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Chapter 1

Introduction

Spatial configurations and how they are described is a matter relevant to
a wide range of fields of research, from mathematical geometry through
studies within geographic information systems to automatic wayfinding
and human-robot interaction. This thesis is concerned with how such
configurations are described in natural, human language. In order to deal
with this subject matter we will make some introductory assumptions, and
then present some approaches with the aid of these assumptions.

• Assumption 1: There are sets of objects and relations between them
that are conceived as spatial configurations.

• Assumption 2: There are different ways of describing the configur-
ations mentioned in assumption 1.

• Assumption 3: There are different ways of processing the informa-
tion expressed about the configurations mentioned in assumption 1.

For studies in how natural language deals with assumptions 1 and
2, we turn to spatial semantics. This area, concerning the connection
between language and space, is an active area of research, and we find
significant contributions in the works of, amongst others, Talmy, Langacker
and Levinson[8, 9, 11, 20, 21]. This kind of linguistic research focuses on
revealing certain properties of actual use of language, and in doing this
tells us something about what sorts of spatial systems that are allowed and
described by natural language. Such research reveals certain categories
of spatial expressions, how different linguistic expressions are used to
describe fundamentally different spatial properties.

Having a firm understanding of spatial semantics is useful when we
move on to other areas of research that also deal with spatial configurations,
as it will let us know whether or not the use of natural language is
involved. Some systems are highly specialized, their linguistic components
(that is, the terms they use to describe configurations, as mentioned in
assumption 2) being far removed from similar use in natural language, and
any similarity will be rather arbitrary. Mathematical geometry of different
kinds would make up such examples. Other systems rely on how spatial
expressions are used in natural language to a greater degree, even though
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this connection isn’t necessarily explicated. If such a system claims to solve
problems involving or expressed in natural language, then an investigation
into the semantic foundation of the spatial expressions involved might tell
us whether or not the system in question may hope to do so, regardless of
how it formally operates.

Formal systems dealing with spatial configurations where descriptions
in natural language are essential have been developed for specific, applied
cases such as human-robot interaction [15], path descriptions [12], and
navigation and way-finding [17, 22], while other, more fundamental
research has been done on things like qualitative spatial representation
[4, 5] and qualitative reasoning [1, 7, 13, 14, 16, 18, 19], systems also
dependent on descriptions in natural language. These would be the systems
mentioned in assumption 3 above. Some of these systems are based on
simple formalizations of language that upon inspection shows a lacking
foundation in spatial semantics, while others specifically limit themselves
to certain aspects of spatial expressions.

The aim of the current thesis is to develop a formal system of inference
regarding spatial relations, based on a linguistically sound and thorough
interpretation of the same spatial relations. This is accomplished by
first of all, in chapter 2, presenting a seminal work on spatial semantics
done by Stephen C. Levinson[11]. In it, he develops a way of formalizing
different kinds of spatial expressions common across languages from all
over the world. We shall see how his system has visual interpretation
and formalization as an inherent component, an important reason why it
lends itself easily to further systematic processing. Following this, chapter
3 reviews some selected systems of qualitative reasoning. These systems
are based on linguistic systems different from (and, it could be argued, less
thorough) than the one presented by Levinson. They are still important to
our cause, as they show a kind of reasoning that our own systems will be
modelled after. The original work in this thesis, and its most important
component, is presented in chapters 4 through 6: A qualitative system
of reasoning based on Levinson’s system. Finally, chapter 7 provides
some thoughts on what has been accomplished, followed by some ideas for
further development of the system introduced in chapters 4 through 6.

We mentioned that research in spatial semantics reveal different
categories of spatial expressions, and our system will deal with and be
limited to such a specific category. This will be the types of spatial
expressions that Levinson focuses on, and the distinctions regarding what
is included an not will be made clear in the chapter presenting Levinson’s
system.

There are projects, notably the work by Bateman et al.[2, 3], that
attempt to construct a formal ontology of space based on extensive
knowledge of spatial semantics, one that allows the representation of all
concepts that are described across works on spatial semantics. This is very
interesting work, and as it aims to cover such a wide array of spatial cases
it should have a broad range of application. The mentioned works do not,
however, mention how actual inference should be carried out. The aim of
the current thesis is limited to a certain category of spatial expressions, the
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ones presented in the next chapter, and as such the broad system presented
by Bateman et al. will not be the concern here. It could be that the system
of inference presented in the current thesis could be applied to the relevant
parts of Bateman’s ontology, but this is left as a possible area of further
research.
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Part I

Works on spatial relations
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Chapter 2

Spatial relations in natural
language - Levinson’s
frames of reference

We would like to base our inquiry on a linguistically sound foundation,
and thus we turn to Stephen C. Levinson’s Space in Language and
Cognition[11]. Levinson is a linguist at the Max Planck Institute for
Psycholinguistics, and he has studied a wide range of languages across
cultures from all over the world. The book mentioned is a study in how
spatial concepts are expressed in different languages, and what effect this
has on, and to what extent it is influenced by, the cognition of the people
who use the languages and the cultures in which the languages are used.
The current thesis will not go into the specifics and the differences between
various languages in any great degree, but rather concentrate on the general
typology that Levinson presents, a system that is able to represent the core
concepts of spatial expressions independent of specific languages.

To find a common way of expressing spatial expressions in different
languages, Levinson has to look into which, if any, universal spatial
concepts there are in human cognition as expressed in language. He
looks into how different languages from all around the world treats spatial
concepts, what’s shared and what’s specific. He draws upon a tradition of
research in this field, but notes that there has been, in general, a tendency
to focus on the concepts commonly employed in western languages, failing
to acknowledge different systems utilized in a broad range of languages.

Levinson goes on to introduce several formal systems able to properly
represent how spatial expressions are utilized. The systems that Levinson
is concerned with are restricted to describing static, projective, two-
dimensional relations. To illustrate the difference between static and
dynamic situations, we can compare the sentences “He moved the leftmost
box” and “He moved the box towards the left”. In the first one, leftmost
is used to select a certain object at a single point in time, while the latter
positions the same object differently at different points in time.

Projective relations are used to express the directon from one object
to another, examples are “We walked north”, “The monument is in front
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of the church” and “There’s a chest underneath my bed”. These can be
compared with topological expressions, which do express a spatial relation,
but not about specific directions: “The cat is outside the house” and “Put
the salad in the bowl”.

Restrictiong ourselves to relations in two-dimensional domains is
mostly a matter of simplicity, and in some cases it would be easy to add the
vertical axis. There are a lot of possible variations in dividing the horizontal,
but because of the nearly ubiquitous gravitational pull, most languages’
expressions regarding the vertical axis tend to converge.

The diversity of systems across languages demands different things, but
Levinson recognizes a range of roles and reference points that in some cases
must be filled, while in others are optional. Before we look into the systems
he develops, we should look into the specifics of the building blocks they’re
made out of.

2.1 A system of labelled angles

In a two-dimensional domain, distinctions in projective relation based on
a single point could utilize the whole 360◦ circle to an infinite degree of
refinement. Infinite degrees of refinement are, however, not something
utilized in natural language. Different languages have a lot of different
ways of dividing and labelling the circle, and we find several ready examples
in English: We can talk of things in front of and behind us, on a
map we typically describe the relations between points using the cardinal
directions(north, east, south and west), and aboard a ship we’d speak of
things port and starboard, bow and stern.

The important point is that the circle around a point is divided into
labelled arcs, and that these arcs are defined by certain angles. It’s possible
for a single system to have arcs of different angle width, and there’s no
requirement that the named arcs in a system comprise the whole circle.

2.1.1 Coordinates

Levinson emphasizes that one of the most important things in describing
projective systems is to fix systems of coordinates on specific points. Briefly,
we could say that the coordinate system in a configuration is the system of
labelled angles anchored on a specific point in a specific orientation.

The coordinates in a given system are polar, that is to say that they are
specified by rotation from a fixed x-axis. Some systems require more than
one coordinate system, but there’s always one primary coordinate system
C1, centered on origin X1. It’s possible to go from X1 to a secondary origin
X2 by the following transformations (or combinations of them):

• Translation

• Rotation

• Reflection

This yields a secondary coordinate system C2.
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2.1.2 Roles

A spatial configuration consists of distinct entities, and these are used in
deciding and defining the system used to describe them. The roles that
follow aren’t all mandatory in all systems, but they will all be presented
here, and they will be exemplified when we go on to describing the different
systems in detail. Quite often, single entities will fill several roles, but it’s
necessary to get a grasp of each role on its own terms. While most entities
appearing in projective relations have spatial extension, we’ll mostly be
concerned with zero-dimensional points. In some cases, we’ll see how this
can be expanded upon.

Levinson uses the label points for all of the following, but seeing as
several of them are, and some necessarily, spatially extended beyond a
single point, we’ve opted for the role label.

• F = Figure, sometimes called referent, with centre point at volumetric
centre Fc . This is the entity whose position we’re interested in. In a
projective analysis of the sentence “There’s a lion behind you”, the
entity referred to by “lion” would be the figure.

• G = Ground, sometimes called relatum, with volumetric centre Gc

and a surrounding region Gr . This is the entity in relation to which
the figure F is described. In the sentence we used to explain the figure,
the ground would be the entity referred to by “you”.

• V = Viewpoint of observer. This role is usually filled by a person, but
it could also be filled by e.g. a camera. The important thing is that it’s
able to direct its gaze in a specific direction.

• A = Anchor point. This is used to fix the system of labelled angles to
a coordinate system. When looking into the different types of system,
we’ll see how this can be done.

• L = Designated landmark1. In some systems this is used to fix the
whole coordinate system, while others use it to fix single angles.

Levinson mentions that some of these concepts, like figure and ground,
are familiar from earlier studies, while many of the notions have been
left implicit in the literature. He goes on to show how these primitives
are combined to form three frames of reference, which together are able
to account for all orientational spatial expressions grammaticalized or
lexicalized in language. In the following we will present these three frames,
how they assign the primitives and explain what sort of expressions that
utilise them.

1It’s important to note that this type of landmark is different from the one appearing in
systems utilizing “trajector” and “landmark” roles, e.g. Langacker[9]. Levinson’s landmarks
can be points in the terrain or conceptualized ones, while Langacker’s landmark would
correspond more to Levinson’s ground.
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2.2 The intrinsic frame of reference

The intrinsic frame of reference is used in expressions such as “The ball is
to my right” and “There’s a lion behind you”. One of the most important
differences between languages (in our current area of interest) is how they
divide and label the angles in a projective system, and this is perhaps
especially apparent in the intrinsic frame of reference. In this frame,
the system of angles and their anchoring is based on what’s often called
‘intrinsic’ features of objects. An example in English is how a person would
describe entitities’ positions in relation to themselves. We have the four
arcs front, right, back/behind and left, and the front arc is anchored to the
persons front side, the side where the person normally would aim his gaze.
When looking across languages it’s noticeable that there’s no universal way
of naming these ‘intrinsic’ features, as Levinson mentions. Some languages
assign these based on shape or size of objects, and some utilize features in
a specific type of object and then metaphorically project these features onto
other objects. Levinson mentions systems basing the arcs on animal body-
parts and plant-parts, using labels like heads, feet, horns, roots etc. He
notes that the angles can be assigned according to some algorithm, or on a
case-by-case basis, or more often a combination of these. In English, the
procedure is largely functional, e.g. the front of a car lies in the direction
of typical motion. It should be noted that we aren’t necessarily able to fix
an intrinsic frame of reference to all objects, it’s only possible with objects
where we recognize the mentioned intrinsic features. Thus, a round object
without any markings would typically not be assigned an intrinsic frame of
reference.

Regarding the primitives: An intrinsic spatial relation R names a certain
projective relation, which is typically the name of a labelled angle. The
name of the angle is typically used to name a part of G. It takes two
arguments, G and F. There’s one coordinate system C, with it’s origin X
on the volumetric centre Gc . The anchor point A is assigned to a part
of G according to the procedure of the language, and the labelled angles
are distributed accordingly. In English A is often the front of G, and the
remaining angles are distributed to 90◦ arcs in a clockwise manner.

The relation R(G,F) asserts that F lies in a search domain specified by
R extending from Gc , outwards for a certain distance. It can be difficult to
determine just how far the search domain extends, but it is assumed that
there is a limit to it. R can be an internal projective relation, in which case
it is used to name F as a part of, or the whole of, the volumetric mass of
G that falls within the search space of R. We have an example of this in
the sentence “The front of the car was all rusted”. When R is an external
projective relation, F is not part of G. An example of this is the sentence
“There’s a lion behind you”.

We often use this frame of reference in such a way that G is ego. This in
turn makes it useful when we describe projective relations to other people:
We explain from their point of view, making it immediately accessible. In
these cases we would say that V = G, and it seems that in the case of people
the system of angles is usually anchored by a neutral direction of gaze. We
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Figure 2.1: An example of the intrinsic frame of reference

may not wish to ascribe viewpoints to inanimate objects such as cars and
computer screens, even though these are objects that we typically assign the
same system of angles as people. Therefore, V is optional in this system.

It’s worth noting that it well may be that there aren’t labelled search
areas all around G. Given an anchor point entrance of a church, we can
derive an axis from the centre of the church Gc to the entrance, and
designate a search domain as at the entrance of the church, but this doesn’t
necessarily imply that there are intrinsic parts covering the rest of the circle
around Gc .

2.2.1 An example

Figure 2.1 shows an abstract example of an application of the intrinsic
frame of reference, viewed from above. We’ll say that the ground G in the
figure is a house, and that on one side of the house there’s a main entrance.
This is usually called the front door, which also gives us the front side of
the house. This becomes the anchor point A of the front arc, and the other
arcs are distributed accordingly. This particular house happens to have a
square shape, giving us an even distribution of 90◦ arcs, but a differently
shaped house would give different distributions.

Now, we’ll say that the figure F is a ball, and in English we could describe
its position with the sentence “The ball is in front of the house”, regardless
of the position of the speaker. In the formal system we’ve introduced, the
correct instantiation of R(G,F) would be front(house, ball).
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2.3 The relative frame of reference

The intrinsic frame of reference allowed us to described the direction from
an object to another, and now we’ll see how the relative frame of reference
allows us to describe the position of an object in relation to another, seen
from a third, separate one. We find examples of this in the sentences
“There’s a girl standing in front of the tree” and “John kicked the ball to
the left of the goal”.

It’s very common for languages that utilize a relative system to have
an intrinsic system sharing at least some of the terms, and this more or
less guarantees the ambiguities of some projective terms. Consider an
example where one is told the following sentence: “The table’s to the left
of the chair”. Most people would agree that this could both mean (in the
relative interpretation) that the table is to the left of the chair from where
the speaker is standing and (in the intrinsic interpretation) that the table is
on the left hand when seated in the chair, and that these two need not be
the same. The two interpretations can be syntactically disambiguated, the
intrinsic one being specified by “The table’s on the chair’s left”, and after
developing the relative frame of reference we’ll see how the distinction can
be presented in a formalized manner.

To begin with, we have the viewpoint V given by the position of an
observer. The observer must, as mentioned, be capable of directing his
gaze in a specific direction. Furthermore, V must be distinct from G. The
primary coordinate system C1 always has its origin X1 centered on V, with
the important angle being the direction of view. G is used as an anchor
point to lock, in English, the view or front angle, running in a straight line
from V to G. Then, just as in the case of the intrinsic frame of reference, we
distribute the right, back and left angles in the same clockwise fashion.

Next, we place a secondary coordinate system C2, its origin X2 being the
volumetric centre Gc . The anchor point for locking the angles of C2 is V.
Now, we mentioned earlier that there are specific ways of getting from C1

to C2, and in English this is done by a reflection over an axis perpendicular
to the line between X1 and X2. This means that the front arc of C2 is the
one going from G to V, and therefore meeting the front arc of C1, while the
back arc of C2 is its opposite. The left arc of C2 will be on the same side of
the line between X1 and X2 as the left arc of C1, and likewise for the right
arc of C2 and the right arc of C1.

Other languages may use other transformations, some languages assign
the front arc of C2 to the same direction from X2 as the front arc of C1 from
X1. This would be a translation.

Finally, we have F. The relative relation R names a projective relation R,
which is typically the name of a specified arc of C2, and the ternary relation
R(V,G,F) asserts that F is located in the search space R of C2, as specified by
viewpoint V. We can still express both internal and external relations, e.g.
“The windows on the right side of the wall” vs. “The windows to the right
of the wall”, and the distinction is made in the same way as for intrinsic
relations.

Now we can specify the reason of the previously mentioned ambiguity.
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In the intrinsic frame, the anchoring of the coordinate system centered on
Gc depended on intrinsic features of G, while in the relative frame, the
intrinsic features of G are irrelevant. This allows us to describe projective
relations from objects that have no intrinsic projective features, giving us
unambiguous sentences (in English) like “The girl’s standing in front of
the tree” and “Andrew chose the box to the right of the ball”, but we get
ambiguities when we’re used to ascribing intrinsic features to G, such as in
the case of the chair. To avoid the ambiguity completely in conversation
the viewpoint would have to be included in the utterance, making it clear
that we’re dealing with a ternary relation. In context, this is more often
made clear by visual and contextual clues, and it seems people are able
to disambiguate, but this is a clear problem if we’re trying to create a
formalized parse.

2.3.1 An example

Figure 2.2 shows an abstracted example of an application of the relative
frame of reference. We base the frame on viewer V, which we’ll say is a
person named John. The ground G is the same house that we used in figure
1. John directs his gaze towards Gc , and this line becomes the anchor point
of the front arc of coordinate system C1, centered on V. Its other arcs are
distributed as they would be in an intrinsic frame of reference.

Now we anchor the coordinate system C2, centered on Gc . The anchor
point of the front arc is, as mentioned above, V, and we distribute the
other arcs by reflecting the arcs of C1. We’ll say that the figure F is a ball,
and we see how John could describe its position in relation to the house
with the sentence “The ball is to the right of the house”. In the formal
system we’ve introduced, we could instantiate R(V,G,F) in this case with
right(John, house, ball). It’s important to note that the coordinate system
C2 would stay the same if we rotated G around Gc . The features of G are
irrelevant.

We can compare figure 2.1 and figure 2.2 to make the possibilities
of ambiguity clearer. Since the ground we’re dealing with has intrinsic
properties, John could, from his position in figure 2.2, describe the position
of the ball in relation to the house both with “The ball is in front of the
house” and “The ball is to the right of the house”. The problem is that we
utilize the same set of labels for the arcs in both frames. He could specify
that he’s utilizing a relative frame of reference by expanding his previous
sentence to “The ball is to the right of the house, from my point of view”
or something of the like. This would emphasize that the relation is ternary,
but this inclusion of the viewer is typically left implicit in conversation.

2.4 The absolute frame of reference

Absolute relators are familiar to us in the form of cardinal directions(north,
east, south, west), and appear in many languages in different ways.
Some languages use designated landmarks, Levinson mentions that many
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Figure 2.2: An example of the relative frame of reference

Austronesian systems have directions towards and away from the central
mountain on islands, combined with a fixed bearing determined by
monsoons. Some languages make almost exclusive use of such a frame of
reference on the horizontal plane, and might describe an array of, say, a
spoon in front of a cup, as ‘spoon to north of cup’ without any reference to
the viewer/speaker’s location.

In an absolute frame of reference, point Gc of every possible ground
G has a fixed bearing anchored by a landmark L. In the case of the
cardinal directions we have a landmark designated as absolute north, and
we distribute the other directions accordingly. We mention north, but can
of course mark other directions as a starting point, e.g. using moss growth
on trees to mark south. In the case of the monsoon and central mountain,
the monsoon-axis would be parallell all over the island, while the mountain-
axis would change while circumventing the island.

The geometry of the labelled coordinate system is linguistically/culturally
variable, the quadrants of 90◦ from the familiar compass rose is not univer-
sal. There are reports of abstract systems based on star-setting points and
winds, which tend to have uneven distribution around the horizon.

The absolute relation R(G,F) asserts that F lies within a given angle R
in the coordinate system centered on Gc . It’s important to note that in a
system utilizing abstract or conceptual landmarks (it could be argued that
north and south in most cases are conceptual), there won’t be a limit to
the extent of the search domains, while in landmark systems the domains
are, naturally, limited by the landmark(peak of the central mountain, the
magnetic north pole).
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Figure 2.3: An example of the absolute frame of reference

2.4.1 An example

Figure 2.3 shows the house familiar from figure 2.1 and figure 2.2, this time
in an absolute frame of reference. The bearing north is given by, say, a
magnetic compass (depicted by the arrow on the right), and the other arcs
are distributed accordingly. In this case, we could describe the position of
the figure F (still a ball) with the sentence “The ball is to the north of the
house”.

2.5 Logical properties of the frames of refer-
ence

Now we look into what logical properties, if any, the three frames of
reference have. It seems that the intrinsic frame of reference doesn’t offer
much in terms of spatial inference possibilities. There’s no guarantee
of transitivity, a counterexample is easily found in a configuration where
person A is facing north, and person B is standing on the right side of A
facing south. B is to the right of A and A is to the right of B, but it’s not
the case that A is to the right of A. If the whole configuration rotates, the
intrinsic relations stay the same. This is also the case if V is separate and
rotates around the configuration. If G rotates, the relations change.

Absolute relations are binary, asymmetric and transitive. If person B
is to the north of A, and person C is to the north of B, then it must be the
case that person C is to the north of A. It’s possible to find the converse of
a relation given equal distribution of angles, for the cardinal directions we
have the opposite pairs (north, south) and (east, west). Absolute relations
are constant under the separate rotation of figure and ground, but not
under rotation of the whole configuration. The relation is independent of
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the viewers position.
Relative relations have some interesting logical properties. The whole

ternary configuration can be rotated while maintaining the same relations,
this also goes for the separate rotations of figure and ground. The relations
depend on a straight line from the front of V to ground, therefore the
relations are not constant under rotation of V. There are other properties
as well, but these will be discussed as we discover them during the
development of a greater system of inference.

Levinson doesn’t enter into it, but the relation expressed by the word
“between” merits an interesting analysis in the relative frame of reference,
and it seems it can designate two different things. First, in a sentence like
“The box between us”, it means that the figure, in this case the box, is in a
search space between V and G. The shape of this search space isn’t given,
but it could be the intersection of the front search space of V and the front
search space of G.

If we have a sentence like “The box between the tree and the house”,
then we’re dealing with a quaternary relation. If it’s the case that, in this
configuration, the tree is to the left of the house, then the search space for
between could be the intersection of the left search space of the house and
the right search space of the tree. A requirement in this case is that the
coordinate systems centered on the tree and the house have been anchored
by the same viewpoint V.

It could be that we could find interesting possibilities by introducing
more complex relations and schematic deductions in the intrinsic frame
of reference. Furthermore, knowledge of several intrinsic relations in a
configuration could imply certain relative relations in a frame based on
the same configuration. Levinson is mostly concerned with the linguistic
aspects of these matters, and therefore we shouldn’t be surprised if there
are logical aspects in his system left unexplored. Such possibilities will not
be developed in the current thesis.

It should be noted that visual interpretations are a basic part of
Levinson’s system, drawings of objects and their coordinate systems that
visualize linguistic expressions. Not all work on spatial semantics take this
approach, but the fact that Levinson does makes his system appropriate for
use in further reasoning.
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Chapter 3

Approaches to qualitative
spatial calculi

We’ve seen the framework that Levinson develops to represent spatial
expressions. This chapter will present some systems that are designed
to carry out inferences in a manner similar to the one we’ll develop for
Levinson’s framework, systems based on different linguistic foundations
and utilizing different formalizations.

3.1 Allen’s interval algebra

James F. Allen developed a calculus for temporal reasoning in 1983 [1]. It
may seem strange to present a system dealing with temporal matters when
the ones we’re interested in are spatial, but there are several reasons why
this is useful: First of all, many languages use the same, or at least similar,
expressions to describe both temporal and spatial situations. Secondly,
we would expect a calculus used to describe one-dimensional situations
to be useful when moving on to descriptions of two-dimensional ones.
And finally, this system has been very influential on qualitative spatial
reasoning, and as such we should familiarize ourselves with it.

This calculus describes the possible relations between two extended
intervals along a one-dimensional line. The primitives in the system
are temporal intervals rather than points, avoiding some problems that
atomic points of time cause in temporal logic. Another reason for using
these primitives is that the system is meant to deal with stories in natural
language, in which temporal expressions often express precisely such
intervals. There is no absolute way of ordering these intervals other than
the direction of the time line, i.e. the time line has no beginning and no
end and no absolutely marked points, meaning that the intervals are only
ordered among each other.

The ordering of any two intervals on the one-dimensional time line is a
matter of placing four points: The start and end of each interval. These four
points can be ordered in a large number of ways, but we will provide some
constraints. We will say that the time line runs from left to right, and that
any point of the line is taken to be a point chronologically earlier than any
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point further to the right of this point. Furthermore, the line is assumed
to continue infinitely in each direction. We’ve mentioned that the entities
involved are extended entities, in the time line depiction this means that
the beginning and the end of the same interval cannot be placed at the same
point. We also have a final axiom saying that the beginning of an interval
must happen earlier than the end of the same interval, ruling out a number
of possible orderings.

This gives us the basic relations in the calculus, shown in figure 3.1.
The timeline in each subfigure runs from left to right, and is assumed to
continue infinitely in each direction. The two intervals X and Y are marked
on separate lines, but these lines are taken to occur on the same time line.
We see that all relations have a defined inverted relation, typically marked
by adding i to the operator. The “is equal to”-relation is commutative while
the others aren’t, giving a total of 13 relations.

(a) X < Y ,Y > X
X happens before Y

(b) X mY ,Y mi X
X meets Y

(c) X oY ,Y oi X
X overlaps with Y

(d) X sY ,Y si X
X starts Y

(e) X dY ,Y di X
X during Y

(f) X f Y ,Y f i X
X finishes Y

(g) X = Y ,Y = X
X is equal to Y

Figure 3.1: The basic relations in Allen’s interval algebra

Allen shows how these relations can be used to formalize expressions
involving temporal intervals, given that they’re (i) distinct, meaning that no
pair of definite intervals can be related by more than one of the relations,
(ii) exhaustive, meaning that any pair of definite intervals are related by
one of the relations, and (iii) qualitative, because no numeric time spans
are considered.

He presents a table of what he calls transitivity relations, meaning the
possible relations from X to Z given known relations from X to Y and from Y
to Z. Such a table is often called a composition table in other systems. This
table will not be reproduced here, but in short it can be said that its content
is found by systematically combining pairs of relations and seeing which
possibilities this leaves for the third relation involved. As an example, if
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we know that X mY and Y si Z , then we can see from the depiction of the
relations that it must be the case that X mZ . The information this gives
us can be applied iteratively to infer possible values of other, unknown
relations, and in this way the constraints given by known relations are
propagated to the possible values of unknown ones.

We are now able to distinguish between global and local constraints
in this system. The axioms introduced earlier that lead to the 13 basic
relations in the system are global constraints, they limit the relations that
might possibly occur between two entities(intervals) in the system. These
constraints are not dependent on any actual occurences of any entity, they
are rather consequences of our definitions of how the entities may occur
in the system. The transitivity table is also a presentation of such global
constraints, as it lists all possible outcomes of all possible combinations.
These constraints can be contrasted to those that are provided by actual
knowledge of a relation in any given configuration: If we have definite
knowledge about a given relation, then we are able to constrain the domain
of possible values of some other relation. A known value does not give
us general knowledge about the possibilities in the system, it is rather a
local constraint that tells us something about some specific other relation.
Another important constraint is the conversion of a given relation. We
saw in figure 3.1 that all relations have exactly one conversion, meaning
that when we know the relation from X to Y then we have constrained the
possible values of the relation from Y to X to a single relation.

The constraints we’ve introduced are ways of ensuring local consistency
among sets of relations. A set of relations can be said to be consistent
if they may be realized as intervals on the same time line, satisfying the
demands we’ve presented earlier. Any given relation from X to Y has,
as we’ve seen, exactly one possible conversion, which is to say that, e.g.
X mY and Y mi X is a consistent set of relations while X mY and Y sX
aren’t. As long as X and Y denote the same intervals in both expressions,
they cannot both be realized on the same time line. If we look at a
transitivity that has several possible outcomes, such as X di Y and Y sZ ,
then the table will tell us that X di Z , X f i Z and X oZ are all possible
values of the relation from X to Z , which again is to say that the three
sets {X di Y ,Y sZ , X di Z }, {X di Y ,Y sZ , X f i Z } and {X di Y ,Y sZ , X oZ } are all
consistent sets of relations.

3.2 Freksa’s double cross calculus

Christian Freksa, cognitive/computer scientist at the University of Bremen,
wrote an article in 1992 where he develops a system for representing
projective spatial relations, and a way of calculating over this system[7].
The article is a bit dated, but it’s still mentionened in articles discussing
qualitative spatial reasoning(QSR), and newer systems often expand upon
or present alternatives to Freksa’s system rather than replace it.

Before writing this article, Freksa developed a similar system for
describing and calculating over temporal relations[6]. This explains many
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facets of his approach to the spatial domain, in that he’s trying to apply
some of the same techniques and explanations as he does in the temporal.
What he does is to take the logical constraints considered by Allen, and
adds cognitive aspects and considerations to the system. This means
that the entities and relations involved should be ones that are used and
acknowledged in sciences of human cognition. As an example, this means
that Allen’s use of intervals rather than points transfers very well, as the
sort of events that are to be modelled must have a certain extent to be
perceivable. More importantly, Freksa specifies that while Allen deals with
situations where we have certain knowledge about the relations involved,
not certain in a quantitative way but certain in that a relation is deemed
to be one of the thirteen ones that Allen lists, that he wants to model
situation where there is incomplete knowledge about events, in which we
may infer partial answers to a query. This is possible to do in Allen’s
algebra by presenting a series of disjunctions, which Freksa finds to be
cognitively inadequate. He talks instead of conceptual neighbourhoods,
stating that two relations are conceptual neighbours if a description of a
situation changes from one to the other when altering a single thing in the
situation, showing conceptual similarity between the two relations. If a
relation is limited to being in such a conceptual neighbourhood, rather than
known to have a specific value, then Freksa calls this information coarse
knowledge. He goes on to show how this leads to neighbourhood-based
temporal reasoning, but we will rather look at how these things are applied
to spatial matters.

Freksa notes how important and fundamental physical space and its
properties are in all sorts of actions and decisions. As a consequence,
the ability to reason in and about physical space is crucial if we wish to
create systems able to perform such actions and make such decisions. The
system he decides to explore is one based on an actor positioned in physical
space, its spatial knowledge based on its perception of the environment.
This means that a system based on, say, Cartesian coordinates won’t make
sense, but rather one based on relative spatial orientation as it is presented
to a perceiving entity. Note that while the information involved is based
on a subjective experience, the representation will be one ‘from above’, the
perceiver’s knowledge being mapped to a two-dimensional plane.

3.2.1 Dimensionality of space

Our goal is then to investigate a system representing orientation in two-
dimensional space. To begin with, we should look into how a similar
thing could be done in one-dimensional space. In this domain, we’re
able to relate extended lines and zero-dimensional points. If we have an
extended interval [a,b] and a point x, then the relation space consists of
nine disjoint classes: x < a, x < b; x = a, x < b; x > a, x < b; x > a, x = b; x >
a, x > b; x = a, x > b; x < a, x > b; x < a, x = b; x = a = b. This is useful in models
of temporal events, but in that case we’d not permit b < a (time is uni-
directional) or b = a (we only model extended intervals), as we mentioned
when presenting Allen’s algebra. In the current description a single point
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is allowed, however. So in the temporal domain, the relation space reduces
to five relations.

These observationse are useful when we move on to two-dimensional
space. Freksa presents the following definition: Directional orientation in
2-dimensional space is a 1-dimensional feature which is determined by an
oriented line; an oriented line, in turn, is specified by an ordered set of
two points. Orientations are denoted by a line ab through points a and
b. What we’ll be interested in in the following are relative orientations,
which is to say the orientation of line bc relative to the orientation of line ab,
corresponding to describing the point location of c with respect to reference
location b and reference orientation ab.

3.2.2 Dividing the plane

Since we’re dealing with qualitative reasoning, we won’t describe the
relative orientation of c by giving exact degrees. Rather, we follow Freksa
as he gradually enriches the possible relation space by dividing the plane
into an increasing number of areas. First, we extend the line ab infinitely in
both directions. This gives us four possible projections from b, in addition
to the non-projective case where c = b. The two cases where c is somewhere
along the infinite line will be denoted as front and back, where back refers
to the case where c is on the same side of b as a, and front its opposite.
As of yet we’re only dealing with orientation and not distance, so these two
relations are absolute and each have a possible variation of 0◦.

This leaves us with the two relations left and right. They name a
semi-plane each, distributed in the same way as they would’ve been in an
intrinsic frame of reference utilizing the front relation already established.
These two relations allow variation, as opposed to the other we’ve seen, but
we’re still not concerned with distance. An example of this system is seen
in figure 3.2.

We note some interesting things in our current system. The front
relation is transitive: If c is in front of ab, and d is in front of bc, then d
is in front of ab. The back relation doesn’t have the same property, given
that so far we’ve only dealt with projective relations without specifying
their possible extension. If c is to the back of ab, we don’t know where c
is positioned in relation to a. The relation does, however, have a certain
periodic quality when combined with the left and right relations: If c is to
the back of ab, and d is to the left of bc, then d is to the right of ab. If c is
to the back of ab, d is to the back of bc, and e is to the left of cd , then e is
to the left of ab. These two cases apply for all applications of odd and even
numbers, respectively, of the back relation.

3.2.3 Augmenting qualitative orientation relations: The
Double Cross Calculus

We saw that the ability to express the position of c along line ab in relation
to a was lacking in our previous system, suggesting that this should be
included. Further, a system designed to express orientational information
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a

b

front

back

rightleft

Figure 3.2: Freksa’s intitial division of the plane

with two relations covering a semi-plane each isn’t very expressive. What
Freksa does is to introduce two more infinite lines: Both are perpendicular
to the infinite line trough a and b, one intersects point a and one point
b. These three lines form two crosses, and the system is known in the
literature as the Double Cross Calculus(DCC). This new system expands
the relation space of the position of c in relation to line ab into 15 relations.
Figure 3.3 shows the double cross and its regions.

There are two absolute relations, the cases where c = b and c = a. In
the first of these cases there’s no projection, while the last case denotes a
projection of a specific distance. There are seven relations along the three
lines, dividing them into a line segment and six rays. The front relation is
the same as it was in our previous, less expressive system. We’ll designate
the cases where c is on the line segment between a and b as middle, and
the cases where c lies past a on the ray from b through a as back. Along the
line intersecting b we have b-left along the ray extending into the semi-
plane previously known as left, and the corresponding case for b-right.
The two relations a-left and a-right are in the same semi-plane as their
b-counterparts, but lying along the line intersecting a.

The remaining relations allow c to be placed in six distinct, two-
dimensional areas. The area bordering on b-left and front will be
designated as front-left, with front-right being its reflection over front.
Between-left is the area bordering on b-left, between and a-left, with
between-right being its reflection over between, and finally we get back-
left bordering on a-left and back, its reflection back-right over back.

While the system shown in figure 3.2 only was able to express projective
relations, the DCC allows richer expressions of the position of a third point
relative to two others. Given that the total search space is infinite, only three
of the relations have finite search spaces, namely c = a,c = b and middle.
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Figure 3.3: Freksa’s double cross and its regions

The set of relations are jointly exhaustive and pairwise disjoint wrt. the
complete search space.

Freksa presents a similar system of conceptual neighbourhoods in this
case as he did in the temporal one, where the relations in the DCC are seen
as conceptual neighbours if their search spaces are directly connecting.

3.2.4 Applying the DCC

Freksa goes on to show one application of his system: how we can infer,
from knowledge of the projection of point c relative to line segment ab
and knowledge of the projection of point d relative to line segment bc,
to knowledge of the projection of point d relative to line segment ab.
This is done by presenting a composition table, where possible values of
the unknown relation is given by the known ones. Here he also shows
how the composition table can be altered based on the resolution of the
known relation, meaning a variation in which and how many relations
(which will be conceptual neighbours) that are included in the entries of
the known relations. In cases that allow a set of several possible relations,
the inferences can be refined if we add multiple evidence regarding some of
the same points.

3.3 The regional connection calculus

A formal system that has been very important within spatial reasoning
is the regional connection calculus(RCC), presented by Randell et al. in
1992[16]. While the DCC was concerned with spatial relations, the RCC is
a system used for describing topological situations, or more specifically the
connection between regions.
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(a) X DC Y
X is disconnected to Y

(b) X EC Y
X is externally connected to
Y

(c) X PO Y
X is partially overlapping Y

(d) X EQ Y
X is equal to Y

(e) X TPP Y
X is a tangential proper
part of Y

(f) X NTPP Y
X is a non-tangential
proper part of Y

(g) X TPPi Y
X is a tangential proper
part of Y inverted

(h) X NTPPi Y
X is a non-tangential
proper part of Y inverted

Figure 3.4: The relations in RCC8

The basic part of the formalism in the system assumes one primitive
relation: X C Y, read as “X connects with Y”. This relation is reflexive and
symmetric, and using this a basic set of relations are defined. There are
different variants of the system using different sets of relations, one that
is widely applied is RCC8, containing the 8 relations seen in figure 3.4.
They are built up as axioms, we have e.g. that X DC Y when it’s not the
case that X C Y. From these relations it’s possible to build a transitivity
table like the one Allen presents, giving the possible relations between X
and Z given known relations between X and Y and Y and Z. These are local
constraints similar to those we saw in Allen’s algebra, allowing us to carry
out reasoning, finding possible values of unknown values based on known
ones.
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3.4 Comparing the systems

There are some apparent similarities between Allen’s algebra and RCC8.
This is not surprising, Randell et al. explicitly state that their system is
meant to be a version of Allen’s system applicable to spatial reasoning. If
we removed the directional aspect of Allen’s algebra, then all inversions
would be superfluous, it wouldn’t matter whether one interval finishes
or starts another(X sY and X f Y become the same relation), and we
would in fact have the same relations that we have in RCC8. It is not,
however, supposed to deal with projective relations, which is exactly the
point of DCC, which again is based on Freksa’s temporal development
of Allen’s algebra. The two systems, DCC and RCC8, can thus be seen
as two separate successors of Allen’s system, dealing with projective and
topological relations, respectively.

The mentioned systems are also very interesting in how they deal
with inference and reasoning: Knowledge about how different values may
be combined, as found in the transitivity and composition tables of the
systems, is applied together with known values to constrain the possible
domain of unknown relations. This is exactly the approach that will be used
when developing calculi for Levinson’s systems. A few differences should
be noted, though: Allen’s calculus and RCC8 talk about relations between
distinct entities, all of which have a clearly defined inverse or converse
relation. With the DCC this isn’t exactly the same matter, as the relations in
this system are based on where an object is placed in a coordinate system
based on the position of two other objects.

Speaking of Levinson, it should be mentioned that it’s clear that he is not
a logician, and equally clear that Allen, Freksa and Randell aren’t linguists.
None of the systems we’ve just seen discuss the linguistic background of
the relations they describe at any length, neither do they claim to do so:
The intent is to create a logical system capable of reasoning over a set
of relations. Freksa uses the same relation names as Levinson does, but
it could well be said that their distribution isn’t necessarily according to
usage in natural languages. At any rate, his primary concern is sets of
relations that are in accordance with cognitive theory, and specifically the
relation between these relations in his conceptual neighbourhoods. The
relations in RCC8 are based on properties from mathematical topology,
and as such can be said to be somwehat removed from how such things
are expressed in natural languages: Compare “X is inside Y”, as Levinson
mentions, to “X is a non-tangential proper part of Y”. The relations in
Allen’s algebra can be said to be closer to usage in natural language, and
one of his goals was to allow inference based on stories in natural language.
Levinson’s frames of reference get a lot of credence from his extensive
research into various languages, and how they’re able to adapt to different
systems. This makes them an interesting starting point for systems of
constraint-based reasoning, of which we’ve just seen several examples.
When developing such systems we will choose single interpretations for
each frame of reference, meaning a determined distribution of relations
and way of assigning the coordinate systems using these, and we’ll see how
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a constraint-based approach may deal with such situations.
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Part II

Qualitative calculi for
Levinson’s frames of

reference

27





Chapter 4

Calculi for frames of
reference

Chapter 2 presented three different interpretations of spatial expressions
in natural language, presented in three different frames of reference.
Levinson mentions some of the logical properties of the different frames,
mainly the properties of configurations consisting of one referent object
and one relatum object. Our goal here will be to expand upon this, and look
at situations where we have several objects, and where we place all objects
relative to all other objects. This means combining the coordinate systems
anchored to each object, and we will see what sort of relations this gives rise
to and what information we may be able to infer about such configurations.

For such inference to make sense at all, the objects involved must have
something in common that decides their frames of reference. In the case
of absolute frames of reference this will be the case by definition, as the
frames of reference involved are assumed to have the same orientation for
all possible objects appearing in the same space. When dealing with relative
frames of reference, this condition will be met by having a single observer
anchoring the frames of reference for all objects in any single configuration.
This commonality makes inference possible. When it comes to intrinsic
frames of reference we find that there is no such common anchoring point,
as all application of the internal frame of reference is based on features
contained within a single object. One might argue that separate objects
appearing within a larger object that has an intrinsic frame of reference,
such as pieces of furniture within a house, could share the intrinsic frame
of reference of the larger object, but this would in reality mean using the
intrinsic frame of reference of the larger object as an absolute frame of
reference for all objects contained within it, reducing the problem to the
absolute case mentioned above.

For any configuration of n elements, there will be a total of n ∗ (n −
1) relations involved, and information about a configuration is said to
be complete if all of these are known. The following calculi will deal
with configurations involving three separate objects. The spatial relations
involved depend upon the frame of reference, but in all of these cases there
will be a total of six relations. This means that we could have from none to
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six known relations, and leaving out the cases of none and six relations(the
first giving none and the second giving perfect information) we get a range
of possible combinations of which relations that are known and which we
may choose to investigate.

Both calculi will deal with three distinct objects p, q and r . In these
systems we will be concerned with the arrangement of points, and thus the
objects are taken to be without spatial extension beyond single points. We
will write pq for “The relation from p to q”, X for “The relation X ”, p X q for
“p is in the relation X to q”, X p for “The area in relation X to p”, which is the
same to say “All points that are in relation X to p”, and finally p X for “The
area to which p is in relation X ”. This last expression is a bit convoluted,
but it is used to designate an area in which placement of another object q
would make p X q true. We will seldom make use of the names of the roles
in each frame of reference that we introduced with Levinson in chapter 2,
and rather refer to specific points. Because of this, the notation in this part
may differ slightly from what we saw then, but this will all be explained and
made clear.

When we talk about the two relations between two specific objects we
will talk about the composition of these objects. This use of the word differs
a bit from how Freksa uses it when presenting his DCC, but it should simply
be thought of as the way that two objects are placed relative to each other.

We will approach the problem of finding possible values of unknown
relations in a constraint-based manner, defining the possible domain of
such relations through global constraints, and then going through possible
combinations of values and seeing what possibilities such constraints
leave us with. When introducing Allen’s algebra we saw several sets of
constraints. We will use one of these, conversion, telling us which relations
from object q to object p that are possible given a known relation from p
to q. The second constraint we will develop is a bit different. When we
know where two objects are placed in a configuration, then we know the
two relations between them. The coordinate systems of these two objects
will now partition the field into a number of areas, and each of these areas
can be characterized by the relations a third object will have to each of
the two already placed objects, if the object is placed within. Thus, this
constraint will tell us the possible pairs of relations from third object r
to objects p and q, given that we know the relations between p and q.
The required knowledge here is about the composition of two objects, as
described above. The result of such a constraint is knowledge about where
a third object is placed relative to both of these object. When talking about
these relations, an objects relation to two other objects, we’ll talk about this
object’s placement.

After introducing these constraints, we will go through all possible
combinations of one or more known relations and one unknown one, and
see how we can apply the constraints to arrive at possible values of the
unknown one. This process is the inference that we’re able to carry out
in each system.

The following will show that the calculus for the relative frame of
reference is far more complex than the one for the absolute frame of
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reference. The absolute one can be seen as a kind of proof-of-concept,
introducing the core concepts that the relative one requires us to expand
upon. None the less, the absolute one is a complete system in its own
regard.
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Chapter 5

A calculus for absolute
frames of reference

In this chapter we will develop a calculus for the absolute frame of
reference, and we’ll be using the familiar one that utilizes the cardinal
directions. The relations in this system are shown in figure 5.1. There’s
no necessity in using these exact relations, what’s important here is that
the frame of reference gives each object in the physical plane a similar
coordinate system, and that these systems have the same orientation. The
distribution of relations are equal, meaning that each of the four main
relations get a 90◦ part of the circle surrounding an object. The relations
are jointly exhaustive and pairwise disjoint, meaning that any object p
will be in one and only one of these eight relations to q, given that p
and q are separate objects. The names of the relations are taken to be
abbreviations of the familiar cardinal directions, N meaning “north”, NW
meaning “north-west”, and so on. The areas designated by N ,E ,S and W are
two-dimensional, while the ones designated by the remaining four are one-
dimensional. Two two-dimensional areas (and corresponding relations)
separated by a single one-dimensional one are said to be neighbouring
areas(or neighbouring relations), such as N and E , but not E and W .

The global constraints in this calculus is simply that a relation has to
have one of the values shown in figure 5.1, and that it never has more than
one of these values.

Figure 5.1: The relations in 3PCAFOR
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ab ba
N S

NE SW
E W

SE NW
S N

SW NE
W E

NW SE

Table 5.1: Conversion table for 3PCAFOR

5.1 The constraints in the system

5.1.1 Conversion

To find the values of a relation qp that are consistent with a known relation
pq, that is to say that the two may cooccur, we systematically move p
through all its possible relations to q, and for each of these take note
of which relations from q to p this gives us. As the orientation of the
coordinate systems of both objects stay the same at all times, we find that
each relation has exactly one possible conversion. The possible conversion
for each relation is given in table 5.1. We see that the function is a binary
relation over the set of relations in the system, and that it is both one-to-
one, left-total and surjective, making it a bijective function. Furthermore,
we see that it’s irreflexive, as no relation is its own conversion, and it’s
symmetric, because if qp is the conversion of pq then pq is the conversion
of qp. This is similar to the relations we saw in Allen’s algebra and in RCC8:
Each relation is consistent with exactly one conversion.

The bijectivity of conversion reduces the number of possible unknown
relations in a configuration of three objects from six to three, greatly
simplifying the number of possible combinations and thus the entire
calculus. When considering the different cases of known relations we will
speak of “two known relations” when we know e.g. pq and pr , even though
this in reality implies four known relations.

5.1.2 Composition and placement

A composition is a configuration of two objects, implying two specified re-
lations between the two. When drawing out the coordinate systems of both
objects, any composition will divide the plane into a certain number of dis-
tinct areas. All of these areas can be referred to by the conjunction of their
relation to the two objects in the composition, which is the same as naming
the relations that all objects within the area will have to the two objects. The
composition in figure 5.2, where pN q, gives the following two-dimensional
areas: N p&N q,E p&N q,Sp&N q,W p&N q,E p&E q,Sp&E q,Sp&Sq,Sp&W q
and W p&W q. In addition to these nine areas we get four line segments,
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Figure 5.2: A sample composition

(a)

(b)
(c)

Figure 5.3: Neighbouring configurations

eight rays and two points, all of which can be calculated from the overlap-
ping extended areas.

Because each relation in this system has exactly one conversion, it is
sufficient to know the relation from one object to another to know the
complete composition of these objects. We find that all possible instances
of each single composition allows the same set of placements, which is to
say that the coordinate systems of the two objects involved divide the field
into the same areas.

If the relation between the two objects is one of the one-dimensional
ones (N E ,SE ,SW, NW ), the area collapses into six distinct extended areas.
Figure 5.3 shows the transition from pN q to neighbouring pE q through
pN E q. Figure 5.3b shows how the number of areas collapse, and the named
areas in figures 5.3a and 5.3c are the ones that appear/disappear in the
transition.

The complete list of areas for all compositions are given in table 5.2.
The table should be read as follows: Each line represents a possible
configuration of two objects, specified by the relation ab. The header of
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ca N N N N E E E E S S S S W W W W
ab cb N E S W N E S W N E S W N E S W
N 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1

NE 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1
E 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 1

SE 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1
S 1 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1

SW 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1
W 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1

NW 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1

Table 5.2: Composition table for 3PCAFOR

the columns list all possible combinations of relations a third object may
have to the two objects. When reading the entry for a given configuration
pq, p is mapped to a and q to b in the table, and the corresponding line
is found. A “1” indicates that a third object r , mapped to c in the table,
may have the relations specified in the header to p and q in combination. A
“0” indicates that this isn’t possible, again telling us that the configuration
doesn’t yield such an area. As knowledge about a relation gives us absolute
knowledge about its conversion, the composition table also tells us the
relations that are possible from the objects involved in the composition to
the third, placed one.

We can take note of a few things from the table. First of all, areas
that have the same relations to both objects, such as Sp&Sq, exist in all
configurations. Secondly, areas that have opposing relations to the two
objects, such as N p&Sq, appear in one configuration each. Finally, we see
that the remaining areas appear in three configurations each.

The table lists 16 possible combinations of relations, using the two-
dimensional relations from our basic set. This is mainly done to avoid
having to list the 64 possible combinations that occur when we’re dealing
with all eight relations in the system. To find the fields not mentioned in
the table, such as NW p&N q, we look for neighbouring relations to one
object cooccurring with a single relation to the other object. Example: The
entry for pN q contains N p&N q and W p&N q, and because N and W are
neighbouring relations that both occur together with N p we can infer that
there is an area NW p&N q when pN q.

5.2 Inference in the system

In this section we will go through all possible cases and explain how the
calculations are carried out.

5.2.1 One known relation

This is the basic case that we considered when presenting the conversion
table. Knowing pq allows us to infer qp from the conversion table. This
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Figure 5.4

r p E E E E
pq r q N E S W
S 0 1 1 0

Table 5.3: Extract of composition table

doesn’t give us any certain information about the other relations in the
configuration, but it limits the possible placement of r , meaning the distinct
combinations of r p and r q, to the ones listed in the entry for pq in the
composition table.

Example: We know pN q. We know that r p and r q individually could
have any value, but the conjunction of the two are constrained by the table:
it couldn’t be the case that r N p and r W q, because this conjunction isn’t
found in the table, which again is a way of stating that these are inconsistent
with the premises. This can be verified visually from figure 5.2.

5.2.2 Two known relations

In the case of two known relations, the bijectivity of conversion leaves
only one actual case, the one where we know pq and pr and wish
to make inference regarding r q. Figure 5.4 illustrates the situation,
where continuous lines represent known relations and the dashed line the
unknown. The algorithm proceeds as follows: For a given combination of
pq and pr , take r p. In the composition table, find the line for pq. Any area
in this line satisfying r p gives a possible value for r q.

Example: We know pSq and pW r . From table 5.1 we know that r E p.
The part of the composition table that we’re interested in is the entry
for S. The fields we’re looking for satisfy r E p, and the extract of the
composition table satisfying these two constraints are shown in table 5.3.
When inspecting the entry for S we find that only two of these fields actually
exist in the configuration. The relation to q specified in the header gives a
possible value of r q, and we get the possibilities r E q and r Sq. These are
neighbouring relations, leaving a third possibility r SE q.

Table 5.4 shows the full set of inferences that can be made from pq and
pr to r q in this system. The symbol ∀ signifies that all eight relations are
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pr
N NE E SE S SW W NW

pq

N ∀ N,NW,W N,NW,W N N N N,NE,E N,NE,E
NE S,SE,E SW,NE N,NW,W N N NE E E
E S,SE,E S,SE,E ∀ N,NE,E N,NE,E E E E

SE S S S,SW,W SE,NW N,NE,E E E SE
S S S S,SW,W S,SW,W ∀ S,SE,E S,SE,E S

SW S SW W W N,NW,W SW,NE S,SE,E S
W S,SW,W W W W N,NW,W N,NW,W ∀ S,SW,W

NW S,SW,W W W NW N N N,NE,E SE,NW

Table 5.4: Inference table the absolute calculus

possible in the given case. This table is similar to the transitivity table that
Allen uses, and the problem at hand does in fact have many similarities
to his. It would actually be possible to create a table like our composition
table for Allen’s algebra, showing the possible pair of relations from interval
r to both intervals q and p, given a defined relation between the latter
two. It would’ve been possible to infer the transitivity table from such
a composition table, but the cases in Allen’s system are easy enough to
inspect iteratively.

38



Chapter 6

A calculus for relative
frames of reference

In this chapter we will proceed to a more demanding task, that of
developing a calculus for relative frames of reference. Whenever we speak
in general terms about objects and their properties we’ll denominate them
by variables a,b and c. When any of these objects are instantiated we will
refer to them as p, q and r . The basic configuration, as we saw when we
introduced relative frames of reference, is one involving a single object p
and an observer o, giving us the set of relations shown in figure 6.1. The
relations are jointly exhaustive and pairwise disjoint, as in the case of the
absolute frame of reference. The names of the relations are taken to be
abbreviations of the familiar relations in English shown when introducing
the relative frame of reference, B for “behind”, BR for “behind-right of”,
and so on. B ,R,F and L have the same properties as N ,E ,S and W had in the
absolute calculus, such as two-dimensionality and pairwise neighbourhood,
likewise one-dimensionality for the remaining four.

In the presentation of the frames of reference we were concerned
with the placement of a figure relative to a ground, here we will se how
separate objects are placed relative to each other. This means seeing where
they are placed in each other’s frames of reference. As we’ve mentioned,
there must be something binding these systems together for any system
of inference to make sense, and this common point is a single observer
anchoring the coordinate system of each object. This again means that
for any configuration involving n objects and an observer o, we will have
n coordinate systems anchored to the objects, all of them a transformation
of the coordinate system anchored to o across a straight line between o and
the object. As the orientation of the coordinate system is determined by the
direction from o to the object, we should expect the coordinate systems of
the different objects to have different orientations. We will be concerned
with configurations of three objects and an observer.

We will limit our investigation to configurations where the angle formed
by the line from an observer o to an object p and the line from o to another
object q is less than 90◦, except for some specific cases that we will present
later.
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Figure 6.1: The relations in 3PCRFOR

As we’ve mentioned earlier, any configuration of three objects contain
six relations in total. As each of these can have any of the eight relations
shown in figure 6.1, our starting point is that there could be a total of
86 (262144) possible combinations of relations describing equally many
possible configurations. Many of these possibilities are simply not possible
given our two-dimensional space, and the main goal of this calculus is to
show how this domain is constrained, both in general and given certain
premises about the relations involved. It’s also a fact that many of these
possible combinations are symmetric. This is because we’re not concerned
with any inherent difference between the objects in any configuration, we’re
rather interested in the relations between them. Thus, finding the possible
values of relations from p to r based on known relations from p to q and
q to r is symmetric to finding the possible values of relations from q to r
based on known relations from q to p and p to r .

6.1 The constraints in the system

6.1.1 Conversion

A relation pq may have any of the eight values. Without any form of
constraint, its opposite qp may have eight values as well, giving 8 ∗ 8
possibilities for pq and qp. If we place these objects in the physical
space we’re operating with, together with their coordinate systems, then
we see that a lot of these combinations simply aren’t possible. It’s not as
simple as it was in the absolute system, where every relation had exactly
one conversion, as we see in figure 6.3: both configurations shown are
situations where qRp, but we have pLq in figure 6.2a and pF q in figure
6.2b. Neither do we have a system completely without constraints, as we
would if we had two objects using an intrinsic frame of reference: Here,
rotation of p would allow all values of qp given any single value of pq. The
fact that each coordinate system is anchored to o provides a constraint for
each specified relation, and if we go through all of them we find that there’s
a set of values of qp compatible with each value of pq. This operation,

40



(a)

(b)

Figure 6.3

ba
B BR R FR F FL L BL

ab

B 0 0 0 0 1 0 0 0
BR 0 0 0 0 1 0 0 0
R 0 0 0 0 1 1 1 0

FR 0 0 0 0 0 1 1 0
F 1 1 1 0 0 0 1 1

FL 0 0 1 1 0 0 0 0
L 0 0 1 1 1 0 0 0

BL 0 0 0 0 1 0 0 0

Table 6.1: Conversion table for 3PCRFOR

giving the set of compatible values, will be referred to as conversion, and
all such compatibilites are shown explicitly in table 6.1.

The table should be read as follows: If we have a known relation pq,
we map this relation to ab in the table, and its opposite qp to ba. The
value of pq specifies which row in the table we look up, and a “1” in any
column tells us that the value shown in the header row is a possible value
of qp, while a “0” tells us that such a value is impossible. The table is a
syntactic way of telling which pairs of relations between two objects that
could be modeled as a physical configuration. We see that some relations
clearly specify what the value of its conversion has to be, while others allow
a range of possibilities. No relation is its own conversion, and all of the
relations have at least one possible conversion.

We should dwell on the properties of conversion. Intuitively, one
is likely to assume that one direction is clearly coupled with a single
opposite direction, as was the case in absolute frames of reference: The
opposite of “right” is always “left”, the opposite of “behind” always “in front
of”. However, as this calculus is based on relative frames of reference,
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(a) (b)

Figure 6.5: Possible conversions of qRp

the distribution of relations relative to different objects depend on the
perspective from a single observer to all of these objects, and this creates
a diversity invalidating this intuition.

Figure 6.5 shows two configurations where the converse value of qRp is
pF Lq. If we moved q somewhere further along the line from o through q
in any of them, then we would have pF q, and if we moved q closer to o we
would have pLq. The specific points where q is placed marks the singular
border between these two cases given the specific orientation of the line
from o to q. If we rotate this line then we would expect to find such a border
point for each orientation, points where pF Lq and qRp are the case. What
are the general propertise that characterizes these configurations and these
points?

A geometrical proof

In order to better explain these properties, we will make a detour where we
present a geometrical proof. It will be based on the principle of inscribed
angles[23], the basic properties of which can be traced back to Euclid’s
Elements. We will tailor the proof to our specific needs, and prove the
following claims:

• Claim 1: Whenever we have two points A and B that both are placed
on the edge of a circle with central point O, then there will exist an
angle α < 180◦ such that for any point C placed on the edge of the
circle one of the following will apply:

– If C is on the same side of AB as O, then ∠ACB = α

– If C is on the opposite side of AB as O, then ∠ACB = 180 - α

• Claim 2: Given two points A and B and an angle α < 180◦, then any
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Figure 6.6

point C placed such that ∠ACB = α will be placed on the edge of a
circle with central point O where the following applies:

– A and B are also on the edge of the circle

– The exact value of α can be found based on ∠AOB

For the first claim, consider figure 6.6. As O is the centre point of the
circle, we know that OA and OB are equal, and as these two lines make up
two of the sides of triangle ABO, we know that ∠OAB and ∠OBA are equal.
We will call this angle u. It should be noted that the placement of C has no
effect on u. For any placement of C, we have the same case of equal pairs of
sides of triangles ACO and BCO, and see that ∠OAC and ∠OCA are equal,
here known as v, and likewise ∠OBC and ∠OCB, here known as w.

We know that the angles in the triangle ABC are 180◦ in total, now we
can say that 180◦ = (v + u) + (v + w) + (w + u), which again tells us that v
+ w + u = 90◦. The angle in which we are interested in in this claim, ∠ACB,
is equal to, as we see in the figure, v + w. Thus, we now know that ∠ACB is
equal to 90◦ - u, and as u was independent of C so is the value of ∠ACB.

We should also consider the case whown in figure 6.7. Here, the triangle
ABC is made up by (v + u) + (v - w) + (u - w), and we find that u + v - w =
90ci r c . We also see that ∠ACB is equal to v - w, and thus that ∠ACB is equal
to 90◦ - u, the same as in figure 6.6. We get a symmetrical case if C is closer
to B, on the opposite side of the circle.

Figure 6.8 shows the case where C is on the opposite side of AB than O.
The angles marked in the figure are made up the same way as the ones in
figures 6.6 and 6.7, and we find that the triangle ABC is made up by (v - u)
+ (v + w) + (w - u). This gives us v + w - u = 90◦, and as ∠ACB is equal to
v + w we find that it’s also equal to 90◦ + u, and thus independent of the
placement of C. This concludes the proof of the first claim.
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Figure 6.7

Figure 6.8
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Figure 6.9: A visualization of which relation q would have to any object
placed around it

To prove the second claim, we will first look at the relationship between
α and ∠AOB. In figure 6.6, we saw that ∠ACB was equal to 90◦ - u. We
know that the sum of the angles in triangle AOB is 180◦, and thus we know
that ∠AOB is equal to 180◦ - 2u. So in this case, ∠AOB is twice as large as α.
In figure 6.8 we’ll find that the relation is a bit different, with α being equal
to 90 + u, but we see that the value of ∠AOB can still be used to find this.

If we move C outside the circle, then ∠ACB will be narrower, and the
relation to ∠AOB will no longer apply. Conversely, if we move C inside
the circle then the angle grows wider. Thus, the mentioned properties will
guarantee that the three points are placed on a circle. By mirroring O across
AB and applying the same α we get a second circle of the same size.

Conversion, continued

We are now better able to characterize the situations shown in figure 6.5.
In these situations, we had pF Lq. We know that ∠oqp is 45◦ in all these
situations, and by mapping o, p and q to A, B and C in the proof, and using
the mentioned angle as α, we can draw the two circles. The results of this
can be seen in figure 6.9.

Here we have a single object p, and the straight, continuous lines divide
the plane into the basic relations seen in figure 6.1. Those relations are the
ones where p is the ground, meaning that they denote where a second object
q is relative to p. They are not the ones denoted by the capital letters in
the figure, however: These letters show what relation p would have to this
second object q when q is placed anywhere in the plane, the relations where
p is the figure placed relative to the ground q. Thus, if q is placed anywhere
on the half-circle to the right of p, then we would know that pF Lq. From our
proof we know that ∠oqp is 45◦ at all these points, which we know to mean
pF Lq. We get the symmetric case in the area to the left of p, the half-circle
showing where pF Rq is the case. For the part of the circles between o and p
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we know from our proof that any ∠oqp is 135◦. If we look at the definition
of the current frame of reference we find this corresponds to BRq and BLq.
The dashed line drawn orthogonically to the line from o to p through o
shows the limit in either direction to which fields we’ll acknowledge and
include. We see that the circles cross this line in the same point as F Lp and
F Rp.

Figure 6.9 shows two layers of information: Information about both
relations the object p may be in with another object. One comes from the
coordinate system we’re familiar with, the other comes from the circles just
added. These circles, partioning the field around an object into the possible
conversions, will be referred to as the object’s converted coordinate system.
As the size of the circles in the converted coordinate system is determined
by the distance from the observer to the object, it will scale with this
distance. This information is also presented in the conversion table, but in
this figure we see the actual parts of the areas relative to p that are covered
by each possible conversion. If q was placed anywhere behind p, then p
would have to be in front of q. We already knew this from the table, but
here it’s visualized. In fact, if we placed q behind p and drew the converted
coordinate system of q, similar to the one for p in the figure but scaled up,
then p would have to be placed within the area marked B in this converted
coordinate system.

The figure also shows how, when two relations share the same conver-
sion, such as pLq being a possible conversion of both qRp and qF p, how
these converted areas form a continuous area. This is not unexpected, but
the figure shows it clearly.

The information we will be dealing with in any situation will consist
of explicit relations between any two objects, as these are the qualitative
qualifications we’re dealing with in the calculus. Figure 6.9 shows several
things, first how a single pair of relations allows a wide range of geometrical
instantiations, all of which expressing or being a result of the same
qualitative information, and secondly which part of one relation that
allows which parts of its converse. The double coordinate systems shows
something about the semantic possibilities of model, information for which
we don’t have a direct syntactic counterpart.

6.1.2 Composition and placement

When we place a third object r anywhere in the plane where we already
have objects p and q, this object will participate in the four relations
pr, qr,r p and r q. Conversion provided some constraints on possible values
of qp given pq, and now we’ll see how this can be used to provide further
constraints on the relations between a third object r and these two objects
in a configuration.

When talking about the two relations between two objects we talk about
the objects’ composition. The possible pairings of compositions are given
by the constraints on conversion, and by listing all possible pairs of pq
and qp allowed by conversion we get all possible compositions of two
objects. Figure 6.10 shows an example of a composition, where we have
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Figure 6.10

pLq and qRp. We see that the coordinate systems of the two objects in this
composition divides the plane into a certain number of areas. Placing a
third object r within any of these areas will satisfy a specific pair of values
of relations r p and r q, eg. placing r within the gray area would make r Rp
and r Lq true. We can refer to this area as Rp&Lq.

Such areas are defined by which of the eight relations they have to each
of the two objects. As such, there are a total of 8∗8 possible ways to qualify
such an area. Figure 6.10 shows, however, that this specific composition
does not yield 64 different areas. Rather, we can see how the composition
divide the plane into 11 two-dimensional areas, 8 line segments, 8 rays and
4 points of intersection, giving 31 possible pairs of relations.

In most cases we find that all possible instances of a given composition
produces the same set of areas, no matter where specifically we place the
objects. This means that for all possible compositions we can be sure which
areas are and which aren’t possible, making each composition a constraint
on a pair of relations. We will go on to present this information, but first we
will take note of some important exceptions.

We limited the possible conversions of all relations to those where the
resulting angle would be less than 90◦, and as the compositions we’re
dealing with are produced from the conversion table this requirement is
also met by the possible compositions we’re dealing with. If this weren’t
the case we could have a situation where two objects p and q could be on
opposite sides of o, and we would have both pF q and qF p. There is in
itself nothing wrong with this, but it would require different methods than
the ones we present in this system, and thus these situations are outside
the scope of the current system. This constraint is important in all parts
of the system, and we’ll see how we apply different methods and rules to
make sure that this requirement is satisfied in the results of our methods of
inference.

We’ll take note of the configurations in figure 6.11. Both of these
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(a) (b)

Figure 6.11: Variatons of aF b&bB a

configurations are cases where pF q and qB p, but they differ in which areas
they produce when we extend the lines of their coordinate systems: In
figure 6.11a we have Rp&B q and F p&Rq, while in figure 6.11b we have
Lp&B q and F p&Lq. It should be noted that F p&Rq and F p&Lq in these
cases will appear somewhere behind o, which is to say that if a line is drawn
through o that runs orthogonal to the line from o to p, then they would
appear on the side of this that’s opposite to the objects. This in turn means
that there will be an angle greater than 90◦ between a line from the observer
to an object r in any of these areas and a line from the observer to p, which
we’ll take as an incentive and an argument not to include either of these
two fields in the entry for pF q and qB p. This will also be the case for some
fields in other compositions, which we’ll get back to. The important point
is that we have a single composition that may be associated with different
sets of areas. We will include both Rp&B q and Lp&B q in our overview
of fields produced by this composition, and later see whether we need to
differentiate between the two.

We get a problematic category of properties when the angle between the
line from o to an object p and the line from o to another object q is either
0◦ or 90◦. These are exemplified in figure 6.12. They all produce nine two-
dimensional areas rather than the 11 that appear in general cases such as
in figures 6.2a and 6.2b. This is not in itself problematic, the problem is
that we aren’t able to specify this peculiarity with our set of relations, we
can’t compositionally differentiate between the case in figure 6.12a and one
where the dashed lines form an angle of less than 90◦. This is why we have
the angle requirement. In the following we will consider the case shown in
figure 6.12b simply as pF q&qB p, and not include the cases shown in figures
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(a)

(b)

(c)

Figure 6.12: Problematic configurations

Figure 6.13: Instantiation of aF Lb&bF Ra

6.12a and 6.12c. Figure 6.13 shows an exception to this: We will be able to
deal with configurations where pF Lq and qF Rp, where the angle must be
exactly 90◦. Here, the number of areas collapse into six.

Table 6.2 shows the complete composition table for 3PCRFOR. It should
be read similarily to the one for 3PCAFOR: The two leftmost columns list
the possible combinations of relations between two reference objects, while
the two lines in the header list the possible relations a third object may have
to the two reference objects. When we have a composition of two objects p
and q, we map these objects to a and b in the table. This lets us find the
entry for the given composition, where a “1” indicates that a third object
r , mapped to c in the table, may have the relations specified in the header
to p and q in combination. A “0” indicates that this isn’t possible, telling
us that the configuration doesn’t yield such an area. The pair of relations
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ca B B B B R R R R F F F F L L L L
ab ba cb B R F L B R F L B R F L B R F L
B F 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1

BR F 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1
R F 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1
R FL 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1
R L 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1

FR FL 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0
FR L 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1
F L 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1
F BL 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 1
F B 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1
F BR 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1
F R 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1

FL R 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1
FL FR 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0
L R 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1
L FR 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1
L F 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1

BL F 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1

Table 6.2: Composition table for 3PCRFOR

named in the leftmost columns, ab and ba, will be called compositional
relations, as they name the relations between two objects. The ones named
in the header, ca and cb, will be called placemental relations, as they place
a third object in certain relations to the two other objects.

It should be noted that this table can be read in two ways: We may
know a pair of compositional relations, as we’ve just seen, but we may also
use it if we know a pair of placemental relations. If we know such relations
we find the appropriate column satisfying these, and a “1” indicates that
the compositional relations in the leftmost columns are possible given the
placemental relations we have.

When describing the situations in figure 6.11 we mentioned that we
wouldn’t include relations in the composition table that require an angle
greater than 90◦ from the placed object to any of the two compositional
objects. This applies to other possible compositions as well, and table
6.3 shows a list of compositions that produce fields that always have this
property, together with a list of thus excluded fields. The reason for
excluding these are that they would allow situations where a third object
would have relations with one or both of the other two objects which would
not be possible based on the conversion table, which again would not have
a corresponding entry in the composition table. Figure 6.14 shows an
example of this: In this situation we have pF Rq, qLp, and an r such that
r F p and r Lq. We also have pF r , which is the only possible value of this
relation in this situation. Now we have two values, pF r and r F p, which are
not allowed conversions and for which we don’t have a compositional entry.
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Figure 6.14: Example of excluded area

This is a breach of a basic premise in our calculus, and excluding such areas
is necessary to ensure its completeness.

The fields that involve one-dimensional relations, such as BLa&Lb, are
not expressed in the table. This is done to somewhat confine the table.
They can be found in the same way we did in 3PCAFOR, by looking for
neighbouring relations to one object cooccuring with the same relation
to other objects. As an example, pRq and qLp allow both r Rp&r Rq and
r Rp&r F q, which means that it also allows r Rp&r F Rq.

6.2 Consistency in the system

The two tables presented are created as a way of describing certain physical
properties: combinations of relations that may occur in the physical
plane. We’ve seen several figures showing possible physical or spatial
instantiations of certain sets of relations, these can be seen as semantic
models of such sets. The conversion table describes which values of qp
may cooccur with a given value of pq, and as it is an exhaustive table it
rules out which values of qp that are impossible given the same pq. This is
simply a syntactic way of telling which pairs of relations that are and which
aren’t situations that the spatial properties of the calculus allows, situations
for which we’re able to construct a spatial model. The same goes for the
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ab ba Areas excluded
B F Ra&F b, La&F b

BR F Ra&F b
R F Ra&F b
R FL Ra&F b

FR L F a&Lb
FR FL Ra&F b, F a&Lb
F L F a&Lb
F BL F a&Lb
F B F a&Lb, F a&Rb
F BR F a&Rb
F R F a&Rb

FL R F a&Rb
FL FR La&F b, F a&Rb
L FR La&F b
L F La&F b

BL F La&F b

Table 6.3: Areas excluded from the composition table

composition table: It describes which set of the four relations involved that
may cooccur as a physical situation.

Any syntactic description of a configuration, partial or complete, is a set
of valued relations. We’ve mentioned, both when discussing Allen’s algebra
and when presenting the calculus for the absolute frame of reference,
that the local constraints ensure consistency of sets of relations. This
concept is no less important in the current system, and we will restate its
definition as we’ll use it here: A set of valued relations are consistent if
they may cooccur in a physical situation. The two tables we’ve created
are methods that can be used for checking that values of relations involved
are consistent. The requirement that the angle between the lines from o
to one object and o to another object be less than 90◦ is a limit on the
physical situations that we’ll allow, and limiting the conversion table and
excluding certain areas from the composition table is a syntactic way of
ensuring consistent results regarding this.

6.3 Inference in the system: The general ap-
proach

Inference always goes from one or more known relation to possible values
of unknown ones. We will now introduce two core concepts used in carrying
out inference in the system: (i) Different mappings from a configuration to
the composition table and (ii) constraining said table.
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(a) (b) (c)

Figure 6.15: The three possible mappings for any given configuration

r p L
pq qp r q F
R L 1

qp L
pr r p qr B
R L 1

pr R
r q qr pq R
F B 1

Table 6.5: Mappings to the compositional table for figure 6.16

6.3.1 Possible mappings to the composition table

Any configuration of three objects will contain a total of six relations. Any
entry in the composition table expresses the relation from one object to
two others given the relation between these two, or conversely the relation
between two objects given a third objects relation to both of these. This
means that the composition table expresses knowledge about four relations
in the configuration, which again means that the composition table never
expresses complete knowledge about a configuration.

To bridge the gap between these two facts we need to note that there
are three possible mappings from a configuration of three objects to the
composition table: any of the three pairs pq and qp, r q and qr or pr and r p
may be assigned the role of compositional relations in the table. This will
not change the distribution of existing fields in the table, but they will be
able to express different information about the configuration. It should also
be noted that the ordering of the pairs doesn’t matter, as the composition
table is symmetric in this regard.

Figure 6.15 visualizes all the mappings given a configuration. The
double-headed arrows are the compositional relations, the single-headed
the placemental ones. Any two of these mappings together would express
information about all six relations, or in other words: complete information
about a configuration. We also see that specifying either the compositional
or the placemental relations (the objects participating in them) is enough
to characterize a mapping.

Example: Figure 6.16 is a syntactic presentation of a configuration
where we have complete knowledge about the relations involved. This
knowledge gives us the three mappings shown in table 6.5. Any two of these
tables together would be enough to provide complete knowledge about the
configuration, but they are all included to show that they are based on
different pairs of compositional and placemental relations.
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Figure 6.16: Complete knowledge about a configuration

6.3.2 Propagating constraints in the system

When nothing is known about the relations in a configuration, all mappings
to the composition table gives us all possible combinations of values that
the relations involved may have. Our task when carrying out inference
in this system is to limit this domain of possible values. There is some
constraint built into the composition table and the conversion table, as
they specify which combinations that are possible, but the main part of the
inference is carried out by applying the knowledge we have about any of the
relations in a given configuration. This knowledge provides constraints on
the domain of possible values, and propagating these constraints allow us
to select a subset of the entire composition table. In some cases this will
leave us with a single entry and thus exact knowledge about the relation in
question, but in most cases we will have a set of possible values. In this
section we will look at how this is carried out in various situations.

How we go about selecting the table subset depends on which relations
that are known and which we’re asking about. In the first situations we’ll
look at, shown in figure 6.17, we know three of the relations involved in
the composition table when mapping pq and qp as compositional relations
and are asking about a fourth. In figure 6.17a we know both compositional
relations, and can thus limit the table to the corresponding line. This
will limit the possible placemental relations, as no matter which value the
composition has, there’s no line in the composition table that allows all of
their pairings. Furthermore we can rule out the placemental pairings that
do not include r q. This leaves a number of possible table entries, and thus a
number of possible values of r p. In figure 6.17b we know both placemental
relations, limiting the composition table to a single column. Not all lines
in the composition table will allow the values of r p and r q that we have,
and those who do must include pq. This leaves a number of possible table
entries, and thus a number of possible values of qp.

We could have dealt with both of these cases in both ways: For figure
6.17a we could’ve selected the columns satisfying r q and then found the
one line satisfying the compositional relations, selecting existing fields in
the resulting table as possible values of r p. For 6.17b we could’ve selected
the lines satisfying pq, found the one column satisfying the placemental
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(a) (b)

Figure 6.17

Figure 6.18

relations and then selected existing fields in the resulting table as possible
values of qp. All constraints are applied in both cases, the ordering is not
relevant to the results.

In figure 6.18 we only know two of the relations when mapping pq and
qp as compositional relations. Our first step could be to limit the table to
the lines satisfying pq. This will include all values of qp that are converse
possibilities of pq, possibly giving us more lines to consider than in figure
6.17a. For all of these lines we find the fields satisfying the placemental
relation r q, and get the possible values of r p from these.

Figure 6.19 shows us situations where we need to apply conversion
when mapping pq and qp as compositional relations. In figure 6.19a
we find the possible values of r q by applying one placemental and both
compositional constraints, like we did for figure 6.17a, and we get the set
of possible values of qr by taking the conversions of these. In figure 6.19b
we first select the line satisfying the compositional relations pq and qp.
Now we don’t have a direct constraint on any placemental relation, but we
apply what we get from the known pr by taking its conversion. This leaves
one or more possible values of r p, and by selecting these fields we get a set
of possible values of r q. Finally, we apply conversion to these to get the
possible values of qr . In both of these cases we find that the relation in
question is not a direct participant in the composition table, but we’re still
able to find possible values through first constraining the composition table
and then taking conversions.

Figure 6.20 shows two configurations where, when mapping pq and qp
as compositional relations, taking the converse of any single known relation
won’t bring us any closer to the unknown relations. In the case shown in
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(a) (b)

Figure 6.19

(a)
(b)

Figure 6.20

figure 6.20a we know the compositional relations in the table, but this won’t
give us information about either r p or r q individually. By inspecting the
composition table we can see that all compositions allow all placemental
relations individually, but the table will tell us which pairings of the two
placemental relations that are possible and which aren’t. Constraining
the table in this way, not knowing either of the placemental relations,
will be called placemental completion. Figure 6.20b shows the opposite
case, where we know both placemental relations. This allows us to exclude
some compositional relations entirely, and thus provides more constraints
than knowing only the compositional ones. Their pairings will also be
constrained. Constraining the table in this way will be called compositional
completion.

We’ve looked at some examples of how we have to utilize conversions
or possible pairings to find possible values of the relations in a mapping.
There are a number of ways to combine these procedures when applying
our constraints, and a very important thing should be noted: All such
applications potentially weaken the available constraints. A conversion
typically allows a disjunction of possibilities, and when combining several
of these operations we may end up with a vast array of possibilities. A
way of characterizing how well we’re able to utilize the constraints we
have is to talk of the cost when propagating them to a mapping, where
conversion and compositional completion are seen as costly operations,
because they weaken the constraints. To rectify this, we look back at
figure 6.15 and remember that there are three possible mappings to the
composition table for every configuration. Many situations contain a set of
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known relations that do not participate in the same mapping, but every
possible known relation is directly part of exactly two of these. Thus,
propagating our constraints in one mapping may include applications that
produce possibilities that are directly prohibited by propagating the same
constraints in another mapping. To fully utilize the constraints from a
given configuration we must propagate them to all mappings in which any
of the known relations participate directly. This will give us several sets
of possibilities, and the final set of possibilities will be the intersection of
these, the values that are possible in all mappings.

At this point we should note something about relations denoting
one-dimensional areas. We mentioned that we would calculate this for
placemental relations based on neighbouring areas co-occurring with the
same area. This is because these are left out of the listing of placemental
relations in the composition table, and as such this is the only time we
should do this. There are two other ways of finding possible relations:
Either as a compositional relation or as possible conversions. In both of
these cases the possible one-dimensional relations are listed, and as such
we shouldn’t carry out any extra calculations to find them. If we come
across cases where the results of our calculations don’t comply with our
expectations in this regard, such as B and L being in the final result set and
not BL, then we’ve either made a mistake or we’ve come across a peculiar
situation. In any case, such outcomes will be further investigated.

The reason that we’re utilizing different mappings is that each compos-
ition table expresses easily understandable information, requiring moder-
ately complex calculations. If we were to include all possible and consistent
values of all six relations, this would require a much larger set of assump-
tions, making the calculation a lot more costly in terms of complexity. Inter-
secting constraint propagations to different mappings is a way of utilizing
available knowledge without requiring too much of the calculation.

6.3.3 Inference in the system: A detailed example

We will now present a detailed example of inference in the system, to
properly illustrate the methods presented. The case we’ll consider is the
one shown in figure 6.21, where we know pRq and qRr , and wish to find
r p. We will go through each possible mapping, explain which operations
we need to perform for each of them, and present the results.

The first mapping we consider is the one where pq and qp are
compositional relations, as shown in figure 6.15a. The relation we’re after
takes direct part in this table, as does the known pq, but we need the
converse possibilities of pq to complete the compositional pairings and the
conversion of qr to get a placemental constraint. Thus we need to make
two conversions, making this the cost of constraint propagation in this
mapping.

First we see that we need to consider the cases where we have pRq and
either qF p, qF Lp or qLp, these being the possible compositional pairings.
Furthermore we use conversion and find that the possible values of r q
are r F q,r F Lq and r Lq. These constraints leave us with the part of the
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Figure 6.21

r p B B R R F F L L
pq qp r q F L F L F L F L
R F 0 0 0 0 1 1 0 1
R FL 0 0 0 0 1 1 0 1
R L 0 0 1 0 1 1 1 1

Table 6.6: Extract of the mapping of pq and qp as compositional relations

composition table shown in table 6.6. In this mapping, the constraints
allow r Rp,r F p and r Lp, and as these are placemental relations we have
to include r F Rp and r F Lp as well.

Next we consider the mapping of pr and r p as compositional relations,
as shown in figure 6.15b. Here we have one placemental relation, qr , and
we get the other by conversion of pq. We have none of the compositional
relations, and get their possibilities by compositional completion based
on our assumptions of placemental relations. The possibilities of r p are
included here. Cost of constraint propagation in this mapping: One
conversion and one compositional completion.

Converting pRq leaves us the possibilities qF p, qF Lp and qLp, and sets
of placemental constraints when paired with qRr . This leaves the part of
the composition table shown in table 6.7. We see that the constraints allow
r Rp,r F Rp,r F p,r F Lp and r Lp in this mapping.

The final mapping we consider is the one where r q and qr are
compositional relations, as shown in figure 6.15c. Both of our known
relations participate directly in this table, and we select all possible
conversions of r q to get our compositional relations. This will leave us with
a range of possible values of pr . The last step is converting these possible
values to get the ones we’re after. Cost of constraint propagation in this
mapping: Two conversions.

Converting qRr gives us the possible compositional relations r F q,r F Lq
and r Lq. Together with pRq this leaves the part of the composition table
shown in table 6.8. We get the possibilities pRr, pF Rr and pF r , and by
converting these the possibilities r F p,r F Lp,r Lp,r BLp,r B p,r BRp and r Rp.
Note that r F Rp isn’t included, as it isn’t included in the conversions.

We now have three sets of possible values of r p due to constraining the
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qp F L
pr r p qr R R
B F 1 0

BR F 1 0
R F 1 1
R FL 1 1
R L 1 1

FR FL 0 1
FR L 0 1
F L 0 1
F BL 0 0
F B 0 0
F BR 0 0
F R 0 0

FL R 0 0
FL FR 0 0
L R 1 0
L FR 1 0
L F 1 0

BL F 1 0

Table 6.7: Extract of the mapping of pr and r p as compositional relations

pq R R R R
qr r q pr B R F L
R F 0 1 0 0
R FL 0 1 0 0
R L 0 1 1 0

Table 6.8: Extract of the mapping of qr and r q as compositional relations
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pq qp(A) qr r q(A) r p(A)
R L R F R

(a) Compositional: pq and qp

pr (A) r p(A) qr qp(A) pq
L R R F R

(b) Compositional: pr and r p

r q(A) qr pq pr (A) r p(A)
L R R F R

(c) Compositional: r q and qr

Table 6.9: Solution sets leading to r Rp

composition table, and finally their intersection: r Rp,r F p,r F Lp and r Lp.

6.4 Consistency, continued

The results of the example that we just saw quickly raises a question: How
are r Rp and r F p possible solutions, when r F Rp is left out? The result
seems anomalous. To better understand the result, we will expand upon
the concept of consistency.

Every possible solution we arrive at using the methods of inference
described above will involve a set of known and assumed relations. The
known relations here are those that we take as given in a case, and the
assumed ones are those whose values we arrive at using the methods of
inference described earlier. Our goal in each case is to find the value of a
specific relation, which naturally always will be an assumed relation, but
the inference may often include other assumptions as well. There may be
different ways of arriving at the same possible answer, if we look back at
table 6.7 we see that both qF p and qLp produce the possible value r F p.
If we consider the values of each relation involved as part of a solution,
this example would give two different solutions, as qp differs. Such a
specification of which values of which relations that leads us to an answer,
including the known relations, will be called a solution set. For each
possible problem we can create a list of such sets.

This leads us to an important demand on our methods of inference:
Each solution set must be consistent for it to be considered an actual
solution. This seems obvious, the solutions we’re interested in must be the
kind of solutions that may actually occur physically, but how can we make
sure that the results we get from our inference satisfies this demand? The
two tables we have ensure this to a great degree already, as the composition
table ensures the consistency of the four relations involved. However,
as we’ve mentioned several times, there are six relations involved in any
configuration of three objects. Are there situations where our current
methods are insufficient?

The results we got in our example could imply this. We will look at r Rp
in particular, as the intermediary relation r F Rp is not given as a possible
solution, making r Rp the odd one in the collection. To better understand
how we got this result we will show all solution sets that lead to it. Table 6.9
shows the complete list, where a relation marked with (A) is an assumption
in the solution. We should note that the only assumption that appears in
all three tables is r p, and that qp appears in 6.9a and 6.9b, r q in 6.9a and
6.9c and pr in 6.9b and 6.9c.
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Figure 6.22

As pq and qr are known relations, they appear in all solution sets.
If we look back at figure 6.9 we see the physical areas a second object
p would have to be placed in relative to first object q for q to be in the
relations specified to p. We will utilize the information we get from this
figure to investigate our current situation. We’ll begin with the single
solution set shown in 6.9c, where we know qRr and assume r Lq. Figure
6.22 illustrates this situation, and the converted coordinate systems of each
object is added to the diagram. To figure out whether our inference went
wrong we will carry out a visual inference. We know that pRq, and find the
corresponding area in the figure. We assumed placemental relation pF r ,
as the composition table shows that there is an area in front of r and to
the right of q. We can see how this is a sub-area of the one to the right
of q. However, the final assumption, r Rp, is clearly not covered by this
area. No matter where we move q within the area right of r , the area to
the right of q and in front of r simply won’t reach that far to the left within
the area in front of r . It seems we’ve found a situation that can’t exist as
a physical situation in our system, and thus an inconsistent set. If we had
investigated the other possibilities of r q given the known qr we would have
found that an area in front of r and to the right of q simply wouldn’t exist,
as these are excluded from these compositions. Thus, the assumption of r q
is inconsequential in this matter.

How did we end up with this? The answer lies in the fact that
the relation in question, r p, was found by converting possible values of
placemental relation pr . As we found pF r to be a possibility, conversion
gives a range of possible results, including r Rp. We used the composition
table to find possible values of pr , but none of the existing constraints limits
the conversion of these results. Assuming pF r would also give us r B p as a
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possibility in this mapping, but as the other mappings don’t produce this
possibility it’s left out. This inconsistency must be remedied, but first we’ll
see how the other mappings led to the same mistake.

In the case in table 6.9b we can use the same illustration, as we have
qRr . We know that pRq is still the case, and we find this area in the
diagram. It’s limited further by the assumption qF p, to the area to the
right of q outside of the half-circle marking the areas where we would have
qLp. What’s most important are the assumed compositional relations pLr
and r Rp. This area can be seen as the intersection of the area left of r and
the circle that r is to the right of. This area does not in any way overlap
with the area to the right of q, which we know must be the case. The set is
inconsistent.

In this mapping, q is placed relative to the composition of p and
r . One of them, qRr , is given, and the other is inferred by conversion.
The composition pLr and r Rp does in fact create an area that is to the
right of r and in front of p, but pRq is not true in this area. The
problem is that the known relation pRq isn’t included when constraining
the composition table, other than offering all its conversions as possible
values of qp. We could’ve gotten qF p from pLq as well, which would lead
to the compositional assumptions pRr and r Lp, and the set would’ve been
consistent.

Finally we get to the cases in table 6.9a. This is actually the same case
that we had for table 6.9c, with different relations in the same roles. If
we read qp and pq as compositional relations, in that order, we see that
they match the ones in 6.9c. The placemental relation towards the first
member of the first compositional relation, r q here and pr in 6.9c, both
have the value F , and their conversions qr and r p are valued R. The second
placemental relation, r p and pq, nhave the value R.

However, the resulting relation r p is here a direct participant in the
composition table. The area leading to our dismay is the one in front of q
and right of p, similar to the one in front of r and to the right of q in 6.9c.
We get the possibility of r F q from converting qRr , but this does not specify
that r has to be placed in the area in front of q where qRr is the case.

We have three ways of reaching the same erronous result. It will be
sufficient to show what characterizes the inconsistent set in one of the
mappings and remove the result to remove it completely from the final set
of solutions, as this is an intersection of the three sets of results. In table
6.9c, we got an erronous result because we allowed all conversions of F . As
we saw, in all situations where we have qRr, pRq and pF r , then the only
possible value of r p will be L. This defines a necessary property of how
we’re able to construct configurations, and it can be generalized as a rule.
It should be noted that the value of r q isn’t necessary to involve in our rule.
The reason for this is that the relations pRq and pF r only are possible when
we have r Lq paired with qRr , due to exclusion of areas. We also get the
mirrored case: If we know qLr, pLq and pF r , then it must be the case that
r Rp.

We investigated possible models to derive a syntactic rule. When
looking into each of the solution sets we specified which assumptions that
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(a) (b) (c)

Figure 6.23

lead to which erronous result, and we explained in the model how this was
possible. If we draw the solution sets as syntactic situations, as shown in
figure 6.23, then we see that they all express the same thing, and that the
newly developed rule is equally applicable to all of them. By solving one
of the problems in our constraint propagation we’ve solved all of them. All
of these solution sets include the conversion of a placemental relation, and
our previous methods of consistency checking had no ways of ensuring the
consistency of such a set. The added rule takes care of this specific case.

We can go further into the syntactic reasons that this case was accepted.
We based our investigations on specific values of the relations qr and
pq. These values allowed the three different mappings to assign the same
values to the relations involved. That is, not the same relations in the
actual configuration we’re considering, but the same roles the relations
play in the composition table: In figure 6.23, we see that each mapping
has one placemental relation valued R, one placemental relation valued
F , the converse of this last one valued R, and the compositional relation
from the object of the unconverted placemental relation to the object of the
converted one valued R. If we go through every single solution set for every
possible combination of known relations in this specific situation, then we
would find that the only ones where this happens, where all mappings can
assign the same values to their roles, are these two: where we get r Rp
from pRq and qRr , and where we get r Lp from pLq and qLr . In fact, if
we extend the solution sets so that they each contain all six relations in
the configuration, requiring us to check a great number of assumptions
and adding to the complexity of the calculation, then these two sets of
assumptions still allows such a situation to happen, where all mappings
may use the same valuations. We will later show which assumptions
that are involved in each possible combination of known and unknown
relations, but if we go through all the solution sets for all the possible
situations, the one just shown is actually the only one where this occurs.
We’ve seen that this property cooccurred with the need to apply our new
rule. If the rule is applicable only when the property just described occurs,
then the rule has a rather narrow use. None the less, it has to be applied if
our calculations are to give consistent results.

What lead us into this consideration of full solution sets applicable to
all mappings was a way of telling which part of the front area of an object
another object would have to be in, and thereby constraining the possible
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Figure 6.24

values of conversion. The areas to the left and right of an object also have
multiple possible conversions, and there are compositions that leave areas
within these that only allow one conversion. Do we need similar rules in
these cases?

Consider the situation shown in figure 6.24. Here we have r F Lq, and
we can see that placing p in the part of the area right of r that’s also behind
q does not allow r Lp as a conversion. This is similar to our previous rule,
and we could create a rule covering this case. The solution set we would
wish to rule out would be r F Lq, pB q, pRr and r Lp. If we map r q and qr as
compositional relations in the composition table, we get an area satisfying
Rr and B q. If we map r p and pr as compositional relations we only have
the converted values of the placemental relations, but pB q only allows qF p,
and we can take qRr from r F Lq. This is also possible in the composition
table. The final mapping, where pq and qp are compositional tables, is
more problematic. When we have pB q, there is no area to the left of p and
to the front-left of q, and the possibility of r Lp has to be left out. We see that
multiple mappings to the composition table took care of our problem, and
we don’t need to apply any extra rules. This is the case for other sub-areas
of R or L in other compositions as well, none of the potentially problematic
solution sets pass through all mappings.

In cases where we have r F Lq and qF Rr , as seen in figure 6.25, we get a
special concern regarding consistency. We’ve said that we would only allow
configurations where the angle between lines from the observer to any of
the objects involved is at most 90◦, and this should limit where we allow
a third object p to be placed in the configuration shown. The area to the
left of p is excluded according to the exclusion table, so both pLr and r F Lp
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Figure 6.25

are none of our concern. However, the right half of the area in front of
r should be included, while the left half should be left out. Is this taken
care of in our current system? If we look up the entry for r F Lq and qF Rr
in the composition table, we see that there is an area in front of both, as
should be expected. The problem here is that arriving at pF r in this way
allows both r BRp and r Rp, both of which are areas that we wish to exclude.
Even though we utilize all mappings, both of these possibilities would pass
through. This is not too surprising, as we’re able to express this problematic
solution set without including anything about the relations between p and
q, thus providing no constraints on these. We will have to provide some
constraints of our own, and say that whenever two objects r and q are in
the relations r F Lq and qF Rr , then there can’t be any third object p so that
r BRp or r Rp. We also get the mirrored case: There can be no placement of
p so that qBLp or qLp. This rule will be referred to as the F R/F L-rule.

There is a final case that we need to take into account, also applicable
when we have r F Lq and qF Rr , like in figure 6.25. If we know these two
things, and we also know r B p, then we know that p must be placed in
the elliptical field between o and r . Normally, knowing qF Rr and r B p
would allow qB p. This can be verified in the composition table, in the
entry where r B p and pF r are compositional relations and qF Rr and qB p
are placemental ones. This simply means that the compositional relations
produce a field behind p and to the front-right of r . However, this specific
case requires q to lie at the maximum distance from r along F Rr , as we have
r F Lq. This is not covered by the area behind p when we place p within said
elliptical field. This also applies when we have r BLp. There is currently no
way of excluding this possibility in the system, and thus we need to add a
third rule: If we have r F Lq, qF Rr and either r B p or r BLp, then it must be
the case that qRp. We also get the mirrored case: If we have r F Rq, qF Lr
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Conditions Result
aRb,cRa and cF b bLc
aLb,cLa and cF b bRc
aF Lb and bF Ra not aBRc, not aRc, not bBLc, not bLc

aF Lb,bF Ra and (aBc or aBLc) bRc
aF Rb,bF La and (aBc or aBRc) bLc

Table 6.10: Conditional rules

and either r B p org r BRp, then it must be the case that qLp.

Table 6.10 summarizes these rules. We apply them for each solution
set in each mapping: If any of the sets break with the rules, they must
be inconsistent and can thus be removed from the list of actual solutions.
The reason that they must be applied for each mapping rather than the
final intersection of answers is that the full solution sets, with all their
assumptions, aren’t included here.

6.5 Inference in the system: The possible cases

Now that we’ve explained the general approach to inference in the system
we can proceed to deal with the possible cases, varying in which relations
that are known and which we’re asking about. All configurations involve the
three objects p, q and r . There is no ordering between these objects other
than the known relations, so symmetrical cases will not be considered.

6.5.1 One known relation

When there’s only one known relation pq in a configuration, the only
single other relation we can infer anything about is its converse, qp, given
by the conversion table. This gives us a set of possible compositional
relations, which leads us to the situation shown in figure 6.20a. The
possible inferences from this point are, as mentioned, the possible pairings
of placemental relations.

We will not gain any information by considering the known relation as
a placemental relation, as the composition table will show that all values
of placemental relations could co-occur with all values of both composition
relations.

Example: We know that pB q. From the conversion table we can infer
that qF p. We can’t know anything about r p or r q individually, but we
know that they together have to form a pair that exists in the entry for pB q
and qF p. This means that it could be the case that r B p&r Rq, but not that
r B p&r F q. If pq had more than one conversion, we would have to look up
more than one entry to find the possible pairings.
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Figure 6.26

6.5.2 Two known relations

There are a number of different situations where two of the relations in
a configuration are known, and we inquire about a third, unknown one.
We looked at one in figure 6.20a, and saw that the only thing we could
infer about the unknown relations was their pairing. This information is
fully expressed in the composition table. If we take the conversions of these
possible pairs we would get the possible values of pairings of pr and qr .

The first case we’ll consider in depth is shown in figure 6.26, where we
know pq and qr and wish to figure out r p. This is the one we showed
in detail earlier. We’ll go through each of the three possible mappings
and show how they let us calculate possible values, and specify which
assumptions we need to make.

• Mapping pq and qp as compositional relations - The relation we’re
after takes direct part in this table, as does the known pq, but we
need the converse possibilities of pq to complete the compositional
pairings and the conversion of qr to get a placemental constraint.
Cost of constraint propagation in this mapping: Two conversions.
Assumptions beside answer: qp and r q.

• Mapping pr and r p as compositional relations - Here we have
one placemental relation, qr , and we get the other by conversion
of pq. We have none of the compositional relations, and get their
possibilities by compositional completion based on our assumptions
of placemental relations. The possibilities of r p are included here.
Cost of constraint propagation in this mapping: One conversion and
one compositional completion. Assumptions beside answer: qp and
pr .

• Mapping r q and qr as compositional relations - Both of our known
relations participate directly in this table, and we select all possible
conversions of r q to get our compositional relations. This will leave
us with a range of possible values of pr . Finally we add the step of
converting this relation to find the ones we’re after. Cost of constraint
propagation in this mapping: Two conversions. Assumptions beside
answer: r q and pr .
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Table 6.11 shows the resulting possibilities for r p given all possible
combinations of pq and qr . The symmetric properties of this table should
be noted: If we know the two relations in the situation it does not, in fact,
matter which of them has which value, both combinations will lead to the
same set of possibilities.

qr
B BR R FR F FL L BL

pq

B F F F,FL,L F,FL,L ∀ R,FR,F R,FR,F F
BR F F F,FL,L F,FL,L ∀ R,FR,F R,FR,F F
R F,FL,L F,FL,L F,FL,L F,FL,L ∀ ∀ ∀ F,FL,L

FR F,FL,L F,FL,L F,FL,L L L,BL,B,BR,R L,BL,B,BR,R ∀ F,FL,L
F ∀ ∀ ∀ L,BL,B,BR,R L,BL,B,BR,R L,BL,B,BR,R ∀ ∀

FL R,FR,F R,FR,F ∀ L,BL,B,BR,R L,BL,B,BR,R R R,FR,F R,FR,F
L R,FR,F R,FR,F ∀ ∀ ∀ R,FR,F R,FR,F R,FR,F

BL F F F,FL,L F,FL,L ∀ R,FR,F R,FR,F F

Table 6.11: Table showing possible values of r p when pq and qr are known,
as depicted in figure 6.26

The next case we’ll consider is the one shown in figure 6.27, where we
know pq and qr , and wish to find pr .

• Mapping pq and qp as compositional relations - pq is given, and we
use its converse to find the lines to consider. We choose the columns
where r q is a possible value of the conversion of qr , and take the
conversions of the resulting possible values of r p. Cost of constraint
propagation in this mapping: Three conversions. Assumptions beside
answer: qp,r q and r p.

• Mapping pr and r p as compositional relations - Here we’ll consider
all columns that satisfy qr and any converse of pq as placemental re-
lations. We have none of the compositional relations, so composi-
tional completion gives us the possible calues of pr . Cost of constraint
propagation in this mapping: One conversion and one compositional
completion. Assumptions beside answer: qp and r p.

• Mapping r q and qr as compositional relations - We have one
compositional relation, qr , and together with its converse limit the
lines to consider. The columns satisfying pq will give all possible
values of pr . Cost of constraint propagation in this mapping: One
conversion. Assumptions beside answer: r q.

The complete table of inferences for this situation is shown in table 6.12
Here we see the same symmetric properties that we saw in table 6.11.

Next we get the case in figure 6.28, where we know r q and r p and wish
to figure out qp.

• Mapping pq and qp as compositional relations - We see that we have
a complete constraint of the placemental relations. This lets us select
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Figure 6.27

qr
B BR R FR F FL L BL

pq

B L,BL,B,BR,R B,BR,R B,BR,R B,BR,R ∀ L,BL,B L,BL,B L,BL,B
BR B,BR,R R R R ∀ L,BL,B L,BL,B B
R B,BR,R R R,FR,F R,FR,F ∀ ∀ ∀ B,BR,R

FR B,BR,R R R,FR,F F F FR,F,FL ∀ B,BR,R
F ∀ ∀ ∀ F F F ∀ ∀

FL L,BL,B L,BL,B ∀ FR,F,FL F F F,FL,L L
L L,BL,B L,BL,B ∀ ∀ ∀ F,FL,L F,FL,L L

BL L,BL,B B B,BR,R B,BR,R ∀ L L L

Table 6.12: Table showing possible values of pr when pq and qr are known,
as depicted in figure 6.27

a single column, and all resulting values of pq are possibilities. Cost of
constraint propagation in this mapping: Compositional completion.
Assumptions beside answer: pq.

• Mapping pr and r p as compositional relations - We choose the lines
satisfying r p and all its converse values. The columns satisfying the
converse of r q gives us possible values of qp. Cost of constraint
propagation in this mapping: Two conversions. Assumptions beside
answer: pr and qr .

• Mapping r q and qr as compositional relations - We have one
compositional relation, r q, and use its converse values to select lines
for inquiry. The converse of r p gives a placemental constraint, and we
select the corresponding values of pq. Finally, we take the converse
values of these. Cost of constraint propagation in this mapping: Three
conversions. Assumptions beside answer: qr, pr and pq.

Table 6.13 shows the complete list of inferences for this situation. It should
be noted that this table doesn’t have the same symmetric property that we
found in the two previous situations. The table shows some peculiar results
that should be noted:

• r BRq and r BRp - Here we have B and F as possible values of qp.
To understand this, we can look back at figure 6.9. If r is the object
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Figure 6.28

depicted, we know that both p and q have to be placed on the part of
the circle in front of r that lies in the left half. This area has no width,
and thus we get the two possible values of qp. We get the same result
for r BLq and r BLp.

• r F Rq and r F Rp - This is similar to the case above, but here p and q
have to be placed on the half-circle to the left of r . We get the added
possibility qF Lp, made possible when we have qF Lr , the extreme case
of 90◦. We get a similar case when we have r F Lq and r F Lp.

• r F Rq and r F Lp - Looking back at the same figure as before, here we’ll
find that q has to be placed along the half-circle to the left of r , and
p along the half-circle to the right. We get the possibility qF Lp when
we have pF Rq and qF Lp, the extreme case of 90◦. We get a similar
case when we have r F Lq and r F Rq.

r p
B BR R FR F FL L BL

r q

B ∀ B,BR,R,FR,F B,BR,R,FR,F F F F F,FL,L,BL,B F,FL,L,BL,B
BR F,FL,L,BL,B B,F B,BR,R,FR,F F F F F,FL,L F,FL,L
R F,FL,L,BL,B F,FL,L,BL,B ∀ R,FR,F,FL,L R,FR,F,FL,L F,FL,L F,FL,L F,FL,L

FR L,BL,B L,BL,B L,BL,B,BR,R R,FL,L* R,FR,F,FL,L FL,L L L
F L,BL,B,BR,R L,BL,B,BR,R L,BL,B,BR,R L,BL,B,BR,R ∀ L,BL,B,BR,R L,BL,B,BR,R L,BL,B,BR,R

FL B,BR,R R R R,FR R,FR,F,FL,L R,FR,L L,BL,B,BR,R B,BR,R
L B,BR,R,FR,F R,FR,F R,FR,F R,FR,F R,FR,F,FL,L R,FR,F,FL,L ∀ B,BR,R,FR,F

BL B,BR,R,FR,F R,FR,F R,FR,F F F F F,FL,L,BL,B B,F

Table 6.13: Table showing possible values of qp when r q and r p are known,
as depicted in figure 6.28

Now we move on to the situation shown in figure 6.29, where we know
pq and r q, and wish to find pr .

• Mapping pq and qp as compositional relations - We have one
compositional constraint provided and one of the placemental ones.
Using the converse of the compositional one we get a selection of
possible values of r p, the converse of these gives us the possible
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Figure 6.29

answers. Cost of constraint propagation in this mapping: Two
conversions. Assumptions beside the answer: qp and r p.

• Mapping pr and r p as compositional relations - We have to consider
all conversions of both r q and pq to get possible placemental
constraints, and then select the corresponding values of pr through
compositional completion. Cost of constraint propagation in this
mapping: Two conversions and one compositional completion.
Assumptions beside the answer: r p, qp and qr .

• Mapping r q and qr as compositional relations - We have one
compositional relation, r q, and one placemental one, pq, and we
select the resulting possibilities of pr . Cost of constraint propagation
in this mapping: One conversion. Assumptions beside the answer:
qr .

r q
B BR R FR F FL L BL

pq

B ∀ F,FL,L,BL,B F,FL,L,BL,B L,BL,B L,BL,B,BR,R B,BR,R B,BR,R,FR,F B,BR,R,FR,F
BR B,BR,R,FR,F B,F F,FL,L,BL,B L,BL,B L,BL,B,BR,R R R,FR,F R,FR,F
R B,BR,R,FR,F B,BR,R,FR,F ∀ L,BL,B,BR,R L,BL,B,BR,R R R,FR,F R,FR,F

FR F F R,FR,F,FL,L R,L,FL L,BL,B,BR,R R,FR R,FR,F F
F F F R,FR,F,FL,L R,FR,F,FL,L ∀ R,FR,F,FL,L R,FR,F,FL,L F

FL F F F,FL,L FL,L L,BL,B,BR,R R,L,FR R,FR,F,FL,L F
L F,FL,L,BL,B F,FL,L F,FL,L L L,BL,B,BR,R L,BL,B,BR,R ∀ F,FL,L,BL,B

BL F,FL,L,BL,B F,FL,L F,FL,L L L,BL,B,BR,R B,BR,R B,BR,R,FR,F B,F

Table 6.14: Table showing possible values of pr when pq and r q are known,
as depicted in figure 6.29

The resulting inferences possible in this situation is shown in table 6.14.
We’ll find some of the same peculiar result sets as we did in the previous
case, such as for pBRq and r BRq resulting in pBr or pF r , and the reasons
are similar to the ones we saw.

These four cases cover all situations where the relation in question is not
the converse of any of the known ones. What about the situations where
this is the case? Figure 6.30 shows all possible situations where we have
two known relations and the one in question is the converse of one of these.
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When carrying out constraint propagation in these cases we find that the
results are very much like the values we find in the conversion table. There
are some exceptions, though, and rather than giving the complete table for
each case these exception will be explained.

(a) (b)

(c) (d)

Figure 6.30: Possible situations with two known relations where the
relation in question is the converse of a known one

• Figure 6.30a: When we have pF Rq, any of qBRr, qRr or qF Rr only
allows qLp and not qF Lp. We also have the symmetric case: Given
pF Lq, any of qF Lr, qLr or qBLr only allows qRp and not qF Rp.

• Figure 6.30b: When we have qF Rr , then pRq or pF Rq only allows
r Lq and not r F Lq. Oppositely: Given qF Lr , either pF Lq or pLq only
allows r Rq and not r F Rq.

• Figure 6.30c: Given pF Rq, any of pF Lr, pLr or pBLr only allows qLp
and not qF Lp. Oppositely: Given pF Lq, any of pBRr, pRr or pF Rr
only allows qRp and not qF Rp.

• Figure 6.30d: Given r F Rq, any of pF Lq, pLq or pBLq only allows qLr
and not qF Lr . Oppositely: Given r F Lq, any of pBRq, pRq or pF Rq
only allows qRr and not qF Rr .

We see that all of these cases are directly connected to the the F L/F R-
rules, and the exceptions are simply the cases that have to be left out if the
results are to be expressable in the calculus.
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Figure 6.31

6.5.3 Three known relations

Now we move on to situations where three of the relations are known. This
will in general mean that we can carry out constraint propagation at a lower
cost in most mappings, and we’ll see what effect this has on the resulting
inference tables. In the first situations we’ll look at one set of compositional
relations will be known. These situations are the only ones where the
relation in question is not the converse of any of the known ones, an thus
possibly those of greatest interest. They will be followed by all situations
where the relation in question is a converse of one of the known ones, and
we’ll see whether this is different from the corresponding situations where
two relations are known.

Our first situation is the one seen in figure 6.31, where we know pq, qp
and r p, and wish to find r q.

• Mapping pq and qp as compositional relations - Here we have
both compositional relations and one placemental one, mirroring the
case we saw when first presenting constraint propagation. Cost of
constraint propagation: None. Assumptions beside answer: None.

• Mapping pr and r p as compositional relations - Here we need the
conversion of r p to complete the compositional relations, and we use
qp as a placemental one to get qr . Finally, we take the converse of
these to get the possible values of r q. Cost of constraint propagation:
Two conversions. Assumptions beside answer: pr and qr .

• Mapping r q and qr as compositional relations - We take the
converse of r p to get a set of placemental relations. Through
compositional completion we find the possible values of r q. Cost
of constraint propagation: One conversion and one compositional
completion. Assumptions beside answer: pr and qr .

This gives us the results shown in table 6.15. The entries marked as “-”
means that the combinations of relations are impossible.

Next we get the situation shown in figure 6.32, where we know pq, qp
and r p, and wish to find qr .
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r p
pq qp B BR R FR F FL L BL
B F L,BL,B,BR,R B,BR,R B,BR,R B,BR,R ∀ L,BL,B L,BL,B L,BL,B

BR F B,BR,R R R R ∀ L,BL,B L,BL,B B
R F B,BR,R R R R ∀ L,BL,B,BR,R L,BL,B,BR,R B,BR,R
R FL B,BR,R R R R,FR R,FR,F,FL,L R,L L,BL,B,BR,R B,BR,R
R L B,BR,R R R,FR,F R,FR,F R,FR,F,FL,L R,FR,F,FL,L ∀ B,BR,R

FR FL R - - - F FR B,BR,R R
FR L B,BR,R R R,FR,F F F F,FL ∀ B,BR,R
F L B,BR,R,FR,F R,FR,F R,FR,F F F F ∀ B,BR,R,FR,F
F BL B,BR,R,FR,F R,FR,F R,FR,F F F F F,FL,L,BL,B B,F
F B ∀ B,BR,R,FR,F B,BR,R,FR,F F F F F,FL,L,BL,B F,FL,L,BL,B
F BR F,FL,L,BL,B B,F B,BR,R,FR,F F F F F,FL,L F,FL,L
F R F,FL,L,BL,B F,FL,L,BL,B ∀ F F F F,FL,L F,FL,L

FL R L,BL,B L,BL,B ∀ FR,F F F F,FL,L L
FL FR L L L,BL,B FL F - - -
L R L,BL,B L,BL,B ∀ R,FR,F,FL,L R,FR,F,FL,L F,FL,L F,FL,L L
L FR L,BL,B L,BL,B L,BL,B,BR,R R,L R,FR,F,FL,L FL,L L L
L F L,BL,B L,BL,B L,BL,B,BR,R L,BL,B,BR,R ∀ L L L

BL F L,BL,B B B,BR,R B,BR,R ∀ L L L

Table 6.15: Table showing possible values of r q when pq, qp and r p are
known, as shown in figure 6.31

Figure 6.32

• Mapping pq and qp as compositional relations - Here we have
both compositional relations and one placemental one, and we get
possible values of r q. Taking the converse values of these gives
us the possible values of qr . Cost of constraint propagation: One
conversion. Assumptions beside answer: r q.

• Mapping pr and r p as compositional relations - We have one
compositional relation, and need its converse. qp provides one
placemental constraint, and togethere these give us the possible
values of qr . Cost of constraint propagation: One conversion.
Assumptions beside answer: pr .

• Mapping r q and qr as compositional relations - Here we use the
converse of known r p to get placemental constraints together with
known pq, and compositional completion to find possible values
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Figure 6.33

of qr . Cost of constraint propagation: One conversion and one
compositional completion. Assumptions beside answer: pr and r q.

This gives us the results shown in table 6.16.

r p
pq qp B BR R FR F FL L BL
B F F F F,FL,L F,FL,L ∀ R,FR,F R,FR,F F

BR F F F F,FL,L F,FL,L ∀ R,FR,F R,FR,F F
R F F F F,FL,L F,FL,L ∀ R,FR,F,FL,L R,FR,F,FL,L F
R FL F F F,FL,L FL,L L,LB,B,BR,R R,FR,L R,FR,F,FL,L F
R L F,FL,L F,FL,L F,FL,L L L,BL,B,BR,R L,BL,B,BR,R ∀ F,FL,L

FR FL F - - - L,BL,B L F,FL,L F
FR L F,FL,L F,FL,L F,FL,L L L,BL,B,BR,R L,BL,B,BR,R ∀ F,FL,L
F L F,FL,L,BL,B F,FL,L F,FL,L L L,BL,B,BR,R L,BL,B,BR,R ∀ F,FL,L,BL,B
F BL F,FL,L,BL,B F,FL,L F,FL,L L L,BL,B,BR,R B,BR,R B,BR,R,FR,F B,F
F B ∀ F,FL,L,BL,B F,FL,L,BL,B L,BL,B L,BL,B,BR,R B,BR,R B,BR,R,FR,F B,BR,R,FR,F
F BR B,BR,R,FR,F B,F F,FL,L,BL,B L,BL,B L,BL,B,BR,R R R,FR,F R,FR,F
F R B,BR,R,FR,F B,BR,R,FR,F ∀ L,BL,B,BR,R L,BL,B,BR,R R R,FR,F R,FR,F

FL R R,FR,F R,FR,F ∀ L,BL,B,BR,R L,BL,B,BR,R R R,FR,F R,FR,F
FL FR F F R,FR,F R B,BR,R - - -
L R R,FR,F R,FR,F ∀ L,BL,B,BR,R L,BL,B,BR,R R R,FR,F R,FR,F
L FR F F R,FR,F,FL,L R,FL,L L,BL,B,BR,R R,FR R,FR,F F
L F F F R,FR,F,FL,L R,FR,F,FL,L ∀ R,FR,F R,FR,F F

BL F F F F,FL,L F,FL,L ∀ R,FR,F R,FR,F F

Table 6.16: Table showing possible values of qr when pq, qp and r p are
known, as shown in figure 6.32

Next up is the situation shown in figure 6.33, where we know pq, qp and
pr , and wish to find qr .

• Mapping pq and qp as compositional relations - We have both
compositional relations. Taking the converse of known pr gives us
placemental constraints that lets us find possible values of r q, and
taking the converse of these again lest us find possible values of
qr . Cost of constraint propagation: Two conversions. Assumptions
beside answer: r p and r q.
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Figure 6.34

• Mapping pr and r p as compositional relations - We have one com-
positional relation, and use its converse for the compositional con-
straint. We get a placemental constraint from qp, giving us possible
values of qr . Cost of constraint propagation: One conversion. As-
sumptions beside answer: r p.

• Mapping r q and qr as compositional relations - We have both
placemental constraints, and use compositional completion to find
possible values of qr . Cost of constraint propagation: Compositional
completion. Assumptions beside answer: r q.

This gives us the possible inferences shown in table 6.17.

pr
pq qp B BR R FR F FL L BL
B F ∀ B,BR,R,FR,F B,BR,R,FR,F F F F F,FL,L,BL,B F,FL,L,BL,B

BR F F,FL,L,BL,B B,F B,BR,R,FR,F F F F F,FL,L F,FL,L
R F F,FL,L,BL,B F,FL,L,BL,B ∀ F F F F,FL,L F,FL,L
R FL L,BL,B L,BL,B ∀ FR,F,FL F F F,FL,L L
R L L,BL,B L,BL,B ∀ R,FR,F,FL,L R,FR,F,FL,L F,FL,L F,FL,L L

FR FL L,BL,B L,BL,B L,BL,B FL F - - -
FR L L,BL,B L,BL,B L,BL,B,BR,R R,FL,L R,FR,F,FL,L FL,L L L
F L L,BL,B L,BL,B L,BL,B,BR,R L,BL,B,BR,R ∀ L L L
F BL L,BL,B B B,BR,R B,BR,R ∀ L L L
F B L,BL,B,BR,R B,BR,R B,BR,R B,BR,R ∀ L,BL,B L,BL,B L,BL,B
F BR B,BR,R R R R ∀ L,BL,B L,BL,B B
F R B,BR,R R R R ∀ L,BL,B,BR,R L,BL,B,BR,R B,BR,R

FL R B,BR,R R R R,FR R,FR,F,FL,L R,FR,L L,BL,B,BR,R B,BR,R
FL FR B,BR,R - - - F FR B,BR,R B,BR,R
L R B,BR,R R R,FR,F R,FR,F R,FR,F,FL,L R,FR,F,FL,L ∀ B,BR,R
L FR B,BR,R R R,FR,F F F FR,F,FL ∀ B,BR,R
L F B,BR,R,FR,F R,FR,F R,FR,F F F F ∀ B,BR,R,FR,F

BL F B,BR,R,FR,F R,FR,F R,FR,F F F F F,FL,L,BL,B B,F

Table 6.17: Table showing possible values of qr when pq, qp and pr are
known, as shown in figure 6.33

The final situation is the one shown in figure 6.34, where we know
pq, qp and pr , and wish to find r q.
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• Mapping pq and qp as compositional relations - Both compositional
relations are known. We take the converse of pr to get placemental
constraints, and use these to find possible values of r q. Cost
of constraint propagation: One conversion. Assumptions beside
answer: r p.

• Mapping pr and r p as compositional relations - One compositional
relation is known, we take its converse to get these constraints.
Placemental constraint qp gives us possible values of qr , which again
we take the converse of to get possible values of r q. Cost of constraint
propagation: Two conversions. Assumptions beside answer: r p and
qr .

• Mapping r q and qr as compositional relations - We have both
placemental relations, and use compositional completion to find
possible values of r q. Cost of constraint propagation: Compositional
completion. Assumptions beside answer: qr .

The resulting possibilities are shown in table 6.18.

pr
pq qp B BR R FR F FL L BL
B F ∀ F,FL,L,BL,B F,FL,L,BL,B L,BL,B L,BL,B,BR,R B,BR,R B,BR,R,FR,F B,BR,R,FR,F

BR F B,BR,R,FR,F B,F F,FL,L,BL,B L,BL,B L,BL,B,BR,R R R,FR,F R,FR,F
R F B,BR,R,FR,F B,BR,R,FR,F ∀ L,BL,B,BR,R L,BL,B,BR,R R R,FR,F R,FR,F
R FL R,FR,F R,FR,F ∀ L,BL,B,BR,R L,BL,B,BR,R R R,FR,F R,FR,F
R L R,FR,F R,FR,F ∀ L,BL,B,BR,R L,BL,B,BR,R R R,FR,F R,FR,F

FR FL F F R,FR,F R B,BR,R - - -
FR L F F R,FR,F,FL,L R,FL,L L,BL,B,BR,R R,FR R,FR,F F
F L F F R,FR,F,FL,L R,FR,F,FL,L ∀ R,FR,F R,FR,F F
F BL F F F,FL,L F,FL,L ∀ R,FR,F R,FR,F F
F B F F F,FL,L F,FL,L ∀ R,FR,F R,FR,F F
F BR F F F,FL,L F,FL,L ∀ R,FR,F R,FR,F F
F R F F F,FL,L F,FL,L ∀ R,FR,F,FL,L R,FR,F,FL,L F

FL R F F F,FL,L FL,L L,BL,B,BR,R R,FR,L R,FR,F,FL,L F
FL FR F - - - L,BL,B L F,FL,L F
L R F,FL,L F,FL,L F,FL,L L L,BL,B,BR,R L,BL,R,BR,R ∀ F,FL,L
L FR F,FL,L F,FL,L F,FL,L L L,BL,B,BR,R L,BL,B,BR,R ∀ F,FL,L
L F F,FL,L,BL,B F,FL,L F,FL,L L L,BL,B,BR,R L,BL,B,BR,R ∀ F,FL,L,BL,B

BL F F,FL,L,BL,B F,FL,L F,FL,L L L,BL,B,BR,R B,BR,R B,BR,R,FR,F B,F

Table 6.18: Table showing possible values of r q when pq, qp and pr are
known, as shown in figure 6.34

What, then, of situations where the relation in question is a converse
of one of the known ones? When dealing with three known relations, this
premise opens up for more cases than we saw in the section dealing with
two known relations. Figure 6.35 shows all these possibilities. In the
situations shown in figure 6.35a and 6.35b we only need to consider the
combinations of pq and qp that we find in the composition table, as we did
in our previous cases of three known relations. In the situation shown in
figure 6.35c we only need to check the combinations of known relations
where pq and qr allow r p, according to table 6.11, while the three last
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situations require us to check the combinations of known relations where
pq and qr allow pr according to table 6.12.

(a) (b) (c)

(d) (e) (f)

Figure 6.35: All possible situations where three relations are known and
the one in question is the converse of one of these

If we go through the results of all these cases, we find that the results are
the same as we find in the conversion table, with the expected exceptions
similar to those we found for the cases we saw in figure 6.30.

6.5.4 Four known relations

When moving onto situations where four of the relations are known we get
only one case where the relation in question isn’t the converse of any of the
known ones, the one shown in figure 6.36, where we know pq, qp,r q and
qr and wish to find pr .

• Mapping pq and qp as compositional relations - We have both
compositional relations, and the placemental relation r q. We use
this to get possible values of r p, and take the conversion of these
the get possible values of pr . Cost of constraint propagation: One
conversion. Assumptions beside answer: r p.

• Mapping pr and r p as compositional relations - Here we have
both placemental relations, and use compositional completion to find
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Figure 6.36

possible values of pr . Cost of constraint propagation: Compositional
completion. Assumptions beside answer: r p.

• Mapping r q and qr as compositional relations - We have both
compositional relations, and placemental relation pq. Applying these
to the composition table gives us possible values of placemental
relation pr . Cost of constraint propagation: None. Assumptions
beside answer: None.

This leaves us the possibilities shown in table 6.19. This table is, not
surprisingly, rather large, and has been split into three separate ones.

Inspecting this table, we find that it has the same symmetric properties
that we saw in tables 6.12 and 6.11, but here the symmetry is between
compositional pairs rather than single relations.

6.5.5 Five known relations

The only cases that are left are five known relations, which will simply
consist of listing all possible combinations of relations. If we do calculate
these possibilities, by going through all eight possible values for all
six relations in turn, and apply the constraints we’ve developed for all
mappings in each case, then we’d find that there are a total of 1290
combinations that are left. This is quite a drop from our initial 86

possibilities. Such a calculation is costlier than the ones we’ve shown here,
and the resulting complete table will not be reproduced here.

Table 6.19: (Next page) Table showing possible values of pr when pq, qp, qr
and r q are known, as shown in figure 6.36
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qr B BR R FR
pq qp r q F F F FL L FL L
B F L,BL,B,BR,R B,BR,R B,BR,R B,BR,R B,BR,R R B,BR,R

BR F B,BR,R R R R R - R
R F B,BR,R R R R R - R
R FL B,BR,R R R R R - R,FR
R L B,BR,R R R R R,FR,F - R,FR,F

FR FL R - - - - - -
FR L B,BR,R R R R,FR R,FR,F - F
F L B,BR,R,FR,F R,FR,F R,FR,F R,FR,F R,FR,F - F
F BL B,BR,R,FR,F R,FR,F R,FR,F R,FR,F R,FR,F - F
F B ∀ B,BR,R,FR,F B,BR,R,FR,F R,FR,F R,FR,F F F
F BR F,FL,L,BL,B B,F B,BR,R,FR,F R,FR,F R,FR,F F F
F R F,FL,L,BL,B F,FL,L,BL,B ∀ R,FR,F,FL,L R,FR,F,FL,L F F

FL R L,BL,B L,BL,B L,BL,B,BR,R R,L R,FR,F,FL,L FR F,FL
FL FR L L L,BL,B L L - FL
L R L,BL,B L,BL,B L,BL,B,BR,R L,BL,B,BR,R ∀ R R,FR,F,FL,L
L FR L,BL,B L,BL,B L,BL,B,BR,R L,BL,B,BR,R L,BL,B,BR,R R R,FL,L
L F L,BL,B L,BL,B L,BL,B,BR,R L,BL,B,BR,R L,BL,B,BR,R B,BR,R L,BL,B,BR,R

BL F L,BL,B B B,BR,R B,BR,R B,BR,R R B,BR,R
qr F FL

pq qp r q L BL B BR R R FR
B F B,BR,R,FR,F B,BR,R,FR,F ∀ F,FL,L,BL,B F,FL,L,BL,B L,BL,B L

BR F R,FR,F R,FR,F B,BR,R,FR,F B,F F,FL,L,BL,B L,BL,B L
R F R,FR,F R,FR,F B,BR,R,FR,F B,BR,R,FR,F ∀ L,BL,B,BR,R L,BL,B
R FL R,FR,F R,FR,F R,FR,F R,FR,F R,FR,F,FL,L R,FR,L L
R L R,FR,F R,FR,F R,FR,F R,FR,F R,FR,F,FL,L R,FR,F,FL,L L

FR FL - - F F F FR -
FR L F F F F F FR,F FL
F L F F F F F F F
F BL F F F F F F F
F B F F F F F F F
F BR F F F F F F -
F R F F F F F F -

FL R F F F F F F -
FL FR F F F - - - -
L R R,FR,F,FL,L F,FL,L F,FL,L F,FL,L F,FL,L F,FL,L -
L FR R,FR,F,FL,L F,FL,L F,FL,L F,FL,L F,FL,L FL,L -
L F ∀ F,FL,L,BL,B F,FL,L,BL,B F,FL,L F,FL,L L -

BL F B,BR,R,FR,F B,F F,FL,L,BL,B F,FL,L F,FL,L L -
qr L BL

pq qp r q R FR F F
B F L,BL,B L,BL,B L,BL,B L,BL,B

BR F L,BL,B L,BL,B L,BL,B B
R F L,BL,B,BR,R L,BL,B,BR,R L,BL,B,BR,R B,BR,R
R FL L,BL,B,BR,R L,BL,B,BR,R L,BL,B,BR,R B,BR,R
R L ∀ L,BL,B,BR,R L,BL,B,BR,R B,BR,R

FR FL R R B,BR,R R
FR L R,FR,F,FL,L R,L L,BL,B,BR,R B,BR,R
F L R,FR,F,FL,L R,FR,F,FL,L ∀ B,BR,R,FR,F
F BL F,FL,L F,FL,L F,FL,L,BL,B B,F
F B F,FL,L F,FL,L F,FL,L,BL,B F,FL,L,BL,B
F BR F,FL,L F,FL,L F,FL,L F,FL,L
F R F,FL,L F,FL,L F,FL,L F,FL,L

FL R F,FL,L FL,L L L
FL FR - - - -
L R F,FL,L L L L
L FR L L L L
L F L L L L

BL F L L L L
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Chapter 7

Conclusion

We’ve seen how we were able to develop a system for qualitative reasoning
using Levinson’s frames of reference. The problem turned out to be similar
to, but more complex than the system for Allen’s algebra. This is not
unexpected, as it involves a move from a one-dimensional time line to
a two-dimensional field, and we should comment on what the transition
involves.

In the system using the relative frame of reference, the relations do not
have unique converted values. This is the main reason for the increase in
complexity, as the relations involved in any configuration doubles, giving
us six relations when there are three objects involved. This was not the
case in Allen’ algebra, nor in RCC8 or in the calculus for the absolute
frame of reference that we developed. This required a composition table
different from the one Allen and Freksa presents, one in which four of the
six relations are represented. By applying three different mappings to this
composition table for each problem we were still able to limit the possible
values of unknown relations.

In chapter 6 we mentioned that the tables presented in part 6.5 do not
contain information about the assumed values of relations not expressed in
the tables. This means that the tables presented are not ideal for iterative
application, but rather that the general approach described earlier in the
chapter should be used, as this approach aims to conserve consistency of
all relations involved in a solution set. As such, part 6.5 should be seen
as an exhaustive display of the results that our general approach gives us
rather than tools for further appliance.

Levinson states that the relative frame of reference supports transitivity
if the observer is kept constant. He quotes Levelt[10] on this, in which we
find the claim that “left” and “right” are necessarily transitive in these cases.
We saw in table 6.11 that this isn’t the case in our system. Our conclusion on
this matter is a result of strictly applying a certain coordinate system to all
objects in the configuration, a system of which Levelt has no counterpart.

It can be argued that some of the cases we’ve looked at differ from how
natural language is used, something that was an initial aim. This is mostly
shown if the combination of relations in a configuration of more than
two objects are taken into consideration, any single relation between two
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objects has its firm backing in Levinson’s system. The result on transitivity
mentioned above is an example of this, where the single relations in our
system have a direct correspondence with the underlying spatial semantics,
while the results we get differs from linguistic conclusions. This will
always be a challenge in a system of reasoning where the basic entities
and relations are drawn from natural language: Expressions are translated
into formal symbols, and some form of calculation is carried out on these
symbols. The results of such calculation will be of the same kind as the
initial input, and as such they can be translated back to natural language,
but we may not agree that the results make sense. This happens because
the formal processing typically utilizes a set of methods and tools for which
there are no counterparts in natural language, and which may differ from
how we would carry out reasoning ourselves.

7.1 Further research

It would be interesting to see whether the system developed for the relative
frame of reference could be expanded to deal with configurations involving
more than three objects. As all such configurations could be interpreted
as a set of configurations of three objects it should be possible to apply the
constraints we have, but it could also be that including more objects create
new possibilities of constraining the possible domain of unknown values.
At any rate, such an expansion should be based on the general approach
described in chapter 6 rather than the tables of specific results in 6.5, as
mentioned above.

Another possible area of further research is other kinds of frames of
reference. There are many possibilities here, for one thing the distribution
of angles could be altered from the even 90◦ portions we’ve seen here. One
simplistic frame is one where we partition the plane into two halves for
each object, the orientation of the dividing line being the same for all such
coordinate systems. This would make it impossible to differentiate between
objects if they we’re placed in such a manner that their partitionings
overlapped completely, even if they we’re placed at different positions in
the plane. If we allow one of these halves to include the line on which the
object is placed, then we could introduce a relation like “north of or equal
to”, and we could investigate what properties such a relation would lead to.

Such a system could be expanded to one where two coordinate systems,
each partitioning the plane in half and one running orthogonal to the other,
are superimposed on the same object. This would create sets of relations.
In an absolute case we would get a familiar coordinate system, and it could
be investigated what qualitative properties such a system would produce.
The relative case is shown in figure 7.1, where the horizontal line marks the
division between “behind q” and “in front of q”, while the horizontal one,
anchored to o, marks the division between “left of q” and “right of q”. This
would lead to other kinds of compositions than the ones we found in our
system, figure 7.2 shows a configuration where we have both “p is in front
of q” and “q is in front of p”.
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Figure 7.1

Figure 7.2
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It would also be interesting to see whether a temporal system like Allen’s
algebra and the current systems could be combined, enabling calculation
over expressions involving dynamic spatial expressions. This could simply
mean a number of static expressions arranged chronologically, but an
investigation into temporal semantics would give a clearer impressions of
which features that would have to be represented.

We mentioned above that the general method is a better tool for further
work than the result tables. This matter could also be investigated further.
If the table being used is the complete one showing all 1290 possible
combinations of the six relations involved, then consistency would of course
be ensured, but so would the application of the general method.

As we mentioned in the introduction, it could be that the calculi
developed in this thesis could serve as a computational component in the
part of Bateman’s ontology[3] that is concerned with Levinson’s frames of
reference.

84



Bibliography

[1] James F Allen. ‘Maintaining knowledge about temporal intervals’.
In: Communications of the ACM 26.11 (1983), pp. 832–843.

[2] John A Bateman, Bernardo Magnini and Giovanni Fabris. ‘The
generalized upper model knowledge base: Organization and use’. In:
Towards very large knowledge bases (1995), pp. 60–72.

[3] John A Bateman et al. ‘A linguistic ontology of space for natural lan-
guage processing’. In: Artificial Intelligence 174.14 (2010), pp. 1027–
1071.

[4] Eliseo Clementini. ‘Directional relations and frames of reference’. In:
GeoInformatica 17.2 (2013), pp. 235–255.

[5] Eliseo Clementini, Paolino Di Felice and Daniel Hernández. ‘Qualit-
ative representation of positional information’. In: Artificial Intelli-
gence 95.2 (1997), pp. 317–356.

[6] Christian Freksa. ‘Temporal reasoning based on semi-intervals’. In:
Artificial intelligence 54.1 (1992), pp. 199–227.

[7] Christian Freksa. ‘Using orientation information for qualitative
spatial reasoning’. In: Theories and methods of spatio-temporal
reasoning in geographic space (1992), pp. 162–178.

[8] Ronald W Langacker. Foundations of cognitive grammar: Theoret-
ical prerequisites. Vol. 1. Stanford university press, 1987.

[9] Ronald W Langacker. Grammar and conceptualization. Vol. 14. De
Gruyter Mouton, 1999.

[10] Willem JM Levelt. ‘Some perceptual limitations on talking about
space’. In: Limits in perception. Utrecht, The Netherlands: VNU
Science Press, 1984, pp. 323–358.

[11] Stephen C Levinson. Space in language and cognition: Explorations
in cognitive diversity. Vol. 5. Cambridge University Press, 2003.

[12] Michael Levit and Deb Roy. ‘Interpretation of spatial language in a
map navigation task’. In: Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on 37.3 (2007), pp. 667–679.

[13] Gérard F Ligozat. ‘Qualitative triangulation for spatial reasoning’. In:
Spatial Information Theory A Theoretical Basis for GIS. Springer,
1993, pp. 54–68.

85



[14] Gérard F Ligozat. ‘Reasoning about cardinal directions’. In: Journal
of Visual Languages & Computing 9.1 (1998), pp. 23–44.

[15] Reinhard Moratz and Thora Tenbrink. ‘Spatial reference in linguistic
human-robot interaction: Iterative, empirically supported develop-
ment of a model of projective relations’. In: Spatial cognition and
computation 6.1 (2006), pp. 63–107.

[16] David A Randell, Zhan Cui and Anthony G Cohn. ‘A spatial logic
based on regions and connection’. In: KR 92 (1992), pp. 165–176.

[17] Urs-Jakob Rüetschi and Sabine Timpf. ‘Modelling wayfinding in
public transport: Network space and scene space’. In: Spatial Cog-
nition IV. Reasoning, Action, Interaction. Springer, 2005, pp. 24–
41.

[18] Alexander Scivos and Bernhard Nebel. ‘Double-crossing: Decidabil-
ity and computational complexity of a qualitative calculus for nav-
igation’. In: Spatial Information Theory. Springer, 2001, pp. 431–
446.

[19] Alexander Scivos and Bernhard Nebel. ‘The Finest of its Class: The
Natural Point-Based Ternary Calculus {\ mathcal LR} for Qualitative
Spatial Reasoning’. In: Spatial Cognition IV. Reasoning, Action,
Interaction. Springer, 2005, pp. 283–303.

[20] Leonard Talmy. How language structures space. Springer, 1983.

[21] Leonard Talmy. ‘The fundamental system of spatial schemas in
language’. In: From Perception to Meaning: Image Schemas in
Cognitive Linguistics, B. Hamp, Ed. Mouton de Gruyter (2005).

[22] Steffen Werner, Bernd Krieg-Brückner and Theo Herrmann. ‘Mod-
elling navigational knowledge by route graphs’. In: Spatial cognition
II. Springer, 2000, pp. 295–316.

[23] Wikipedia. Inscribed angle — Wikipedia, The Free Encyclopedia.
[Online; accessed 29-April-2014]. 2014. URL: http : / /en .wikipedia .
org/w/index.php?title=Inscribed_angle&oldid=605513567.

86


