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Abstract

Gotran provides a framework for working with systems of ordinary differen-
tial equations (ODEs). Its primary goal is to increase the workflow efficiency
of computational modelling in biomedical research. The ODEs, given by
the time derivative of state variables, are described in a Gotran form file
and can be automatically translated into different outputs depending on the
user’s needs. As of this writing, Gotran supports Python, MATLAB and
C/C++ outputs. In this thesis we present extensions to Gotran and their
implementations, including automatic generation of LATEX output and GPU
acceleration on Nvidia graphics cards.
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Part I

Background

1. Motivation

R ecent advances in biomedical research over the last century have
significantly contributed to the increased understanding and effect-
iveness in both combatting communicable diseases and treating

non-communicable ones. With diseases of the heart remaining among the
leading causes of death in both developed and developing countries [Mur-
ray and Lopez, 1997], a great deal of effort is placed into furthering our
understanding of the heart and the nature of these diseases.

Modern research in cellular electrophysiology commonly employs math-
ematical models describing the electrical activity in cellular membranes.
These are dynamic systems described by means of systems of ordinary
differential equations (ODEs) and partial differential equations (PDEs). The
models are useful in basic scientific research of the chemical, physical and
electrical properties of living organisms and their biological constituents,
such as the human heart. The results from this type of research are useful
for further applications in clinical diagnostics and therapeutics, such as
the efforts to undestand the underlying causes of and to develop potential
treatments and preventative measures against cardiac disease.

The ODEs required to create accurate mathematical models of biological
systems tend to be highly complex. As an example, consider the Winslow
model [Winslow et al., 1999], which describes the electrochemical reactions
of a single canine heart cell with a system of 31 ODEs. Non-linear ODE sys-
tems of such complexity have no known analytical solutions. Researchers
must thus rely on computationally heavy numerical simulations of these
models to generate meaningful results. “The cost of doing one single call
to the Winslow ODE system is so big that a measure of efficiency is almost
entirely based on the number of such calls” [Kaarby, 2007].

Subsequently, the mathematical models are tedious to develop, solve,
share and publish. This leads to problems with reproducibility, and they are
prone to typographical errors during transcription from simulation code to
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its corresponding research manuscript. A specialised framework, Gotran, is
being developed at the Simula Research Laboratory to aid researchers in
working with ODEs more efficiently.

Extension and improvement of the Gotran framework is the core focus
of this thesis.

1.1 Thesis outline

Sections 2, 3 and 4 provide an overview of background topics relevant to
the framework at the core of this thesis. Section 5 introduces the Gotran
framework.

Section 6 outlines the implementation requirements for the extensions
to Gotran developed in this thesis. Sections 7 and 8 further describe the
specific implementation details of the LATEX output generation and GPU
acceleration, respectively.

Section 9 presents and discusses test results and benchmarks for the
GPU acceleration.

2. Cardiac modelling

The exponential increase in computational power of the past decades has
opened up new possibilities in biomedical research. Mathematical models
of increasing precision and complexity are continuously developed to better
explain the properties and interactions of cardiac cells.

2.1 Action potential

Excitable cells, chiefly neurons and muscle cells, are those that produce
a small electric current when stimulated in a brief event called an action
potential. During such events, an electrical current crosses the cell mem-
brane. Upon reaching a critical threshold, the stimulus triggers a runaway
condition that rapidly depolarises the cell’s membrane potential before
quickly repolarising back to its resting potential. An action potential is
followed by a refractory period where the cell is no longer excitable. The
duration of the full cycle of an action potential varies significantly, from
less than a millisecond in cerebral neurons to hundreds of milliseconds for
the contraction of cardiac muscle cells.

7
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Figure 2.1: Action potential in the human heart with the Ten Tusscher-Panfilov model

The groundbreaking Hodgkin-Huxley model [Hodgkin and Huxley,
1952], first used to describe the mechanisms of the propagation of electrical
signals in a squid giant axon by modelling each cellular component as an
electrical element, forms the basis for the modern cell models used in this
thesis. These cell models are described in Section 2.3.

Figure 2.1 illustrates a simulation of the action potential in the heart
with the Ten Tusscher-Panfilov model [Ten Tusscher and Panfilov, 2006] of
a human ventricular action potential.

2.2 Monodomain equation

At the cellular level, the travelling action potential activates ionic currents
across the cell membrane that sustain the propagation. Mathematically,
this phenomenon can be described by a reaction diffusion equation. In
cardiac modelling, one such equation is described by the monodomain
equation [Sundnes et al., 2006a,b]:

χ

(
Cm

∂u
∂t

+ Iion(u, s)
)
−∇σ∇u = Istim (2.1)

σ∇u · n = 0 on ∂Ω (2.2)
∂s
∂t

= f (u, s) (2.3)
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Here, u is the membrane potential, Iion the ionic currents, s the state
variables controlling the ionic currents, f a function describing the time
derivative of s, σ the conductancy of the tissue, χ the ratio between the
volume and surface area of a heart cell, and Cm the capacitance of the cell
membrane. The monodomain equation is a coupled system of one PDE,
Equations 2.1 and 2.2, and a system of ODEs, Equation 2.3. The latter is
often called the cell model and describes the intricate dynamics between
the different ionic currents and the membrane potential.

Discretising the monodomain equation using an implicit method creates
huge linear systems to be solved for each simulated time step. For instance,
to simulate the travelling action potential in a human heart at a partial
resolution of 0.5 mm, one would need a mesh with about one million nodes.
Using a standard finite element method, the number of degrees of freedom
in our system would then be Nnodes · (Ns + 1), where Ns is the length of s.
Typically, cell models contain 10-50 state variables [Beeler and Reuter, 1977;
Grandi et al., 2010; Ten Tusscher and Panfilov, 2006], but can easily be even
larger [Flaim and McCulloch, 2007], which in our example would result in
systems with tens of millions of unknowns. The ODEs from the cell models
are also non-linear, stiff problems, making the solving procedure harder
still.

To simplify the problem, an operator splitting method is commonly
employed [Sundnes et al., 2006a], where the reaction is split from the
diffusion:

∂u
∂t
−∇σ/χ∇u = Istim/χ (2.4)

σ∇u · n = 0 on ∂Ω (2.5)

Cm
∂u∗

∂t
= −Iion(u∗, s);

∂s
∂t

= f (u∗, s) (2.6)

Here, Equations 2.4 and 2.5 describe a clean diffusion equation with
only one variable u, while Equation 2.6 describes the reaction dynamics at
the cellular level. The solution u from the diffusion step is used as the initial
condition for the ODE step, and the solution of the membrane potential
from the ODE step, u∗ is used as the initial condition for the PDE step. The
total number of states for which a solution is calculated in Equation 2.6 is
still Nnodes · (Ns + 1), but now the states at each node are decoupled from
each other, letting us solve each node in parallel.

9



George Bahij • July 2014 • University of Oslo • Simula Research Laboratory

2.3 Cell models

The cell models used in this thesis are primarily concerned with modelling
the membrane voltage of cardiac cells. There is a broad range of such
models beyond the scope of this thesis. This section briefly introduces
the three models that will be used in later sections for testing. These
models rely on the assumption made by Hodgkin and Huxley [Hodgkin
and Huxley, 1952] that cellular membranes act as capacitors, allowing a
charge imbalance to form across the membrane.
Beeler-Reuter: A generic mathematical model of the membrane action

potentials of ventricular myocardial fibres in mammals [Beeler and
Reuter, 1977]. It employs a system of eight ODEs, four of which
represent components of ionic current described by Hodgkin-Huxley-
type equations.

Ten Tusscher-Panfilov: A human ventricular cell model developed to study
“the conditions for alternans and spiral breakup in human cardiac
tissue” [Ten Tusscher and Panfilov, 2006]. It consists of a system of
19 state variables.

Grandi-Pasqualini-Bers: A recent model from 2009 describing the human
ventricle [Grandi et al., 2010] by using a system of 42 ODEs with
independent state variables. This model is also stiffer than the others
presented, making it more computationally expensive to calculate a
stable numeric solution.

3. Ordinary differential equations

An ordinary differential equation (ODE) is a mathematical equation for an
unknown function with one real independent variable that describes the
relationship between the function’s values and its derivatives of various
orders. Systems of ODEs may contain several equations and state variables,
but will still only include derivatives of one variable. These are separ-
ate from partial differential equations (PDEs) which involve functions of
multiple independent variables and their corresponding partial derivatives.

The general nth-order implicit ordinary differential equation f can be
described as

f
(

t, y(t), y′(t), y′′(t), · · · , y(n)(t)
)

= 0 (3.1)

where y : R→ R, t ∈ R.
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Solving a differential equation involves finding an exact or an approx-
imate solution for y. Ordinary differential equations with non-linear terms
or a high order typically do not have a known exact solution. An approx-
imate solution for such ODEs is found through numerical computation and
analysis.

3.1 Numerical methods for initial value problems

Two basic, widely used methods for such computations are the forward
and backward Euler methods. They are described in Sections 3.1.1 and
3.1.2. Since these methods serve as important building blocks for more
sophisticated methods, they have been tested as a part of the GPU-optim-
isation in this thesis, along with other methods as described in subsequent
sections.

In this thesis we only consider first order ODEs, y′(t) = f (t, y(t)). The
function f is also commonly known as the right hand side (rhs).

3.1.1 Forward Euler method

The forward or explicit Euler method is a basic method for solving ODEs
numerically. As an explicit method, it only involves the current state of the
system when calculating the next iteration.

Consider the first-order ordinary differential equation y′(t) = f (t, y(t)).
Given an initial value y(t0) = y0 and a step size h > 0 for the independent
variable t such that tn = t0 + nh at the nth iteration, we can perform each
successive iteration of the forward Euler method as follows:

yn+1 = yn + h f (tn, yn) (3.2)

This gives us the approximation y(tn) ≈ yn.
The approximation error for the forward Euler method grows propor-

tionally to the step size for each iteration, both locally at each time step and
globally over time. Thus, this method is unsuitable for approximating solu-
tions to complex ODEs, especially stiff systemswhere it quickly becomes
unstable without a very small step size.

3.1.2 Backward Euler method

The backward or implicit Euler method [Butcher, 1987] is similarly a basic
method for numerically approximating ODE solutions. This method is
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implicit, finding solutions using both the current and the successive state.
The implicit Euler method is stable [Torelli, 1989] and thus far more suitable
for stiff systems than the explicit counterpart.

As with the forward Euler method, consider a first-order ordinary
differential equation of the form y′(t) = f (t, y(t)) with an initial value
y(t0) = y0, and a step size h. The nth iteration can be calculated as follows:

yn+1 = yn + h f (tn+1, yn+1) (3.3)

3.1.3 Backward Euler with fixed-point iteration

As shown in Equation 3.3, the backward Euler method uses yn+1 in the
right-hand side as opposed to the explicit method’s yn. Since yn+1 is used
on both sides of the equation, an approximation must be calculated. One
method is through fixed-point iteration as follows:

y[0]
n+1 = yn

y[i+1]
n+1 = yn + h f (tn+1, y[i]

n+1) (3.4)

Iterating this process until |y[i+1]
n+1 − y[i]

n+1|< ε gives us an approximation
y(tn) ≈ yn.

3.1.4 Backward Euler with simplified Newton’s method

An alternative to fixed-point iteration, as it might converge slowly, is the
Newton’s method. With Newton’s method, given an initial approximation
x0, we may approximate the next solution x1 as follows:

x1 = x0 −
F(t0, x0)
F′(t0, x0)

(3.5)

Note that if we solve a system of ordinary differential equations, F′ becomes
a matrix. Let yn+1 = x0, ŷn+1 = x1. Recalling the backward Euler method as
yn+1 = yn + h f (tn+1, yn+1), we may define F as shown:

F(tn+1, yn+1) = yn+1 − yn − h f (tn+1, yn+1)

⇒ F′(tn+1, yn+1) =
dF

dyn+1
= 1− h f ′(tn+1, yn+1) (3.6)

12
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Combining this back into Equation 3.5, we reach the following equation
upon which we may iterate to converge towards a more accurate solution:

ŷn+1 = yn+1 −
F(tn+1, yn+1)
F′(tn+1, yn+1)

⇔ ŷn+1 = yn+1 −
yn+1 − yn − h f (tn+1, yn+1)

1− h f ′(tn+1, yn+1)
(3.7)

In the case of complex cell models we solve a system of ordinary
differential equations and f ′ becomes a matrix. We then need to solve a
linear system for each iteration, which can be very time consuming for
large systems. Following previous work [Lionetti, 2010, pp. 26—27], we
will be using a single iteration of Newton’s method with only the diagonal
components of f ′, hereby referred to as the simplified backward Euler
method, which yields the following equation:

yn+1 = yn +
h f (tn, yn)

1− h f ′(tn, yn)
(3.8)

The simplified backward Euler method is an explicit method and is there-
fore not as stable as the full method, but it is more stable than the explicit
Euler.

3.1.5 Rush-Larsen methods

This thesis will also utilise the Rush-Larsen method [Rush and Larsen,
1978] for simulations in later sections. Originally formulated by Rush and
Larsen in 1978 and demonstrated on the McAllister-Noble-Tsien [McAllister
et al., 1975] cell model, this method was proposed as a computationally
efficient alternative to the regular forward Euler method for ODE systems
of first-order complexity. By recognising that most ODE systems describing
cell models are quasi-linear, it modifies the steps of the forward Euler
method with an analytical solution of the linear ODEs, while applying the
standard forward Euler method to non-linear terms [Sundnes et al., 2009].

We will also use a slightly more complex extension of the Rush-Larsen
method, detailed in [Sundnes et al., 2009]. By linearizing the non-linear
terms, in addition to the linear, an analytical solution for all terms are used.
This method will be referred to as the generalised Rush-Larsen method in
this thesis.

13
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3.2 Stiffness of cell model ODEs

The systems of ordinary differential equations describing cell models tend
to bring some challenges for computing numerical solutions.

One such challenge arises from the stiffness of the ODE systems. An
ODE system is stiff if it contains terms describing slow movements that
are easily perturbed by nearby solutions that vary rapidly, leading to
numerical instability when solved with certain numerical methods [Hairer
and Wanner, 1999]. For stiff problems, such numerical methods require an
extremely small time step to arrive at a stable solution and yield a useful
result.

Simple solver algorithms such as explicit Euler are especially prone
to instability problems caused by system stiffness. Combatting stiffness
tends to involve self-correcting mechanisms during numerical computation.
Methods implementing such mechanisms may produce stable results with
much higher time steps at the expense of implementation complexity and
per-iteration performance.

4. Graphics processing units and GPGPU

Graphics processing units (GPUs) are highly parallelised processors special-
ising in efficiently and repeatedly performing the same operations on large
batches of data. This is primarily used for graphics processing on computa-
tionally heavy tasks such as 3D-rendering, texture mapping and geometric
calculations to significantly ease the load on the central processing unit
(CPU).

Despite recent years’ advances in multithreaded parallelism on multiple
cores, the architecture of a CPU is still designed primarily for fast serial
processing of general-purpose computations. The GPU architecture is
fundamentally different in this aspect, aimed at accelerating highly specific
and massively parallelisable tasks with hundreds of cores in modern GPUs.

General-purpose computing on graphics processing units (GPGPU)
is the repurposing of GPUs to perform computations for non-graphics
related applications that have traditionally been handled by the CPU. This
paradigm has seen a surge of popularity in data mining and computational
science in recent years [Luebke et al., 2006]. With the increasing usage,
several general-purpose programming languages and frameworks for high-
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performance computing on GPU have been developed, including OpenCL1

by Apple Inc. and Khronos Group, CUDA [NVIDIA Corporation, nd] by
Nvidia and several others [Membarth et al., 2011].

4.1 GPGPU programming with CUDA

CUDA2 is a parallel computing platform and programming model de-
veloped by Nvidia for the GPUs they produce [NVIDIA Corporation, nd].
This thesis uses CUDA and Nvidia hardware for GPU acceleration, and a
basic introduction to CUDA programming is presented in this section.

CUDA has both C and C++ programming language support. In this
thesis, we focus on the C extension, referred to as CUDA C, and access it
through the PyCUDA Python wrapper [Klöckner, 2014].

4.1.1 Kernels, grids, blocks and threads

CUDA C introduces an extension to C through specialised functions called
kernels, which are executed N times in parallel by N separate CUDA threads
when called. In CUDA terminology, the GPU is referred to as the device,
which is controlled by the host, typically the CPU on the system where
the GPU is installed. Kernel execution and GPU threads are organised
hierarchically. The kernels are executed on the device through a grid of
thread-blocks, where each block contains a set of threads. The kernel is
thus invoked by blocks of threads, where each thread runs the kernel
once [NVIDIA Corporation, 2014a; Valdmanis, 2012]. Figure 4.1 shows an
overview of this hierarchy along with the associated memory structure,
which is described in Section 4.1.2.

In the CUDA C syntax, the kernels are defined as regular C functions
with the addition of a __global__ or __device__ keyword. The former
indicates that the function should be executable by a caller on either the
host or device, while the latter is exclusively callable by the device. Each
thread that executes a kernel is given a unique thread ID within its block,
which may be accessed through the built-in threadIdx variable. If the ker-
nel is called with a single thread block, threadIdx is sufficient to uniquely
identify each thread. For multiple blocks, there are similar built-in vari-
ables used to access the block size and block ID: blockDim and blockIdx,

1<http://www.khronos.org/opencl/>
2Compute Unified Device Architecture
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Figure 4.1: Grids of thread-blocks with memory hierarchy [NVIDIA Corporation, 2014a]
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respectively. These block grids may be one-, two- or three-dimensional, as
specified by the caller. For a kernel that accepts three-dimensional grids, a
full thread address may be calculated as follows:

CUDA code

// Thread address for three -dimensional grids and blocks
int i = blockDim.x*blockIdx.x + threadIdx.x;
int j = blockDim.y*blockIdx.y + threadIdx.y;
int k = blockDim.z*blockIdx.z + threadIdx.z;

The kernel is called through an execution configuration syntax, <<<Dg,
Db, Ns, S>>>, where Dg is the grid size (number of blocks), Db is the block
size (threads per block), Ns is the number of bytes in dynamic shared block
memory, and S is the associated CUDA stream3. Ns and S are optional
arguments.

Basic sample code from the official CUDA documentation [NVIDIA
Corporation, 2014a] shows how one might add the elements of two matrices
A and B of size N × N and store the result in C:

CUDA code

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],

float C[N][N])
{

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j]
}

int main()
{

...
// Kernel invocation
dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N / threadsPerBlock.x,

N / threadsPerBlock.y);
MatAdd<<<numBlocks , threadsPerBlock»>(A, B, C);
...

}

3 CUDA streams provide a method for synchronising concurrent execution of multiple
kernels.

17
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In this code example, each of the 256 threads in each of the N × N/256
blocks that execute MatAdd() performs one pair-wise addition.

4.1.2 Memory structure

In the CUDA programming model, the device memory is hierarchically
structured and organised into three primary memory spaces as defined
by the Nvidia CUDA documentation [NVIDIA Corporation, 2014a]. An
overview of the structure is shown in Figure 4.1.
Global memory: All threads can access the persistent global device memory,

which is typically up to several gigabytes in modern GPUs. The host
can copy input data into this memory before executing a kernel to be
used by the threads. Likewise, the kernel will typically update this
memory with its results, which can be copied back into host memory.
Global memory accesses are generally slow, and kernels that perform
heavy computation on input data may see a significant performance
increase by copying data into shared memory or thread-local registers
for calculations before copying them back to global memory.

Per-block shared memory: Shared memory can be accessed by all threads
within the same block. Since this memory is on-chip, shared memory
accesses have a much higher bandwidth and lower latency than local
or global memory.

Per-thread local memory: Each thread has a small pool of dedicated local
memory. Like global memory, this memory is high latency and low
bandwidth [NVIDIA Corporation, 2014a]. Variables are only placed
into local memory under specific conditions, such as large arrays
which would consume too much register space, and any variable
when the kernel uses more registers than available (known as register
spilling).

There are additional specialised memories available – such as texture and
surface memory – that will not be covered here.

4.1.3 Thread execution

Nvidia GPUs have a number of multiprocessors, each of which executes
in parallel with the others. With Nvidia’s Kepler microarchitecture, each
multiprocessor consists of 12 groups of 16 stream processors, where stream
processors are commonly known as cores. The Nvidia GeForce GTX TITAN
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has 14 such multiprocessors for a total of 2688 cores (see Section 4.2). Each
core can execute a sequential thread, but the cores are executed in a method
called SIMT (single-instruction, multiple-thread), where all cores in the
same group execute the same instruction simultaneously [Cook, 2013, pp.
204—205].

The cores themselves are executed in warps, which are groups of 32
threads. To maximise performance, all threads in each warp should ideally
execute the same instructions. However, the SIMT execution model allows
for some flexibility at the expense of performance by serialising execution
upon divergent instructions. An example of this flexibility is through
execution divergence [Cook, 2013; Valdmanis, 2012].

Execution divergence occurs when diverging instruction paths are en-
countered. Typically these arise from altering the program control flow
through conditional branching, for instance with if-else branches or loop
conditions. Each path will be executed in turn until the control flow
converges once more [Cook, 2013, p. 205].

4.1.4 The PyCUDA wrapper

PyCUDA is a complete Python wrapper to Nvidia’s CUDA library [Klöck-
ner, 2014]. Accessing CUDA functionality through Python allows for
executing parallel code on Nvidia hardware through interactive scripting.
PyCUDA also provides automatic memory clean-up, abstractions for com-
piling and running CUDA source code, and functionality for allocating and
accessing memory on the device through NumPy array objects.

A simple example of usage is given by the official PyCUDA document-
ation [Klöckner, 2014]:

Python code
import pycuda.autoinit
import pycuda.driver as drv
import numpy as np

from pycuda.compiler import SourceModule
mod = SourceModule("""
__global__ void multiply_them(float *dest , float *a, float *b)
{

const int i = threadIdx.x;
dest[i] = a[i] * b[i];

}
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""")

multiply_them = mod.get_function("multiply_them")

a = np.random.randn(400).astype(np.float32)
b = np.random.randn(400).astype(np.float32)

dest = np.zeros_like(a)
multiply_them(

drv.Out(dest), drv.In(a), drv.In(b),
block=(400 ,1,1), grid=(1,1))

print dest-a*b

In this code sample, the elements of two arrays of 400 pseudo-random
single-precision floating point numbers are multiplied in parallel before
printing the results.

The CUDA code is sent as a string to PyCUDA’s SourceModule class,
which invokes nvcc4 to compile the source code into CUDA machine code.
A PyCUDA reference to the CUDA kernel is retrieved from the compiled
module and stored in multiply_them as a callable Python function refer-
ence.

The data used to communicate between the host and device is stored as
NumPy array objects, which store their data in fixed-size blocks of memory
in a C-contiguous memory layout [NumPy, 2014] compatible with CUDA.

4.2 Graphics card specifications

Simulations in later sections of this thesis have been run on one of two
GPUs: a weaker consumer-grade Nvidia GeForce GT 650M for notebooks
and a powerful Nvidia GeForce GTX TITAN. Some key specifications for
these units are detailed in Table 4.1.

4Nvidia CUDA Compiler
5<http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan>
6<http://www.geforce.com/hardware/notebook-gpus/geforce-gt-650m>
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Table 4.1: Key graphics card specifications5 6 [NVIDIA Corporation, 2012]

Metric GeForce GT 650M GeForce GTX TITAN

GPU architecture GK107 GK110
Process size 28 nm 28 nm
Transistors 1270 million 7080 million
Multiprocessors 2 14
CUDA cores 384 cores 2688 cores
Graphics clock Up to 900 MHz Up to 876 MHz
Effective memory clock 1800 MHz Up to 6008 MHz
Texture fill rate Up to 27.2 billion/s 187.5 billion/s
Peak performance 652.8 GFLOPS 4494 GFLOPS
Memory 1024 MB DDR3 6144 MB GDDR5
Memory interface width 128-bit DDR3/GDDR5 384-bit GDDR5
Memory bandwidth Up to 80.0 GB/s 288.4 GB/s

5. Gotran

5.1 Overview

Gotran7 provides a framework that aims to solve some of the issues that
arise from working with complex ODE systems. It uses a domain-specific
language to programmatically describe and declare an ODE system’s right
hand side function in a dedicated Gotran form file (Section 5.3). Instead
of employing a specific ODE solver to solve the ODEs, Gotran allows
for translating the form file to a number of different target languages for
further integration into existing ODE solver softwares. See Figure 5.1.

As of this writing, Gotran has several features in current development,
some of which were the main focus of this master thesis. In Figure 5.1 the
items with solid borders represent currently implemented features.

Desired works are represented with dashed borders and include imple-
menting support for more outputs: LATEX, FORTRAN and CellML [Miller
et al., 2010], Odeint [Ahnert and Mulansky, 2011], Sundials [Hindmarsh et
al., 2005] and (Py)CUDA.

For this thesis, LATEX output (Section 7) and GPU-acceleration via CUDA

7General ODE Translator
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Figure 5.1: Gotran as a hub for ODE handling

(Section 8) have been implemented.

5.2 Strengths

Gotran is written in the Python programming language. There are several
compelling reasons for this choice:

• Python’s flexibility as a powerful and dynamic interpreted language
simplifies the form files required to describe ODE systems. With
Python and the Gotran framework, Gotran form files can be executed
directly as Python code. This alleviates the need for new syntax and
a separate parser to describe ODE systems. Additionally, the ODEs
and their accompanying states, parameters and components can be
loaded directly into memory as Python objects. These objects can
then be used freely in further simulation, translation, modification
and integration of the ODE systems in Python scripts.

• Python is one of the primary programming languages used in sci-
entific computing [Langtangen, 2008], the field in which Gotran is
intended to be used.

• Python has an extensive list of libraries conducive to scientific com-
puting and to the specific needs of Gotran. These include NumPy/
SciPy8, ScientificPython9, SymPy [SymPy, 2014] and PyCUDA (see
Section 4.1.4) among others.

8<http://docs.scipy.org/doc/>
9<http://dirac.cnrs-orleans.fr/ScientificPython/ScientificPythonManual>
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Gotran uses functionality from SymPy, a well-known and extensively
tested Python library for handling symbolic mathematics, including:

• Automatic differentiation of expressions, which is used in automatic
generation of the jacobian matrix of an ODE’s partial derivatives.

• Extraction of common sub expressions, which is useful to generate
efficient code.

• Support for code generation to C, Python, LATEX and other outputs.

5.3 The Gotran form file

In Gotran, ODE systems are described in dedicated form files using Python
syntax. In these files, the ODE’s parameters and initial state values are
defined, along with the derivative components utilising these values.

The states and parameters defined in the form file may use functionality
from the modelparameters10 Python package to attach metadata such
as physical units and descriptions. The derivative components use the
powerful SymPy library to describe and manipulate equations symbolically
directly in Python.

Basic examples of state, parameter and derivative component definitions
in a Gotran form file are shown below:

Python code
# Example of ODE state definitions in Gotran
states("Calcium dynamics",

R_prime = ScalarParam(0.8978 ,
description="RyR availability"),

Ca_i = ScalarParam(0.000153 , unit="mM",
description="Intracellular Ca"),

Ca_SR = ScalarParam(4.272 , unit="mM",
description="SR Ca"),

Ca_ss = ScalarParam(0.00042 , unit="mM",
description="Subspace Ca"))

# Example of an ODE parameter definition in Gotran
parameters("Calcium pump current",

g_pCa = ScalarParam(
0.1238 , unit="pA*pF**-1",
description="I_pCa base conductivity"),

K_pCa = ScalarParam(
0.0005 , unit="mM",

10<https://launchpad.net/modelparameters>
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description="Ca_i dissociation constant for
I_pCa"))

# Example of an ODE derivative component group in Gotran
component("Fast sodium current", "h gate")
h_inf = 1/(1 + exp((V + 71.55)/7.43))**2
alpha_h = Conditional(Lt(V, -40), 0.057*exp(-(V + 80)/6.8), 0)

# ms**-1
beta_h = Conditional(Lt(V, -40), 2.7*exp(0.079*V) +

310000*exp(0.3485*V), 0.77/(0.13*(1 + exp((V +
10.66)/-11.1)))) # ms**-1

tau_h = 1/(alpha_h + beta_h) # ms
dh_dt = (h_inf - h)/tau_h

Note especially the last line, defining dh_dt. In Gotran form files, dX_dt is
the dedicated syntax for declaring time derivatives of a state variable X.

See Section 14.1 for a full example of a complete form file. We will
be using the Ten Tusscher-Panfilov model as defined by this form file for
several other examples and demonstrations in Part II and Section 9.

5.4 Gotran ODE objects

Gotran stores ODE systems described by form files in specialised ODE

objects. These objects store all initial state values, parameter values and
symbolic expressions describing the ODE system, as well as additional
metadata such as variable descriptions and component group labels.

Loading a form file into an ODE object is done through the load_ode

function:
Python code

from gotran import load_ode
ode = load_ode(’tentusscher_panfilov_2006_M_cell.ode’)

As an example of the ODE object’s contents, ode.state_expressions will,
after loading a form file, contain a list of objects describing the derivative
expressions for each state in the ODE model. A string representation of the
derivative expression for one such state, the membrane potential “V”, is as
follows:
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Python code
StateDerivative(State(’V’, ScalarParam(-85.423 , unit=’mV’,

description=’Membrane potential ’), Time(’t’,
ScalarParam(0.0, unit=’ms’))), -i_K1 - i_Ks - i_b_Ca -
i_p_Ca - i_Kr - i_p_K - i_Stim - i_CaL - i_NaK - i_b_Na -
i_NaCa - i_Na - i_to)

If we are interested in the definition of specific variables in the symbolic
expression, they are accessible through the ODE object’s get_object method.
For instance, ode.get_object(’i_CaL’) returns an object describing the
intermediate expression i_CaL:

Python code
(ODEComponent(’L_type Ca current ’),
Intermediate(’i_CaL’,

4*g_CaL*(F*F)*(0.25*Ca_ss*exp(2*F*V_eff/(R*T)) -
Ca_o)*V_eff*d*f*f2*fCass/(R*T*(-1 +
exp(2*F*V_eff/(R*T))))))

5.4.1 Solver components

Gotran also has functionality for generating and storing symbolic ODE
solver algorithms through solver component objects. These solver compon-
ents take an ODE object as input and return an encapsulated Python object
containing the logic for computing one iteration of a numerical algorithm
for an ODE system in the form of symbolic expressions.

5.5 GOSS

GOSS11 is a separate Python and C++ library that provides a framework
for solving ODE systems. It uses Gotran functionality for code generation
and ODE representation through a Python interface, and provides tools to
explicitly solve ODE systems.

11General ODE System Solver, a successor to PyCC [Mardal et al., 2007]
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BaseCodeGenerator

PythonCodeGenerator

CCodeGenerator

MatlabCodeGenerator

LatexCodeGenerator

CppCodeGenerator CUDACodeGenerator

Figure 6.1: Primary Gotran code generation classes – author’s contributions in bold

Part II

Contributions

6. Project implementation

This section briefly outlines the requirements for this thesis.

6.1 Automatically generated LATEX output of ODE systems

Automatic generation of LATEX output would eliminate a large source of
error when presenting manuscripts with computations – especially typo-
graphical errors. By using the same Gotran form file to generate both the
executable ODE simulation code and the corresponding LATEX markup code
describing the ODE system, this source of error may be minimised and
possibly eliminated. Depending on the structure of the manuscript, the
mathematical expressions may be presented in different formats.

We have implemented a number of different output formats along with
an intuitive command-line interface to generate them. The implementation
details are described in Section 7.
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6.2 GPU acceleration

GPU acceleration interfaced via Python is useful for research dependent
on high-performance computing. When large-scale ODE systems are un-
coupled, they can be solved simultaneously in parallel, as the computation
of such systems is a parallel problem (see Section 8.1). However, maximizing
performance from the generated GPU code is a non-trivial problem.

“The development of additional cell models for the GPU requires sig-
nificant technical skill in comparison with coding the same model for the
CPU. [. . . ] it would thus be desirable to develop a tool for automatically
generating GPU code and add this functionality to existent cell model
repositories.” [Vigueras et al., 2014, p. 131].

This thesis implements GPU acceleration using CUDA, with support for
multiple solver algorithms through Gotran and GOSS. The implementation
is detailed in Section 8, and test results are documented in Section 9.

7. LATEX output from Gotran

A common way to publish a developed ODE model is to describe it in
a manuscript to be included in the publication. However, translating a
complex model from a source file to a LATEX markup file is tedious and
error prone. One solution to this problem is to let Gotran not only generate
executable code for solving the ODEs, but also automatically generate well-
formatted LATEX markup code ready to be included into a LATEX manuscript
either verbatim, or with minimal changes.

For this thesis, we have developed such a tool integrated with Gotran.
This section describes its implementation and usage. A full generated
document of the Ten Tusscher-Panfilov model can be found as Figure 14.1
in Section 14.2 in the Appendix.

7.1 Implementation overview and overall structure

The generation of the LATEX code is contained within the LatexCodeGenerator
Python class in Gotran. The overall structural design strategy was to create
a hierarchical set of string templates into which formatted expressions,
descriptions, variable names, package imports, formatting options and
even subtemplates are injected, starting with the root template:
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Python code
_latex_template =

"""\\ documentclass[a4paper ,{FONTSIZE}pt]{{article}}
{PKGS}
{PREOPTS}

\\begin{{document}}
{OPTS}
{BODY}
{ENDOPTS}
\\end{{document}}"""

After initialising an instance of the class with a Gotran ODE object and
optional generation parameters (Section 8.9), it is ready to generate a
complete document from the root template, or individual components from
similarly structured subtemplates. For a full document, the generated LATEX
code consists of three major sections:

• A table of parameter values
• A table of initial state values
• The derivative components containing the equations describing the

ODE system

7.2 State and parameter table generation

Table 7.1: Abbreviated example of a generated parameter table

Parameter Value Description
KpCa 500×10−6 mM Cai dissociation constant for IpCa

gpCa 0.12 pA pF−1 IpCa base conductivity

Table 7.2: Abbreviated example of a generated state table

State Value Description
Cai 153×10−6 mM Intracellular Ca
Rprime 0.90 RyR availability
CaSR 4.27 mM SR Ca
Cass 420×10−6 mM Subspace Ca

The state table describes the initial values of the variables in the ODE
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system, while the parameter table describes values which are constant with
respect to later ODE calculations.

7.2.1 Table implementation considerations

Using the basic LATEX table construct became problematic for ODE systems
with too many states and parameters to easily fit on one page. The table

would bleed off the bottom of the page without transitioning to the next. A
few options were explored to solve this issue.

The first, naïve solution was to dump the state and parameter values
into a standard LATEX table construct, and leave the user to manually split
the data to fit on each page. This solution had the benefit of implementation
simplicity and robustness. As we aimed to maximise automation, however,
this option was not ideal for large tables.

As our second option, we could still have employed the standard
LATEX table constructs, but additionally relied on program logic during
code generation to automatically split the data into separate tables upon
detecting that it is too large to fit the page. There are, however, several
implementation and usability issues that arise from such an approach. For
the implementation, this approach would have been unnecessarily complex
to develop. Determining the maximum amount of data that fits on one
page in a LATEX table would rely on far too many variables to easily be
implemented in Python in a robust manner. We would be forced to account
for page margins, font type, font size, potentially tall rows for arbitrarily
long variable descriptions that wrap multiple lines, and other factors. Even
if such a solution were implemented, the result would have been tables of
fixed length hard-coded into the final LATEX code. This would still not have
been satisfactory from a usability standpoint, as users would be forced to
manually maintain and change these tables if they altered font sizes, font
families, variable descriptions, the table’s position within the document
and more.

To combine the benefits of implementation simplicity and the ease-
of-use and flexibility from automatic table splitting, our third and final
solution uses a more feature-rich LATEX table construct than the stand-
ard table. We found that the longtabu table construct, provided by the
longtable [Carlisle, 2004] and tabu [Chervet, 2011] LATEX packages, best
suited our needs. This table construct gave us several advantages:
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Simplicity: Once we have formatted the data, we can trivially dump it into
the longtabu table.

Flexibility: From a usability standpoint, the user may then reposition the
table, refactor the data and perform a variety of changes. The table
will dynamically adjust to these changes automatically.

7.2.2 Implementation details

The tables have been implemented by creating Python string templates to
supply the boilerplate code. The template is then populated with data by
the LatexCodeGenerator class. The parent template for the parameter table
is as follows:

Python code
_param_table_template = """
% ---------------- BEGIN PARAMETERS ---------------- %

\\{SECTIONTYPE}*{{Parameters}}\n
\\label{{sec:ODE_Parameters}}
{OPTS}
\\begin{{longtabu}}{{| l l {PDESCCELLSTYLE} |}}

\\ caption[Parameter Table]{{%
\\ textbf{{Parameter Table}}}}\\\\

\\hline
\\ multicolumn{{1}}{{|c}}{{%

\\ textbf{{Parameter \\ hspace{{0.5cm}}}}}} &
\\ multicolumn{{1}}{{c}}{{%

\\ textbf{{Value\\ hspace{{0.5cm}}}}}} &
\\ multicolumn{{1}}{{c|}}{{%

\\ textbf{{Description \\ hspace{{0.5cm}}}}}}\\\\ \\hline
\\ endfirsthead
\\ multicolumn{{3}}{{c}}%

{{{{\\ bfseries \\ tablename \\%
\\ thetable{{}} --- continued from previous page}}}}

\\\\ \\hline
\\ multicolumn{{1}}{{|c}}{{%

\\ textbf{{Parameter \\ hspace{{0.5cm}}}}}} &
\\ multicolumn{{1}}{{c}}{{%

\\ textbf{{Value\\ hspace{{0.5cm}}}}}} &
\\ multicolumn{{1}}{{c|}}{{%

\\ textbf{{Description \\ hspace{{0.5cm}}}}}}\\\\ \\hline
\\ endhead
\\hline
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\\ multicolumn{{3}}{{|r|}}%
{{{{Continued on next page}}}}\\\\ \\ hline

\\ endfoot
\\hline \\ hline
\\ endlastfoot
{BODY}\\\\
\\hline

\\end{{longtabu}}
{ENDOPTS}

% ----------------- END PARAMETERS ----------------- %
"""

The template for generation of the initial state values table is equivalent.
The parameter table template may then be populated with a few simple

functions:

Python code
def generate_parameter_table(self , params=None):

"""
Return a LaTeX -formatted string for a longtable
describing the ODE’s parameters.
"""
params = params if params else self.params
param_str = "\\\\\n".join(

self.format_param_table_row(par)
for par in self.ode.parameters)

param_table_opts =
self.format_options(exclude=["page_columns"])

param_table_output = _param_table_template.format(
SECTIONTYPE=params["section_type"],
PDESCCELLSTYLE=params[

"parameter_description_cell_style"],
OPTS=param_table_opts["begin"], BODY=param_str ,
ENDOPTS=param_table_opts["end"])

return param_table_output

def format_param_table_row(self , param):
"""
Return a LaTeX -formatted string for a longtable row
describing a parameter.
E.g.:
>>> LatexCodeGenerator.format_param_table_row(
... Parameter (" g_earth", ScalarParam(9.81,
... unit="m/s**2", description =" Surface gravity "))
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’ $g_{earth}$\\ hspace{0.5cm} & $9.81
\\ mathrm{\\frac{m}{s^{2}}}$
\\ hspace{0.5cm} & Surface gravity ’

"""
return " ${NAME}$\\ hspace{{0.5cm}} & {VAL}" \

"\\ hspace{{0.5cm}} & {DESC}".format(
NAME=self.format_expr(param.name),
VAL=param._repr_latex_ (),
DESC=self.format_description(

param.param.description ,
param.name))

We used the SymPy and modelparameters Python packages to convert
state and parameter names and values from an internal representation to a
valid LATEX string. Variable names are treated as single atomic units of a
mathematical expression, and we run them through a simple format_expr

function to prepare them for conversion through the aforementioned pack-
ages:

Python code
def format_expr(self , expr):

"""
Return a LaTeX -formatted string for a sympy expression.
E.g.:
>>> LatexCodeGenerator.format_expr ("exp(i*pi) + 1")
’e^{i \\pi} + 1’
"""
if isinstance(expr , str) and expr in _greek:

return "\\{0}".format(expr)
# Some values are treated as special cases by

sympy.sympify.
# Return these as they are.
if isinstance(expr , str) and expr in \

filter(lambda x: len(x) == 1, dir(sympy)):
return expr

return modelparameters.latex(
sympy.sympify(expr), **self.print_settings)

7.3 Component generation

The components describe the right hand side of the ODE system by means
of other states and parameters. These components are organised into
separate groups as dictated by the given Gotran form file (see Section 5.3),
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Fast sodium current

(7.1a)hin f =
1

(
1 + 15.2×103e0.14V

)2

αh =





443×10−9e−0.15V for V < −40

0 otherwise

(7.1b)

(7.1c)βh

=





2.7e79×10−3V + 310×103e0.35V for V < −40

0.77
0.13+49.8×10−3e−90.1×10−3V

otherwise

(7.1d)τh =
1

βh + αh

(7.1e)
dh
dt

=
1
τh

(
−h + hin f

)

Figure 7.1: Example of a generated component group

dV
dt

= −iK1− iKs− ibCa− ipCa− iKr− ipK− iStim− iCaL− iNaK− ibNa− iNaCa− iNa− ito

(7.2)

(a) Using equation

(7.3)
dV
dt

= −iK1 − iKs − ibCa − ipCa − iKr − ipK − iStim

− iCaL − iNaK − ibNa − iNaCa − iNa − ito

(b) Using dmath

Figure 7.2: Demonstration of automatic linebreaks with dmath vs. equation
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where the equations themselves are also defined. A well-structured ODE
system definition will include numerous intermediate calculations for
appropriate component groups based on the complexity of the equation
for a state’s derivative function.

Figure 7.1 shows a generated sample component group from the Ten
Tusscher-Panfilov model with equations organised into two columns.

7.3.1 Automatic linebreaks

Similar to our reasoning about pagebreaks for tables, it is necessary to
make some design choices towards maximising automation when ensuring
readability in the final document. Even if we assume well-formed equations
from the Gotran form file with reduced complexity, some equations may not
be possible to cleanly display on a single line regardless. Not accounting
for this would pose a major readibility issue.

Using common LATEX constructs such as equation and align would
prove to be problematic for reasons similar to the table construct in Sec-
tion 7.2.1. They would require deliberately inserting linebreaks at appro-
priate breakpoints in long equations to prevent them from bleeding off
the page, either manually by the user, or programmatically with program
logic. As before, we found the best solution was to use an appropriate
LATEX package such as breqn [Høgholm et al., 2012], which “facilitates
automatic line-breaking of displayed math equations”. See Figure 7.2 for a
comparison between using equation and breqn’s dmath for the following
generated LATEX code:

LATEX code
\frac{dV}{dt} = - i_{K1} - i_{Ks} - i_{b Ca} - i_{p Ca} -

i_{Kr} - i_{p K} - i_{Stim} - i_{CaL} - i_{NaK} - i_{b Na}
- i_{NaCa} - i_{Na} - i_{to}

Depending on the specific structure of the equation and the chosen
constraints on page width, the dmath construct may fail to properly break
up an equation. For our use cases, this appears to occur most often with
convoluted conditional equations. In such cases, the user is forced to
manually adjust or refactor the expression to their preference. An example
of this may be seen in Section 14.2. For a Gotran form file with well-
structured equations, this occurs infrequently enough that we will consider
the failure rate to be within acceptable levels.
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7.3.2 Implementation details

The generation of components also uses string templates to simplify the
implementation, and is primarily contained within one main function
generate_components:

Python code
def generate_components(self , params=None):

"""
Return a LaTeX -formatted string of the ODE’s derivative

components and
intermediate calculations.
"""
params = params if params else self.params
components_str = ""
comp_template = "{LABEL}\n\\label{{comp:{LABELID}}}\n" \

"\\ begin{{dgroup{SUBNUM}}}\n" \
"{BODY}\\end{{dgroup{SUBNUM}}}\n"

eqn_template = \
" \\ begin{{dmath}}\n \\label{{eq:{0}}}\n" \
" {1} = {2}\\\\\n \\end{{dmath}}\n"

subnumbering = ’’ if params["equation_subnumbering"] \
else ’*’

for comp in self.ode.components:
body = [obj for obj in comp.ode_objects

if isinstance(obj , Expression)]

if not body:
continue

format_label = self.format_component_label(comp.name)
label_id = comp.name.replace(’ ’, ’_’)
format_body = ""

# Iterate over all objects of the component
for obj in body:

format_body += eqn_template.format(
obj.name ,
obj._repr_latex_name (),
obj._repr_latex_expr ())

components_str += \
comp_template.format(LABEL=format_label ,

35



George Bahij • July 2014 • University of Oslo • Simula Research Laboratory

LABELID=label_id ,
BODY=format_body ,
SUBNUM=subnumbering)

components_opts = \
self.format_options(override=["page_columns",

"math_font_size"])
components_output = _components_template.format(

SECTIONTYPE=params["section_type"],
OPTS=components_opts["begin"],
BODY=components_str ,
ENDOPTS=components_opts["end"])

return components_output

def format_component_label(self , label):
"""
Return a LaTeX -formatted string of an ODE component group

label.
"""
label_opts = self.format_options(

override=["bold_equation_labels"])
return "{0}{1}{2}\\\\".format(

label_opts["begin"],
label.replace("_", "\\_"),
label_opts["end"])

generate_components iterates over each component in the Gotran ODE

object. For each component, the associated Gotran Expression objects are
collected. The Expressions represent the relevant derivative equations
for the states and their related intermediate equations. These are sub-
sequently formatted into valid mathematical LATEX expressions through
modelparameters and sympy functions before being inserted into appropri-
ate subtemplates and configured with additional code generation paramet-
ers.

The example shown in Figure 7.1 was created with the following gener-
ated LATEX code:

LATEX code
\textbf{Fast sodium current }\\
\label{comp:h_gate}
{\ fontsize{10.0}{12.0}
\begin{multicols }{2}
\begin{dgroup}
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\begin{dmath}
\label{eq:h_inf}
h_{inf} = \frac{1}{\ left(1 + 15.2\!\ times \!10 ^{3}

e^{0.14 V}\right)^{2}}\\
\end{dmath}
\begin{dmath}

\label{eq:alpha_h}
\alpha_{h} = \begin{cases} 443\!\ times\!10 ^{-9} e^{-

0.15 V} & \text{for}\: V < -40 \\0 &
\text{otherwise} \end{cases }\\

\end{dmath}
\begin{dmath}

\label{eq:beta_h}
\beta_{h} = \begin{cases} 2.7 e^{79\!\ times\!10 ^{-3} V}

+ 310 \!\ times \!10 ^{3} e^{0.35 V} & \text{for}\: V <
-40 \\\ frac{0.77}{0.13 + 49.8\!\ times \!10 ^{-3} e^{-
90.1\!\ times\!10 ^{-3} V}} & \text{otherwise}
\end{cases }\\

\end{dmath}
\begin{dmath}

\label{eq:tau_h}
\tau_{h} = \frac{1}{\ beta_{h} + \alpha_{h}}\\

\end{dmath}
\begin{dmath}

\label{eq:dh_dt}
\frac{dh}{dt} = \frac{1}{\ tau_{h}} \left(- h +

h_{inf}\right)\\
\end{dmath}

\end{dgroup}
\end{multicols}
}% end fontsize

7.4 Formatting and generation parameters

The implemented LATEX code generator supports a number of user-specified
generation parameters that control the formatting of the final document
or the structure of the code. This includes font size for text and equations,
page orientation and margins, multi-column equations and the omittance
of a LATEX preamble.
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7.5 gotran2latex

gotran2latex is a simple script that provides a command-line interface to
the implemented LATEX code generator. It takes a Gotran form file as input,
along with optional code generation options, and generates a .tex file with
the resulting LATEX code. Instructions for usage are available in Section 13.1.

8. GPU acceleration of ODE solvers

Gotran does not provide any means to explicitly solve ODEs. Instead
it provides functionality to generate code which can interface with exist-
ing solver frameworks. Before the contributions from this thesis, Gotran
provided support for outputs to Matlab and pure Python. It was also cap-
able of generating code for a C/C++ function body, which can be placed
into a function specific to a particular C/C++ solver library. Support for
the in-house GOSS C++ library was already in place.

This thesis implements code generation to CUDA, Nvidia’s language for
parallel GPU programming, as an extension to Gotran. It also implements
supplementary functionality in GOSS to use the resulting code interactively
through PyCUDA.

8.1 Parallelisation on GPU

A common application for Gotran generated files is simulation of the
electrophysiology of the heart. In such simulations, hundreds of thousands
or millions of almost identical ODE systems need to be solved on each time
step. Since these ODE systems do not share state values at any point, they
are independent of each other. As such, this problem may be considered
embarrassingly parallelisable. [Ackermann et al., 2009, p. 2]

The GOSS C++ library already uses OpenMP12 to parallelise the solving
process and provides significant speed-ups. Through OpenMP, GOSS
utilises modern CPUs’ multi-core architecture to achieve its speed-ups.
We posit, however, that there are even more significant speedups to be
gained by utilising the far more parallel structure of GPUs for solving
ODEs. To achieve this, we tailored our code specifically for GPUs through
an appropriate framework. In this thesis, we targeted Nvidia GPUs and
the accompanying CUDA framework.

12<http://openmp.org/wp/>
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8.2 CUDA generation and a PyCUDA solver interface

Since all our existing tools can be interfaced using Python, it was natural
to interface our implementation with PyCUDA [Klöckner, 2014]. PyCUDA
is a complete Python wrapper to Nvidia’s CUDA library. Section 4.1.4
provides a brief description of the PyCUDA library.

We have focused on efficiency and explored various methods for op-
timisation of the algorithms for these solvers, specifically tailored for GPU
architecture. Automatic generation of CUDA code for solvers of given ODE
models has been implemented Gotran. The existing C code generator in
Gotran served as a good basis for the development of the CUDA code
generation, since CUDA itself is accessible through libraries and extensions
to C/C++.

An interface to use the CUDA code generator to explicitly solve ODEs
on GPU has also been implemented as an extension to the GOSS framework.
The generated solver code is compiled and loaded onto the GPU, and
subsequently accessed using the PyCUDA wrapper API in Python through
our GOSS interface. An example of usage can be seen in Section 8.11.

8.3 Implementation overview

The implementation is split into two primary components:
CUDA code generation: Implemented as a part of Gotran, this generates

generic CUDA code for calculating the right-hand-side function of an
ODE model given a specific ODE solver method.

PyCUDA ODE solver: Implemented as a part of GOSS, this invokes the
CUDACodeGenerator to generate the code for Nvidia’s CUDA platform.
By wrapping the generated code with PyCUDA, it allows a script,
library or interactive user to compile the CUDA code, load the binaries
onto an Nvidia graphics card and run the simulation within a Python
session.

As mentioned briefly in Section 8.1, the simulated ODE system consists
of a large number of almost identical ODEs. Specifically, this refers to their
parameters generally being identical and their states generally undergoing
nearly identical calculations. There are some notable exceptions outlined
in Section 8.4.
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8.4 Field states and field parameters
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Figure 8.1: Effect of transient outward current gto on the Ten Tusscher-Panfilov trans-
membrane potential

Local memory and local registers on GPU threads are limited, and copying
memory between host (CPU) and device (GPU) is time-consuming. In an
effort to conserve memory usage, we will reserve states and parameters
to the GPU by default and not directly expose them to the Python code
running the simulation on the host. The user may, however, find it useful
to select specific states and parameters of interest for further calculations
on the host, referred to as field states and field parameters respectively. This
has a few important implications and side effects.

8.4.1 Field states

It is often useful to track one or several states of interest for further analysis
and calculations of their values as they change over time. These states are
marked as field states. In our use cases, this is most commonly for tracking
and plotting the transmembrane voltage during an action potential event. A
more complete simulation of a cardiac model will also require performing
calculations to solve PDEs on select field states for each time step of the
simulation.

These are CPU-bound operations performed on the host. It is therefore
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necessary to transfer these field states between GPU memory into CPU
memory on each time step. For each iteration, the host will therefore
perform the following steps:

• Transfer current field state values from the host (CPU) to the device
(GPU).

• Execute the CUDA kernel to compute one time step of the ODE
system on GPU.

• Transfer updated field state values from the device to the host.
• Perform additional calculations of the field states on the host (e.g.

solve PDEs or store field states for later plotting/analysis).
• Increase the current simulation time by the time step.

8.4.2 Field parameters

Regular ODE parameters are defined in the Gotran form file and remain
constant throughout the duration of the simulation, and are identical for
all simulated nodes (ODEs) in the ODE system. For this reason, each
parameter is not stored separately for each node, but as a single, constant
value shared by all nodes. It is useful, however, to set up certain parameters
with values that vary across the ODE system. These parameters are marked
as field parameters. The field parameters may represent variations in
properties of separate cells, where each cell is represented by one node in
the simulation.

While parameters are initialised once for all nodes as the ODE model
is loaded from a Gotran form file, each field parameter may be initialised
by the user with values that differ between nodes. The field parameters
may then remain static throughout the simulation, or get updated between
iterations in a similar manner to field states.

Figure 8.1 shows the transmembrane potential of the Ten Tusscher-
Panfilov model for different values of the gto parameter, representing the
base conductance of transient outward current. Its original value as defined
in the model’s Gotran form file was 0.294 nS/pF.

8.4.3 Effects on memory usage and memory transfer

Since all states must be used in calculations separately for each node in
the ODE system, each state will already be stored separately for each
node. Marking a state as a field state will therefore not increase memory
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usage on the GPU. In fact, field states do not introduce any changes to the
CUDA kernel that computes the ODE system’s right-hand-side (the forward
function). For the host to interact with the field states in a meaningful
manner, however, an array to hold the field state data must be allocated
on the CPU large enough to hold one floating point number for each field
state on each node. Additionally, as field states are copied between the host
and device on each time step, we expect there to be a minor performance
hit due to the increased data transfer between the CPU and GPU.

Marking an ODE parameter as a field parameter, however, does increase
memory usage on the GPU. Whereas regular, static parameters only need
to be stored once across all nodes, each field parameter is stored separately
for each node. If the host code updates the field parameters between time
steps as well, field parameters will see an increase in data transfer similar
to that of field states.

8.5 Implementation of CUDA code generation

A CUDACodeGenerator class has been implemented for this thesis. It gener-
ates CUDA code for initiating and solving an ODE. The primary compon-
ents of this generated code are:

• initialisation of states, field states and field parameters
• kernel functions for external retrieval and updating of field states
• a forward kernel function that computes one time step of the ODE’s

right-hand-side (see Section 3)
CUDACodeGenerator has been implemented as a subclass of Gotran’s

CCodeGenerator, which itself is a subclass of BaseCodeGenerator. As
CUDA is an extension of C/C++, it is appropriate for the CUDACodeGenerator
to reuse relevant functionality from the parent class which already gen-
erates output for ODE solvers in C. There are, however, some crucial
differences the CUDA code generator needs to handle.

First, we must be able to generate a single CUDA forward function
to compute the values of potentially millions of almost identical ODEs
on hundreds of separate simultaneous threads using the same code. Op-
timally, this should also be achieved with minimal conditional branching
of program flow to prevent execution divergence due to the GPU’s SIMT
architecture (see Section 4.1.3).
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Additionally, we have implemented functions for handling initialisation
of field states and field parameters, and for cleanly transferring field states
between the host CPU and the GPU device.

8.5.1 Forward function

The forward function computes one time step of the ODE’s using an ODE
solving algorithm such as those presented in Section 3. The main genera-
tion of the forward function is handled by the function_code method in
CUDACodeGenerator:

Python code
def function_code(self , comp , indent=0,

default_arguments=None ,
include_signature=True ,
return_body_lines=False):

The primary argument is comp. This is a Gotran solver component,
such as RushLarsen, which generates a collection of Gotran Expressions
and supplementary data to compute one step of a specific ODE solver
algorithm. These Expressions make heavy use of SymPy to allow for a
symbolic representation of mathematical expressions within Python.

The arguments supplied by the called are first read and validated. The
code for this has been omitted. After validation, the initial lines of the body
of the forward function are set:

Python code
# Initialization
body_lines = [

"const int thread_ind = blockIdx.x*blockDim.x + "
"threadIdx.x"]

body_lines.append(
"if (thread_ind >= n_nodes) return; "
"// number of nodes exceeded")

body_lines.append(
"const int {0}_offset = thread_ind*{1}".format(

states_name , comp.root.num_full_states))

if len(field_parameters) > 0:
body_lines.append(

"const int {0}_offset = thread_ind*{1}".format(
field_parameter_name , len(field_parameters)))
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body_lines.extend(self._init_arguments(comp))

Lines of code for the function body are collected in body_lines. These
are later formatted and combined along with the function definition
through supplementary code generation functions. Most code generation
functions in Gotran use this method.

Since we are applying the same function to potentially millions of nodes,
we need to differentiate between them based on which GPU block and
thread is currently running the function. This is done in CUDA through the
global structs blockIdx, blockDim and threadIdx. We use these values
to calculate the current thread index, and store it in thread_ind in the
resulting CUDA code. We also initialise useful offsets to determine where
the current thread’s data is stored in the global state and field parameter
arrays.

Note that we organise our thread-blocks as one-dimensional, and we
only use the x-coordinate of the thread and block indices. While CUDA
supports up to three-dimensional grids, ODE systems are not inherently
structured as such.

A version of CCodeGenerator’s _init_arguments modified to work with
CUDA generates the code initialising each state, parameter and field para-
meter for the forward function. With default code generation parameters,
this creates local copies of the values in the current thread’s local registers.
This is useful for optimisation purposes during computation, as retrieving
these values from the thread registers requires far fewer clock cycles than
fetching them from the single, large array in the global GPU memory.
However, other generation options are available, as detailed in Section 8.9.

After initialisation, we generate the code for the groups of expressions
which compute one step for each state through their derivatives. This
is done by iterating over the expressions composed by the Gotran solver
component and formatting them for our purposes:

Python code
# If named body representation we need to check for duplicates
duplicates = set()
declared_duplicates = set()
if params.body.representation == "named":

collected_names = set()
for expr in comp.body_expressions:

if isinstance(expr , Expression) and \
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not isinstance(expr , IndexedExpression):
if expr.name in collected_names:

duplicates.add(expr.name)
else:

collected_names.add(expr.name)

# Iterate over any body needed to define the dy
for expr in comp.body_expressions:

if isinstance(expr , Comment):
body_lines.append("")
body_lines.append("// " + str(expr))
continue

elif isinstance(expr , IndexedExpression):
name = "{0}".format(self.obj_name(expr))

elif expr.name in duplicates:
if expr.name not in declared_duplicates:

name = "{0} {1}".format(self.float_type ,
self.obj_name(expr))

declared_duplicates.add(expr.name)
else:

name = "{0}".format(self.obj_name(expr))
else:

name = "const {0} {1}".format(self.float_type ,
self.obj_name(expr))

body_lines.append(self.to_code(expr.expr , name))

To use named intermediate values, we must first declare and initialise
them with a type. To do this we must keep a track of duplicate intermediate
variables. These represent variables which are recalculated at some point
after initialisation, and we must thus ensure that they are not subsequently
redeclared after the initial declaration. If a variable instead is calculated
only once, it is stored as a const.

Finally, we wrap the generated body in a function prototype, indent
and split the lines and return the generated code as a string. The code for
this is omitted.

As an example of the generated CUDA code, the following is a heavily
abbreviated code snippet from generated code of the forward function for
the Ten Tusscher-Panfilov ODE model using the Rush-Larsen algorithm,
generated with single-precision floating point values:
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CUDA code

// Compute a forward step using the rush larsen algorithm on
// the tentusscher_panfilov_2006_M_cell ODE
__global__ void forward_rush_larsen(float* d_states , const

float t, const float dt, const float* d_parameters , const
float* d_field_parameters , const unsigned int n_nodes)

{
const int thread_ind = blockIdx.x*blockDim.x + threadIdx.x;
if (thread_ind >= n_nodes) return; // number of nodes

exceeded;
const int d_states_offset = thread_ind*19;
const int d_field_parameters_offset = thread_ind*2;

// Assign states
const float Xr1 = d_states[d_states_offset + 0];
const float Xr2 = d_states[d_states_offset + 1];
const float Xs = d_states[d_states_offset + 2];
/* ... */
const float K_i = d_states[d_states_offset + 18];

// Assign parameters
const float P_kna = d_parameters[0];
const float g_K1 = d_parameters[1];
const float g_Kr = d_parameters[2];
/* ... */
const float K_o = d_parameters[52];
const float g_CaL =

d_field_parameters[d_field_parameters_offset + 0];
const float g_to =

d_field_parameters[d_field_parameters_offset + 1];

/* Expressions for 6 components omitted ... */

// Expressions for the Xs gate component
const float xs_inf = 1.0/(1.f + exp(-5.f/14.f - V/14.f));
const float alpha_xs = 1400.f/sqrt(1.f + exp(5.f/6.f -

V/6.f));
const float beta_xs = 1.0/(1.f + exp(-7.f/3.f + V/15.f));
const float tau_xs = 80.f + alpha_xs*beta_xs;
const float dXs_dt = (-Xs + xs_inf)/tau_xs;
const float dXs_dt_linearized = -1.f/tau_xs;
d_states[d_states_offset+2] = Xs + (fabs(dXs_dt_linearized) >

1.0e-8f ?
(-1.0f +

exp(dt*dXs_dt_linearized))*dXs_dt/dXs_dt_linearized :
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dt*dXs_dt);

/* Expressions for 22 components omitted ... */
}

8.5.2 State and field parameter initialisation functions

The global array of states shared by all nodes is initialised in a separate
function on the GPU. The CUDA code is generated by the following
method:

Python code
def init_states_code(self , ode , indent=0):

It generates code that computes the current thread index and the array
offsets in a manner similar to function_code, before setting up the main
state array initialisation code:

Python code
# Main body
body_lines.extend(

"{0}[{0}_offset+{1}] = {2}{3}; // {4}".format(
array_name , i, state.init , float_str , state.name)

for i, state in enumerate(ode.full_states))

The initial state values are retrieved from the given Gotran ODE object
and is hardcoded into the generated code to populate the CUDA array.
Each node’s states are stored successively in the array, such that the ith
node uses the data at indices {i · Ns, i · Ns + 1, . . . , (i + 1) · Ns − 1}, where
Ns is the number of states per ODE.

An abbreviated example of the resulting CUDA code for the Ten
Tusscher-Panfilov model is as follows:

CUDA code

// Init state values
__global__ void init_state_values(double *d_states)
{

const int thread_ind = blockIdx.x*blockDim.x + threadIdx.x;
const int d_states_offset = thread_ind*19;
d_states[d_states_offset+0] = 0.0165; // Xr1;
d_states[d_states_offset+1] = 0.473; // Xr2;
/* ... */
d_states[d_states_offset+18] = 138.52; // K_i;

}
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Note that double-precision floating points are used in this example.
Single-precision float numerals are written with a trailing f, e.g. 0.0165f
as opposed to double-precision 0.0165.

The initialisation of field parameters is done in a similar manner.

8.5.3 Field state getter and setter functions

The CUDA function for retrieving field states to GPU is generated by the
field_states_getter_code function:

Python code
def field_states_getter_code(self , ode , indent=0):

As previously, the thread index and offsets are calculated before gener-
ating the main body of the function:

Python code
# Main body
body_lines.extend(

"{0}[field_{2}_offset + {3}] = "\
"{1}[{2}_offset + {4}]; //{5}".format (\

field_array_name , array_name ,
base_array_name , i, states.index(state), state.name)

for i, state in enumerate(field_states))

Here, code is generated so the field states array stored on CPU can be
updated with the values from the current GPU states array. The host array
is referred to by field_array_name, while the GPU device array is denoted
by array_name.

The resulting CUDA code for the Ten Tusscher-Panfilov model with
one field state (the transmembrane potential “V”) is as follows:

CUDA code

// Get field states
__global__ void get_field_states(const float *d_states , float *

h_field_states)
{

const int thread_ind = blockIdx.x*blockDim.x + threadIdx.x;
const int states_offset = thread_ind*19;
const int field_states_offset = thread_ind*1;
h_field_states[field_states_offset + 0] =

d_states[states_offset + 17]; //V;
}
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set_field_states is generated in an almost identical manner by simply
exchanging the left-hand-side with the right-hand-side in the assignment
operations.

8.5.4 Combining the kernels

CUDACodeGenerator contains a method to generate all the necessary CUDA
kernels at once and combine them into a single string:

Python code
def solver_code(self , ode , solver_type):

code_list = list(
"// Gotran generated CUDA solver code " \
"for the \"{0}\" model".format(ode.name))

code_list.append ()
code_list.append(self.function_code(

get_solver_fn(solver_type)(ode ,
params=self.params.code)))

code_list.append(self.init_states_code(ode))
code_list.append(self.field_states_getter_code(ode))
code_list.append(self.field_states_setter_code(ode))
code_list.append(self.init_field_parameters_code(ode))
return "\n\n".join(code_list))

get_solver_fn retrieves a function that initialises a Gotran solver com-
ponent for the specified solver algorithm. This solver component is the
comp argument used in function_code as described in Section 8.5.1.

8.6 Overview of the PyCUDA interface implementation

A layer of abstraction for solving ODEs on the GPU through Python
has been implemented as a CUDAODESystemSolver class and an auxiliary
ODECUDAHandler class. They have been integrated with GOSS along with its
existing CPU-based solvers that utilise Gotran functionality. The purpose
of these classes is to provide a simple interface for the user to solve an ODE
system through an interactive Python shell or script, or as part of a larger
library.

The ODECUDAHandler manages all communication with the GPU, while
CUDAODESystemSolver provides the user-facing interface.
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8.7 ODECUDAHandler

The ODECUDAHandler class primarily manages the interaction with the
CUDA framework through the PyCUDA library. As such, it is a wrapper
of PyCUDA functionality for our purposes. This includes initialising the
device, initialising and destroying memory on the device, copying data
between the host and device and launching CUDA kernels on the GPU.

8.7.1 Initialisation

The CUDA initialisation is done through the init_cuda method. This
method is called by the CUDAODESystemSolver class, and works in two
primary stages.

The first stage is the generation and compilation of the CUDA code
generated by the CUDACodeGenerator described above:

Python code
ccg = CUDACodeGenerator(self.params)
self._cuda_code = ccg.solver_code(

self._ode , self.params.solver)

self.ctx = pycuda.autoinit.device.make_context ()
dev = self.ctx.get_device ()

nvcc = self.params.nvcc or "nvcc"
gpu_arch = self.params.gpu_arch if self.params.gpu_arch \

else None
gpu_code = self.params.gpu_code if self.params.gpu_code \

else None
cuda_cache_dir = self.params.cuda_cache_dir \

if self.params.cuda_cache_dir else None

nvcc_options = self.params.nvcc_options
if nvcc_options is not None and len(nvcc_options) > 0 \

and nvcc_options[0] == "":
nvcc_options = None

self._mod = SourceModule(
self._cuda_code , nvcc=nvcc , options=nvcc_options ,
keep=self.params.keep_cuda_code , no_extern_c=False ,
arch=gpu_arch , code=gpu_code , cache_dir=cuda_cache_dir ,
include_dirs=[])
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self.ctx.set_cache_config(pycuda.driver.func_cache.PREFER_L1)

First, CUDA code with the specified code generation parameters is
generated. Then a new CUDA context and a device object for the GPU is
initialised. CUDA contexts are GPU equivalents of CPU processes, while
the device object acts as an accessor to the GPU device. The code is then
compiled through the PyCUDA SourceModule class, and the compiled
module is stored.

When compilation is complete, the host and device memory for the ODE
system’s states, parameters, field states and field parameters is initialised:

Python code
# Allocate and initialise states
init_states_fn = self._mod.get_function(’init_state_values ’)
self._h_states = np.zeros(self._num_nodes*self._ode.num_states ,

dtype=float_t)
self._d_states = pycuda.driver.mem_alloc(

float_sz*self._num_nodes*self._ode.num_states)
field_states = self.params.code.states.field_states
if len(field_states) == 1 and field_states[0] == "":

field_states = list()
self._d_field_states = None
if len(field_states) > 0:

self._d_field_states = \
pycuda.driver.mem_alloc(

float_sz*self._num_nodes*len(field_states))
init_states_fn(self._d_states , block=self._get_block (),

grid=self._get_grid ())
pycuda.driver.memcpy_dtoh(self._h_states , self._d_states)

Both states and field states have host (CPU) and device (GPU) equi-
valents to facilitate the transfer of data between the two. After allocating
the memory on GPU to hold the state data and setting up the equivalent
NumPy arrays on host, the states on the GPU are initialised through init_-

states_fn, which is a PyCUDA function reference to the compiled CUDA
kernel on the GPU that performs the data initialisation. The function is
called with the NumPy array containing the device (GPU) states, which it
then populates. Also note the block and grid keyword arguments, which
are explained in Section 8.7.4.

The initialisation of parameters and field parameters is similar to the
states and field states, and the code for this has been omitted.
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Finally, we retrieve a PyCUDA reference to the solver function kernel
on the GPU and set a flag to mark initialisation as complete:

Python code
# Set forward solver function
solver_type = self.params.solver
solver_function_name = \

self.params.solvers[solver_type].function_name
self._forward_fn = \

self._mod.get_function(solver_function_name)

self._cuda_ready = True

8.7.2 Calling the forward function

The ODECUDAHandler’s forward function makes the actual call to the for-
ward function on GPU through the PyCUDA wrapper, progressing the
computation of the solution to the ODE system on each node by one time
step.

Python code
def forward(self , t, dt, update_host_states=False ,

synchronize=True):
""" Solve one time step of the ODE system on GPU """
if not self.is_ready ():

raise Exception(’CUDA has not been initialised ’)
else:

timer = Timer("calculate CUDA forward")

# Collect the arguments for the CUDA kernel
args = [self._d_states , t, dt , self._d_parameters]
field_parameters =

self.params.code.parameters.field_parameters

if not (len(field_parameters)==0 or
(len(field_parameters) == 1

and field_parameters[0] == "")):
args.append(self._d_field_parameters)

args.append(np.uint32(self.num_nodes))

# Perform the call to the CUDA kernel
self._forward_fn(*args ,

block=self._get_block (),
grid=self._get_grid ())
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if synchronize:
self.ctx.synchronize ()

if update_host_states:
timer = Timer("update host states")
pycuda.driver.memcpy_dtoh(self._h_states ,

self._d_states)

The required arguments for the forward kernel on the GPU as defined
by the generated code are collected, and fed into the PyCUDA reference
to that kernel. These required arguments are the device (GPU) states _d_-

states, the current time value t, the time step dt, the device parameters
_d_parameters, the device field parameters _d_field_parameters if any,
and the number of nodes num_nodes, in that order.

After calling the forward function on the GPU, we may optionally let
the GPU threads synchronise, based on the user-supplied synchronize flag.
This halts the Python program flow until all activity in the current context
ceases before continuing. Without synchronisation, the Python script will
continue while the forward function runs on the GPU until it returns, or
until our next interaction with the GPU is encountered. Synchronisation is
thus necessary to accurately measure the runtime of the forward function.

If the update_host_states flag is set, the current states are copied from
device to host after a call to forward has completed. The user may find
this useful for debugging or analysis purposes, at a potential minor cost to
runtime efficiency.

8.7.3 Updating field states and field parameters

Setting the field parameters is trivial:

Python code
def set_field_parameters(self , h_field_parameters):

""" Copy field states from host to device memory."""
if not self.is_ready ():

raise Exception(’CUDA has not been initialised ’)
else:

pycuda.driver.memcpy_htod(self._d_field_parameters ,
h_field_parameters)

This simply copies the user-supplied NumPy array containing the
desired field parameter values from the host into the device array to be
used on GPU, using PyCUDA’s memcpy_htod function.
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The functions to set and get field states require a call to their respective
GPU kernel function, but remain relatively simple:

Python code
def get_field_states(self , h_field_states):

""" Copy field states from device to host memory."""
if not self.is_ready ():

raise Exception(’CUDA has not been initialised ’)
else:

get_field_states_fn = \
self._mod.get_function(’get_field_states ’)

timer = Timer("get_fs_fn")
get_field_states_fn(self._d_states ,

self._d_field_states ,
block=self._get_block (),
grid=self._get_grid ())

timer = Timer("get_fs_cpy")
cuda.memcpy_dtoh(h_field_states ,

self._d_field_states)

The function for setting the field states copies them from host to device
before the GPU function call, instead of from device to host after the call,
but is otherwise identical to its counterpart.

8.7.4 Block and grid size

We pass the number of threads per block and the total number of thread-
blocks to the CUDA kernels upon invoking them. These values are calcu-
lated by the _get_block and _get_grid functions, respectively.

Python code
def _get_block(self):

return (min(self._num_nodes , self.params.block_size),
1, 1)

def _get_grid(self):
block_size = self.params.block_size
grid = (self._num_nodes//block_size +

(0 if self._num_nodes % block_size == 0
else 1),

1)
return grid
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The number of threads per block is primarily determined by a user-
specified solver parameter, block_size, unless it is greater than the total
number of nodes. The grid size – the total number of thread-blocks – is
then calculated to fit the total number of nodes.

As ODE calculations are not inherently organised in two or three di-
mensions, but the blocks and the grids are structured in one dimension for
the sake of simplicity.

See Section 4.1.1 for more information about CUDA blocks and grids.

8.7.5 Memory and context clean-up

Upon completion, a clean-up function can be called to free up the allocated
memory and the CUDA context on the current device:

Python code
def clean_up(self):

""" Free the allocated memory and the current device
context."""

for _d_array in \
(self._d_states , self._d_parameters ,
self._d_field_states , self._d_field_parameters):

try:
_d_array.free()

except cuda.LogicError:
continue

except AttributeError:
continue

if self._cuda_ready:
self.ctx.pop()

self._cuda_ready = False

8.8 CUDAODESystemSolver

The CUDAODESystemSolver class is the primary solver interface. It is initial-
ised with the number of nodes in the ODE system, a Gotran ODE object
describing it together with user-supplied options. These options contain
directives important for generating the code and running the ODE solver,
such as the floating-point precision, the solver algorithm, the specified field
states and field parameters, compiler options and more. They are described
in detail in Sections 8.9 and 8.10.
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Upon initialisation, the CUDAODESystemSolver object performs the fol-
lowing steps:

• If host field states or host field parameters have been supplied, create
one local NumPy array for each to store their values on the host.

• Initialise the ODECUDAHandler with the given ODE and code genera-
tion options. This process is explained in detail in Section 8.7.

After initialising an instance of the class, the user may populate the
field parameters on the GPU and retrieve initial field state values from the
GPU using the set_field_parameters and get_field_states methods:

Python code
def set_field_parameters(self , field_parameters):

self.field_parameters = field_parameters
self._cudahandler.set_field_parameters(

self.field_parameters)

def get_field_states(self , field_states=None):
timer = Timer("get field states")
field_states = field_states if field_states is not None \

else self.field_states
if field_states is not None:

self._cudahandler.get_field_states(field_states)

The main part of the CUDAODESystemSolver class is the forward func-
tion, which computes one time step of the ODE solver algorithm.

Python code
def forward(self , t, dt, update_host_states=False):

""" Compute one step of the ODE system."""
float_t = get_np_float_type(self.params.code)
t = float_t(t)
dt = float_t(dt)
ldt_0 = float_t(self.params.ldt)
nsteps = int(np.ceil(dt/ldt_0 - 1.0E-12)) \

if ldt_0 > 0 else 1
ldt = dt/float_t(nsteps)

for _ in xrange(nsteps):
self._cudahandler.forward(t, ldt , update_host_states)
t += ldt

The supplied time and time step values are converted to the appropri-
ate NumPy floating-point type depending on the floating-point precision
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specified in the code generation parameters.
The forward function is then called on the GPU through the ODECUDAHandler.

Note that it is possible to compute multiple time steps per call to this func-
tion through a user-supplied substepping value, seen in the above code as
self.params.ldt. The details of this functionality are described in Section
8.10.

The forward method in CUDAODESystemSolver is called repeatedly by
the user until the ODE system has been simulated for a sufficient length of
time.

The CUDAODESystemSolver also contains some supplementary methods
the user may find useful for debugging or analysis of results:
get_cuda_states: Dumps the current states in GPU memory into a NumPy

array on the host and returns the array.
get_cuda_parameters: Dumps the current parameters in GPU memory

into a NumPy array on the host and returns the array.
get_cuda_code: Returns a string containing the generated CUDA code

used by the solver.

8.9 CUDA code generation parameters

In Gotran, code generation is controlled by a set of user-specified code
generation parameters. For the CUDA code generator, typical usage is as
follows:

Python code
from gotran import CUDACodeGenerator , load_ode

# Load an ODE from a Gotran form file
ode = load_ode(’ode_model.ode’)

# Get the default code generation parameters
params = CUDACodeGenerator.default_parameters ()

# Update parameters as necessary
params.code.float_precision = "single"
params.code.n_nodes = 1024*1024
params.code.states.field_states = ["V"]

# Generate the CUDA code
cuda_code = CUDACodeGenerator(ode , params)
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This section details a subset of the supported code generation paramet-
ers for the CUDA code generator:
code.float_precision specifies the floating point precision of values used

for calculation. Accepted values are "single" and "double" for
single- and double-precision floating point computation, respectively.
Single-precision floating point operations are significantly faster than
double-precision at the expense of accuracy. Section 9.2 details the
differences.

code.n_nodes sets the number of nodes used in the simulation. The ODE
model will be solved for each node in a separate thread. Increasing
the number of nodes increases the resolution of the simulation results
at increased computation time. The relationship between the number
of nodes and simulation runtime is described in Section 9.4.

code.parameters.field_parameters supplies the ODE parameter names
that will be marked as field parameters, supplied as a list of strings of
parameter names. The reader may refer to Section 8.4 for a description
of field parameters and field states.

code.parameters.representation controls how ODE parameters are rep-
resented in the code. Accepted values are "named", "array" and
"numerals". With the default named representation, ODE parameter
values are assigned to separate local variables in the CUDA kernel, to
be stored in each executing thread’s local registers or local memory.
With an array representation, ODE parameters are instead fetched dir-
ectly from the global array passed into the kernel by the host. With a
numeric representation, all references to ODE parameters in the kernel
are replaced with their constant numeric values.

code.states.field_states and code.states.representation are state equi-
valents to the ODE parameter counterparts. Note that numeric rep-
resentation for states is not supported, as state values are expected to
change throughout the computation unlike static ODE parameters.

code.body.use_cse , if set, attempts to optimise the kernel body by using
SymPy to extract common sub-expressions.

code.body.representation is similar to the representation option for
ODE states and parameters, but controls the representation of in-
termediate expressions of component groups in the kernel body.
Accepted values are "named", "array" and "reused_array". A named
representation stores each expression in a separate variable in the
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executing thread’s local registers or local memory. An array repres-
entation stores them in a local indexed array, while a reused array
representation will shorten the array and reuse array elements for new
expressions when the existing values are no longer needed.

8.10 Solver-specific parameters

CUDAODESystemSolver handles solver-specific parameters in a similar man-
ner. It also accepts code generation parameters, which are passed on to the
CUDACODEGenerator used to generate code for the solver. Sample usage is
shown in Section 8.11.

This section details a subset of the supported parameters specific to the
solver:
solver specifies the algorithm that will be used to solve the ODE sys-

tem. For this thesis, the explicit Euler, the simplified implicit Euler,
the Rush-Larsen and the generalised Rush-Larsen algorithms are
supported. These are supplied as "explicit_euler", "simplified_-
implicit_euler", "rush_larsen" and "generalized_rush_larsen",
respectively. Brief descriptions of the ODE solver algorithms can
be found under Section 3, while test results for the algorithms are
detailed in Section 9.6.

block_size specifies the number of threads per block with which the
CUDA kernel will be executed. See Section 4.1.1 for a description of
CUDA threads and blocks. Test results for different values are found
in Section 9.3.

ldt sets the local time step for the ODE computations. With a local
time step lower than the general time step specified for the ODE
computation, the ODE’s forward function will be called ddt/ldte times
for each iteration, where dt is the general and ldt is the local time
step. This is useful when the user supplements the ODE calculation
with other operations on field states and field parameters between
iterations, and the ODE computations require a higher resolution
than the secondary operations. Each iteration will then progress the
simulation by the general time step, while the computation of the
ODE system undergoes multiple subiterations. If ldt ≤ 0, substepping
is disabled.

nvcc_options specifies additional arguments to nvcc, supplied as a list of
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strings. As an example, to enable the CUDA fast math library for
faster, less accurate single-precision floating point computations, the
user may set this parameter to [’-ftz=true’, ’-prec-div=false’,

’-prec-sqrt=false’]. For complete documentation on the nvcc com-
piler, the reader may refer to [NVIDIA Corporation, 2014b].

8.11 Example solver usage

One example of usage is in the following code:

Python code
from goss.cuda import CUDAODESystemSolver
from gotran import load_ode
import numpy as np

# Load the ODE model
ode = load_ode("tentusscher_panfilov_2006_M_cell.ode")

# Get default code generation parameters
params = CUDAODESystemSolver.default_params ()

# Set user -specified code generation and solver parameters
params.code.states.field_states = ["V"]
params.code.parameters.field_parameters = ["g_to"]
params.solver = "rush_larsen"
params.block_size = 128

# Set number of nodes
num_nodes = 1024*1024

# Solver keeps all memory and all logic for calling GPU
solver = CUDAODESystemSolver(num_nodes , ode , params)

# Initialise memory for voltage (1 field state)
voltage = np.zeros(num_nodes , dtype=np.float64)

# Initialise memory for 1 field parameter (g_to) as a
# linear transform
g_to_0 = 0.294
field_parameters = \

(np.arange(num_nodes , dtype=np.float64)+1)*g_to_0/num_nodes

# Load our transformed field parameters from CPU
# onto GPU
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solver.set_field_parameters(field_parameters)

# Load initial ODE state values from GPU into
# our field states on CPU
solver.get_field_states(voltage)

# Do time stepping (in milliseconds)
dt = 0.05
tstop = 25.0

t = 0.0
while t < tstop:

# Solve ODE
solver.set_field_states(voltage) # Send to GPU
solver.forward(t, dt) # Compute one time step of ODE
solver.get_field_states(voltage) # Get from GPU

# Do calculations with voltage (solve PDE)...
voltage[:] = values_from_pde

# Do additional operations for this time step as
# necessary here , e.g. plotting a graph of the
# current field states.

# Update time
t += dt

In this code example, we load a Ten Tusscher-Panfilov ODE model from
a Gotran form file into the object ode. We set our initial configuration
parameters in params and set our solver type as the Rush-Larsen algorithm
(see Section 3.1.5). We specify the number of ODEs/nodes to solve in
the ODE system with num_nodes, and initialise the field states and field
parameters that will vary with each node. Finally, we run the simulation
for 25 ms with a time step of 50 µs, allowing for additional calculations of
the current states at each time step.

61



George Bahij • July 2014 • University of Oslo • Simula Research Laboratory

Part III

Analysis

9. Benchmarking and test results of GPU acceleration

This section details and discusses the effects of various parameters on
simulation runtime and results. We are interested in these results to
determine the effects of each parameter on the simulation time and the
accuracy of our computations.

Table 9.1: Key CPU specifications13 14 15 16

Metric Xeon E5-2687W Core i7-3632QM

CPU architecture Sandy Bridge Ivy Bridge
Process size 32 nm 22 nm
Transistor count 2270 million 1400 million
Cores 8 4
Threads 16 8
Base clock speed 3.1 GHz 2.2 GHz
Turbo clock speed 3.8 GHz 3.2 GHz
L1 cache size 384 kB 256 kB
L2 cache size 2 MB 1 MB
L3 cache size 20 MB 6 MB
Bus architecture QPI DPI
Bus transfer rate 8000 MT/s 5000 MT/s
Peak performance (Base) 198.4 GFLOPS 70.4 GFLOPS
Peak performance (Turbo) 243 GFLOPS 102 GFLOPS
Memory bandwidth Up to 51200 MB/s Up to 12800 MB/s

We have used two machines to generate simulation results in this section.

13<http://ark.intel.com/products/64582/Intel-Xeon-Processor-E5-2687W-20M-Cache-3_
10-GHz-8_00-GTs-Intel-QPI>

14<http://ark.intel.com/products/71670/Intel-Core-i7-3632QM-Processor-6M-Cache-up-to-3_
20-GHz-BGA>

15<http://download.intel.com/support/processors/xeon/sb/xeon_E5-2600.pdf>
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One of the machines contains two Intel Xeon E5-2687W CPUs, one Nvidia
GeForce GTX TITAN GPU and 126 GB of RAM. The second consumer-grade
machine contains one Intel Core i7-3632QM CPU, one Nvidia GeForce GT
650M GPU and 8 GB of RAM. While we are primarily testing results from
these GPUs, some CPU-based simulations are also included for comparison.
Section 4.2 provides detailed specifications of the GPUs, while Table 9.1
provides specifications of the CPUs.

9.1 Overview

Table 9.2: Base test parameters

Test parameter Default value

ODE model Ten Tusscher-Panfilov model
Field states V (transmembrane potential)
Field parameters gto (transient outward current)
Field parameter transform Linear
Number of nodes 65536
Time step 0.1 ms
Simulation time 300 ms
Floating point precision double

Threads per CUDA block 256
Solver algorithm Rush-Larsen

Table 9.2 shows the base test parameters that are assumed for each simula-
tion in the remainder of this section unless otherwise specified.

The Ten Tusscher-Panfilov model’s transmembrane potential (“V”) field
state is the main variable we have tracked throughout most simulations.
It represents the voltage difference across the cell membrane in millivolts.
The base conductance of the transient outward current is the main field
parameter we will vary across the nodes. It will be transformed linearly,
mapping it to 100 % of its original value at the first node, and 1 % at the
final node.

See Section 8.4 for details on field parameters, and Figure 8.1 for the
effect the linear gto transform has on the Ten Tusscher-Panfilov transmem-

16<http://download.intel.com/support/processors/corei7/sb/core_i7-3600_m.
pdf>
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brane potential. See Section 14.1 for the full Gotran form file of the Ten
Tusscher-Panfilov model [Ten Tusscher and Panfilov, 2006].

Table 9.3: Runtime statistics for 64 identical tests using Nvidia GeForce GTX TITAN

Metric Value

Max runtime 7.92 s
Min runtime 7.81 s
Mean runtime 7.84 s
Standard deviation 0.042 s
Mean absolute deviation 0.036 s

Table 9.3 shows a brief summary of basic statistical metrics for 64 identical
tests using the base parameters. We can see that the results remain consist-
ent with negligible variations in runtime.

9.2 Floating point precision and fast math

Table 9.4: Simulation runtime vs. float precision and fast math with 262144 nodes

(a) Using Nvidia GeForce GTX TITAN

Float precision Use fast math Time (s)

Single No 6.37
Single Yes 3.82
Double No 30.1
Double Yes 30.1

(b) Using Nvidia GeForce GT 650M

Float precision Use fast math Time (s)

Single No 40.3
Single Yes 24.9
Double No 165
Double Yes 165

The computation of solutions to ODE systems are done with floating point
numbers, as they are the standard method of approximating real numbers
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in computing. Floating point numbers are typically represented with either
single or double precision, and Gotran supports generating C code for
both representations. As single-precision floating point numbers store
the approximation with fewer bits than double-precision floats, they are
typically faster to process at the expense of accuracy. As such, it may be
interesting to quantify both the speed-up we can achieve and the precision
we sacrifice by using single-precision calculations.

Additionally, CUDA supports compilation with optimisations of certain
mathematical operations involving single-precision floating point numbers
at further expense of accuracy. These optimisations are done through the
CUDA fast math library, which approximates specific mathematical opera-
tions and floating point representations, instead of using IEEE-compliant
operations [NVIDIA Corporation, 2014a]. Specifically, CUDA’s fast math
library replaces single-precision division and square root operations with
faster approximations, and flushes floating point denormals17 to zero.

Table 9.4 illustrates how float precision and usage of CUDA’s fast math
library affect simulation runtime. The fast math library was included
by compiling the generated CUDA source code with nvcc parameters -

ftz=true, -prec-div=false and -prec-sqrt=false. Note especially that
the fast math library has no effect on double-precision runtime. This
is consistent with the CUDA documentation, which specifies that the
fast math library only applies to single-precision operations [NVIDIA
Corporation, 2014a].

There is a significant speed-up from utilising single-precision over
double-precision floating point numbers. For the Nvidia GeForce GTX
TITAN, this speed-up is almost by a factor of five. Enabling the fast math
library for single-precision floats brings down the runtime further by a
factor of 1.6, with a total speed-up at almost eight times compared to
double-precision floats.

9.2.1 Floating point precision accuracy

In addition to the speed-ups, it is also important to determine how much
single-precision calculations affect the accuracy of the solution.

17 Floating point values below the lowest possible normalised value with the lowest
representable exponent, where the floating point representation is denormalised by setting
the leading binary significand to zero. Allows representing numbers closer to zero at some
cost to performance.
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Figure 9.1: Relative difference between single- and double-precision floating point calcula-
tions of the membrane potential of the Ten Tusscher-Panfilov model

Figure 9.1 shows the relative difference between single- and double-
precision floating point calculations of the membrane potential in the Ten
Tusscher-Panfilov model. The relative difference δt at each time step t was
calculated with double-precision floats as reference, as follows:

δt =
∣∣∣∣

ft − dt

dt

∣∣∣∣ (9.1)

where ft and dt are the membrane potential at time step t for floats and
doubles, respectively.

Note the spikes in relative difference around 11 ms and 280 ms. There
are two contributing factors to these spikes. First, at approximately 10 ms
the depolarisation phase of the action potential, causing a rapid change
in transmembrane potential, is triggered a few milliseconds earlier by
the single-precision floating point simulation than the double-precision
simulation. Secondly, at both 11 ms and 280 ms, the calculated membrane
potentials switch polarity as they cross 0 mV. As dt approaches 0, δt

approaches the asymptote
∣∣∣ ft

0

∣∣∣.
This second factor is misleading in these calculations, as the asymptotic

increase in relative difference when the denominator approaches zero is
not representative of the small differences in accuracy we expect between
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Figure 9.2: Absolute difference between single- and double-precision floating point calcu-
lations of the membrane potential of the Ten Tusscher-Panfilov model (log-lin)

floating point precisions.
A more representative metric may be the absolute difference between

the single- and double-precision floating point calculations, calculated as
follows:

δt = | ft − dt| (9.2)

With this metric, illustrated on our data in Figure 9.2, the effect of the un-
synchronised activation of the depolarisation phase is still apparent around
11 ms when the absolute difference in calculated voltage briefly reaches
approximately 34 mV. The noise from switching polarity by crossing 0 mV,
however, is eliminated. After the depolarisation phase, the absolute dif-
ference appears to stabilise around 0.01 mV before slowly increasing to
0.06 mV at 300 ms. The more complex Grandi-Pasqualini-Bers model ex-
hibits a comparable result in absolute difference between floating point
precisions. This is shown in Figure 9.3, where the membrane potential for
this model has been computed with the generalised Rush-Larsen algorithm
at a time step of 12.5 µs. The peak difference is again around the depolar-
isation phase, which occurs around 4 ms with the Grandi-Pasqualini-Bers
simulation.
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Figure 9.3: Absolute difference between single- and double-precision floating point cal-
culations of the membrane potential of the Grandi-Pasqualini-Bers model
(log-lin)

For a closer look at the depolarisation inconsistency, refer to Figure 9.4
which shows the transmembrane potential for the single- and double-preci-
sion floating point simulations of the Ten Tusscher-Panfilov model around
11 ms. Note that the difference in the time of onset for the depolarisation
phase is 0.1 ms, at 10.0 ms and 10.1 ms for the single- and double-preci-
sion calculations, respectively. This is exactly one time step for our Ten
Tusscher-Panfilov computation. Recomputing this model with a time step
of 12.5 µs also reduces the difference in time of onset to 12.5 µs between
the single- and double-precision calculations, suggesting that this source of
inconsistency may be insignificant for simulations with a low time-step.

9.2.2 Fast math accuracy

For the sake of completeness, we also looked at the effect of the fast
math library on the accuracy of calculations. The absolute difference in
transmembrane potential for the Ten Tusscher-Panfilov model with single-
precision floating point calculations with and without the fast math library
is shown in Figure 9.5. As this difference consistently stays under 12 nV,
we may consider it insignificant for computations with our parameters.
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Figure 9.4: Depolarisation phase of the Ten Tusscher-Panfilov model, simulated with
single and double-precision floating point calculations
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Figure 9.5: Absolute difference between calculations of the membrane potential of the Ten
Tusscher-Panfilov model with and without fast math
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9.3 Threads per block

Figure 9.6 shows the impact of the block size on the runtime of an ODE
simulation. The simulations used the Rush-Larsen algorithm to simulate
the Ten Tusscher-Panfilov model over 300 ms at 100 µs increments, with
65536 nodes per time step.

As described in Section 4.1.3, threads are executed in parallel in groups
of 32 known as warps. This applies for both the Kepler microarchitecture
used by the Nvidia GeForce GTX TITAN and the older Fermi microarchi-
tecture used by the Nvidia GeForce GT 650M.

We would expect the simulations to reach peak efficiency at multiples of
this warp size, which matches the results from the consumer-grade GeForce
GT 650M. Note, however, that the results from the GeForce GTX Titan do
not match these predictions. For the GTX Titan, peak efficiency appears to
occur at powers of two, e.g. at 32, 64, 128 and 256 threads per block for the
values tested. Further research would be needed to determine what causes
these results.
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Figure 9.6: Simulation runtime for varying number of threads per block
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9.4 Number of nodes

Table 9.5: Runtime speed-up from GT 650M to GTX TITAN for number of nodes

Nnodes GT 650M time (s) GTX TITAN time (s) Speed-up

1024 1.136 0.699 1.6×
2048 1.727 0.696 2.5×
4096 3.111 1.168 2.7×
8192 5.822 1.483 3.9×
16384 11.13 2.243 5.0×
32768 21.49 4.228 5.1×
65536 42.10 7.816 5.4×
131072 83.21 15.24 5.5×
262144 164.8 30.08 5.5×
524288 327.8 60.07 5.5×
1048576 653.8 119.7 5.5×
2097152 1306 239.0 5.5×
4194304 2609 477.9 5.5×

The number of simulated nodes controls the resolution at which the model
is calculated. Each iteration of the ODE system is computed once for
each node, typically with minor variations in select field parameters across
the nodes. Table 9.5 shows how the number of simultaneously simulated
nodes affect the runtime of a simulation. The runtimes are also plotted in
Figure 9.7 as log-log plots for a visual overview.

The number of nodes was doubled for each subsequent simulation,
from 1024 at the lower end to a maximum of 4194304 nodes. As each node
adds one more ODE system to be solved, the simulation runtime appears to
be proportional to the number of simulated nodes. Simple linear regression
models for the runtime data on each GPU both yield an R2 > 0.9999.

As the number of nodes increases to a point where the computational
overhead becomes insignificant, the speed difference between our GPUs
also stabilises with the Nvidia GeForce GTX TITAN being approximately
5.5 times faster.
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Figure 9.7: Simulation runtime vs. number of nodes calculated per time step
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9.5 ODE model

Table 9.6: Simulation runtime vs. ODE model with 65536 nodes

(a) Using Nvidia GeForce GTX TITAN

ODE Model States Parameters LoC18 Time (s)

Beeler-Reuter 8 10 132 23.4
Ten Tusscher-Panfilov 19 53 456 99.5
Grandi-Pasqualini-Bers 39 107 852 298

(b) Using Nvidia GeForce GT 650M

ODE Model States Parameters LoC Time (s)

Beeler-Reuter 8 10 132 172
Ten Tusscher-Panfilov 19 53 456 593
Grandi-Pasqualini-Bers 39 107 852 1745

The complexity of the ODE model also significantly affects simulation time,
as shown in Table 9.6. For this comparison, each model was simulated in
12.5 µs increments with the second-order generalised Rush-Larsen solver
algorithm. The algorithm and time step were chosen due to the stiffness
of the Grandi-Pasqualini-Bers model, which causes instability when calcu-
lated with larger time steps than the more basic first-order Rush-Larsen
algorithm.

Note especially the relationship between the lines of code in the CUDA
forward function and the simulation time for each model. For both GPUs,
the average time spent per line of code increases significantly for the Grandi-
Pasqualini-Bers model. For the consumer-grade Nvidia GeForce GT 650M
GPU, the Beeler-Reuter, Ten Tusscher-Panfilov and Grandi-Pasqualini-Bers
models respectively spend an average of approximately 20 µs, 19 µs and
31 µs of real time per line of code per node. For the Nvidia GeForce
GTX TITAN, these numbers are 2.7 µs, 3.3 µs and 5.3 µs for each respective
model.

18Lines of code in the generated CUDA forward function
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It is likely that this discrepancy arises from the size and complexity of
the Grandi-Pasqualini-Bers model causing register spill on the GPU. During
compilation, nvcc assigns variables declared in each device function to a
limited set of thread-local GPU registers. The Nvidia GeForce GTX TITAN,
for instance, has 255 available registers per thread. When the number of
declared local variables exceeds this amount, variables will “spill” into local
memory, which is supported by the cache hierarchy. Each spilled variable
must be loaded and stored on reads and writes, which is significantly
slower than accessing it directly from the thread’s registers.

Compiling the generated CUDA code with the nvcc compiler option
--ptxas-options=-v displays the amount of used registers and the memory
needed per compiled device function. This data shows that the Grandi-
Pasqualini-Bers forward function has a significantly higher register spill
than the Ten Tusscher-Panfilov forward function, while Beeler-Reuter has
none.

The following is an excerpt from the xptxas output detailing the register
and memory usage by the forward function for the Grandi-Pasqualini-Bers
model on the Nvidia GeForce GTX TITAN GPU:

Terminal output
ptxas info : Compiling entry function

’forward_generalized_rush_larsen ’ for ’sm_35 ’
ptxas info : Function properties for

forward_generalized_rush_larsen
1136 bytes stack frame , 1160 bytes spill stores , 3172

bytes spill loads
ptxas info : Used 254 registers , 356 bytes cmem[0], 1072

bytes cmem[2]

The output specifies that all available thread registers are used, with 1072
additional bytes per thread being stored in thread-local memory (cmem[2]).
In each thread, 1160 bytes are stored in spilled memory, while 3172 bytes
are loaded from it.

9.6 Solver algorithms

Table 9.7 shows the simulation runtimes for different solver algorithms
applied to the Ten Tusscher-Panfilov model using a time step of 12.5 µs.
The explicit Euler algorithm is far too unstable to converge upon a solution
at this time step with the Ten Tusscher-Panfilov model, and was therefore
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Table 9.7: Simulation runtime vs. solver algorithm with 65536 nodes

(a) Using Nvidia GeForce GTX TITAN

Solver Time (s)

Rush-Larsen 62.77
Generalised Rush-Larsen 100.5
Simplified implicit Euler 96.83

(b) Using Nvidia GeForce GT 650M

Solver Time (s)

Rush-Larsen 336.8
Generalised Rush-Larsen 592.7
Simplified implicit Euler 568.2

excluded from these tests.

9.6.1 Highest stable time step

To account for some solvers being more stable and accurate than others, we
compared a “stable” solution for each solver with a reference solution. The
stable solution was chosen such that the average transmembrane potential
did not differ more than 1 % from the reference solution.

The reference solution for the Ten Tusscher-Panfilov model was com-
puted with the Rush-Larsen algorithm with a time step of 1 µs. For each
algorithm tested against this control, the highest time step that satisfied
our constraint was selected. For the stiffer Grandi-Pasqualini-Bers model,
the reference solution was calculated with the generalised Rush-Larsen
algorithm with a time step of 0.125 µs. The results are shown in Table 9.8.

For the Ten Tusscher-Panfilov model, it is apparent that the explicit
Euler algorithm is far too unstable for practical use compared to the other
tested algorithms. It requires a time step approximately 170 times lower and
a computation time almost 27 times higher than the Rush-Larsen algorithm
to reach the same level of accuracy. From the results, the Rush-Larsen
algorithm is the most efficient algorithm to solve the Ten Tusscher-Panfilov
model by a wide margin.

Interestingly, these drastic differences in the stability of the solver
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Table 9.8: Simulation runtime for solver algorithms at highest stable time step with 65536
nodes using Nvidia GeForce GTX TITAN

(a) Using the Ten Tusscher-Panfilov model

Solver Time step (µs) Time (s)

Rush-Larsen 338 2.36
Generalised Rush-Larsen 208 6.02
Simplified implicit Euler 94 13.3
Explicit Euler 2 62.8

(b) Using the Grandi-Pasqualini-Bers model

Solver Time step (µs) Time (s)

Rush-Larsen 8 197
Generalised Rush-Larsen 10 375
Simplified implicit Euler 6 655
Explicit Euler 7 185

algorithms are significantly lessened for the stiffer Grandi-Pasqualini-Bers
model. For this model, the explicit Euler algorithm is able to achieve an
equivalent level of stability in the shortest time compared to the other
algorithms. The reasons for this are unclear, and may be appropriate to
investigate in a future study. It should also be noted that every algorithm
other than the generalised Rush-Larsen algorithm rapidly destabilises with
increased time steps for this model. Specifically, at 10 µs for Rush-Larsen
and simplified implicit Euler, and at 8 µs for explicit Euler, no solution is
found as the computation diverges to infinity. This phenomenon can be
attributed to the stiffness of the Grandi-Pasqualini-Bers model, where these
numerical solvers are constrained primarily by stability concerns rather
than accuracy. The generalised Rush-Larsen algorithm, however, will find
a solution for the Grandi-Pasqualini-Bers model at higher time steps at a
steadily increasing cost to accuracy.

9.7 Field states and field parameters

In this section, we are interested in testing the differences in simulation
runtime when field states and field parameters are used. Field states and
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Table 9.9: Simulation runtime vs. field parameters

(a) Using Nvidia GeForce GTX TITAN

Field parameters Field parameter transform Time (s)

gto, gCaL Linear transform 7.94
gto Linear transform 7.88
∅ ∅ 7.91

(b) Using Nvidia GeForce GT 650M

Field parameters Field parameter transform Time (s)

gto, gCaL Linear transform 42.4
gto Linear transform 42.1
∅ ∅ 42.2

field parameters are described in detail in Section 8.4.
For these tests, the Ten Tusscher-Panfilov model was used with our base

test parameters. The field parameters had their initial values set with a lin-
ear transform as described in Section 9.1. They were not updated between
the time steps of the simulation. The field states were copied between the
host and the device on each time step, but no further calculations were
performed on the host.

Tables 9.9 and 9.10 show the results for field parameters and field states,
respectively. While we expected a minor performance hit by using field
parameters and field states from the increase in memory transfers, the
differences in runtimes appear to be negligible. This may be explained by
the computationally heavy algorithms solving the ODE on each time step
dwarfing the relatively minor memory transfers.
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Table 9.10: Simulation runtime vs. field states

(a) Using Nvidia GeForce GTX TITAN

Field states Time (second)
V 7.87
∅ 7.86

(b) Using Nvidia GeForce GT 650M

Field states Time (second)
V 42.1
∅ 42.0

9.8 GPU vs. CPU solvers

It may be interesting to see the differences in performance between our
CUDA implementation for solving ODEs with existing CPU implementa-
tions. The tests in this section solve the Ten Tusscher-Panfilov model with
our base test parameters on CPU and GPU, with both our consumer-grade
and workstation hardware. The multi-threaded CPU-based solver used
for these tests was provided by GOSS. The CPU-based solver only sup-
ports double-precision floating point calculations, while we tested both
double- and single-precision with our GPU-based implementation.

Table 9.11 shows the ODE simulation runtime speed-ups on our differ-
ent sets of hardware. We see significant speed-ups with our GPU-based
implementation for both the consumer-grade and the workstation hard-
ware, especially with the use of single-precision floats. The speed-ups also
remain consistent with a large number of simulated nodes, with a moder-
ate improvement for single-precision simulations as the relative impact of
overhead is alleviated. This can be seen in Table 9.11b.
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Table 9.11: Simulation runtime on GPU vs. CPU

(a) Using 65536 nodes

Processor Floats Time (s) Speed-up

33.547 2x Xeon E5-2687W CPU (16 threads) double 33.5 N/A
GTX TITAN GPU double 9.73 3.4×
GTX TITAN GPU single 3.07 10.9×
Core i7-3632QM CPU (4 threads) double 137 N/A
GT 650M GPU double 44.0 3.1×
GT 650M GPU single 11.3 12.1×

(b) Simulation runtime on GPU vs. CPU with 4194304 nodes

Processor Floats Time (s) Speed-up

2x Xeon E5-2687W CPU (16 threads) double 2000 N/A
GTX TITAN GPU double 556 3.6×
GTX TITAN GPU single 137 14.7×

9.9 GPU vs. CPU solvers with PDE simulation and OpenMPI
parallelism

While we see significant speed-ups for solving ODEs on the GPU in Sec-
tion 9.8, full simulations of the properties of cellular interactions will also
typically involve solving a PDE step, (Equations 2.4 and 2.5) between each
ODE step (Equation 2.6). The membrane potential from the PDE is fed back
into the ODE system via field states for each time step. It may be interesting
to see how the performance of such simulations compares between CPUs
and GPUs with various parameters.

The tests in this section were done on a 2D mesh with 2048× 2048
nodes for a total of 4194304 nodes over 25 ms. A time step of 125 µs was
used with the Rush-Larsen solver on the Ten Tusscher-Panfilov model.
Table 9.12 shows the total cumulative runtime for computing ODEs, PDEs
and the total runtime of each simulation. Table 9.12c shows the speed-up
of simulations on GPU compared to their equivalent computations on CPU.
Note that in the single-precision cases, only the ODE was computed as
such; the PDEs were solved using double-precision in all cases. Also note
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Table 9.12: Simulation runtime of the monodomain equation with interleaved PDE and
ODE simulations

(a) Using 2x Intel Xeon CPU E5-2687W 3.10 GHz (double-precision floats)

MPI processes ODE time (s) PDE time (s) Total time (s)

1 278 1121 1399
4 286 391 677
8 259 242 501
16 375 225 599

(b) Using Nvidia GeForce GTX TITAN

MPI processes Floats ODE time (s) PDE time (s) Total time (s)

1 single 36.3 1119 1155
4 single 25.2 395 420
8 single 24.9 258 283
16 single 20.8 211 232
1 double 87.9 1117 1205
4 double 77.9 394 472
8 double 75.4 261 336
16 double 74.8 204 279

(c) Speed-up from CPU to GPU

MPI processes Floats ODE speed-up Total speed-up

1 single 7.6× 1.2×
4 single 11.3× 1.6×
8 single 10.4× 1.8×
16 single 18.0× 2.6×
1 double 3.2× 1.2×
4 double 3.7× 1.4×
8 double 3.4× 1.5×
16 double 5.0× 2.1×
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Figure 9.8: Voltage propagation over 2D plane after 25 ms with the Ten Tusscher-Panfilov
model

that the ODE simulations on CPU were run with double-precision floating
point operations as there was no option for performing these runs with
single precision in the existing GOSS implementation.

The Xeon CPU results (Table 9.12a) were run using a CPU-based
solver implementation from GOSS, while the GTX TITAN GPU results
(Table 9.12b) utilised this thesis’ CUDA implementation of a Gotran solver.

A new parameter introduced in these tests was the number of MPI
processes, controlled via tools by the Open MPI Project19. MPI is a library
specification for message-passing between processes, and allows us to
split simulations into separate parallel runs on the host through several
MPI processes. This has different effects on the purely CPU-based ODE
simulations from GOSS and the GPU-based ODE simulations implemented
in this thesis.

For the GPU simulations, each MPI process constructs a separate
CUDAODESystemSolver that each solves a subset of the ODE system nodes
on the GPU simultaneously. It was not immediately apparent that this
should work well, as memory conflicts or interferences between instances of
CUDA contexts may be expected from multiple host processes attempting
to access the GPU at the same time. However, separate CUDA contexts
are spawned by each instance of the ODECUDAHandler (see Section 8.7.1).
These are the GPU equivalents of CPU processes, and the PyCUDA library
appears to automatically prevent the contexts from competing over system

19<http://www.open-mpi.org/>

82

http://www.open-mpi.org/


George Bahij • July 2014 • University of Oslo • Simula Research Laboratory

resources.
From the results, we can see a moderate speed-up for ODE simulations

on the GPU based on the number of MPI processes. The execution of
the GPU kernel is performed with 256 threads per block. With 4194304
simulated nodes, this results in 16384 total thread-blocks per time step of the
computation. These numbers far exceed the GPU’s warp size of 32 threads
executed on its 2688 cores, suggesting that the GPU is already running
at full capacity regardless of the number of processes simultaneously
invoking the kernel code. Therefore, we suspect that the performance
increase primarily stems from a reduction in CPU overhead, likely during
memory transfers. However, further work would be needed to determine a
conclusive explanation.

The CPU-based ODE simulations are performed through existing GOSS
solvers. These solvers already use OpenMP parallelism20, not to be con-
fused with MPI. Whereas MPI provides message-passing between processes,
OpenMP is a specification for shared memory parallelism in C/C++ pro-
grams through library routines and compiler directives. As the number
of threads on the CPUs are limited at 8 threads per CPU or 16 threads
in total, increasing the number of MPI processes necessitates a reduction
in the number of OpenMP threads per MPI process. With one process,
all 16 threads are utilised for OpenMP parallelism, while with eight MPI
processes, at most two OpenMP threads can be used per process.

For one, four and eight MPI processes, this does not seem to have a
significant effect on the runtime for solving the ODE systems, but the result
for 16 MPI processes is interesting. With 16 MPI processes and one thread
per process, the performance degrades significantly. We may speculate
that this is due to the memory and execution processes in threaded runs
being better aligned in OpenMP. However, further research is needed to
determine the exact cause and whether this effect can be minimised.

The double-precision CPU and GPU simulations and the single-preci-
sion GPU simulations all solve the same PDE using the same PDE solver.
As such, the time to calculate PDEs remained relatively consistent based
on the number of MPI processes, irrespective of other differences in para-
meters for solving the ODEs. The PDEs were solved numerically using the
finite element method as implemented by the FEniCS project21, and the

20<http://openmp.org/wp/>
21<http://fenicsproject.org/>
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resulting large linear systems were solved using iterative solvers provided
by the PETSc library22.

Figure 9.8 illustrates the resulting voltage over the mesh of nodes,
representing the propagation of the action potential across the heart at
25 ms. Note that this figure was generated with a lower resolution than
was used for the runtime tests, with a mesh of 128× 128 nodes.

Overall, the significant speed-ups seen in the ODE simulations on
the GPU over the CPUs are somewhat dwarfed by the large amount of
computation time used to serially solve the PDEs.

9.10 PDE simulation with ODE substepping

While Section 9.9 tested a simulation of the Ten Tusscher-Panfilov model
with PDE solvers, a stiffer and more complex model such as Grandi-
Pasqualini-Bers requires a far lower time step to produce a stable solution.
The PDEs to be solved, however, may remain identical. Lowering the time
step for the PDEs along with the ODEs may therefore not be necessary.

The simulations in this section were run using the Grandi-Pasqualini-
Bers model with 2048× 2048 or 4194304 over 25 ms. A PDE time step of
250 µs was used, with a local ODE time step of 12.5 µs. With these values,
one iteration of the PDE system was computed for every 20 iterations
of the ODE system. The ODE systems were solved with the generalised
Rush-Larsen algorithm.

For these tests, we get a comparable relative speed-up from CPU to
GPU for ODE computations as the speed-up seen in Section 9.9. With these
tests, however, we also see a significant speed-up in total computation time
as the PDE calculations are dwarfed by the computationally heavier ODE
calculations.

22<http://www.mcs.anl.gov/petsc/>
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Table 9.13: Simulation runtime with PDE simulation on every 20 ODE steps

(a) Using 2x Intel Xeon CPU E5-2687W 3.10 GHz (double-precision floats)

MPI processes ODE time (s) PDE time (s) Total time (s)

1 5901 578 6479
4 5791 269 6059
8 6095 245 6340
16 7919 122 8041

(b) Using Nvidia GeForce GTX TITAN

MPI processes Floats ODE time (s) PDE time (s) Total time (s)

1 single 452 593 1045
4 single 471 279 749
8 single 495 226 721
16 single 501 119 620
1 double 1530 610 2140
4 double 1578 276 1855
8 double 1580 212 1793
16 double 1627 123 1749

(c) Speed-up from CPU to GPU

MPI processes Floats ODE speed-up Total speed-up

1 single 13.1× 6.2×
4 single 12.3× 8.1×
8 single 12.3× 8.8×
16 single 15.8× 13.0×
1 double 3.9× 3.0×
4 double 3.7× 3.3×
8 double 3.9× 3.5×
16 double 4.9× 4.6×
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10. Summary

With the extensions to Gotran implemented in this thesis, we have achieved
a number of goals:

• Further automation of the process of working with ordinary differen-
tial equations through automatic LATEX code generation.

• Optimisation of the computationally heavy large-scale simulations of
millions of ODEs typically encountered in cardiac modelling.

• Incorporation of the strengths and ideas from existing tools and
frameworks to extend a powerful Python framework accessible to
computational researchers and scientists.

We have demonstrated that a significant performance boost can be
gained by computing highly complex ODE models on high-end GPUs over
similarly high-end CPUs. With the improvements to performance for heavy
ODE computations, serial PDE calculations may become the bottleneck for
full simulations of cellular electrophysiology. Depending on the specific
model and simulation parameters, the simulation time spent on calculating
PDEs can easily exceed 50 %, and even approach 95 % in specific cases.
Despite the PDE bottleneck, stiffer and more complex models such as
Grandi-Pasqualini-Bers still see a notable performance benefit when solved
with ODE substepping.

The CUDA code generator and the associated solver interface have
both been implemented as parts of extensible frameworks and can easily
be amended to support new solver algorithms and further optimisations,
either through further framework development or through usage by third-
party libraries.

We have also successfully built an automated tool for generating LATEX-
documents describing large and complex ODE systems, alleviating the
tedious work required to do so by hand. The generated code is aimed at
being easily managed and changed to integrate into existing manuscripts
with minimal hassle.

Both these tools allow researchers to work more efficiently with cardiac
models by alleviating tedious tasks and low-level details.
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10.1 Future work

In 2010 Fred Lionetti pioneered a CUDA implementation of an ODE solver
similar to what we have implemented [Lionetti, 2010]. In his thesis several
ODE solvers were investigated. Lionetti notably battled with low GPU
memory size and bandwidth and had to split up right-hand-side eval-
uations into multiple but smaller parts, avoiding register spilling. This
made the code unnessary complex and unfortunately cell model specific.
With recent years’ improvements to GPU hardware, we anticipated that
we would get less register spilling and a lower memory latency when they
occur.

With the high-end Nvidia GeForce GTX TITAN, we were able to avoid
register spilling entirely for the Ten Tusscher-Panfilov and Beeler-Reuter
models, but the Grandi-Pasqualini-Bers model proved too large for our
register sizes. While it only spilled approximately a thousand bytes per
thread, it would be useful to see if the partitioning of solver kernels would
bring a signficant benefit. Kernel splitting would also be useful for lower-
end consumer-grade hardware that may experience register spill with
smaller models. Alternatively, we anticipate that support for caching
data into a thread-block’s shared memory also would be advantageous
compared to simply allowing variables to spill into thread-local memory,
due to the higher bandwidth and lower latency of shared memory [NVIDIA
Corporation, 2014a].

Additionally, it would be beneficial to extend our contributions with
multi-GPU support. We do not anticipate this to be a significant challenge
with the PyCUDA library’s management of hardware devices, GPU contexts
and CUDA streams, as we were able to launch multiple instances of our
GPU solver on separate parallel host processes with our implementation
on one GPU.
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12. Installation

12.1 Core installation of Gotran

Gotran runs on Python 2.7, which can be installed from <https://www.
python.org/>.

As of this writing, Gotran depends on the following Python packages:
• Instant23

• SymPy24

• NumPy25

• modelparameters26

Clone or download the Gotran git repository27 and follow the installation
instructions in the INSTALL file.

12.2 Installation of CUDA and PyCUDA

Gotran uses CUDA to run simulations on GPU. This requires an Nvidia
graphics card that supports the CUDA Toolkit. Extensive installation
instructions for CUDA are available at Nvidia’s “CUDA Zone”28.

Gotran uses the PyCUDA Python wrapper to access the lower-level
CUDA environment directly from Python. PyCUDA is available at <http:
//mathema.tician.de/software/pycuda/>.

12.3 GOSS

The PyCUDA-based ODE solver interface implemented in this thesis is
available in GOSS. GOSS can be downloaded or forked from its git reposit-
ory29 with installation instructions in the INSTALL file.

23<https://launchpad.net/instant>
24<http://sympy.org>
25<http://numpy.scipy.org>
26<https://launchpad.net/modelparameters>
27 <https://bitbucket.org/johanhake/gotran>
28 <https://developer.nvidia.com/cuda-zone>
29 <https://bitbucket.org/johanhake/goss>
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12.4 LATEX generation

While Gotran does not depend on any additional software to generate
LATEX code, additional tools are needed to compile the generated code to a
readable format. The generated code is tailored for the TEX Live software
distribution on Linux systems, and should be compiled with pdflatex.

Installation instructions for TEX Live, including pdflatex, are available
on <https://www.tug.org/texlive/>.

13. Gotran usage

CUDA code generation parameters, along with sample usage, are detailed
in Section 8.9.

Parameters specific to the solver interface are detailed in Section 8.10,
with sample usage in Section 8.11.

13.1 gotran2latex

Terminal output
Usage: gotran2latex FILE [options]

Options:
-h, --help show this help message and exit
--auto_format_description=AUTO_FORMAT_DESCRIPTION

Default(False): Automatically format
state and

parameter descriptions
--bold_equation_labels=BOLD_EQUATION_LABELS

Default(True): Give equation labels a
bold typeface in

LaTeX document
--columnsep=COLUMNSEP

Default(’’): Set column separator
distance (e.g.

’0.25cm ’). Uses LaTeX default if left
blank

--columnseprule=COLUMNSEPRULE
Default(’’): Set column separator line

width (e.g.
’0.2pt ’). Uses LaTeX default if left

blank
--equation_subnumbering=EQUATION_SUBNUMBERING
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Default(True): Use component -wise
equation

subnumbering
--font_size=FONT_SIZE

Default(10.0): Set global font size
for LaTeX document

--landscape=LANDSCAPE
Default(False): Set LaTeX document to

landscape layout
--latex_output=LATEX_OUTPUT

Default(’’): Specify LaTeX output file
--margins=MARGINS Default(’’): Set page margins (e.g.

’0.75in ’). Uses
LaTeX defaults if left blank

--math_font_size=MATH_FONT_SIZE
Default(0.0): Set font size for

mathematical
expressions in LaTeX document. Uses

global font size
if left blank

--mul_symbol=MUL_SYMBOL
Default(’dot ’): Multiplication symbol

for Sympy
LatexPrinter

--no_page_numbers=NO_PAGE_NUMBERS
Default(False): Disable page numbers

--no_parameter_descriptions=NO_PARAMETER_DESCRIPTIONS
Default(False): Disable table column

for parameter
descriptions

--no_preamble=NO_PREAMBLE
Default(False): If set to True , LaTeX

document will be
be generated without the preamble

--no_state_descriptions=NO_STATE_DESCRIPTIONS
Default(False): Disable table column

for state
descriptions

--page_columns=PAGE_COLUMNS
Default(1): Set number of columns per

page in LaTeX
document

--parameter_description_cell_style=PARAMETER_DESCRIPTION_CELL_STYLE
Default(’l’): Set description cell

type for the
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parameter table. Use ’X’ for long
descriptions , or

’p{5cm}’ to set a fixed 5 cm
--section_type=SECTION_TYPE

Default(’section ’): Section type (e.g.
’section ’,

’subsection ’)
--state_description_cell_style=STATE_DESCRIPTION_CELL_STYLE

Default(’l’): Set description cell
type for the state

table. Use ’X’ for long descriptions ,
or ’p{5cm}’ to

set a fixed 5 cm
--sympy_contraction=SYMPY_CONTRACTION

Default(True): If True sympy
contraction will be used ,

turning (V-3)/2 into V/2-3/2

14. Additional examples and figures

14.1 Gotran form file for the Ten Tusscher-Panfilov model

The Gotran form file of the Ten Tusscher-Panfilov model [Ten Tusscher and
Panfilov, 2006], as provided in Gotran.

Python code
# Alternans and spiral breakup in a human ventricular tissue

model , K.H.W.J. ten
# Tusscher , A.V. Panfilov , Sep 2006 ,American Journal of

Physiology , Heart and
# Circulatory Physiology , 291 3, H1088 -1100.PubMed ID: 16565318
#

# gotran file generated by cellml2gotran from
ten_tusscher_model_2006_IK1Ko_M_units.cellml

parameters("Reversal potentials",
P_kna = 0.03)

parameters("Inward rectifier potassium current",
g_K1 = ScalarParam(5.405 , unit="nS*pF**-1"))

parameters("Rapid time dependent potassium current",
g_Kr = ScalarParam(0.153 , unit="nS*pF**-1"))
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states("Rapid time dependent potassium current", "Xr1 gate",
Xr1 = 0.0165)

states("Rapid time dependent potassium current", "Xr2 gate",
Xr2 = 0.473)

parameters("Slow time dependent potassium current",
g_Ks = ScalarParam(0.098 , unit="nS*pF**-1"))

states("Slow time dependent potassium current", "Xs gate",
Xs = 0.0174)

parameters("Fast sodium current",
g_Na = ScalarParam(14.838 , unit="nS*pF**-1"))

states("Fast sodium current", "m gate",
m = 0.00165)

states("Fast sodium current", "h gate",
h = 0.749)

states("Fast sodium current", "j gate",
j = 0.6788)

parameters("Sodium background current",
g_bna = ScalarParam(0.00029 , unit="nS*pF**-1"))

parameters("L_type Ca current",
g_CaL = ScalarParam(0.0000398 ,

unit="l*F**-1*s**-1"))

states("L_type Ca current", "d gate",
d = 3.288e-5)

states("L_type Ca current", "f gate",
f = 0.7026)

states("L_type Ca current", "F2 gate",
f2 = 0.9526)

states("L_type Ca current", "FCass gate",
fCass = 0.9942)

parameters("Calcium background current",
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g_bca = ScalarParam(0.000592 , unit="nS*pF**-1"))

parameters("Transient outward current",
g_to = ScalarParam(0.294 , unit="nS*pF**-1"))

states("Transient outward current", "s gate",
s = 0.999998)

states("Transient outward current", "r gate",
r = 2.347e-8)

parameters("Sodium potassium pump current",
P_NaK = ScalarParam(2.724 , unit="pA*pF**-1"),
K_mk = ScalarParam(1, unit="mM"),
K_mNa = ScalarParam(40 , unit="mM"))

parameters("Sodium calcium exchanger current",
K_NaCa = ScalarParam(1000 , unit="pA*pF**-1"),
K_sat = 0.1,
alpha = 2.5,
gamma = 0.35,
Km_Ca = ScalarParam(1.38 , unit="mM"),
Km_Nai = ScalarParam(87.5, unit="mM"))

parameters("Calcium pump current",
g_pCa = ScalarParam(0.1238 , unit="pA*pF**-1"),
K_pCa = ScalarParam(0.0005 , unit="mM"))

parameters("Potassium pump current",
g_pK = ScalarParam(0.0146 , unit="nS*pF**-1"))

states("Calcium dynamics",
R_prime = 0.8978 ,
Ca_i = ScalarParam(0.000153 , unit="mM"),
Ca_SR = ScalarParam(4.272 , unit="mM"),
Ca_ss = ScalarParam(0.00042 , unit="mM"))

parameters("Calcium dynamics",
Ca_o = ScalarParam(2, unit="mM"),
k1_prime = ScalarParam(0.15 , unit="mM**-2*ms**-1"),
k2_prime = ScalarParam(0.045 , unit="mM**-1*ms**-1"),
k3 = ScalarParam(0.06, unit="ms**-1"),
k4 = ScalarParam(0.005 , unit="ms**-1"),
EC = ScalarParam(1.5, unit="mM"),
max_sr = 2.5,
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min_sr = 1,
V_rel = ScalarParam(0.102 , unit="ms**-1"),
V_xfer = ScalarParam(0.0038 , unit="ms**-1"),
K_up = ScalarParam(0.00025 , unit="mM"),
V_leak = ScalarParam(0.00036 , unit="ms**-1"),
Vmax_up = ScalarParam(0.006375 , unit="mM*ms**-1"),
Buf_c = ScalarParam(0.2, unit="mM"),
K_buf_c = ScalarParam(0.001 , unit="mM"),
Buf_sr = ScalarParam(10, unit="mM"),
K_buf_sr = ScalarParam(0.3, unit="mM"),
Buf_ss = ScalarParam(0.4, unit="mM"),
K_buf_ss = ScalarParam(0.00025 , unit="mM"),
V_sr = ScalarParam(0.001094 , unit="um**3"),
V_ss = ScalarParam(0.00005468 , unit="um**3"))

states("Sodium dynamics",
Na_i = ScalarParam(10.132 , unit="mM"))

parameters("Sodium dynamics",
Na_o = ScalarParam(140 , unit="mM"))

states("Membrane",
V = ScalarParam(-85.423 , unit="mV"))

parameters("Membrane",
R = ScalarParam(8314.472 , unit="J*mole**-1*K**-1"),
T = ScalarParam(310 , unit="K"),
F = ScalarParam(96485.3415 , unit="C*mmole**-1"),
Cm = ScalarParam(0.185 , unit="uF"),
V_c = ScalarParam(0.016404 , unit="um**3"),
stim_start = ScalarParam(10 , unit="ms"),
stim_period = ScalarParam(1000 , unit="ms"),
stim_duration = ScalarParam(1, unit="ms"),
stim_amplitude = ScalarParam(52 , unit="pA*pF**-1"))

states("Potassium dynamics",
K_i = ScalarParam(138.52, unit="mM"))

parameters("Potassium dynamics",
K_o = ScalarParam(5.4, unit="mM"))

component("Reversal potentials")
E_Na = R*T/F*log(Na_o/Na_i) # mV
E_K = R*T/F*log(K_o/K_i) # mV
E_Ks = R*T/F*log((K_o + P_kna*Na_o)/(K_i + P_kna*Na_i)) # mV
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E_Ca = 0.5*R*T/F*log(Ca_o/Ca_i) # mV

component("Inward rectifier potassium current")
alpha_K1 = 0.1/(1 + exp(0.06*(V - E_K - 200)))
beta_K1 = (3*exp(0.0002*(V - E_K + 100)) + exp(0.1*(V - E_K -

10)))/(1 + exp(-0.5*(V - E_K)))
xK1_inf = alpha_K1/(alpha_K1 + beta_K1)
i_K1 = g_K1*xK1_inf*sqrt(K_o/5.4)*(V - E_K) # pA*pF**-1

component("Rapid time dependent potassium current")
i_Kr = g_Kr*sqrt(K_o/5.4)*Xr1*Xr2*(V - E_K) # pA*pF**-1

component("Rapid time dependent potassium current", "Xr1 gate")
xr1_inf = 1/(1 + exp((-26 - V)/7))
alpha_xr1 = 450/(1 + exp((-45 - V)/10))
beta_xr1 = 6/(1 + exp((V + 30)/11.5))
tau_xr1 = 1*alpha_xr1*beta_xr1 # ms
dXr1_dt = (xr1_inf - Xr1)/tau_xr1

component("Rapid time dependent potassium current", "Xr2 gate")
xr2_inf = 1/(1 + exp((V + 88)/24))
alpha_xr2 = 3/(1 + exp((-60 - V)/20))
beta_xr2 = 1.12/(1 + exp((V - 60)/20))
tau_xr2 = 1*alpha_xr2*beta_xr2 # ms
dXr2_dt = (xr2_inf - Xr2)/tau_xr2

component("Slow time dependent potassium current")
i_Ks = g_Ks*Xs**2*(V - E_Ks) # pA*pF**-1

component("Slow time dependent potassium current", "Xs gate")
xs_inf = 1/(1 + exp((-5 - V)/14))
alpha_xs = 1400/sqrt(1 + exp((5 - V)/6))
beta_xs = 1/(1 + exp((V - 35)/15))
tau_xs = 1*alpha_xs*beta_xs + 80 # ms
dXs_dt = (xs_inf - Xs)/tau_xs

component("Fast sodium current")
i_Na = g_Na*m**3*h*j*(V - E_Na) # pA*pF**-1

component("Fast sodium current", "m gate")
m_inf = 1/(1 + exp((-56.86 - V)/9.03))**2
alpha_m = 1/(1 + exp((-60 - V)/5))
beta_m = 0.1/(1 + exp((V + 35)/5)) + 0.1/(1 + exp((V -

50)/200))
tau_m = 1*alpha_m*beta_m # ms
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dm_dt = (m_inf - m)/tau_m

component("Fast sodium current", "h gate")
h_inf = 1/(1 + exp((V + 71.55)/7.43))**2
alpha_h = Conditional(Lt(V, -40), 0.057*exp(-(V + 80)/6.8), 0)

# ms**-1
beta_h = Conditional(Lt(V, -40), 2.7*exp(0.079*V) +

310000*exp(0.3485*V), 0.77/(0.13*(1 + exp((V +
10.66)/-11.1)))) # ms**-1

tau_h = 1/(alpha_h + beta_h) # ms
dh_dt = (h_inf - h)/tau_h

component("Fast sodium current", "j gate")
j_inf = 1/(1 + exp((V + 71.55)/7.43))**2
alpha_j = Conditional(Lt(V, -40), (-25428*exp(0.2444*V) -

6.948e-6*exp(-0.04391*V))*(V + 37.78)/1/(1 + exp(0.311*(V +
79.23))), 0) # ms**-1

beta_j = Conditional(Lt(V, -40), 0.02424*exp(-0.01052*V)/(1 +
exp(-0.1378*(V + 40.14))), 0.6*exp(0.057*V)/(1 +
exp(-0.1*(V + 32)))) # ms**-1

tau_j = 1/(alpha_j + beta_j) # ms
dj_dt = (j_inf - j)/tau_j

component("Sodium background current")
i_b_Na = g_bna*(V - E_Na) # pA*pF**-1

component("L_type Ca current")
V_eff = Conditional(Lt(abs(V-15), 1.e-2), 1e-2, V-15)
i_CaL = g_CaL*d*f*f2*fCass*4*V_eff*F**2/(R*T) *

(0.25*Ca_ss*exp(2*V_eff*F/(R*T)) -
Ca_o)/(exp(2*V_eff*F/(R*T)) - 1) # pA*pF**-1

component("L_type Ca current", "d gate")
d_inf = 1/(1 + exp((-8 - V)/7.5))
alpha_d = 1.4/(1 + exp((-35 - V)/13)) + 0.25
beta_d = 1.4/(1 + exp((V + 5)/5))
gamma_d = 1/(1 + exp((50 - V)/20)) # ms
tau_d = 1*alpha_d*beta_d + gamma_d # ms
dd_dt = (d_inf - d)/tau_d

component("L_type Ca current", "f gate")
f_inf = 1/(1 + exp((V + 20)/7))
tau_f = 1102.5*exp(-((V + 27)**2)/225) + 200/(1 + exp((13 -

V)/10)) + 180/(1 + exp((V + 30)/10)) + 20 # ms
df_dt = (f_inf - f)/tau_f
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component("L_type Ca current", "F2 gate")
f2_inf = 0.67/(1 + exp((V + 35)/7)) + 0.33
tau_f2 = 562*exp(-((V + 27)**2)/240) + 31/(1 + exp((25 -

V)/10)) + 80/(1 + exp((V + 30)/10)) # ms
df2_dt = (f2_inf - f2)/tau_f2

component("L_type Ca current", "FCass gate")
fCass_inf = 0.6/(1 + (Ca_ss/0.05)**2) + 0.4
tau_fCass = 80/(1 + (Ca_ss/0.05)**2) + 2 # ms
dfCass_dt = (fCass_inf - fCass)/tau_fCass

component("Calcium background current")
i_b_Ca = g_bca*(V - E_Ca) # pA*pF**-1

component("Transient outward current")
i_to = g_to*r*s*(V - E_K) # pA*pF**-1

component("Transient outward current", "s gate")
s_inf = 1/(1 + exp((V + 20)/5))
tau_s = 85*exp(-((V + 45)**2)/320) + 5/(1 + exp((V - 20)/5)) +

3 # ms
ds_dt = (s_inf - s)/tau_s

component("Transient outward current", "r gate")
r_inf = 1/(1 + exp((20 - V)/6))
tau_r = 9.5*exp(-((V + 40)**2)/1800) + 0.8 # ms
dr_dt = (r_inf - r)/tau_r

component("Sodium potassium pump current")
i_NaK = P_NaK*K_o/(K_o + K_mk)*Na_i/(Na_i + K_mNa)/(1 +

0.1245*exp(-0.1*V*F/(R*T)) + 0.0353*exp(-V*F/(R*T))) #
pA*pF**-1

component("Sodium calcium exchanger current")
i_NaCa = K_NaCa*(exp(gamma*V*F/(R*T))*Na_i**3*Ca_o -

exp(( gamma - 1)*V*F/(R*T))*Na_o**3*Ca_i*alpha)/(( Km_Nai**3
+ Na_o**3)*(Km_Ca + Ca_o)*(1 + K_sat*exp((gamma -
1)*V*F/(R*T)))) # pA*pF**-1

component("Calcium pump current")
i_p_Ca = g_pCa*Ca_i/(Ca_i + K_pCa) # pA*pF**-1

component("Potassium pump current")
i_p_K = g_pK*(V - E_K)/(1 + exp((25 - V)/5.98)) # pA*pF**-1
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component("Calcium dynamics")
i_up = Vmax_up/(1 + K_up**2/Ca_i**2) # mM*ms**-1
i_leak = V_leak*(Ca_SR - Ca_i) # mM*ms**-1
i_xfer = V_xfer*(Ca_ss - Ca_i) # mM*ms**-1
kcasr = max_sr - (max_sr - min_sr)/(1 + (EC/Ca_SR)**2)
Ca_i_bufc = 1/(1 + Buf_c*K_buf_c/(Ca_i + K_buf_c)**2)
Ca_sr_bufsr = 1/(1 + Buf_sr*K_buf_sr/(Ca_SR + K_buf_sr)**2)
Ca_ss_bufss = 1/(1 + Buf_ss*K_buf_ss/(Ca_ss + K_buf_ss)**2)
dCa_i_dt = Ca_i_bufc*(( i_leak - i_up)*V_sr/V_c + i_xfer -

1*(i_b_Ca + i_p_Ca - 2*i_NaCa)*Cm/(2*1*V_c*F))
k1 = k1_prime/kcasr # mM**-2*ms**-1
k2 = k2_prime*kcasr # mM**-1*ms**-1
O = k1*Ca_ss**2*R_prime/(k3 + k1*Ca_ss**2)
dR_prime_dt = -k2*Ca_ss*R_prime + k4*(1 - R_prime)
i_rel = V_rel*O*(Ca_SR - Ca_ss) # mM*ms**-1
dCa_SR_dt = Ca_sr_bufsr*(i_up - (i_rel + i_leak))
dCa_ss_dt = Ca_ss_bufss*(-1*i_CaL*Cm/(2*1*V_ss*F) +

i_rel*V_sr/V_ss - i_xfer*V_c/V_ss)

component("Sodium dynamics")
dNa_i_dt = -1*(i_Na + i_b_Na + 3*i_NaK + 3*i_NaCa)/(1*V_c*F)*Cm

component("Membrane")
i_Stim = Conditional(And(Ge(time -

floor(time/stim_period)*stim_period , stim_start), Le(time -
floor(time/stim_period)*stim_period , stim_start +

stim_duration), ), -stim_amplitude , 0) # pA*pF**-1
dV_dt = -(i_K1 + i_to + i_Kr + i_Ks + i_CaL + i_NaK + i_Na +

i_b_Na + i_NaCa + i_b_Ca + i_p_K + i_p_Ca + i_Stim)

component("Potassium dynamics")
dK_i_dt = -1*(i_K1 + i_to + i_Kr + i_Ks + i_p_K + i_Stim -

2*i_NaK)/(1*V_c*F)*Cm

14.2 Generated PDF file of the Ten Tusscher-Panfilov model

Figure 14.1 is an embedded PDF file of the automatically generated LATEX
code of the Ten Tusscher-Panfilov model [Ten Tusscher and Panfilov, 2006]
using the Gotran form file in Section 14.1. The LATEX code was generated
with:
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Bash code
gotran2latex tentusscher_panfilov_2006_M_cell.ode

--font_size=9 --math_font_size=7.5 --page_columns=2
--latex_output=tentusscher_panfilov.tex
--no_page_numbers=1 --section_type=subsection
--columnsep=0.25cm --columnseprule=0.2pt --margins=0.75in
--auto_format_description=1

A small font size has been used to conserve space.
Equations are broken up into separate lines automatically. For some

equations, this automatic process fails. In this example, there were three
instances of equations bleeding over their margins. These equations have
been split manually by introducing additional intermediate variables cβK1 ,
cαj and TiStim . These manual refactorisations are shown in red.
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Parameters

Table 1: Parameter Table

Parameter Value Description
Pkna 30×10−3 Permeability of Na
gK1 5.41 nS pF−1 IK1 base conductivity
gKr 0.15 nS pF−1 IKr base conductivity
gKs 98×10−3 nS pF−1 IKs base conductivity
gNa 14.8 nS pF−1 INa base conductivity
gbna 290×10−6 nS pF−1 IbNa base conductivity
gCaL 39.8×10−6 l F−1 s−1 ICaL base conductivity
gbca 592×10−6 nS pF−1 IbCa base conductivity
gto 0.29 nS pF−1 Ito base conductivity
KmNa 40 mM Na dissociation constant for INaK
Kmk 1 mM K dissociation constant for INaK
PNaK 2.72 pA pF−1 INaK base rate
KNaCa 1×103 pA pF−1 INaCa base rate
Ksat 0.1
KmCa 1.38 mM Cao dissociation constant for INaCa
KmNai 87.5 mM Nai dissociation constant for INaCa
α 2.5
γ 0.35
KpCa 500×10−6 mM Cai dissociation constant for IpCa
gpCa 0.12 pA pF−1 IpCa base conductivity
gpK 14.6×10−3 nS pF−1 IpK base conductivity
Bu fc 0.2 mM Total Ca buffer capacity in Cytosole
Bu fsr 10 mM Total Ca buffer capacity in SR
Bu fss 0.4 mM Total Ca buffer capacity in sub space
Cao 2 mM External Ca
EC 1.5 mM RyR SR Ca scale value
Kbu f c 1×10−3 mM Ca dissociation constant for buffer in Cytosole
Kbu f sr 0.3 mM Ca dissociation constant for buffer in SR
Kbu f ss 250×10−6 mM Ca dissociation constant for buffer in sub space
Kup 250×10−6 mM Ca dissociation constant for SERCA pump
Vleak 360×10−6 ms−1 Ca leak rate
Vrel 0.10 ms−1 RyR base release rate
Vsr 1.09×10−3 µm3 Volume SR
Vss 54.7×10−6 µm3 Volume sub space
Vx f er 3.8×10−3 ms−1 Ca base transfer rate
Vmaxup 6.37×10−3 mM ms−1 Ca base rate SERCA pump
k1prime 0.15 mM−2 ms−1 RyR opening rate
k2prime 45×10−3 mM−1 ms−1 RyR inactivation rate
k3 60×10−3 ms−1 RyR deactivation rate
k4 5×10−3 ms−1 RyR return from inactivation rate
maxsr 2.5 mM RyR max SR Ca scale value
minsr 1 mM RyR min SR Ca scale value
Nao 140 mM Extracellular Na
Cm 0.18 µF Faraday’ s constant
F 96.5×103 C mmole−1

R 8.31×103 J mole−1 K−1 Universal gass constant
T 310 K Temperature
Vc 16.4×10−3 µm3 Volume cytosole
stimamplitude 52 pA pF−1 Amplitude for stimulation
stimduration 1 ms Duration time for stimulation
stimperiod 1×103 ms Timer period for stimulation
stimstart 10 ms Start time for stimulation
Ko 5.4 mM Extracellular K

Figure 14.1: Ten Tusscher-Panfilov model, p. 1
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Initial Values

Table 2: State Table

State Value Description
Xr1 16.5×10−3 Xr1 gate in IKr
Xr2 0.47 Xr2 gate in IKr
Xs 17.4×10−3 Xs gate in IKs
m 1.65×10−3 m gate in INa
h 0.75 h gate in INa
j 0.68 j gate in INa
d 32.9×10−6 d gate in ICaL
f 0.70 f gate in ICaL
f2 0.95 f 2 gate in ICaL
f Cass 0.99 FCass gate in ICaL
s 1 s gate in Ito
r 23.5×10−9 s gate in Ito
Cai 153×10−6 mM Intracellular Ca
Rprime 0.90 RyR availability
CaSR 4.27 mM SR Ca
Cass 420×10−6 mM Subspace Ca
Nai 10.1 mM Intracellular Na
V −85.4 mV Membrane potential
Ki 139 mM Intracellular K

Components

Reversal potentials

(1a)ENa =
RT
F

log
(

Nao

Nai

)

(1b)EK =
RT
F

log
(

Ko

Ki

)

(1c)EKs =
RT
F

log
(

Nao Pkna + Ko

Ki + Pkna Nai

)

(1d)ECa =
0.5R

F
T log

(
Cao

Cai

)

Inward rectifier potassium current

(2a)αK1 =
0.1

1 + 6.14×10−6e60×10−3V−60×10−3 EK

(2b)cβK1 =
(

0.37e−0.1EK+0.1V + 3.06e−200×10−6 EK+200×10−6V
)

(2c)βK1 =
1

1 + e−0.5V+0.5EK
cβK1

(2d)xK1in f =
αK1

βK1 + αK1

(2e)iK1 = 0.43gK1
√

Ko (−EK + V) xK1in f

Rapid time dependent potassium current

(3a)iKr = 0.43gKr
√

Ko (−EK + V) Xr1Xr2
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Slow time dependent potassium current
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