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Abstract

Monotone convex operators and time-consistent systems of oper-
ators appear naturally in stochastic optimization and mathematical
finance in the context of pricing and risk measurement. We study the
dual representation of a monotone convex operator when its domain is
defined on a subspace of Lp, with p ∈ [1,∞], and we prove a sandwich
preserving extension theorem. These results are then applied to study
systems of such operators defined only on subspaces. We propose var-
ious sandwich preserving extension results depending on the nature of
time: finite discrete, countable discrete, and continuous. Of particular
notice is the fact that the extensions obtained are time-consistent.

1 Introduction

The literature on extension theorems for functionals features some funda-
mental results. For all we just mention two: first is the Hahn-Banach the-
orem and its various versions, that provides e.g. a majorant preserving
extension and then the König theorem that provides a sandwich preserving
one (see e.g. [18]). Both cases give results for linear functionals with val-
ues in R. This paper presents sandwich preserving extension theorems for
convex monotone operators defined in a subspace L in Lp(B) with values in
Lp(A) (A ⊆ B), for p ∈ [1,∞].
Other results of this type are studied in the case of linear operators, see [2]
for p ∈ [1,∞) and [9] for p =∞. Indeed the need for working in an operator
setting taking values in Lp(A) is motivated by applications to mathematical
finance: pricing and risk measurement. To explain for any two fixed points

∗UMR 7641 CNRS - Ecole Polytechnique. Ecole Polytechnique, 91128 Palaiseau Cedex,
France. Email: jocelyne.bion-nadal@cmap.polytechnique.fr
†Centre of Mathematics for Applications (CMA), Department of Mathematics, Univer-

sity of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo Norway. Email: giulian@math.uio.no
‡Norwegian School of Economics and Business Administration (NHH), Helleveien 30,

N-5045 Bergen, Norway.

1



in time, say s ≤ t, a financial asset with payoff X ∈ Lt ⊆ Lp(Ft) has a price
xs,t(X) evaluated at s. This value is xs,t(X) ∈ Lp(Fs), where Fs ⊆ Ft.
These price operators are linear if the market model benefits of assumptions
of smoothness, such as no transaction costs, no liquidity risk, perfect clearing
of the market, no constrains in trading, etc. However, they are convex (when
considered from the seller’s perspective, the so-called ask-prices) when such
market model assumptions are not fulfilled. Convex operators of such form
also appear as value processes in the case of dynamic stochastic optimization
and often this is in fact a way to obtain such price processes.
It is reasonable to have domain of these operators defined on a subspace of
the corresponding Lp space. In fact, in general, not all positions are actually
available for purchase in the market. It is only in the idealistic assumption
of a complete market that we find that all positions are always feasible, i.e.
the subspace is actually the whole Lp space. Strictly speaking, though less
discussed in the literature, also the risk measurement is usually performed
more reasonably on a subspace of Lp. In this case the subspace represents
those risks for which there is grounded measurement in terms of e.g. sta-
tistical knowledge, time series analysis, and general good information. For
risks outside this set, a too conservative evaluation of risk can be made with
the result of higher (even too high to be competitive) hedging prices asked.
This is relevant from an insurance perspective.

When dealing with a dynamic approach to pricing, we consider an informa-
tion flow represented by a filtration (Ft)t∈[0,T ] (T <∞) and then a system of
price operators is naturally appearing: (xs,t)s,t∈T , where T ⊆ [0, T ]. For the
fixed times s, t : s ≤ t the price operator is xs,t : Lt −→ Lp(Fs) where the
domain is the subspace Lt ⊆ Lp(Ft). An important necessary property of
these system of operators is time-consistency, which models the consistency
of prices or measures of risk over time. Namely, for s ≤ t ≤ u and X ∈ Lu,
the evaluation xs,u(X) at time s is required to coincide with the two steps
evaluation xs,t(xt,u(X)).
The question we address is how to extend the whole family of operators,
so that the domains reach the whole Lp(Ft) in such manner that time-
consistency is preserved together with some sandwich property. The sand-
wich property itself is a control from above and below reasonably given on
such operators, as it happens, in their own context, for the Hahn-Banach and
König theorems. In applications this may assume various meanings. In [3],
[2], [15] there are different studies on some aspects of the fundamental theo-
rem of asset pricing with controls on tail events, first in a multiperiod market
and then in a continuous time market. In [9] the majorant and minorant
operators are linked to no-good-deal dynamic bounds and the corresponding
pricing measures. From the application perspective, the feasibility of these
pricing rules is directly linked to the existence of the corresponding time-
consistent sandwich preserving extension of the system of price operators.
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So far this connection has been explored only for linear pricing. The present
paper provides fundamental results to address some questions related to
convex pricing.
We stress that to obtain a time-consistent extension it is not enough to
collect all the extensions of the single operators in one family. It is only via
some careful procedure of extension that we can obtain such result.

Also it is important to mention that crucial for the development of this
theory is the representation result we obtain for convex operators defined
on a subspace L of Lp(B) taking values in Lp(A) (A ⊆ B). Representation
theorems for convex operators have been studied in the context of risk-
measures in the recent years. The first results were obtained for the static
case, corresponding to operators with real values (A trivial). Here we have
to mention [17] (for p ∈ [1,∞]) and [16] (for p = ∞), where the domain
of the operators is the whole Lp(B) space, and the paper [4], where a very
general framework is proposed, which also includes the case of a subspace
L of Lp(B) (for p ∈ [1,∞]) with lattice property on L. In both cases the
mappings take real values. We also mention [5] and [14] for a representation
in the case of operators defined on the whole L∞(B) with values in L∞(A)
studied in the context of conditional risk measures. Our contribution in
this area provides a representation theorem for convex operators defined on
L ⊆ Lp(B) (for p ∈ [1,∞]) without requiring the lattice property.

The paper is organized as follows. In Section 2 we give a precise presen-
tation of the operators, the spaces, and the topology we consider. Then
the representation theorem is proved. Section 3 is dedicated to the sand-
wich extension of such convex operators. The sequel of the paper deals with
time-consistent systems of operators. In Section 4 the sandwich extension
is studied in the case of discrete time. In Section 5 we reach out to obtain
the sandwich extension for continuous time systems of operators.

2 Convex operators in Lp and their representation

Let (Ω,B, P ) be a complete probability space. Here we consider B to be the
P -completed σ-algebra generated by a countable family of sets in Ω. Also
let A ⊆ B be a P -augmented countably generated σ-algebra1. For example,
any Borel σ-algebra of a metrizable separable space completed by the P -null
events satisfies this assumption.

1This assumption will be implicitly used in the sandwich extension theorems. It is not
necessary for the upcoming representation theorem.
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For any p ∈ [1,∞] we consider the Lp(B) := Lp(Ω,B, P ) of real valued
random variables with the finite norms:

‖X‖p :=

{
(E[|X|p])1/p, p ∈ [1,∞),

esssup|X|, p =∞.

We equip these spaces with a topology. In the cases p ∈ [1,∞), we consider
the usual topology derived from the norm. In the case p = ∞, we fix the
weak* topology. We will denote by the superscript “+”, e.g. Lp(B)+, the
cones of the non-negative random variables with the corresponding induced
topology.
In the sequel we deal with a linear sub-space L ⊆ Lp(B). We always consider
L equipped with the topology induced by the corresponding Lp(B) space.
Motivated by the applications we assume that:

i) 1 ∈ L,

ii) for the σ-algebra A ⊆ B we have the property that 1AX ∈ L for every
A ∈ A and every X ∈ L.

Fix p ∈ [1,∞] and the sub-space L ⊆ Lp(B) as above. We consider an
operator

x : L −→ Lp(A) (2.1)

that is:

• monotone, i.e. for any X ′, X ′′ ∈ L,

x(X ′) ≥ x(X ′′), X ′ ≥ X ′′,

• convex, i.e. for any X ′, X ′′ ∈ L and λ ∈ [0, 1],

x
(
λX ′ + (1− λ)X ′′

)
≤ λx(X ′) + (1− λ)x(X ′′)

• lower semi-continuous, i.e. for any X ∈ L and any sequence (Xn)n in
L with limit X,

lim inf
n→∞

x(Xn) ≥ x(X)

• weak A-homogeneous, i.e. for all X ∈ L

x(1AX) = 1Ax(X), A ∈ A,

• projection property

x(f) = f, f ∈ Lp(A) ∩ L.
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In particular we have x(0) = 0 and x(1) = 1.

Note that, if p ∈ [1,∞) and the operator x is monotone and linear (as in
[2]) the assumption of weak A-homogeneity is equivalent to A-homogeneity,
i.e. for all X ∈ L, we have

x(ξX) = ξx(X)

for all ξ ∈ Lp(A) such that ξX ∈ L. If p =∞ and the operator is linear and
semi-continuous, then the same result holds (see [9]).

2.1 Representation of a convex operator

Our first result is a representation theorem for Lp-valued convex operators
of the type above. This can be regarded as a non-trivial extension of [20,
Theorem 5]. The result by Rockafellar is written for functionals and can be
retrieved setting A to be the trivial σ-algebra up to P -null events.

Theorem 2.1. Let x be an operator of the type (2.1). Then the following
representation holds:

x(X) = esssupV ∈V

{
V (X)− x∗(V )

}
, X ∈ L, (2.2)

where
x∗(V ) := esssupX∈L

{
V (X)− x(X)

}
, V ∈ V,

and V is the space of the linear, non-negative, continuous, A-homogeneous
operators V : Lp(B) −→ Lp(A) such that E[x∗(V )] <∞.
Moreover, the operator x also admits representation in the form:

x(X) = esssupV ∈V

{
V (X)− x∗(V )

}
, X ∈ L, (2.3)

where
x∗(V ) := esssupX∈L

{
V (X)− x(X)

}
, V ∈ V, (2.4)

and V is the space of the linear, non-negative, continuous, A-homogeneous
operators V : Lp(B) −→ Lp(A).

For future reference we borrow the terminology proper of the literature on
risk measures and we call the operator x∗ minimal penalty.

Before the proof of the theorem we present a couple of technical lemmas.
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Lemma 2.2. If V = 1AV1 +1AcV2, for V1, V2 ∈ V, A ∈ A, and Ac := Ω\A,
then

x∗(V ) = 1Ax
∗(V1) + 1Acx∗(V2). (2.5)

Moreover the set
{
V (X)− x∗(V ) : V ∈ V

}
is a lattice upward directed.

Proof. For any X,Y ∈ L we have

1A
(
V1(X)− x(X)

)
+ 1Ac

(
V2(Y )− x(Y )

)
= V (1AX + 1AcY )− x(1AX + 1AcY )

≤ esssupZ∈L
{
V (Z)− x(Z)

}
.

Hence,

1AesssupX∈L
{
V1(X)− x(X)

}
+ 1AcesssupY ∈L

{
V2(Y )− x(Y )

}
≤ esssupZ∈L

{
V (Z)− x(Z)

}
.

Namely, we have 1Ax
∗(V1) + 1Acx∗(V2) ≤ x∗(V ). On the other hand, for

any Z ∈ L, we have

V (Z)− x(Z) = 1A
(
V1(Z)− x(Z)

)
+ 1Ac

(
V2(Z)− x(Z)

)
≤ 1AesssupZ∈L

{
V1(Z)− x(Z)

}
+ 1AcesssupZ∈L

{
V2(Z)− x(Z)

}
.

Therefore, x∗(V ) ≤ 1Ax
∗(V1) + 1Acx∗(V2). So (2.5) holds.

To prove the lattice property, it is enough to consider for any V1, V2 ∈ V, the
set A :=

{
V1(X) − x∗(V1) ≥ V2(X) − x∗(V2)

}
∈ A and V = 1AV1 + 1AcV2.

From (2.5) we have that:

V (X)− x∗(V ) = 1A
(
V1(X)− x∗(V1)

)
+ 1Ac

(
V2(X)− x∗(V2)

)
= sup

{
V1(X)− x∗(V1), V2(X)− x∗(V2)

}
.

By this we end the proof.

Lemma 2.3. For any V ∈ V, the set
{
V (X)− x(X) : X ∈ L

}
is a lattice

upward directed.

Proof. We consider X1, X2 ∈ L and we set A :=
{
V (X1)−x(X1) ≥ V (X2)−

x(X2)
}
∈ A. Consider X = 1AX1 + 1AcX2. Then

V (X)− x(X) = 1A
(
V (X1)− x(X1)

)
+ 1Ac

(
V (X2)− x(X2)

)
= sup

{
V (X1)− x(X1), V (X2)− x(X2)

}
.

By this we end the proof.

We are now ready to prove Theorem 2.1.
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Proof. Define

h(X) := E
[
x(X)

]
, X ∈ L.

Note that h is a non-negative, monotone, convex, lower semi-continuous,
and proper (i.e., h(X) > −∞ and finite for some X, see [20, p. 1]) func-
tional. Thus, by application of [20, Theorem 4 and Theorem 5], we have the
representation

h(X) = sup
v∈L∗

{
v(X)− h∗(v)

}
(2.6)

where
h∗(v) := sup

X∈L

{
v(X)− h(X)

}
is the Fenchel transform of h and L∗ is the set of continuous linear forms
on L. Note that we can restrict to v ∈ L∗ such that h∗(v) < ∞, and in
this case v is a non-negative linear form. Recall that we always consider the
usual Lp-norm topology in the case p ∈ [1,∞) and the weak* topology in
the case p =∞. Then we distinguish the two cases.
If p ∈ [1,∞), the classical Hahn-Banach theorem guarantees that v(X),
X ∈ L, can be extended to a non negative continuous linear form v(X),
X ∈ Lp(B), and the extension admits the representation

v(X) = E
[
fX
]
, X ∈ Lp(B),

for some f ∈ Lq(B) with q = p(p− 1)−1 and f ≥ 0.
If p =∞, then we refer to a version of the Hahn-Banach theorem for locally
convex topological spaces as in [10, Chapter II] and we proceed as follows.
Recall that the weak* topology on L∞(B), defined by the family of semi-
norms

pg(·) := E
[
g ·
]
, for every g ∈ L1(B) : g ≥ 0,

is locally convex. For every non-negative linear form v on L, continuous for
the weak* topology, there is a semi-norm pg such that

|v(X)| ≤ pg(X).

Hence, applying the above mentioned corollary, we can extend v to a non-
negative weak* continuous linear form on L∞(B). The extension admits the
representation

v(X) = E
[
fX
]
, X ∈ L∞(B),

for some f ∈ L1(B) such that f ≥ 0.
Therefore for p ∈ [1,∞], the convex functional h(X), X ∈ L, in (2.6) can
be rewritten as:

h(X) = sup
f∈Lq(B):f≥0

{
E[fX]− h∗(E[f ·])

}
= sup

f∈W

{
E[fX]− h∗(E[f ·])

} (2.7)
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where
W :=

{
f ∈ Lq(B) : f ≥ 0 , h∗(E[f ·]) <∞

}
. (2.8)

Note that W 6= ∅, because h is real valued.
We remark immediately that E[f |A] = 1, for every f ∈ W. Indeed, consider
any A ∈ A and X = 1A. For any α ∈ R we have

E[f α1A]− h∗(E[f ·]) ≤ h(α1A) = E[x(α1A)] = αE[1A].

Hence,
α
(
E[f1A]− P (A)

)
≤ h∗(E[f ·]) <∞.

Thus taking α → ±∞, we see that E[f1A] = P (A), A ∈ A. Namely
E[f |A] = 1.
For every f ∈ W, denote

V (X) := E[fX|A], X ∈ Lp(B). (2.9)

Hereafter we show that V ∈ V. First of all note that the operator V is
naturally non-negative, linear, and A-homogeneous. It is also continuous.
Indeed for the case p ∈ [1,∞) it is immediate from the conditional Hölder
inequality.
For the case p =∞, we consider a neighborhood of E[fX|A] for the weak*
topology:

U :=
{
Y ∈ L∞(A) : ∀gi ∈ L1(A), i = 1, ..., h, |E

[
giE[fX|A

]
−E
[
giY

]
| < ε

}
Since f ≥ 0 and E[f |A] = 1, then gif ∈ L1(B), i = 1, ..., h, and the set

Ũ :=
{
Z ∈ L∞(B) : ∀gi ∈ L1(A), i = 1, ..., h, |E

[
gifX

]
− E

[
gifZ

]
| < ε

}
is a neighborhood of X in L∞(B) in the weak* topology and for all Z ∈ Ũ ,
E[fZ|A] ∈ U . This proves the continuity of V for the weak* topology. Thus
V belongs to V.
Define x∗(V ) := esssupX∈L{V (X) − x(X)}, for V in (2.9). We show that
E[x∗(V )] <∞. From the lattice property of Lemma 2.3, from [19, Prop VI
1.1.], and the monotone convergence theorem, we have:

E[x∗(V )] = sup
X∈L

{
E[V (X)]− E[x(X)]

}
= sup

X∈L

{
E[fX]− h(X)

}
= sup

X∈L

{
v(X)− h(X)

}
= h∗(v) <∞.

Then we can conclude that V as in (2.9) is an element of V.
We are now ready to prove the representation (2.2). For every V ∈ V, define

x∗(V ) := esssupX∈L

{
V (X)− x(X)

}
.
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Note that from x(0) = 0, we have that x∗(V ) ≥ 0. For every V ∈ V and
X ∈ L, we have

x∗(V ) ≥ V (X)− x(X)

or, equivalently,
x(X) ≥ V (X)− x∗(V ).

Thus
x(X) ≥ esssupV ∈V

{
V (X)− x∗(V )

}
. (2.10)

To conclude we need to show the reverse inequality. To this aim it is enough
to show that

E
[
x(X)

]
≤ E

[
esssupV ∈V

{
V (X)− x∗(V )

}]
, X ∈ L. (2.11)

Indeed we have:

E[x(X)] = h(X) = sup
f∈W

{
E[fX]− h∗(E[f ·])

}
= sup

f∈W

{
E[E[fX|A]]− h∗(E[f ·])

}
≤ sup

V ∈V

{
E[V (X)]− E[x∗(V )]

}
= E[esssupV ∈V

{
V (X)− x∗(V )

}
]

where the last equality is due to the lattice property of Lemma 2.2 and [19,
Proposition VI.1.1]. We have then proved the representation (2.2).
To prove the representation (2.3), we note that V ⊆ V. From equation (2.2)
we have

x(X) = esssupV ∈V

{
V (X)− x∗(V )

}
≤ esssupV ∈V

{
V (X)− x∗(V )

}
.

From the definition of x∗ in (2.4) we have that x∗(V ) ≥ V (X)− x(X), that
is x(X) ≥ V (X)−x∗(V ), for every V ∈ V and X ∈ L. So, we conclude that

x(X) ≥ esssupV ∈V
{
V (X)− x∗(V )

}
.

By this we end the proof.

Corollary 2.4. Let x be of type (2.1). Then the following representation
holds:

x(X) = esssupf∈D

{
E
[
fX|A

]
− x∗(E

[
f · |A

]
)
}
, X ∈ L, (2.12)

where
D :=

{
f ∈ Lq(B) : f ≥ 0, E[f |A] = 1

}
(2.13)
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with q = p(p− 1)−1 and

x∗(E
[
f · |A

]
) := esssupX∈L

{
E
[
fX|A

]
− x(X)

}
, f ∈ D.

Proof. From [2, Theorem 1.1], for the case p ∈ [1,∞), and [9, Theorem
3.3 and Proposition 3.14], for p = ∞, we know that there is a one-to-one
relationship between V and D. Then the results follow directly from the
representation (2.3).

The representations of convex functionals were studied in the recent litera-
ture of risk measures in the case when the σ-algebra A is trivial. In [17] the
representation is studied for convex risk measures (i.e. convex, monotone,
lower semicontinuous, and translation invariant functionals) defined on the
whole Lp(B) with p ∈ [1,∞] with values in (−∞,∞). In [16] the study is
carried on for p = ∞. In both cases it is crucial that the functionals are
defined on the whole space. In [4], the representation is studied for convex,
monotone, order continuous functionals defined on Fréchet lattices and tak-
ing values in (−∞,∞]. This allows for a very general setup, however the
assumption on the lattice property is crucial. If A is non-trivial, then we
can refer to [5] and [14] for studies on the representation of convex oper-
ators in the context of conditional risk measures (i.e. convex, monotone,
lower semicontinuous, translation invariant operators) defined on the whole
L∞(B). Our contribution to this area provides a representation of convex
operators defined on a subspace L ⊆ Lp(B) with values in Lp(A), p ∈ [1,∞],
without the assumption of the lattice property.

3 Sandwich extension of a convex operator

In the sequel we consider a criterion for the existence of an extension x̄ of the
convex operator x to the whole Lp(B). The given x lies within two operators
m and M . This extension is sandwich preserving. There is no uniqueness of
such sandwich preserving extension, but our approach allows for an explicit
representation of at least one of them, denoted x̂, which turns out to be the
maximal.
First of all we introduce the minorant as a superlinear operator: m :
Lp(B)+ −→ Lp(A)+, i.e.,

m(X + Y ) ≥ m(X) +m(Y ), X, Y ∈ Lp(B)+,

m(λX) = λm(X), X ∈ Lp(B)+, λ ≥ 0,

and the majorant as a sublinear operator: M : Lp(B)+ −→ Lp(A)+, i.e.,

M(X + Y ) ≤M(X) +M(Y ), X, Y ∈ Lp(B)+,
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M(λX) = λM(X), X ∈ Lp(B)+, λ ≥ 0.

We remark that sublinearity implies M(0) = 0.
Moreover, in the case p =∞, we say that the mapM : L∞(B)+ −→ L∞(A)+

is regular if for every decreasing sequence (Xn)n in L∞(B) with Xn ↓ 0,
n→∞ P -a.s, we have

M(Xn)→ 0, n→∞ Pa.s. (3.1)

Theorem 3.1. Fix p ∈ [1,∞]. Let x : L −→ Lp(A) be of type (2.1).
Consider the weak A-homogeneous operators m,M : Lp(B)+ → Lp(A)+

such that m is superlinear and M is sublinear and, if p = ∞, M is also
regular. Assume the sandwich condition:

m(Z) + x(X) ≤M(Y ) (3.2)

∀X ∈ L ∀ Y,Z ∈ Lp(B)+ : Z +X ≤ Y.

Then x admits an extension x̂ (to the whole Lp(B)), which is convex, mono-
tone, lower-semicontinuous, weak A-homogeneous and satisfying the projec-
tion property such that (3.2) is preserved, i.e.

m(Z) + x̂(X) ≤M(Y ) (3.3)

∀X ∈ Lp(B) ∀ Y, Z ∈ Lp(B)+ : Z +X ≤ Y.

In particular the operator

x̂(X) := esssupV ∈VS

{
V (X)− x∗(V )

}
, X ∈ Lp(B), (3.4)

with
x∗(V ) := esssupX∈L

{
V (X)− x(X)

}
, V ∈ VS , (3.5)

is a sandwich preserving extension of x. Here above VS is the set of lin-
ear, continuous, non-negative, A-homogeneous operators on Lp(B) such that
E[x∗(V )] <∞, and satisfying the sandwich condition:

m(X) ≤ V (X) ≤M(X), X ∈ Lp(B)+.

Moreover, for any other such extension x̄, we have that

x̂(X) ≥ x̄(X), X ∈ Lp(B).

We call x̂ the maximal extension.

Proof. From Theorem 2.1, for all X ∈ L,

x(X) = esssupV ∈V
{
V (X)− x∗(V )

}
.
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Thus ∀V ∈ V, the restriction of V to L satisfies:

m(Z) + V (X)− x∗(V ) ≤M(Y ) ∀X ∈ L ∀Y,Z ∈ Lp(B)+ : Z +X ≤ Y.

Then, for all α > 0,

αm(Z) + αV (X)− x∗(V ) ≤ αM(Y )

Let A = {m(Z) + V (X)−M(Y ) ≥ 0},

0 ≤ E(1A(m(Z) + V (X)−M(Y )) ≤ 1

α
E(1Ax

∗(V )) <∞.

Let α→∞, it follows that 1A(m(Z) + V (X)−M(Y )) = 0 P a.s.. Thus

m(Z) + V (X) ≤M(Y ) (3.6)

for all V ∈ V and ∀X ∈ L,∀Y, Z ∈ Lp(B)+ : Z + X ≤ Y . From the sand-
wich extension theorem for linear operators, [9, Proposition 3.11] in case
of Lp spaces 1 ≤ p < ∞, and [9, Theorem 3.9] in case of L∞ spaces (see
also [2, Theorem 5.1]), every V ∈ V restricted to L, admits a sandwich pre-
serving linear extension to the whole Lp(B) denoted V S which is monotone,
lower semi continuous, weak A-homogeneous, and satisfying the sandwich
condition:

m(Z) + V S(X) ≤M(Y ) ∀X ∈ Lp(B) ∀Y, Z ∈ Lp(B)+ : Z +X ≤ Y.

Define

x̂(X) := esssupV ∈VS

{
V (X)− x∗(V )

}
, X ∈ Lp(B),

where VS is the set described in the statement of the theorem, and x∗(V ) =
esssupY ∈L(V (Y ) − x(Y )). It follows that x̂ extends x and it is lower semi
continuous, convex, monotone, weak A-homogeneous and it also satisfies
the projection property. It remains to verify that x̂ satisfies the sandwich
condition. Let Y, Z ∈ Lp(B)+ ∀X ∈ Lp(B) : Z +X ≤ Y ,

m(Z) + x̂(X) = esssupV ∈VS

{
m(Z) + V (X)− x∗(V )

}
≤ M(Y ) + esssupV ∈VS (−x∗(V ))

= M(Y ) + esssupV ∈V(−x∗(V )) = M(Y ). (3.7)

Now consider any other convex, monotone, lower-semicontinuous, weak A-
homogeneous extension x̄ satisfying the sandwich condition. From Theorem
2.1 we have that

x̄(X) = esssupV ∈Vx̄
{
V (X)− x̄∗(V )

}
, X ∈ Lp(B),

with
x̄∗(V ) = esssupX∈Lp(B)

{
V (X)− x̄(X)

}
12



where Vx̄ is given by the mentioned theorem with reference to the operator
x̄. Moreover, since x̄ satisfies the sandwich condition we can see that (3.6)
holds for Vx̄ and that

x̄(X) = esssupV ∈VS
x̄

{
V (X)− x̄∗(V )

}
, X ∈ Lp(B).

From the definition of x̄∗ and of x∗ with x̄(X) = x(X), X ∈ L, we can see
that x̄∗(V ) ≥ x∗(V ) is valid for all V ∈ V. Hence E[x̄∗(V )] ≥ E[x∗(V )],
V ∈ V, and in particular VSx̄ ⊆ VS . Then x̄(X) ≤ esssupV ∈VS

{
V (X) −

x̄∗(V )
}

. On the other hand for every V ∈ VS and X ∈ Lp(B) we have
V (X) − x̄(X) ≤ x̄∗(V ), hence V (X) − x̄∗(X) ≤ x̄(X). Thus we conclude
esssupV ∈VS

{
V (X)− x̄∗(V )

}
≤ x̄(X) and we have proved that:

x̄(X) = esssupV ∈VS

{
V (X)− x̄∗(V )

}
.

Since x̄∗(V ) ≥ x∗(V ) for all V ∈ VSx̄ , then x̄(X) ≤ x̂(X) for all X ∈
Lp(B).

Remark 3.1. The above extension x̂ (3.4) satisfies the following inequality:

∀X ∈ Lp(B)+ m(X) ≤ −x̂(−X) ≤ x̂(X) ≤M(X).

This inequality is in fact equivalent to (3.3) for every convex, monotone,
lower semi continuous, weak A-homogeneous operator defined on the whole
Lp(B). The first assertion follows from equation (3.3) applied one time with
(Z,X, Y ) = (X,−X, 0) and the other time with (Z,X, Y ) = (0, X,X). The
second assertion follows from the convexity of x̂.

Corollary 3.2. For every V ∈ VS, the penalty (3.5) in the representation
(3.4) of the extension x̂ of the operator x, satisfies x∗(V ) = x̃(V ), where

x̃(V ) := esssupX∈Lp(B)

{
V (X)− x̂(X)

}
. (3.8)

Moreover, define VS as the set of elements in V satisfying the sandwich
condition (3.6). Then the extension (3.4) can be rewritten as:

x̂(X) = esssupV ∈VS

{
V (X)− x̃(V )

}
, X ∈ Lp(B). (3.9)

Furthermore, we can also give the representation:

x̂(X) = esssupf∈DS

{
E[fX|A]− x̃(E[f · |A])

}
, X ∈ Lp(B), (3.10)

with

DS :=
{
f ∈ D : m(X) ≤ E[fX|A] ≤M(X), ∀X ∈ Lp(B)

}
. (3.11)

The penalty x̃ is called minimal penalty following the terminology of risk
measures.
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Proof. Fix V ∈ VS . From the definition we have x∗(V ) ≤ x̃(V ). On the
other hand, from (3.4), we have x̂(X) ≥ V (X)− x∗(V ), for all X ∈ Lp(B).
Hence, x∗(V ) ≥ V (X) − x̂(X), for all X ∈ Lp(B). Thus x∗(V ) ≥ x̃(V ).
This proves (3.8). For the proof of (3.9) we apply the same arguments as
for the proof of (2.3) in Theorem 2.1. And for the proof of (3.10) we apply
the same arguments as for the proof of (2.12) in Corollary 2.4.

Definition 3.1. The operator m is non degenerate if it satisfies E(m(1B)) >
0 for all B ∈ B such that P (B) > 0.

Lemma 3.3. Assume that m is non degenerate. Every f ∈ DS such that
E(x̃(E(f · |A)) <∞ belongs to

De := {f ∈ D |f > 0 Pa.s.}.

Proof. Let B ∈ B such that P (B) > 0. It follows from the Remark 3.1 that
for all real λ > 0, x̂(−λ1B) ≤ −m(λ1B). From the representation (3.10) of
x̂(−λ1B), we get x̂(−λ1B) ≥ E(−λ1Bf) − x̃(E(f · |A)). It follows that for

all λ > 0, E(1Bf) ≥ E(m(1B)) − E(x̃(E(f.|A))
λ . Letting λ → ∞, the result

follows from E(m(1B)) > 0, being m non degenerate.

We deduce the following result from Corollary 3.2 and Lemma 3.3.

Corollary 3.4. Assume that m is non degenerate, then x̂ admits the fol-
lowing representation

x̂(X) = esssupf∈DS,e

{
E[fX|A]− x̃(E[f · |A])

}
, X ∈ Lp(B), (3.12)

with
DS,e := DS ∩ De. (3.13)

The following result can be regarded as an extension of [2, Theorem 5.2] to
the case of convex operators.

Corollary 3.5. If the minorant m and the majorant M in Theorem 3.1 are
linear operators:

m(X) = E
[
m0X|A

]
, X ∈ Lp(B)+,

M(X) = E
[
M0X|A

]
, X ∈ Lp(B)+

for some random variables m0,M0 ∈ Lq(B)+: q = p(p − 1)−1 such that
0 ≤ m0 ≤M0. The extension (3.4) x̂ can be written as:

x̂(X) = esssupf∈D
{
E[fX|A]− x∗(E[f · |A])

}
, X ∈ Lp(B), (3.14)

where
D :=

{
f ∈ Lq(B) : 0 ≤ m0 ≤ f ≤M0, E[f |A] = 1

}
.

14



Proof. This is a direct application of Corollary 3.2.

We now prove that under the sandwich condition the esssup in (3.4) is
attained. This will be a consequence of the following compactness result.

Lemma 3.6. Let M be sublinear, monotone, weak A-homogeneous, and, if
p =∞, regular. Let K = {f ∈ D : 0 ≤ E(f · |A) ≤M}. Identifying f ∈ K
with the linear form E(f ·) on Lp(B), K is a compact subset of the ball of

radius E(M(1)q)
1
q of L′p(B), 1 ≤ p ≤ ∞ equiped with the weak* topology

σ(L′p, Lp). In case p =∞, K is furthermore contained in L1(B).(Notice that
if p <∞, L′p = Lq with q = p(p− 1)−1.)

Moreover, with the notations of Theorem 3.1, the set DS is compact for the
weak* topology .

Proof. K is a subset of the ball of radius E(M(1)q)
1
q of L′p(B). As this

bounded ball is compact for the weak* topology (Banach Alaoglu theorem),
it is enough to prove that K is closed for the weak* topology. Denote K the
weak* closure of K. Let Ψ ∈ K. Ψ is a positive continuous linear form on
Lp(B).
In case p ∈ [1,∞), Ψ is represented by an element of Lq(B) for q = p(p−1)−1

(Riesz representation theorem).
We detail the case p = ∞. We first prove that Ψ defines a measure on
(Ω,B). Let (Xn)n be any sequence of elements of L∞(B) decreasing to 0
P a.s. From the regularity of M , ∀ε > 0, there is n0 such that ∀n ≥ n0,
E(M(Xn)) ≤ ε. Denote U the neighborhood of Ψ defined as U = {φ ∈
L′∞(B), |Ψ(Xn0) − φ(Xn0)| ≤ ε}. Since Ψ ∈ K, there is φ ∈ U ∩K. For
such φ, 0 ≤ φ(Xn) ≤ E(M(Xn)) ≤ ε. It follows that |Ψ(Xn0)| ≤ 2ε. As Ψ
is a non negative linear functional and the sequence (Xn)n is decreasing to
0, it follows that 0 ≤ Ψ(Xn) ≤ 2ε for every n ≥ n0. From Daniell Stone
Theorem, see e.g. [16, Theorem A48], it follows that Ψ defines a probability
measure on (Ω,B). This probability measure is absolutely continuous with
respect to P and this gives the existence of some g ∈ L1(B) such that
Ψ = E(g·) (Radon Nikodym Theorem). For all X ∈ L∞(A), the equality
Ψ(X) = E(X) is obtained similarly making use of the neighborhood of Ψ:
UX = {φ ∈ L′∞(B), |Ψ(X)− φ(X)| ≤ ε}. It follows that E(g|A) = 1. The
inequality E(fX1A) ≤ E(M(X)1A) for X ∈ Lp(B) and A ∈ A is obtained
similarly and hence Ψ = E(g.) where g belongs to K. This proves the
compactness of K for the weak* topology.
DS is equal to {f ∈ K : E(m(X)1A) ≤ E(fX1A), ∀X ∈ Lp(B), ∀A ∈ A}.
Thus DS is a closed subset of K for the weak* topology.

Proposition 3.7. Assume the hypothesis of Theorem 3.1. For every X ∈
Lp(B), there is some fX in DS (depending on X) such that

x̂(X) = E(fXX|A)− x̃(E(fX · |A)). (3.15)
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Proof. We start from the representation (3.10) given in Corollary 3.2:

x̂(X) = esssupf∈DS

{
E[fX|A]− x̃(E[f · |A])

}
, X ∈ Lp(B). (3.16)

From the lattice property proved in Lemma 2.2, it follows that E(x̂(X)) =
supf∈DS [E(fX)−E(x̃(E[f · |A])]). From the definition of x̃ and the lattice
property proved in Lemma 2.3, it follows that E(x̃(E[f · |A])) is a lower semi
continuous function of f ∈ DS for the weak* topology and thus we deduce
from the compactness of DS (see Lemma 3.6) that the upper semi continuous
function E(fX)−E(x̃(E[f ·|A])), f ∈ DS , has a maximum attained for some
fX (which may not be unique). From equation (3.16) it then follows that
fX satifies (3.15).

4 Sandwich extensions of discrete time systems

We equip the probability space (Ω,B, P ) with the right-continuous P - aug-
mented filtration (Ft)t∈[0,T ]. We assume that, for all t, Ft is generated by
a countable family of events, by which we mean that Ft is the smallest
σ-algebra containing the countable family and all P -null events.

Let p ∈ [1,∞]. For any time t ∈ [0, T ] (T > 0), consider the linear sub-space:

Lt ⊆ Lp(Ft), Lt ⊆ LT . (4.1)

Let T ⊆ [0, T ] such that 0, T ∈ T . In the sequel we denote (xs,t)s,t∈T
on (Lt)t∈T the system of operators xs,t : Lt −→ Ls of the type (2.1), for
s, t ∈ T : s ≤ t.
In financial applications these operators represent a time-consistent system
for ask prices in a market with friction. The time s is the price evaluation
time of an asset which has payoff at t and the prices are defined on the
domain Lt of purchasable assets. Note that, in general, Lt ⊂ Lp(Ft) for
some t ∈ [0, T ] and Lt = Lp(Ft) for all t ∈ [0, T ] in a complete market.

Definition 4.1. The system (xs,t)s,t∈T , is time-consistent (or T time-
consistent) if for all s, t, u ∈ T : s ≤ t ≤ u

xs,u(X) = xs,t
(
xt,u(X)

)
, (4.2)

for all X ∈ Lu.

Time-consistency is a natural assumption for such system of operators rep-
resenting, e.g., price processes. This concept models the reasonable equiv-
alence of the price evaluation for an asset with payoff at time u, say, when
the evaluation is performed either in one step, i.e. the straight evaluation of
the asset at time s, or in two steps, i.e. first an evaluation at time t : t ≤ u
and then at s : s ≤ t ≤ u. This concept is also proper of a consistent risk
measurements and it is studied for dynamic risk measures (where it is called
strong time-consistency in [1]), see e.g. [11], [6].
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Remark 4.1. For any s ≤ t ≤ T , xst is the restriction to Lt of xsT .

Indeed let X ∈ Lt, then xtT (X) = X, by the projection property. Thus by
time-consistency we have xsT (X) = xst(xtT (X)) = xst(X), for all X ∈ Lt.

In the sequel we discuss extension of dynamic systems of operators which will
be sandwich preserving. We deal with systems of superlinear and sublinear
operators: each one representing the minorant and majorant of one of the
operators to be extended. Motivated by applications, a modification of the
concept of time-consistency is also necessary. Examples of studies of such
minorants and majorants are found in [2], [15], and [9]. It is in this last
paper that the general concept of weak time-consistency is introduced for the
first time in connection with no-good deal bounds. We are now considering
again this general definition in this context of convex operators also in view
of upcoming applications to the study of ask prices in the context of risk-
indifference pricing.

Definition 4.2. • The family (ms,t)s,t∈T of weak Fs-homogeneous, su-
perlinear operators ms,t : Lp(Ft)+ → Lp(Fs)+ is weak time-consistent
if, for every X ∈ Lp(Ft)+,

mr,s(ms,t(X)) ≥ mr,t(X), ∀r ≤ s ≤ t. (4.3)

• The family (Ms,t)s,t∈T of weak Fs-homogeneous, sublinear operators
Ms,t : Lp(Ft)+ → Lp(Fs)+ is weak time-consistent if, for every X ∈
Lp(Ft)+,

Mr,s(Ms,t(X)) ≤Mr,t(X), ∀r ≤ s ≤ t. (4.4)

Note that the operators ms,t, Ms,t are not required to satisfy the projection
property.

Definition 4.3. We say that the family (ms,t,Ms,t)s,t∈T satisfies the mM1-
condition if they are weak time-consistent families of superlinear, respectively
sublinear, weak Fs-homogeneous operators such that ms,t, Ms,t : Lp(Ft)+ −→
Lp(Fs)+, m0,T is non degenerate, and Ms,t is also regular if p =∞.

Definition 4.4. We say that the system of operators (xs,t)s,t∈T satisfies the
sandwich condition when

ms,t(Z) + xs,t(X) ≤Ms,t(Y ) (4.5)

∀X ∈ Lt ∀ Y,Z ∈ Lp(Ft)+ : Z +X ≤ Y,

for some families of operators (ms,t)s,t∈T and (Ms,t)s,t∈T with ms,t, Ms,t :
Lp(Ft)+ −→ Lp(Fs)+.
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4.1 Finite discrete time systems

First of all we consider a finite set T := {s1, ..., sK : 0 = s0 ≤ ... ≤ sK}.

For s ≤ t, denoted DSs,t the set (3.11) corresponding to A = Fs, B = Ft, and

to the minorant ms,t and majorant Ms,t. Analogously for DS,es,t := DSs,t ∩De,
cf. (3.13).

Proposition 4.1. Let us consider the time-consistent system
(
xs,t
)
s,t∈T on

(Lt)t∈T satisfying the sandwich condition (4.5) with (ms,t,Ms,t)s,t∈T fulfill-
ing mM1. For any i < j, consider the operators:

x̂si,sj (X) := esssupf∈Qi,j

{
E[fX|Fsi ]− αsi,sj (f)

}
, X ∈ Lp(Fsj ), (4.6)

with the penalty

αsi,sj (f) :=

l=j−1∑
l=i

E[αsl,sl+1
(gl+1)|Fi] (4.7)

where

αsl,sl+1
(gl+1) := esssupX∈Lsl+1

{
E[gl+1X|Fsl ]− xsl,sl+1

(X)
}

and
Qi,j := {f ∈ Lq(Fsj )+ : f = Πj−1

l=i gl+1, gl+1 ∈ DS,esl,sl+1
}

with q = p(p − 1)−1. For all s ≤ t in T , the operator x̂s,t extends xs,t on
Lp(Ft). This family of operators

(
x̂s,t
)
s,t∈T is a time-consistent sandwich

preserving extension. Moreover
(
x̂s,t
)
s,t∈T is maximal, in the sense that, if(

x̄s,t
)
s,t∈T is another such family we have that: for all i < j,

x̂si,sj (X) ≥ x̄si,sj (X), X ∈ Lp(Fsj ).

Note that from Corollary 3.2, αsl,sl+1
(gl+1) = x̃sl,sl+1

(
E[gl+1 · |Fsl ]

)
, where

x̃ss,sl+1
is the minimal penalty, see (3.8).

Proof. From Theorem 3.1, for every i ≤ K − 1, we consider the maximal
extension x̂si,si+1 of xsi,si+1 . The operator m0,T is non degenerate. It follows
from the weak time-consistency of (ms,t)s,t∈T that for all 0 ≤ s ≤ t ≤ T , the
operator ms,t is also non degenerate. From Corollary 3.4, x̂si,si+1 admits a
representation

x̂si,si+1(X) = esssup
g∈DS,e

si,si+1

{
E[gX|Fsi ]− αsi,si+1(g)

}
(4.8)

DS,esi,si+1
={g ∈ Lq(Fsi+1)+ : E[g|Fsi ] = 1, g > 0 P a.s.

msi,si+1(X) ≤ E[gX|Fsi ] ≤Msi,si+1(X), ∀X ∈ Lp(Fsi+1)+}
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and

αsi,si+1(g) := x̃si,si+1(E[g · |Fsi ])
= esssupY ∈Lsi+1

{
E[gY |Fsi ]− xsisi+1(Y )

}
.

(4.9)

For any i < j define

x̂si,sj (X) := esssupf∈Qi,j

{
E[fX|Fsi ]− αsi,sj (f)

}
with the penalty

αsi,sj (f) :=

l=j−1∑
l=i

E[αsl,sl+1
(gl+1)|Fsi ],

for f = gi+1gi+2 · · · gj and Qi,j as in the statement. Note that for any
f ∈ Qi,j and any set A ∈ Fsi we have Q(A) := E[f1A] = P (A). We remark
that the penalties (αi,j)i<j satisfy the cocycle condition for the time instants
in T .
The operator xsi,si+1 is weak Fsi-homogeneous, then αsi,si+1 is local2. Ob-
serve that, forA ∈ Fsi , 1AE[f1X|Fsi ] = 1AE[f2X|Fsi ] ∀X ∈ Lp(Ω,Fsi+1 , P )
is equal to 1Af1 = 1Af2. Now we consider an argument by induction and we
assume that αsi,sj is local. First of all recall that any element f̃ ∈ Qsi,sj+1

can be of the form fg where f ∈ Qsi,sj and g ∈ Qsj ,sj+1 . We consider
1Af1g1 = 1Af2g2. Then E[1Af1g1|Fsj ] = E[1Af2g2|Fsj ], which implies that
1Af1 = 1Af2. This in turns implies

1Aαsi,sj (f1) = 1Aαsi,sj (f2). (4.10)

Notice that f1 > 0 P a.s.. It follows that 1Ag1 = 1Ag2. Hence

1Aαsj ,sj+1(g1) = 1Aαsj ,sj+1(g2). (4.11)

From (4.10) and (4.11) we conclude that:

1Aαsi,sj+1(f1g1) = 1Aαsi,sj+1(f2g2)

by the definition of αsi,sj+1 (4.7). Hence αsi,sj+1 is local as well. The cocycle
condition and the local property together imply the time-consistency of the
system of operators

(
x̂s,t
)
s,t∈T , see [6, Theorem 4.4].

To conclude we show that the family
(
x̂s,t
)
s,t∈T constitute a maximal ex-

tension. Indeed we have that, for all i,

x̂si,si+1(X) ≥ x̄si,si+1(X), X ∈ Lp(Fsi+1).

2i.e. for f, g ∈ Qsi,si+1 and for A ∈ Fsi , the assertion 1AE[fX|Fsi ] =
1AE[gX|Fsi ] ∀X ∈ Lp(Ω,Fsi+1 , P ) implies 1Aαsi,si+i(f) = 1Aαsi,si+1(g). See [6, Defini-
tion 4.1].
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We proceed then by induction on h such that j = i+ h. Let i < l < j

x̂si,sj (X) =x̂si,sl(x̂sl,sj (X)) ≥ x̄si,sl(x̂sl,sj (X))

≥ x̄si,sl(x̄sl,sj (X)) = x̄si,sj (X), X ∈ Lp(B).

By this we end the proof.

Corollary 4.2. For each X ∈ Lp(Fsj ), there exists fX in Qi,j such that

x̂si,sj (X) = E
[
fXX|Fsi

]
− αsi,sj (fX).

Proof. For i = j − 1 apply Proposition 3.7:

x̂sj−1,sj (X) = E
[
fX,jX|Fsj−1

]
− αsj−1,sj (fX,j).

From Lemma 3.3, fX,j belongs to DS,esi,si+1 . From the time-consistency of(
x̂s,t
)
s,t∈T and the definition of αsi,sj in (4.7) we have

fX =

j−1∏
l=i

fX,l+1.

By this we end the proof.

4.2 Countable discrete time systems

Let us now consider a countable set T ⊂ [0, T ], with 0, T ∈ T , and a
sequence of finite sets (Tn)∞n=1: Tn ⊆ Tn+1, such that T = ∪∞n=1Tn. Let
us consider the time-consistent system

(
xs,t
)
s,t∈T on (Lt)t∈T satisfying the

sandwich condition (4.5) with (ms,t,Ms,t)s,t∈T fulfilling mM1.

Lemma 4.3. For any n, let (xns,t)s,t∈Tn be the maximal time-consistent sand-
wich preserving extensions of (xs,t)s,t∈Tn. Now consider s, t,∈ T . Let n0 ∈ N
such that s, t ∈ Tn0. Then, for any n > n0 and X ∈ Lp(Ft), the sequence
(xns,t(X))n>n0 is non increasing P a.s. Hence it admits a limit

x̂s,t(X) := lim
n→∞

xns,t(X). (4.12)

Moreover, for n > n0, let αns,t be the minimal penalty associated to xns,t. This
penalty has representation

αns,t(Q) := esssupX∈Lp(Fs)(EQ(X|Fs)− xns,t(X)), (4.13)

for all probabilility measure Q ∼ P , where αns,t(Q) = αns,t(f) with f = dQ
dP .

Then, for all Q ∼ P , the sequence (αns,t(Q))n>n0 is non negative and non
decreasing P a.s.. Hence it admits a limit

α̂s,t(Q) := lim
n→∞

αns,t(Q). (4.14)
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Proof. The extensions (xns,t)s,t∈Tn are maximal over all other sandwich pre-
serving extensions time-consistent on Tn. Then, for s, t,∈ T and n > n0, we
can regard the extension xn+1

s,t as another sandwich preserving extension of

xs,t, (xn+1
s,t )s,t∈Tn is time-consistent on Tn. Thus xns,t(X) ≥ xn+1

s,t (X).
From Corollary 4.2, xns,t admits a representation with equivalent probability
measures. The result for αns,t(Q), Q ∼ P , is then an immediate consequence
of equation (4.13).

Theorem 4.4. Let us consider the discrete time-consistent system
(
xs,t
)
s,t∈T

on (Lt)t∈T satisfying the sandwich condition (4.5) with mM1. Then each
operator in this family admits an extension to the whole Lp(Ft) with values
in Lp(Fs) satisfying the sandwich condition and such that the family of ex-
tensions is time-consistent. In particular, the family of operators (x̂s,t)s,t∈T
given in Lemma 4.3 is a time-consistent and sandwich preserving extension
of
(
xs,t
)
s,t∈T . Moreover, for any s ≤ t, the operators x̂s,t (4.12) and α̂s,t

(4.14) satisfy the relationship:

x̂s,t(X) = esssupQ∼P (EQ[X|Fs]− α̂s,t(Q))

= esssup
f∈DS,e

s,t
(E[fX|Fs]− α̂s,t(f)), X ∈ Lp(Ft). (4.15)

Moreover, for all X there is fX ∈ DS,es,t such that

x̂s,t(X) = E(fXX|Fs)− α̂s,t(fX). (4.16)

This extension is maximal, in the sense that, for any other such extension(
x̄s,t
)
s,t∈T we have that: for all s < t ∈ T ,

x̂s,t(X) ≥ x̄s,t(X), X ∈ Lp(Ft).

Also for all s, t ∈ T , α̂s,t is the minimal penalty associated to x̂s,t.

Proof. In Lemma 4.3 we have defined, for all s, t ∈ T ,

x̂s,t(X) := lim
k→∞

xks,t(X), X ∈ Lp(Ft),

where xks,t is the maximal extension of xs,t on Tk and for f ∈ DS,es,t with s, t ∈
Tk, we have set α̂s,t(f) := α̂s,t(Q), αks,t(f) = αks,t(Q), where f = dQ/dP ,
with

α̂s,t(f) := lim
k→∞

αks,t(f), f ∈ DS,es,t

Step 1: Proof of the representations (4.15), (4.16) and the sandwich property.
Let s, t ∈ T . Fix X ∈ Lp(Ft). For every k, from Corollary 4.2, there is

fX,k ∈ DS,es,t such that

xks,t(X) = E(fX,kX|Fs)− αks,t(fX,k). (4.17)
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From Lemma 3.6 the set DSs,t is compact for the weak* topology, thus there is

a subsequence of (fX,k)k converging to fX ∈ DSs,t. Without loss of generality
we can assume that the sequence (fX,k)k itself has the limit fX (for the
weak* topology). Fix n > n0. From equation (4.13), αns,t is lower semi
continuous for the weak* topology thus

αns,t(fX) ≤ lim inf
k→∞

αns,t(fX,k).

From Lemma 3.3 it follows that fX ∈ DS,es,t . From Lemma 4.3, for given
k, the sequence (αns,t(fX,k))n is non decreasing. Therefore for every k ≥ n,

αns,t(fX,k) ≤ αks,t(fX,k). Thus by (4.17),

αns,t(fX) ≤ lim inf
k→∞

(
E(fX,kX|Fs))− xks,t(X)

)
.

Passing to the limit as k →∞, we get the inequality

αns,t(fX) ≤ E(fXX|Fs))− x̂s,t(X).

Letting n→∞
α̂s,t(fX) ≤ E(fXX|Fs))− x̂s,t(X). (4.18)

On the other hand, for every Q ∼ P , and Y ∈ Lp(Ft), for every n, αns,t(Q) ≥
EQ(Y |Fs))− xns,t(Y ). Passing to the limit this gives:

α̂s,t(Q) ≥ EQ(Y |Fs))− x̂s,t(Y ). (4.19)

It follows that
x̂s,t(X) = E(fXX|Fs))− α̂s,t(fX).

Then from the above equation and (4.19) we have proved the representations
(4.15) and (4.16).
Notice that the sandwich condition follows from the sandwich condition for
xns,t passing to the limit for n→∞, see (4.12).

Step 2: Time-consistency.
From (4.15), x̂s,t is lower semi continuous. From the definition of x̂s,t as the
limit of xns,t it follows that x̂s,t extends xs,t for every s, t ∈ T . On the other
hand for every r ≤ s ≤ t in T and every n large enough such that r, s, t be-
long to Tn, we already know that (xns,t)s,t∈T is Tn time-consistent. We recall
that the minimal penalty of a time-consistent family of operators satisfies
the local property [6, Lemma 2.3] and the cocycle condition [6, Theorem
2.5]. The family of penalties (αns,t)s,t∈T satisfies the cocycle condition:

αnr,t(Q) = αnr,s(Q) + EQ(αns,t(Q)|Fr), Q ∼ P.

Hence, passing to the limit for the non decreasing sequence (αns,t)s,t∈T we
get the cocycle condition:

α̂r,t(Q) = α̂r,s(Q) + EQ(α̂s,t(Q)|Fr), Q ∼ P.
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The local property is obtained in the same way. And thus from [6, Theorem
4.4], (x̂s,t)s,t∈T is time-consistent.

Step 3: Maximality of x̂s,t.
Notice that if another family xs,t satisfies all the above properties. Necessar-
ily for all s, t ∈ T and n large enough such that s, t ∈ Tn, from the maximal
property of xns,t it follows that xs,t(X) ≤ xns,t(X). Thus passing to the limit
we get the maximality for x̂s,t.

Step 4: Minimality of α̂s,t.
To see that α̂s,t is the minimal penalty associated to x̂s,t, we proceed as fol-
lows. From Lemma 4.3, the sequence (xns,t(X))n>n0 is non increasing P a.s..
We already know that αns,t is the minimal penalty associated to (xns,t(X)).Thus

αnst(Q) = esssupX∈Lp(Ft)

(
EQ(X|Fs)− xns,t(X)

)
≤ esssupX∈Lp(Ft)

(
EQ(X|Fs)− x̂s,t(X)

)
.

Passing to the limit, we have

α̂st(Q) ≤ esssupX∈Lp(Ft)

(
EQ(X|Fs)− x̂s,t(X)

)
.

On the other hand, for all X we have

αnst(Q) ≥ EQ(X|Fs)− xns,t(X).

Passing to the limit, we have

α̂st(Q) ≥ EQ(X|Fs)− x̂s,t(X), ∀X ∈ Lp(Ft).

Hence
α̂st(Q) = esssupX∈Lp(Ft)

(
EQ(X|Fs)− x̂s,t(X)

)
.

5 Sandwich extensions of continuous time systems
of operators

In this section we study sandwich preserving extensions for a system of
operators (xs,t)s,t∈[0,T ]. These extensions are time-consistent. We stress
that to obtain a time-consistent extension it is not enough to collect all the
extensions of single operators in one family. Time-consistency is achieved
with some careful procedure of extension involving the representation of the
operators and an appropriate passage from discrete to continuous time. For
this we first define the system of majorant and minorant operators serving
as bounds in the sandwiches.

Definition 5.1. We say that the family (ms,t,Ms,t)s,t∈[0,T ] satisfies the
mM2-condition if
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1. mM1 is satisfied (Definition 4.3);

2. esssups≤T (Ms,T (X)) belongs to Lp(FT )+ for all X ∈ Lp(FT )+;

3. for every X ∈ Lp(Ft)+,

ms,t(X) = limt′>t,t′↓tmst′(X); (5.1)

4. for every X ∈ Lp(Ft)+,

Ms,t(X) = limt′>t,t′↓tMst′(X); (5.2)

5. for every X ∈ Lp(Ft)+,

ms,t(X) ≤ lim sup
s′>s,s′↓s

ms′t(X); Ms,t(X) ≥ lim inf
s′>s,s′↓s

Ms′t(X); (5.3)

Let T be a countable dense subset of [0, T ] containing 0 and T .

Definition 5.2. A system
(
xs,t
)
s,t∈[0,T ]

on (Lt)t∈[0,T ] is right-continuous

if for all t, all X ∈ Lt, and all sequences (sn)n, s < sn ≤ t, sn ↓ s,
xs,t(X) = limn→∞ xsn,t(X), where the convergence is P a.s.

Lemma 5.1. Assume mM2 condition. Let
(
x̂s,t
)
s,t∈T and

(
α̂s,t
)
s,t∈T be as

in Lemma 4.3. There is a probability measure Q0 equivalent to P such that
for all s, t ∈ T , 0 ≤ s ≤ t ≤ T , α̂s,t(Q0) = 0.

Proof. From Theorem 4.4, there is a probability measure Q0 such that 0 =
x̂0,T (0) = −α̂0,T (Q0). From Lemma 3.3, Q0 is equivalent to P . It follows
from the T -cocycle condition and the non negativity of the penalty that
α̂s,t(Q0) = 0 for all s ≤ t in T .

Proposition 5.2. The notations are those of Lemma 5.1.

1. For all X ∈ Lp(FT ),
(
x̂s,T (X)

)
s∈T is a Q0-supermartingale.

2. For every sequence (sn)n in T decreasing to s ∈ T , EQ0(x̂sn,T (X)) has
the limit EQ0(x̂s,T (X)), for all X ∈ Lp(FT ).

Proof. 1. It follows easily from Lemma 5.1, the T time-consistency, and
the representation of x̂s,T (X) (4.15).
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2. The proof is inspired by the one of Lemma 4 in [8]. The main differ-
ences are the facts that here x̂s,t is only defined for s, t in T and that
the operator is defined on L ⊂ Lp(Ft) 1 ≤ p ≤ ∞, while in [8] the dy-
namic risk measure ρs,t was defined on L∞(Ft) and time-consistency
was considered for all real indexes.
Let X ∈ Lp(FT ) and s ∈ T . From Theorem 4.4, there is an fX ∈ DS,es,T
such that x̂s,T (X) = E(fXX|Fs)− α̂s,T (fX). Let RX be the probabil-
ity measure such that dRX

dP = fX . It follows from the cocycle condition
that

x̂s,T (X) = ERX
(X|Fs)− α̂s,T (RX)

= ERX
[ERX

(X|Fsn)− α̂sn,T (RX)]|Fs)− α̂ssn(RX). (5.4)

Furthermore ERX
(X|Fsn)− α̂sn,T (RX) ≤ x̂sn,T (X) and the penalties

are non negative. Hence, we have that

x̂s,T (X) ≤ ERX
(x̂sn,T (X)|Fs) (5.5)

and

x̂s,T (X) ≤ ERX
(x̂sn,T (X)|Fs) = E(fX x̂sn,T (X)|Fs)

= E(E(fX |Fsn)x̂sn,T (X)|Fs).

Let g ∈ Lq(Fs) be the Radon Nykodym derivative of the restriction
of Q0 to Fs. Taking the Q0 expectation, g being Fs-measurable, we
obtain

EQ0(x̂s,T (X)) ≤ E[gE(fX |Fsn)x̂sn,T (X)] (5.6)

= E(g(x̂sn,T (X)) + E[x̂sn,T (X)(g(E(fX |Fsn)− 1))]

The density fX belongs to DSs,T and g belongs to DS0,s, so gfX belongs
to Lq(FT ) and g(E(fX |Fsn)− 1) has limit 0 in Lq(FT ).
For all X, |x̂snT (X)| ≤ x̂sn,T (|X|) ≤ Msn,T (|X|). From property 2.
in Definition 5.1, supnE((|x̂sn,T (X)|p) < ∞. It follows from Hölder
inequality that εn(X) := E[x̂sn,T (X)(g(E(fX |Fsn) − 1))] has limit 0.
Similarly,

δn(X) := −EQ0(x̂sn,T (X)) + E(gx̂sn,T (X))

= −E
(
[E(

dQ0

dP
|Fsn) + E(

dQ0

dP
|Fs)

]
x̂sn,T (X)

)
has limit 0. Observe that, from the Q0-supermartingale property
(point 1.), if follows that

EQ0(x̂sn,T (X)) ≤ EQ0(x̂s,T (X)).
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Then from (5.6) we obtain that

EQ0(x̂s,T (X))− εn(X)− δn(X) ≤ EQ0(x̂sn,T (X)) ≤ EQ0(x̂s,T (X)).

This proves the result.

Theorem 5.3. Let us consider a right-continuous time-consistent system
of operators

(
xs,t
)
s,t∈[0,T ]

of type (2.1) defined on (Lt)t∈[0,T ] satisfying the

sandwich condition with mM2.
Then there is a right-continuous, time-consistent, sandwich preserving ex-
tension

(
x̂s,t
)
s,t∈[0,T ]

defined on the whole (Lp(Ft))t∈[0,T ]. One such exten-

sion can be represented as

x̂s,t(X) = esssupR∈R[ER(X|Fs)− α̂s,t(R)], X ∈ Lp(Ft), (5.7)

with
R := {R ∼ P : α̂0,T (R) <∞} (5.8)

and α̂0,T is the minimal penalty associated to x̂0,T as in Theorem 4.4. Also
for any X ∈ Lp(Ft), there exists RX ∈ R such that

x̂s,t(X) = ERX
(X|Fs)− α̂s,t(RX) ∀s ≤ t.

Furthermore for all t > 0, and all X ∈ Lp(Ft), x̂s,t(X)0≤s≤t admits a càdlàg
version.

Proof. Step 1: Definition of the extension x̂s,t for indices in the whole [0, T ].
Let T be a countable dense subset of [0, T ] containing 0 and T . Let

(
x̂s,t
)
s,t∈T

be the time-consistent extension of
(
xs,t
)
s,t∈T constructed in Section 4.2.

Let X ∈ Lp(Ft). From Proposition 5.2 and from the Modification The-
orem (Chapter VI Section 1 in [13]) applied to the Q0-supermartingale
(x̂s,T (X))s∈T , it follows that (x̂s,T (X))s∈T admits a modification which can
be extended into a càdlàg process (x̂s,T (X))s∈[0,T ] defined for all s ∈ [0, T ].
Notice that from Remark 4.1, xs,t coincides on Lt with the restriction of
xs,T . For 0 ≤ s ≤ t ≤ T , we define x̂s,t to be the restriction of x̂s,T on
Lp(Ft). It follows that x̂s,t is an extension of xs,t to the whole Lp(Ft). If
s, t ∈ T this extension coincides also with the construction of x̂st given in
the previous section. To see this, consider the T time-consistency of x̂st (of
the previous section) and its projection property.

Step 2: Extension of the penalty on a set R of probability measures and
right-continuity.
Consider the penalties (α̂s,t)s,t∈T associated to (x̂s,t)s,t∈T given in Section
4.2. Define

R := {R ∼ P : α̂0,T (R) <∞}
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Let X in Lp(FT ). From Theorem 4.4 (see (4.16)), there is a probability
measure RX ∼ P such that

x̂0,T (X) = ERX
(X)− α̂0,T (RX). (5.9)

Thus R is non empty.
Let s ∈ [0, T ] and consider (sn)n ⊂ T , sn ↓ s. For every probability measure
R ∈ R, the sequence ER(α̂sn,T (R)|Fs) is increasing. Thus it admits a limit.
From Section 4.2 we can see that, if s belongs to T , this limit is equal
to α̂sT (R). Indeed it is enough to exploit the representation as minimal
penalty. Then by right-continuity of the filtration and the càdlàg extension
of Step 1 we have

α̂s,T (R) ≥ lim
n→∞

ER[α̂sn,T (R)|Fs]

≥ER[esssupX∈Lp(FT ) lim
n→∞

(ER[X|Fsn ]− x̂sn,T (R)|Fs] = α̂s,T (R).

If s /∈ T we can define α̂sT (R) as the limit of ER(α̂sn,T (R)|Fs) <∞ R a.s..
Moreover, for r, s ∈ T , due to the T time-consistency proved in Section 4.2,
α̂r,s(R) satisfies the cocycle condition on T . Note that sups≤T ER(α̂sT (R)) =
α̂0T (R) <∞. Then we can define for all 0 ≤ r ≤ s ≤ T

α̂r,s(R) := α̂rT (R)− ER(α̂s,T (R)|Fr) (5.10)

Thus α̂r,s(R) is now defined for all indices in [0, T ] and all R ∈ R. More-
over α̂r,s(R) satisfies the cocycle condition. It follows also from the right-
continuity of α̂s,T (R) in s and from the cocycle condition that for all R ∈ R,
α̂r,s(R) is also right-continuous in s.

Step 3: Representation of x̂r,t(X).
Let 0 ≤ r ≤ t ≤ T . Let X ∈ Lp(Ft). Let RX ∈ R such that (5.9) is satisfied.
Now we prove that, for all r ≤ t,

x̂r,t(X) = ERX
(X|Fr)− α̂r,t(RX). (5.11)

In fact, making use of the cocycle condition and then of the T time-consistency,
we get that for all r ∈ T ,

x̂0,T (X) = ERX
(ERX

(X|Fr)− α̂r,T (RX))− α̂0,r(RX)

≤ ERX
(x̂r,T (X))− α̂0,r(RX) ≤ x̂0,r(x̂r,T (X)) = x̂0,T (X).

Thus every inequality in the expression above is an equality. In particular

x̂r,T (X) = ERX
(X|Fr)− α̂r,T (RX), RX a.s. ∀r ∈ T , (5.12)

and

x̂0,r(x̂r,T (X)) = ER(x̂r,T (X))− α̂0,r(RX), RX a.s. ∀r ∈ T . (5.13)
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Consider a sequence (rn)n ⊂ T , rn ↓ r, with r ∈ [0, T ]. Passing to the limit
in the corresponding equation to (5.12), we can see that

x̂r,T (X) = ERX
(X|Fr)− α̂r,T (RX), RX a.s. ∀r ∈ [0, T ]. (5.14)

We have assumed that X ∈ Lp(Ft) thus x̂t,T (X) = X. It follows then from
(5.14) applied with r = t, that α̂t,T (RX) = 0.
Then, again from (5.14) and the cocycle condition for RX ∈ R, it follows
that, for all X ∈ Lp(Ft),

x̂r,t(X) = x̂r,T (X) = ERX
(X|Fr)− α̂r,t(RX) RX a.s. ∀r, t ∈ [0, T ]. (5.15)

Step 4: Another representation of x̂r,t for all 0 ≤ r ≤ t ≤ T .
Let X ∈ Lp(Ft). We will prove that x̂r,t(X) admits the following represen-
tation:

x̂r,t(X) =esssupR∈R[ER(X|Fr)− α̂r,t(R)]

=ERX
(X|Fr)− α̂r,t(RX),

(5.16)

where RX satisfies equation (5.9). For all r, t in T , being α̂r,t the minimal
penalty, we have that for all R ∈ R,

α̂r,t(R) ≥ ER(X|Fr)− x̂r,t(X), ∀X ∈ Lp(Ft). (5.17)

The above equation can also be written

α̂r,t(R) ≥ ER(X|Fr)− x̂r,T (X), ∀X ∈ Lp(Ft). (5.18)

Exploiting the right-continuity of the filtration and of α̂r,t and x̂r,t as dis-
cussed in Steps 1 and 2, we can see that, passing to the limit in r and then
to the limit in t, equation (5.18) and thus also (5.17) are satisfied for all
r ≤ t in [0, T ]. Equation (5.16) follows then from (5.15) and (5.17).

Step 5 : Time consistency of x̂s,t.
Set 0 ≤ r ≤ s ≤ t ≤ T . Let X ∈ Lp(Ft). Let RX ∈ R such that (5.9) is
satisfied. From (5.16), for all Y ∈ Lp(Fs), x̂r,s(Y ) ≥ ERX

(Y |Fr)− α̂r,s(RX).
With Y = x̂s,t(X), making use of equation (5.15) and of the cocycle condi-
tion, it follows that

x̂r,s(x̂s,t(X)) ≥ x̂r,t(X), ∀r ≤ s ≤ t. (5.19)

On the other hand, let RY ∈ R such that

x̂0,T (Y ) = ERY
(Y )− α0,T (RY ) (5.20)

(cf. (5.9)). From equation (5.15), it follows that for all r, s: r ≤ s,

x̂r,s(Y ) = ERY
(Y |Fr)− α̂r,s(RY ) RY a.s. (5.21)
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We already know that (x̂s,t)s,t∈T satisfies T time consistency, and the sand-
wich condition. From the right-continuity of (x̂s,t(X))s∈[0,t] for all t ≥ 0 (see
Step 1) and the hypothesis mM2, item 3, it follows that esssups≤t|x̂s,t(X)|
belongs to Lp(Ft)+. Let sn ∈ T such that sn ↓ s. From the right-continuity
and the dominated convergence theorem, it follows that ERY

(x̂s,t(X)|Fr) =
limn→∞ERY

(x̂sn,t(X)|Fr). The probability measure RY belongs to R thus
from step 2, α̂r,s(RY ) = limn→∞ α̂r,sn(RY ). From equation (5.21), we then
get that

x̂r,s(x̂s,t(X)) = x̂r,s(Y ) = lim
n→∞

[ERY
(x̂sn,t(X)|Fr)− α̂r,sn(RY )]. (5.22)

From equation (5.16), for all n,

ERY
(x̂sn,t(X)|Fr)− α̂r,sn(RY ) ≤ x̂r,sn(x̂sn,t(X)).

In the case r belongs to T , applying the T time consistency, we have that
the right-hand side of the above equation is equal to x̂r,t(X). Thus

ERY
(x̂sn,t(X)|Fr)− α̂r,sn(RY ) ≤ x̂r,t(X). (5.23)

For a general r ∈ [0, T ], the corresponding equation to (5.23) is obtained
by right-continuity. Then from these equations together with (5.22), we
deduce that x̂r,s(x̂s,t(X)) ≤ x̂r,t(X). This, together with (5.19) gives the
time-consistency.

Step 6: Sandwich and projection property.
When r, t ∈ T , it follows from Theorem 4.4 that x̂rt extends xrt and satisfies
the sandwich condition. These properties extend to all r ∈ [0, T ] making
use of the right-continuity and condition mM2 in xr,t, mr,t and Mr,t. They
extend then to every t ∈ [0, T ] using the right-continuity of mr,t and Mr,t in
t (see mM2), and the fact that xr,t is the restriction of xr,T .
For all r ≤ t ≤ T , the projection property for x̂r,t follows from equation
(5.15)

Corollary 5.4. The extension (x̂st)s,t∈[0,T ] is maximal, in the sense that,
for any other such extension

(
x̄s,t
)
s,t∈[0,T ]

we have that: for all s < t,

x̂s,t(X) ≥ x̄s,t(X), X ∈ Lp(Ft).

Furthermore for all s, t ∈ [0, T ], and all R ∈ R, α̂s,t(R) is the minimal
penalty associated to x̂s,t, i.e.

α̂s,t(R) = esssupX∈Lp(Ft)[ER(X|Fs)− x̂s,t(X)]. (5.24)

Define for all R ∼ P α̂s,t(R) by the formula (5.24). Then (x̂s,t)s,t∈[0,T ]

admits the following representation where α̂s,t is the minimal penalty:

x̂s,t(X) = esssupQ∼P [EQ(X|Fs)− α̂s,t(Q)]. (5.25)
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Proof. The maximality of (x̂st)s,t∈[0,T ] among all the extensions satisfying
the required properties follows from Theorem 4.4 for s, t ∈ T . For s ∈ [0, T ],
we apply right-continuity. For t ∈ [0, T ] we apply the fact that x̂s,t =
x̂s,T and also x̄s,t = x̄s,T . (see Remark 4.1 and step 1 in the proof of the
Theorem).
Note that x̂s,t(X + Y ) = x̂s,t(X) + Y for all X ∈ Lp(Ft) and Y ∈ Lp(Fs).
This property is known as Lp(Fs)-translation invariance. Thus (x̂st)s,t∈[0,T ]

is up to a minus sign a time-consistent dynamic risk measure. Denote βs,t
the minimal penalty associated to x̂s,t:

βs,t(Q) = esssupX∈Lp(Ft)[EQ(X|Fs)− x̂s,t(X)].

It follows from Delbaen et al [12] appendix, that the minimal penalty βs,t(Q)
is right-continuous both in s and t, for all Q ∼ P . Note that for all R ∈ R,
α̂s,t(R) is also right continuous both in s and t (Theorem 5.3). Furthermore
we know from Section 4.2 that α̂s,t(R) is the minimal penalty for x̂s,t for
all s, t ∈ T . This implies that for all s, t ∈ [0, T ], and all R ∈ R, α̂s,t(R) =
βs,t(R).
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