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ABSTRACT. In this paper an infinite dimensional approach to model energy forward mar-
kets is introduced. Similar to the Heath-Jarrow-Morton framework in interest rate mod-
eling, a first order hyperbolic stochastic partial differential equation models the dynamics
of the forward price curves. These equations are analyzed, and in particular regularity
and no-arbitrage conditions in the general situation of stochastic partial differential equa-
tions driven by an infinite dimensional martingale process are studied. Both arithmetic
and geometric forward price dynamics are studied, as well as accounting for the delivery
period of electricity forward contracts. A stable and convergent numerical approximation
in form of a finite element method for hyperbolic stochastic partial differential equations
is introduced and applied to some examples with relevance to energy markets.

1. INTRODUCTION

The Heath-Jarrow-Morton (HJM) framework was originally introduced to model prod-
ucts in fixed income markets. Rather than to base the analysis of price processes on the
spot rate(s), Heath, Jarrow and Morton [34] proposed to model the forward rates directly.
This approach, however, is not limited to interest-rate derivatives: forward markets rep-
resent a considerable portion of the trading on energy and commodities. Therefore, it is
natural to apply the HIM approach to such settings (see Benth et al. [16], Koekebakker
and Ollmar [37], etc). To introduce models for the forward price dynamics directly rather
than via spot prices circumvents the difficulty of linking spot and forward prices. In a
market like electricity, the spot-forward relationship is far from straightforward.

The HIM modeling paradigm is naturally embedded into an infinite dimensional frame-
work. In fixed-income theory, there is already an extensively developed theory in this
direction (see Filipovié¢ [29], Carmona and Tehranchi [20], and the references therein). The
purpose of this paper is to analyze a class of HJM models for forwards in energy markets
within an infinite dimensional framework. Further, we develop convergent approximations
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of the resulting infinite dimensional equations with the purpose of simulating sample paths
or functionals of the solution, such as moments, via Monte Carlo methods.

Energy markets have several distinct features that qualify them for a separate study
within the HJM approach. First, in markets such as gas and electricity, contracts do not
deliver at fixed maturities. By the very nature of these commodities, delivery must take
place over an agreed period of time. The holder of such a commodity receives a flow of
gas/electricity for some prescribed period. This introduces a new parameter: the length-
of-delivery. The presence of such a crucial element further complexifies the existing theory
for forward rates in money markets, which only present a fixed maturity as parameter. We
shall dub flow forwards those contracts that deliver over the span of some time period, and
present an infinite dimensional framework for both such forwards and those delivering at
a fixed maturity time. As it turns out, the ”classical” forward contracts with fixed time
of delivery of the underlying is an important modeling tool for the price dynamics of flow
forwards.

A precise model of electricity markets requires an infinite number of stochastic pro-
cesses driving the forward curve. In interest rate theory, as suggested in Carmona and
Tehranchi [20], three driving noise sources (Wiener processes) and their linear combina-
tions cover more than 99% of the variation in the data. In these markets there seem to
be a strong connection among various maturities, which may explain why low-dimensional
noise processes are sufficient to model the yield curve. In contrast, the picture in electricity
markets is very different. In Koekebakker and Ollmar [37] the authors show, using princi-
pal component analysis, that more than 12 factors are necessary to cover only 95% of the
variation in the data. This suggests that there is a sizable number of noise sources in the
forward market, where each contract has a large degree of idiosyncratic risk associated to
it. Hence, an infinite dimensional approach to modeling the noise in the forward curves of
energy markets is in order.

There are other arguments in favor of using infinite dimensional processes as the driving
noise of the forward curves in energy markets, in particular markets where the underlying
commodity is not storable (such as electricity). As it is explained in Benth and Meyer-
Brandis [15], in such markets forward-looking information may be relevant to the forward
markets, but not to the spot market. In electricity markets, say, there is a vast stream of
information that impacts forward prices, including weather prediction, power plant shut-
downs, production plans, reservoir situations, etc. This translates into a large number of
noise sources that affect the forward curve at different maturities, and therefore create a
high-dimensional noise pattern. Using a completely different approach to forward price
modeling, namely the certainty equivalence principle, Benth, Cartea and Kiesel [11] show
that no-arbitrage models can only be obtained by introducing idiosyncratic risk to each
traded forward. If one accepts such a pricing principle, then one is forced to deal with
as many sources of noise as maturity times, which would as well support the choice of
infinitely many sources of noise in our model.

In Benth et al. [16] and Frestad et al. [32], it is shown that the (log-)returns of flow for-
ward prices in electricity markets are non-normally distributed, independent of the delivery
period. The normal inverse Gaussian (NIG) distribution has been used successfully to fit
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the observed return data. This points towards using Lévy processes to model the noise
driving the forward curve, which, together with the above observation of high dimensional
noise in these markets, suggests the use of an infinite dimensional Lévy processes as the
driving noise source in the forward curve dynamics.

In this paper, we separate into two classes of forward models, additive and multiplicative.
Inspired by the existing models in the literature and the “statistical” modeling view, we
take simple, infinite dimensional dynamics for the forward curve evolution specified under
the Musiela parametrization. In fact, our infinite dimensional dynamics is specified in
terms of a drift and volatility term structure, as well as a noise modeling the dependency
structure over delivery times (spatial dependency, that is). This resembles the “statistical”
modeling view of asset prices, first advocated by Eberlein and Keller [26] for stock prices
using an exponential Lévy process and recently applied to electricity forward pricing by
Andresen et al. [1]. As forward prices are positive, we also treat exponential models in this
paper, which we refer to as multiplicative. The infinite dimensional process driving the
forward curve will be explicitly representable, and not derived as a solution to a stochastic
differential equation (in infinite dimensions). For a general introduction to Hilbert space
valued stochastic differential equations with Brownian noise we refer the reader to Da Prato
and Zabczyk [22], Chow [21], Prévot and Rockner [41] and to Peszat and Zabcezyk [40] for
the case of Lévy processes.

Additive forward price models have been used with great success in energy markets,
see for example Benth et al. [12]. Similar approaches in interest-rate theory are presented
in Ekeland and Taflin [27], Peszat and Zabczyk [40], Filipovi¢ [29] and Carmona and
Tehranchi [20]. Here we extend these approaches to energy markets. We cover as well sev-
eral other models, for example the multiplicative ones by Audet et al. [2] and Schwartz [47].
Particularly, the model presented in Audet et al. [2] is further investigated as it is the basis
for some numerical examples. We also note that the ambit fields suggested as a model for
energy forwards in Barndorff-Nielsen et al. [3] is nicely corresponding to our framework.
Audet et al. [2] applied their model to price European options on electricity forwards. Re-
cently, this model was generalized to Lévy random fields by Hepperger [35], who develops
efficient numerical schemes for solving the integro-partial differential equations describing
the price of options on forwards.

Flow forwards are linked to forwards with fixed delivery time through a simple integral.
Both classes of contracts must satisfy a martingale condition in order to avoid an arbitrage
dynamics for the prices. We derive this explicitly for both the additive and multiplicative
models in the case of fixed delivery forwards, and for the additive case for flow forwards.
Furthermore, flow forwards must satisfy an additional consistency condition with respect
to the delivery period in order to prevent arbitrage opportunities between contracts with
overlapping delivery. We characterize the volatility term structures such that the flow
forward dynamics satisfies the arbitrage consistency condition. A particular example is
discussed in detail, leading back to a term structure for the volatility incorporating the
Samuelson effect for forwards with a delivery period.

One of the main contributions of the paper is to provide a numerical method for simulat-
ing the forward curves. We face the problem of numerically solving a first-order hyperbolic
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partial differential equation, which we approximate via a Finite Element method. This
method provides great flexibility in the choice of the nodal points of the approximation,
which will be the various times to maturity of the forward contracts. For first-order hy-
perbolic problems with non-smooth data, a standard Galerkin approximation will lead
to instabilities, thus we chose a Petrov—Galerkin method (SUPG method). Convergence
results for such schemes for deterministic equations and a thorough introduction to Fi-
nite Element methods for deterministic first-order hyperbolic equations can be found, e.g.,
in [43, 36, 48, 24]. In the stochastic case, L*-convergence was proved in Barth [5]. To
calculate expectations of functionals of the forward prices, such as moments or payoffs, a
fast multilevel Monte Carlo algorithm was introduced in Barth and Lang [9] for hyper-
bolic stochastic partial differential equations. There the authors showed convergence of
the multilevel Monte Carlo algorithm and its advantages over a singlelevel Monte Carlo
method. The method discussed and applied here can also be used in fixed-income theory
for simulating forward rates. We have included several numerical examples with relevance
to energy forward pricing. In particular, we look at a forward price model which resembles
the one suggested by Audet et al. [2], but where we also consider Lévy-noise driven fields.
We choose Lévy fields which are of normal inverse Gaussian type, relating our cases back
to the statistical analysis and modeling in Frestad et al. [32] and Andresen et al. [1]. In
particular, the implied spot price dynamics is simulated from the fields and we discuss the
effect of spatial correlation on the paths.

The results are presented as follows: We describe our infinite dimensional framework
for forward contracts delivering at a fixed time of maturity in Section 2, and present
regularity results on the smoothness of the model. We analyze the features of additive and
multiplicative models. Further, we briefly discuss an extension to these popular models.
In Section 3 we develop an infinite dimensional model directly for flow forwards. This
approach satisfies the no-arbitrage condition presented in Benth et al. [16]. Finally, in
Section 4 we develop a numerical scheme and present some simulation results.

2. INFINITE DIMENSIONAL MODELING OF FORWARD PRICES

Here we present a general infinite dimensional model for the forward price f(¢,7) at
time t > 0 of a contract delivering the underlying commodity at time T > ¢, where
t,T € [0,7] and 7 < +o00. Much of the theory developed for such price dynamics can be
transferred to flow forwards, which we shall study in more detail in the next section. We
provide conditions for an arbitrage-free price dynamics for both additive and multiplicative
models.

As it is standard in interest rate theory, we consider the so-called Musiela parametrization
(see [20]), where we set x = T' — t, the time to maturity, and consider the price g(¢,z) of
a forward contract at time ¢ > 0 with > 0 time left to maturity. As we see, g(t,z) is a
function of “time and space” (t,z) € [0,7] x [0, 7], and it is therefore natural to look for
a stochastic dynamics in time ¢ — g¢(¢,-), where g(t,-) takes values in some appropriate
function space. We place ourselves within the theory of Hilbert space valued stochastic
processes when modeling g, which is done under the risk-neutral measure. Thus, we must
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choose dynamics for ¢ such that the process
t= ft,T)=g@,T—1) (tel0,T])

is a martingale for every maturity 7. This leads to martingale conditions on the parameters
in the specification of g (see [20], for example, for the similar situation in interest-rate theory
and [23] on the fundamental theorem of asset pricing).

It is not obvious whether the model for g should be additive or multiplicative, that
is, if we should model the dynamics of g directly rather than In(g). In Benth et al. [12]
additive spot-price models were introduced and justified for energy markets. This leads
to additive forward (and, specifically flow-forward) price dynamics. Furthermore, in Bern-
hardt, Kliippelberg and Meyer-Brandis [17], a statistical analysis of Singapore electricity
spot data showed evidence in favor of additive models, in particular continuous-time au-
toregressive moving-average processes. In view of these results, one may be tempted to
model ¢ directly. On the other hand, forward prices are naturally positive, thus it may
be advantageous to model In(g) instead. This would also be in line with some classical
examples of forward price models like the one by Audet et al. [2]. In this paper we discuss
both alternatives.

In the mathematical specifications of our model we follow the general set-up presented
by Peszat and Zabczyk [40] (in particular Chapters 8 and 9). Let (£2, F, Q) be a probability
space equipped with a filtration F = (F;,t > 0), satisfying “the usual condition”. The
process M is a (possibly discontinuous) square-integrable martingale taking values in a
separable Hilbert space (U, (-, -)r). This class of processes is denoted by M?(U). Observe
that we denote the probability measure on (£, F) by Q, indicating that we model the
forward curve dynamics directly in the risk-neutral world.

The process M is used as an integrator in the random evolution of the forward curve,
and for this purpose we restrict ourselves to the following subclass of M?(U) of martingales
with bounded stochastic covariance:

MEU) :={M € M*(U):3Q € L] (U) s. t. ¥t > 5> 0, ((M,M)); — (M, M))s < (t — 5)Q},

where Lfr(U ) is the space of nuclear, symmetric, and positive definite linear operators on
U. For every Q € L] (U), there exists an orthonormal basis (e,,n € IN) of U consisting
of the eigenvectors of (). This leads to the spectral representation Qe,, = v,e,, where 7,
is the eigenvalue of @) corresponding to e,. We use the notation H = Q/?(U), where the
(Hilbert-Schmidt) operator Q'/? is the pseudo square root of ). Note that Tr Q < +o0
since () is nuclear.

We define the following stochastic partial differential equation with additive noise, i.e.
a Hilbert-space-valued stochastic differential equation for t € [0, 7]

(2.1) AX () = (AX(t) + a(t)) dt + b(t) dM (1)

with initial condition X (0) = X, € L*(2, H), where H denotes a separable Hilbert space,
not necessarily equal to U. Later, we shall introduce conditions on the Hilbert spaces
which are natural in our context. The stochastic differential equation is defined on a finite
time interval 0 < ¢ < 7, where 7 < +00. We assume further, that the linear (differential)
operator A generates a Cp-semigroup S of contractions on H. When we link X to g, we
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show subsequently that A is a first order differential operator with S being the right-shift
semigroup. We suppose that a is a mapping from [0, 7] into H which has Q-a.s. Bochner-
integrable trajectories in the finite interval [0, 7]. The process b : [0, 7] — L(H, H) is for
every t € [0, 7] a linear operator from H to H.

Further, we denote by || - ||£,4(2,m) the Hilbert-Schmidt norm on the space of Hilbert—
Schmidt operators from H to H. Equation (2.1) is only well defined if X is Fp-measurable.
It is well known (see Peszat and Zabczyk [40], Filipovic, Tappe and Teichmann [30] and
Marinelli [39]) that (under appropriate assumptions on the coefficients) a unique mild
solution X in H to Equation (2.1) exists, and that the predictable process X : [0, 7] x Q —
H is given by

(2.2) X(t)=S(t)Xo+ /0 S(t—s)a(s)ds + /0 S(t — s)b(s)dM(s).

Next, we introduce the forward price dynamics based on the process X.

As we discussed earlier, both additive and multiplicative models are of interest in energy
forward markets. We introduce both classes here, based on the general infinite dimensional
stochastic process X (t) presented in Equation (2.1) (or equivalently, Equation (2.2)).

We remark that the model of X in Equation (2.1) is not the most general one from
the mathematical point of view, with no dependency on the states in the drift a and
volatility b. In fact, we have taken the “statistical” modeling view here where one specifies
directly the drift and volatility, as well as the noise structure. The crucial points from a
statistical viewpoint is to capture the dependency between contracts as well as the volatility
term structure. Typically, the existing models in energy can be traced back to the form
Equation (2.2) (see, e.g., Barndorff-Nielsen et al. [3]). For example, this is the case with
the model of Audet et al. [2] and Andresen et al. [1]. The former can be represented
as the exponential of a Wiener field modulated by a volatility structure, while the latter
corresponds to the exponential of a Lévy field of normal inverse Gaussian type. We shall
come back to this with more details below.

So far, we have formulated X as a stochastic process with values in some abstract Hilbert
space. Since our interest is to model the dynamics of curves t — g(t,x), where g(¢,x) is
the forward price at time ¢ of a contract with time-to-maturity x > 0, we must introduce
a function space H. A minimum requirement (see, e.g., Carmona and Tehranchi [20] and
Filipovi¢ [29]) is the following assumption:

Assumption 2.1. H is a space of real-valued continuous functions in x € [0,7] C Ry, on
which the evaluation functional 6, is continuous, that is, belongs to the dual H*.

Further, the Musiela parametrization tells us that f(¢,7) = g(¢t,7 — t), where f(¢,7T)
is the forward price at time ¢ for a contract maturing at time 7'. Thus, looking at the
differential of f introduces naturally a derivative of g with respect to x in the drift. Thus, we
only consider an operator A being the first-order differential operator A = 9/0x. Obviously,
under Assumption 2.1 with H being a space of continuous functions on a subset D of R, ,
the domain of A, D(A), is in general not equal to H. However, D(A) is a Hilbert space with
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norm || f|lpeay = (| fI1% + |Af||%)2. Generated by A is the shift operator S(t) which acts
on elements f € H as S(t)f(x) = f(x +t), for z € D. We have,the following assumption:

Assumption 2.2. The operator A is the generator of the Cy-semigroup of contractions
S(t),t > 0.

Remark 2.3. Assumption 2.2 is quite restrictive, but in the previously described setting
sufficient. Equation (2.2) is also defined for the more general classes of semigroups.

In the rest of this Section we suppose that the separable Hilbert space H and the operator
A satisfy Assumptions 2.1 and 2.2.

Next, we give examples of Hilbert spaces H which satisfy our conditions. The Hilbert
space H is a function space over D C R,. If we assume that H = L?(D), then for all
Sobolev spaces H*(D) with s > % the evaluation functional § is an element of the dual
space (H*(D))*, also called H=*(D). For integers s the norm in H*(D) is given by:

s i 2
Es(n):/jj<f2+z<3x{) )dfc'

The right shift semigroup S is well defined on H*(D), since H*(R) and H*® are invariant
under the shift translation. Here, H® denotes the subset of H*(RR) containing all functions
f with support (—o0, 0], such that f(t) = 0 for all ¢ > 0.

Note that for s > % all functions in H*(D) converge to zero at 7 — oco. In an additive
model this would mean that in the far end of the market, forward prices are essentially
zero, which seems like an unreasonable property. Most spot models considered for energy
markets predict forward prices being constant in the far end of the forward curve, however,
not being equal to zero (see e.g. Ornstein-Uhlenbeck models discussed in Benth et al. [16]).
To deal with this issue, Ekeland and Taflin introduced in [27] a special class of Sobolev
spaces allowing for non-zero asymptotic behaviour. We define

US(D):={h | h=h+d, he H*(D) and & € R},

/]

equipped with the norm
17|

ep) = 1Al Fre(py + 67

The decomposition h = h+a is unique, so U*(D) has the Hilbert space structure H*(D)®R,
and its dual is given by (U*(D))* = (H*(D))* ® R. The shift semigroup S can be extended
to U*(D) by defining for & € R, S(t)a = a.

We have the following regularity result for the mild solution X, given in Equation (2.2):

Lemma 2.4. If]EHXOH%{I(D) < 00 and for a constant C' < oo, it holds

sup ([a(®) 3oy + 1017 s pyy) < O

te(0,7]

then, the unique solution X to Equation (2.2) satisfies sup;e(o - E||X(t)||ip(D) < 0.
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Proof. By the definition of the mild solution we may write

E||X(t)||§{1(D) :IEJ||S(t)X0+/O S(t— s)a(s) ds+/0 S(t —s)b(s) dM(s)||§p(D).

With the It6 isometry (see [40]) for square integrable (noncontinuous) martingales and
since S is a Cy-semigroup it follows that

E[IX (67 0y

t t
< (B Xulfo)+ B | 5= 9)als) sl + Bl [ St = s)bls) M (3)o)

t t
< O ENXol2n ) + / () 2y ds + / O

< 00,
where the constant C' only depends on 7. Il

We remark that the regularity result is valid for more general Hilbert spaces and, in
particular, also for U'(D) resp. U?(D).

Based on the H-valued stochastic process X we define the additive forward price dy-
namics as

(2.3) galt, ) = 8,(X(1) = X(t,2)
The multiplicative forward dynamics is assumed to follow
(2.4) gm(t, ) = exp(d,(X(t))) = exp(X(t,x)).

We recall that we model the dynamics under the risk-neutral probability directly, which
is the common approach also in fixed-income markets. Notice that we obtain the spot
price dynamics E(t) in the market by considering x = 0, that is, E(t) := E,(t) = do(X(t))
for the additive model, and E(t) := E,(t) = exp(do(X(t))) in the case of a multiplicative
forward model. The spot dynamics is of interest, and we shall investigate it numerically
in Section 4.

We must impose conditions on the parameters and the operators in the dynamics of X (t)
to guarantee that f(t,7) is a martingale. For the additive model we find the following:

Proposition 2.5. Let f(t,T) = g,(t,T —t) for t < T. Then, under the assumptions of
Lemma 2.4, t — f(t,T) is a martingale if and only if a = 0 almost everywhere.

Proof. Since 0, is a linear functional on H, we have

ga(t, ) = 6:(X (1))

= 0,5(t)X(0) + 9, /Ot S(t—s)a(s)ds + 0, /Ot S(t — s)b(s)dM(s)

= 0,5(t)X(0) + /t 0.5(t — s)a(s) ds + /t 0:5(t — s)b(s) dM (s) .

0 0
From elementary considerations, we have ¢, = dpS(x). Thus, for every f € H we find
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0:5(t — 8)f = 0o(S(x)S(t —5))f =S(x+t—3s)f.
Therefore, by letting x =T —t

f(t,T)=6S(T)X(0) + /t 50S(T — s)a(s)ds + /t 00S(T — s)b(s)dM(s) .

Since 60S(T — s)b(s) is a linear functional on U, and M is a U-valued martingale, it holds
that the process

£ / ' 50S(T — $)b(s) dM(s)

is a real-valued martingale (see Thm. 8.7(iii) in Peszat and Zabczyk [40]). Hence, t —
f(t,T) is a martingale if and only if the drift is zero. The proposition holds. U

We now turn our attention to the more involved geometric case. First, by definition, the
forward price dynamics is given as

f(th) = gm(taT - t)
= exp (67_¢S ()X (0) + / dr—tS(t — s)a(s )ds+/ or—¢S(t — s)b(s) dM(s))

—exp(éo /50 T —s)a d3+/50 T —s)b )dM(s)),

smce 0:5(y) = 60S(z +y). Letting In f(0,7) = §,5(T) X (0) and observing that a(t)(z) =
0S(z)a(t), we find

(25)  f(T) = £(0,T) exp ( /0 ()T — s)ds + /0 C50S(T — $)b(s) dM(s)) |

we introduce the following short-hand notation: define the real-valued, continuous, finite
variation process ¢ as

(26) o) = [ ale)(T - 5)ds.
0
and the real-valued stochastic process v as
2.7) bE) = /0 50S(T — s)b(s) dM(s) .

Note that by Thm. 8.7 (iii) in Peszat and Zabczyk [40], ¢ is a martingale. We have the
following martingale condition in the geometric case:

Proposition 2.6. The process t — f(t,T), fort < T, is a (local) martingale on R if and
only if
de(t) = ——d[w VI — {20 =1 - Ap(t)}

where [1,1]¢ is the continuous part of the bracket process of the martingale v (see Prot-
ter [42]) and Ap(t) = (t) — Y(t—) is the jump of 1 at time t.
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Proof. We apply 1td’s Formula as formulated in Appendix D.1 in Peszat and Zabczyk [40]
to Equation (2.5), which gives

F(6.T) = £0.T) + / F(s—.T) (d(s) + dip(s))

/ F(s—\T) dl, 91°(s)
ST {AR(s,T) = Fs— T)A6(s) + (s))}

s<t

Since ¢(s) is a continuous process, we have A(¢(s) + ¢(s)) = AY(s). Furthermore,
Af(S’T) = f(S7T) - f(S—,T) = f(S_,T) (eAd}(s) — 1) .

Hence,

F(T) = £0,7) + /fs— ) dip(s /fs— ) do(s)

45 | =Ty )
+ f(s—.T) {2 — 1 — Ag(s)}

The integral with respect to 1 above gives rise to a (local) martingale, which completes
the proof. O

As an example, consider first the simple case of a real-valued noise process M = W, W
being a Brownian motion. Hence, we study the equation

X(t)=St)X(0)+ /0 S(t — s)a(s)ds + /0 S(t — s)b(s)dW (s).

Then, ¢(t) fo (t — s)a(s)ds is a continuous (deterministic) function, if a is continuous.
Further, b(s), for s € [0, 7'] is the multiplication operator on a Hilbert space H. So we
have

wwzéb@auwmwwy
It holds that d[v, ¥]¢(t) = b*(t)(T — t) dt, and we acquire the condition

at)(x) = —5B(0)(x)

as expected. Extending this to an infinite-dimensional ()-Wiener process M = W, we may

write
-V /O 50S(T — )b(s)en AW, (s)
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by appealing to the series representation of W, given by
(2.8) W(t)=> VAWal(t)en.
n=1

Here, W,, are independent, real-valued Brownian motions, and A, are the eigenvalues of )
with eigenvectors e, constituting a basis in U. By independence of W,,, we find

[, )t =) An/o (605 (T — s)b(s)en)? ds
B /ot D 160S(T — 8)b(s)Q" e, | ds

t
- / 160S(T — $)B(S)Q I, rmy .

where || - ||, r) denotes the Hilbert-Schmidt norm for operators from U to R. Thus, we
get the martingale condition

a(0)(x) = 3 805 @OQ I im)

We give an example relating our model to the geometric Brownian motion dynamics for
forward contracts proposed by Audet et al. [2].

Example 2.7. Given the forward dynamics
(2.9) df(t,T) = f(t, T)e “TDo(T)dBp(t)  Vte[0,T] and T € [0, 7],

where o is a deterministic volatility function depending on maturity time T only, and o is a
positive constant such that exp(—a(T —t))o(T) models the Samuelson effect in the forward
market. This term may also be related to the spot price dynamics, with o as the speed of
mean-reversion (see Benth et al. [16]). The noise Br(t) is a Gaussian random field, being
a Wiener process for each fixed maturity T', with t <T. For each fixed time t < T, it has a
covariance kernel given by the function q(T,T") = exp(—kr|T — T"|), here k > 0 is a range
parameter. Indeed, such a covariance structure was partly rejected by Frestad [31] and
Andersen et al. [1], who detected additional seasonality effects in the correlation between
swap contracts of different maturity in the Nordic electricity market NordPool.

With © = T — t, we define W(t,z) = Byy.(t). W may be interpreted as a Gaussian
process with values in the Hilbert space U = L*(R) and having a covariance kernel given
by q(x,y) = exp(—kl|z —y|). Thus, we can express f(t,t + x) by

1 t
hlf(t,[L’ + t) =In f((), T+ t) — 5/ UQ(IZ' + (t — S) + S)e_Qa($+t_5) ds
0

t
+ / o(z+ (t—s)+s)e EH=D qW (s, z) .
0
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We therefore identify the volatility operator b(t) as the multiplication operator on U into a
Hilbert space H of functions on R as

02 (b(t)(u)) = o(x +t)e” u(x).

We must impose reqularity conditions on o in order to ensure that the operator b(t) maps
into the chosen Hilbert space. For instance, we may choose H = L*(R), and require that
y — o(y) is a bounded measurable function on R. This identifies the model of Audet et
al. [2] in our infinite-dimensional framework. We note that the martingale condition also
holds, giving a no-arbitrage dynamics for the forward process.

Equation (2.1) describes the risk-neutral dynamics of the log-forward price. In energy
markets, forward contracts are applied for hedging purposes, and thus one is interested in
the market dynamics of the forward prices. Also, if we want to estimate the parameters
in the forward price model, the observed data is under the market probability and not the
risk-neutral one. Obviously, if one has option prices on forwards available, one could use
these to extract the “implied” parameters. However, sometimes, like in power, the option
market may be rather illiquid and it is preferrable to use the forward prices observed in
the market for estimation instead. To obtain the dynamics under the real-world measure
P, we must change the measure from Q to IP. This is what we discuss in some more detail
next:

In the language of energy markets, the market price of risk, may be modeled as a process
with values in the same space as the noise process. If U is a function space over = € D,
time-to-maturity, then we can have a market price of risk being a function of x. This is
in contrast to the case with finite-dimensional noise, where the market price of risk must
have the same dimension as the noise. In situations where one applies for example utility-
based methods for pricing, one is forced to enlarge the dimensionality of the driving noise
to match the number of forward contracts in the market to avoid arbitrage possibilities,
this is the same as having one market price of risk per contract (see e.g. the discussion in
Benth, Cartea and Kiesel [11]). By lifting the driving noise to infinite dimensions we may
achieve a richer structure on the market price of risk. On the other hand, if the market
price of risk has to be a function of time-to-maturity, then the market must admit an
infinite dimensional noise in its dynamics.

In the case where a Lévy field M = L drives the dynamics of X, we introduce an infinite-
dimensional version of the Esscher transform (see Benth et al. [16] and Shiryaev [45] for
an account on the finite-dimensional Esscher transform in finance). We suppose that L
has the characteristic triplet (u,@,¢) (see Peszat and Zabczyk [40] for a definition), and
denote by ¢(z) the cumulant function of L for x € U, that is, from Thm. 4.27 in Peszat
and Zabczyk [40],

j . 1 iz :
p(a) = mE [ =i, 2)r - S(Qu, 2)u + / (o0 — 1 — iz, y)ulgyp<n) €dy)
U

For a 6 € U, suppose that ¢(—if) is well-defined, and define the real-valued stochastic
process

Z(t) = exp ((0, L(t))v — ¢(—10)) ,
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for t € [0,7]. Note that Z(0) = 1 and Z is a martingale since L has independent increments.
Introduce the density process

dIP
dQ
of the probability measure IP. We show that L preserves the Lévy process property under

P. By Bayes’ Formula and the independent increment property of L under @, we have for
t> s,

- Z(t),te€|0,7],

- - Z(t)
Ep [o@LO-L6)w | 7] = B [ei@LO-Leow 2 ) 7
le 7R Z(s)|
= exp (p(z —i0) — (—i0)) .
Thus, by definition of ¢ and the symmetry of the covariance operator @), we find that the
characteristic triplet of L under P is (ug, @, ¢g), with

(M%x)U - (CL,I)U +/($7y)U1(|yU§1)£9(dy)7
U

and
lo(dy) = @YU ((dy) .

This defines an infinite-dimensional version of the Esscher transform, and so we introduced
a market price of risk 6 € U also for the case of Lévy noise M (t) = L(t). Observe that we
do not change the covariance operator () similar to the Girsanov transform. It is simple
to extend the Esscher transform to 6 being time-dependent, deterministic functions with
values in U, integrable with respect to L(t). This comes, however, at the expense of
losing the Lévy property of L(t) under P. On the other hand, we preserve the property of
independent increments.

We end this section with a brief discussion on the generalization of our forward price
dynamics to include a multiplicative structure in the noise and the drift. To this end, we
introduce the stochastic partial differential equation

(2.10) AX () = (AX(t) + al(t, X(£))) dt + b(t, X (£)) dM(2)

with initial condition X (0) = X, € H. In this case we suppose that a is a mapping from
[0,7] x H into H which has Q-a.s. Bochner-integrable trajectories in the finite interval
[0, 7]. The process b: [0, 7] x H — L(H, H) is for every t € [0, 7] and element in H a linear
operator from H to H. We assume that the operators a and b satisfy the following linear
growth and Lipschitz conditions for u,v € H and t € [0, 7]:

la(t, w)ll7 < CF (L + [lullF)
la(t, u) — at,v)|a < Cillu—vllm,
and
16(t, W20 < C3 (1 + [lullzr)
16(¢,w) = b(t, V)| Lys iy < Callu = vl
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for constants Cp,Cy < +o00. Then. a unique mild solution X in H to Equation (2.10)
exists (see [30] and [39]), and the predictable process X : [0, 7] x Q@ — H is given by

(2.11) X(t) =S(t)Xo + /0 S(t—s)a(s, X(s))ds + /0 S(t—s)b(s, X(s))dM(s).

A specification of the process X as the solution of the stochastic partial differential equa-
tion (2.10) is clearly a generalization of the dynamics defined in Equation (2.1).
We have the following regularity result, similar to Lemma 2.4

Lemma 2.8. ]fIE||X0||12ql(D) < 00, then the unique solution X to Equation (2.11) satisfies
SUPye(o,7] EHX(t)H%{l(D) < 0.

Again, we could assume that the forward curve (under the Musiela parameterization)
is either defined by g.(t,z) = 0,(X (1)) or gn(t,x) = exp(d,(X(t))) for the additive and
multiplication dynamics respectively. We leave out a further analysis of these more general
models here, but remark that they can be approximated and simulated with the methods
discussed in Section 4 below.

3. MODELING OF ELECTRICITY FLOW FORWARDS

In this Section we consider flow forward prices and model them using infinite dimensional
dynamics. Since flow forwards deliver over a time period, we enlarge the function space
to dimension 2, since now we have both time-to-maturity and length-of-delivery in the
Musiela parametrization. In this case one could argue in favour of adding noise in both
variables. However, a no-arbitrage condition linked to different delivery periods restricts
the range of possible noise specifications in the “length-of-delivery” dimension. We provide
a discussion of functions satisfying this condition.

Suppose F\(t,T1,T,) is the flow forward price at time ¢ for a contract delivering the
commodity (electricity or gas, typically) over the time period [T}, T3], where t, T}, T3 € [0, 7]
and t < Ty < T,. We know that this price dynamics must be a martingale in the risk-
neutral framework, i.e.

(31) t— F(t, Tl,TQ>

is a Q-martingale. One can show (see [16]) that the dynamics must also satisfy an additional
no-arbitrage condition, namely
T3
/ F(t,u,u)du.

T

(3.2) F(t, T, Ty) = T
In many electricity markets, flow forward contracts may be traded over various delivery
periods, some of which may overlap. For example, in the NordPool market, one may invest
in flow forwards delivering electricity in the four quarters of the year, or one may trade in
a flow forward delivering over the whole year. Similarly there are contracts delivering over
the different months constituting a quarter. Hence, there must be specific no-arbitrage
relations between these contracts with overlapping delivery periods. In Benth et al. [16]
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such conditions are presented, and it is shown that they imply Equation (3.2) when con-
sidering a market where all possible delivery periods are included. Thus, models for the
flow-forward price F'(t,T1,T3), which must hold for all possible choices of T} and T3, must
satisfy Equation (3.2). In an infinite dimensional framework this is exactly the case.

Let us introduce the Musiela parametrization x = T7 — ¢t and y = T5 — T3, and define

G(t,x,y) = F(t,t+ ot + 2 +y).

Our dynamics for the flow forwards F' needs to satisfy the no-arbitrage condition (3.2).
Translated into a Musiela parametrization, it takes the form,

Yy
(3.3) yG(t,x,y) = / G(t,z+2,0)dz.
0

Thus, any specification of G(t,z,y) has to satisfy this condition in order to prevent ar-
bitrage possibilities between flow forward contracts of different length and time to matu-
rity. We observe that relation (3.3) immediately suggests a way to model the flow for-
ward dynamics via the use of fixed-delivery contracts studied in the previous Section. Let
G(t,x,0) = g(t,x), with g equal to g, or g,, given in Equation (2.3), resp. Equation (2.4).
Define G(t, x,y) by

Yy
yG’(t,x,y):/ g(t,x+ z)dz.
0

Since ¢(t, -) takes values in a function space of regular functions, the integral makes sense
for each y > 0, if we assume, for example, H = L*(R,) and the regularity result in
Lemma 2.4.

In the following we investigate functions which fulfill the no-arbitrage condition (3.2).
Notice that F(t,-,-) is symmetric in T;,T5. We remark that the no-arbitrage condition
only affects the start of delivery and the end of delivery, and not the present time ¢. If we
just look at those variables for the time being we find that the values of the function on the
diagonal, i.e F(¢,u,u), characterize the function on every point (71, Ts) € [0,7] x [0,7] C
R?. If we are given an arbitrary integrable function ¢ (u) with an antiderivative given by
U(u), i.e V'(u) =1(u) an set ¥(u) = F(t,u,u) we get from Equation (3.2)

1 e U(Ty) — U(T1)

F(t, T, Ty) = T Jr U(u)du = T, — T}

If we set, as an example, ¢(u) = (n + 1)u", for n € N, we get that

n+1 n+1
T2 — Tl

F(t,T1T,T5) =
( s 41 2) T2 — Tl
fulfills the no-arbitrage condition. The choice ¥ (u) = e* gives
el2 — el
Ft,11,15) = ——+.
( y 41, 2) T2 — T1

It is possible to derive a similar characterization for functions fulfilling the parameterized
version of the no arbitrage condition, Equation (3.3). We remark as above that this
condition only affects the time to maturity x and the length of delivery y and not t.
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Here we choose as above an arbitrary integrable function ¢ with antiderivative ¥ and set
¥(u) = G(t,u,0), then we may write

G(t,z,y) = /wl‘—l—z (\Il(as+y) U(x)).

As an example: if ¥(u) = e*, it follows that G(t,z,y) = y( e ¥ — %) is fulfilling the no-
arbitrage condition. It should be mentioned that we could also choose the antiderivative
U as an absolutely continuous function and derive the same results.

We proceed with the Hilbert-space-valued stochastic differential equation to model di-
rectly the flow forwards. Recall the H-valued stochastic process X given by the solution of
the stochastic differential equation (2.1), and with mild solution given in Equation (2.2).
We suppose H is a Hilbert space of functions in (z,y), and assume that M is U-valued,
with U also being a Hilbert space (again possibly a space of functions in (z,y)). We con-
sider the evaluation functional d(, ), and extend the assumptions on the forward models
from the previous Section. The discussion of some possible choices of Hilbert spaces also
extends naturally. Note, however, that in order for the evaluation functional to be con-
tinuous, we must increase the order of the Sobolev spaces to s > 3/2, since our functions
now are defined on R? rather than the positive real line (recall the Sobolev Embedding
Theorem (Morrey’s inequality)).

As it is shown in Benth and Koekebakker [13], it is not possible to model F(t,T},T3)
using a geometric Brownian motion whose volatility depends on 77 and 75. Only volatility
specifications depending on time ¢ are valid. This essentially rules out all relevant models
since naturally the volatility should have a dependency on the delivery period due to the
well-known Samuelson effect (see [13] for more a detailed discussion). It is an established
empirical fact that the volatility of forwards increases as time to maturity approaches zero
(see, e.g., Frestad et al. [32]), and to have reasonable models one is forced to take this
into account. We conclude with this that multiplicative models for flow forwards seem
difficult to specify in the context of power markets. Admittedly, the result in Benth and
Koekebakker [13] was proven for real-valued noise processes M, but the arguments may be
generalized to infinite dimensional noises as well.

In the remaining of this Section we focus solely on additive models, since they provide
the richest structures for flexible flow forward dynamics. To this end, define

(3.4) G(t,2,y) 1= Oy (X(2)) .
Since we have that
F(t,Tl, T2) - G(t,TI - t,TQ - Tl) ;
the operator A is still given by A = 9/0x. The martingale condition on X (t) is derived as
in Prop. 2.5, and becomes a(t) = 0. From now on we suppose this to hold.

We move on by studying the possible range of models G based on the specification in
Equation (3.4) that will satisfy the no-arbitrage condition (3.3). First, we remark that
the condition can be interpreted as a side-constraint to the stochastic differential equation,
(2.1), of X, since it implicitly imposes certain structural conditions on the evolution of
X. Next, since G(t,z,y) is fully specified by G(t, z,0) via the no-arbitrage condition, the
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variations in length-of-delivery y is simply an integral of those in time-to-maturity. Hence,
there cannot be any separate, independent noisy behaviour. As we have discussed in the
Introduction, there is ample statistical evidence for noisy behaviour of forward prices along
time-to-maturity z. We are not aware of any studies of noise in y, the length-of-delivery,
and how this relates to z.

In order to study the range of volatility specifications b in more detail, we restrict
ourselves to driving noise processes M which fulfill the It6 isometry:

Bl [ S0 = MM =B [ 150 = 9b(6) s

We remark that for the class of square integrable martingales M3 (U), introduced in Sec-
tion 2, this is in general not true. However, for many processes, such as the important
class of Lévy processes the isometry holds.

Proposition 3.1. Let Sy be the shift operator in the second variable on H, and suppose the
initial forward curve G(0,z,y) satisfies the no-arbitrage condition (3.3). Then G(t,z,y)
fulfills the no-arbitrage condition (3.3) if and only if for every 0 < s <t <71 and z,y > 0,
the volatility process b has the property

(3.5) {52@) 1 /0 " 5(2) dz} b(s)u € ker(SooS(t — 5 + 7))

Y
for all uw € U, where the integration of S is understood as a Bochner integral.

Proof. By the continuity of d,,, we have that

G(t,2,y) = 8,,S(1) /(XrySt—s b(s) dM(s)

It follows from the no-arbitrage condition (3.2) that

Yy
G(t,z,y) = 1/ Gtz + 2, 0)dz

/5x+z08 0)dz + - //5z+205t—s) (s) dM(s) dz.

If we compare the first terms, we may write

awwmwmzél%ﬁwwmwmw,

or, by definition,
1 Y
G(0,z,y) = ;/ G0,z + 2,0)dz.
0

By assumption, this is supposed to hold.
Next, comparing the terms with the stochastic integral, we find by linearity of the
operators

/0 5., S(t — )b(s) dM(s) = i /0 ’ /0 5ren0S(t — 5)b(s) dM (s) dz
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_ /O t; /0 oSt — $)b(s) dzdM(s)

Hence, if the integral process with respect to M satisfies the Ito isometry, we find the

operator equality
1 Yy
3 yS(t —5)b(s) = ;/ Opt209(t — 5)b(s) dz .
0

It is easily verified that, for v € H
OpyS(t —s)v=100,5(t — s+ z)v =605 (t — s+ x)Sa(y)v
Applying this and the semigroup property of S, we get,

S00S(t — 5+ 2)Sa(y /5%20 (t — 5)b(s) d=

= /0 d0,05(x + 2)S(t — s)b(s) dz

y
:1/ J0,05(t — s+ x + 2)b(s) dz
YJo

_50,0{é/oysu—s”ﬂ)b(s)dz}
— So0S(t — s + ) {5 /Oy S(2) dz} bs).

This is equivalent to

6005(t—s+:c){ ——/s ) dzb(s }:o.

This proves the Proposition. [l

We note that a sufficient condition for the volatility b to ensure no-arbitrage is that

1 (v
= ;/0 S(z) dzb(t)

Recall b is an operator mapping U to H, while the shift operators S and S, maps H into
itself. Thus, for h € U we have that, after evaluating the function b(t)h in (u,v),

(bR (u,v + 1) = 5 /Oy(b(t)h)(u +z0)dz .

We now discuss this condition for the special case when the driving noise M of X(t) is
one-dimensional, that is, M(¢) is a real-valued square-integrable martingale. Further we
need the integral with respect to M to fulfill the Ito isometry.

By definition of G, we have (assuming a drift-free equation)

Gt ) = XO)e +t0)+ [ bs) (@ t — s, ) dM(s).
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Appealing to the stochastic Fubini Theorem (see Peszat and Zabczyk [40]), implicitly
assuming that b and M are sufficiently regular for this theorem to hold, we find from
Equation (3.2) that the volatility b must satisfy

(3.6) /Otb( )t — s + 2, y)dM(s) // )t — s+ +2,0)dM(s) dz.

Let us specialize to the case of volatilities which are additive and with a multiplicative
structure between x and y, that is, we suppose that

b(t)(z,y) = alt,x)B(t,y),

for two positive functions v and . To avoid technicalities, we assume them to be smooth.
The no-arbitrage condition imposes

tﬁ(s,y a(s,t —s+x+2)
(3.7) SO /oy/ o i—517) dzdM(s).

The left-hand 81de of Equation (3.7) is independent of z, which means that the right-hand
side must be a function independent of x as well. This holds in particular if there exists a
positive smooth function k(s, ¢, z) such that

a(s,t —s+x+2z)

a(s,t —s+x)
We note that k(s,¢,0) = 1. In light of the Samuelson effect, it is reasonable to have a
decaying volatility in time-to-maturity, meaning that = +— b(t)(x,y) is decreasing. This
implies that z — k(s,t,z) decreases as well, if we impose the Samuelson effect into the

model. We find,

ost—stotz)—alst=sta) kst ket o Lo
z z

= k(s,t,z).

and passing to the limit z | 0 we write (for s = t),

Oya(t,x) = 0,k(t,t,0)a(t, x) .
Here we introduce the notation 0, = d/0z. Putting c(t) := 0,k(t,t,0), we conclude that
(3.8) alt, ) = a(t,0)e®

If we take the Samuelson effect in the volatility structure into account, z — k(s,t,z) is
decreasing. This implies that ¢(t) is non-positive. With « as in Equation (3.8), we find

(3.9) / B(s,y)dM (s *B > 0 — 1) dM(s).

In conclusion, a sufficient class of Volatlhty structures b(t, z,y) satisfying the no-arbitrage
condition (3.6) is given by

h(t) (ccOe+1) _ ge(02)

b(t,r,y) = 0y :
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for smooth functions h and c. If the Samuelson effect holds, then ¢ and h are non-positive.
Using that x =T} —t and y = T, — T, we find the volatility structure of the forward price
dynamics to be

h(t)

O'(t,Tl,TQ) = b(t,T17T2 — Tl) = m
2 — 41

(QC(t)(Tz—t) _ ec(t)(Tl—t)) .

We observe that for ¢(t) = —k, this volatility structure is resulting from a one-factor spot
price model being an Ornstein-Uhlenbeck process with speed of mean-reversion x and “spot
volatility” h(t) (see Schwartz [47] and Benth et al. [16] for details).

We remark that this result is a concrete example for the structure of the forward dy-
namics imposed by the no-arbitrage condition, which we derived in the beginning of this
Section. Due to the additive structure of the model here we can drive the structure only
for the volatility. For the model to be conform with the no-arbitrage condition the initial
condition has to have a similar structure.

As we have mentioned before, reasonable arbitrage-free geometric models seem hard to
construct in the framework of flow forwards. One approach to avoid the complicating no-
arbitrage condition in Equation (3.3) is to model time to maturity and length of delivery
simultaneously by letting x be the time to some point within the delivery period. Thus,
one introduces a dynamics ¢(t,z) with x = 7 — ¢, for a given 7 € [11,T5]. This approach
was implicitly suggested and used in Bjerksund et al. [18] and applied for example in
Audet et al. [2]. As we see, this approach brings us back to the forward price dynamics for
contracts with fixed time of delivery. It is important to notice that we only obtain a flow
forward price dynamics up to time 7. In some markets, like the NordPool power market,
one cannot trade the forwards within their delivery period, so in fact ¢ < 77 < 7 is the
natural modelling horizon. In other markets, like the German power exchange EEX, the
flow forwards can be traded within the delivery period, however the liquidity is very low.
As we recall from Section 2, we have conditions ensuring an arbitrage-free dynamics of the
geometric model which allow for a rich class of possible processes. Moreover, by choosing
7 > T} we also incorporate the empirical fact that flow forward prices do not converge to
the spot price as time to delivery goes to zero.

4. SIMULATIONS AND NUMERICS

In this Section we present a numerical method for the simulation of forward curves based
on numerical solution of the stochastic partial differential equation (2.1). We restrict
our attention to forward contracts with fixed maturity time. Both the additive g,(t, )
in Equation (2.3) and the multiplicative g,,(f,z) in Equation (2.4) are covered by our
numerical approach, since we solve for X (¢). However, in the examples that we present we
shall be concerned with g,,(t,2). The method we propose does not have any restriction
on the volatility structure as in Bjork and Gombani [19] to allow for finite dimensional
representations. We equilibrate the error for the finite dimensional realization of the infinite
dimensional noise with the errors introduced by the space and time discretization of the
stochastic partial differential equation. Moreover, we remark that it is not restricted to
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energy markets, but provides an alternative approach to simulating forward rates in fixed-
income markets for example, where the HJM approach has been applied.

First, we introduce a space and time approximation for the simulation of a sample path.
To calculate functions of the solution, such as moments, we refer to the multilevel Monte
Carlo method as introduced in Barth and Lang [9]. The multilevel Monte Carlo method
exhibits significant improvement over the Monte Carlo method in terms of computational
complexity. This is especially important if we want to solve stochastic partial differential
equations, since their computation is expensive. We have to solve for each sample a partial
differential equation, which entails in solving a (possibly very large) system of equations
in every time-step.

To simulate the dynamics of the first-order hyperbolic, stochastic partial differential
equation (2.1) we need an approximation in space, leading to the semidiscretized dynam-
ics, as well as an approximation in time (full discrete form). For the finite dimensional
approximation in space we introduce a Petrov—Galerkin method (SUPG method), which is
well known to yield reasonable results for deterministic, first-order hyperbolic differential
equations. A Galerkin approximation would provide convergence as well, but oscillations
might occur when the solution is not smooth enough. Since the solution to a stochastic
partial differential equation is not necessarily smooth we have to introduce an artificial
diffusion via a Petrov-Galerkin approximation. There are several publications on conver-
gence of these methods for deterministic equations (c.f. [38] or [24]). In general, a finite
element method is preferable since it allows for more freedom when choosing the nodal
points of the approximation than, for instance, a method based on finite differences.

We are facing the initial boundary value problem

uy = Au+ ¢,

with initial condition u(0,-) = v in some convex domain D C R? with Lipschitz boundary
0D. Here u; denotes the partial derivative with respect to t. For a given vector field a,
the first order differential operator A is defined as

d
Ad(w) =Y ay()ou,(x).
i=1
The inflow boundary is the set
OD™ :={x € 0D :a(x) -n(z) >0},

where n(z) denotes the exterior normal to 0D at x. To have a well posed problem we
impose a boundary condition on the inflow boundary and the initial condition u(0,-) = v
matching the boundary condition in dD~. The source term £ is in our case the sum of the
drift and the random field. As in the deterministic case, we introduce a finite-dimensional
finite element space S;, as an approximation for the space variable x € D. In the case
studied we have D = [0,7] C R;. &, is a family of spaces of piecewise linear finite
element functions with respect to a partition of D, without any boundary conditions on
the functions in Sy, thus S, € H'(D). The expectation of the solution X (t), for t € [0, 7]
is, according to Lemma 2.4, an element of H*(D) if we have certain regularity on the initial
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condition. For first-order hyperbolic equations we just have essential boundary conditions
at the inflow boundary 0D~ , which leads to the following definition for the finite element
space:

S, ={x€eSy: x=catodD}

for some real constant c. The parameter h is a measurement of the fineness of the ap-
proximation. It denotes the longest side of any element of the triangulation in the space
approximation. Translated into the problem at hand, the inflow boundary is the long end
of the market. The constant c is, in this context, the value at the long end of the market,
i.e. the value contracts reach when time-to-delivery tends to infinity.

The deterministic, semidiscrete, first order hyperbolic differential equation converges
with rate h*”? for the SUPG method, see, e.g., Larsson and Thomée [38]. As indicated in
Barth [5] and Barth and Lang [6], convergence of the stochastic partial differential equation
only depends on the convergence of the corresponding partial differential equation and the
compatibility of the scheme with the It6 isometry or a martingale inequality. A convergence
result for this kind of equations was derived in Barth [5].

The main difference between SUPG and Galerkin methods is the test functions used. In
a Galerkin approximation, one uses the same functions as test functions and trial functions.
In contrast, to implement our Petrov—Galerkin method we choose as test functions x + vy,
where x is, for instance, the hat function basis and y denotes the (weak) derivative of
the basis function. The trial functions remain y. The parameter v has to be chosen
according to the problem, leading to a numerical scheme which is problem dependent. This
could be circumvented with a Discontinuous Galerkin method (DG method). However, the
parameter does not depend on the noise, but rather on the continuity of the initial and/or
the boundary condition.

For the fully discrete problem we have to approximate the derivative in ¢ as well. There
are several options for this approximation. We use a Crank—Nicolson approach, which is
known to be unconditionally stable. As a discretization of [0, 7] we introduce the equidis-
tant time stepping 0 =ty <t; <... <ty =7, wheret; = %i,fori =1,...,N, N € N. We
couple the number of time steps with the degrees of freedom h in the space discretization,
to have an equilibrated error in space and time, as suggested in Barth and Lang [9].

For the simulations we assume the driving noise process to be a Gaussian random field
W or a random field of correlated Lévy processes L. For the latter, according to Peszat
and Zabczyk [40] we have

oo

L(t)(x) = Y (L(t), ex)mex(z)

k=1

where L(t) is a square integrable Lévy process in H and (eg, k € IN) is an orthonormal
basis of H. The series on the right-hand side converges in L?. For the finite-dimensional
approximation of the infinite dimensional noise we truncate the sum after K terms. The
rate of convergence of this truncated sum should be higher than the convergence of the full
approximation scheme. In the case of a Gaussian random field we truncate the expansion
(2.8). Results on how to truncate these series can be found in [7]. There the authors show
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Fi1GURE 1. Forward surface and corresponding spot curve for a« = 4 and

k = 2 driven by a Gaussian random field
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a) Forward curve, (X(t;,x;),7 = 0,....,N,7 = b) Spot curve, X (¢,0
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FiGUuRrRE 2. Forward surface and corresponding spot curve for « = 4 and
= 10 driven by a Gaussian random field

how the truncation depends on the decay of the eigenvalues of the covariance operator
(@ in order to equilibrate the error of the truncation and the error of the space and time
discretization. Thus, we have to simulate K one-dimensional Gaussian processes or Lévy

processes, which are correlated via an operator ().
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As a first example we simulate a multiplicative model g,,(¢,z) inspired by Audet et
al. 2], that is, gm(t, ) = exp(d,(X(¢))) with

dX(t) = (AX(t) + a(t))dt + b(t)dM t),

and a(t)(z) = e 2*c?(x + t), (b(t) u)(z) = 6,(b(t)u) with b(t)(x) = e *®o(x + t) as in-
troduced in Example 2.7. If the noise M is one-dimensional, this forward price dynamics
would be implied by a spot dynamics given as an exponential Ornstein-Uhlenbeck process
with speed of mean-reversion o and volatility o(t) (see e. g. Benth et al. [16]). In the
numerical examples, we choose o(t) to be time independent. With an infinite-dimensional
noise driving the forward curve, we open for idiosyncratic risk in each maturity. Follow-
ing Audet et al. [2], we first specify M to be a Gaussian random field, later a random
field of correlated NIG processes on L?*(R). Both with covariance kernel function given by
p(z,y) = exp(—r|z—y|?). For the Gaussian covariance kernel p the number of independent
processes is chosen to be the number of nodal points of the approximation. In Barth and
Lang [7], and in a more general form in Barth and Lang [8], this is shown to be sufficient
to meet the error of the space and time discretization. The exponential covariance kernel
given by p(z,y) = exp(—r|z —y|?) has eigenvalues which decay much slower. Consequently
a truncation of Equation (2.8) has to involve much more terms, so that the overall error is
not dominated by the truncation error of the noise process.
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F1GURE 3. Forward surface and corresponding spot curve for a = 0.2 and
k = 2 driven by a Gaussian random field

Let x,y € {0 =21 <29 < ... <z, =T}, be the set of the nodal points of the approx-
imation. Simulations are presented for two different range parameters of the covariance
kernel: kK = 2 and x = 10. This is done to have first a stronger correlation, such that all
points in D are correlated and the latter to have correlation in practice only over fractions
of D. In the latter case one would expect a much rougher random field than in the former.
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FI1GURE 4. Forward surface and corresponding spot curve for a = 0.2 and
t = 10 driven by a Gaussian random field

We chose, also for simplicity, the nodal points of the approximation {z;}, i = 1,...,n,
to be equidistant, with n = 2°. We assume D = [0,1], i.e. 7 = 1. The step size for the
approximation in time is At = 7/N, where N = 2% To have a reasonable initial condition
9gm (0, z) for the case of a Gaussian random field, we consider the one-dimensional spot
price model by Schwartz, where the spot price is S(t) = exp(Y'(¢)) for

dY (t) = —aY (t)dt + o dB(t),
for a Brownian motion B. In this case, the initial forward curve would be
— 0'2 —Zax
F(0,7) = S(0)° Tefa (70,
Thus, in view of the close connection between this simple case and our infinite-dimensional
model, we assume that

2
X<07 SU) = lngm(O, :L') — o M + Z_(l o 6720@) )
(6%

Note that, in the analogy of the one-dimensional spot model, we have implicitly assumed
that In S(0) = 1. The inflow condition is set to

2

o
X0.D)=X({t1) =+ —(1 —e 2@
(0.1) = X(t,1) =™ 4 (1 - )

matching the initial condition. The parameter « is chosen to be o = 4, and a = 0.2, in
line with the model example in Audet et al. [2]. For simplicity we fix o to 0.5. For the
choice a = 0.2 we have nearly a linearily decaying initial condition, whereas for o = 4 we
see a clear exponential decay. Both cases give a forward market in so-called backwardation,
which is the normal situation in a market where the producers are hedging using forward
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contracts and therfore accepting a discount in price compared to the current level of the
spot. We simulate n independent Gaussian processes and correlate the field with the
truncated expansion (2.8).

The outflow boundary eX(®9 is the spot price curve. Notice that we did not make
any assumption on the spot. We display the resulting spot curve with the corresponding
surface.

In Figures 1 and 2 a path of the forward surface driven by a Gaussian random field is
pictured with o« = 4. The smoothing effect of the stronger correlation in Figure 1 is obvious.
In the weakly correlated case (k = 10) we have overall a stronger effect of the noise.
Clearly our smooth choice of a covariance kernel leads to smooth forward surfaces. The
corresponding spot curves reflect the Brownian motion. Noteably, the shape of the forward
curves change with time, and can take more complex structures than simple backwardation.
We can see for example humps, which is empirically observed in several forward markets
(see for example Geman [33] for a discussion of humps in the oil market). These humps
will in our case be a reflection of the high-dimensionality of the noise (see Benth [10] for a
discussion of multi-factor spot models and humps). The simulated forward curves are very
smooth, and may not be reasonable for the variations observed in power markets where
there is a high degree of idiosyncratic risk between delivery times. The logarithmic spot
dynamics decays rapidly towards a level 1, reflecting the strongly backwardated forward
curve.

We compare these figures with Figures 3 and 4 and see the effect of a relatively flat
initial condition. For both simulations exactly the same random numbers were used. We
see a clear difference in the resulting spot curves. The flat initial condition together with
the constant inflow boundary condition lead to a flat solution of the (deterministic) trans-
port equation. However, the noise introduces fluctuations into the dynamics, which are
transported by the transport equation, but with no effect from the boundary conditions (in
space and time), i.e. the term structure and the long end of the market. In all four figures
we can nicely see the transport of the information from one timestep to the next. This
means that a certain forward price profile is merely the same shifted at a later point in
time. We also note that the logarithmic spot dynamics shows a mean-reverting behaviour
around the level indicated by the long-term value of the forward curve, in line with the
structure of the forward curve model.

As a second example we simulate a random field of correlated centered NIG processes.
We use the approach suggested in Rydberg [44] and Schoutens [46] to simulate a NIG
process, with parameters p = 0, a, 5 and ¢, as a time-changed Brownian motion. We
simulate one IG process I(t), where I ~ IG(at,b) with a = 1 and b = §y/a? + (32, as a
subordinator for the whole field. In fact, we correlate n independent Brownian motions,
which are subordinated by this IG process, as in the case of the Gaussian random field. The
generation of the random field of correlated centered NIG processes with one subordinating
process I for the whole field ensures that the marginal process in each point x € D is again
a one dimensional NIG process. This is an important feature, since the spot dynamics
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FIGURE 6. Forward surface and corresponding spot curve for a = 4 and
k = 10 driven by a random field of correlated NIG processes

should be NIG distributed. The NIG field is given with the described method by

LNIG (1) = BS*I(t) + oW (I(1)),
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where W is a Gaussian random field. This random field has the expansion given by
LNIC(t) = BO*I(t) + 0 Y/ NeWi(I (1),
i=1

where, as before, ((\;, e;),7 € IN) is the basis formed by the spectral decomposition of the
covariance operator @ and (W;,i € IN) is a sequence of one-dimensional Brownian motions.
So in an arbitrary point x € D we obtain again an NIG process.

For the example we set @ = 10,' = 0 and 6 = 1. The jump height can be further
influenced by a change of the parameter a.

To calculate initial and inflow boundary conditions for the Lévy driven stochastic partial
differential equation we consider a one-dimensional spot price model, where the spot price
is S(t) = exp(Y (1)) for

dY (t) = —aY (t) dt + dL(t),
for a NIG process L, whose increments are NIG(0, a, 3, §)-distributed. The corresponding
jump intensity measure of the NIG process is given by:

_ba el K (alz])
B
where K7(z) denotes the modified Bessel function of the third kind of order 1.

We have two ways to derive the forward curve leading to the same result: Once we apply
Prop. 4.6 in Benth et al. [16] and find

FO.T) = S(0)"" exp ( /0 " (o) ds) |

where ¢ is the cumulant function of L(1), that is, the logarithm of the moment generating
function. For a NIG-variable, it is (see p. 53 in [16])

c(u):uu—i-é(\/W—\/m) :

We remark that we have derived the price of the forward without any risk adjustment.
This could easily be incorporated, but we refrain from doing so here.

On the other hand we perform a similar calculation as for the Gaussian case: Then the
dynamics of the forward curve reads

v(dz) dz,

—aT @(l_e—aT

f(0,T) = 5(0)°  eor ) I % K (@2l d=
With 8 =0 and § = 1 we may write

—aT M(lfe—‘ﬂ“)

f(0,T) = 5(0)° e er

As before we get, assuming In S(0) = 1, the initial condition for the infinite dimensional

model as Ko@)
X(0 — ,az o\« 1 — e %
O2) = e+ ———(1—e™)

IThis parameter is usually denoted « in the NIG distribution, but that notation was not available to
us.
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and thus as the inflow boundary condition

Ko(a
X(t,1) =e*+ Mu — 7).

T
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F1GURE 7. Forward surface and corresponding spot curve for o = 0.2 and
k = 2 driven by a random field of correlated NIG processes
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FiGURE 8. Forward surface and corresponding spot curve for o = 0.2 and
= 10 driven by a random field of correlated NIG processes
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In Figures 5 and 6 we plotted paths of the forward surface driven by a random field of
correlated NIG processes. Again in Figure 5 the smoothing effect of the stronger correlation
is visible. For both figures we chose a = 4. The modeling of the random field as a time
changed Brownian Motion with one IG process as a subordinator for the whole field causes
the jump of the whole forward curve. The corresponding spot curves reflect the structure of
a NIG process. The smaller the parameter « is, the higher the correlation is and therefore
the smoother the forward surface becomes. In Figure 6 (as well as in Figure 8) we see jumps
of more or less single points, this is impossible with a smaller parameter x. In Figures 7
and 8 we plotted a field of correlated NIG processes with o = 0.2. As in the case of the
Gaussian random field we see the influence of the initial and the boundary condition.

By using a NIG-Lévy field as a model for the noise, we obtain much rougher looking
sample paths in the simulation. Such forward curves might seem reasonable in view of
the idiosyncratic risk in power markets. Typically in general commodity markets, one
expects random fluctuations along time that can have jumps, however, along time-to-
delivery there is much more smoothness expected. In power this is different, and we device
here a class of models with namely such a feature of roughness. In Andresen, Koekebakker
and Westgaard [1] one finds clear empirical evidence for a NIG-driven random field noise
for forward prices observed in the NordPool market, confirming and extending the analysis
in Frestad, Benth and Koekebakker [32]. These two papers consider flow forwards, as
these are the ones traded in the market. Noteworthy is, that one finds more variation
the shorter the length of delivery is. This is particularly evident in Benth, Koekebakker
and Ollmar [14], detecting big variations in the short end of the NordPool curve where
short-term contracts are traded (down to one day of delivery). We further note that the
implied logarithmic spot price curves are similar to those coming from the Gaussian cases,
except that the noise seems to be different, reflecting the Lévy field chosen.

One might be interested in the approximation of the expectation of a function of the
solution and not in the approximation of a path of the solution process, i.e. we want
to estimate the quantity E(f(X(¢))), where f is a Lipschitz function. In this case a
multilevel Monte Carlo method could be applied, where we approximate the expectation
by a combination of Monte Carlo estimators with sample sizes depended on the space (and
time) discretization. In Barth and Lang [9] convergence of the approximation is proved
and an optimal number of samples is calculated to reduce the overall computational effort
when compared to a normal Monte Carlo method.
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