipient

could deliver the response message later (asynchronously).

2.4.1 SOAP limitations

SOAP relies on the XML format. XML defines a set of rules for encoding documents in a format

that is both human-readable and machine-readable, and is a platform-independent and well-

supported technology. Nonetheless, the very feature that makes Web services and SOAP

universally usable, namely the adoption XML, may make it difficult to reach the performance

levels required by large-scale processes and applications.

A major performance bottleneck resides in SOAP message processing. SOAP communication

produces considerable network traffic, and causes higher latency than competing

technologies. This problem applies especially to wireless communication networks with their

15

relatively low bandwidth and high latency. Another issue is that generation and parsing of

SOAP messages and their conversion to-and-from in-memory application data can be

computationally very expensive. [29]

2.5 SOAP OPTIMIZATIONS: COMPRESSING DATA

Since SOAP messages are large and contain much overhead, compressing these messages is

an obvious way to reduce the size of the messages. This, in turn, may make SOAP

communication more effective. There are roughly two different ways to compress SOAP

messages, general data compression and XML-specific compression.

2.5.1 General data compression

General data compression involves encoding information using fewer bits than the original

representation. The compressed data is then decompressed, yielding the original data.

Compression is often divided into lossless (no information lost in the compression/

decompression) and lossy (discarding some of the data). Lossless compression exploits

repeating patterns or redundant information in order to express the same information in a

more efficient way. Lossy compression is used for minimizing the size of data when the

consequence of losing some of the information is not critical, for instance compressing music

or pictures. Lossy compression is not relevant in the SOAP and XML context.

2.5.1.1 Deflate Compression (gzip, zlib)

Deflate [30] is a popular data compression method that was originally used in the well-known

Zip [31] and gzip [32] software. It has since been adopted by many applications, among them

the HTTP protocol, the PPP (Point-to-Point compression control protocol) [33], PNG (Portable

Network Graphics) [34], and Adobe’s PDF (Portable Document File) [35]. Deflate was

developed by Philip Katz as part of the Zip file format. Both the Zip format and the Deflate

method are in the public domain, which allows implementations such as Info-ZIP’s Zip and

Unzip to appear on a number of platforms.

The most notable implementation of Deflate is zlib [36], a portable and free compression

library designed and implemented to be free of patents and licensing requirements. This

16

library implements the zlib and gzip file formats, which are at the core of most Deflate

applications, including the popular gzip software [37].

The gzip/zlib compression is very popular, and most computer platforms have implemented

it. Gzip provides better compression rate (40-50%) and freedom from patented algorithms

[38]. Because of these properties, gzip will be used in this thesis.

2.5.2 XML-specific compression.

XML-specific compression may use binary XML as basis. Binary XML is a more compact way

of representing XML. A basic example of binary XML could be a semicolon-separated string.

The XML document in Figure 2-6 as expressed in binary XML would be:

 ;Dag;Ove;Eggum;h136577@stud.hib.no;Hetlevikstraumen 5;5173;Loddefjord.

Figure 2-6 Binary XML

This would be a more compact way to represent the data, but it would not be self-describing

in the way well-formed XML is. Unless both the sender and receiver of the binary XML

representation agree on how to convert it back to valid XML, interoperability is lost. One of

the major challenges for binary XML has been to create a single, widely adopted standard for

binary XML.

One of the advantages of binary XML is that it is possible to work on it without decompressing.

Below is a short description of some of the most important standards and experimental

solutions.

17

2.5.2.1 Efficient XML Interchange

Efficient XML Interchange (EXI) [39] is a standard for XML representation that was designed

to work well for a broad range of applications. The EXI format is derived from the AgileDelta

Efficient XML format, and is built on open standards [40]. The World Wide Web Consortium

(W3C) adopted it as a W3C Recommendation on 10 March 2011.

EXI is schema4 "informed", meaning it can utilize available schema information to improve

compactness and performance, but does not depend on accurate, complete or current

schemas to work. EXI also offers a set of fidelity options, each of which independently enables

or disables the format's capacity for the preservation (or preservation level) of a certain type

of information item. This is useful for applications that do not require the entire XML feature

set and would prefer to eliminate the overhead associated with unused features [39].

Disabling the preservation of information may affect interoperability with other systems.

2.5.2.2 Fast Infoset

Fast Infoset [41] is a standard for XML representation published by the International

Organization for Standardization/International Electrotechnical Commission (ISO/IEC) and

International Telecommunication Union-Telecommunication Standardization Sector (ITU-T)

using binary encodings. These binary encodings are specified using the Abstract Syntax

Notation One (ASN.1) notation and the ASN.1 Encoding Control Notation (ECN) [42].

2.5.2.3 XMill

XMill [43] is a compression tool specially targeted at compressing XML, and its

implementation is a result of work done at the AT&T Labs Research in New Jersey, USA, in

1999. XMill incorporates and combines existing compressors in order to apply them to

heterogeneous XML data: it uses zlib, the library function for gzip, a collection of data type

specific compressors for simple data types, and user defined compressors for application

specific data types [44].

4 An XML schema is a description of a specific type of XML document, expressed in terms of constraints on the
structure and content of documents of that type.

18

2.5.2.4 WAP Binary XML (WBXML)

WBXML [45] defines a compact binary representation of XML. The binary XML content format

is designed to reduce the transmission size of XML documents, allowing more effective use

of XML data on narrowband communication channels. It was developed by the Wireless

Application Protocol (WAP) Forum and is now maintained by the Open Mobile Alliance.

2.5.3 Survey of comparisons of Binary XML solutions

The 2007 study An Analysis of XML Compression Efficiency [46] tested a multitude of ways to

compress XML, focusing on the compressed file sizes and execution times. Among its

conclusions were that in most instances a general-purpose compressor should be used,

although if maximum parsing and compression speed was needed an XML-specific

compressor might be useful. The results indicated that binary format was best applied to

small files.

In New Approaches for XML Data Compression of 2012 two algorithms for XML documents

compression were proposed: Schema-aware algorithm and Hybrid algorithm [47]. These

were compared to WBXML, XMill and EXI, considering the metrics compression rate and

compression time. Among the conclusions were that EXI reached the best compression rate.

The paper Why Use Efficient XML Interchange Instead of Fast Infoset of 2013 presents EXI and

Fast Infoset (FI) as the best XML compressors [48]. The paper endeavoured to evaluate the

performance of both compressors based on parameters such as memory utilization, CPU

usage time, compression ratio, decompression ratio, and the compressed file sizes. The

authors concluded that EXI schema informed mode compression delivers superior results

compared to other FI compression technique; “EXI is better performer than FI.” Because of

these results, this thesis will test EXI as the XML-specific compressor.

19

2.6 SOAP OPTIMIZATIONS: DIFFERENT TRANSPORT METHOD

The most common way to transport SOAP messages is using HTTP, but other transport

methods may be used as well.

2.6.1 Transport protocols for SOAP

One of the characteristics of SOAP is neutrality; SOAP enables exchange of SOAP messages

using any transport protocol, such as HTTP, SMTP, TCP, or UDP. The formal set of rules for

carrying a SOAP message within or on top of another underlying protocol for the purpose of

exchange is called a binding. The SOAP Protocol Binding Framework [49] provides general

rules for the specification of protocol bindings; the framework also describes the relationship

between bindings and SOAP nodes that implement these bindings.

2.6.1.1 SOAP-over-HTTP/TCP

HTTP/TCP [11, 12] is the most

commonly used transport protocol for

sending SOAP messages (Figure 2-7).

An important reason for this is that all

Internet browsers and servers support

HTTP. TCP is one of the core protocols

of the Internet protocol suite (IP) [50],

and is so common that the entire suite

is often called TCP/IP.

Before data can be sent over a TCP

connection, a three-way handshake

between a client and a server has to

occur. This is to ensure that both parties acknowledge the TCP connection and are ready to

send/receive data. TCP transmission is ordered, the packets are numbered so that the

destination host can rearrange the packets according to sequence number. TCP also ensures

retransmission of lost packets, checks for error, and offers flow and congestion control.

The flow control limits the rate a sender transfers data to guarantee that the receiver is not

overwhelmed by packets, while the congestion control tries to balance how much data is sent

to avoid congesting (exceeding) the network capacity.

IP

Hardware interface OSI 1-2 (Data link,
Physical)

TCP

HTTP

OSI 3 (Network)

OSI 4 (Transport)

OSI 5-7 (Application,
Presentation, Session)

SOAP

Figure 2-7 SOAP-over-HTTP/TCP

20

2.6.1.2 SOAP-over-SMTP

Using SMTP [27] to exchange SOAP

messages (Figure 2-8) is mentioned

more often as an illustration of the

possibility to use different transport

protocols, than it is actually used. In

SOAP-over-SMTP binding, SOAP

messages are piggybacked on SMTP

packets.

2.6.1.3 SOAP-over-TCP

SOAP-over-TCP [12] (Figure 2-9) differs

from SOAP-over-HTTP in that the

SOAP message is stored directly in the

data part of the TCP packet, not

including the HTTP metadata. There is

no official standard for binding SOAP

directly with TCP, but various

specifications have been developed

[51].

Figure 2-8 SOAP-over-SMTP

IP

Hardware interface OSI 1-2 (Data link,
Physical)

TCP

SMTP

OSI 3 (Network)

OSI 4 (Transport)

OSI 5-7 (Application,
Presentation, Session)

SOAP

IP

Hardware interface OSI 1-2 (Data link,
Physical)

TCP

SOAP

OSI 3 (Network)

OSI 4 (Transport)

OSI 5-7 (Application,
Presentation, Session)

Figure 2-9 SOAP-over-TCP

21

2.6.1.4 SOAP-over-UDP

The User Datagram Protocol (UDP) [52]

is another core transport protocol used

on the internet, but it is a much

simpler protocol than TCP, using a

simple transmission model with much

fewer transport mechanisms. UDP has

no three-way handshake like TCP, and

offers no guarantee of delivery,

ordering of packets or duplicate

protection.

SOAP-over-UDP (Figure 2-10) is an

OASIS Standard intended to send SOAP envelopes in UDP user datagrams, supporting one-

way MEP (message-exchange patterns), request-response MEP and multicast transmission

[53].

Benefits from using UDP over TCP are that UDP does not require a connection to be

established before sending a packet, reducing setup time associated with sending a message.

UDP datagrams have less overhead than TCP packets, making UDP more suitable for networks

with low bandwidth available, or transmitting time critical data (such as real-time

voice/video). UDP supports multicasting, which opens up the possibility to create push5-

based or publish/subscribe-based Web services [54].

2.6.1.5 SOAP-over-SCTP

The Stream Control Transmission

Protocol (SCTP) [55] is a reliable

transport protocol operating on top of

a connectionless packet network such

as IP (like TCP or UDP does) (Figure

2-11). Despite being designed to

transport PSTN (Public Switched

Telephone Network) signalling

messages over IP networks, SCTP is

capable of broader applications. It

5 Push describes a style of Internet-based communication where the request for a given transaction is initiated
by the publisher or central server.

Figure 2-11 SOAP-over-SCTP

IP

Hardware interface OSI 1-2 (Data link,
Physical)

UDP

SOAP

OSI 3 (Network)

OSI 4 (Transport)

OSI 5-7 (Application,
Presentation, Session)

IP

Hardware interface OSI 1-2 (Data link,
Physical)

SCTP

SOAP

OSI 3 (Network)

OSI 4 (Transport)

OSI 5-7 (Application,
Presentation, Session)

Figure 2-10 SOAP-over-UDP

22

offers functionality from both TCP and UDP, in that it is message-oriented like UDP, but

ensures reliable, in-sequence transport of messages with congestion control like TCP [56].

SOAP-over-SCTP is an interesting approach, but it is not standardized.

2.6.1.6 SOAP-over-AMQP

AMQP [28] is an open standard for

passing messages between

applications. It is an application layer

protocol designed to support a variety

of messaging applications and

communication patterns, and assumes

an underlying reliable transport layer

protocol such as TCP. The Advanced

Message Queuing Protocol (AMQP)

Technical Committee is working

towards defining AMQP as a

ubiquitous, secure, reliable and open

Internet protocol for message

handling [28].

In [10] AMQP was described as a protocol which could be suitable for Web services in

disruptive environment, due to its reliability when facing network disruptions. This solution

is not an official standard yet, but a specification is in the pipeline [57].

2.6.1.7 Problems with SOAP-over-HTTP/TCP

As mentioned earlier, using SOAP-over-HTTP/TCP is the most common and standard way

when using Web services. TCP performs well in traditional networks where packet losses

occur mostly because of congestion. However, networks with wireless and other lossy links

also suffer from significant losses due to a higher Bit Error Rate (BER) and handoffs.

The congestion avoidance mechanism in TCP assumes packet losses are always due to

congestion. However, in a wireless environment, packet losses can also be due to

disconnections and transmission errors. The congestion control and avoidance algorithms in

TCP results in degrading the end-to-end performance of TCP in such networks [58]. This

problem increases when using TCP in mobile Ad-hoc networks, adding link failures due to

mobility [59].

IP

Hardware interface OSI 1-2 (Data link,
Physical)

TCP

AMQP

OSI 3 (Network)

OSI 4 (Transport)

OSI 5-7 (Application,
Presentation, Session)

SOAP

Figure 2-12 SOAP-over-AMQP

23

TCP requires a connection to be established before any data can be transmitted. As data is

received, acknowledgement packets are sent. This lead to additional overhead, which may

not be justifiable when bandwidth and client power are limited, and reliable transmission of

packets is not required.

SOAP messages that carry only small amounts of data can finish transmitting while the TCP

connection is in its slow start phase, resulting in poor utilization of the available bandwidth.

This problem is more severe in wireless environments due to high round trip time.

2.6.2 Surveys of alternative transport protocols for SOAP

A benchmark 6 of the performance of different underlying transport protocols for SOAP in

wireless environments was presented in On the Performance of Web Services [54]. Here it

was shown that SOAP-over-HTTP and SOAP-over-TCP are not well suited for wireless

applications, and lead to high latency and high transmission overhead. Using SOAP-over-UDP

instead was studied, and results showed that SOAP-over-UDP provided a throughput up to

six times higher than SOAP-over-HTTP in wireless settings. Using UDP instead of HTTP/TCP

also reduced transmission overhead by more than 30%.

Johnsen et al.’s study [10] also investigated using alternative transport protocols to convey

SOAP messages in order to both reduce the bandwidth requirement and meet the challenges

related to frequent disruptions in wireless network characterized by low bandwidth, variable

throughput, unreliable connectivity and energy constraints. This study considered these

protocols relevant for testing at that time: TCP, UDP, SCTP, and AMQP. Among the results

was that UDP performed well compared to the other protocols with small payloads for large

bandwidths. It also stated that SCTP was a promising new transport protocol, performing

better than TCP in many cases. Based on these results this thesis will test the same protocols

used in [10] on Android.

6 A benchmark is in this context a test used to compare performance of hardware and/or software.

24

2.7 SOAP LIBRARY FOR ANDROID

The Android API does not contain a SOAP library for creating or interpreting SOAP messages,

meaning that a third-party library needs to be added for this. There exist several non-official

SOAP libraries aimed for working on Android (AndroidSOAP [60], WSClient++ [61], ksoap2-

android [62]), but as they often are created and maintained on a voluntary basis, some tend

to be outdated while others require payment to use. This thesis will use the SOAP library

provided by the ksoap2-android project [62] since it was actively maintained at the time of

choosing and also has been described in similar testing with SOAP on Android.

The ksoap2-android project provides a lightweight SOAP client library for the Android

platform [62]. It is a fork of the kSOAP2 library [63] optimized for the Android platform, but

also works on other platforms using Java. ksoap2-android provides an API for creating SOAP

envelopes in the XML format, thus making an Android application capable of interacting with

a Web service.

Future Information Communication Technology and Applications [64] proposes ksoap2-

android as an open source SOAP API with small footprint implementation of XML, aimed at

developing applications for the Android platform. ksoap2-android was also tested in Web

Services for Handheld Tactical Systems [8], where ksoap2-android was modified to support

UDP on the Android platform in order to transmit video data.

2.8 USING A PROXY SERVER

A proxy server is a system or an application situated between a client and a server, acting as

an intermediary node that relays traffic between the client and the server. Proxies add

structure and encapsulation to distributed systems, and are often used for caching data,

firewalling and adapting content. Proxies can also be used for adapting different types of

communication traffic to a COTS server, which is relevant for this thesis.

In IST-118 – SOA recommendations for Disadvantaged Grids in the Tactical Domain [65]

Johnsen et al. argue that proxies should be used to apply SOA;

“Recommendations from that group include employing optimizations such as removing the

dependency on end-to-end connections, addressing network heterogeneity, and reducing

the network traffic overhead of Web services. The group suggested introducing proxies to

implement these optimizations, in an attempt to provide a separation of concerns between

proprietary enhancements and COTS services and clients “

25

3 DESIGN & IMPLEMENTATION

This chapter presents the design and implementation of the Web service app created for

testing the ksoap2-android library on an Android unit.

3.1 OPTIMIZING
The design and implementation aim to meet the demands stated in Section 2.1.3

(Requirements specification). This thesis will test a combination of changing the transport

protocol and implementing compressing methods. The main objective of the testing is to

demonstrate ways to optimize the ksoap2-android library for use on mobile devices, fulfilling

the premise of supporting SOAP on Android as stated in the requirements specification. The

testing should measure the effects these changes have on the mobile device used for testing,

and the network load.

3.1.1 Compression techniques

The two compression methods chosen to compare against uncompressed transmission are

gzip and EXI. The reason for not including more compression tools is that many of them are

not adapted to the Android platform. Including gzip and EXI is linked to the premises of

minimizing network load and maximizing battery lifetime (see Section 2.1.3).

The reason for choosing gzip is that it is widely used for file compression and decompression,

and one of the most efficient general compression tools (see Section 2.5.1.1). Both Java and

Android have embedded classes for writing and reading compressed data in the gzip file

format.

The reason for choosing EXI is that it is one of the most prominent binary XML efforts to

encode XML documents in a binary data format, and has performed best in several

comparisons (see Section 2.5.3). EXI is not part of either Java or Android, and therefore has

to be added as a third-party library.

3.1.2 Transport layer protocols

The three SOAP transportation methods chosen for comparison are HTTP/TCP, SOAP-over-

UDP and SOAP-over-AMQP. SCTP would also be interesting to test, but as of the time of

writing, Android has not yet made it available in the official API [66]. Including SOAP-over-

26

UDP and SOAP-over-AMQP is linked to the premises of minimizing network load and

maximizing battery lifetime (see Section 2.1.3).

The reason for choosing HTTP/TCP is that it is the most common way of sending SOAP

messages. Since HTTP and TCP are in such widespread use on the Web, both Java and Android

has good support for them.

The reason for choosing SOAP-over-UDP is that it has been reported to give a higher

throughput and less transmission overhead than HTTP/TCP in wireless settings (see Section

2.6.2). UDP is also a very common protocol, and is supported in both Java and Android.

The reason for choosing SOAP-over-AMQP is that it could be suitable for use in disruptive

environments, and therefore is interesting to include. In this thesis, a third-party library will

be included for implementing SOAP-over-AMQP.

Initially, SCTP was supposed to be tested alongside the above-mentioned protocols. SCTP has

been successfully implemented as a third-party library on Android in experimental test cases

[67-69]. An attempt to do the same was done in this thesis as well, but with unsuccessful

results. Appendix A describes this attempt.

3.1.3 Proxy

Utilizing a proxy server is useful for providing a link between the provider and the consumer

of a service. A proxy server will be used in this thesis to enable the client to be able to connect

to the COTS server using the Web services specification, as stated in the requirements

specification. This approach was discussed briefly in Section 2.8.

27

3.2 DESIGN

The design is constructed to meet the requirements specification discussed in Section 2.1.3.

3.2.1 Main architecture

The WS Client is implemented as an Android app, running on a Samsung Galaxy Tab 2 (GT-

P5100). The Android version used in this thesis is 4.2.2. The tablet has the possibility to

transfer data over both mobile broadband and Wi-Fi. Figures 3-1 and 3-2 show the system

architectures for both transmission alternatives.

Figure 3-1 System architecture using mobile broadband

28

Figure 3-2 System architecture using Wi-Fi

The mobile network is provided by Telenor, in an area with mobile broadband a few

kilometres outside Bergen, Norway. The wireless router is a Jensen Air:Link 89300 LongRange

Extreme-N. The internet connection of the wireless router provides 25 Mbps download, and

5 Mbps upload.

The proxy server handles all the compression and use of different transport protocols, and

communicates with the Web service server in uncompressed HTTP. The Web services used

for testing are hosted on a Glassfish server. Both servers are installed on the same computer,

an ASUS Notebook N56V running Windows 8.1. Table 3.1 describes the hardware

specifications for the Android device and the computer hosting the servers.

Model Samsung Galaxy Tab 2 ASUS N56VZ

Processor Dual-core 1.0 GHz 4-Core 2.4 GHz

RAM 1 GB 8 GB

Storage 16/32 GB 750 GB

WLAN Wi-Fi 802.11 a/b/g/n, Wi-Fi Direct, dual-band, Wi-Fi
hotspot

Wi-Fi 802.11
b/g/n

HSDPA7 21 Mbps N/A
Table 3-1 Hardware specifications

7 High-Speed Downlink Packet Access (HSDPA) is an enhanced third-generation mobile-telephony
communications protocol, which allows networks based on Universal Mobile Telecommunications System
(UMTS) to have higher data-transfer speeds and capacity.

29

3.2.2 ksoap2-android

ksoap2-android is a lightweight SOAP client library for the Android platform. This thesis uses

version 3.0.0. It uses the XML parser kXML2 [70] to parse the SOAP messages. A parser is a

software component that takes input data and builds a data structure; in this case, kXML2

takes XML as its input and parses it to Java objects. kXML2 is a pull parser [71], which means

that is parses a document as a series of items which are read in sequence, only proceeding at

the user’s command. kXML is small, designed for constrained environments such as Applets,

Personal Java or MIDP (Mobile Information Device Profile) devices [70].

Figure 3-3 shows a simplified class diagram for ksoap2-android. The main class starts a Web

service call with creating a SoapEnvelope before it uses the method call in HttpTransportSE

to send the request. In the call method, an instance of the class ServiceConnection is created.

The instance of ServiceConnection creates a HTTP connection to the server hosting the Web

service. The response from the Web service is then parsed into the SoapEnvelope, from which

the main class then can collect the response. ksoap2-android contain many more classes and

is more complex, but this illustrates a basic Web service call.

Figure 3-3 Simplified Class Diagram of ksoap2-android

Despite being able to create and interpret SOAP messages, ksoap2-android is not a full SOAP

library, since it is missing several useful features. It does not support the WS-Addressing

standard [72]. WS-Addressing provides transport-neutral mechanisms to address a message

to a Web services. Instead of relying on network-level transport to convey routing

30

information, a message utilizing WS-Addressing includes routing data in a standardized SOAP

header. WS-Addressing helps identify Web service endpoints and secure end-to-end

endpoint identification in messages.

ksoap2-android does not support stub and skeleton code generation from a WSDL [25]

specification to Java code. “Stubs and skeleton” is a standard mechanism used in Java Remote

Method Invocation (RMI) [73] for communicating with remote objects. In a distributed

computing environment, a skeleton stands for a server side object, and stub stands for a client

side object, both participating in distributed object communication. The stub serializes the

client requests to a SOAP format message, according to the WSDL definition. This automatic

serialization is not supported in ksoap2-android and must therefore be done manually.

Both Android and ksoap2-android are missing the Java Architecture for XML Binding (JAXB)

[74]. JAXB allows Java developers to map Java classes to XML representations, but when using

ksoap2-android this must be done manually. This can cause extensive coding if the Java

classes to be mapped are large and complex.

These deficiencies are not necessarily a drawback for this thesis, since its goal is to make the

exchange of SOAP messages more effective.

31

3.2.3 The Web service client

The Web service client is an Android app running on a Samsung Galaxy tablet, using the

ksoap2-android library to send and receive SOAP messages. The app was created using

Android Development Tools (ADT) [75], a plugin for Eclipse [76]. The ADT/Eclipse version used

is build number v22.3.0-887826. Eclipse is an integrated development environment (IDE),

which is a software application that provides facilities and programming tools for software

development.

Android supports both HTTP and UDP, so no third-party programs were needed here. The

third transport method, AMQP, is not a part of the Android API and needed to be added. To

implement this RabbitMQ [77] was chosen. The RabbitMQ version used is version 3.2.3.

RabbitMQ is a messaging system based on the AMQP standard, written in Java. The reason

for choosing it was that it is free and open source, and was easy to implement in both the

app and the proxy server.

ksoap2-android originally only had the possibility to decode gzip-encoded responses. In this

testing the ability to also encode the requests was added using the gzip classes found

embedded in Java and Android. To add the choice of compressing according to the EXI

standard, EXIficient [78] was chosen. EXIficient is an open source implementation of the EXI

format written in the Java programming language, the version used is 0.9.2.

32

3.2.4 The proxy server

The proxy server is written in Java, using the IDE Eclipse, and provides a public IP address and

several ports for the Web service client to contact. The proxy server consists of a simple HTTP

server [79] from Oracle, as well as several UDP servers and message queues.

Figure 3-4 illustrates the role of the proxy server. When the proxy server receives a

compressed SOAP message from the client, the proxy server decompresses the message,

makes an uncompressed exchange with the Web service server, and compresses the

response before sending it back to the client. The horizontal lines represent the transition to

and from the wireless communication for both the client and the server.

Figure 3-4 The role of the proxy server

The reason for adding the proxy server between the Web service server and the Web service

client was to simplify the software coding when dealing with different transport protocols

and compression techniques, thus achieving interoperability between the client using

ksoap2-android and the Web service server. The proxy server ensures compatibility with the

COTS server, meeting the requirements specification in Section 2.1.3. A more detailed view

of how the proxy server works is illustrated in Figure 3.5.

33

Figure 3-5 Proxy server internals

The HTTP server listens for incoming HTTP connections from the Web service client. It relays

the SOAP requests and responses with the Web service server in uncompressed HTTP.

There are three UDP servers (one for each compression mode) listening on different ports in

the proxy server. They are constructed using Datagramsockets, which exchanges datagram

packets with Datagramsockets in the Web service client.

There are also three different message queues (one for each compression mode) in the proxy

server. The queues themselves are actually held by the instance of RabbitMQ installed on the

computer, but the code that uses these queues to publish and consume messages are part of

the proxy server.

To communicate with the Web service server all the different servers use a class

ProxyTransport, which takes a byte array as an input instead of a SOAP envelope.

ProxyTransport was created using HttpTransportSE as a template, and does the compression

and decompression, if any, and ultimately contacts the Web service.

34

3.3 IMPLEMENTATION

This section describes how the ksoap2-android was changed to match the test goals, and

shortly how the app was constructed. The complete code can be found in the data provided

together with this thesis.

3.3.1 Changes in ksoap2-android

The ksoap2-android library offers a Java API to create and read SOAP messages, without much

support for compression (it has some functionality to decode gzip), and send these over HTTP

to a Web service server. The basic SOAP call in ksoap2-android is illustrated in Figure 3-6: An

instance of the class HttpTransportSE is created with a given Uniform Resource Locator8 (URL),

and a method call to HttpTransportSE causes it to make a HTTP request to the Web service

server at the given URL, and modifies the SoapEnvelope with the Web service response. The

main thread creates the SoapEnvelope using other ksoap2-android classes.

Figure 3-6 HttpTransportSE

8 A uniform resource locator is a specific character string that constitutes a reference to a resource. An
example of a typical URL would be "http://www.vg.no/".

35

To expand the possibilities of transport methods and compression techniques three more

classes were added: HTTPTransport, UDPTransport and MQTransport. These were

constructed using the original HttpTransportSE as a template.

3.3.1.1 UDP implementation

The original ksoap2-android uses a HTTP/TCP connection to send the SOAP message to the

server. In order to implement the possibility to send SOAP over UDP, a class UDPTransport

was created, using HttpTransportSE as a template (see Figure 3-7).

Figure 3-7 Class UDPTransport

36

Instead of using ksoap2-android’s ServiceConnection to create a HTTP connection,

UDPTransport creates a UDP socket, which exchanges datagrams with the UDP sockets in the

proxy server. As illustrated in Figure 3-8 an Integer port is included in the call made from the

main thread, indicating what port to use. This is due to a design choice on the server side of

defining different UDP ports in regards of what compression is used.

Since UDP does not include header data the same way that HTTP does, the correct way would

be use WS-Addressing to include routing data in the SOAP header. Since neither Android nor

ksoap2-android supports WS-Addressing (see Section 3.2.2) assigning different ports is a

workaround to this challenge.

Figure 3-8 UDPTransport

37

3.3.1.2 RabbitMQ implementation

Tying RabbitMQ together with ksoap2-android was done in a similar way as with UDP. A class

MQTransport was created, using HttpTransportSE as a template (see Figure 3-9).

Figure 3-9 Class MQTransport

38

RabbitMQ is a message broker, meaning it accepts, stores, and forwards messages (see Figure

3-10). These messages are stored in what is called a message queue. A program that sends

messages to the broker is called a producer (P), and the program receiving the messages is

called a consumer (C). One advantage of using message brokers is that many producers can

send messages that go to one queue, and many consumers can try to receive messages from

one queue.

Figure 3-10 Message broker

In this thesis, the Web service client and the proxy server will both act as producers and

consumers, when exchanging SOAP messages. The message broker, RabbitMQ, is installed on

the same computer as the proxy server.

Figure 3-11 RabbitMQ

39

Instead of using the ksoap2-android’s ServiceConnection to create a HTTP connection,

MQTransport creates a connection (over TCP) to RabbitMQ. It then publishes the SOAP

message to the message queue, and waits for the response from the queue.

3.3.1.3 Gzip implementation

Gzip is supported both in the Java API and in the Android API. The original class

HttpTransportSE in ksoap2-android had support for decoding gzip if the Web service response

was gzipped, but lacked the functionality to encode request data with gzip. Including this

possibility consisted of adding a few programming lines in the newly created HTTPTransport,

UDPTransport and MQTransport.

Figure 3-12 MQTransport

40

3.3.1.4 EXIficient implementation

EXIficient is an open source implementation of the EXI format specification written in the Java

programming language. The EXIficient version used is 0.9.2, and was downloaded from [80].

Since EXIficient is written in Java, it was possible to run it on Android without any noteworthy

changes. However, the EXIficient library depends on Xerces, and Xerces initially gave some

problems for Android.

Xerces is Apache’s collection of software libraries for parsing, validating, serializing and

manipulating XML. The Xerces version that came with the EXIficient library did not work

properly on the Android platform (since Android and Java has diverged somewhat), therefore

a modified version of Xerces was needed. Luckily, a modified version already existed, and was

found at [81]. The modified ksoap2-android library of this thesis uses this version.

In order to implement the EXIficient library within ksoap2-android, a class called ExiJava was

created. This class handles the compression and decompression, and is called from the either

HTTPTransport, UDPTransport or MQTransport.

As stated in Section 2.5.2.1, the EXI format offers a set of fidelity options, each of which

preserves or abandons certain elements of the XML feature set, eliminating overhead

associated with unused features. In ExiJava, the fidelity option is set to the strict option,

meaning that namespace prefixes and comments are not preserved. This was done in order

to obtain a better compression result.

The resulting ksoap2-android class diagram (after adding the different compression

techniques to HTTPTransport, UDPTransport and MQTransport) can be found in Figure 3-13.

41

Figure 3-13 Resulting ksoap2-android class diagram

42

43

4 TESTING AND EVALUATION

This chapter describes the profiling tools available for Android, the test scenarios and finally

presents the results.

4.1 PROFILING FOR ANDROID

In software engineering, profiling is a form of program analysis that measures different

parameters of a software program. Common profiling parameters includes how much

memory is used, how much CPU time is used, frequency and duration of function calls et

cetera. Profiling is a way to aid program optimization.

Android has its own debugging tool used for software profiling called Dalvik Debug Monitor

Server (DDMS). It is integrated in the Eclipse IDE as well as included in the Android Software

Development Kit (SDK). DDMS is a useful tool for Android app developers, and provides port-

forwarding services, screen captures of the device, thread information, heap information,

processes, radio state information, and more. Figure 4-1 shows a typical DDMS screen in

Eclipse.

Figure 4-1 DDMS graphical front-end [82]

44

4.1.1 Method profiling

Method profiling is a means to track certain metrics about a method, such as number of calls

and execution time. To do this DDMS needs to be told when to start method profiling, and

when to stop. After the profiling DDMS will open a Traceview with the profiling information

collected. Traceview is a graphical viewer for execution logs, which can help debug an app

and profile its performance. Traceview visualizes the application in two panels: The Timeline

panel and the Profile panel.

In the Timeline panel (Figure 4-2), each thread’s execution is shown in its own row, with time

increasing to the right. Each method is shown in different colours. The thin lines underneath

the first row show the extent (entry to exit) of all the calls to the selected method.

Figure 4-2 DDMS Timeline panel [82]

The profile panel (Figure 4-3) shows a summary of all the time spent in a method. The panel

shows both the inclusive and exclusive times (as well as the percentage of the total time).

Exclusive time is the time spent in the method. Inclusive time is the time spent in the method,

and the time spent in any called functions.

45

Figure 4-3 DDMS Profile panel [82]

The method profiling described above provides very detailed information, which amounts to

even more if the same method call is performed several times. An alternative way of

measuring CPU load is to measure how much time a method in the program spends before it

finishes. This time can then be compared with running the same method with other

parameters (in our testing these parameters would be the different compression methods

and different transport methods).

4.1.2 Network traffic tool

Wireshark [83] is a network protocol analyser that can capture the traffic running on a

computer network, both wired and wireless. It is freely available as open source, and is

released under the GNU General Public License version 2. Wireshark has a graphical front-

end, plus some integrated sorting and filtering options (see Figure 4-4 and Figure 4-5).

46

Figure 4-4 Wireshark graphical front-end

Figure 4-5 Wireshark summary and graph illustration

47

4.2 TESTING

Three different Web services were created for testing purposes (see Sections 4.2.1 – 4.2.3 for

detailed descriptions). These Web services were created using the Netbeans IDE (version

7.1.2). Each different configuration of transport and compression mode in the Web service

client were tested against these three Web services, over both the mobile network and Wi-

Fi, giving six different tests:

 Test 1: “Hello Web service” over mobile network

 Test 2: “Hello Web service” over Wi-Fi

 Test 3: “Upload NFFI data Web service” over mobile network

 Test 4: “Upload NFFI data Web service” over Wi-Fi

 Test 5: “Exchange Picture Web service” over mobile network

 Test 6: “Exchange Picture Web service” over Wi-Fi

The reason for creating several Web services was to vary between large and small SOAP

messages, as well as having both XML and non-XML payloads. The testing was done under

normal conditions, as artificial packet loss or bad network connection were not added.

When UDP and RabbitMQ were used as the transport method during the testing, fabricated

routing data was included in the SOAP header of the request message, to simulate the use of

WS-Addressing.

In addition to the Web service testing, the size of the compressed files were measured in

order to compare the compression of gzip and EXIficient.

48

4.2.1 Hello Web service

In this Web service, the client sends a small request with a String “Name” to a Hello Web

service hosted on the Glassfish server, which replies with a String “Hello Name !”.

Figure 4-6 Hello Test

Figure 4-7 Hello request

Figure 4-8 Hello response

49

4.2.2 Upload NFFI data Web service

The data to be used in this test is a set of NFFI files (see Section 1.3 Scenario) used in a

simulated exercise by FFI. NFFI is an Interoperability Standard Interface in the XML format,

which may contain tracking, position, and status information about military units. The reason

for using this data is that it simulates what data might be sent in a real military setting using

Web services.

Figure 4-9: NFFI Test

The set consists of 20 different NFFI-files, which varies in size from 1 kB to 39 kB, and has a

mean size of 15.8 kB. The files were sent repetitively; after sending file number 20, file

number 1 was sent (and so on). Figure 4-10 shows the smallest file:

Figure 4-10 Small NFFI-file used in testing

50

4.2.3 Exchange Picture Web service

In this test a single JPEG [84] picture file (approx. 40kB), previously taken with the camera of

the Android device, is being sent back and forth between the client and the server for each

Web service call. The reason for sending a JPEG file is to test both ksoap2-android and the

compression techniques on non-XML data.

Figure 4-11 Picture Test

The test begins with the client getting the picture file from its storage, marshalling it into a

SOAP envelope (possibly compressing it) and sending it to the server. The server sends the

same picture data in the reply to the client. Upon receiving the reply, the client unmarshals

the data (decompressing if needed) into a new picture file, which it saves on the device

memory card. This procedure is then repeated for the duration of the test.

51

4.3 TEST MEASUREMENTS

The tests will measure differences in these three variables:

 CPU load caused by the different compression methods

 Battery usage

 Network load in the form of total amount of data sent over the network, and goodput9.

The tests will be done both over Wi-Fi and over the mobile network.

4.3.1 CPU load

Of the two methods discussed in Section 4.1.1 (using DDMS Method profiling versus

measuring how much time a method use) the second one was used in the test part of this

thesis. In these tests the marshalling 10 and unmarshalling 11 times was measured in

milliseconds, to give an impression of the CPU load of the different compression methods.

This choice was done because this method is simpler and still gives sufficient results for this

thesis. The compression time is included in the marshalling measurement, and the

decompression time is included in the unmarshalling measurement.

4.3.2 Battery usage

It is not practical to monitor the battery status continuously; instead, the battery level was

recorded before and after each test run. The battery levels was measured calling the battery

level programmatically from the Android system.

4.3.3 Network load

Wireshark (as described in Section 4.1.2) were used to monitor the wireless traffic generated

by the tests, measuring the total amount of data sent over the network.

9 Goodput is the number of useful information bits delivered by the network to a certain destination per unit
of time, in this thesis goodput is defined as how fast the exchange of SOAP envelopes are in megabits per
second (Mbps).
10 Marshalling is the process of transforming the memory representation of an object to a data format suitable
for storage or transmission.
11 Unmarshalling is the process of transforming data into the memory representation of an object.

52

4.4 TEST RESULTS

4.4.1 Test 1 & 2: Hello Web service

The Hello Web service was called 10 000 times for each configuration in each test, 60 000

calls in total.

 Test 1 - Mobile Network Test 2 - Wi-Fi

HTTP No c. gzip EXI No c. gzip EXI

Total Time (min) 61 56 60 6 6 9

Battery Drop (%) 3 3 3 0 0 1

Mean Marshall Time (ms) 12 21 31 12 15 27

Mean Roundtrip 12 Time (ms) 350 312 307 18 15 15

Mean Unmarshall Time ms) 6 2 15 4 3 11

Mean Call Time (ms) 368 335 353 34 33 53

Mbytes Transceived 16.95 15.23 13.72 16.92 15.21 13.69

Goodput (Mbps) 0.52 0.57 0.53 4.77 5.45 3.45

UDP No c. gzip EXI No c. gzip EXI

Total Time (min) 25 20 26 4 5 10

Battery Drop (%) 1 1 1 0 0 0

Mean Marshall Time (ms) 11 10 27 12 11 32

Mean Roundtrip Time (ms) 131 107 98 9 10 8

Mean Unmarshall Time (ms) 3 2 21 1 3 17

Mean Call Time (ms) 145 119 146 22 24 57

Mbytes Transceived 9.1 5.58 4.02 9.1 5.58 4.02

Goodput (Mbps) 1.29 1.55 1.2 7.12 6.54 3.17

RabbitMQ No c. gzip EXI No c. gzip EXI

Total Time (min) 30 25 25 5 5 9

Battery Drop (%) 1 1 2 1 0 0

Mean Marshall Time (ms) 15 15 33 11 16 33

Mean Roundtrip Time (ms) 154 134 105 10 9 9

Mean Unmarshall Time (ms) 1 2 11 3 1 6

Mean Call Time (ms) 171 151 149 24 26 48

Mbytes Transceived 12.77 9.2 7.91 12.6 9.19 7.87

Goodput (Mbps) 1.08 1.24 1.26 6.58 6.54 3.86
Table 4-1 Results from tests 1 & 2

12 Roundtrip time is in this thesis defined as the time the app spends on transmitting the data, waiting for
response, and reading the response.

53

4.4.2 Test 3 and 4: Upload NFFI data Web service

The Upload NFFI data Web service was called 10 000 times for each configuration in each test,

60 000 calls in total.

 Test 3 - Mobile Network Test 4 - Wi-Fi

HTTP No c. gzip EXI No c. gzip EXI

Total Time (min) 86 63 108 15 14 51

Battery Drop (%) 4 3 8 3 1 6

Mean Marshall Time (ms) 49 48 272 43 47 264

Mean Roundtrip Time (ms) 481 306 358 42 18 25

Mean Unmarshall Time ms) 2 2 14 5 3 8

Mean Call Time (ms) 512 356 644 90 68 297

Mbytes Transceived 266.93 46.26 42.1 264.5 45.92 41.82

Goodput (Mbps) 0.3 0.36 0.27 1.97 2.31 0.63

UDP No c. gzip EXI No c. gzip EXI

Total Time (min) 63 52 100 12 12 54

Battery Drop (%) 5 3 7 3 1 3

Mean Marshall Time (ms) 45 49 256 43 47 269

Mean Roundtrip Time (ms) 306 245 214 17 10 21

Mean Unmarshall Time (ms) 2 3 31 1 3 23

Mean Call Time (ms) 353 297 501 61 60 313

Mbytes Transceived 247.39 35.04 31.26 247.41 35.02 31.13

Goodput (Mbps) 0.51 0.61 0.29 2.73 2.73 0.6

RabbitMQ No c. gzip EXI No c. gzip EXI

Total Time (min) 55 40 79 12 12 57

Battery Drop (%) 4 3 7 1 1 4

Mean Marshall Time (ms) 47 50 292 45 49 277

Mean Roundtrip Time (ms) 269 173 157 22 13 47

Mean Unmarshall Time (ms) 2 3 11 1 2 7

Mean Call Time (ms) 318 226 460 68 64 331

Mbytes Transceived 264.01 40.47 36.29 259.92 40.04 36.21

Goodput (Mbps) 0.58 0.79 0.41 2.58 2.64 0.56
Table 4-2 Results from tests 3 & 4

54

4.4.3 Test 5 and 6: Exchange Picture Web service

The Exchange Picture Web service was called 5000 times for each configuration in each test,

30 000 calls in total.

 Test 5 - Mobile Network Test 6 - Wi-Fi

HTTP No c. gzip EXI No c. gzip EXI

Total Time (min) 84 80 136 17 18 77

Battery Drop (%) 4 6 8 1 2 5

Mean Marshall Time (ms) 75 105 645 77 93 640

Mean Roundtrip Time (ms) 801 795 1039 60 61 101

Mean Unmarshall Time (ms) 75 42 151 45 48 135

Mean Call Time (ms) 951 942 1835 182 202 876

Mbytes Transceived 613.18 460.33 456.42 610.1 456.92 452.99

Goodput (Mbps) 0.9 0.9 0.48 4.35 4.05 0.98

UDP No c. gzip EXI No c. gzip EXI

Total Time (min) 75 63 113 33 26 74

Battery Drop (%) 4 4 9 1 1 5

Mean Marshall Time (ms) 86 96 664 80 94 640

Mean Roundtrip Time (ms) 743 575 576 64 65 89

Mean Unmarshall Time (ms) 34 40 89 34 41 95

Mean Call Time (ms) 863 711 1329 178 200 824

Mbytes Transceived 576.87 429.87 425.58 585.23 433.03 426.36

Goodput (Mbps) 1 1.19 0.66 2.27 2.86 1.02

RabbitMQ No c. gzip EXI No c. gzip EXI

Total Time (min) 72 69 122 17 16 72

Battery Drop (%) 4 5 10 1 1 4

Mean Marshall Time (ms) 78 111 634 80 95 623

Mean Roundtrip Time (ms) 712 656 735 78 43 161

Mean Unmarshall Time (ms) 42 42 80 34 41 74

Mean Call Time (ms) 832 809 1449 192 179 858

Mbytes Transceived 608.45 453.51 450.81 599.49 446.34 447

Goodput (Mbps) 1.04 1.08 0.61 4.23 4.53 1.03
Table 4-3 Results from tests 5 & 6

55

4.4.4 Compression results

These compression results apply for using HTTP, when using UDP and RabbitMQ the original

file sizes are a few bytes bigger because of the simulated WS-Addressing header at

described in Section 4.2.

Hello Web service

File No Comp (bytes) gzip (bytes) gzip (%) EXI (bytes) EXI (%)

Request 336 199 59.2 128 48.5

Response 225 172 76.4 102 45.3
Table 4-4 Compression result of Hello Web service

Upload NFFI data Web service

File no No Comp (bytes) gzip (bytes) gzip (%) EXI (bytes) EXI (%)

1 878 562 64 481 54.8

2 944 618 65.5 540 57.2

3 3300 1171 35.5 1057 32

4 3406 1207 35.4 1091 32

5 5172 1962 37.9 1819 35.2

6 10310 2111 20.5 1864 18.1

7 19258 2541 13.2 2251 11.7

8 20498 2386 11.6 2142 10.4

9 20532 2945 14.3 2587 12.6

10 24128 2281 9.5 2070 8.6

11 24326 2166 8.9 1964 8.1

12 24450 2164 8.9 1974 8.1

13 24536 2558 10.4 2316 9.4

14 25920 3421 13.2 3102 12

15 28698 4236 14.8 3814 13.3

16 34166 4922 14.4 4469 13.1

17 36130 4099 11.3 3598 10

18 55070 6584 12 5886 10.7

19 55070 6496 11.8 5804 10.5

20 55070 6584 12 5886 10.7

NFFI Response 264 197 74.6 128 48.5
Table 4-5 Compression result of Upload NFFI data Web service

Exchange Picture Web service

File No Comp (bytes) gzip (bytes) gzip (%) EXI (bytes) EXI (%)

Upload 57195 42678 74.6 42000 73.4

Download 55188 41141 74.5 41041 74.4
Table 4-6 Compression result of Exchange Picture Web service

56

4.5 EVALUATION

The test results are not as concise as envisioned. Wireless networks are in their nature volatile,

and even when trying to create stable conditions for testing one is bound to experience

variations.

4.5.1 CPU load

The time spent on marshalling and unmarshalling was measured to give an impression of the

CPU load of the different compression methods. The following figures are based on the

results from mobile broadband testing, since the marshalling/unmarshalling times of mobile

broadband were relatively similar to the Wi-Fi results.

Figure 4-12 Combined Marshalling and unmarshalling Hello Web service

0

10

20

30

40

50

60

noComp gzip EXI noComp gzip EXI noComp gzip EXI

HTTP UDP MQ

ms

Combined marshalling and unmarshalling
Hello Web service

Mean Marshall Time Mean Unmarshall Time

57

Figure 4-13 Combined Marshalling and unmarshalling Upload NFFI data Web service

Figure 4-14 Combined marshalling and unmarshalling Exchange Picture Web service

From figures 4-12, 4-13 and 4-14 it is clear that the marshalling and unmarshalling times

increase when compressing/decompressing with EXIficient. This can be seen in all tests, but

is especially easy to see in the NFFI and Picture tests where the data amounts are greater.

This can be interpreted as EXIficient being more CPU intensive than using no compression or

gzip, since the CPU spends more time on marshalling and unmarshalling.

0

50

100

150

200

250

300

350

noComp gzip EXI noComp gzip EXI noComp gzip EXI

HTTP UDP MQ

ms

Combined marshalling and unmarshalling
Upload NFFI data Web service

Mean Marshall Time Mean Unmarshall Time

0
100
200
300
400
500
600
700
800
900

noComp gzip EXI noComp gzip EXI noComp gzip EXI

HTTP UDP MQ

ms

Combined marshalling and unmarshalling
Exchange Picture Web service

Mean Marshall Time Mean Unmarshall Time

58

4.5.2 Battery usage

Measuring the battery drop for the different configurations was difficult, and many calls had

to be done to see an effect on the battery. Another challenge was that it is not possible to

measure the battery level with decimals. The Android API only offers an Integer value of the

battery, making the ordeal more imprecise than wanted. There is no apparent way to

determine if a drop of 2% in battery level is in reality 2.0% or 2.9%.

Figure 4-15 illustrates the battery drop of all six tests combined, differencing between the

compression and transport parameters.

Figure 4-15 Combined battery level drop for all six tests

Figure 4-15 shows a clear trend of EXIficient using more battery than the No compression and

gzip options. The differences between No compression and gzip are small, compared with

EXIficient. The figure also shows that UDP and MQ generally drains less battery than HTTP

does.

0%

5%

10%

15%

20%

25%

30%

35%

noComp gzip EXI noComp gzip EXI noComp gzip EXI

HTTP UDP MQ

Combined battery level drop for all six tests

59

4.5.3 Network load

In the following figures, the total amount of data sent over the mobile network is presented

in percentages, combining the requests and responses of all Web service calls. The results

from the calls done over Wi-Fi are not presented since they have approximately the same

size.

Figure 4-16 Data transceived - Hello Web service

Figure 4-17 Data transceived - Upload NFFI data Web service

0%

20%

40%

60%

80%

100%

noComp gzip EXI noComp gzip EXI noComp gzip EXI

HTTP UDP MQ

Data transceived - Hello Web service

0%

20%

40%

60%

80%

100%

noComp gzip EXI noComp gzip EXI noComp gzip EXI

HTTP UDP MQ

Data transceived - Upload NFFI data Web service

60

Figure 4-18 Data transceived - Exchange Picture Web service

Figure 4-16 shows that EXIficient compresses better than gzip when the request and response

messages are small. In Figure 4-17 and Figure 4-18, where the data amount is larger, there is

no big difference between using EXIficient or gzip.

The figures also show that using a different transport method than HTTP does not affect the

total amount of data much when the messages are large (Figure 4-17 and Figure 4-18).

0%

20%

40%

60%

80%

100%

noComp gzip EXI noComp gzip EXI noComp gzip EXI

HTTP UDP MQ

Data transceived - Exchange Picture Web service

61

4.5.4 Goodput

In these tests, goodput is defined as how fast the exchange of SOAP envelopes are in megabits

per second (Mbps).

Figure 4-19 Goodput Hello Web service - Mobile broadband

Figure 4-20 Goodput Hello Web service - Wi-Fi

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

noComp gzip exi noComp gzip exi noComp gzip exi

HTTP UDP MQ

Mbps

Goodput

Hello Web service - Mobile broadband

0

1

2

3

4

5

6

7

8

noComp gzip exi noComp gzip exi noComp gzip exi

HTTP UDP MQ

Mbps

Goodput

Hello Web service - Wi-Fi

62

Figure 4-21 Goodput Upload NFFI data Web service - Mobile broadband

Figure 4-22 Goodput Upload NFFI data Web service - Wi-Fi

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

noComp gzip exi noComp gzip exi noComp gzip exi

HTTP UDP MQ

Mbps

Goodput

Upload NFFI data Web service - Mobile
broadband

0

0.5

1

1.5

2

2.5

3

noComp gzip exi noComp gzip exi noComp gzip exi

HTTP UDP MQ

Mbps

Goodput

Upload NFFI data Web service - Wi-Fi

63

Figure 4-23 Goodput Exchange Picture Web service - Mobile broadband

Figure 4-24 Goodput Exchange Picture Web service - Wi-Fi

When measuring goodput, UDP and RabbitMQ are generally more effective than HTTP. The

UDP results shown in Figure 4-24 is deviating from the rest of the results. The reason for this

is that calling the Exchange Picture Web service with UDP over Wi-Fi caused many dropped

packets, causing the UDP results in this test to degrade. The reason this happened might be

bad programming, or perhaps more likely, because of packet loss due to congestion in the

networks.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

noComp gzip exi noComp gzip exi noComp gzip exi

HTTP UDP MQ

Mbps

Goodput

Exchange Picture Web service - Mobile
broadband

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

noComp gzip exi noComp gzip exi noComp gzip exi

HTTP UDP MQ

Mbps

Goodput

Exchange Picture Web service - Wi-Fi

64

4.5.5 Comparing gzip and EXIficient compression

This section illustrated the size of the original files compared to the gzip- and EXIficient-

compressed files.

Figure 4-25 Compression of Hello SOAP messages

0%

20%

40%

60%

80%

100%

No Comp gzip EXI

Compression of Hello SOAP messages

Request Response

Figure 4-26 Compression of NFFI data

65

Figure 4-27 Compression of Exchange Picture messages

Figure 4-25 shows that EXIficient compresses much better than gzip when the SOAP

messages are small, such as in the Hello Web service. Figure 4-26 shows that when the

SOAP messages are bigger, such as in the Upload NFFI data Web service, the difference is

not that big. Figure 4-27 shows that in the case of the JPG picture gzip and EXIficient had

roughly the same performance level.

0%

20%

40%

60%

80%

100%

No Comp gzip EXI

Compression of Exchange Picture messages

Request Response

66

4.6 SUMMARY

This section discusses the observed results in regards to the requirements specification in

2.1.3.

EXIficient performed badly in regards of CPU load, the marshalling and unmarshalling times

of EXIficient were much higher than when using gzip or no compression.

When focusing on maximizing battery lifetime EXIficient suffered greatly compared to using

gzip or not compressing at all. The results also show that UDP and AMQP preserve more

battery life than HTTP does.

When focusing on minimizing network load, using either gzip or EXIficient to compress and

decompress greatly minimized the data amount (to less than 20%) when dealing with large

XML files (Upload NFFI data Web service). The effect was not so good when dealing with small

XML files (Hello Web service) or with non-XML data (Exchange Picture Web service). Since

the JPG format is a compressed format, trying to compress it a second time did not cause a

big effect.

The test results also show that UDP and AMQP performed generally better than HTTP did,

especially when considering goodput.

67

5 CONCLUSION AND FUTURE WORK

This chapter presents the conclusion of this thesis, as well as suggestions for future work.

5.1 CONCLUSION

The goal of this thesis is to contribute to the ongoing effort to optimize SOAP communication,

specifically for use Android platforms. The main part of this contribution is to evaluate the

use of alternative transport mechanisms, as well as different compression techniques, up

against bandwidth usage and battery usage. The goal is to recommend a path or solution for

supporting SOAP on Android.

The results in this thesis show that using a different transport mechanism other than the

standard HTTP/TCP, like UDP or AMQP, can both reduce battery usage and help increase the

goodput when using Android as a Web service client.

When it comes to compression and decompression of SOAP messages, the results show that

both gzip and EXIficient help reduce the network load, but EXIficient demands more CPU time

and battery power than gzip does. It can be argued that the resource usage EXIficient

demands can be too high compared to the size reduction EXIficient offers, at least in the

experiment of this thesis. Gzip compresses almost as well as EXIficient, using far less CPU time

and battery power.

Thus, the recommendation of this thesis is that using gzip together with RabbitMQ is the

better option when it comes to reducing network overhead while simultaneously maximizing

battery lifetime.

ksoap2-android proves to be a functional and lightweight SOAP library that can be altered to

support different transport mechanisms and compression techniques on Android. The code

changes of ksoap2-android in this thesis will be offered to the ksoap2-android community,

since it is a user-driven community dependent on individual contributions.

The test log files, Wireshark captures and data used for measurement can be found in the

data provided together with the thesis.

68

5.2 FUTURE WORK

While ksoap2android works as a SOAP library for the Android platform, among the drawbacks

are its lack of support for JAXB and WS-Addressing, requiring the programmer to do more

manual programming compared to other Java-based SOAP libraries. Still, as long as Android

does not provide a SOAP library of its own in the near future, ksoap2-android is a viable option.

ksoap2-android should be expanded with WS-Addressing to support other transport

protocols, and should have an alternative to JAXB in order to be more user-friendly.

Implementing SCTP on Android is achievable (see Appendix A), and would be interesting to

compare to other transport protocols when possible.

Further testing with the solution presented in this thesis is also possible, with for example

adding worse network conditions with more errors and disruptions.

69

REFERENCES

1. Koetsier, J., Android captures record 81% global market share, Windows Phone is ‘fastest
growing’. 2013 [Accessed 28 April 2014]; Published by: Venturebeat. Available from:
http://venturebeat.com/2013/10/31/android-captures-record-81-global-market-share-
windows-phone-is-fastest-growing/

2. OASIS, Reference Model for Service Oriented Architecture 1.0. 2006 [Accessed 28 April
2014]; Published by: OASIS. Available from: http://docs.oasis-open.org/soa-rm/v1.0/soa-
rm.pdf

3. W3C Web Services Architecture Working Group, Web Services Architecture. 2004 [Accessed
28 April 2014]; Published by: World Wide Web Consortium. Available from:
http://www.w3.org/TR/ws-arch/

4. World Wide Web Consortium, SOAP Version 1.2. 2007 [Accessed 28 April 2014]; Published
by: World Wide Web Consortium. Available from: http://www.w3.org/TR/soap12-part1/

5. World Wide Web Consortium, Extensible Markup Language (XML) 1.0 (Fifth Edition). 2008
[Accessed 28 April 2014]; Published by: World Wide Web Consortium. Available from:
http://www.w3.org/TR/REC-xml/

6. Busch, J., Deploying Web Services: Bringing NNEC To The Edge. 2006 [Accessed 28 April
2014]; Published by: NATO Consultation, Command and Control Agency. Available from:
https://www.google.no/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDMQFjAB&
url=http%3A%2F%2Fnc3a.info%2FP%2Fpres%2FDeploying%2520Web%2520Services%2520f
or%2520MCC%25202006%2520-%2520distributable.ppt&ei=Eds5UrKiA82P4gSTs4HADw&us
g=AFQjCNHfB4OTEJ1foZm9jv75HXZQRb0pYA&bvm=bv.52288139,d.bGE

7. Wi-Fi Alliance, Wi-Fi. 2014 [Accessed 28 April 2014]; Published by: Wi-Fi Alliance. Available
from: http://www.wi-fi.org/who-we-are

8. Simanta, S., D. Plakosh, and E. Morris, Web Services for Handheld Tactical Systems in
Systems Conference (SysCon), 2011 IEEE International. 4-7 April 2011: Montreal, QC, Canada.

9. Johnsen, F.T., et al., Interoperable service discovery: Experiments at Combined Endeavor
2009 Forsvarets forskningsinstitutt/Norwegian Defence Research Establishment (FFI),
2009/01934.

10. Johnsen, F.T., et al., Evaluation of Transport Protocols for Web Services, in Military
Communications and Information Systems Conference (MCC). 7-9 Oct. 2013: St.-Malo,
France.

11. Fielding, R., Hypertext Transfer Protocol -- HTTP/1.1. 1999 [Accessed 28 April 2014];
Published by: Internet Engineering Task Force. Available from:
http://tools.ietf.org/html/rfc2616

12. Information Sciences Institute University of Southern California, Transmission Control
Protocol. 1981 [Accessed 28 April 2014]; Published by: The Internet Engineering Task Force.
Available from: http://tools.ietf.org/html/rfc793

13. Johnsrud, L., Efficient Web Services on Mobile Devices, Master's thesis at the Department of
Telematics, Norwegian University of Science and Technology, 2007

14. Denning, P.J., et al., Computing as a discipline. Magazine Communications of the ACM, 1989.
Volume: 32(1): p. 9-23.

15. Elgin, B., Google Buys Android for Its Mobile Arsenal. 2005 [Accessed 28 April 2014];
Published by: Bloomberg Businessweek. Available from:
http://www.webcitation.org/5wk7sIvVb

70

16. Open Handset Alliance, Industry Leaders Announce Open Platform for Mobile Devices. Open
Handset Alliance: http://www.openhandsetalliance.com/press_110507.html.

17. Android Engineering Application & Consulting Services Team, Android Anatomy Physiology.
2012 [Accessed 28 April 2014]; Published by: Android Engineering Application & Consulting
Services Team. Available from: http://androidteam.googlecode.com/files/Anatomy-
Physiology-of-an-Android.pdf

18. Delap, S., Google's Android SDK Bypasses Java ME in Favor of Java Lite and Apache
Harmony. 2007 [Accessed 28 April 2014]; Published by: Infoq. Available from:
http://www.infoq.com/news/2007/11/android-java

19. Mason, T.R., C.H. Weaver, and M.A. Camacho, Position, navigation, and timing in the
Common Operating Environment: Prototyping the PNT User equipment Modernization
Architecture, in Military Communications Conference, 2012. 29 Oct. -1 Nov. 2012: Orlando,
FL, USA.

20. Weiss, B.A., et al. Performance assessments of Android-powered military applications
operating on tactical handheld devices. in Mobile Multimedia/Image Processing, Security,
and Applications 2013. April 29, 2013. Baltimore, Maryland, USA.

21. Karlsen, L.H. and B.K. Reitan, CEI - et sosialt taktisk rapporteringssystem: Teknisk beskrivelse
av Android klient for smarttelefon og nettbrettstøttet til CEI-systemet Forsvarets
forskningsinstitutt (FFI), 2014/00526

22. Fielding, R.T., Architectural Styles and the Design of Network-based Software Architectures,
Doctoral thesis at the University of California, Irvine, 2000

23. Web Services Architecture Working Group, Web Services Glossary. 2004 [Accessed 28 April
2014]; Published by: World Wide Web Consortium. Available from:
http://www.w3.org/TR/ws-gloss/

24. Berners-Lee, T., Web Services - Program Integration across Application and Organization
boundaries. 2009 [Accessed 28 April 2014]; Published by: World Wide Web Consortium.
Available from: http://www.w3.org/DesignIssues/WebServices.html

25. W3Schools, Introduction to WSDL. 2014 [Accessed 28 April 2014]; Published by: World Wide
Web Consortium. Available from:
http://www.w3schools.com/webservices/ws_wsdl_intro.asp

26. Curbera, F., et al., Unraveling the Web services web: an introduction to SOAP, WSDL, and
UDDI. Internet Computing, IEEE March-April 2002. Volume: 6(2): p. 86 - 93.

27. Klensin, J., Simple Mail Transfer Protocol. 2008 [Accessed 28 April 2014]; Published by: The
Internet Engineering Task Force. Available from: http://tools.ietf.org/html/rfc5321

28. OASIS, Advanced Message Queuing Protocol (AMQP) Technical Committee. 2014 [Accessed
28 April 2014]; Published by: OASIS. Available from: https://www.oasis-
open.org/committees/amqp/charter.php

29. Tekli, J.M., et al., SOAP Processing Performance and Enhancement. Services Computing, IEEE
Transactions on 2012. Volume: 5(3): p. 387 - 403.

30. Deutsch, P., DEFLATE Compressed Data Format Specification version 1.3. 1996 [Accessed 28
April 2014]; Published by: Internet Engineering Task Force. Available from:
http://tools.ietf.org/html/rfc1951

31. Katz, P., ZIP File Format, Version 6.2.0 (PKWARE). 2012 [Accessed 28 April 2014]; Published
by: Sustainability of Digital Formats Planning for Library of Congress Collections. Available
from: http://www.digitalpreservation.gov/formats/fdd/fdd000355.shtml

32. Deutsch, P., gzip file format specification version 4.3. 1996 [Accessed 28 April 2014];
Published by: Internet Engineering Task Force. Available from:
http://tools.ietf.org/html/rfc1952

71

33. Rand, D., The PPP Compression Control Protocol (CCP). 1996 [Accessed 28 April 2014];
Published by: Internet Engineering Task Force. Available from:
http://tools.ietf.org/html/rfc1962

34. Boutell, T., PNG (Portable Network Graphics) Specification Version 1.0. 1997 [Accessed 28
April 2014]; Published by: Internet Engineering Task Force. Available from:
http://tools.ietf.org/html/rfc2083

35. Adobe Systems Incorporated, Adobe Portable Document Format. 2006 [Accessed 28 April
2014]; Published by: Adobe Systems Incorporated. Available from:
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-
7.pdf

36. Deutsch, P., zlib Compressed Data Format Specification version 3.3. 1996 [Accessed 28 April
2014]; Published by: Internet Engineering Task Force. Available from:
http://tools.ietf.org/html/rfc1950

37. Salomon, D., A Concise Introduction to Data Compression. 2007: Springer. ISBN:
1848000723, 9781848000728

38. Nair, S.S., XML compression techniques: A survey. Journal of Computer and System Sciences,
2009. Volume: 75(5).

39. World Wide Web Consortium, Efficient XML Interchange (EXI) Format 1.0. 2011 [Accessed
28 April 2014]; Published by: World Wide Web Consortium. Available from:
http://www.w3.org/TR/exi/

40. AgileDelta, Lightning-Fast Delivery of XML to More Devices in More Locations. 2011
[Accessed 28 April 2014]; Published by: AgileDelta. Available from:
http://www.agiledelta.com/product_efx.html

41. International Organization for Standardization, Fast Infoset. 2007 [Accessed 28 April 2014];
Published by: International Organization for Standardization. Available from:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41327

42. Telecommunication Standardization Sector, Fast Infoset. 2010 [Accessed 4 Feb. 2014];
Published by: International Telecommunications Union. Available from:
http://www.itu.int/ITU-T/asn1/xml/finf.htm

43. XMILL Inc., XMILL. 2001 [Accessed 28 April 2014]; Published by: XMILL Inc. Available from:
http://homes.cs.washington.edu/~suciu/XMLTK/xmill/www/

44. Suciu, D. and H. Liefke, XMill: An Efficient Compressor for XML. 2004 [Accessed 4 Feb. 2014];
Published by: XMill. Available from: http://www.liefke.com/hartmut/xmill/xmill.html

45. World Wide Web Consortium, WAP Binary XML Content Format. 1999 [Accessed 28 April
2014]; Published by: Open Mobile Alliance. Available from: http://www.w3.org/TR/wbxml/

46. Augeri, C.J., et al. An Analysis of XML Compression Efficiency. in 2007 Workshop on
Experimental Computer Science (ExpCS). 2007. New York, NY, USA.

47. Teixeira, M.A., et al., New Approaches for XML Data Compression, in International
Conference on Web Information Systems and Technologies. 2012: Paper presented at the
meeting of the WEBIST, 2012. p. 233-237.

48. Jaiswal, G. and M. Mishra, Why use Efficient XML Interchange instead of Fast Infoset, in
Advance Computing Conference (IACC), 2013 IEEE 3rd International. 22-23 Feb. 2013:
Ghaziabad, India. p. 925 - 930.

49. World Wide Web Consortium, SOAP Protocol Binding Framework. 2007 [Accessed 2 Feb.
2014]; Published by: World Wide Web Consortium. Available from:
http://www.w3.org/TR/soap12-part1/#transpbindframew

72

50. Information Sciences Institute University of Southern California, Internet Protocol. 1981
[Accessed 28 April 2014]; Published by: The Internet Engineering Task Force. Available from:
http://www.ietf.org/rfc/rfc791.txt

51. Microsoft Developer Network, One-Way Method Invocation Using SOAP Over TCP. 2014
[Accessed 28 April 2014]; Published by: Microsoft. Available from:
http://msdn.microsoft.com/en-us/library/cc237457.aspx

52. Postel, J., User Datagram Protocol. 1980 [Accessed 28 April 2014]; Published by: The
Internet Engineering Task Force. Available from: http://www.ietf.org/rfc/rfc768.txt

53. OASIS, SOAP-over-UDP Version 1.1. 2009 [Accessed 28 April 2014]; Published by: OASIS.
Available from: http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-
1.1-spec-os.html

54. Tari, Z., et al., Benchmarking SOAP Binding, in On the Performance of Web Services. 2011. p.
35-58.ISBN: 978-1-4614-1930-3

55. Stewart, R., Stream Control Transmission Protocol. 2000 [Accessed 28 April 2014]; Published
by: Internet Engineering Task Force. Available from: http://www.ietf.org/rfc/rfc2960.txt

56. Stewart, R., Stream Control Transmission Protocol. 2007 [Accessed 2 Feb. 2014]; Published
by: Internet Engineering Task Force. Available from: http://tools.ietf.org/html/rfc4960

57. OASIS Advanced Message Queuing Protocol (AMQP) Bindings and Mappings (AMQP-
BINDMAP) Technical Committee, SOAP Binding to Advanced Message Queuing Protocol
(AMQP) Transport Version 1.0. 2013 [Accessed 28 April 2014]; Published by: OASIS.
Available from: https://www.oasis-open.org/committees/download.php/50611/amqp-soap-
v1.0-wd01.doc

58. Balakrishnan, H., et al., A comparison of mechanisms for improving TCP performance over
wireless links. IEEE/ACM Transactions on Networking, 1997. Volume: 5(6).

59. Holland, G. and N. Vaidya, Analysis of TCP performance over mobile ad hoc networks.
Wireless Networks - Selected Papers from Mobicom'99, 2002. Volume: 8.

60. Gábor, A., AndroidSOAP. 2014 [Accessed 28 April 2014]; Published by: Confluence. Available
from: http://wiki.javaforum.hu/display/ANDROIDSOAP/Home

61. NeuroSpeech Inc, WSClient++. 2014 [Accessed 28 April 2014]; Published by: NeuroSpeech
Inc. Available from: http://wsclient.neurospeech.com/wsclient/java-android-blackberry/

62. The ksoap2-android project, ksoap2-android. 2014 [Accessed 28 April 2014]; Published by:
The ksoap2-android project. Available from: https://code.google.com/p/ksoap2-android/

63. Geeknet, I., kSOAP2. 2009 [Accessed 28 April 2014]; Published by: SourceForge. Available
from: http://ksoap2.sourceforge.net/index.shtml

64. Shen, Z., et al., A Light Mobile Web Service Framework Based on Axis2, in Future Information
Communication Technology and Applications, J.T.K. Hoe-Kyung Jung, Tony Sahama, Chung-
Huang Yang, Editor. 2013.ISBN: 978-94-007-6515-3

65. Johnsen, F.T., et al., IST-118 – SOA recommendations for Disadvantaged Grids in the Tactical
Domain in 18th Internation Command and Control Research and Technology Symposium. 19-
21 June 2013: Alexandria, VA, USA.

66. Android Open Source Project - Issue Tracker, Android Open Source Project - Issue 3272:
Support SCTP 2013 [Accessed 28 April 2014]; Published by: Android. Available from:
https://code.google.com/p/android/issues/detail?id=3272

67. Soderman, P., et al., Sub-second transport layer vertical handover using mSCTP in android
mobile devices, in Wireless Communication Systems (ISWCS), 2012 International Symposium
on. 28-31 Aug. 2012: Paris, France.

73

68. Tachibana, A. and T. Hasegawa, A deployable scheme of CMT-SCTP with off-the-shelf android
smartphones, in Wireless and Mobile Computing, Networking and Communications
(WiMob), 2012 IEEE 8th International Conference on. 8-10 Oct. 2012: Barcelona, Spain.

69. Ege, R.K., Securing Video Delivery to the Android Platform. Journal of Systemics, Cybernetics
& Informatics, 2012. Volume: 10(5).

70. Haustein, S., About kXML. 2005 [Accessed 28 April 2014]; Published by: SourceForge.net.
Available from: http://kxml.sourceforge.net/about.shtml

71. The Apache Software Foundation, What is Pull Parsing? 2012 [Accessed 28 April 2014];
Published by: The Apache Software Foundation. Available from:
http://ws.apache.org/axiom/userguide/ch01.html

72. Box, D., Web Services Addressing (WS-Addressing). 2004 [Accessed 28 April 2014];
Published by: World Wide Web Consortium. Available from:
http://www.w3.org/Submission/ws-addressing/

73. Oracle, The Java Remote Method Invocation (RMI). 2014 [Accessed 28 April 2014]; Published
by: Oracle. Available from: http://docs.oracle.com/javase/tutorial/rmi/

74. Java Community Process, JAXB. 2014 [Accessed 28 April 2014]; Published by: Java
Community Process. Available from: https://jcp.org/en/jsr/detail?id=222

75. Android, Android Development Tools. 2014 [Accessed 28 April 2014]; Published by: Android.
Available from: http://developer.android.com/tools/sdk/eclipse-adt.html

76. The Eclipse Foundation, Eclipse. 2014 [Accessed 28 April 2014]; Published by: The Eclipse
Foundation. Available from: https://www.eclipse.org/

77. RabbitMQ, Downloading and Installing RabbitMQ. 2014 [Accessed 28 April 2014]; Published
by: Pivotal. Available from: https://www.rabbitmq.com/download.html

78. Peintner, D., EXIficient. 2013 [Accessed 28 April 2014]; Published by: Sourceforge.net.
Available from: http://exificient.sourceforge.net/

79. Oracle, Class HttpServer. 2005 [Accessed 28 April 2014]; JavaSE 7:[Published by: Oracle.
Available from:
http://docs.oracle.com/javase/7/docs/jre/api/net/httpserver/spec/com/sun/net/httpserver
/HttpServer.html

80. Siemens AG, exificient-0.9.2-bundle. 2014 [Accessed 28 April 2014]; Published by:
Sourceforge. Available from:
http://sourceforge.net/projects/exificient/files/exificient/0.9.2/exificient-0.9.2-
bundle.zip/stats/map

81. Flores, M., M. Balao, and F. Faggiani, Xerces for Android. 2014 [Accessed 28 April 2014];
Published by: Google Project Hosting. Available from: https://code.google.com/p/xerces-
for-android/

82. Android, Using DDMS. 2014 [Accessed 28 April 2014]; Published by: Android. Available
from: http://developer.android.com/tools/debugging/ddms.html

83. Combs, G., Wireshark. 2014 [Accessed 28 April 2014]; Published by: Wireshark. Available
from: http://www.wireshark.org/

84. Hamiltion, E., JPEG File Interchange Format Version 1.02. 1992 [Accessed 28 April 2014];
Published by: Joint Photographic Experts Group. Available from:
http://www.jpeg.org/public/jfif.pdf

85. Kommunikationsnetz Franken, The SCTP library (sctplib). 2014 [Accessed 28 April 2014];
Published by: Kommunikationsnetz Franken. Available from: http://www.sctp.de/sctp-
download.html

74

86. Sctp-refimpl, usrsctp. 2014 [Accessed 28 April 2014]; Published by: Sctp-refimpl. Available
from: https://code.google.com/p/sctp-
refimpl/source/browse/#svn%2Ftrunk%2FKERN%2Fusrsctp

87. Simula School of Research and Innovation AS, A state of the art userland stack for SCTP.
2014 [Accessed 28 April 2014]; Published by: Simula. Available from:
https://simula.no/education/ssri/master-opportunities/available-master-
topics/copy_of_communication-systems/a-state-of-the-art-userland-stack-for-sctp

75

APPENDIX A – ATTEMPT AT ENABLING SCTP ON ANDROID

In the time of writing Android does not offer the ability to use the Stream Control

Transmission Protocol. The Linux kernel has had built-in support for the SCTP protocol since

the 2.6 kernel series. The first Android version was built on the Linux kernel version 2.6.26,

meaning that the developers behind Android made a choice not to include SCTP as an

alternative transport layer protocol, and has stood by that decision to this day.

The Android Open Source Project maintains a public issue tracker where you can report bugs

and request features for the core Android software stack. In 2009 a request was made to the

issue tracker to offer SCTP on the Android platform, but five years later the status has not

changed from “new”, and nobody from Android have replied to the request [66].

It is possible to enable SCTP on Android by rebuilding the Linux kernel 13 on an Android device.

Because SCTP is an interesting alternative to TCP and UDP, several experiments have been

done implementing and testing SCTP on Android. Securing Video Delivery to the Android

Platform [67] proposes using SCTP on Android for vertical handover between heterogeneous

wireless networks like Wi-Fi and cellular 3G and 4G networks. A Deployable Scheme of CMT-

SCTP with Off-the-Shelf Android Smartphones [68] also describes using SCTP on Android for

seamless handover between networks. Sub-Second Transport Layer Vertical Handover Using

mSCTP in Android Mobile Devices [69] describes a prototype Android app which accesses

multimedia data over SCTP.

The experiment done in [68] is of interest because SCTP on Android “…is accomplished by

neither embedding special modules nor relying on super-user (root) privileges on off-the-shelf

Android…”. The middleware used was based on the sctplib [85], a SCTP library

implementation written in the programming language C.

Because the sctplib library is written in C, it cannot be added directly the way libraries written

in Java (for example ksoap-2android, RabbitMQ, EXIficient) can. Android refers to its C

libraries as native code. In order to implement native code such as C and C++ in an Android

app a toolset called Android Native Development Kit (NDK) needs to be used. When adding a

third-party library written in C or C++, NDK needs to compile the library into required machine

code.

Trying to compile the latest version (1.0.15) of sctplib into the Android application used in

this thesis failed. The reason for that is that sctplib is written for Unix and Linux platforms,

13 Rebuilding a kernel means downloading the kernel source code, making any wanted changes in the code,
compiling the code, and finally installing the kernel. Since Linux is open source, this is popular among
programmers and developers to do.

76

while Android uses its own derivation of C libraries (see Section 2.1.1). This difference

resulted in problems with missing classes and data constants.

Contacting the authors of sctplib, they provided some guidance and support via e-mail to

resolve the problems, but ultimately the attempt had to be stopped because the sctplib

library requires opening a raw socket14. This is not possible to do without rooting the Android

device, and not rooting the device was one of the premises stated in the requirements

specification. The authors of sctplib also suggested trying usrsctp [86], a different SCTP library,

but trying to implement usrsctp also resulted in similar problems as sctplib did.

Trying to contact the authors of [68] for assistance was fruitless, as they did not reply to my

e-mails. In the end, the limitations on time and resources forced the attempt to include SCTP

in this thesis to be suspended.

Given more time and resources, a manageable SCTP library for Android could most likely be

created. There is certainly interest in the SCTP protocol. Actually, the authors of sctplib

mentioned that there is an offer for a student project to extend the usrsctp API [87].

14 A raw socket is an internet socket that allows direct sending and receiving of Internet Protocol packets without
any protocol-specific transport layer formatting.

