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Abstract 

This thesis investigates the potential for using log data gathered by DNS sensors to 

automatically detect previously known and unknown malicious domains and possibly 

infected clients. Results show that this is possible by applying a set of techniques for 

analyzing the domains queried. In addition to the analytical features, whitelisting can be 

used to reduce the dataset size and blacklists can be used to match the domains against 

possible reputation hits.  

The system created is stealthy by design, meaning that no outbound requests need to be 

made during the analysis. Results demonstrate that this method of analyzing DNS traffic has 

a high detection rate, which means that it can be very useful in practical settings. We see a 

potential for expanding and improving the system, which most likely would enhance the 

system’s detection capabilities.  

 

As far as creating a stealthy, multi-featured reputation based system for malicious and 

infected host detection – this has, to our knowledge not been done in a similar way before. 

 

Implementation of this system in a computer network offers the ability to detect malicious 

traffic not detected by other mechanisms.  
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1 Introduction  

The world is globally interconnected. The Internet and the World Wide Web (WWW) has 

become a driver for innovation, economic and social development. The global economy is 

becoming increasingly reliant on these technologies, allowing unprecedented speed, 

collaboration and exchange of information. However, at the same time as our society 

embraces this development, we expose ourselves to new types of risk. Criminals have 

quickly adapted to take advantage of the systems we rely on to create, store and manage 

information that is of value to us. Cyberspace has emerged as a new battle space for 

conflicts both between nation-states, and against organized crime. Networks and clients, 

both public and private, are facing constant attacks and must be protected against 

opponents and attackers. As the Internet and the World Wide Web now likely serves as 

society’s most critical infrastructure asset, we are forced to examine new avenues of 

approach to ensure these systems can be secured and trusted.  

This thesis explores the potential for of using log data from DNS (Domain Name System) 

traffic to automatically detect malicious domains by using a combination of domain and IP 

reputation combined with other analytical metrics. Based on the specific findings, we are 

able to flag clients as possibly infected. Results show that this method has great potential for 

identifying malicious domains and infected clients, and indirectly for detecting security 

incidents.  
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2 Research Questions  

Detecting malicious domains and clients infected by malicious software (malware) is a 

constant challenge for companies and people working with information security. Targeted 

attacks and cyber-espionage is a constantly growing threat for companies and governments 

around the world, especially companies that are leading within their fields of practice and 

that have valuable information they wish to keep confidential. Compromised clients in the 

network can lead to information leakage, further compromise of additional hosts, loss of 

trade secrets and economic data, and can result in considerable economic and reputational 

losses for the owners and stakeholders.  

 

Various technical controls can be deployed in an active computer network to analyze traffic 

flow and trigger events and alarms upon certain traffic patterns. For example different kinds 

of Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs). This thesis 

looks at the possibility of using data captured by DNS sensors - both DNS queries and 

answers - apply an algorithm and automatically detect malicious domains, in addition to 

detecting clients having a certain probability of being compromised. Clients can be infected 

by a variety of vectors, and detecting these can be a challenge without having an extensive 

implementation of different sensors in the network. The infection vector is often not 

through DNS, although all callback traffic that is not done directly against an IP address 

avoiding DNS will use DNS to complete the traffic. The technical solution investigated in this 

thesis is to detect malicious domain names queried, providing an easy to integrate system, 

capable of detecting those clients by looking at DNS data.  

 

Based on this approach, the research questions for this thesis is formulated as follows: 

Q1) How to design a practical system for detecting malicious domains and infected clients 

based on monitoring DNS queries and answers?  

Q2) What is a realistic detection rate of malicious domains detected with this system?  

Q3) What is the nature of detected malicious domains?  
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3 Research Method  

The research method used in this thesis was structured to be a design research[1], carried 

out in a cyclic research process consistent of the following elements: Awareness of the 

problem, suggestion to the acknowledged problem, artifact development, evaluation and 

finally conclusion. Figure 1 shows an illustration of the cyclic research method used. 

In the awareness phase, the research problem was identified. During the suggestion phase, a 

technical solution to solve the problem was presented, thought out and discussed with 

colleagues and supervisors. In the development phase an artifact was developed. Next, an 

evaluation of the implemented solution was performed and tested. If the results were 

satisfactory the technical solution and implementation could be accepted. In the event of 

unsatisfactory results, it was possible to go back to the previous stages (awareness, 

suggestion and artifact development). 

 

 

Figure 1 - Overview of Research Process[1] 
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4 Overview of the Chapters 

Ch5. Background 

In this chapter central background knowledge of DNS, passive DNS (PDNS), active DNS 

(ADNS) and reputation lists are presented. Differences between ADNS and PDNS, and how 

PDNS can used to detect security incidents are highlighted and introduced to have the 

necessary knowledge base for the rest of the thesis.  

 

Ch6. Previous Work 

This chapter presents previous work relevant for the thesis. Other systems analyzing PDNS 

data are described, along with key-features that are highlighted. The differences between 

the systems and the system created for this master thesis is sustainable, a technical 

foundation for the motivation of creating this system.  

 

Ch7. Technical  

This chapter describes the system created for this master thesis, ADomDec (Automatic 

Domain Detection). Motivation, technical choices, system design, detection metrics and 

program flow are presented.  

 

Ch8. Results, Discussion and Conclusion 

This chapter summarizes the results, discusses them and presents thoughts for future work. 

My experiences are deeply embedded throughout all topics, ending the chapter with a 

conclusion.  
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5 Background 

 

5.1 DNS and Passive DNS 

Fully understanding how passive DNS works requires a thorough understanding of the 

Domain Name System (DNS). This section will first briefly describe how DNS works before 

focusing on differences between passive DNS vs. active DNS, and how PDNS can be useful 

from a computer security standpoint.  

5.1.1 DNS 

In short, DNS can be described as a key-value stored dictionary placed in a hierarchal system 

for domain names and IP addresses (both ways), for the internet, running on port 53. It is 

structured as a tree-structure of domain names, with a root domain at the top[2], as shown 

in Figure 2 - Domain Name Space Tree[1].  

 

Figure 2 - Domain Name Space Tree[1] 

 

There are many different types of classes and types[3] used in DNS queries, defining the kind 

of request being made. The most common ones are class “IN”, type “A” – requesting an IPv4 
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 The resolver sends the request to the DNS, which bounces the request to the root 

node.  

 The node reads the request backwards and tells DNS which node to ask next.  

 The “com” node continues where the node left off, and tells DNS to continue at 

“ebay”.  

 The “ebay” node does the same thing.  

 At the final node the actual address is returned, there are no further nodes that need 

involvement to find the address.  

 When the DNS gets the answer, it sends it to the resolver, which uses the answer for 

its intended purpose. 
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Figure 3 - DNS query to answer 
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5.1.1.1 Abuse of DNS 

DNS cache poisoning 

When the DNS query is not cached, the caching DNS server has to ask the authoritative DNS 

server for the correct answer. Next time the query arrives; the caching server will have the 

answer, and will be able to provide the answer directly. Attackers can exploit this lack of 

knowledge in the caching server and race the authoritative server to the update by providing 

an answer before the authoritative server does [4]. This attack is known as DNS cache 

poisoning, which is one method for performing DNS spoofing.  

The effect will be that the record stored in the caching server points at somewhere the 

attackers want it to point. When a user requests the domain in record the attacker has 

inserted, the user will be directed there. The malicious redirect can lead to phishing of user 

credentials, exposure to malicious code, or other infection vectors.  

 

Man-in-the-Middle Spoofing 

Another way of performing DNS spoofing is to perform a Man-in-the-Middle (MitM) attack. 

An attacker can position himself between the client and the DNS server, intercepting traffic. 

When a DNS request is made, the attacker replies with the malicious answer. The result is 

the client using the malicious record, without knowledge of doing so.  

 

Malicious DNS server 

Attackers can also take over the authoritative DNS server itself. The effect of this is global. 

All caching servers asking the infected authoritative DNS server will pull malicious records. 

The amount of clients affected will depend upon the popularity, and amount of requests for 

the record.  

 

Compromised Registrar 

In the DNS spoofing category, taking over the registrar is by far the worst and most serious 

one. If attackers can take over the registrar, the instance responsible of issuing and 

registrate the domain itself, they could change the authoritative DNS servers in a greater 
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fashion than a direct poisoning. There would neither be a sign of any malicious activity taking 

place, since the changes come from a trusted source considered to perform benign 

operations. The attackers could change and insert records in the authoritative DNS server, 

reaching a high amount of clients, possibly causing enormous amounts of malicious 

redirects.  

DNS Amplification Attack 

DNS amplification attacks is a way to perform Distributed Denial of Service (DDoS) by 

directing DNS response traffic from public open DNS servers towards a targeted systems. 

The attacker sends a DNS query to the DNS server, but spoofing the source address to be the 

targeted address. The answer from the DNS server it is sent to the target – flooding it with 

traffic. The attackers often sets the record type to “ANY”, to ensure the largest amount of 

traffic sent to the target. By initiating a botnet to send a considerable amount of spoofed 

DNS requests, attackers can achieve tremendous amounts of data with little effort. Since the 

data arrives from legitimate DNS servers, this type of attack is hard to detect and prevent.  

 

5.1.2 Passive DNS 

Passive DNS (PDNS) is a technique invented in 2004 by Florian Weimer. This technique is 

used to organize and reconstruct history from DNS by logging queries, answers and 

metadata into a database where the data can be organized and indexed. The data is 

collected before being forwarded to further analysis.  

 

Usage of PDNS 

PDNS can be used in different ways, serving different purposes. Often different fields of use 

can overlap and be integrated in the same system. Since DNS changes with time, a PDNS 

system can provide information regarding DNS history. This can be useful to get an overview 

of[5]:  

1) Where the domain name pointed to in the past. 

2) Which domain names that are hosted by a given nameserver. 

3) Which domain names that point into a given IP network. 
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4) Which subdomains that exist below a certain domain name. 

 

Different DNS servers can provide different answers to queries depending on the caches, 

and whether or not they have been compromised. If the PDNSDB shows i.e. 5million entries 

for two different IP addresses located in the US for “ebay.com”, and suddenly resolves to a 

new third IP address in the Far East – this would cause reason for suspicion and be worth 

looking into. By logging DNS queries and answers, data from many different DNS servers will 

be logged, giving a wide dataset. Having DNS history implicitly also means access to the 

geographical location the services resolved from at the queried time. An anomaly in 

geographical location can also be an indication of a compromised DNS server, infected with 

cache poisoning or the DNS request was intercepted and a Man-in-The-Middle attacked 

could have been performed. This is useful from a security point of view, since check-in (also 

known as Command-and-Control – CC) traffic patterns often are scattered over a wide 

geographical area. Having modules in the system to visualize geographical information, 

number of subdomains and other features can help attain a better picture of the nodes. This 

can be useful for both statistical purposes and for an analyzer looking at traffic.  

 

5.1.2.1  Different kinds of PDNS systems 

Simple logger 

The system can be logging the data without further analysis. This is the minimum 

requirement for a system to function as a PDNS system. Without logging the data, the 

system loses the ability to draw a timeline of relationships between different domains and 

IPs, measure average of the time to live (TTL) value and other comparisons necessary in 

active use of data. Then it would simply be looking at DNS data without making further use 

of it, in other words a quite meaningless system. A simple logger would function as a 

database for manual lookups, or a backend for automatically getting DNS history from other 

systems, which could be useful.  
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Passive analysis of DNS 

A system that covers the minimum requirement of logging the data in addition to 

performing further analysis can detect malicious domains previously unknown, fast flux 

networks and infected clients. Fast flux networks are networks administrated by 

cybercriminals with an ever-changing infrastructure to hide their primary nodes. By having a 

high number of IP addresses pointing to one qualified domain name, and changing the IP 

addresses with a high frequency, combined with using infected clients as proxies help to 

further disguise the traffic flow. This complicates the detection of the fast flux network and 

underlying structure. Previous work describing these features is located in Section 6: 

Previous Work. 

 

Difference between PDNS and ADNS 

A pure PDNS system, logs the data, makes passive analysis and outputs the result in a 

desirable form. Some makes active use of DNS queries in their analysis, making it an Active 

DNS system. This can be useful to gain a live overview of the cybercriminals network, but 

making active DNS queries to probe the network is not without risk. If the administrator of 

the illegitimate network detects a system actively probing their network, they could simply 

discard the requests, in effect making the system useless beyond that point.  

Cybercriminals can for instance make use of access control lists (ACL), to provide different 

answers depending on who makes the request. During analysis, the system would receive an 

answer, but it is not given that the client observed from the logs received the same result 

earlier. By passively observing the data, without making active DNS queries during analysis, 

the system can remain stealthy and undetected by cybercriminals administrating the 

domains/networks which the system reveals as malicious.   

 

PDNS analysis combined with reputation sources can be a powerful combination in the quest 

to detect malicious domains. PDNS provides a historical picture of DNS, not just a snapshot 

of the current picture of DNS (which also can vary depending on which DNS server you ask). 

Having historical information on DNS can be used to make a timeline of IP addresses or 
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domain names, where they have resolved in the past, their average TTL value, number of 

subdomains, etc. – information that normally is lost. Logging the information and making 

active use of it during analysis can help finding indicators of malicious activity.   

The following section describes reputation as a whole, usage of reputation and different 

kinds of challenges that emerge while dealing with implementation of reputation in an active 

system.  

 

5.2 Reputation 

Reputation in the context of computer science is related to the trustworthiness of 

individuals, traffic patterns, domains, IP addresses and firms. Cybercrime has over the past 

decade become an increasing threat towards companies and end-users of the Internet. This 

makes the focus and awareness on information security increase as well.  

Since computers have the force of automation – and therefore inhuman speed – criminals 

and companies have used this to their advantage. For example, this can be achieved either 

by sending out large amounts of e-mails containing a fraudulent offer (one that often does 

not exist), sending out specially crafted e-mails containing viruses that infects the recipient’s 

computer, distributing malware and malicious code or trying to trick the recipient into giving 

away money.  

The IP addresses and domains used in the different malicious attacks ends up in reputation 

lists, further discussed in 5.2.1: “Reputation Lists”. Because of the enormous size of the 

Internet, allowing a high number of different IP addresses and domain names, reputation 

lists function as a way to remember the known-bad and known-good.  

Reputation in this Master’s is limited to reputation lists containing domains and IP 

addresses, described closer in the following sections.    

 

5.2.1 Reputation Lists 

After observing huge amounts of spam-mail and known bad content coming from the same 

IP addresses and domains, network administrators and information security vendors formed 
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a local picture of reputation[6-8]. To structure this in a more generic way, lists of known 

good and known bad IP's and domain names were made. These lists were naturally split into 

two main categories: Domain lists and IP lists. 

 

5.2.1.1 Domain lists 

The domain lists contains a list of domain names. These lists can either contain domain 

names known to be good (typically well-known vendors and companies such as Facebook, 

Ebay, and other companies who keep their sites clean). On the other hand, such lists can also 

contain domains known to be bad - domains known for distributing malicious code or serve 

as phishing sites. There are different ways of organizing these lists, and how much 

information the lists contain. The list can be limited to only containing domain names, or it 

can have additional meta-data fields such as when the domain triggered, the last incident, 

how long the domain the domain is kept in the list and when it first triggered a match. 

 

5.2.1.2 IP-lists 

IP-lists are similar to domain lists, only with IP addresses instead of domain names. Hackers 

and other actors that spread malware and code with malicious intent often do not have a 

specific domain name. The GET-request for the code can also be build using only the IP 

address. The IP-lists can also contain either just the IP-address or other meta-data 

information such as in the domain-lists. 

 

5.2.1.3 Black-lists 

Black-lists contains either IP-addresses or domain names of sites known for distributing 

malware, adware, IP addresses or domain names related to spam-emails, exploit-kits and 

other code of malicious content. Everything that the system should trigger on and classify as 

malicious will be gathered and placed in a black-list. New lists can be generated dynamically 

by looking at callback and check-in traffic made by malicious software and compromised 

clients. This will be described more in detail in section 5.2.3, Dynamic creation of new lists.  
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Black-lists are gathered from vendors publishing black-lists, as a part of an information 

exchange contract or as a part of creating your own lists. Since black-lists are based on 

reputation of the domain name or IP address, the trustworthiness will vary depending on the 

source generating the list. A single hit in an external list would have a lower confidence than 

hits from multiple lists from known security vendors, or hits from a list generated by your 

own system which you control yourself.   

 

5.2.1.4 White-lists 

White-lists are either domain or IP lists that contain known benign sites and IP addresses. 

This often includes domain names and IP addresses of large companies and well-known 

vendors and services. If one of these IP’s or domain names get placed in one of the black-

lists (lists containing known bad domain names and IP addresses), it could be a major source 

of false positives. One could classify them as benign either by either removing them from the 

black-list or adding them to the white list. If the domain or IP is located in the white-list the 

severity of the incident will be lowered and ignored.  

Using white-lists can speed up the processing time because it reduces the dataset sent to 

further analysis. Using white-lists can also have a downside if one of the domains in the 

white-lists becomes compromised. If other mechanisms are not implemented, whitelisting it 

could allow the traffic to pass undetected.  

 

5.2.2 Usage of reputation with DNS 

Reputation can from an information security point of view be used to detect security 

incidents in a computer network when reputational information is used to augment logs 

from other sources. It can help to detect and identify callback traffic, landing pages, 

redirects, requests for exploits and payloads, and much more. 

This section looks at the use of reputation matching against DNS and why it could be useful.  

 

By matching DNS queries to reputation lists, the acting system can detect queries and 



14 
 

responses for IP addresses and domains that are considered malicious by the list. The system 

can either drop the request directly denying the user to fulfill the wanted request, or let it 

pass. The wanted action depends upon the architecture and function of the system. If an IP 

address is known for being a Control and Command server (C&C)[9-11] or a domain is known 

for hosting malicious content, it could be a reasonable idea to drop the request. At best, this 

can prevent an infection. If a request is matched, and still let through – a notification should 

be sent to an acting instance informing that the client behind the given IP address is likely 

compromised. Even though the outbound request is blocked, the client is still compromised 

and should be investigated further immediately. Cybercriminals strive to gather information 

about the network and client, further infect the network or other clients and gather sensitive 

information. Detecting and blocking communication could prevent this. 

If there is a false positive in the blacklist, blocking traffic based on reputation hits can deny 

legitimate traffic. This could be annoying for the user, create unnecessary business 

disruption, and could place an unwanted load on the system.  

 

5.2.3 Dynamic creation of new lists 

Domain blacklists can be generated in many different ways, giving different kinds of 

blacklists. Running an infected client in a lab-environment will provide solid and trustworthy 

data regarding the exploit-kit(s)/malware the client is infected with since the sensors can 

observe and capture live data. Carving spam e-mails, gathering data from spam-traps and 

filters will provide lists with domains and IP addresses used in phishing campaigns (such 

done as a part of “RB-Seeker”[12]), spear-phishing emails and instant-messenger worms[13].  

Different lists will have independent trustworthiness, depending on the origin of the data. 

C&C domains carved from an infected computer in a lab-environment will have a high level 

of trustworthiness, while a five year old email-spam domain might not be as relevant. Using 

this information, the system in action can scale events up or down in severity giving the best 

reputation score possible.  
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While matching IP addresses and domain names against black-lists one can generate new 

lists based on the findings and the other traffic generated by the event. When observing a 

malicious file, running it inside a virtual machine (VM) in a lab-environment, one can dump 

all traffic made using full-capture on the outside of the machine[14]. By analyzing this traffic, 

IP addresses and domain names of C&C-servers, URI-structure of landing, redirects and 

payload pages specific for that exploit kit and the configuration files and updates sent by the 

C&C-server later can be observed. When IDSs parse traffic, traffic observed triggered by 

alarms with high trustworthiness can be placed in a reputation list. This provides a rather 

wide range, since the signature sets in use can cover a wide traffic field. The greatest 

challenge using this as a technique to generate lists is to select the signatures with an 

adequate level of certainty.  

Using this information, it is possible to cross-reference the new IP addresses and domain 

names with the ones already existing in the blacklist. If there are any new entries, these can 

be added to the existing list, or they can be put in a new list – depending on the list hierarchy 

in use.   

 

5.2.4 Cybercriminals’ usage of black-lists 

The people administrating and maintaining the servers hosting the malicious code (whether 

compromised or not), also use blacklists[15] to block vendors and systems wanting malware. 

The benefit of not serving code to companies within the Anti-Virus (AV) sector, or other 

sectors working on information security is of strictly administrative and economic reasons. If 

companies developing AV software or other companies that can benefit of knowing the 

internal structure of malware got the source code of the malicious software., they could 

reverse-engineer the code, see how it functions and make signatures to detect it. This would 

make the malicious software "harmless" in the sense that it either would not work, or it 

would be blocked somewhere before even reaching the client.  

Knowing how the malware works and which modules it exploits to infect the client is a 

crucial part when attempting to prevent infections of new clients. The development time of 

the malicious software would be a waste, and they would have to make a new kit, unknown 

to the vendors. This game of cat and mouse is a continuous struggle in the war against 
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unwanted and malicious software made by cyber-criminals. In the recent years, the cyber-

criminals have invested an increasing amount of work, time and money to develop malicious 

exploit-kits. These are either for sale on the black market as generic malware with support, 

or for own gain. “Zeus”[16, 17] is a good example of a Trojan package easily configured to 

steal money from online banking activity.  

 

5.2.5 Challenges of reputation lists 

Whitelists have the potential to significantly ease the workload of the system. If some of the 

traffic can be categorized as safe already at the very first module of the system, no further 

analysis is needed. On the other hand, if a domain that should be in a blacklist manages to 

sneak its way into the whitelist it can pass through undetected. This could potentially take 

time to find out and verify. If, on the other hand, it were the other way around, a whitelisted 

domain in the blacklist, the system would generate many false-positives FP’s.  

A known domain such as “facebook.com” would for the most part be considered safe, but 

sites could be vulnerable for cross-site-scripting (XSS[18]) and some sites allow external plug-

ins. Even legitimate websites, no matter how famous and big, always run a risk of becoming 

compromised. Systems should have a threshold for when to take a domain or IP out of the 

whitelist, and define a standard for how long it is considered malicious. Well supported sites 

will likely clean up their site as fast as possible, because they have both the skill and 

motivation to do so – spreading malicious content for a longer period of time will decrease 

the credibility of the company leading to a potential financial loss or damage to their brand 

and reputation.  

 

Trustworthiness of reputation lists 

Different lists can be shared and gathered, raising the question of trustworthiness. How was 

the data collected, when was the domain classified malicious, has the site cleaned up and 

should it be out of the list, was it manually made or automatically generated – these are all 

relevant questions when setting a trustworthiness score of the list. Lists generated 

automatically from an unknown external source should have a lower score than a list made 
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manually from domains and IP addresses seen involved in actual attacks. If a domain or IP 

address exists in several lists, the trustworthiness of the entry is higher and the severity of 

the event can be escalated.  
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6 Previous Work 

 

6.1 Previous work 

Systems for automatically detecting malicious domains through different approaches have 

been discussed in previous work. Some examples of the systems that have been developed 

are “EXPOSURE” and “Fluxbuster”. This chapter will describe these PDNS-related systems, 

how the systems work and what they accomplish. Together they highlight important 

features about DNS traffic that make the foundation for the system made for this master 

thesis.  

 

6.1.1 EXPOSURE 

EXPOSURE[19] is a system designed to automatically detect previously unknown malicious 

domains using a rather small dataset (in context of DNS answer/query amount),  to first train 

the system offline before setting it inline to capture and process data real time. In their 

experiment EXPOSURE was deployed for two weeks with an ISP, capturing real-time data to 

prove scalability and the ability to detect and categorize malicious domains. In comparison 

to Notos[14] which needs more training because of an dynamic reputation score being set – 

EXPOSURE requires one week of offline training using a varied dataset before being 

deployed in a production environment.  

 

6.1.1.1 How does EXPOSURE work?  

EXPOSURE is divided into four feature categories: Time-based features, DNS answer-based 

features, TTL value based features and Domain name-based features. Counting 15 sub-

features, nine of which not previously mentioned in other research. They define a malicious 

domain not only as a generic term aimed to cover all malicious activity, but also divided 

them in ten different categories:  
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“We divided the domains into ten groups: spam domains (Spam), black-listed 

domains (BlackList), malicious Fast-Flux domains (FastFlux), domains that are queried by 

malware that are analyzed by malware analysis tools (Malware), Conficker domains 

(Conficker), domains that have adult content, domains that are suspected to be risky by 

Norton Safe Web and McAfee Site Advisor (Risky), phishing domains (Phishing), domains 

about which we were not able to get any information either from Google or from other 

sources (No Info), and finally, benign domains that are detected to be malicious (False 

Positives).” [19] 

 

The sub-features for the main categories are:  

Time-based features: 

 short life 

 daily similarity 

 repeating patterns 

 access ratio 

 

DNS-answer based features: 

 Number of distinct IP adresses 

 Number of distinct countries 

 Number of domains share the IP with 

 Reverse DNS query results  

 

TTL-based features: 

 Averege TTL 

 Standard Deviation of TTL 

 Number of distinct TTL values 

 Number of TTL changes 

 Percentage usage of specific TTL ranges 
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Domain name-based features: 

 % of numerical characters 

 % of the length of the LMS  

 

There are five main components in EXPOSURE, which can be seen in the overview, Figure 4 - 

Overview of EXPOSURE[19]. 

I. Data Collector 

The first component is the data collector. This component records the DNS traffic in 

the network where EXPOSURE is placed. Between the first and second component, 

the DNS records gets logged to the database.  

II. Feature Attribution 

The second component is the feature attribution. "This component is responsible for 

attributing the domains that are recorded to the database with the features that we 

are looking for in the DNS traffic." [19] 

III. Malicious / Benign Domains Collector 

The third component, the malicious and benign domains collector gathers and 

correlates white and blacklists of domains (for more information regarding 

reputation, see 5.2 Reputation). This information is used to label the domain after 

the Feature attribution is done. After the third component, the data is labeled; 

depending on the label, the data goes to either the fourth, the learning module, or 

the fifth component, the classifier. 

IV. Learning Module 

The fourth component is the learning module. It trains the labeled set of data to 

make models and detect malicious domains.  

V. Classifier 

The fifth and last component is the classifier. At this component the final decision is 

made whether the domain is to be considered malicious or not.  
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Figure 4 - Overview of EXPOSURE 

 

Important Features 

There is especially one feature that will be used by the system constructed for this master 

thesis; average TTL value. After the researchers of EXPOSURE had tracked domains used by 

the Conficker worm[20, 21] for a week, they observed that malicious domains had a higher 

number of changes in TTL values and the total number of different TTL values tend to vary 

more than for benign domains. They investigated the ranges [0, 1), [1, 10), [10, 100), [100, 

300), [300, 900), [900, ∞), and the malicious domains had a significant peak in the range [0, 

100).  
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6.1.2 FluxBuster 

FluxBuster is “… a novel passive DNS traffic analysis system for detecting and tracking 

malicious flux networks”[22]. Cybercriminals are constantly looking for new ways to cover 

their malicious tracks. Flux networks is one their techniques. Detecting flux networks gives 

white hats an advantage in this continuous war. A flux network resembles an illegitimate 

content-delivery-network (CDN). Real legitimate CND’s have existed for a while to provide a 

scalability, reliability and to provide good performance for high volume Internet services. 

The network often consists of multiple servers placed all over the world. When a user 

requests a service, the CDN sends the content from the logically placed closest node. In a 

legitimate network, the nodes are administrated, providing a reliable service for the users. In 

an illegitimate flux network, the nodes consists of flux-agents that are malware-

compromised clients in a botnet. The flux-agents are controlled by a botmaster – commonly 

known to serve malicious content, phising websites, illegal adult content and other things 

used for malicious purposes[22].  

A main difference between a legitimate CDN and an illegitimate flux network is that a 

legitimate CDN has stable, reliable servers making uptime and load balancing possible. Since 

the flux-agents consists of compromised clients, the botmaster has a difficult job of knowing 

which agents that is reachable and not, since the owner can turn the computer off at any 

time. Furthermore, the botmaster does not always have a good overview of the amount of 

traffic in the flux network, making load-balancing difficult.  

In contrast to the majority of the previous work, FluxBuster does not make use of active DNS 

queries in the analysis. The previous systems heavily relied on spam emails as main 

information source. These systems carved out domains and IPs used in spam emails, and 

actively performed DNS queries to probe the malicious flux network. The dimension of the 

blacklists used were too small to make a significant matter during the analysis[22]. By only 

observing the DNS data, FluxBuster captures flux networks advertised through blog spam, 

social websites spam, search engine spam and instant messaging spam, in addition to e-mail 

spam and precompiled blacklists[22].  
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6.1.2.1 How does FluxBuster work?  

FluxBuster consists of four main components: DNS message aggregator, message pre-

filtering, domain clustering and the classifier.  

I. DNS Message Aggregator 

The DNS message aggregator module aggregates all DNS queries into higher-level 

DNS messages that contain all information regarding the queried domain with a given 

timespan (at least a few hours to ensure collection of enough information[22]). The 

high-level DNS messages contain metadata, such as amount of identical queries 

made, which IP addresses that maps to the same domain, first/last seen and average 

TTL value for the queries made within that time span.  

II. Message Pre-filtering 

The message pre-filtering module analyses the aggregated DNS messages from the 

previous module, and filters out everything that is not likely to be a flux network. In 

effect, the module functions as a data reduction module to save computation time by 

reducing the amount of data passing through to further analysis. This module is 

configured with a very conservative rule set, letting all the flux networks but also 

benign clusters through[22]. All clusters passed to the later components are possible 

flux network candidates.  

III. Domain Clustering 

The domain clustering module gathers the aggregated DNS messages that were let 

through the pre-filtering into clusters making the final flux network candidates.  

IV. Classifier 

The classifier is the last active instance of the FluxBuster. Here the final decision 

whether the cluster is considered to be a flux or non-flux network is made.  

 

6.1.2.2 Characteristics and statistical features of flux networks 

FluxBuster uses a series of features to determine whether a flux network is a regular 

legitimate CDN or an illegitimate flux network. They define the following variables used in 

their calculations: C is a generic domain cluster computed at the end of Em, which is the 

epoch (timespan). R represents the set of all distinct resolved IP addresses during Em that are 

related to the domains in C [22].  
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1) Number of resolved IP addresses to a domain in R. 

2) Number of distinct domain names in C.  

3) Average TTL value for the records within the timespan, Em.  

4) How many domains that share at least one resolved IP address from C in 

previous epochs.  

5)  The IP diversity based on a normalized entropy of the /16 network 

prefixes of the IPs in the set of all distinct resolved IP addresses collected 

during the epoch. FluxBuster computes it as follows: 

 

− ∑ 𝑥(𝑝(𝑥)  ∙ 𝑙𝑜𝑔2𝑝(𝑥)

𝑙𝑜𝑔2(φ1)
 

Where φ1 is the results of nr1, and x is the network prefix. “Where the 

probability p(x) is given by the relative frequency of the network prefix 

x.”[22] 

6) The growth ratio of IP addresses, based on the number of new IP 

addresses discovered during the epoch, per each DNS query related to the 

domains in C.  

7) The last growth ratio of IP addresses, finding the average number of new 

IP addresses per DNS query. This is computed in two versions; one value 

which is the average of independent domains in the domain cluster C, and 

one value by analyzing the last de-duplicated messages among all the 

messages related to the domains in the cluster.  

8) The last growth ratio of IP prefixes. This feature is quite similar to nr7, but 

it computes the average number of /16 networks prefixes per DNS query 

discovered by analyzing the last de-duplicated DNS messages associated 

with each domain in the cluster during the time epoch. It focuses on new 

IP prefixes differentiating it from the previous feature. This feature also 

calculates two values.  

9) The last feature computes the novelty of the difference between IPs seen 

through previous time epochs that have not been seen in the last, divided 
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by the number of time epochs taken into the equation. It calculates three 

values, used at thresholds of other parts of the system. 

 

These features aim to define and catch the main characteristics of malicious flux networks. 

All clusters are considered potential flux networks. At the end of a time epoch, the features 

listed above are applied before letting a decision-tree classifier either classify a cluster as a 

malicious flux network, or a legitimate/non-flux network.  

 

Setup and Training Set 

When forming FluxBuster the authors used a labeled dataset, consisting of 10 months of 

data collection that was collected in the period from June 2010 to March 2011 through the 

ISC Security Information Exchange. They ended up using about four months of the dataset to 

build a labeled dataset (LDS). Their motivation for using a LDS had two reasons:  

1. Estimating the accuracy of the Classifier module through cross-validation. 

2. Train the Classifier module before deployment.  

When making the LDS they used a semi-manual process to create a training set of clear-cut 

domain clusters either malicious or benign. In total, they classified 1337 domain clusters as 

flux, 5708 as non-flux and 313 as unknown. Clusters that were suspicious, but where 

insufficient information made it impossible to make a clear decision, were classified as 

unknown. The domain clusters categorized as unknown were not used. The process was 

partially automated by making use of prior information regarding flux networks, known 

malicious domains and legitimate popular domains.  

 

Correctness and Data Evaluation of FluxBuster 

Evaluating datasets classified by FluxBuster as a malicious flux network is a difficult task. 

Obtaining complete ground truth of a dataset is challenging because the domain cluster can 

fall into three categories:  
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1. The domain cluster may include domains or IPs that are malicious and known to be 

part of a flux network. In which case it would be a true positive.  

2. The domain cluster is a pure false positive; it does not contain anything malicious. 

The domain cluster represents a legitimate service and an actual CDN.  

3. There is no information available in the public, or even in private datasets containing 

information regarding the domain cluster in question. This could indicate a zero-day 

exploit, or previously unknown activity, but in practice, it is impossible to know and it 

will require manual analysis to determine the true nature of the dataset.  

To determine the different outcomes they used different kinds of black/white lists publicly 

available.  
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7 Technical 

7.1 What does the system do?  

The system created for this master thesis is called ADomDec (Automatic Domain Detection); 

it automatically detects malicious domains based on parsing of passive DNS logs, and detects 

possible compromised clients using the information detected by the system. The system 

applies a series of checks to the data before matching it against a threshold.  

This chapter first describes the layout and design of the system, and then describes in detail 

the different features and how they are applied in the system before the threshold match is 

done.  

 

7.1.1 What makes ADomDec different from previous work? 

Previous systems makes use of a set of features to detect clusters of malicious domains, but 

do not focus on who makes the request. The sole focus of previous systems is centralized on 

the external structure of botnets. ADomDec does not build a timeline and does not cluster 

requests in epochs. Every request is considered individual but the history of DNS through the 

PDNS DB is used (as an advantage to derive additional information) in the analysis. The 

timeline of ADomDec starts from the first request is logged, and continues as long as the 

system is running.  

In contrast to previous work described above, ADomDec has two main focus areas when 

performing the analysis. The primary focus is to detect malicious domains, but based on the 

findings clients are flagged as possibly infected in incidents. Displaying this through a user-

friendly webUI or combining the findings with other existing correlating systems could be a 

valuable asset in network detection. ADomDec could also complement existing IDSs 

providing a richer dataset for security analysts when monitoring network traffic.  
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7.2 System 

ADomDec is created to automatically detect domains categorized as malicious, previously 

known and unknown. Beneath is a basic overview of the technical aspects of the system, 

before going into detail describing each of the components.  

7.2.1 Basic overview, design  

ADomDec consists of 13 components (Figure 5 - Overview of ADomDec for a complete 

overview):  

# Component name 

I.  Logfiles 

II.  Data Collector 

III.  Logfile parser 

IV.  DB logger 

V.  PDNS database 

VI.  Reputation sorter 

VII.  Reputation sources 

VIII.  Reputation gatherer 

IX.  Fine-grained analyzer 

X.  Harmless container 

XI.  Malicious database 

XII.  Client checker 

XIII.  Infected clients database 

Table 1 – List of components in ADomDec 
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Figure 5 - Overview of ADomDec 

 

Logfiles 

Here lies the logfiles gathered from the sensor(s). For this Master’s project the data is 

collected from a malware lab located locally at mnemonic AS[23] in Oslo. The data is 

generated by a mixture of malware infected clients and normal user behavior, ensuring a 

real dataset for analysis. It is non-sensitive data, and mnemonic AS has given consent for 

using the data in this Master’s project. The logfiles are collected by the data collector 

component, and removed from the logfiles folder when the parsing is done.  

 

Data Collector 

The data collector component is a rather small component gathering the logfiles, and 

parsing them to the next component. After the “Logfile Parser” component has processed all 

the entries in the logfile, the data collector also removes the correct logfile from the logfiles 

folder.  
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Logfile parser 

This component forwards different fields of data to other components. It parses the data 

from the logfiles, in a format that is simple to analyze later before forwarding data to the DB 

logger, client checker and the reputation sorter. It is a distribution component, placed to 

gain generativity in the system.  

 

DB logger 

This component receives data from the logfile parser. It checks if there exists an entry in the 

database for the dataset and either inserts or updates the data. This component is used to 

fill the database, and receives queries from a web interface.  

 

PDNS database 

This is the database containing all records from the logfiles. It receives data from the DB 

logger component, which either inserts or updates the entry depending on the existence of 

the data in the database. The database is also accessed from a web interface, were queries 

against the database can be made. The web interface makes it possible to view the data in 

the database in a user-friendly format. 

 

Reputation sorter 

This is where matching against reputation sources is done. If the domain name or IP address 

is matched against a whitelist, the request is discarded and no further analysis is made. 

Depending on the trustworthiness of the reputation list, a hit with a blacklist will give the 

event a certain score. If the domain name or IP address is triggered in several lists, the score 

value increases correspondingly. 

 

Reputation sources  

This module consists of available reputation sources that can be found online. Both blacklists 

and whitelists are included.  



31 
 

 

Reputation gatherer 

This component maintains the reputation lists, download updates and has the possibility to 

manually whitelist and blacklist domains and IP’s.  

 

Fine-grained analyzer 

This component analyses records that are not discarded as benign. This is done through a 

series of steps, each step adding a score to the domain. After the final step, the score is 

compared against a threshold. If the score is above the threshold, the domain is logged in 

the “Malicious” database, if not, it is discarded as benign. This component and its features 

are described in detail in the next section.  

 

Harmless container 

This component is a list made by the decisions from the previous component, the fine-

grained analyzer. If the score is above a certain threshold, the domain name or IP address is 

considered malicious. It is appended to a blacklist if not already there – and a flag is raised 

for the client leading to a further analysis. If the score is below the threshold, the domain 

name or IP address is considered benign, so it is appended to the whitelist, the harmless 

container.  

 

Malicious database 

The malicious database contains domain names and IP addresses considered malicious by 

the system. It is filled with data from the fine-grained analyzer, and is queried by the client 

checker to see if the DB contains specific domains names or IP addresses.  

 

Client checker 

When a query is made, a check is done to see whether the client already is flagged. If it is, 



32 
 

the log entry is added to the client’s traffic. This makes analysis faster, and helps providing a 

wider traffic picture when looking at the incident later.  

 

Infected clients database 

Once a domain or IP address is considered malicious, it is in addition to being added to the 

malicious database, added in a database containing possibly infected clients. The clients in 

question can be viewed through a web-interface or CLI, displaying the IP address of the 

client, and the traffic observed related to the client. A natural interaction would be to 

implement and enable the possibility to search in the traffic related to the client, display the 

information sorted by severity and scoring or by the indicators by flagging it as malicious.  

 

7.2.2 Log files 

The log files for this project was gathered in the malware lab located at mnemonic AS[23], 

and were used with consent. The malware lab includes clients known infected, as well as 

normal user activity, ensuring a true mixture of legitimate DNS traffic, as well as DNS traffic 

automatically generated by the variety of Trojan located at the infected clients.  

The logfiles are generated by logging the DNS query and answer from DNS. Beneath is a 

sample of one log entry pulled from a random logfile, and a table defining the different 

fields.  

 

Figure 6 - Sample from logfile 

 

 

 

 

 

1385456495||195.159.140.196||85.214.157.156||IN||www.facebook.com.||A||

69.171.247.29||60 
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Field output Definition 

1385456495 Timestamp – when the query was made 

195.159.140.196 Client IP address 

85.214.157.156 DNS server IP address 

IN Class of query 

www.facebook.com. Queried domain 

A Type of query 

69.171.247.29 Answer from DNS 

60 TTL value 

Table 2 - Definition of fields in logfile 

 

7.2.3 Database 

The different databases described in the Figure 5 was in ADomDec implemented as tables in 

one centralized database using MySQL. To achieve the wanted dataflow, the following tables 

was created (SQL create statements can be found in appendix B, chapter 10):  

- Totaldataset 

- Replists 

- Malicious 

- Incident 

- Clients 

Shown in Figure 7 below, the tables are neatly using foreign keys to reference IDs from other 

tables when creating incidents.  



34 
 

 

Figure 7 - Use of foreign keys to create incidents 

 

By using the primary key from the malicious, clients and replists tables in addition to other 

fields of data generated from the analysis the incident can stay a clean and agile table with 

the flexibility to gather wanted data from the other tables without having to save the same 

multiple times.  

Totaldataset has all the fields found in the log file, in addition to a few other fields containing 

metadata:  

  

MIN_TTL The minimal TTL value observed for the recorded set 

MAX_TTL The maximal TTL value observed for the recorded set 

AVG_TLL Average TTL value, based on the two values above and count 

FIRST_SEEN Timestamp first observed 

LAST_SEEN Timestamp last observed 

COUNT Numbers of times the recoded set is observed  

Table 3 - Metadata in totaldataset table 

 

During insertion by the use of “duplicate key update”, all fields are updated. Average TTL is 

calculated on the fly, count added by one, max/min updated if a new value is valid and 

finally last seen is always updated.  
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7.2.4 Processing stages 

This section describes the analysis stages of ADomDec: how the different features work, 

their motivation and the basis for the scoring system. How testing was performed, the 

results, technical challenges along the way and future work is described in Section 8.  

 

The fine-grained analyzer gets the data remaining after the whitelists have sorted away 

benign domains. The whitelist matching is done using pre-processing to reduce the dataset 

and workload of the system.  

To determine whether the domain name or IP address is malicious or not, the fine-grained 

analyzer component goes through a series of steps assigning a score along the way. After all 

the features have been calculated, the score is matched against a threshold. If the score is 

equal or above, that domain name or IP address will be flagged as malicious, if not, it is 

considered benign/harmless.  

Beneath is a table showing the processing stages from whitelisting to the decision is made. If 

a domain is whitelisted none of the processing stages are done. Because I had no prior 

experience with the different features, the scoring system is a result of trial-and-error.  

All log data goes through these steps after they have been inserted into the PDNS database. 
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Feature # Feature Score assigned 

1 Whitelist 0 

2 Blacklist 1* 

3 Length of word 10 

4 Numerical to letter relation 5 

5 Only numbers 10 

6 Levenshtein distance 15 

7 Average TTL value 7 

8 Invalid bigram 40 

9 Connecting domains 2** 

Table 4 - List of features in ADomDec 

 

1) Whitelist 

The first process is to check whether the domain is whitelisted or not. If the domain is 

whitelisted, there is no point performing the other operations. This reduces the dataset 

sent to parsing, speeding up the processing time. The whitelist is collected at alexa.com, 

containing 1,000,000 domains in descending order of trustworthiness. ADomDec uses 

the first 500,000 domains in its whitelist.  

2) Blacklists 

ADomDec has several blacklists, all of which gathered publicly and considered to have a 

high level of trustworthiness. Some of the lists were used as test data to determine 

system performance. The lists used as test data are marked in the list below. They are 

lists of domains with a high certainty of being malicious. Using them as reference when 

testing gave a conclusive result regarding the coverage rate for each of the fined-grained 

features were.  

 

 

 

 

                                                      
1* The score varies depending on the trustworthiness of the list. 
 
2** The score varies depending on the domains found. 
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# List name Part of test dataset 

1 Isc_suspiciousdomains.txt No 

2 Zeus_domains.txt No 

3 Malware_domainlist.txt No 

4 Malware_domains.txt No 

5 Cybercrime_zbox.txt Yes 

6 Virustracker.txt Yes 

7 Cryptolocker.txt Yes 

8 Cybercrime.txt Yes 

Table 5 - List of blacklists used in ADomDec 

 

After the data from the reputation lists had served their purpose as test data, it was 

implemented as a part of the blacklists. 

The findings and results of the system are described in detail in a later section.  

 

All of the domains names and IP addresses both from the blacklist and the whitelist was 

implemented as a hashmap in ADomDec, having a String as a key and a reputation object 

as value. When putting a whitelisted domain into the hashmap a Boolean whitelisted is 

set to true, and opposite for blacklisted domains. When checking if a domain is 

whitelisted, it checks if the domain exists at all in the hashmap, if it does, and the 

whitelisted flag is set to true the rest of the analysis is discarded.  If the domain exists in 

the hashmap when checking if it is blacklisted, the score belonging to the list is added to 

the total score value. The reputation object contains an array of objects allowing several 

lists to be attached to the same domain. When finding a match, the array is parsed, 

adding the score of the correct list.  

 

3) Length of word 

The longest word found in the Oxford dictionary consists of 45 letters[24, 25], this word 

is a medical term, and it is safe to assume that this is not plausible as a domain name. 

Any domain name with a length of >=45 will be assigned a score.  
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4) Numerical-to-letter relation 

It is not uncommon for a domain or a subdomain to contain numbers. Google amongst 

many other has a series of name servers called: ns1.google.com, ns2.google.com, 

ns3.google.com, etc. – or another structure of name servers indexed with a number. 

Another example is the well-known online yellow pages/phonebook information service 

in Norway called, 1881.no. ADomDec calculates the relation between numerical 

characters and letters, if there are a predominance of numbers to letters a score is added 

to the total.  

 

This feature is motived from my personal experience working as a security analyst at a 

security operations center (SOC), having observed thousands of callback/check-in 

domains and their structure. This traffic often consists of what appears to be a 

randomized mixture of letters and numbers, with a majority of numbers to letters. The 

bigram feature described at “8) Bigram” catches the domains randomized without 

numbers, and the next feature “5) Only numbers” describes detection of domains and 

subdomains containing exclusively numbers.  

 

5) Only numbers 

As discussed in the previous feature, domains and subdomains can contain numbers in 

benign settings. However, many fast flux domains also have subdomains purely 

consisting of numbers. This feature detects domains or subdomains containing 

exclusively numbers, but in isolation does not provide sufficient reason to flag the 

domain in question as malicious, and must be seen in correlation with the other features 

to provide a useful contribution to the total score. The motivation for this feature is also 

based upon my personal experience from working at the SOC.  

 

6) Levenshtein distance 

An edit distance is also calculated, with the use of Levenshtein distance technique[26] 

with the goal of detecting domain names generated by DGA’s (Domain Generating 

Algorithm) [27, 28]. In 1965 Vladimir Levenshtein considered this technique as the 

fewest substitutions necessary to morph one with to another, i.e:  
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Wanting to change from the word “kitten” to “mitten”, the Levenshtein distance would 

be 1, replacing the ‘k’ with an ‘m’. The Levenshtein distance from “mitten” to “sitting” 

would require changing the ‘m’ and the ‘e’, in addition to adding a ‘g’ at the end. Since 

there are no shorter way than three edits to perform this change, the Levenshtein value 

is three.  

The edit distance will have a lower value for benign domain names than malicious, giving 

a good indication of possible algorithmically generated domains. Benign services typically 

name their name servers (NS) ns1.* and ns2.*, giving a small edit distance. Domains 

generated by a DGA will normally have a greater value.  

 

In effect, this looks for substrings with a higher edit distance value than a given 

threshold. i.e.: 

ns1.google.com  ns2.google.com has a low value, making it benign. While as:  

xyzxxcjv.cybercrook.org  uqhfgvnb.cybercrook.org has a high value, making it 

suspicious.  

 

 

7) Average TTL value 

The average TTL value of the query is calculated, and if the value is within the range [0, 

100), a score is added to the total. The value of what to be considered suspicious in the 

feature is based on research from EXPOSURE[19].  

 

8) Bigram 

There are certain letters that never occur in sequence for most western languages. 

Through research I have not found the sequence “zq” occurring in any language other 

than in the use as an abbreviation. For ADomDec I modified a list[29] of impossible 

bigrams to occur in the English language. During the parsing ADomDec splits the domain 

into substrings for the corresponding domain and subdomains (skipping “www”, top 

level domain (TLD) and double TLDs), checks for illegal/impossible combinations of 

bigrams and adds a score if it is found.  
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The bigrams are implemented as a hashmap to make quick lookups of existence. When 

more than one bigram is found the following code sets the score to be 20 up to two 

occurrences, after that a score of 10 is added in addition pr hit: 

 

Figure 8 - Java code for setting score in bigram feature 

 

 

9) Connecting domains 

This feature uses the history of the PDNS DB to gather information for further 

processing. It targets groups of domains based on the answer from DNS when making 

the query. Beneath is a fictional example of several domains mapping to the same IP 

address:  

 

𝑦𝑒ℎ𝑎𝑗𝑠𝑘𝑓𝑜𝑟. 𝑖𝑛𝑓𝑜

𝑢𝑞𝑗𝑜𝑞𝑗𝑟𝑑𝑎𝑠. 𝑐𝑜𝑚
𝑝𝑞𝑙𝑢𝑧𝑥𝑦𝑖. 𝑜𝑟𝑔

   →     1.2.3.4 

Figure 9 - Domains related to an IP address 

 

ADomDec uses the answer field from the DNS record to query the PDNS DB for all 

domains mapping to the exact same IP. These domains are checked if blacklisted, and if 

they are, half of the initial score of the list is added to the total score in the analysis. This 

is done to prevent an enormous escalation of events based on related reputation. 

Answers may have a large set of domains attached, generating false positives if the true 

score of the list is added.  

 

 

if(counter==1) add_to_total_score(20);   
else { 
 int score=(counter*20/2); 
 add_to_total_score(score); 
}  
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8 Results, Discussion and Conclusion 

8.1 Technical challenges 

When developing ADomDec, there were a few technical challenges that had to be dealt with 

for the system and metrics to function as intended. In the following sections, the different 

technical challenges and the applied solution are discussed.  

 

8.1.1 TLD and double TLD 

The main point of the Levenshtein feature is to calculate the edit distance of two 

subdomains. However, the TLD can legally consists of two entries, i.e. “.co.uk”. Simply 

splitting the queried domain on ‘.’ will generate queries to the PDNS DB for “*.co”.  

i.e.) If you keep the second last entry of the query after splitting on ‘.’, this will work for 

every domain where the length of the split domain array is greater or equal to three – given 

that the first element is not “www” (since the query have to contain a subdomain as well). 

1. “google.com”    – second last element: google 

2. “something.google.com”  – second last element: google 

However, the first entry in the list above would return the method, without performing any 

further analysis since there are not any subdomain beneath google. In the second entry, a 

query for “.com.google.*” would be performed against the PDNS DB to get other 

subdomains beneath “google.com” (the query is reversed to make the search quicker in the 

DB).  

 

When the TLD consists of two elements in the split array this logic will not return the wanted 

result: 

1. “something.google.co.uk”  – second last element: co 

2. “google.co.uk”   – second last element: co 
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Resulting in queries for “.uk.*”. Hardcoding in if-statements to cover all double TLDs would 

be an inflexible way of solving the problem. In addition, the probability of making a mistake 

and miss one would be non-negligible. Mozilla has published a list[30] containing all double 

TLDs possible to use. This list is loaded into a hashmap at startup of ADomDec. If there is a 

match against the hashmap, ADomDec uses the third last element to get the actual domain 

(with the same but adjusted check of total length of the query regarding the added length of 

TLD and “www”).  

 

This challenge was relevant both for the Levenshtein and bigram feature. Both of which the 

system needed to use the domain name in question and not the TLD. As for the bigram 

feature, the TLD can be considered irrelevant.  

 

 

8.1.2 Database layout 

The layout of the database sets both possibilities and limitations regarding implementation 

of new features. When starting the development, the system model displayed in Figure 5 - 

Overview of ADomDec” was followed. This is a system created for a Master’s project to get 

results to prove whether or not it is possible to detect malicious domains using the set of 

features described, and to flag clients as possibly infected. For this purpose, the system gave 

very good results.  

It would also have been desirable to analyze in detail how well the different features detect 

malicious domains, on what form of domains and how well they work all together. All main 

components are there, but they are tighter connected than wanted in a full-scale 

operational system. Thoughts of how the system can be extended to the full and several new 

features are discussed and described in Section: 8.4 “Future work, conclusion and 

recommendations”.  
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Reversed Query 

At the very start, the query was logged in pure form. When querying the total dataset table 

with the Levenshtein distance feature, it started as “*.uggabugga.ru.”. Doing so, makes the 

DB search through the entire table, taking a considerable amount of time rather than 

reversing the domain before executing the query. By setting the index on the reversed 

query, the efficiency gain was significant. This enables querying “.ru.uggabugga.*”, letting 

the DB get much deeper into the search-tree before having to look for everything, thereby 

speeding up the search even more.  

 

8.2 Results 

To measure whether ADomDec is able to detect malicious domains it is tested against a 

testing set containing exclusively malicious domains of various types. The test set was 

obviously not loaded into the system as blacklist entries before testing.  

 

8.2.1 Preparation 

PDNS DB 

In order to have a rich dataset in the PDNS DB, log data was used to fill the database. During 

the preparation phase, the data used as test set was kept aside. A total amount of 

14 683 250 logfile entries were inserted into the DB (see Figure 10). Out of these, there were 

4 906 423 unique entries (see Figure 11) (criteria for uniqueness can be found in the SQL 

create statement in Section 10: “Appendix B: SQL create statements”, “Figure 15 – Appendix 

B: SQL create statement for creation of totaldataset”). Out of almost 5 million unique 

entries, 2 725 549 were without collision (see Figure 12) and the remaining 2 180 874 had 

one or two counts or more (see Figure 13).  This provides the foundation of the PDNS DB, 

and functions as DNS history when the test set was used.  
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Figure 10 - Total amount of log data in PDNS DB 

 

 

Figure 11 - Number of unique entries in PDNS DB 

 

 

Figure 12 – Number of true unique entries (only seen once) 

 

 

Figure 13 - Number of entries with count>=2 

 

Test set 

ADomDec was tested with three test sets. This section describes how the test sets were 

constructed and what purpose they serve.  

 

mysql> select sum(count) from 
totaldataset; 
+------------+ 
| sum(count) | 
+------------+ 
|   14683250 | 
+------------+ 

 

mysql> select count(id) from 
totaldataset; 
+-----------+ 
| count(id) | 
+-----------+ 
|   4906423 | 
+-----------+ 

 

mysql> select count(id) from 
totaldataset where count=1; 
+-----------+ 
| count(id) | 
+-----------+ 
|   2725549 | 
+-----------+ 

 

mysql> select count(id) from 
totaldataset where count>=2; 
+-----------+ 
| count(id) | 
+-----------+ 
|   2180874 | 
+-----------+ 
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The first test set was made to measure the baseline and effectiveness of the system; how 

much is it possible to detect? The test was constructed by concatenating several blacklists 

containing known malicious domains. As listed in Table 5 - List of blacklists used in 

ADomDec" blacklist 5, 6, 7 and 8 were used. The domains were unknown to ADomDec 

before generating the test file, ensuring that the domains were not selected to perform well 

during testing. The test set was made by a python script that generated a logfile on the same 

format as described in 7.2.2 Log files. The python script can be found in chapter 11 Appendix 

C: Python script for test data, Figure 20 - Python code to generate logfile for test data. The 

test set contains 10918 unique logfile entries carrying exclusively malicious domains.  

 

The second test set was a mixture of 7500 benign domains, in addition to the same malicious 

domains from the first test set. This test set was made to measure the amount of false 

positives and false negatives from the first test set. 

 

In addition, a third test set containing 1000 entries was sent through ADomDec. All domains 

were manually analyzed before the test, ensuring a complete white-box test. The file was a 

randomly selected logfile used to assess the false-positive (FP) and false-negative (FN) rate 

on a mixed test set.   

 

This was then launched into ADomDec with the history of PDNS described earlier. How each 

feature was tested and the statistics gathered are described in the next section, 8.2.2 

Testing. 

 

 

8.2.2 Testing & Findings 

The basis for the test has briefly been described in earlier sections. 14 683 250 logfile entries 

were inserted into the PDNS DB making a small set of DNS history. Note that this is a subset 

of data, recorded over a period of approximately two months. The first test set consists of 
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10918 malicious log entries considered to have an extremely high probability of being 

malicious. The testing of ADomDec was performed in three stages:  

Nr. 1) Discover the maximum coverage, the highest amount of entries possible to detect 

with the given features. 

Nr. 2) Assess the false positive (FP) rate when adding benign data into the test set.  

Nr. 3) 1000 entries pulled from a random logfile - manually analyzed to discover a real false 

negative rate (although on a very small data set).  

 

This section first describes the findings for test set nr. 1, how well the different features 

scored, presented in a statistical manner – sorted by feature name, ending with a statistical 

summarizing table. Then the same will be done for test set nr. 2, including the FP-rate after 

testing with a combined test set of the same malicious domains used in test set nr. 1, 

concatenated with a series of benign domains. Finally, the findings of test set nr. 3 is 

presented. The discussion of the results is presented in 8.3 Discussion. 

 

8.2.2.1 Total detection (test set nr. 1) 

Total results 

ADomDec detected 8450 domains, out of the total 10918 domains. This gives a detection 

rate of 77,39% under ideal circumstances. 

This result was produced with a combination of all features. Single features and multiple 

features contributed to the score. This result sets the baseline for the potential of the 

system.  

 

Whitelist 

Of the 10918 domains entering the system, 8 were whitelisted giving 0,07%, showing that 

either the test set is a good representation of malicious domains, or that the whitelist is 

weak. Given the combination of trustworthiness between the whitelist and blacklists making 

the foundation of the test set. This result proves that the test set was representative.  
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Blacklists / Reputation  

ADomDec discovered 509 domains based on reputation, a quite small percentage of 4,66% 

of the total data (out of the 10918 domains), and 6,02% of the detected domains. This is 

tightly related to the quality and quantity of the reputation lists used by the system. 

Although the malicious domains used for the test had their origin from blacklists, the 

domains were not previously known or based upon already implemented blacklists. Had the 

test set data been present in the blacklists, the detection rate should be close to 100% based 

on reputation alone. This will be discussed further in chapter 8.3 Discussion.  

 

Invalid bigrams 

The illegal bigram feature detected 7906 domains, a total of 72,4% of the total parsed 

dataset and 93,56% of the total amount domains detected. This makes a clear majority of 

the detection, and could be related to the structure of the domains in the test set. If the 

domains in the test set were related to Trojans making use of domain generating algorithms, 

one could expect to see many occurrences of illegal bigrams. However, the structure of the 

domains in the test set were not known prior to the testing.  

 

Length of word 

This feature did not generate one single hit from the test set. The low trigger rate could be a 

consequence of the test set used, and does not necessarily indicate the feature is completely 

irrelevant. Measuring the false positives (FP) is difficult without having any hits. Either this 

feature has a low FP rate, or it does not provide a sufficient contribution to the analysis and 

can be removed.  

Most of the legitimate domain names used are far from 45 letters long. The scoring for this 

feature could be adjusted to trigger at an earlier stage and increasingly add score as the 

length of the word increases.  

 

Numerical-to-letter relation 

This feature triggered in 2 of the 8450 detected domains. In the entire test set containing 



48 
 

10918 domains, 257 of them contained one or more numbers. Out of the 8450 domains 

detected only 111 domains contained numbers. Out of the total test set (10918) the 

percentage detection was 0,018%, and in the domains detected (8450) it was 0,023%. Out of 

the 111 domains that contained one or more digits it detected 1,8%.  

This feature alone does not provide enough score to flag the domain as malicious. Hence, 

the domains detected with this feature were also triggered by other features allowing the 

score to get high enough for the domain to be flagged.  

 

Only numbers 

This feature detected exactly the same amount as the numerical relation feature. Hence, the 

calculations of percentage is the same.  

 

Levenshtein distance 

Out of the total test set, the Levenshtein distance feature 48 domains, giving a total of 0,25% 

and 0,56% in the set of detected domains. However, for the Levenshtein distance to even 

perform a calculation of the query it must contain a subdomain. There were 225 domains 

containing subdomains, giving this feature a detection rate of 21,3%.  

 

Connecting domains 

This feature did not generate one single hit from the test set.  

When generating the test set, the resolved IP to the queried domain was sat to a static IP 

address that does not exist in the PDNS DB. When this feature looked in the DB for 

connecting domains, the result came up empty every time.  

The python script that generated the logfile set fictitious data for timestamp, client IP 

(generated by random numbers, ensuring only different clients), DNS IP, class, type, resolved 

IP and TTL.  

Some of the domains used does not resolve to an actual IP anymore, attempting to map up 

the existing domains to IP addresses could have been done. However, this would reduce the 
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test set radically. I chose not to do this because the importance does not lie in whether or 

not the domain actually lives; it is whether or not ADomDec will detect the structure of the 

domain classifying it as malicious or benign.  

 

Average TTL 

This was unmeasurable.  

The measure of this feature was ruined when generating the test set. Since the test data is 

generated based on blacklists, there are no true metadata for the queries. By setting the TTL 

to 3600 in the python script, there is no way for this feature to measure real data. The 

motivation of setting the TTL to a static value is the same as described for the previous 

feature, “Connecting domains”. This is discussed further in 8.3.3 “Other features”. 

 

Multiple triggers 

Some domains were detected by more than one feature. In total 104 of the 8450 domains 

were detected simultaneously of several features, giving a detection rate of 1,2%. 

 

Summarizing table of features  

Feature name # of detected 

domains 

% of 

10918 

% of 

8450 

Trigger 

base 

% of the 

trigger base 

Whitelist 8 0,07 - - - 

Blacklist 509 4,66 6,02 - - 

Invalid Bigram 7906 72,4 93,56 - - 

Length of Word 0 0 0 - - 

Numerical to Letter Relation 2 0,018 0,023 111 1,8 

Only Numbers 2 0,018 0,023 111 1,8 

Levenshtein Distance 48 0,25 0,56 225 21,3 

Connecting Domains 0 0 0 - - 

Multiple Triggers 104 - 1,2 8450 1,2 

Table 6 - Performance summarization of features 
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8.2.2.2 Detection including benign domains (test set nr. 2) 

ADomDec was also tested with a test set consisting of all the domains from the previous test 

set, but extended with 7500 benign domains. This was performed to detect the false positive 

(FP) rate, and false negative (FN) rate. Previous results gave a baseline; how many domains is 

it possible to detect under ideal conditions; how much can be seen? Tuning the different 

features correctly has a significant impact on the results presented below. Tuning and 

scoring will be discusses in a wider aspect in the next chapter. The extended test set was 

created with the first 7500 domains from the Alexa whitelist. When the analysis was 

performed, the entire whitelisting feature was deactivated. Otherwise, all the domains 

different from the first test set would be whitelisted and no analysis would have been 

performed.  

 

Results from Features 

Since whitelisting was turned off, no domains were whitelisted. It is safe to assume that the 

same eight domains that were whitelisted when parsing the first test set would retrigger 

when running the extended test set. Since the extended data was pulled from a whitelist, 

having whitelisting enabled would undermine all other results and purpose for running the 

extended test set.  

As for the rest of the features: Blacklist/reputation, invalid bigrams, length of word, 

numerical to letter relation, only numbers, Levenshtein distance, connecting domains, 

average TTL and multiple triggers – a total of 90 ‘new’ domains were detected with the 

extended test set, making the total FP rate with this dataset at 0,48%. 

 

8.2.2.3 “Random” test data (test set nr. 3) 

To measure the FP and FN rate on a mixed test set of true data, a random logfile was 

selected and 1000 entries were sent through the system. All the domains were manually 

analyzed before the testing started to see how many of the 1000 domains that were 

malicious. The expected result was one malicious domain.  
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After analyzing the domains, 17 domains were considered malicious, giving a percentage of 

1,7%. The distribution of the domains found over the different features are listed below. 

 

Feature name # of domains  

Whitelist 776 

Blacklist / Reputation  0 

Invalid bigrams 13 

Length of word 0 

Numerical to letter relation 2 

Only numbers 3 

Levenshtein distance 7 

Connecting domains 3 

Average TTL 0 

Multiple triggers 10 

Table 7 - Features and number of found domains 

 

The domains detected was mainly detected by bigrams, which is to some degree related to 

the differences between the English language and the Nordic. For instance the bigram “kv” is 

according to the list illegal – but there are words in the Norwegian language with the 

sequence “kv” that are perfectly legal. The remaining domains detected was flagged with 

numerical features, which appears to be automatically generated DNS queries related to 

streaming services.  
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8.3 Discussion  

In this section, the findings presented above are discussed. The interesting points are the 

correctness of the system, whether or not the data was tested in a fashion that reveals 

appropriate results, and why/how the features achieved according to the results previously 

shown.  

 

8.3.1 Test sets 

Total Detection  

The total detection test set was based on blacklists. The nature of the blacklists has an 

impact regarding the structure of the domains. If the blacklists have domains all belonging to 

one Trojan family, one could expect a vast majority of the domains to have the exact same 

structure. This leads to a weakness in this way of measuring. If the system detects one of 

these domains, it is likely it will detect the rest – and opposite. The blacklists were however a 

mixture of domains belonging to several different Trojans, proven by the fact that out of the 

10918 domains analyzed, 8450 of them were detected by ADomDec.  

  

Extended Test Set  

The extended test set was a combination of the domains from the total detection set, and 

the 7500 first domains from the Alexa whitelist. This measure makes sense as long as the 

whitelisting feature is deactivated. All the domains detected from the first test set was 

rediscovered when analyzing the extended logfile, in addition 90 other domains were 

detected. This indicates an FP rate at 0,488%.  

The other blacklists used during the testing contains known malicious domains. When 

parsing through domains from a whitelist, naturally none of them triggers unless there is a 

FP in one of the lists. During this test, none of the 90 domains was flagged with reputation. 

This result is only an indicator of the correctness in the reputation lists.  
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Mixed Dataset 

1000 logfile entries from a randomly selected logfile were analyzed by ADomDec to detect 

the FP and FN rates. I manually analyzed all of the 1000 domains in order to establish a 

certain baseline. Out of the domains, a clear majority was benign, containing many duplicate 

entries. I detected manually one entry, which was malicious and should be flagged by 

ADomDec. Since the logfile was selected at random it is impossible to know what kind of 

data the file contains. Depending on which list is selected, it is impossible to know whether it 

is a file containing one or 25 (example numbers to illustrate the difference of occurrences 

regarding malicious domains) malicious domains and how many of the 1000 domains that 

are whitelisted, without knowing the content of the file before choosing.  

 

8.3.2 Reputation lists 

Whitelist 

When the cybercriminals develop their exploit kits (EKs), it is reasonable to assume that 

some of the more advanced organizations build their command and control (C&C) domains 

regarding the existing whitelists available online. The fast fluxing EKs seem to neglect this as 

a part of their development routines, which is natural regarding the nature of fast fluxing. By 

changing the domain names and IP addresses with a high frequency – the domain is active 

for such a short period of time, that it does not really matter. By the time white-hat 

organizations have blacklisted the domain, they are no longer using it as a part of their 

network. The cybercriminals could of course use Markovs chain to generate English looking 

words to avoid statistical features such as illegal bigrams and to some degree make sure to 

achieve a plausible Levenshtein distance score.  

Regarding the detection coverage of domains being whitelisted by ADomDec, this is 

dependent on the whitelist implemented. For ADomDec the Alexa whitelist was used. The 

list is generated in a sorted order of the most used domains on the Internet with 

google.com, facebook.com and youtube.com placed as top three. The list contains 1 000 000 

domains, but ADomDec only uses the first 500 000. This was done because the more 

domains implemented, the confidence level of the domain actually being benign is lowered.   
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Blacklist / Reputation  

Many of the same discussion topics are valid when discussing blacklists and whitelists. The 

danger of having too many domains in the whitelist, is to whitelist and assume a domain is 

benign based on external analysis. Regarding blacklists generated by an external source, one 

has little knowledge of the reason for the domain or IP to be blacklisted. Detecting domains 

based on blacklist therefor depends on the information exchange agreement with other 

vendors, and the credibility of the lists gathered from public sources.  

In ADomDec, a rather small set of domains (relative to the amount which is possible to 

gather) is used by the system. A total of 76800 domains and IP addresses are loaded into 

ADomDec at startup, with a clear majority of domains. This makes the number of detected 

domains by blacklist an example and proof of concept (POC) of the impact of having reliable 

blacklists implemented in the system, and what they are capable of detecting. The 

reputation hits found when parsing the test set is determined by the quality of the 

reputation lists used in the blacklist feature section of the system.  

 

 

Collisions with blacklists and whitelists 

When automatically updating black- and whitelists a new challenge arises. If there are 

collisions between the lists, so a domain exists in both lists, a malicious domain could be 

whitelisted generating a FN or a benign domain could be blacklisted generating a FN.  This is 

a general problem when having both white and blacklists, but when leaving the updating of 

the lists to the system there is a greater danger of losing control.  

ADomDec is created to trust the whitelist, giving the whitelist precedence. If a domain is 

whitelisted, analysis will never be performed. The domains that exist in the whitelist are less 

likely to change compared to domains in the blacklist. New, malicious domains are often 

discovered when existing exploit kits are updated, or new ones emerge. Therefore, 

implementing an automated mechanism to handle black- and whitelists would be more 

beneficial. 
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8.3.3 Other features 

Invalid bigrams 

During ideal circumstances this feature detected the majority among the domains 

considered malicious. This shows that either the domains were poorly balanced, or this is a 

good feature. If the domains used in the total detection test set all had their origin from the 

same exploit kit (EK), they would follow the same structure. If ADomDec detects the general 

form, a vast majority will be detected – if the structure is unknown to the system it will pass 

through undetected.  

The test set was, however, constructed of domains from different EKs and different sources 

making the findings a plausible representation of the total detection rate of the system. 

Detecting invalid bigrams proves to be a sufficient feature for detecting domains generated 

by a domain generating algorithms (DGA). As mentioned earlier, cybercriminals could make 

use of Markovs chain or similar algorithms to generate domain names that have the same 

structure as a valid English word without actually being one. This could bypass this feature, 

leaving the detection to other features; mainly blacklists and possibly Levenshtein distance.  

 

Length of word 

ADomDec detects domain names with a length above 45 letters. This is based on the longest 

existing word in the Oxford dictionary – a medical term. This feature will mainly detect 

domain names made by a weak DGA. The testing revealed this feature as rather irrelevant, 

based on a low trigger rate and little detection in all the tests. Having features that trigger 

seldom does not necessarily mean that the feature is a total waste. However, if the number 

of features with a low trigger rate is high it could affect the total time to perform analysis in 

a negative way if the computational cost is greater than the profit from the analysis.  As 

mentioned earlier, this feature could be adjusted to trigger at an earlier stage and 

progressively increase the score based upon the numbers of letters above the placed limit.  

 

Numerical to letter relation and only numbers 

These features prove to have a low trigger rate, but without generating FPs. As discussed in 
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the previous section, having features that do not trigger often is acceptable with today’s 

equipment and hardware prices. There are benign domains containing numbers, but 

because of the score set for these features, simply having a majority of numbers or 

exclusively numbers in the domain name is not enough to flag the domain as malicious. 

These features plays a positive role in correlation with other features, pulling the score up – 

making the multiple trigger feature work and supporting the foundation of the scoring 

system (these features are discussed in detail at the end of this section).  

 

Levenshtein distance 

The Levenshtein distance feature detected a minority of the domains, but seen in relation to 

what is has the ability to detect the overall value of the feature is considerable. The 

Levenshtein distance is only calculated for domains having a subdomain, so it cannot be 

calculated for all domains. As seen in the total test set, only 225 of the 10918 domains 

contained a subdomain triggering analysis. Out of these 225, 48 had an edit distance (ED) 

above the selected threshold.  

Since the ED is computed for all existing subdomains ever existed for the TLD, this brings a 

source to FPs with the current design of the feature. If a TLD once in history ever got 

hijacked and hosted malicious code or was a part of a CC infrastructure, this is present in the 

totaldataset. When ADomDec searches the totaldataset, this domain is returned. When the 

ED is calculated, a high score arises since the rest of the domains are benign. Unless the 

scoring is neatly tuned, this could easily generate a FP.  

 

Connecting domains 

During analysis historical domains mapping to the same IP address are gathered from the 

totaldataset. In the tested version of ADomDec, only reputation against blacklists are 

performed for the returned domains. If any of the domains are found in the blacklists, half of 

the initial score is added to the total score. IP addresses can have a considerable amount of 

domain names attached, if a full score is added in addition to escalation of score depending 

on the number of lists it is found in, this could be a serious source of FPs.  
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Average TTL 

During the testing of ADomDec the generation of the test set logfile ruined the basis for the 

average TTL component. The TTL was hardcoded in the python script because only domain 

names were available. Many of the domains in the test set were no longer active, so 

generating true DNS requests would reduce the dataset considerably. The nature of the test 

was the structure of the domain, and giving precedence of keeping quantity of the test set, 

this decision was made. Similarly to the numerical to letters relation and the only numbers 

feature, this feature has an extremely low score (compared to features such as invalid 

bigrams), so this feature is mostly interesting when all features have been processed and 

ADomDec looks at the number of features triggered and the total accumulated score. This 

feature alone is never enough to flag a domain as malicious.  

When tested with the other test sets, this feature gives a rather low trigger rate, although 

the domains triggered showed a low FP rate. The feature was implemented based on the 

research performed in EXPOSURE[19].  

 

When testing this and the previously described feature (“Connecting domains”) with the first 

test set the resolved IP address and TTL value was hardcoded. This motivation for this was to 

prevent a reduction of the test set because many of the domains are no longer active. By 

using existing public passive DNS databases one could possibly find resolved IP addresses 

and TTL values. This would make it possible to test this feature in a better way.  

 

Multiple triggers 

Before checking the total score against the threshold, ADomDec looks at the number of 

features triggered and adds a small escalation score. Simultaneous triggering by multiple 

features indicates higher certainty of maliciousness. Features having a small score, are 

therefore valuable in correlation with the other features, but can also generate FPs if only 

the minor features triggers and the domains are flagged on a weak basis.  
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Tuning, scoring and thresholds 

The scoring was initially based on guessing and my personal experience from working as a 

security analyst at a security operation center (SOC). When performing the tests, there were 

minor changes in the scoring. More testing with different test sets and increased experience 

would make it possible to tune the scoring system towards an ideal combination based on 

the feature set.  

 

Motivation and scoring  

Some of the features were inspired from previous work, other were inspired by my personal 

experience from working as a security analyst at a security operations center. The 

representation of trigger rates amongst the features have a tight connection with the scoring 

system. If a feature has a low score, it has to trigger along with at least one other feature. 

This can lead to a low trigger rate based on score, not detection. However, to keep the FP 

rate as low as possible, not all features can have the same score.  

 

8.4 Future work, conclusion and recommendations 

8.4.1 Future work 

This section describes different features that could have a positive contribution in the 

analysis, technical challenges that could arise and why the suggested feature would benefit 

ADomDec.  

 

Jaccard index  

When comparing two strings, ADomDec uses Levenshtein distance. This could be expanded 

to also calculating the Jaccard index [27, 31]. The Jaccard index is calculated from the raw 

differences between two strings based on the letters as sets. Two identical strings give a 

Jaccard index of 1, which is the same result as two sets containing the same letters. Whereas 

Levenshtein Distance generates a score based on the placement of the letters, the Jaccard 

index generates a score based on the existence of letters only.  
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Examples: 

String x = “abcde” 

string y = “ecdab “ 

The Jaccard index is 1 between both ‘x’ and ‘y’ and between ‘x’ and ‘x’, i.e. Jaccard(x,y) = 

Jaccard(x,x) = 1.  

The Levenshtein distance is 4 between string ‘x’ and ‘y’, and 0 between ‘x’ and ‘x’, i.e. 

Levenshtein(x,y) = 4 and Levenshtein(x,x) = 0.  

 

Invalid bigrams for different languages 

The system could have different illegal bigrams lists for different languages, and match the 

domain against the correct list based upon TLD. This would eliminate the linguistically 

differences, and provide a more accurate result. 

 

Length of word 

This existing feature could be altered to trigger at a short length of word, however with a 

lower score. The score should increase progressively as the length increases.  

 

Testing of average TTL and connecting domains 

To test this features and the effectiveness, test set nr1 should be matched against existing 

public passive DNS databases, in addition to reverse DNS lookups to find the resolved IP 

address and TTL value of the domains.  

 

Caching 

To optimize the system, caching should be implemented. By caching the 100 000 most used 

searches using for instance Ehcache[32], the system would not have to query the database 

for each domain regarding the connecting domains and Levenshtein distance feature. This 

could shorten the analysis time by a great deal, if the system were to be implemented in a 

larger scale network.  
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Client checker  

In the tested version data is not added to a client unless it is considered malicious. This is not 

like initially intended where once a client is considered possibly compromised, all later traffic 

is associated with the client. This was done because the data can be extracted from the total 

dataset table when querying from the webUI. This will raise the technical question regarding 

the aspect of time, and amount of associated traffic. Not all traffic related to the client may 

be of interest. However, having good queries sorting on time, and relevance in addition to a 

user-friendly interface displaying the information, this problem is avoidable.  

 

WebUI 

An interface displaying the infected clients and the traffic related was not included in the 

implementation, making the system a pure proof-of-concept system. For the system to have 

the wanted function, a webUI or another instance of interface interacting with the 

user/admin of the system must be implemented. Nevertheless, accessing the DB directly via 

the mysqladmin shell was adequate to extract the data proving the concept of the ADomDec 

system.  

The webUI should have functionality such as: 

 view currently infected clients 

 query previous infected clients and the traffic related 

 search for specific traffic patterns within the traffic of the client (domains, part of 

domains and IP addresses) 

 display infected clients based on domains or IP addresses 

 Flag clients as handled, removing them from the view  

 Add comments to the traffic presented  

 Get notifications if a new associated event related to the client occurs  

 

Ecosystem with other systems 

By setting other systems such as EXPOSURE and FluxBuster in parallel using the decision 

made from the external systems as input into the analysis in ADomDec, an ecosystem can be 
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created. This would create a better data foundation for making a decision whether or not a 

domain is considered malicious or not.  

 

Connecting domains and performing more analysis 

The current implementation of ADomDec only performs blacklist checking against related 

domains to the resolved IP address. More analysis could be performed to decide if the 

connected domains are malicious or not. This again relates to the general weakness of using 

related domains actively in the analysis – if a benign domain once hosted a malicious domain 

it would trigger this feature. Using this as a feature will require good tuning. The system 

could gather a total score for all the connecting domains and see the score in correlation 

with the amount of domains before matching it against a threshold.  

 

Whois information 

Malicious domains often have a recently new creation date, since they tend to be changed 

with a high frequency. This could be revealed by looking at whois information. However, 

doing this removes ADomDec from being a system in the totally stealth category to a semi-

stealth system because the queries would generate outbound traffic that could be observed.  

 

Increased modularity 

If the system should be expanded further and placed in a system for live analysis, an 

increased form of modularity should be implemented. By making the different parts of the 

systems as modules and placing a message queue system to handle communication between 

the modules, it will be easier to insert new components and monitor the traffic between the 

components. This would make it easier to get an overview if parts of the systems stopped, to 

monitor and make graphs over the amount of traffic passing through the system, and would 

function as an extra insurance against data loss (if a component stops the messages would 

be in the queue when the components re-starts).  
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Automatically collect and update white/blacklists 

Having an automated process to gather and update the white- and blacklists is not 

implemented in the tested version of ADomDec, however it would be beneficial. 

Automatically updating the black- and whitelists would reduce FPs and ensure an even 

better data basis for the analysis. Having a crontab taking care of the updating of the lists 

would also relieve the administrator of workload, although it brings the challenges discussed 

in the previous chapter.  

 

Detecting compromised DNS servers 

Since ADomDec silently looks at DNS data over time, applying additional algorithms and 

statistical features to detect abuse of DNS could be done. This would not have a direct effect 

on the system – but notifying those responsible for the infected DNS server would be 

beneficial for everybody.  

 

8.4.2 Conclusion 

In the previous chapters, ADomDec has been presented as a complete system to 

automatically detect malicious domains based on different features targeting the 

characteristics of the domain names. This chapter discusses and concludes whether 

ADomDec was successful implemented and answered the research questions from chapter 

2. 

 

False Positives and False Negatives 

In terms of automatically detecting malicious domains, ADomDec proved that it possible to 

detect only the majority of malicious domains without generating enormous amounts of 

FP’s. As presented in 8.2 Results, the detection rate and FP rate varied depending on the test 

set used as input. However, the detection rate was 75%+ and the FP rate was 2%-. Further 

research and development will tell whether it is possible to increase the detection rate while 

keeping the FP rate stable. 
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The graph below shows the relationship between detection of data in correlation with FP 

and FN rates.  

 

Figure 14 - FP/FN rate[33] 

 

The graph is an illustration of the amount of detected domains, and the amount of false 

positives (FP) and false negatives (FN). Having a low FP will imply a higher FN, and having a 

low FN will increase the FN. Setting ADomDec against this data model the cutoff value will 

change according to tuning of the scoring system.  

 

Scoring 

The scoring system was developed with a trial-and-error method because no data existed 

with regard to the different features, the trigger rates and their effectiveness. During 

development and testing, the scoring was adjusted towards the ideal phase of the graph 

illustrated above. Whether or not the scoring is optimal, and the improvement gained along 
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the way is hard to know. Further development, testing and adjusting is needed to determine 

the optimal settings for the scoring system in order to minimize FP and FN rates.  

 

Traffic detection 

The origin of the flagged traffic made by the clients is hard to identify. Since DNS does not 

include URI, only host – it is impossible to know for sure if the traffic observed is related to 

the early stages of an infection, or if the client is compromised. The reputation lists are often 

sorted in categories, defining domain names as callback/checkin domains or related to 

downloading of exploit kits, etc. When a client is flagged based upon the traffic analyzed by 

ADomDec, the client should be investigated further. For future work, an additional 

expansion of the flagging system can be implemented. It could be useful to assess the range 

of certainty if a client has been compromised or not.  

 

Q1) How to design a practical system for detecting malicious domains and infected clients 

based on monitoring DNS queries and answers?  

A1) ADomDec proved it possible to detect malicious domains and the clients responsible for 

the traffic by monitoring DNS queries and answers. By applying a set of technical metrics 

analyzing the domain name, combined with reputation ADomDec proved to be a qualified 

system design.  

 

Q2) What is a realistic detection rate of malicious domains detected with this system?  

A2) The detection rate is plausible and realistic regarding the function of the system. As 

discussed previously in the chapter, the detection rate was 77,39%. For a prototype system, 

this is satisfactory. As further development will increase the detection rate even higher, 

ADomDec can become a valuable asset regarding malicious domain detection.  
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Q3) What is the nature of detected malicious domains?  

A3) The majority of the detected domains contained illegal bigrams, implying they were 

generated by a DGA. Some of the malicious domain names could consist of legal words, 

appearing to be benign, however they can also be malicious because the domain is 

compromised or because the cybercriminals try to appear legit. Such domains will (if not 

found in a blacklist), go undetected through ADomDec.  

 

When I started working on this Master’s project, I had initial ideas that to some degree had 

been implemented. Throughout the research phase some of the ideas proved wrong and 

others out of scope. Some remained, although they did not detect as much as intended. The 

illegal bigram feature proved to detect a vast majority. In retrospect, lists of illegal bigrams 

for different languages should have been implemented, and as the feature triggers the 

language list should be displayed. I believe that with some further development, ADomDec 

can be a valuable asset if placed in a computer network.  

 

 

In conclusion, ADomDec demonstrates the capability to detect malicious domains, and to 

find the clients responsible for the traffic. The outcome of the Master’s project is very 

promising. Implementing ADomDec in a computer network provides an additional element 

for security incident detection, and for identifying infected clients. It provides valuable data, 

and strengthens and supplements existing of security detection mechanisms.  
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9 Appendix A: Glossary of Terms and 

Acronyms 

 DNS: Domain name system – see [34] for a complete list of RFC related to DNS.  

 RFC: Request of comments – A defined internet standard[35]. 

 PDNS: Passive domain name system 

 ADNS: Active domain name system 

 DB: Database  

 CC: Checkin  

 FP: False positive  

 IDS: Intrusion detection system 

 IPS: Intrusion prevention system 

 DGA: Domain generating algorithm 

 LDS: Labeled dataset 

 CDN: Content delivery network  

 FW: Firewall 

 CLI: Command line interface 

 SOC: Security operation center 

 EK: Exploit kit 

 POC: Proof of concept 

 ED: Edit distance 

 TLP: Traffic light protocol  

 NM: Name server 

 TLD: Top level domain 
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10 Appendix B: SQL create statements  

 

Figure 15 – Appendix B: SQL create statement for creation of totaldataset 

 

Figure 16 - Appendix B: SQL create statement for creation of clients 

use pdns; 
CREATE TABLE IF NOT EXISTS totaldataset (  
id     BIGINT(64)   NOT NULL AUTO_INCREMENT, 
Time     VARCHAR(32)   NOT NULL, 
Source_IP    VARCHAR(21)   NOT NULL, 
DNS_IP    VARCHAR(21)   NOT NULL, 
Class     VARCHAR(10)   NOT NULL, 
Query     VARCHAR(256)  NOT NULL, 
Reversed_Query    VARCHAR(256)  NOT NULL, 
Type     VARCHAR(10)   NOT NULL, 
Answer    VARCHAR(256)  NOT NULL, 
Min_TTL    INT(10)   NOT NULL, 
Max_TTL    INT(10)   NOT NULL, 
Avg_TTL    DOUBLE  NOT NULL, 
First_seen    VARCHAR(128), 
Last_seen    VARCHAR(128), 
Count     BIGINT(64), 
UNIQUE (Class, Type, Query, Answer), 
INDEX totaldataset_query (Query), 
INDEX totaldataset_Reversed_query (Reversed_Query), 
INDEX totaldataset_answer (Answer), 
PRIMARY KEY (id)  
); 

use pdns; 
CREATE TABLE IF NOT EXISTS clients ( 
id   BIGINT(22)  NOT NULL AUTO_INCREMENT, 
ip  VARCHAR(21)  NOT NULL, 
First_seen VARCHAR(128) NOT NULL, 
Last_seen VARCHAR(128) NOT NULL, 
UNIQUE(ip), 
PRIMARY KEY (id)  
); 
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Figure 17 - Appendix B: SQL create statement for creation of malicious 

 

Figure 18 - Appendix B: SQL create statement for creation of replists 

 

use pdns; 
CREATE TABLE IF NOT EXISTS malicious (  
id    BIGINT(22)   NOT NULL AUTO_INCREMENT, 
DNS_IP   VARCHAR(21)  NOT NULL, 
Class    VARCHAR(10)  NOT NULL, 
Query    VARCHAR(256)  NOT NULL, 
Type    VARCHAR(10)  NOT NULL, 
Answer   VARCHAR(256)  NOT NULL, 
Min_TTL   INT(10)   NOT NULL, 
Max_TTL   INT(10)   NOT NULL, 
Avg_TTL   DOUBLE  NOT NULL, 
First_seen   VARCHAR(128), 
Last_seen   VARCHAR(128), 
Count    BIGINT(22), 
INDEX malicious_query (Query), 
UNIQUE (Class, Type, Query, Answer), 
PRIMARY KEY (id)  
); 

use pdns; 
CREATE TABLE IF NOT EXISTS replists ( 
id    BIGINT(22)   NOT NULL, 
list_name  VARCHAR(128) NOT NULL,    
last_updated  VARCHAR(32)  NOT NULL,   
UNIQUE (id),  
PRIMARY KEY (id) 
); 
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Figure 19 - Appendix B: SQL create statement for creation of incident 

  

use pdns; 
CREATE TABLE IF NOT EXISTS incident ( 
id               BIGINT(64)        NOT NULL AUTO_INCREMENT,   
mal_id           BIGINT(64)        NOT NULL,  
cli_id          BIGINT(64)        NOT NULL, 
replist_id        BIGINT(64)          , 
score             BIGINT(64)        NOT NULL, 
reason           VARCHAR(500)     NOT NULL, 
created           VARCHAR(32)      NOT NULL, 
last_updated     VARCHAR(32)      NOT NULL, 
status            INT(2)            NOT NULL, 
count             BIGINT(64)        NOT NULL, 
PRIMARY KEY (id),  
foreign key (mal_id) references malicious (id),  
foreign key (cli_id) references clients(id)  
); 



71 
 

11 Appendix C: Python script for test 

data 

 

Figure 20 - Python code to generate logfile for test data 

  

import random 
input_file = open("testset_raw.txt", 'r') 
output_file = open("generated_loggdata.txt", 'w') 
all_domains = [] 
clients = [] 
 
for line in input_file: 
      if line not in all_domains: 
            client_ip = "" 
            while 1: 
                  client_ip = "%d.%d.%d.%d" % (random.randint(10,200), random.randint(10,200), 
random.randint(10,200), random.randint(10,200))  
                  if client_ip not in clients: 
                        clients.append(client_ip) 
                        break 
            loggentry = "1400328000||%s||123.45.67.89||IN||%s.||A||666.66.666.66||3600\n" 
% (client_ip, line[:-2]) 
            output_file.write(loggentry) 
            all_domains.append(line) 
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