
Combined Modeling and
Programming with State
Machines

Kjetil Andresen
Master’s Thesis Spring 2014

Combined Modeling and Programming with
State Machines

Kjetil Andresen

1st May 2014

ii

Abstract

As part of a more general effort on the design of a combined modeling
and programming language, support for modeling and programming
with state machines has been investigated. While earlier approaches
have represented composite states/state hierarchies by means of class
inheritance hierarchies between state classes, it is demonstrated that it is
more powerful to support composite states by means of delegation. The
inheritance mechanism may then be used to represent real specialization
of state machines.

iii

iv

Contents

1 Introduction 1
1.1 Background and motivation . 1
1.2 Contribution . 1
1.3 Research approach and method 2
1.4 Structure of thesis . 3

2 State machines 5
2.1 Introduction . 5
2.2 UML state machines . 6

2.2.1 States, events and transitions 6
2.2.2 Composite states . 6
2.2.3 History . 7
2.2.4 Entry and exit points . 8
2.2.5 Entry and exit actions . 8
2.2.6 Orthogonality . 9

2.3 State machines in programming 9
2.3.1 State design pattern . 10
2.3.2 ThingML . 12

3 State machine framework 15
3.1 Introduction . 15
3.2 Media player example . 16
3.3 State hierarchy structure and algorithms 17

3.3.1 State hierarchy analysis 17
3.3.2 Entry and exit actions . 19
3.3.3 History . 21
3.3.4 Pseudo states . 22
3.3.5 State transitions . 23

3.4 Framework overview . 23
3.4.1 A basic framework . 25
3.4.2 Making the framework generic 26
3.4.3 State references . 27
3.4.4 StateMachine . 27
3.4.5 Pseudo states in the framework 28
3.4.6 IVertex . 29
3.4.7 Pseudo states . 30
3.4.8 IState . 31

v

3.4.9 State . 31
3.4.10 Events and transitions . 32

3.5 Summary . 34

4 State hierarchy by inheritance 35
4.1 Introduction . 35
4.2 Overview . 35

4.2.1 Framework classes . 37
4.3 Framework implementation . 37

4.3.1 State hierarchy traversal 37
4.3.2 StateMachine . 37
4.3.3 State . 39

4.4 Framework usage . 41
4.4.1 Design principles . 41
4.4.2 Implementation of a media player 41

4.5 Summary . 45

5 State hierarchy by delegation 47
5.1 Introduction . 47
5.2 Delegation . 47
5.3 Delegation in Java . 49

5.3.1 Delegation pattern . 49
5.4 Overview . 50

5.4.1 Framework classes . 51
5.5 Framework implementation . 51

5.5.1 State hierarchy traversal 51
5.5.2 StateMachine . 51
5.5.3 State . 54
5.5.4 State transitions . 54

5.6 Framework usage . 55
5.6.1 Design principles . 55
5.6.2 Implementation of a media player 56
5.6.3 Implicit delegation by inheritance 58

5.7 Summary . 59

6 Specialization of state machines 61
6.1 Introduction . 61
6.2 A specialized switch . 62
6.3 Using the extensible state machine pattern 62

6.3.1 Implementing the on/off switch 62
6.3.2 Implementing the media switch 64
6.3.3 Summary of design principles 69

6.4 Using inheritance and virtual classes 71
6.4.1 Virtual classes . 71
6.4.2 Java with virtual classes 72
6.4.3 Modified delegation framework 72
6.4.4 Implementing the on/off switch 73
6.4.5 Implementing the specialized media switch 75

vi

6.4.6 Summary of design principles 76
6.5 Summary . 77

7 Conclusion and future work 79

A Framework source code 81
A.1 Directories and source files . 81
A.2 Running the examples . 81

vii

viii

List of Figures

2.1 On/off switch with states, events and transitions 6
2.2 Media player with composite state and compound transition . 7
2.3 Media player with shallow history 8
2.4 Media player with entry point . 8
2.5 Media player with entry/exit actions 9
2.6 Media player with orthogonal state 9
2.7 The state design pattern . 10
2.8 On/off switch class diagram . 11

3.1 UML state machine representing a media player 16
3.2 State hierarchy represented as a tree structure 17
3.3 State hierarchy analysis . 18
3.4 Entry/exit actions . 19
3.5 Saving shallow history . 21
3.6 Saving deep history . 22
3.7 The process of changing state . 24
3.8 State design pattern applied to the media player 25
3.9 Use of the state machine framework 25
3.10 Framework extended with IState 26
3.11 Framework with pseudo states 29
3.12 Event with corresponding transition represented as a method 33
3.13 Statechart vs. UML state machine transitions 33

4.1 Class hierarchy of the media player using inheritance 36

5.1 Boss/Worker sequence diagram . 48
5.2 Combining inheritance and delegation 49
5.3 Delegation framework class hierarchy 50
5.4 State hierarchy represented by delegation links between

objects . 51
5.5 Automatic state instantiation . 53
5.6 Implicit delegation by inheriting MediaPlayerState 58

6.1 Specialized media switch . 62
6.2 Class hierarchy of the on/off switch 63
6.3 Specialization by inheritance . 64
6.4 Specialization of states . 64
6.5 Class hierarchy of the media switch 67

ix

6.6 Specialized state machines using the extensible state ma-
chine pattern . 71

6.7 Virtual classes with subclasses 72
6.8 Modified delegation framework with virtual classes 73
6.9 On/off switch with virtual classes 73
6.10 Media switch with virtual classes 75

x

List of Tables

3.1 Methods of StateMachine that are visible for the user 28
3.2 Methods of StateMachine that are visible for the framework . . 29
3.3 Methods of the interface IVertex 30
3.4 Methods of EntryPoint and ExitPoint 30
3.5 Methods of ShallowHistory and DeepHistory 31
3.6 Methods of the interface IState 31

4.1 Overview of the inheritance framework classes and construc-
tors . 38

4.2 User methods of State . 40

5.1 Overview of the delegation framework classes and constructors 52
5.2 User methods of State . 54

xi

xii

Acknowledgments

A special thanks to my supervisor, Birger Møller-Pedersen, for guiding me
through the entire period, and giving me good advice and feedback. I want
to thank my family and friends for support. Finally, a big thanks to my fel-
low students and friends at the 8th floor of Ole-Johan Dahls hus.

Oslo, Norway. May 1, 2014.

Kjetil Andresen

xiii

xiv

Chapter 1

Introduction

1.1 Background and motivation

In general purpose languages like Java [6] there is no direct support for
state machines. For these there are design patterns like the state design
pattern [4] which support simple state machines, i.e. state machines with
the most primitive mechanisms and flat state hierarchy.

Harel statecharts [8] introduced the notion of state hierarchies with
depth, where a state, referred to as a composite state, may contain
substates. The main feature of composite states is that events with
corresponding transitions defined for an enclosing state by default apply
all contained substates, unless the substates specify otherwise. Statecharts
later led to the introduction of UML state machines [16], which has many
of the same type of mechanisms, and several new ones. Probably the most
common mechanisms are composite states, history, entry/exit actions,
entry/exit points, and recently also specialization of state machines has
been paid attention to.

It is proposed in [14] that a definition of a combined modeling and
programming language should be researched. In such a language, it could
be argued that e.g. full UML state machines should be supported. In
a perfect world, the language should be designed from scratch instead
of just extending already existing languages with new mechanisms. E.g.
extending Java with the full UML state machine specification will add
over 20 new keywords to the language, which will clutter the language,
see [7]. However, before attempting to design a combined modeling
and programming language, it is important to learn from already existing
language mechanisms.

1.2 Contribution

As a contribution to the research of designing a combined modeling
and programming language, this thesis will investigate the support for
modeling and programming with state machines by using already existing
programming language mechanisms. While earlier approaches have
represented state hierarchies by means of class inheritance hierarchies, see

1

e.g. [12], it is demonstrated that it is more powerful to support composite
states by means of state objects linked by delegation. Inheritance may then
be used to represent real specializations of state machines.

1.3 Research approach and method

Previous approaches have shown that with the state design pattern it is
possible to support composite states in isolation by allowing contained
states to inherit their enclosing state, see [12]. By representing events
with corresponding transitions as virtual methods, the event methods of
a composite state are inherited by contained states, unless the contained
states override the event methods, and this is exactly how composite
states are supposed to work. Even though the inheritance approach
sounds promising, [18] recognize that the approach becomes difficult when
introducing new mechanisms, e.g. entry/exit actions.

A starting point for this thesis was to look at exactly why inheritance
did not work as state hierarchy representation. In order to investigate this,
a framework intended to be used together with the state design pattern
was implemented in Java. Java was chosen because it is a widely used
object-oriented programming language. The purpose of the framework
was to add support for history, entry/exit actions and entry/exit points
in the state design pattern. The framework combined with representing
composite states as subclasses was then investigated to pin point the
advantages and disadvantages of using inheritance as a means to state
hierarchy representation.

With the problems of the inheritance approach being uncovered,
another approach was investigated where state objects are linked together
by delegation. By having the delegation link of a contained state denote its
enclosing state, methods not explicitly defined in the contained state will
be delegated to its enclosing state. Transitions defined in event methods of
enclosing states will then by default apply for contained states.

The added benefit of representing composite states by delegation is
that inheritance may be used to define state machines as specializations
of more general state machines. The extensible state machine pattern [1]
gives a solution on how to specialize state machines with the state design
pattern. By applying the extensible state machine pattern to the delegation
approach, it is possible to create specialized state machines with the more
advanced mechanisms supported by the framework. As the pattern showed
to be fairly difficult to use, the combination of inheritance and virtual
classes [13] was applied to the pattern, simplifying things dramatically.

A recurring example used in this thesis is an old fashioned media player
state machine that plays CDs and cassettes. The media player is used as
an example because it is using most of the mechanisms supported by the
framework.

2

1.4 Structure of thesis

The thesis has the following structure.

Chapter 2: State machines Gives an introduction to state machines,
showing how they are used in modeling and in programming.

Chapter 3: State machine framework Describes and implements a
framework that is used together with the state design pattern in order
to support advanced mechanisms found in UML state machines.

Chapter 4: State hierarchy by inheritance Investigates the possibil-
ity of using inheritance as a means of representing state hierarchy in
the state machine framework described in chapter 3.

Chapter 5: State hierarchy by delegation Investigates the possibility
of using delegation as a means of representing state hierarchy in the
state machine framework described in chapter 3.

Chapter 6: Specialization of state machines Combines the delega-
tion approach from chapter 5 with the notion of using inheritance as
a means of representing specialized state machines. Two approaches
will be discussed, one using the extensible state machine pattern, and
one that combines the use of inheritance and virtual classes.

Chapter 7: Conclusion and future work Gives a summary of the re-
sults of previous chapters, and discuss possibilities for future work.

The related work of this thesis will be covered in the chapters where it
naturally belongs.

3

4

Chapter 2

State machines

2.1 Introduction

State machines can be used to model reactive systems, which are systems
that must react on external events, e.g. mobile phones, digital watches and
media players.

In modeling, there are developed many different notations for state
machines, like Harel statecharts [8] and the more modern extension of
statecharts, namely UML state machines [16]. These notations has added
some properties to state machines that makes it more useful in software
engineering. While conventional state machines, e.g. finite state machines
used in mathematics, are useful for modeling simple systems, statecharts
and UML state machines support several abstraction mechanisms that
makes it possible to manage more complex systems.

In programming, there are many ways to represent different types
of state machines. Programmers may use general purpose languages to
represent simple state machines by using e.g. design patterns [4]. To get
support for more advanced mechanisms like those found in UML, there
are frameworks1. There exist a few language extensions that adds state
machine specific keywords to a language, see e.g. [7]. There are also domain
specific languages (DSL) that are programming languages specialized for
state machines.

The purpose of this chapter is to give an introduction on how to
model with state machines, and a few alternative representations of state
machines in programming. Section 2.2 will, from a modeling perspective,
give a brief introduction of UML state machines. Section 2.3 will, from a
programming perspective, introduce state machines by looking at the state
design pattern, and the DSL named ThingML.

1E.g. http://northstatesoftware.com/uml-state-machine-code-generation-framework.
html

5

2.2 UML state machines

In the UML specification [16] there are two types of state machines, namely
protocol state machines and behavioral state machines. The latter, which
will be the type of state machine used in this thesis, is based on Harel
statecharts which is an extension of the conventional finite state machines,
adding features like state hierarchy and orthogonal regions among others.

While the UML specification gives a technical overview of state ma-
chines, this section will give a more practical introduction, showing the
graphical notation and give simple examples where one of the examples will
be extended and used in later chapters. Going through all the mechanisms
with their details will be out of the scope of this thesis as only a subset of
them will be investigated. For more extensive information about UML state
machines, see e.g. [16, 17, 3].

2.2.1 States, events and transitions

A state in UML is illustrated as a rounded rectangle with a label placed
inside that represents the name of the state. States are connected by
transitions, where a transition is a directed arrow from a source state to
a target state. A transition consist of a triggering event, a guard and an
action. The guard is optional, and is a condition that must be true in order
for a transition to be executed. The action is also optional, and is action
code that will be executed right before the state is changed. The syntax of a
transition is Event[Guard]/Action.

In order to illustrate how UML state machines works, a on/off switch
will be developed in stages, creating a old fashioned media player with the
possibility to play CDs and cassettes. The on/off switch of figure 2.1 has
two states named Off and On. The black circle connected to Off is called the
initial pseudo state, and specifies the initial state of the state machine. The
states are connected by two transitions. The transition pointing at On will be
executed on the event powerOn, and the transition pointing at Off is executed
on the event powerOff. The transitions have no guards or actions.

Figure 2.1: On/off switch with states, events and transitions

2.2.2 Composite states

A composite state is a state with contained states (also called substates).
Composite states contain one or more regions, where a region is a part of
either a composite state or a state machine. A composite state with two
or more regions is called an orthogonal composite state, and will be the
subject in section 2.2.6. Regions contains states and transitions, and zero or
one initial pseudo state. E.g. the state machine in figure 2.1 has one region

6

with one initial state. The main benefit of composite states is abstraction,
where it is possible to generalize a group of states into one composite state.
Outgoing transitions from a composite state will by default apply to all
contained states, unless substates specifies otherwise. Outgoing transitions
from composite state will be referred to as compound transitions.

Figure 2.2 is an extension of the simple on/off switch, where On is
transformed into a composite state with two modes, i.e. the states CDMode

and CassetteMode. The state machine still start in the state Off. On the event
powerOn, the media player will transition to On, and into the initial state of On
which is CDMode. The media player can change mode by the event changeMode.
At any time, the media player can turn off by the event powerOff which will
execute the compound transition to Off.

Figure 2.2: Media player with composite state and compound transition

2.2.3 History

History is a mechanism that remembers the last visited state of a composite
state. There are two types of history pseudo states:

Shallow history A pseudo state that transition to the last visited state of
the region it is part of. The shallow history pseudo state is illustrated
as a circle with the label H.

Deep history A pseudo state that transition to the last visited substate of
all the composite states that are in the same region as itself. Deep
history does not include shallow history. The deep history pseudo
state is illustrated as a circle with the label H*.

History for a composite state will be saved when the composite state is
exited. This means that the first time the state machine enters a composite
state, history pseudo states have no history. Both history pseudo states
therefore has an outgoing transition that represents the default history, i.e.
the transition that will be executed if there is no history.

Figure 2.3 extends the media player even further by adding shallow
history in the composite state On. The first time On is entered, the media
player will transition to CDMode, because CDMode is the default history. If
the current state is CassetteMode and the event powerOff occurs, followed by
powerOn, the shallow history of On will be CassetteMode, which then will be
entered.

7

Figure 2.3: Media player with shallow history

2.2.4 Entry and exit points

In UML, a transitions from a state must point to a state in the same region,
which means that it is not allowed for a transition to cross boundaries into
composite states.2 Entry points are pseudo states that are connected to
composite states, and works as a link to a specific state inside the composite
state it is connected to. Similarly, exit points are the opposite where it is
possible to exit a composite state and transition to a target specified by the
exit point.

For illustration purpose, figure 2.4 shows the use of entry points on the
media player, even though it is not needed. Instead of Off transitioning to
the boundary of the state On as in figure 2.3, the transition targets an entry
point that is connected to the boundary of On. When entering the entry
point, the state will automatically change to the shallow history pseudo
state.

Figure 2.4: Media player with entry point

2.2.5 Entry and exit actions

Another useful mechanism is the ability to define state actions. Entry and
exit actions are two types of state actions. Entry actions define actions that
are executed when a state is entered, and exit actions are actions that are
executed when a state is exited. The syntax of entry and exit actions are
Entry/Action and Exit/Action, and are labeled inside the state rectangle.

Figure 2.5 makes an extension to the media player by adding entry and
exit actions to the modes. When entering CDMode the method cdMotorOn

will be executed automatically. When making a transition, either to
CassetteMode or Off, the method cdMotorOff will be executed. CassetteMode

has the same behaviour, but turns the cassette motor on and off.

2Transitions in Harel statecharts may target any state, even if contained in another
composite state.

8

Figure 2.5: Media player with entry/exit actions

2.2.6 Orthogonality

A composite state may contain several regions. By having several regions,
the state machine may be in several states at the same time. This
mechanism is useful for concurrency, and to fragment the state machine
into more manageable parts. There are mainly two pseudo states that are
intended for orthogonal composite state, namely fork and join. A fork splits
a single incoming transition into two or more outgoing transitions, where
each transition points to different regions of a composite state. Join is
the opposite of fork, where several transitions with origins from different
regions are joined together to one single outgoing transition. A join pseudo
state is like a barrier, it waits until all incoming transitions are made before
changing state to the single outgoing transition.

Figure 2.6 illustrates a version of the media player where there are
added volume control. The transition triggered by powerOn enters a fork
which splits the transition into two regions contained in On. The media
player will initially be in CDMode with the volume set to VolumeLow. The
event changeMode will change the mode, but the volume remains the same.
However, the event adjustVolume turns the volume up and down. At any
time the media player can power off.

Figure 2.6: Media player with orthogonal state

2.3 State machines in programming

This section will look at how state machines can be represented in
programming languages.

9

2.3.1 State design pattern

In object-oriented programming, the state design pattern [4] gives a
general solution on how to represent simple state machines, i.e. state
machines without advanced mechanisms found in statecharts and UML.
[4] describes the intent of the design pattern as:

“Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class.”

The state design pattern is divided into three parts which makes up the
solution.

Context The class that serves as the interface for the user, i.e. the state
machine interface. Keeps track of the current state, and offer all
events of the state machine as methods. The events are implemented
such that they will be dispatched to the current state. When the
current state changes, the behaviour of Context will therefore change.

State An abstract class that is the superclass of all states. Defines all
events of the state machine as empty methods. States will therefore
inherit all events with empty behaviour, and must override the event
methods that concerns them.

Concrete states The actual state classes that are subclasses of State.
Must override the event methods that is inherited from State to
specify behaviour.

Figure 2.7 illustrates the structure of the general state design pattern
solution as described above.

Figure 2.7: The state design pattern

The state design pattern does not specify where state transitions are
defined, but typically each state3 has a reference to the context object
which offers a method for changing state. This makes it possible to define
transitions in the states.

3A concrete state will be referred to as a state.

10

Implementation of a switch

For the purpose of illustrating how the state design pattern can be utilized
in a practical situation, the on/off switch state machine from figure 2.1 on
page 6 is implemented in Java.

Figure 2.8 illustrates the class diagram of the switch. In order for the
states to have a reference to the context object, the states are implemented
as inner classes of the context class. The outer class SwitchStateMachine

serves as the context class by keeping track of the current state, and offer
the method changeStateTo that changes the current state. In addition,
SwitchStateMachine contains the dispatching event methods powerOn and
powerOff. SwitchState is an abstract inner class that defines the event
methods powerOn and powerOff with empty method bodies. The concrete
states On and Off are subclasses of SwitchState.

Figure 2.8: On/off switch class diagram

Listing 2.1 shows a possible Java implementation of the on/off switch
with the class SwitchStateMachine representing the state machine. The
events are defined with empty method bodies in SwitchState. The classes
On and Off overrides their event method in order to define their transitions.
Notice that for each transition a new state instance will be created. In a
more advanced implementation, the states should only be instantiated once
and reused, see e.g. the singleton pattern [4].

Listing 2.1: SwitchStateMachine

1 class SwitchStateMachine {
2 private SwitchState c u r r e n t S t a t e = new Off () ;
3 protected SwitchState c u r r e n t S t a t e () {
4 return c u r r e n t S t a t e ;
5 }
6 protected void changeStateTo (SwitchState t a r g e t) {
7 c u r r e n t S t a t e = t a r g e t ;
8 }
9

10 // Dispatching event methods
11 void powerOn () {
12 c u r r e n t S t a t e () . powerOn () ;
13 }
14 void powerOff () {
15 c u r r e n t S t a t e () . powerOff () ;
16 }
17

18 // State implementations

11

19 protected abstract class SwitchState {
20 void powerOn () { }
21 void powerOff () { }
22 }
23 protected class On extends SwitchState {
24 void powerOn () {
25 changeStateTo (new Off ()) ;
26 }
27 }
28 protected class Off extends SwitchState {
29 void powerOn () {
30 changeStateTo (new On()) ;
31 }
32 }
33 }

To use the state machine, the user can create an instance of
SwitchStateMachine, and use the dispatch event methods, as shown below.

SwitchStateMachine context = new SwitchStateMachine();

context.powerOn();

context.powerOff();

...

2.3.2 ThingML

The programming language named ThingML4 is a DSL developed by
SINTEF, with the purpose of modeling embedded and distributed systems.
Their website describes the idea of ThingML as:

The idea of ThingML is to develop a practical model-driven soft-
ware engineering tool-chain which targets resource constrained
embedded systems such as low-power sensor and microcon-
troller based devices.

Integrated into the language are state machines, containing mecha-
nisms found in statecharts and UML state machines. For the purpose of
illustrating how state machines may look like in a programming language,
this section will explain some of the ThingML syntax and implement one of
the examples of section 2.2.

The basics

A state machine is defined with a name and an initial state. The body of a
state machine contains one or more states as shown below.

statechart MyStateMachine init S1 {

state S1 {}

state S2 {}

...

}

4http://thingml.org

12

Transitions between states are defined inside a state, where each
transition may define a possible triggering event, guard and action. The
events have a special syntax that looks like port?eventName, where port is the
name of the port that the state is listening to, and eventName is the name of
the event.

state S1 {

transition t1 -> S2

event port?eventName

guard /* Condition */

action /* Action code */

}

A state may also define entry and exit actions.

state S1 {

on entry do /* Action code */ end

on exit do /* Action code */ end

}

States defined as composite states must specify their initial state, and
may define substates inside their bodies.

composite state S2 init S3 {

state S3 {}

state S4 {}

}

A composite state may track history. The first time the composite state
is entered the initial state is set as current state. History will be saved when
the composite state is exited, meaning that the next time the composite
state is entered, the last visited state will be entered automatically.

composite state S2 init S3 keeps history { ... }

Media player example

With the basics of ThingML covered, the code below illustrates the
implementation of the media player of figure 2.5 on page 9.

statechart MediaPlayer init Off {

state Off {

transition t1 -> On

event port?powerOn

}

composite state On init CDMode keeps history {

transition t2 -> Off

event port?powerOff

13

state CDMode {

on entry do /* CD motor on */ end

on exit do /* CD motor off */ end

transition t3 -> CassetteMode

event port?changeMode

}

state CDMode {

on entry do /* Cassette motor on */ end

on exit do /* Cassette motor off */ end

transition t4 -> CDMode

event port?changeMode

}

}

}

14

Chapter 3

State machine framework

3.1 Introduction

The state design pattern [4] gives a simple solution to how to make
the behaviour of a class dependent on its state. The solution works for
implementing simple state machines, but as claimed in [7], the pattern
is primitive in its functionality, making it difficult to extend to support
composite states and other advanced mechanisms found in statecharts [8]
and UML state machines [16]. Extending the state design pattern with
these mechanisms will be demanding for the user, and will introduce
unnecessary complications in the task of making a state machine. The task
would be best accomplished by using a framework.

Chapters 4 and 5 will implement such a framework in Java, with
the purpose of investigating two different approaches to state hierarchy
representations; one approach using inheritance and the other using
delegation. The term “state hierarchy” is used to describe the hierarchical
structure of composite and simple states of a state machine. For the
purpose of the investigation, only a subset of the mechanisms found in UML
state machines, which mainly concerns composite states, will be supported.
Probably the most common mechanisms for composite states are entry and
exit points, and shallow and deep history. Even though not directly related
to composite states, entry and exit actions are interesting to investigate as
they are slightly more challenging to support when working with composite
states than for simple states. The mechanisms will be supported by the
framework, along with the other mechanisms already supported by the
state design pattern, which are simple states, events and transitions.

Despite the differences with respect to the state hierarchy representa-
tions in chapters 4 and 5, the frameworks that are implemented are similar
in many ways:

• They have the same state hierarchy structure, but with different
representations.

• They use the same algorithms, but with different implementations
based on the representations of the state hierarchy structure.

15

• They have the same framework classes and interfaces, with more or
less the same methods. However, there are a few differences that will
be pointed out in chapters 4 and 5.

This chapter will explain all the things that applies to both framework
implementations. Section 3.2 gives an example state machine that will
be used for illustration purpose throughout this and the next chapters.
Section 3.3 goes through the state hierarchy structure, pseudo state
representations and algorithms needed in the framework, all explained
from a principal point of view as the frameworks have different state
hierarchy representations. Section 3.4 gives an overview of the framework,
explaining the different classes and interfaces, and giving an overview of
the methods that are common for both frameworks. Section 3.5 gives a
brief summary.

3.2 Media player example

For the purpose of illustrating the framework, an example based on the
media player from chapter 2 will be used, but with some modifications.
Figure 3.1 defines the state machine behavior of a media player. It specifies
that a media player will start in the state Off. When powered on the first
time it will enter the CDMode. The mode may be changed by changeMode, and
the player can be asked to play and stop. At any state the player may be
powered off, entering the state Off.

Figure 3.1: UML state machine representing a media player

The state On is a composite state, which means that the transition
triggered by the event powerOff is compound, i.e. applies to all contained
states at any depth, with the same transition (to Off). The events play and
stop also apply to the state On, however, these are defined to be different for
different contained states.

Whenever the state CDMode is entered, the action cdMotorOn() is executed.
Whenever the state CDMode is exited, the action cdMotorOff() is executed. The
state CasetteMode has similar entry/exit actions.

16

A transition to a shallow history node (state symbol with an H) implies
a transition to the contained state that was exited last time the composite
state was exited. For the media player this means that when powering on,
the next state will be the state that was exited when the composite state
was exited with a powerOff. First time powered on the state will be CDMode as
specified by the default history transition from H.

3.3 State hierarchy structure and algorithms

Even though the state hierarchy representations of chapters 4 and 5 will
be different, the state hierarchy structure are the same, and hence the
algorithms for implementing the different mechanisms will be the same in
principle.

3.3.1 State hierarchy analysis

State hierarchies can have different representations, but in general it will
form a tree structure like the one in figure 3.2. The nodes with children
represents composite states with any number of substates, and the leaf
nodes are simple states. The root node will be referred to as the root state
(e.g. the root state of the media player is MediaPlayer). The edges between
the nodes represent the relationship between composite states and their
contained states.

Figure 3.2: State hierarchy represented as a tree structure

When changing state in a state machine, it is always the case of changing
state from a source state to a target state. In order to support mechanisms
like history and entry/exit actions, it is necessary to know the location of
states, and the relationship between their locations. This is called state
hierarchy analysis.

Same enclosing state

To check whether states has the same enclosing state, the framework must
compare the parent node of the states. If the states has the same parent
they are said to have the same enclosing state. How to get and compare
the parent nodes depends on how the state hierarchy is represented. E.g.
if inheritance is the representation of state hierarchy (where states are
represented by classes), the enclosing state is the immediate superclass of
a state class.

17

Figure 3.3(a) shows an example where the state S has the same
enclosing state as the black states (including itself).

Substates

A state is substate of another if the other state is an enclosing state.
Figure 3.3(b) illustrates a state hierarchy where the state S is compared

to all states. S is substate of the black states which are all enclosing states
of S. Notice that S is not substate of itself.

Reachable states

A state is reachable from another if a transition to it is valid without the use
of entry and exit points. A transition is valid if it points to a state that has
the same enclosing state. Compound transitions are also legal and points
to reachable states, which also means that the root state is reachable as it
may define a transition to itself.

Example 3.1. The event powerOff of the media player defines a compound
transition for all substates of On. No matter the location inside On, the event
powerOff will transition to Off. Off is therefore reachable from On and from
any substates of On.

Figure 3.3(c) illustrates a state hierarchy where the black states are
reachable from S. Notice that a direct transition from S to any of the black
states will result in one entry action. S cannot explicitly define a transition
to all the black states without using exit points, but the black states may,
however, be reached by potential compound transitions that are defined in
an enclosing states of S.

(a) S has same enclosing
state as the black states

(b) S is substate of the
black states

(c) Black states are reachable from S

Figure 3.3: State hierarchy analysis

18

3.3.2 Entry and exit actions

Supporting entry/exit actions in a flat state hierarchy is not as difficult as
with state hierarchy consisting of composite states. In a flat state machine
a transition will always result in one exit action and one entry action per
transition, while in a state machine with composite states and entry/exit
points there may be several states that are exited and entered in one single
transition.

Example 3.2. Figure 3.4 illustrates the state hierarchy that represents
the media player. Assume that the current state is Stopped contained in
CDMode, and that the event powerOff occurs, resulting in the transition to Off.
The transition involves executing the following sequence of exit actions
(1) Stopped, (2) CDMode and (3) On, followed by the entry action of Off. The
dashed arrows of the figure is the flow of the transition that shows where
and in what order the different actions are executed.

Figure 3.4: Entry/exit actions

Based on a transition from a source state to a target state, the
framework must be able to execute the correct exit actions followed by the
correct entry actions.

Algorithm 3.1. A transition from source state S to target state T involves
the following exit actions.

1. If T is not a substate of S then execute the exit action of S.

2. If S has an enclosing state E , and T is not a substate of E , then start
at (1) with S set as E .

Example 3.3. This example will trace how algorithm 3.1 works by
running example 3.2.

[S=Stopped, T=Off] According to (1) Off is not a substate of Stopped

resulting in execution of the exit action of Stopped. Stopped has the
enclosing state CDMode, and Off is not a substate of CDMode resulting in
(2).

19

[S=CDMode, T=Off] According to (1) Off is not a substate of CDMode which
executes the exit action of CDMode. CDMode has the enclosing state On,
and Off is not a substate of On resulting in (2).

[S=On, T=Off] According to (1) Off is not a substate of On which results in
executing the exit action of On. On has the enclosing state MediaPlayer,
and Off is a substate of MediaPlayer which means that the algorithm
is finished.

Even though a transition to a reachable state will result in exactly one
entry action, the introduction of entry/exit points will make it possible
to enter any other state which will result in potentially several entry
actions. The algorithm for executing entry actions must therefore support
transitions between all states.

Algorithm 3.2. A transition from source state S to a target state T
involves the entry actions listed below. To ensure the correct ordered
sequence of entry actions, a stack will be used to reverse the order of the
algorithm.

1. If T is reachable from S then execute the entry action of T . Execute
all entry actions of the stack if any. The algorithm is finished.

2. Else, if T is a substate of S, push the entry action of T on the stack.
If the enclosing state of T is S, then execute all entry actions on the
stack, else start at (1) with T set as the enclosing state of T .

3. Else, start at (1) with S set as the enclosing state of S.

Example 3.4. In this example the media player is about to be powered
on for the first time. With the current state Off and the incoming event
powerOn there will be a direct transition to CDMode via the entry point of On
(for this example the initial state of CDMode is ignored). Algorithm 3.2 will
produce the following trace.

[S=Off, T=CDMode] According to (3) start at (1) with S set as the enclosing
state of S which is MediaPlayer.

[S=MediaPlayer, T=CDMode] According to (2) CDMode is a substate of MediaPlayer.
Push the entry action of CDMode on the stack and start at (1) with T set
to On.

[S=MediaPlayer, T=On] According to (2) push the entry action of On onto the
stack. The enclosing state of T is MediaPlayer which means that the
entry actions on the stack will be executed in the order (1) On (2)
CDMode, and the algorithm is finished.

20

3.3.3 History

In a state machine, each composite state has two pairs, one for shallow and
one for deep history. A pair can be written as (C,H) where C represents the
composite state and H is the shallow or deep history state of C. Every time
the state machine is changing state, the state machine will update these
pairs according to the transition.

Shallow history

Shallow history will be saved every time a composite state is exited.
Based on the algorithms presented in section 3.3.2, this functionality is
implemented by making sure that every time the framework executes the
exit action of a composite state, the last visited state contained in the
composite state will be saved as shallow history.

Example 3.5. Figure 3.5 exemplifies the transition from Stopped con-
tained in CDMode, to the state Off. The transition is possible if the current
state is Stopped and the incoming event is powerOff. The dashed arrows is
the flow of the transition. The pairs represents the shallow history that is
saved, and the location of the pair represents at which time it is saved. The
transition will cause the framework to execute the exit actions of the com-
posite states (1) CDMode and (2) On, and hence also save the shallow history
at the same locations.

Figure 3.5: Saving shallow history

Deep history

Deep history is saved for a composite state when the composite state is
exited. If a composite state is exited, the framework will check if the current
state of the state machine is a substate, but not an immediate substate, of
the composite state.

Example 3.6. Figure 3.6 illustrates the same situation as in figure 3.5,
where there is a transition from Stopped contained in CDMode to Off. The
current state of the state machine will be Stopped until all entry and exit
actions are finished. First the transition exit Stopped. The current state is

21

not substate of Stopped, so no history is saved. Then CDMode is exited, and
the current state is substate, but is an immediate substate, so no history
is saved. Lastly the state On is exited, and the current state is a substate
and not an immediate substate, which means that the current state will be
saved as deep history for On.

Figure 3.6: Saving deep history

3.3.4 Pseudo states

This section will introduce the pseudo state representations of the frame-
work.

Entry and exit points

An entry/exit point is represented as a pair (Cpoi nt ,Tpoi nt) where Cpoi nt is
the composite state the entry/exit point is connected to, and Tpoi nt is the
target state that the state machine will make a transition to.

Shallow and deep history

Shallow and deep history are represented as the pair (Chi stor y ,Thi stor y)
where Chi stor y is the enclosing composite state of the history state, and
Thi stor y is the default history target state. The state machine will use Chi stor y

to look up for shallow or deep history. If nothing is found, the state machine
will automatically transition to Thi stor y .

Validation criteria

To ensure valid UML pseudo states (i.e. the validity of their outgoing
transitions), there are some validation criteria for each of the framework
classes when it comes to valid input values. Breaking the validity will cause
an error in the state machine.

Entry points – The enclosing state of Tpoi nt must be the same state as
Cpoi nt .

22

Exit points – Tpoi nt and Cpoi nt must have the same enclosing state.

Shallow and deep history – The enclosing state of Thi stor y must be the
same state as Chi stor y .

3.3.5 State transitions

A state machine must be able to make transitions between states. With
composite state, pseudo states and entry/exit actions, changing state is to
some extent a complex process.

Figure 3.7 shows the flow chart of how the process of changing state
is executed in a state machine. Without going to much into details, the
process is divided into two main parts; the first part deals with transitions
between states, and the second part deals with transitions to pseudo states.

Changing state to a target that is not a pseudo state involves executing
the exit actions from S to T according to algorithm 3.1, followed by
executing the entry actions according to algorithm 3.2. T will then be set as
the current state of the state machine. If T has an initial state, then change
state to the initial state of T .

If the target state is a pseudo state, all pseudo states that are chained
together (if more than one pseudo state) will be iterated until a state is
reached (e.g. entry points may be linked to other entry points or history
states). Entry/exit points are iterated by updating T to Tpoi nt . History
is iterated by updating T to the shallow/deep history of Chi stor y , or if the
history is empty the value of Thi stor y is used instead. Both iterations will
check if the new updated T is a pseudo state, and if so loop back. When T
becomes a state, the process of changing state between two states will be
executed as described previously. Notice that a pseudo state is never set as
the current state.

3.4 Framework overview

Having the theory around the framework covered, this section will define
the framework classes, and integrate them with the state design pattern.
The implementation details that apply to both frameworks will be covered,
e.g. implementation of pseudo states and history. The other implementa-
tion details will be covered in chapters 4 and 5.

Employing the state design pattern to the media player is difficult as
there is no support for composite states. Figure 3.8 illustrates how far one
will get with the state design pattern trying to implement the media player,
resulting in a simple on/off switch.

To add support for composite states, the user would have to implement
it on top of the pattern resulting in a demanding and time consuming task
as there are many details to consider. First of all the user must decide how
to represent the state hierarchy, and based on this choice implement the
rest of the mechanisms.

23

Figure 3.7: The process of changing state

24

Figure 3.8: State design pattern applied to the media player

3.4.1 A basic framework

The basic idea of a framework is to move the functions which are valid for all
state machines into the classes StateMachine and State, see figure 3.9. Users
of the framework will then make a subclass of StateMachine for creating state
machines, and subclasses of State to create user defined states with event
methods. All state classes will be inner classes of the extended StateMachine,
which is illustrated as MediaPlayerStateMachine. The dashed lines in the
figure indicate classes that are inherited from a superclass, in this case from
StateMachine.

Figure 3.9: Use of the state machine framework

StateMachine will contain functionality for doing state hierarchy analy-
sis, handling state transitions, keeping history, etc. State will contain func-
tionality that is specific for a state, for instance methods that defines en-
try/exit actions and the initial state. State will also have functionality such
that the user is able to define state transitions.

The classes StateMachine and State will be defined according to the state
hierarchy representation. The state hierarchy can be represented by e.g.
inheritance where contained states inherit their enclosing state, or with
delegation where there is a object reference to the enclosing state, see
chapters 4 and 5.

25

3.4.2 Making the framework generic

In order to create a state machine with the framework from figure 3.9,
one would have to create a state machine class which is a subclass of
StateMachine, and state classes which are subclasses of State.

class MediaPlayerStateMachine extends StateMachine {

protected abstract class MediaPlayerState extends State { ... }

...

}

The class State does not include any event methods as they are defined
in subclasses, like in MediaPlayerState above. This is a problem because the
framework only knows about the type State, but not the user defined states,
which means that states returned from framework methods will not give the
user access to the event methods unless the user do unsafe type casting.

The solution is to make the class StateMachine generic1 with one type
parameter that represents the type of the states in the state machine. The
type parameter must contain all methods of State, in addition to the event
methods. The code below defines the type parameter StateType which is
required to extend State, and may define event methods as well.

abstract class StateMachine<StateType extends State> { ... }

However, it is not possible to use State because it is an inner class of
StateMachine, and will be protected such that no one from the outside can
see it. All the methods of State will therefore be defined in the interface
IState which is implemented by State, see figure 3.10. The generic type
parameter StateType is therefore required to implement IState instead as
shown below.

abstract class StateMachine<StateType extends IState> {

protected class State implements IState { ... }

...

}

Figure 3.10: Framework extended with IState

The user can now create a state machine by creating an interface that
extends IState with event methods, and create a state machine class that is
a subclass of StateMachine. The extended interface will be put as argument
to the generic type parameter of StateMachine such that the states of the state
machine are required to implement the interface.

1http://docs.oracle.com/javase/tutorial/extra/generics/index.html

26

interface IMedia extends IState {

void powerOn();

void powerOff();

...

}

class MediaPlayerStateMachine extends StateMachine<IMedia> {

protected abstract class MediaPlayerState extends State

implements IMedia {

public void powerOn() { ... }

public void powerOff() { ... }

...

}

...

}

3.4.3 State references

In the Java runtime environment there is a singleton object for each class
in the program with the type java.lang.Class. A reference to such objects
can be obtained at compile time by writing ClassName.class.

In order to have a consistent way of referencing states and avoid that
the user instantiate states manually, the framework use state references
that are Class-objects of the state classes. The user will reference a state
by StateName.class, and the framework will use the state reference to
reuse the state instance that is associated with the reference (if previously
instantiated), or using automatic state instantiation in order to instantiate
the state automatically, see section 3.4.4.

3.4.4 StateMachine

StateMachine is the class that defines the functionality that is common
for all state machines. The class contains functionality for changing the
current state, doing state hierarchy analysis and saving history. Most of the
functionality is hidden from the user, such that the design process of a state
machine is as simple as possible.

User methods

The methods that are available for the user, i.e. declared as protected, are
called user methods. StateMachine defines a very simple interface to the user
in table 3.1.

Framework methods

The methods that are only visible in the framework classes are called
framework methods.2 These methods are used only by the framework such

2The framework classes are inner classes of StateMachine, such that methods declared
private in StateMachine are visible.

27

protected final StateType currentState()

Returns the current state of the state machine. Notice that the current
state can never be a pseudo state.
protected Class<? extends StateType> initialState()

Defines the initial state of the state machine. Returns null by default,
but may be overridden in order to specify otherwise.

Table 3.1: Methods of StateMachine that are visible for the user

that the user can focus on the state machine design without cluttering the
design with implementation details of the different mechanisms. Table 3.2
gives an overview of the most important framework methods.

Notice that the methods changeToState and changeToPseudoState are only
visible for framework classes located inside StateMachine, and not visible for
the user in state machine classes that are subclasses of StateMachine. The
user methods for defining trantransitions will be located in State.

Automatic state instantiation

States are referenced through objects of type java.lang.Class, referred
to as state references. In order to reuse already instantiated states,
StateMachine will instantiate states automatically and keep the instances
in a hash map such that they can be reused. The implementations
of automatic state instantiation are slightly different in the different
frameworks implementations. More details on how state references are
automatically instantiated will therefore be covered in chapters 4 and 5.

History

How and when history is saved is explained in section 3.3.3. In StateMachine

there are two hash maps, one for shallow and one for deep history. The
key for both hash maps is the state reference to the composite states
with history, and the value associated with the key is a reference to the
state that is saved as history. The framework saves history automatically
in the method changeToState, and fetches history using the methods
getShallowHistory and getDeepHistory, all methods defined in table 3.2.

3.4.5 Pseudo states in the framework

In similarity with states, pseudo states are user defined classes, but are
subclasses of either EntryPoint, ExitPoint ShallowHistory or DeepHistory,
see figure 3.11. Since pseudo states do not support entry/exit actions
nor have an initial state, a new interface IVertex is created such that the
functionality that is common for states and pseudo states is defined in a
separate interface.

28

private void changeToState(Class<? extends StateType> target)

Changes state from the current state to the state referenced by
target. If target has no corresponding instance it will be instantiated
automatically.
private void changeToPseudoState(Class<? extends PseudoState> target)

Changes state from the current state to the pseudo state referenced by
target. If target has no corresponding instance it will be instantiated
automatically. The current state of a state machine is never a pseudo
state, meaning that the method always results in setting the current
state to a state. See more details in section 3.3.5.
private StateType getShallowHistory(Class<? extends StateType> state)

Returns the shallow history of the state referenced by state. If no
history exist, null is returned.
private StateType getDeepHistory(Class<? extends StateType> state)

Returns the deep history of the state referenced by state. If no history
exist, null is returned.
private boolean isRoot(Class<? extends StateType> state)

Checks whether the state referenced by state is the root state. See
section 3.3.1 for details.
private boolean hasSameEnclosingState(Class<? extends IVertex>

stateA, Class<? extends IVertex> stateB)

Checks whether stateA and stateB has the same enclosing state. See
section 3.3.1 for details.
private boolean isSubstateOf(Class<? extends StateType> fromState,

Class<? extends StateType> toState)

Checks whether fromState is substate of toState. See section 3.3.1 for
details.
private boolean isReachable(Class<? extends IVertex> fromState,

Class<? extends IVertex> toState)

Checks whether toState is reachable from fromState. See section 3.3.1
for details.

Table 3.2: Methods of StateMachine that are visible for the framework

Figure 3.11: Framework with pseudo states

3.4.6 IVertex

IVertex is an interface that defines the methods that are common for states
and pseudo states. Table 3.3 gives a method summary.

29

public IVertex enclosingState()

Returns the enclosing state of this state/pseudo state.
public void validate()

Validates this state/pseudo state.

Table 3.3: Methods of the interface IVertex

3.4.7 Pseudo states

There are four different pseudo state classes in the framework, i.e.
EntryPoint, ExitPoint, ShallowHistory and DeepHistory. These classes are
subclasses of PseudoState. Because all pseudo states, including those not
supported by the framework, are different, the class PseudoState does not
define any functionality that is common for all pseudo states. Even the
methods defined by the interface IVertex is implemented differently in all
pseudo states.

Entry and exit points

Table 3.4 lists the methods that is implemented by EntryPoint and ExitPoint,
in addition to the methods of IVertex. The methods are by default defined as
empty, and must be overridden in user defined subclasses to define specific
behaviour. An entry/exit point has only one outgoing transition, either to a
state or to a pseudo state. Therefore, only one of the methods targetState

and targetPseudoState may return a state reference.

public Class<? extends IState> compositeState()

Returns the state reference to the composite state that this entry/exit
point is connected to.
public Class<? extends IState> targetState()

Returns the state reference to the target state of this entry/exit point.
public Class<? extends IVertex> targetPseudoState()

Returns the state reference to the target pseudo state of this entry/exit
point.
public void action()

Defines the actions performed by the outgoing transition of the
entry/exit point.

Table 3.4: Methods of EntryPoint and ExitPoint

Shallow and deep history

Table 3.5 gives a method summary of ShallowHistory and DeepHistory. All
the methods are by default empty, and must be overridden by user defined
subclasses in order to define behaviour.

30

public Class<? extends IState> compositeState()

Returns the state reference to the composite state that this history
pseudo state is enclosed by.
public Class<? extends IState> defaultHistoryState()

Returns the state reference to the default history state of this history
pseudo state.
public Class<? extends IVertex> defaultHistoryPseudoState()

Returns the state reference to the default history pseudo state of this
history pseudo state.
public void action()

Defines the actions performed by the outgoing transition (default
history transition) of this history pseudo state.

Table 3.5: Methods of ShallowHistory and DeepHistory

3.4.8 IState

IState is a subinterface of IVertex, and defines all the methods that State

must implement. Table 3.6 gives a method summary.

public void entry()

Defines the entry action of this state.
public void exit()

Defines the exit action of this state.
public Class<? extends IState> initialState()

Defines the initial state of this composite state if the initial state is a
state.
public Class<? extends IVertex> initialPseudoState()

Defines the initial state of this composite state if the initial state is a
pseudo state.

Table 3.6: Methods of the interface IState

3.4.9 State

State is an inner class of StateMachine, and implements the interface IState.
The actual implementation of State will be different for both frameworks,
however, entry/exit actions and the definition of the initial state will be the
same.

Entry and exit actions

The methods entry and exit of table 3.6 defines the entry and exit actions of
a state. These methods are by default defined with empty bodies in State,
and must be overridden in user defined states to specify any behaviour.

31

StateMachine will execute the entry/exit actions automatically when making
transitions.

Initial states

The initial state of a composite state is defined by overriding the method
initialState defined in table 3.6. When changing the current state of the
state machine, StateMachine will check if the new current state has an initial
state, and if so, change to this automatically.

In UML, initial states are defined by initial pseudo states. To simplify
the implementation process of state machines, the initial pseudo state is
not part of the framework.

Making State generic by type overloading

A problem with IVertex and IState, which are implemented by State, is that
both interfaces are defined outside of StateMachine, and will therefore not
get access to the generic type parameter StateType which should be used by
State. However, in Java it is possible to do type overloading. E.g. State
overloads its return types as shown below.

abstract class StateMachine<StateType extends IState> {

...

protected abstract class State implements IState {

public StateType enclosingState() { ... }

public Class<? extends StateType> initialState() { ... }

public Class<? extends PseudoState> initialPseudoState() { ... }

...

}

protected abstract class PseudoState implements IVertex { ... }

}

The code above is valid because StateType is a subtype of IState, and
PseudoState is a subtype of IVertex (compare return types of State with
tables 3.3 and 3.6).

3.4.10 Events and transitions

Events and transitions are based on the notion of method signatures repre-
senting events, and method bodies containing actions with corresponding
transitions. This approach is adopted from the state design pattern and is
also proposed in other research papers [?, 12].

Figure 3.12 illustrates the approach where e is the event and a is the
action that will be triggered by the event. The method body of e() executes
a which is code that may change internal and external variables, followed
by changing state to the target state T. It is important that the action code is
defined to be executed before the transition such that the order of execution
is correct.

32

Figure 3.12: Event with corresponding transition represented as a
method

Like with the state design pattern, the user must implement the event
methods in the user state classes, and the state machine class must
implement all event method signatures and will dispatch the event calls
to its current state.

class MediaPlayerStateMachine extends StateMachine<IMedia> {

void powerOn() { currentState().powerOn(); }

void powerOff() { currentState().powerOff(); }

...

protected class Off ... {

void powerOn() { <Change to state On>; }

...

}

}

Valid transitions

Transitions in Harel statecharts may point to any state in the state machine,
even if contained in another composite state. UML is more restricted in a
sense that a transition must point to a state that is contained by the same
enclosing state.3 To accomplish similar transitions as with statecharts,
UML use entry and exit points, see figure 3.13.

(a) Statechart (b) UML state machine

Figure 3.13: Statechart vs. UML state machine transitions

The framework will restrict the user to only be able to make transitions
as specified in UML. This is done by validating all transitions such that if
there are any illegal ones they will result in an error. E.g. a direct transition
from A to B like in figure 3.13(a) is illegal because the states have different
enclosing states. Validation will be discussed in chapters 4 and 5.

3In reality, UML transitions must point to a state in the same region, but regions is not
supported by the framework.

33

3.5 Summary

With just a subset of the functionality supported by UML state machines,
there are already a lot of functionality to implement into the state design
pattern that would ruin its simplicity. By moving the complexity into
framework classes, the user can focus on the actual state machine design
and utilize the more advanced functionality by extending these classes.

34

Chapter 4

State hierarchy by
inheritance

4.1 Introduction

In order to extend the state design pattern with UML state machine
functionality, a design choice must be taken concerning state hierarchy
representation. A promising approach proposed by [12] is to represent
state hierarchy by inheritance, where contained states are represented by
subclasses of the state class that represents the enclosing state. Since the
state design pattern already support events with corresponding transitions
through virtual methods, it seems obvious that the approach will work,
because contained states will inherit methods from their enclosing states.
Virtual methods will then function as events with compound transitions
because transitions defined by composite states are inherited by their
substates. However, the combination with other advanced mechanisms
like entry/exit actions will create problems when using inheritance; it is
not only the events that will be inherited, but also everything else.

To further investigate inheritance and to pin point its advantages and
disadvantages, the framework from chapter 3 will be implemented in Java.
Section 4.2 gives an overview of the framework. Section 4.3 shows the
most important implementation details. Section 4.4 gives a tutorial on how
the framework is used, revealing the many shortcomings of inheritance.
Section 4.5 gives a summary of the investigation.

4.2 Overview

While chapter 3 gives a structure of how to integrate a state machine
framework on top of the state design pattern, there are just indications
concerning how state hierarchy is represented. The basic idea of state
hierarchies is that regardless of their representation, the structure must
form a tree, where states (the nodes) may have zero or more substates,
and where there is exactly one root state. The Java class hierarchy gives
such a structure as a consequence of single inheritance. The idea is then to

35

extend the rules of the framework integration by allowing contained states
to extend their enclosing state. State classes without subclasses will serve as
simple states, while state classes with subclasses serve as composite states.

In order to present the inheritance framework, the media player state
machine from section 3.2 on page 16 will be used. Figure 4.1 illustrates
how the media player will look like from a class hierarchy point of view.
The framework class StateMachine is extended by MediaPlayerStateMachine in
order to integrate the user defined state machine with the framework. The
dashed lines represents inner classes that are defined in a superclass, in
this case from StateMachine.

Figure 4.1: Class hierarchy of the media player using inheritance

The user will define all the states as inner classes of the state machine
class named MediaPlayerStateMachine, where each state class for a contained
state is a subclass of its enclosing state. The state machine class is
responsible for implementing all events of the state machine such that
incoming events gets dispatched to the current state, in addition to
defining the initial state of the state machine which in this case should be
MediaPlayer.

Recall that the class StateMachine is generic, and has a type parameter
that is required to be a subtype of the interface IState, see section 3.4.8 on
page 31. The generic type parameter of StateMachine represents the type of
the user defined states in the state machine. The interface IMediaPlayer is
therefore created in order to define this type. IMediaPlayer extends IState

and defines all the event methods of the media player, i.e. powerOn, powerOff,
etc.

MediaPlayer will serve as a root state because it has no user defined state
class as superclass, and will implement IMediaPlayer such that the methods
required by IState and the event methods of IMediaPlayer is implemented.
To satisfy the IState interface, MediaPlayer extends the framework class
State, which is a framework class that will be implemented in this chapter.
In addition, all the event methods of MediaPlayer will be implemented as

36

empty because the root state has no outgoing transitions. This means that
all subclasses of MediaPlayer will have empty behaviour in all events, unless
specified otherwise.

By using inheritance as a means of state hierarchy representation, the
contained states, i.e. On, Off, CDMode, etc., will inherit event methods from
enclosing states. Overriding an event method in a given state will define
behaviour that is specific for that state. However, substates of the given
state will also have the same behaviour for the same event method ,unless
they override the event method, which is very similar to how composite
states works. E.g. the example below illustrates the situation, where On

specifies a transition to Off in the event powerOff. CDMode, which is a substate
and hence a subclass of On, will inherit the event methods from On. If
the current state of the state machine is CDMode and the incoming event is
powerOff, the state machine will transition to Off as defined in On, which is
the wanted behaviour.

4.2.1 Framework classes

Table 4.1 lists the classes of the inheritance framework with corresponding
constructors. All classes are declared abstract such that they cannot be
instantiated, unless they are made concrete by subclasses.

4.3 Framework implementation

Chapter 3 has gone through most of the framework implementation,
this section will fill in the “holes” by explaining how the framework can
utilize inheritance as a means of representing state hierarchy, and by this
implement the remaining functionality.

4.3.1 State hierarchy traversal

In order to implement state hierarchy analysis, see section 3.3.1 on page 17,
entry/exit actions etc., it is important to know how to traverse the state
hierarchy. The state hierarchy is represented by the class inheritance
hierarchy of state classes. The class inheritance hierarchy in Java can be
traversed by using the method getSuperclass() defined in java.lang.Class.
Getting the class of an object can be done by using the method getClass()

defined in java.lang.Object. In order to get the enclosing state of a state
class, it is possible to write getClass().getSuperclass().

4.3.2 StateMachine

Most of the details about StateMachine are explained in section 3.4.4. This
section will cover the remaining details about automatic state instantiation,
and implementation details of state hierarchy analysis.

37

Class name Constructor(s)/description

StateMachine

<StateType

extends IState>

State()

State(Class<? extends StateType> initial)

A generic class that represents a general state
machine with no events. The type parameter
StateType represents the type of the user de-
fined states. There are two constructors avail-
able: The parameterless constructor requires
that the initial state is defined in the method
initialState of StateMachine. As an alternative
constructor, the user can set the initial state
through the parameter initial.

State State()

An inner class of StateMachine, and superclass
of all user defined states. Implements the
interface IState, see section 3.4.8. Defines its
enclosing state by extending it.

PseudoState An inner class of StateMachine, and superclass
of all pseudo states, i.e. EntryPoint, ExitPoint,
ShallowHistory and DeepHistory. Implements
the interface IVertex, and also defines function-
ality that is common for all pseudo state types
the inheritance framework.

EntryPoint EntryPoint()

The superclass of psuedo states representing
entry points.

ExitPoint ExitPoint()

The superclass of pseudo states representing
exit points.

ShallowHistory ShallowHistory()

The superclass of pseudo states representing
shallow history.

DeepHistory DeepHistory()

The superclass of pseudo state representing
deep history.

Table 4.1: Overview of the inheritance framework classes and construc-
tors

Automatic state instantiation

In order to avoid instantiating states more than once, the framework
support automatic state instantiation. This basically means that the user
is operating with state references which are represented by objects of type
java.lang.Class, and StateMachine keeps two internal hash maps, one for
state instances and one for pseudo state instances. An instance may then

38

be fetched by looking it up using the corresponding state reference. If there
is no instance of the state reference, StateMachine makes sure to instantiate
it automatically by using Java reflection and putting it into one of the hash
maps.

A state reference can make an instance by using the method
newInstance() defined in java.lang.Class. For this to work, the framework
will assume that all states has a parameterless constructor. If this is not
the case, the automatic state instantiation will fail, throwing the exception
java.lang.InstantiationException.

Implementation of state hierarchy analysis

The implementation details of the state hierarchy analysis in StateMachine

is dependent on the state hierarchy representation. Below is a short
description of all the methods that do the analysis by using the class
inheritance hierarchy of state classes.

isRoot(state): If the immediate superclass of state is the class
of State, the state is considered to be the root state.

hasSameEnclosingState(stateA, stateB): If the immediate super-
class of stateA and stateB are the same, the states has the
same enclosing state.

isSubstateOf(fromState, toState): If toState is a superclass of
fromState, then fromState is a substate of toState. In order
to find this out, the method will traverse all the superclasses
of fromState until it reaches the root state of the class
inheritance hierarchy. If one of the classes along the way is
the class toState then the method will return true, else false.

isReachable(fromState, toState): The method traverse all su-
perclasses of fromState until the root state class is reached. If
toState is an immediate subclass of any of the superclasses,
or toState is the root state class, then the method will return
true, else false.

4.3.3 State

In addition to the functionality presented in section 3.4.9, State is
responsible of offering methods to the user for defining transitions. These
methods are different compared to those in the delegation framework
presented in chapter 5.

User methods

The purpose of the user methods is to define transitions in event methods,
see table 4.2. The methods are declared protected such that it is only

39

protected final void changeToState(Class<? extends StateType> source,

Class<? extends StateType> target)

Makes the state machine, that this state is instantiated by, to change
from the current state to the state referenced by target. In order to
validate the transition, the parameter source is needed and specifies the
state in which the transition is defined. The states source and target

must have the same enclosing state for the transition to be valid.
protected final void changeToPseudoState(Class<? extends StateType>

source, Class<? extends PseudoState> target)

The same as changeToState, but target is a state reference to a pseudo
state.

Table 4.2: User methods of State

possible to define transitions inside event methods that is defined in state
classes.

The user methods first validates the transition, and then use the
methods of StateMachine (see table 3.2 on page 29) to make the state
machine change state.

State transitions

States may transition to other states by using the methods changeToState

and changeToPseudoState defined in table 4.2. The methods takes two
parameters, where source specifies which state that defines the transition,
and target specifies the target state. The source state and the target state
must have the same enclosing state for the transition to be valid.

An intuitive way of defining the source state is to use the method
getClass() as illustrated below.

...

protected class On extends MediaPlayer {

void powerOff() { changeToState(getClass(), Off.class); }

...

}

...

The wanted value of the source state above is On. However, the
problem is that getClass returns different values for contained states. The
consequence is that contained states will fail the validation of the transition
defined for powerOff. To solve the problem, the state reference of the source
state must be “hard coded” at the location where the transition is defined.

...

protected class On extends MediaPlayer {

void powerOff() { changeToState(On.class, Off.class); }

...

40

}

...

4.4 Framework usage

As a means of illustrating the usage of the inheritance framework, the
media player will be implemented.

4.4.1 Design principles

Implementing a state machine using the inheritance framework involves
the following steps:

1. Define an interface that extends IState and adds the event method
signatures of the state machine.

2. Define a state machine class that is a subclass of StateMachine. The
generic parameter of StateMachine is set to the user defined interface,
such that the states of the state machine will be required to implement
all the events.

3. Define the event dispatch methods and the initial state in the
state machine class. The initial state is defined by overriding the
method initialState of StateMachine, or by using the constructor of
StateMachine that takes the initial state as argument, see constructors
in table 4.1.

4. Define the root state as an inner class of the state machine class, and
as subclass of State. The root state must implement the user defined
interface. All states of a state machine are subclasses of the root state.

5. Define each state as subclass of their enclosing state. Each state must
override the events that are specific for them. Entry and exit actions
can be defined by overriding the methods entry and exit inherited
from State. If a state is a composite state, the initial state can be set
by overriding the method initialState, also inherited from State.

6. Define the pseudo states as inner classes of the state machine class,
and as subclasses of a either EntryPoint, ExitPoint, ShallowHistory or
DeepHistory.

It is important to remember that all types of states must have a
parameterless constructor in order for automatic state instantiation to
work.

4.4.2 Implementation of a media player

Listing 4.1 implements the interface IMediaPlayer, the state machine class
MediaPlayerStateMachine and the root state MediaPlayer.

41

Lines 1-5 IMediaPlayer is the user defined interface that defines the type
of the states of the media player state machine. The interface
extends the framework interface IState, and defines the event method
signatures powerOn, powerOff, etc.

Line 6 Defines the state machine class MediaPlayerStateMachine as subclass
of StateMachine. The type of the states in the state machine class
is required to implement IMediaPlayer by setting IMediaPlayer as
argument to the generic parameter of StateMachine.

Lines 8-10 Defines the initial state of the media player to be MediaPlayer

by overriding the method initialState of StateMachine.

Lines 13-15 Defines the event dispatch methods such that incoming
events gets dispatched to the current state of the state machine.

Lines 18-25 The class MediaPlayer will serve as the root state of the
state machine by extending State and implementing the user defined
interface IMediaPlayer. The initial state is set to Off by overriding the
method initialState. All event methods are implemented with empty
bodies such that contained states, i.e. subclasses, will by default have
empty behaviour for all events unless specified otherwise.

Listing 4.1: IMediaPlayer, MediaPlayerStateMachine and MediaPlayer

1 interface IMediaPlayer extends I S t a t e {
2 void powerOn () ;
3 void powerOff () ;
4 . . .
5 }
6 class MediaPlayerStateMachine extends StateMachine <IMediaPlayer >

{
7 // The i n i t i a l s t a t e of the s t a t e machine
8 Class <? extends IMediaPlayer > i n i t i a l S t a t e () {
9 return MediaPlayer . class ;

10 }
11

12 // Event dispatch methods
13 void powerOn () { c u r r e n t S t a t e () . powerOn () ; }
14 void powerOff () { c u r r e n t S t a t e () . powerOff () ; }
15 . . .
16

17 // State c l a s s e s
18 protected class MediaPlayer extends S t a t e implements

IMediaPlayer {
19 Class <? extends IMediaPlayer > i n i t i a l S t a t e () {
20 return Off . class ;
21 }
22 void powerOn () { }
23 void powerOff () { }
24 . . .
25 }
26 . . .
27 }

42

Listing 4.2 implements the composite states On and CDMode, and the
simple state CDStopped. For the first time there will be problems on the user
side regarding inheritance.

Lines 3-8 Defines On as a substate of MediaPlayer by extending the class
MediaPlayer. The event method powerOff is overridden in order to
define the transition from On to Off. Notice that the state reference
to On is included in the call to changeToState such that the transition
is validated for this and all contained states of On. Since On has no
initial state, the method initialState is overridden to return null. The
reason this is necessary is because MediaPlayer from listing 4.1 defines
its initial state to be Off, and On is a subclass of MediaPlayer and hence
will inherit the method initialState as defined in MediaPlayer.

Lines 9-18 Defines the state CDMode as substate of On which means that
CDMode inherits the compound transition to Off triggered by the event
powerOff. The initial state is set to CDStopped, and the transition to
CassetteMode is defined by overriding the event method of changeMode.
The entry and exit actions of CDMode is defined by overriding the
methods entry and exit. Assume that the methods cdMotorOn and
cdMotorOff exists.

Lines 19-28 Defines the state CDStopped as substate of CDMode. The
transition to CDPlaying is defined by overriding the event method
play. CDStopped has no entry and exit actions, and not an initial
state. The methods entry, exit and initialState are inherited from
the superclass CDMode, and must therefore be overridden as empty.

Listing 4.2: On, CDMode and CDStopped

1 class MediaPlayerStateMachine extends StateMachine <IMediaPlayer >
{

2 . . .
3 protected class On extends MediaPlayer {
4 Class <? extends IMediaPlayer > i n i t i a l S t a t e () {
5 return null ;
6 }
7 void powerOff () { changeToState (On. class , Off . class) ; }
8 }
9 protected class CDMode extends On {

10 Class <? extends IMediaPlayer > i n i t i a l S t a t e () {
11 return CDStopped . class ;
12 }
13 void entry () { cdMotorOn () ; }
14 void e x i t () { cdMotorOff () ; }
15 void changeMode () {
16 changeToState (CDMode . class , CassetteMode . class) ;
17 }
18 }
19 protected class CDStopped extends CDMode {
20 Class <? extends IMediaPlayer > i n i t i a l S t a t e () {
21 return null ;
22 }

43

23 void entry () { }
24 void e x i t () { }
25 void play () {
26 changeToState (CDStopped . class , CDPlaying . class) ;
27 }
28 }
29 }

With the problems of listing 4.2, where entry/exit actions and initial
states from enclosing states are inherited by contained states, one could
think of what would happen if the state classes included other properties
like constructors with behaviour, class attributes, methods that are not
events etc. Obviously these will cause problems for contained states as
the contained states will contain properties from enclosing states that are
not intended for them. The intent of composite states is not to share any
properties with substates (only event methods), which is a good indication
that inheritance has a major weakness when it comes to representing state
hierarchy.

Listing 4.3 implements entry point OnEntryPoint and the shallow history
pseudo state OnShallowHistory.

Lines 3-10 The entry point connected to On. The methods compositeState

and targetPseudoState defined in EntryPoint (see table 3.4 on page 30)
are overridden in order to define specific behaviour. The method
compositeState returns the state reference to On, because On is the
composite state the entry point is connected to. The method
targetPseudoState returns the state reference to the shallow history
pseudo state of On, namely OnShallowHistory.

Lines 11-18 The shallow history pseudo state contained in On. Defines its
enclosing state by overriding the method compositeState to return the
state reference to On. The default history is defined by overriding the
method defaultHistoryState to return the state reference to CDMode.
The methods of ShallowHistory is described in table 3.5 on page 31.

Listing 4.3: OnEntryPoint and OnShallowHistory

1 class MediaPlayerStateMachine extends StateMachine <IMediaPlayer >
{

2 . . .
3 protected class OnEntryPoint extends EntryPoint {
4 public Class <? extends IMediaPlayer > compositeState () {
5 return On. class ;
6 }
7 public Class <? extends PseudoState > targetPseudoState () {
8 return OnShallowHistory . class ;
9 }

10 }
11 protected class OnShallowHistory extends Shal lowHistory {
12 public Class <? extends IMediaPlayer > compositeState () {
13 return On. class ;
14 }

44

15 public Class <? extends IMediaPlayer > d e f a u l t H i s t o r y S t a t e () {
16 return CDMode. class ;
17 }
18 }
19 }

The remaining states of the media player will not be implemented
because they do not introduce any new concepts, nor do they introduce new
type of problems.

4.5 Summary

Inheritance has in some areas proved to be a good candidate for represent-
ing state hierarchy in a combined modeling and programming language.

• Compound transitions are made possible through virtual methods.

• The tree structure of a state hierarchy is satisfied by the class
inheritance hierarchy of state classes. This makes the implementation
of entry/exit actions, entry/exit points and history possible, as
described in chapter 3.

While the above results are positive, there are also several problems.

• Constructors, class attributes and methods that are not event meth-
ods are inherited in contained states. The consequence is that con-
tained states will have properties that is not intended for them.

• Methods like initialState, entry and exit defined in State will be
inherited from enclosing states. This will potentially create problems
for contained states as their behaviour may become incorrect. As
a solution to the problem, the user could override these methods
either as empty or with some behaviour. However, this solution
is not desirable as it introduce unnecessary coding and potential
maintenance problems.

• In order to validate transitions, the user must explicitly define the
source state and the target state of the transition. It would be better
to only define the target state.

At first inheritance looks like a good solution to the state hierarchy
problem. For composite states in isolation it seems to work, but when
introducing new mechanisms the solution becomes unsatisfactory. It
seems that inheritance will do as much good as bad to the problem, and
is therefore not a satisfactory solution.

45

46

Chapter 5

State hierarchy by
delegation

5.1 Introduction

Having excluded the possibility of using inheritance as a means of
representing state hierarchy, a different approach is investigated using
state objects that are linked by delegation. In short, delegation is a
mechanism where objects automatically delegate method calls of methods
they do not have to other objects through explicitly defined delegation
links. The delegation link of a contained state will denote the enclosing
state, which implies that events that are not explicitly defined in a contained
state will automatically be delegated to its enclosing state. Delegation links
are obviously similar to subclasses with virtual methods, and hence also a
good candidate for supporting compound transitions. However, delegation
has the benefit that contained states do not inherit from their enclosing
states.

For the purpose of investigating the delegation approach, the frame-
work from chapter 3 will be completed by adding the missing pieces re-
garding state hierarchy representation and analysis. Section 5.2 will briefly
look at delegation as a language mechanism to get an overview of the ba-
sic principles. Since Java do not support delegation, section 5.3 will explain
how delegation can be simulated using the delegation pattern. An overview
of the framework will be presented in section 5.4. In section 5.5 the remain-
ing parts of the state machine framework will be implemented. Section 5.6
gives a tutorial on the usage of the delegation framework, which will show
the several advantages that delegation has compared to inheritance. Sec-
tion 5.7 gives a summary.

5.2 Delegation

The language mechanism called delegation was originally presented by
Lieberman [11] as an answer to the traditional philosophical controversy
on how to reuse behaviour of objects and classes. The notion of

47

classes, object instances and inheritance is the most commonly used
language mechanisms found in object-oriented languages like Simula
67 [2], Smalltalk [5] and Java [6]. The idea of delegation was to share
behaviour specifications between objects in prototype-based languages, i.e.
languages with only objects and not classes.

With delegation, an object, referred by Lieberman as the delegator,
has one or more delegation links to delegatees. A delegator may have
several delegation links to delegatees, meaning that if the delegator receives
a message it cannot handle, it will automatically forward the message to all
delegation links (one at the time), and hopefully one of the delegatees has
the functionality to handle the message and respond back.

Example 5.1. Figure 5.1 illustrates the sequence diagram of a company
containing the objects Boss and Worker, in addition to an object Company that
calls operations on the Boss. The Boss (delegator) are able to boss around,
while the Worker (delegatee) do work. None of them can do both operations.
If the Boss object gets the message from Company to boss around, it will do so
and make a response back. If, on the other hand, the Boss gets the message
that tells it to do work, the Boss will delegate the message to the Worker

object and eventually get a response back. The response from the Worker is
then forwarded to Company making it seem like the Boss has done the work.
The delegation will take place because the operation for doing work is not
implemented in the Boss object. If the Boss possess both operations, the
message would not be delegated (the same effect as overriding a virtual
method). A message to the Worker which tells it to boss around will be
ignored because the object itself has no implementation for it, nor does it
have a delegation link to delegate the message to.

Figure 5.1: Boss/Worker sequence diagram

Delegation is a mechanism that is often considered an alternative to
inheritance, but taken literally there is no reason that a language may
not support both inheritance and delegation. Inheritance is a mechanism
for specifying specialization and therefore a relationship between classes,
while delegation involves relationships between objects. To illustrate this
idea, figure 5.2 shows that the class C is a subclass of A and thereby inherit
methods of A. Calls to methods of C inherited from A (and possibly redefined)

48

will be executed by a C-object, while calls of the method call() are delegated
to the B-object denoted by the delegation link b.

Figure 5.2: Combining inheritance and delegation

5.3 Delegation in Java

The Java language is not prototype-based and hence does not support
delegation between objects implicitly. The mechanism can however be
simulated by the programmer.

5.3.1 Delegation pattern

The delegation pattern1 is a design pattern that simulates method delega-
tion. The idea is simple: for each method not supported by the delegator,
use the delegation link to delegate the method call.

Listing 5.1 shows the Boss-Worker example from example 5.1 using the
principles of the delegation pattern. The class Worker has no delegation
link and hence no implementation of the method bossAround. The method
doWork contains code for doing work. The class Boss implements code for
bossAround(), but have no implementation of doWork which means that the
method delegates the call to the Worker delegatee.

Listing 5.1: Boss and Worker

1 class Worker {
2 void doWork () { <code> }
3 }
4 class Boss {
5 Worker d e l e g a t e e ;
6

7 void bossAround () { <code> }
8 void doWork () { d e l e g a t e e . doWork () ; }
9 }

1http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/delegation.html

49

5.4 Overview

With the inheritance approach, the class hierarchy of state classes formed
a tree data structure that represented the state hierarchy structure. This is
not the case with delegation. In order to avoid that contained states inherit
properties from enclosing states, the state classes will all be immediate
subclasses of State. Figure 5.3 illustrates the media player from chapter 3
using the delegation framework.

Figure 5.3: Delegation framework class hierarchy

The user defined state machine MediaPlayerStateMachine is a subclass of
StateMachine and contains the user defined state classes. As a consequence
of the framework being generic, see section 3.4.2 on page 26, the interface
IMediaPlayer is defined and set as the generic type of the framework, such
that all states of the state machine must implement the event methods
defined in IMediaPlayer.

All user defined state classes are subclasses of State and implements
the interface IMediaPlayer. This means that each state are responsible of
implementing all the event methods, and must simulate delegation for the
events that are not specific for them.

By looking at the class hierarchy of figure 5.3, it is impossible to know
how the state hierarchy will look like. The state hierarchy first reveals itself
when looking at the object hierarchy of a state machine. Figure 5.4 shows
the object hierarchy of figure 5.3, where e.g. CDMode is the enclosing state of
CDStopped and CDPlaying. CDMode will serve as an enclosing state, because
any event method that are not specified by CDStopped and CDPlaying will
be delegated to CDMode. This means that any transitions defined in event
methods of CDMode will be compound for CDStopped and CDPlaying.

Example 5.2. Assume that the current state of figure 5.4 is CassettePlaying,
and that the event powerOff is occurring. CassettePlaying has no definition
of powerOff, so the event is delegated to CassetteMode. CassetteMode has no

50

Figure 5.4: State hierarchy represented by delegation links between
objects

definition of powerOff, so the event is delegated to On. Finally, On defines
powerOff to cause a transition to Off.

5.4.1 Framework classes

Table 5.1 lists the most important classes of the framework with a short
description of each with corresponding constructors. All classes of the
framework is abstract which makes them impossible to instantiate without
making them concrete by subclasses.

5.5 Framework implementation

Most of the framework are already implemented in chapter 3. This section
will explain how delegation is implemented as part of the framework in
order to make the framework complete.

5.5.1 State hierarchy traversal

An important detail in the delegation framework is how the state hierarchy
is traversed. This will especially be important when implementing state
hierarchy analysis.

The state hierarchy is represented by an object hierarchy of states linked
together by delegation links. This means that the framework must use
the delegation links defined in State to traverse the state hierarchy. To
accomplish this the method enclosingState() defined in State gives the
framework access to the delegation link of a state.

5.5.2 StateMachine

In order to complete the StateMachine class, this section will explain
how automatic state instantiation and the state hierarchy analysis are
implemented.

51

Class name Constructor(s)/description

StateMachine

<StateType

extends IState>

State()

State(Class<? extends StateType> initial)

A generic class that represents a general state
machine with no events. The type parameter
StateType represents the type of the user de-
fined states. There are two constructors avail-
able: The parameterless constructor requires
that the initial state is defined in the method
initialState of StateMachine. As an alternative
constructor, the user can set the initial state
through the parameter initial.

State State(Class<? extends StateType> enclosing)

An inner class of StateMachine, and superclass
of all user defined states. Implements the
interface IState, see section 3.4.8. Defines its
enclosing state by setting its delegation link
through the parameter enclosing.

PseudoState An inner class of StateMachine, and superclass
of all pseudo states, i.e. EntryPoint, ExitPoint,
ShallowHistory and DeepHistory. Implements
the interface IVertex, and also defines function-
ality that is common for all pseudo state types
the inheritance framework.

EntryPoint EntryPoint()

The superclass of psuedo states representing
entry points.

ExitPoint ExitPoint()

The superclass of pseudo states representing
exit points.

ShallowHistory ShallowHistory()

The superclass of pseudo states representing
shallow history.

DeepHistory DeepHistory()

The superclass of pseudo state representing
deep history.

Table 5.1: Overview of the delegation framework classes and constructors

Automatic state instantiation

Java is based on the notion of classes, while delegation on the notion
of objects. To enable delegation between states in Java, the user must
manually instantiate each state, set the correct delegation links and so
forth. In order to make it simpler for the user, the framework support
automatic state instantiation by using Java reflection.

52

In order to reuse state instances, StateMachine will maintain two hash
maps, one with state instances and one with pseudo state instances. Each
instance is mapped by its state reference. If a state reference has no
corresponding instance, StateMachine will instantiate it automatically and
put it into one of the hash maps.

To enable automatic state instantiation, the user must specify delega-
tion links in each state by setting a state reference to their enclosing state,
see the constructor of State in table 5.1. In addition, it is required that each
user state class must have a parameterless constructor such that reflection
will work.2

Figure 5.5 illustrates how automatic state instantiation works, where C
is the current state and T is the target state. The black states are already
instantiated (referenced in the hash map of StateMachine), the grey states
are about to be instantiated and the white states are not instantiated. The
solid lines between the states are delegation links that are set, while the
dotted lines are not set. In figure 5.5(a) only C and the enclosing state
of C is in the hash map of StateMachine marked as black. Figure 5.5(b)
shows the process of what is happening when changing state to T . Both
T and its enclosing state are marked grey. They will be instantiated in the
order marked by (1) followed by (2). The reason for this ordering is that T
must set its delegation link to an actual object. Notice that the root state
is not instantiated because it is already black. Figure 5.5(c) is the result of
changing state from C to T .

(a) Before changing state (b) Changing state (c) After changing state

Figure 5.5: Automatic state instantiation

Implementation of state hierarchy analysis

The implementation of state hierarchy analysis is dependent on how the
state hierarchy is represented. Below is the implementation details of the
analysis methods of StateMachine when using the object hierarchy of states.

isRoot(state): If the enclosing state of state is a reference to
null, the state is the root state.

hasSameEnclosingState(stateA, stateB): If the reference to the
enclosing state of stateA and stateB are equal, the method
will return true.

2The framework assumes that a state has no parameters in their constructor. If the
framework attempts to instantiate a state that does not satisfy this requirement, the
exception java.lang.InstantiationException will be thrown.

53

isSubstateOf(fromState, toState): If toState is a state object
on the path from fromState to the root state, the state
fromState is a substate of toState. The method will traverse
all enclosing states of fromState until it finds toState and
returns true. If the traversal reaches the root state, and
toState is not found, the method will return false.

isReachable(fromState, toState): The method traverse all en-
closing states of fromState in the object hierarchy. If one of
the enclosing states of fromState are the immediate enclosing
state of toState, or toState is the root state, the method will
return true.

5.5.3 State

The delegation framework defines State differently than in the inheritance
framework of chapter 4. First of all, the constructor is different as it
requires a state reference to the enclosing state. Secondly, the user methods
defining transitions are simpler. See section 3.4.9 for general information
about State.

User methods

State has methods methods for defining transitions, see table 5.2. The
methods are declared protected such that it is only possible to define
transitions inside event methods that are defined in user state classes.

protected final void changeToState(Class<? extends StateType> target)

Makes the state machine, that this state is instantiated by, to change
from the current state to the state referenced by target. The method will
validate the transition automatically by checking that the source state
where the transition is defined has the same enclosing state as target.
protected final void changeToPseudoState(

Class<? extends PseudoState> target)

The same as changeToState, but target is a state reference to a pseudo
state.

Table 5.2: User methods of State

5.5.4 State transitions

The methods changeToState and changeToPseudoState of table 5.2 are used for
defining state transitions. Both methods takes one parameter that specifies
the target state of the state machine. The framework will then validate
the transition by dynamically getting the state reference to the state where
the transition is defined, and checking that the source state has the same
enclosing state as the target state.

54

With the inheritance framework, the source state had to be hard
coded for each transition, see section 4.3.3 on page 40. With the
delegation approach, the methods changeToState and changeToPseudoState

takes one parameter that specifies the target state. The framework will
dynamically get the source state by using the method getClass defined
in java.lang.Object. This approach works because delegated events are
executing in other objects than the current state, and compound transitions
are therefore called from the objects where the transitions are defined.

Example 5.3. Assume that the current state of the media player is
CDPlaying, and that the event powerOff is occurring.

With the inheritance approach, the state class CDPlaying inherits the
method powerOff from enclosing states which means that the source state
will be CDPlaying. The source state CDPlaying and the target state Off do not
have the same enclosing state, and hence the transition is not valid.

With the delegation approach, the event is delegated to On which
defines the method powerOff. The source state is therefore On because the
program is executing on the object instance of On. On and Off has the same
enclosing state, and hence the transition is valid.

5.6 Framework usage

The main advantages of delegation first reveals itself from an users point of
view. To illustrate these advantages, the media player will be implemented
using the delegation framework.

5.6.1 Design principles

The design process of a state machine when using the delegation framework
is much similar to inheritance approach, but with a few distinct differences.
Implementing a state machine with the delegation framework involves the
following steps:

1. Define an interface that extends IState and adds the event method
signatures of the state machine.

2. Define a state machine class that is a subclass of StateMachine. The
generic parameter of StateMachine is set to the user defined interface,
such that the states of the state machine will be required to implement
all the events.

3. Define the event dispatch methods and the initial state of the
state machine. The initial state is defined by overriding the
method initialState of StateMachine, or by using the constructor of
StateMachine that takes the initial state as argument, see constructors
in table 5.1.

4. Define all the state classes, including the root state, as inner classes
of the state machine class, and as subclasses of State. Each state class

55

must implement the interface, i.e. the event methods, and simulate
delegation for each event that is not specific for them.

5. Define the pseudo states as inner classes of the state machine class,
and as subclasses of a either EntryPoint, ExitPoint, ShallowHistory or
DeepHistory.

5.6.2 Implementation of a media player

Listing 5.2 implements the interface IMediaPlayer, the state machine class
MediaPlayerStateMachine and the root state MediaPlayer.

Lines 1-5 Defines the interface IMediaPlayer as a subinterface of IState.
The interface is extended to contain all the event methods of the
media player state machine.

Line 6 The state machine class extends StateMachine, and makes sure
that the states are required to implement IMediaPlayer by setting the
generic type parameter of StateMachine to IMediaPlayer.

Lines 8-10 Defines the initial state of the media player by overriding the
method initialState of StateMachine to return the state reference to
MediaPlayer.

Lines 13-15 The event dispatch methods that makes sure that incoming
events are dispatched to the current state. Notice that the user
gets access to the methods powerOn(), powerOff etc., because the type
returned from currentState is set to IMediaPlayer via the generic type
parameter of StateMachine.

Lines 18-26 Defines the state MediaPlayer which will be the root state,
because the enclosing state (delegation link) is set to null via the
constructor of State. The initial state is set to Off by overriding
the method initialState inherited from State. The event methods
are implemented with empty bodies, first of all because there is no
defined behaviour in the actual state machine, and secondly because
there is no enclosing state that the events can be delegated to.

Listing 5.2: IMediaPlayer, MediaPlayerStateMachine and MediaPlayer

1 interface IMediaPlayer extends I S t a t e {
2 void powerOn () ;
3 void powerOff () ;
4 . . .
5 }
6 class MediaPlayerStateMachine extends StateMachine <IMediaPlayer >

{
7 // I n i t i a l s t a t e of the s t a t e machine
8 Class <? extends IMediaPlayer > i n i t i a l S t a t e () {
9 return MediaPlayer . class ;

10 }
11

56

12 // Event dispatch methods
13 void powerOn () { c u r r e n t S t a t e () . powerOn () ; }
14 void powerOff () { c u r r e n t S t a t e () . powerOff () ; }
15 . . .
16

17 // State c l a s s e s
18 protected class MediaPlayer extends S t a t e implements

IMediaPlayer {
19 MediaPlayer () { super (null) ; } // Root s t a t e
20 Class <? extends IMediaPlayer > i n i t i a l S t a t e () {
21 return Off . class ;
22 }
23 void powerOn () { }
24 void powerOff () { }
25 . . .
26 }
27 . . .
28 }

Listing 5.3 implements the composite states On and CDMode, and the
simple state CDStopped.

Lines 3-8 Definition of the composite state On where its enclosing state
is defined to be MediaPlayer. The event method powerOn delegates the
event to the enclosing state, while the event method powerOff defines
a transition to the state Off.

Lines 9-18 Definition of the composite state CDMode where its enclosing
state is defined to be On. The entry and exit action methods
are overridden such that the methods cdMotorOn and cdMotorOff are
executed.3 The event method changeMode defines a transition to
CassetteMode. The other event methods must delegate to the enclosing
state of CDMode.

Lines 19-23 Definition of the simple state CDStopped where its enclosing
state is defined to be CDMode. The event method play defines the
transition to CDPlaying. The other event methods must delegate to
the enclosing state of CDStopped.

Listing 5.3: On, CDMode and CDStopped

1 class MediaPlayerStateMachine extends StateMachine <IMediaPlayer >
{

2 . . .
3 protected class On extends S t a t e implements IMediaPlayer {
4 On() { super (MediaPlayer . class) ; }
5 void powerOn () { e n c l o s i n g S t a t e () . powerOn () ; }
6 void powerOff () { changeToState (Off . class) ; }
7 . . .
8 }
9 protected class CDMode extends S t a t e implements IMediaPlayer {

10 CDMode() { super (On. class) ; }
11 Class <? extends IMediaPlayer > i n i t i a l S t a t e () {

3Assume that the methods cdMotorOn and cdMotorOff exists.

57

12 return CDStopped . class ;
13 }
14 void entry () { cdMotorOn () ; }
15 void e x i t () { cdMotorOff () ; }
16 void changeMode () { changeToState (CassetteMode . class) ; }
17 . . .
18 }
19 protected class CDStopped extends S t a t e implements IMediaPlayer

{
20 CDStopped () { super (CDMode . class) ; }
21 void play () { changeToState (CDPlaying . class) ; }
22 . . .
23 }
24 }

It is important to point out that even though the states of listing 5.3 are
substates of a composite state, they are all immediate subclasses of State,
and not their enclosing states as in the inheritance approach. The benefit is
that the methods initialState, entry and exit are not inherited by contained
states, and hence the result is a cleaner and less error prone code. In order
to fully see the benefits of delegation, compare CDStopped in listing 5.3 with
CDStopped in listing 4.2 on page 43.

The entry point and history pseudo states are implemented exactly the
same way as with the inheritance approach. See listing 4.3 on page 44.

The remaining states of the media player will not be implemented as
they do not introduce any new concepts.

5.6.3 Implicit delegation by inheritance

The task of simulating delegation for all events in all the states may be a
tiresome task. In order to simplify the simulation, one could create a class
MediaPlayerState, which is a subclass of State and superclass of all states,
see figure 5.6. MediaPlayerState will implement the interface IMediaPlayer,
and implement all events of the interface. The events will contain code that
simulates delegation. The states, which are subclasses of MediaPlayerState,
will then implicitly delegate for each event that is not explicitly overridden.

Figure 5.6: Implicit delegation by inheriting MediaPlayerState

58

Listing 5.4 illustrates how MediaPlayerState will look like. With respect
to the root state, there must be a general way of delegating. The tests on
line 5 and 10 are therefore needed to ensure that the enclosing state of the
current state is not null. Without these checks, the state machine may crash
by calling a reference to null, resulting in a Java NullPointerException.

Listing 5.4: MediaPlayerState

1 class MediaPlayerStateMachine extends StateMachine <IMediaPlayer >
{

2 . . .
3 protected class MediaPlayerState extends S t a t e implements

IMediaPlayer {
4 void powerOn () {
5 i f (e n c l o s i n g S t a t e () != null) {
6 e n c l o s i n g S t a t e () . powerOn () ;
7 }
8 }
9 void powerOff () {

10 i f (e n c l o s i n g S t a t e () != null) {
11 e n c l o s i n g S t a t e () . powerOff () ;
12 }
13 }
14 . . .
15 }
16 }

5.7 Summary

The goal of investigating inheritance and delegation was to find a good way
to represent state hierarchy. The investigation is presented through two
similar frameworks that implement the most basic functionality in UML
state machines. The frameworks alone are not very interesting, but is used
as tools to show what challenges that needs to be considered. Based on the
investigation, delegation has shown to have several advantages compared
to inheritance. The problems with inheritance are solved as well as keeping
the positive sides.

• Method delegation is a better choice than virtual methods when
it comes to compound transitions, because the framework is able
to validate transitions automatically, without forcing the user to
explicitly define the source state as with the inheritance approach.

• The object hierarchy has the same tree structure as the class hierar-
chy, and hence a good representation of state hierarchy.

• Implementation of entry/exit actions, entry/exit points and history
is as simple as in the inheritance framework, only using the object
hierarchy instead of the class hierarchy.

• Framework methods like entry, exit and initialState defined in State

are not inherited by contained states, because contained states are no

59

longer represented by subclasses, which makes the code cleaner and
easier to maintain.

• As a consequence of delegation representing state hierarchy rather
than subclasses, constructors, class attributes and other methods are
not inherited by contained states.

Even though not directly related to the state hierarchy problem, there
has been introduced some new problems that are related to the Java
language.

• Java does not support delegation as a language mechanism. The
consequence is that the user must simulate delegation with the
delegation pattern which means extra coding for the user.

• Java is based on the notion of classes. Since the abstraction of
contained states are represented by object references, the code has
to make sure to instantiate each state and set the correct delegation
links at runtime.

As may be observed above, a problem with the investigation is Java.
The language is strict in its type system, and the extra coding needed
to simulate delegation is frustrating. However, delegation as a language
mechanism appears to be a good abstraction for state hierarchy and should
be investigated further.

60

Chapter 6

Specialization of state
machines

6.1 Introduction

Object-oriented programming languages offer the ability to create special-
izations of existing classes through language mechanisms like e.g. inheri-
tance. In modeling, the notion of specialized state machines has been dis-
cussed in [15], and has later become a part of UML2, see e.g. [9]. In such
specialized state machines, the states and transitions are inherited from
super state machines. New states and transitions may then be added. In-
herited states and transitions in a super state machine may be overridden.

In an object-oriented language that supports advanced state machines
with delegation representing state hierarchy, it is natural to think that
inheritance can be used as a means of representing specialized state
machines.

Even though only for simple state machines, [1] presents an extensible
state machine pattern which is based on the state design pattern. The ex-
tensible state machine pattern supports specialization by using inheritance,
interfaces, generics and factory methods [4]. Fortunately, it turns out that
parts of the pattern also applies to the delegegation framework, but with
some modifications in order to intergrate with the framework.

This chapter will pursue the idea of combining the delegation frame-
work from chapter 5, and subclassing of state machines and states to create
specialized state machines. The ideas from [1] will be applied, which will
eventually lead to the notion of using inheritance and virtual classes [13]
as a means of representing specialized state machines.

Section 6.2 presents a specialized switch that will be used as an example
in the following sections. Section 6.3 will implement the switch by using
the extensible state machine pattern applied to the framework. Section 6.4
drastically simplifies the extensible state machine pattern by replacing
the use of interfaces, generics and factory methods with virtual classes.
Section 6.5 gives a summary.

61

6.2 A specialized switch

For the purpose of illustrating specialization of state machines, a simple
on/off switch will be extended to a media switch with modes. The media
switch is a simplified version of the media player from chapter 3

Figure 6.1 shows how the on/off switch named SwitchStateMachine is ex-
tended to the specialized media switch named MediaSwitchStateMachine. The
states CDMode and CassetteMode, and the event changeMode with corresponding
transitions are added. The dashed lines are the states and transitions that
are inherited from SwitchStateMachine.

Figure 6.1: Specialized media switch

6.3 Using the extensible state machine pattern

This section will build the media switch in stages, starting with the simple
on/off switch and extend it by overriding states, adding states and adding
events. The principles of the extensible state machine pattern will be
introduced when necessary.

6.3.1 Implementing the on/off switch

The starting point of implementing the media switch is to implement
the on/off switch according to the delegation approach, see chapter 5.
Figure 6.2 illustrates the class hierarchy of the on/off switch. All states are
immediate subclasses of State, and implements the interface ISwitch which
contains the events powerOn and powerOff. The state machine represented
by the class SwitchStateMachine must support all events such that incoming
events are dispatched to the current state.

Listing 6.1 implements the on/off switch.

62

Figure 6.2: Class hierarchy of the on/off switch

Lines 1-4 The interface that defines the events powerOn and powerOff. Is a
subinterface of IState as required by the delegation approach.

Lines 7-17 The state classes which are immediate subclasses of State and
implements the interface ISwitch. On defines the enclosing state to
be Switch, simulates delegation for the event powerOn and defines the
transition to Off in the event powerOff. Off has the enclosing state
Switch and defines the transition to On in the event powerOn.

Listing 6.1: SwitchStateMachine

1 interface ISwitch extends I S t a t e {
2 void powerOn () ;
3 void powerOff () ;
4 }
5 class SwitchStateMachine extends StateMachine <ISwitch > {
6 // State c l a s s e s
7 protected class Switch extends S t a t e implements ISwitch { . . . }
8 protected class On extends S t a t e implements ISwitch {
9 On() { super (Switch . class) ; }

10 void powerOn () { e n c l o s i n g S t a t e () . powerOn () ; }
11 void powerOff () { changeToState (Off . class) ; }
12 }
13 protected class Off extends S t a t e implements ISwitch {
14 Off () { super (Switch . class) ; }
15 void powerOn () { changeToState (On. class) ; }
16 void powerOff () { e n c l o s i n g S t a t e () . powerOff () ; }
17 }
18

19 // Event dispatch methods , i n i t i a l s tate , e t c . . .
20 . . .
21 }

63

6.3.2 Implementing the media switch

The idea of the specialized media switch is to extend SwitchStateMachine

to the class MediaSwitchStateMachine by using inheritance, see figure 6.3.
MediaSwitchStateMachine will then inherit the dispatch event methods and
the initial state definition from SwitchStateMachine, and get access to the
state classes Switch, On and Off.

Figure 6.3: Specialization by inheritance

Creating the specialization involves adding the new event changeMode,
the new states CDMode and CassetteMode, and setting CDMode as the initial state
of On which means that On must be overridden.

The first principle that will be discussed is overriding of states without
introducing new events: In order to override On, a subclass is created which
overrides its initialState-method to return the state reference to CDMode,
see figure 6.4.

Figure 6.4: Specialization of states

Unfortunately, the transition from Off to On as defined on line 15 in
listing 6.1, is not using the state reference to the specialized state. This leads
to the first constraint which is adapted from the extensible state machine
pattern:

Constraint: There must exist a consistent way of reference
to states that will allow future specializations to override the
implementation of a state class.

As a consequence of this constraint, factory methods are introduced as a
means of referencing to states. States must therefore be referenced through
the factory methods, see listing 6.2.

Listing 6.2: SwitchStateMachine with factory methods

1 class SwitchStateMachine extends StateMachine <ISwitch > {
2 // Factory methods
3 protected Class <? extends ISwitch > s t a t e S w i t c h () {

64

4 return Switch . class ;
5 }
6 protected Class <? extends ISwitch > stateOn () {
7 return On. class ;
8 }
9 protected Class <? extends ISwitch > s t a t e O f f () {

10 return Off . class ;
11 }
12

13 // State c l a s s e s
14 protected class Switch extends S t a t e implements ISwitch { . . . }
15 protected class On extends S t a t e implements ISwitch {
16 On() { super (s t a t e S w i t c h ()) ; }
17 void powerOn () { e n c l o s i n g S t a t e () . powerOn () ; }
18 void powerOff () { changeToState (s t a t e O f f ()) ; }
19 }
20 protected class Off extends S t a t e implements ISwitch {
21 Off () { super (s t a t e S w i t c h ()) ; }
22 void powerOn () { changeToState (stateOn ()) ; }
23 void powerOff () { e n c l o s i n g S t a t e () . powerOff () ; }
24 }
25

26 // Event dispatch methods , i n i t i a l s tate , e t c . . .
27 . . .
28 }

The factory methods can then be overridden to return specialized states
in specialized state machines as shown below.

class MediaSwitchStateMachine extends SwitchStateMachine {

@Override

protected Class<? extends ISwitch> stateOn() {

return SpecialOn.class;

}

...

}

The second principle that will be discussed is the adding of new events.
In order to add the event changeMode, the interface ISwitch must be extended
in order for the framework to get the correct type. Secondly, all states must
implement the new interface which means that Switch, On and Off must be
specialized.

With these steps in mind, there are obviously problems with listing 6.2
concerning types. The main problem is that the framework is locked to
the type ISwitch. The states returned from the framework will therefore
be of type ISwitch instead of the type of the current interface that also
contains the event method changeMode. Another problem is that if the user
forgets to override the factory methods to return the specialized states, the
compiler will not complain, which means that some states do not support
all events. These problems leads to the second constraint, also adopted
from the extensible state machine pattern:

Constraint: Each state must abstract over the events it re-
sponds to. While it may require that certain events exist, it may

65

not limit what events can be added by future specializations.

In order to satisfy this constraint, generics are introduced to
SwitchStateMachine, see listing 6.3. A consequence of using generics with
the factory methods is that the factory methods must be declared abstract,
making the state machine class abstract as well. The compiler has simply
no way of telling what type StateType will be.

Listing 6.3: SwitchStateMachine with generics

1 abstract class SwitchStateMachine <StateType extends ISwitch >
extends StateMachine <StateType > {

2 // Factory methods
3 protected abstract Class <? extends StateType > s t a t e S w i t c h () ;
4 protected abstract Class <? extends StateType > stateOn () ;
5 protected abstract Class <? extends StateType > s t a t e O f f () ;
6

7 // State c l a s s e s
8 . . .
9 // Event dispatch methods , i n i t i a l s tate , e t c . . .

10 . . .
11 }

The downside of using generics is that the state machine classes must
be declared abstract, and therefore the state machine classes cannot be
instantiated. If SwitchStateMachine is to be used, the class must be made
concrete by creating a subclass that implements the factory methods, see
listing 6.4. The framework and factory methods is now using the type
ISwitch. The compiler can type check the return values of the factory
methods such that the state references that is returned are guaranteed to
implement the interface ISwitch.

Listing 6.4: ConcreteSwitchSM

1 class ConcreteSwitchSM extends SwitchStateMachine <ISwitch > {
2 protected Class <? extends ISwitch > s t a t e S w i t c h () {
3 return Switch . class ;
4 }
5 protected Class <? extends ISwitch > stateOn () {
6 return On. class ;
7 }
8 protected Class <? extends ISwitch > s t a t e O f f () {
9 return Off . class ;

10 }
11 }

With these principles the specialized media switch can be implemented.
Figure 6.5 gives a graphical overview of how the on/off switch is specialized
to the media switch. IMedia is the new interface that extends ISwitch

and adds the event changeMode. The previously defined states from
SwitchStateMachine are extended to the classes SpecialSwitch, SpecialOn and
SpecialOff, which all implements the IMedia interface. The classes CDMode

and CassetteMode are new states and are therefore immediate subclasses of
State, and implements IMedia.

66

Figure 6.5: Class hierarchy of the media switch

Listing 6.5 implements the media switch.

Lines 1-3 The IMedia interface that defines the event changeMode.

Line 4 The generic type StateType is now required to implement the
IMedia interface. StateType is used as argument to the generic type
of SwitchStateMachine such that the inherited factory methods,i.e.
stateSwitch, stateOn and stateOff, are expected to return class objects
that implements all events of IMedia.

Line 6 Adds the event method changeMode that dispatches the event to the
current state.

Lines 9-14 Adds the states CDMode and CassetteMode.

Lines 17-18 For each new state, an abstract factory method must be
added. The factory methods for CDMode and CassetteMode is therefore
added. The factory methods for the states On, Off and Switch are
inherited from SwitchStateMachine.

Lines 21-34 Extends the inherited states with the changeMode event de-
fined in IMedia. SpecialOn must override the method initialState to
define the initial state to be CDMode.

Listing 6.5: MediaSwitchStateMachine

1 interface IMedia extends ISwitch {
2 void changeMode () ;
3 }
4 abstract class MediaSwitchStateMachine <StateType extends IMedia>

extends SwitchStateMachine <StateType > {
5 // New s t a t e machine events

67

6 void changeMode () { c u r r e n t S t a t e () . changeMode () ; }
7

8 // New s t a t e s
9 protected class CDMode extends S t a t e implements IMedia {

10 . . .
11 }
12 protected class CassetteMode extends S t a t e implements IMedia {
13 . . .
14 }
15

16 // Factory methods for new s t a t e s
17 protected abstract Class <? extends StateType > stateCDMode () ;
18 protected abstract Class <? extends StateType > stateCassetteMode

() ;
19

20 // Creating s p e c i a l i z e d s t a t e s
21 protected class SpecialOn extends On implements IMedia {
22 public Class <? extends StateType > i n i t i a l S t a t e () {
23 return stateCDMode () ;
24 }
25 public void changeMode () {
26 e n c l o s i n g S t a t e () . changeMode () ; // Delegation
27 }
28 }
29 protected class S p e c i a l O f f extends Off implements IMedia {
30 . . .
31 }
32 protected class Spec ia lSwi tch extends Switch implements IMedia

{
33 . . .
34 }
35 }

In order to use MediaSwitchStateMachine, the class must be extended to
make it concrete. Listing 6.6 implements the concrete media switch by
implementing the factory methods to return the correct state references.
Notice that the factory methods are required to return state references to
states that have all the methods of IMedia. An attempt of returning the
state references to the previously defined Switch, On and Off will give a
compilation error because they do not implement IMedia.

Listing 6.6: ConcreteMediaSwitchSM

1 class ConcreteMediaSwitchSM extends MediaSwitchStateMachine <
IMedia> {

2 protected Class <? extends IMedia> s t a t e S w i t c h () {
3 return Spec ia lSwi tch . class ;
4 }
5 protected Class <? extends IMedia> stateOn () {
6 return SpecialOn . class ;
7 }
8 protected Class <? extends IMedia> s t a t e O f f () {
9 return S p e c i a l O f f . class ;

10 }
11 protected Class <? extends IMedia> stateCDMode () {
12 return CDMode. class ;
13 }

68

14 protected Class <? extends IMedia> stateCassetteMode () {
15 return CassetteMode . class ;
16 }
17 }

6.3.3 Summary of design principles

This section will summarize the design principles on how to create
specialized state machines by using the delegation framework combined
with the extensible state machine pattern.

Creating the base state machine

The base state machine is responsible for integrating with the framework,
and offer the possibility of creating state machine specializations. E.g.
SwitchStateMachine is the base state machine of the specialized media
switch. The list of principles below describes how the base state machine is
created.

• Define an interface that is a subinterface of IState and that contains
all event method signatures of the state machine.

interface IBase extends IState { ... }

• Create a state machine class declared abstract that extends StateMachine.
Define an event dispatch method for each event, and define the initial
state of the state machine. The state machine class must be generic
with one type parameter that is required to extend the defined inter-
face.

abstract class BaseStateMachine<StateType extends IBase>

extends StateMachine<StateType> { ... }

The type parameter named StateType is used as argument to the
generic type parameter of StateMachine, such that the framework will
work with the same type of states as the user defined state machine.

• Define all the state classes as inner classes of BaseStateMachine. All
states must implement IBase and extend State.

...

protected class AState extends State implements IBase { ... }

...

• For each state, define a factory method declared abstract in
BaseStateMachine, where the return type is a state reference to a state
class that is required to extend the generic type parameter of the state
machine.

69

...

protected abstract Class<? extends StateType> aStateReference();

...

Creating a specialized state machine

Having the base state machine created, the list of principles below is used
to create specializations. The term super state machine will be used to refer
to the state machine that will be specialized. E.g. SwitchStateMachine is the
super state machine of MediaSwitchStateMachine.

• If new events are added, a new interface that extends the interface
used in the super state machine must be created. The new interface
adds the new event method signatures. Creating a specialization of
the base state machine would imply that the new interface extends
IBase, but in order define a general principle, ISuper will denote the
interface of the super state machine.

interface ISpecial extends ISuper { ... }

• Create a new state machine class declared abstract that is a subclass
of the super state machine denoted as SuperStateMachine. Add new
dispatching event methods if any. The new state machine class is
generic with one type parameter that is required to extend the current
interface as shown below (assuming that ISpecial is the current
interface).

abstract class SpecialStateMachine<StateType extends ISpecial>

extends SuperStateMachine<StateType> { ... }

The type parameter StateType must be used as argument to
SuperStateMachine, such that the type parameter is the same for all
super state machines of SpecialStateMachine, including the base state
machine and the framework.

• If there are new events, all inherited states from SuperStateMachine

must be extended such that they implement the new interface.

• Add any new states such that they extend State and implements the
current interface.

• For each new state, add a factory method declared abstract in
SpecialStateMachine.

Concrete state machines

In order to use a state machine, it has to be made concrete. A concrete state
machine class denoted ConcreteStateMachine, is a subclass of an abstract
state machine class denoted AbstractStateMachine. This is illustrated below,
where the interface I denotes the interface that defines the state type of
ConcreteStateMachine.

70

class ConcreteStateMachine extends AbstractStateMachine<I> { ... }

The only reason for creating concrete state machines is to implement
the abstract factory methods of the abstract state machine to return the
correct state references.

Figure 6.6 illustrates how to apply the extensible state machine pattern
with the delegation framework. The figure assumes that a new interface is
created for each state machine, but this is only necessary if new events are
introduced.

Figure 6.6: Specialized state machines using the extensible state machine
pattern

6.4 Using inheritance and virtual classes

In this next approach, virtual classes are introduced to make the special-
ization of state machines very simple and elegant. Interestingly, the intro-
duction of virtual classes removes the use of generics in the framework, and
hence removes the need for interfaces. The use of factory methods will also
be removed.

6.4.1 Virtual classes

A virtual class is an inner class that may be overridden in subclasses of
the outer class. The type of a virtual class will, like with virtual methods,
depend on the type of the outer class. However, unlike virtual methods, it
is not possible to completely override a virtual class with a new type. In
order to ensure that code inherited from superclasses of the outer class is
valid, virtual classes is overridden by extending them such that previously
defined functionality is kept, while having the ability to extend the classes
with new functionality.

Subclasses of a virtual class will always inherit the class that is
associated with the outer class. This means that overriding a virtual class
in a given outer class will effect all the subclasses for that outer class. This
feature is the reason why virtual classes is an interesting mechanism for
specialization of state machines.

71

Figure 6.7 illustrates how virtual classes work by having a class OuterA

and a subclass OuterB. OuterA defines the virtual class Inner with subclasses
InnerA and InnerB. In OuterB the class Inner is overridden by being extended.
In an instance of OuterA, the classes InnerA and InnerB will have the original
superclass of Inner, while in an instance of OuterB the superclass will be the
extended Inner.

Figure 6.7: Virtual classes with subclasses

6.4.2 Java with virtual classes

Java has no support for virtual classes, nor is it possible to fully simulate
them. For this section, the support for virtual classes is therefore assumed
in Java. The definition of a virtual class must then be declared with the
keyword virtual as shown below.

class OuterA {

protected virtual class Inner { ... }

...

}

In order to override a virtual class, the new class must have the same
name and extend the previous definition as shown below.

class OuterB extends OuterA {

protected virtual class Inner extends OuterA.Inner { ... }

...

}

6.4.3 Modified delegation framework

Generics was implemented into the delegation framework such that
states returned from certain methods (e.g. the method currentState in

72

StateMachine) gave the user access to the event methods of states without
the need of unsafe type casting. Since all states are subclasses of State,
the idea of the modified delegation framework is to make State virtual
(see figure 6.8), and for each specialized state machine with new events,
override State by extending it with new event methods. The states of the
specialized state machines will then automatically inherit the extended
State and hence inherit its events. Methods of the framework that was
previously defined to return objects of the generic type parameter of
StateMachine is now assumed to return objects of type State.

Figure 6.8: Modified delegation framework with virtual classes

6.4.4 Implementing the on/off switch

In order to implement the on/off switch, the class SwitchStateMachine

extends StateMachine, see figure 6.9. State, which is inherited from
StateMachine, is then overridden by extending it with the events powerOn

and powerOff. State will now contain the functionality from the original
State in addition to the events. Both event methods must contain code
that simulates delegation such that subclasses of State only must override
the events that is specific for them, and the other events will implicitly
be delegated.1 The states Switch, On and Off are defined as immediate
subclasses of the extended State. The states are also declared virtual
because it is then possible to override them in specialized state machines.

Figure 6.9: On/off switch with virtual classes

Listing 6.7 implements the on/off switch by using virtual classes.

Line 1 Defines the class SwitchStateMachine as a subclass of StateMachine.
1State will have the same role as MediaPlayerState in section 5.6.3 on page 58.

73

Lines 2-4 Defines the initial state of the state machine to be Switch.

Lines 5-16 The virtual class State is overridden to include the events
powerOn and powerOff. The event methods contain code that simulates
delegation. It is now necessary to have a general way of delegating
since all states are subclasses of State, and therefore inherit the
delegation code. The tests on line 7 and 12 is therefore needed in case
the root state is trying to delegate to its enclosing state which is null.
Notice that since the method enclosingState now returns a reference
to an object of type State, the user gets access to the event methods
powerOn and powerOff without unsafe type casting.

Lines 19-20 Dispatch methods for the events powerOn and powerOff.

Lines 23-36 The state classes which are subclasses of State. Switch

defines its initial state to Off. Off overrides the event method powerOn

with a transition to On. The event method powerOff is inherited from
State and will therefore result in a delegation to the enclosing state
Switch. On overrides the event method powerOff with a transition to
Off. The event powerOn will be delegated to Switch.

Listing 6.7: SwitchStateMachine

1 class SwitchStateMachine extends StateMachine {
2 protected Class <? extends State > i n i t i a l S t a t e () {
3 return Switch . class ;
4 }
5 protected virtual class S t a t e extends StateMachine . S t a t e {
6 void powerOn () {
7 i f (e n c l o s i n g S t a t e () != null) {
8 e n c l o s i n g S t a t e () . powerOn () ;
9 }

10 }
11 void powerOff () {
12 i f (e n c l o s i n g S t a t e () != null) {
13 e n c l o s i n g S t a t e () . powerOff () ;
14 }
15 }
16 }
17

18 // State machine events
19 void powerOn () { c u r r e n t S t a t e () . powerOn () ; }
20 void powerOff () { c u r r e n t S t a t e () . powerOff () ; }
21

22 // S t a t e s
23 protected virtual class Switch extends S t a t e {
24 Switch () { super (null) ; }
25 Class <? extends State > i n i t i a l S t a t e () {
26 return Off . class ;
27 }
28 }
29 protected virtual class Off extends S t a t e {
30 Off () { super (Switch . class) ; }
31 void powerOn () { changeToState (On. class) ; }
32 }

74

33 protected virtual class On extends S t a t e {
34 On() { super (Switch . class) ; }
35 void powerOff () { changeToState (Off . class) ; }
36 }
37 }

6.4.5 Implementing the specialized media switch

Inheritance is now used to define the class MediaSwitchStateMachine which
is an extension of SwitchStateMachine, see figure 6.10. State is overridden
by extending it with the new event changeMode. The states inherited
from SwitchStateMachine will automatically inherit the extended State, and
therefore inherit changeMode with code that simulates delegation. The states
CDMode and CassetteMode is added as immediate subclasses of the extended
State. On is overridden such that its initial state is set to CDMode. The
state reference to On inherited from SwitchStateMachine will automatically
be updated to reference to the overridden On.

Figure 6.10: Media switch with virtual classes

Listing 6.8 implements the media switch with virtual classes.

Line 1 Using inheritance to extend SwitchStateMachine.

Lines 2-8 Overrides the virtual class State by extending it with the event
method changeMode. The inherited classes Switch, On and Off will
now support changeMode implicitly as they are subclasses of the new
extended State.

Line 11 The dispatch method for the event changeMode. Since State is
overridden and the method currentState returns an object of type
State, it is possible to call changeMode on the current state without any
type cast.

Lines 14-25 Adds the new virtual state classes CDMode and CassetteMode

which are subclasses of State.

Lines 28-32 Since On becomes a composite state in the specialized media
switch, the initial state must be defined. On is therefore overridden
by extending it with the initial state definition. Recall that the

75

state reference to On, i.e. On.class, is referenced in the previously
defined transition from Off to On (see lising 6.7). The transition is
automatically updated because the class On is virtual and overridden.

Listing 6.8: MediaSwitchStateMachine

1 class MediaSwitchStateMachine extends SwitchStateMachine {
2 protected virtual class S t a t e extends SwitchStateMachine . S t a t e

{
3 void changeMode () {
4 i f (e n c l o s i n g S t a t e () != null) {
5 e n c l o s i n g S t a t e () . changeMode () ;
6 }
7 }
8 }
9

10 // New s t a t e machine events
11 void changeMode () { c u r r e n t S t a t e () . changeMode () ; }
12

13 // New s t a t e s
14 protected virtual class CDMode extends S t a t e {
15 CDMode() { super (On. class) ; }
16 void changeMode () {
17 changeToState (CassetteMode . class) ;
18 }
19 }
20 protected virtual class CassetteMode extends S t a t e {
21 On() { super (On. class) ; }
22 void changeMode () {
23 changeToState (CDMode . class) ;
24 }
25 }
26

27 // Override s t a t e s
28 protected virtual class On extends SwitchStateMachine .On {
29 Class <? extends State > i n i t i a l S t a t e () {
30 return CDMode. class ;
31 }
32 }
33 }

6.4.6 Summary of design principles

Below is a list of the general principles that is applied when implementing
specialized state machines by using inheritance and virtual classes.

• Create a state machine class that extends another state machine. If
the state machine class is the first specialization, i.e. the base state
machine, then include the framework by extending StateMachine.

• If there are new events to the state machine, then override State

by extending it with the event methods. Each event method must
simulate delegation such that subclasses of State will delegate all
events by default. Also implement the new event methods in the

76

state machine class such that the events gets dispatched to the current
state. If desirable, the user may use interfaces that contain the event
method signatures such that the state machine class and the states
are guaranteed to implement all event methods.

• Implement new states as virtual classes that are subclasses of State.
By defining states as virtual, the user is able to override states
in specialized state machines such that previously defined state
references will automatically be updated to the specialized state.

6.5 Summary

The extensible state machine pattern solved the problem of creating
specialized state machines with the delegation framework. Even though
the pattern solved the problem in a somewhat complex manner by using
generics and factory methods, it has several positive sides to it.

• The language mechanisms used, like class inheritance and generics,
are widely supported, e.g. in Java.

• The pattern is based on the state design pattern, which is a well-
known design pattern.

However, even for the simplest specializations, like the media switch
implemented in this chapter, the pattern require a fairly amount of work
from the user. This leads to some negative sides.

• By using generics and factory methods as state references, state
machine classes are forced to be declared as abstract. This means
that there must be two state machine classes for each state machine,
i.e. one abstract and one concrete.

• The scalability of the pattern is poor. When the number of states
increases, the amount of work needed for creating specializations
increases as well. The reason for this is that when new events are
introduced in a specialized state machine, all state classes of the super
state machine must be redefined in the specialized state machine in
order to include the new events.

• There are a lot of constraints compared to the state design pattern.
An important principle of a design pattern is simplicity, and the
extensible state machine pattern breaks this principle to some degree,
which decreases its usability.

The reason why the extensible state machine pattern is complicated
to use is because of how inheritance and the type system works in Java.
By introducing virtual classes, many of the weaknesses of the pattern are
removed.

77

• The scalability is much better as the language makes sure that state
classes are automatically updated with new events in specialized state
machines.

• There are fewer design principles to follow, which improves the
usability.

When using the delegation approach, there is no doubt that inheritance
combined with virtual classes is the way to go when it comes to specializa-
tion of state machines. Again, Java is the only problem as it lacks support
for virtual classes.

78

Chapter 7

Conclusion and future work

As there are no general purpose language or design pattern that directly
support state machines with advanced mechanisms found in UML, it is
recognized that combining the state design pattern with a state machine
framework is a good solution, at least in order to support composite states,
history, entry/exit actions and entry/exit points.

By using the principles of the state design pattern, where methods rep-
resent events with corresponding transitions, it is shown that representing
state hierarchy by means of inheritance works for representing composite
states in isolation, but when introducing advanced mechanisms like pseudo
states, entry/exit actions etc., the solution becomes unsatisfactory. The in-
heritance approach is therefore countered by representing state hierarchy
by delegation. At the same time as conserving the positive sides of the in-
heritance approach, e.g. supporting compound transitions, the problematic
areas like inheritance of entry/exit actions are solved.

The extensible state machine pattern gives a solution on how to create
specializations of simple state machines. It has been shown that the
pattern can be applied to the delegation approach, giving the possibility of
creating specialized state machines with the more advanced mechanisms
supported by the state machine framework. By applying the idea of
combining inheritance and virtual classes, the pattern goes from being
quite demanding to use, to be a simple and maintainable pattern.

As the state machine framework only implements a subset of the func-
tionality found in UML, there are a lot of subjects concerning state ma-
chines that are not investigated. Probably the most important mechanisms
to investigate is regions. It would be interesting to see how regions, and
especially orthogonal regions, can be represented in a programming lan-
guage and supported by the framework. By supporting regions, it will also
be interesting to see if the results of this thesis still apply.

This thesis shows that there are good indications that modeling and
programming with state machines will be best supported in a language
that supports delegation, inheritance and inner, virtual classes. Composite
states are supported by delegation, while the combination of inheritance
and virtual classes support the specialization of state machines. While there
are languages that support delegation (see e.g. Self [19]), and languages

79

that support inheritance and virtual classes (see e.g. Beta [10]), none of
the languages support all three language mechanisms. It is therefore
natural to think of extending a popular language like Java with these
mechanisms, or design a new language from scratch with support for these
three mechanisms.

80

Appendix A

Framework source code

The source code of the framework implemented in this thesis is available
for download: http://folk.uio.no/kjetand/framework.zip. In order to run the
examples, the files and directories must be unzipped.

A.1 Directories and source files

inheritance/ This directory contains the Java framework implemented
with inheritance representing state hierarchy. Also contains an
example of the media player state machine.

delegation/ This directory contains the Java framework implemented
with delegation representing state hierarchy. Also contains an
example of the media player state machine, and an example of the
specialized media switch.

A.2 Running the examples

Compile the source files with javac. E.g. in linux terminal:

1. javac inheritance/*.java

2. javac delegation/*.java.

The class Main in both directories runs the examples. Run with the
program java. E.g. in linux terminal:

1. cd inheritance/ and java Main

2. cd delegation/ and java Main

81

82

Bibliography

[1] Brian Chin and Todd D. Millstein. An extensible state machine pattern
for interactive applications. In ECOOP, pages 566–591, 2008.

[2] Ole-Johan Dahl. SIMULA 67 Common Base Language, (Norwegian
Computing Center. Publication). 1968.

[3] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 3 edition, 2003.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software,
pages 305–313. Addison-Wesley Professional, 1st edition, 1994.

[5] Adele Goldberg and David Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley Longman Publishing Co., Inc.,
1983.

[6] James Gosling, Bill Joy, and Guy L. Steele. The Java Language
Specification. Addison-Wesley Longman Publishing Co., Inc., 1st
edition, 1996.

[7] Morten Olav Hansen. Exploration of uml state machine implementa-
tions in java. Master’s thesis, University of Oslo, 2011.

[8] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274, 1987.

[9] Øystein Haugen, Birger Møller-Pedersen, and Thomas Weigert. Uml
for real. chapter Structural Modeling with UML 2.0: Classes,
Interactions and State Machines, pages 53–76. Kluwer Academic
Publishers, 2003.

[10] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Ny-
gaard. Object-oriented programming in the BETA programming lan-
guage. Addison-Wesley, 1993.

[11] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. ACM SIGPLAN Notices,
21(11):214–223, 1986.

83

[12] Ole Lehrmann Madsen. Towards integration of state machines and
object-oriented languages. Proceedings of the Technology of Object-
Oriented Languages and Systems, pages 261–274, 1999.

[13] Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual classes: A
powerful mechanism in object-oriented programming. In Conference
Proceedings on Object-oriented Programming Systems, Languages
and Applications, OOPSLA ’89, pages 397–406, New York, NY, USA,
1989. ACM.

[14] Ole Lehrmann Madsen and Birger Møller-Pedersen. A unified
approach to modeling and programming. In Proceedings of the 13th
international conference on Model driven engineering languages
and systems: Part I, MODELS’10, pages 1–15. Springer-Verlag, 2010.

[15] Birger Møller-Pedersen and Dagbjørn Nogva. Scalable and object
oriented sdl state(chart)s. In Jianping Wu, Samuel T. Chanson,
and Qiang Gao, editors, FORTE, volume 156 of IFIP Conference
Proceedings, pages 59–73. Kluwer, 1999.

[16] OMG. OMG Unified Modeling Language (tm) (OMG UML), Super-
structure. OMG, 2.2 edition, February 2, 2009.

[17] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Model-
ing Language Reference Manual, The (2Nd Edition). Pearson Higher
Education, 2004.

[18] Asher Sterkin. State-oriented programming. In Multiparadigm
Programming with Object-Oriented languages, 2008.

[19] David Ungar and Randall B. Smith. Self: The power of simplicity. In
Conference Proceedings on Object-oriented Programming Systems,
Languages and Applications, OOPSLA ’87, pages 227–242, New
York, NY, USA, 1987. ACM.

84

