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Chapter 1

Introduction

The Chiari I malformation is a condition characterized by the downward dis-
placement of the hindbrain, putting pressure on the spinal cord and potentially
blocking the flow of cerebrospinal fluid (CSF) from the brain to the spinal column.
Chiari I is relatively common in that approximately 1% of the adult population is
believed to have such a malformation. However, not everyone develop symptoms.

Symptomatic Chiari I malformation is often associated with syringomyelia, a
condition in which fluid-filled cysts begin to form in the spinal cord. In fact, up
to 70% of syringomyelia is related to hindbrain disorders [22], Chiari I being the
most common of these [29]. Even though there appears to be a clear connection
between the Chiari I malformation and syringomyelia, the reason for it is not well
understood. Due to the difficulty in studying spinal cord conditions without the
use of invasive procedures, it is thought that numerical simulations may aid in
the understanding the connection.

There are several theories as to why syringomyelia develops; many of these are
based in mechanics, and it is believed that the obstructed CSF flow may be of
importance. In vivo measurements of CSF velocity by for example Quigley et al.
[39], Haughton et al. [23] and Dolar et al. [18] support the theory that the Chiari
I malformation is associated with abnormal CSF velocities.

Computational studies by Hentschel et al. [24], Støverud et al. [49] and Roldan
et al. [40] have also investigated CSF flow in the SAS, the two former using
idealized geometries and the latter using patient-specific geometries, showing that
the presence of an obstruction in the subarachnoid space (SAS) causes abnormal
CSF flow. Computational studies by Bertram et al. [8] and Bertram [7] model the
fluid/structure interactions in the spinal column, using linear elastic models for
the spinal cord. The models in these studies are simplified 2D geometries. To the
author’s knowledge, several studies have used patient-specific geometries when
modelling CSF flow, but few have used such geometries to model the spinal cord
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1.1. OUTLINE OF THE THESIS 2

itself. However, a study by Støverud et al. [50] does model the spinal cord as a
poro-elastic medium using an anatomically accurate spinal cord geometry.

Many studies have been conducted to investigate the properties of the spinal cord.
In particular, the viscoelastic properties of the spinal cord have been extensively
tested. A review of experiments on the rheological properties of the spinal cord,
both invasive and using magnetic resonance elastography (MRE) is given by Cheng
et al. [12]. To the author’s knowledge however, there are no studies that have
combined the use of a viscoelastic model for the spinal cord with patient-specific
geometries under pressure conditions from abnormal CSF flow caused by the
Chiari I malformation. This motivates an investigation into the effect of using a
viscoelastic model together with an anatomically accurate spinal cord geometry.

This thesis aims at attacking the problem using mathematical modelling. Specif-
ically, the spinal cord is modelled as an elastic solid. A linear elasticity model
is used as a reference material, while several options for a linear viscoelasticity
model are explored. The mathematical models are combined with the framework
of the finite element method in order to solve the problem computationally. This
allows for simulations of the response of the spinal cord under pressure.

1.1 Outline of the thesis

In Chapter 2, a brief introduction to the medical background of the problem is
provided.

In Chapter 3, the governing equations for elasticity is presented, followed by an
overview of how the equations will be used to simulate the spinal cord under
pressure. Constitutive relationships for linear elasticity and linear viscoelasticity
are presented, and relevant parameter values are selected from the literature.

In Chapter 4, an outline of the numerical methods needed to solve the problems
is given; in particular, an overview of the finite element method is provided.

In Chapter 5, the numerical methods are applied to the mathematical models.
An efficient computational scheme for the viscoelasticity problem is presented.
Specific choices for boundary conditions are discussed, and an overview of the
computer implementation of the problems is given.

In Chapter 6, the results from verification tests of the implementations are shown,
followed by the simulation results for the spinal cord.

In Chapter 7, a thorough discussion of the results is provided.

In Chapter 8, the results are summarized and a conclusion is provided, along with
suggestions for further work.



Chapter 2

Medical background

This chapter aims at giving a brief overview of the medical background which
provides the fundamental motivation for this thesis.

2.1 The spinal cord

This section addresses the anatomy of the central nervous system, and in particular
the spinal cord. The information in this section is compiled from the reference
works [36, 20, 14].

The central nervous system consists of the brain and the spinal cord. The spinal
cord is continuous with the brain above, and descends down approximately two
thirds of the vertebral canal, which lies within the vertebral column. The spinal
cord is cylindrical in shape, and is about 40-45 cm long.

Along the spinal cord, 31 pairs of spinal nerves are attached. The spinal nerves
are bundles of fibres that conduct nerve impulses from the central nervous system
to the muscles in the body. Figure 2.1 shows an illustration of a cross section of a
vertebra and the spinal cord.

The spinal cord is made up of grey matter surrounded by white matter. Covering
and protecting the spinal cord are three layers of meninges (membranes). The
outermost is known as the dura mater, and is a tough, fibrous membrane. The
innermost membrane is known as the pia mater, which covers the surface of
the spinal cord. Between the pia and the dura is the arachnoid mater, a thin
translucent membrane. The space between the pia and arachnoid is known as
the subarachnoid space (SAS), and contains CSF. This fluid is a clear liquid that
occupies the SAS both in the cranium and in the vertebral canal. CSF flows in
and out of the cranium as the brain expands and shrinks to accommodate the
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2.1. THE SPINAL CORD 4

Figure 2.1: Cross section of a vertebra and the spinal cord [2].

blood pulsating in and out of the brain during a cardiac cycle. CSF is produced
inside the ventricles of the brain and consists mainly of water with small amounts
of glucose, salts and proteins which provide energy for the brain.

The spinal cord connects with the brain via the brain stem at the foramen magnum,
which is the opening in the base of the skull through which the spinal cord enters
the cranium. Above the foramen magnum lies the cerebellum, see Figure 2.2.

The cerebellum is the largest part of the hindbrain. On the bottom surface of the
cerebellum are the cerebellar tonsils, which are important in the context of the
Chiari malformations.



5 CHAPTER 2. MEDICAL BACKGROUND

Figure 2.2: Illustration of central nervous system. Illustration created by Patrick
J. Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist.

2.2 Chiari malformation

A Chiari malformation is a malformation of the brain or possibly of the skull. It
is characterized by a downward displacement of the cerebellar tonsils through the
foramen magnum. This downward displacement is known as a herniation, and
may may obstruct CSF flow at the foramen magnum, which may cause abnormal
CSF velocities and increased pressure gradients.

Chiari Malformations are classified into four main groups, the Chiari I, II, III,
and IV malformations, where the scale of severity is I - IV, the last being the
most severe and very rare.

The traditional definition of the Chiari I malformation is ”a herniation of the
cerebellar tonsils past the foramen magnum by 3−5mm, as diagnosed by magnetic
resonance imaging” [43]. However, this definition have been much discussed, since
patients with less than 3 - 5 mm herniation may have severe symptoms and people
with significant herniation have may be without any symptoms.

Symptoms of Chiari I include head/neck pain, body weakness, numbness and
dizzines, although symptoms vary greatly from patient to patient [17], see Ta-
ble 2.1. It is believed that approximately 1% of normal adults have the Chiari I
malformation as defined above, although only about 0.01−0.04% of adults display
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symptoms [52]. The reasons for the symptoms are believed to be associated
with the flow of CSF in and out of the head. Symptoms may also be caused by
associated conditions, such as syringymyelia.

Symptom %

Headache 98
Dizziness 84
Difficulty sleeping 72
Weakness of an upper extremity 69
Neck pain 67
Numbness/tingling of an upper extremity 62
Fatigue 59
Nausea 58
Shortness of breath 57
Blurred vision 57
Tinnitus 56
Difficulty swallowing 54
Weakness of a lower extremity 52

Table 2.1: 13 symptoms were reported by more than 50 % of the 265 participating
patients with Chiari I malformation in the study by Diane M. Mueller and John
J. Oro’ [17].

2.3 Syringomyelia

Syringomyelia is a condition in which fluid-filled cavities, or syrinxes, develop in
the spinal cord. The development of syrinxes may cause nerve damage which
is irreversible. Estimates suggest that 30% - 50% of Chiari I patients have an
associated syrinx, and, as mentioned, up to 70% of syringomyelia is related to
hindbrain disorders such as the Chiari I malformation.

The reason behind the development of syrinxes in the spinal cord is unclear, but
is thought to have something to do with the abnormal CSF flow caused by the
Chiari I malformation. Many theories have been developed to explain exactly
what causes syrinx formation, see for example the reviews by Shaffer et al. [43] or
Elliot et al. [19].



Chapter 3

Mathematical models for
elasticity and viscoelasticity

The spinal cord will be considered as a solid throughout this thesis. In order to
develop a model for the deformation of the spinal cord under pressure caused by
CSF flow, the underlying physics must be considered. Theory from continuum
mechanics becomes central here – in particular theory of elasticity and viscoelas-
ticity. In this chapter, governing equations for the spinal cord are presented,
and the simulation scenario is outlined. Following this, models for constitutive
relationships describing material properties are presented. A simple analysis of the
models for viscoelasticity is performed in order to determine their appropriateness.
Finally, a review of parameter values from the literature is presented, and relevant
parameter values are selected.

The theory in this chapter is compiled from the works by Shaw [44], Larson and
Bengzon [30] and Banks et al. [5].

3.1 Governing equations

Consider a body G of elastic material occupying an open, bounded domain Ω ∈ Rd,
d = 1, 2, 3. The forces acting upon such a body can be categorized as one of two
types:

(i) Body force – a force acting on the whole volume, measured in N/m3. Ex-
amples include gravitational forces and electromagnetic forces.

(ii) Surface force – a traction force, acting on the boundary ∂Ω of Ω, measured
in N/m2. An example is pressure.

Physical balance laws describe how these forces affect the body in question.

7



3.1. GOVERNING EQUATIONS 8

The boundary ∂Ω of Ω is comprised of two parts such that ∂Ω = ΓD ∪ ΓN , where
ΓD denotes the part of the boundary with Dirichlet boundary conditions (BCs)
and ΓN denotes the part of the boundary with Neumann BCs. See Figure 3.1 for
a schematic.

Figure 3.1: A body G of elastic material occupying Ω, with bounding surface
∂Ω ≡ ΓD ∪ ΓN .

Let a point in Ω = Ω ∪ ∂Ω be denoted by x = (xi)
d
i=1. Denote the system of body

forces acting on G by f = f(x, t) and the system of traction forces acting on G by
g = g(x, t). The stress tensor is denoted by σ = (σij)

d
i,j=1 and the strain tensor by

ε = (εij)
d
i,j=1.

Let Bε ≡ Bε(x0) be an open ball of radius ε centred at the point x0 = (xi)
d
i=1 ∈ Ω.

Let the outward surface normal to ∂Bε be denoted by n = (ni)
d
i=1. The force

applied to Bε is the sum of

(i) the net force due to body forces acting on the volume of Bε and

(ii) the resultant of the surface forces acting on ∂Bε.
In equilibrium, the sum of the forces acting on the ball must be zero. Thus,

ˆ

Bε

fdΩ

︸ ︷︷ ︸
bodyforces

+

˛

∂Bε

σ · nd(∂Bε)

︸ ︷︷ ︸
surfaceforces

= 0. (3.1)

Theorem 3.1 (Divergence theorem [34]). Let u be a continuously differentiable
vector field, defined in a volume V . Let S be the closed surface forming the
boundary of V and let n be the unit outward normal to S. Then the divergence
theorem states that ˚

V

udV =

‹
S

u · ndS, (3.2)
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Theorem 3.1 applied to (3.1) gives

ˆ

Bε

(∇ · σ + f)dΩ = 0. (3.3)

Since x0 and ε are arbitrarily chosen the integral sign can be removed, giving the
equilibrium equations describing the elastostatic problem: for all t ∈ [0, T ],

−∇ · σ = f, in Ω, (3.4a)

u = uD, on ΓD, (3.4b)

σ · n = g, on ΓN . (3.4c)

Here, (3.4b) and (3.4c) are the Dirichlet and Neumann BCs respectively. The
system (3.4) represents the governing equations for a general elasticity problem.

The stress tensor is symmetric, i.e. σij = σji for 1 ≤ i, j ≤ d. Thus, σ is completely
described by six (for Ω ∈ R3) or three (for Ω ∈ R2) quantities. The symmetric
strain tensor ε(u) := (εij(u))di,j=1 is defined by

ε(u) =
1

2

(
∇u+ (∇u)T

)
. (3.5)

The stress tensor σ is defined by a constitutive relationship involving ε.

3.2 Simulating the response of the spinal cord

In the hopes of gaining more understanding about conditions affecting the spinal
cord, simulations are run using the governing equations (3.4).

The simulations of the response of the spinal cord under pressure are done on
a mesh developed from a geometry of a spinal cord segment from a sheep. The
mesh was segmented from high resolution diffusion tensor images of a sheep spinal
cord [50]. The geometry of the mesh is shown in Figure 3.2. The mesh has
1.15× 106 cells, and represents a spinal cord segment of approximately 3.4cm in
length.

The CSF pressure is simulated by the Neumann boundary condition

σ · n = g = −pn,
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Figure 3.2: The mesh of the spinal cord used in simulations

where σ is the stress tensor, n is the outward surface normal and p is a travelling
pressure wave modelled by

p(z, t) = p0(z + ct). (3.6)

Here z is the longitudinal coordinate along the spinal cord and c is the wave speed
in the z-direction, measured to be c = 2.0 m/s. The pressure variation over time
is shown in Figure 3.3.

The pressure values displayed in Figure 3.3 are based on inter cranial and lumbar
pressure measurements in a Chiari patient [50].

3.2.1 Boundary conditions

The Neumann BCs are defined by σ · n = g = −pn and represent the applied
pressure on the spinal cord. There is, however, no obvious choice for what the
Dirichlet BC uD should be.

Only a short segment of the spinal cord is used (≈ 3.4cm). Anatomically, this
segment would be connected to more spinal cord both above and below. This
motivates the use of the same boundary conditions on the top surface and the
bottom surface of the spinal cord segment. Denote the top surface by Γ1 and the
bottom surface by Γ2.

It seems reasonable that the spinal cord segment should be able to be compressed
in the radial direction, but not be allowed to move in the axial direction. This
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Figure 3.3: Measured inter-cranial pressure variation over time, shown for both
z = 0.0 cm and z = 3.4 cm.

gives rise to the Dirichlet BC uz = 0 on Γ1 and Γ2. This means that the spinal
cord is allowed to compress / dilate in the xy-plane, but is not allowed to move
in the z-direction at the boundaries Γ1 and Γ2.

3.3 Constitutive relationships

The equations for the general behaviour of an elastic material when it deforms
were derived above and presented in (3.4). A description of how a specific material
type reacts to a force is, however, not included in (3.4). There are many types
of materials that have elastic properties, but these materials may behave very
differently from one another. Thus constitutive relationships, describing how a
specific material type acts, are needed. In particular a relationship between the
stress and the strain of the material, a so-called stress–strain relationship, is
required.

As mentioned, the constitutive relationship of interest is a viscoelastic one. A
purely elastic constitutive relationship is also considered for comparison. For
simplicity, it is assumed that the spinal cord is isotropic, and that a linear
constitutive relationship may be used to describe it.
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3.3.1 Linear elasticity

The linear elastic constitutive relationship is a very simple case. The stress–strain
relationship is given by Hooke’s law,

σ = Cε. (3.7)

Here, C is a fourth order tensor known as the stiffness tensor or the elasticity
tensor, which, as implied by its name, gives the stiffness of the material. For an
isotropic material, this relationship can be written as

σ = 2µε+ λtr(ε)I. (3.8)

Here µ, λ are known as Lamé parameters, given as functions of the Young’s
modulus (E) and Poisson’s ratio (ν), which are engineering constants for a given
material:

µ =
E

2(1 + ν)
, (3.9)

λ =
νE

(1 + ν)(1− 2ν)
. (3.10)

Young’s modulus describes the stiffness of the material in question, while Pois-
son’s ratio is a measure of the material’s tendency to expand in the direction(s)
perpendicular to an applied compression.

3.3.2 Linear viscoelasticity

In the constitutive relationship (3.8), the stress is dependent on the strain and
vice versa, but the relationship is independent of time. This is not the case for
viscoelastic constitutive relationships, where the history of deformations becomes
important.

A viscoelastic material has both elastic and viscous properties, and thus the con-
stitutive relationship must reflect this. Viscoelastic materials have two important
responses to loading/unloading, namely creep and relaxation.

Creep occurs when a constant stress is applied to a viscoelastic material over time.
The material will have an instantaneous elastic response, followed by a gradual
increase in strain over time. If the applied stress is removed, the same process will
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Figure 3.4: a) Applied stress with constant value σ0 between t0 and t1, and b)
induced strain due to the applied stress for a viscoelastic material, demonstrating
viscoelastic creep.

occur, but the strain will then gradually decrease. This phenomenon is illustrated
in Figure 3.4.

Relaxation occurs when a constant strain is applied to a viscoelastic material.
Again there will be an instantaneous elastic response, this time followed by a
gradual decrease in the stress. The relaxation phenomenon is illustrated in
Figure 3.5.

Figure 3.5: a) Applied strain with constant value ε0 from t0 and onwards, and b)
induced stress due to the applied strain for a viscoelastic material, demonstrating
viscoelastic stress relaxation.

Viscoelastic materials are said to have a continuous memory – ”the state of stress
at the instant t depends on the whole history of the strains (or of the loads)
experienced by the material at the previous instants” [16]. So, a viscoelastic
material depends on the history of deformations as well as any forces acting
on the body. Mathematically this is represented by a history integral, and the
constitutive relationship may generally be written on the form

σ(t) = A(t)ε(t) +

ˆ t

0

B(t− s)ε(s) ds, (3.11)

where A and B are tensors describing material properties. This is an example of
a Volterra equation of the second kind. For a detailed review of such equations
see for example the text by Linz [31].
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Simple constitutive relationships for linearly viscoelastic materials can be built up
using various combinations of spring- and dashpot-models. The spring represents
the elastic component, and obeys Hooke’s law (3.7). The dashpot represents the
viscous component and obeys the following stress-strain relationship:

σ = ηε̇, (3.12)

where η gives the viscosity of the dashpot and the superposed dot signifies a
derivative in time. In the following, three basic combinations are set up as models
for linear viscoelasticity. These are namely the Maxwell, the Kelvin-Voigt (KV)
and the Standard Linear Solid (SLS) models.

The Maxwell model

The Maxwell model combines a spring and a dashpot in series, using an electric
circuit analogue, as shown in Figure 3.6. The stiffness of the spring is given by E
and the viscosity of the dashpot is given by η.

E

Figure 3.6: Schematic of the Maxwell model.

The total strain is equal to the sum of the strains of the two components,

ε = εS + εD,

where the subscript S denotes the spring and the subscript D denotes the dashpot.
The stress is the same for both components,

σ = σS = σD.

Combining these two relationships gives the constitutive relationship for the
Maxwell model:

σ = σD = ηε̇D = η(ε̇− ε̇S) = ηε̇− ησ̇/E.

Rearranging, we find that

1

η
σ +

1

E
σ̇ = ε̇. (3.13)
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The Kelvin-Voigt model

This is another simple model, consisting of one dashpot component and one spring
component, connected in parallel as shown in Figure 3.7. As with the Maxwell
model, E denotes the stiffness of the spring while η denotes the viscosity of the
dashpot.

E

Figure 3.7: Schematic of the Kelvin-Voigt model.

In this case, the strain is the same for the two components,

ε = εS = εD,

while the stress is given by the sum of the stresses of the components,

σ = σS + σD.

Combining these two relationships gives the constitutive relationship for the
KV-model:

σ = Eε+ ηε̇. (3.14)

The Standard Linear Solid model

The SLS model is a combination of a spring and a Maxwell element (a spring and
a dashpot in series) in parallel, as shown in Figure 3.8. E1 and E2 represent the
stiffness of the top and bottom spring respectively, while η represents the viscosity
of the dashpot.

As with the KV-model, the strains of the two branches must be equal,

ε = ε1 = ε2,

where the subscript 1 denotes the top branch and the subscript 2 denotes the
bottom branch. The strain of the Maxwell element (the bottom branch) is given
by the sum of the strains from the dashpot and spring respectively,

ε2 = εS2 + εD.
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E
1

E
2

Figure 3.8: Schematic of the SLS model.

The total stress is equal to the sum of the stresses of the branches,

σ = σ1 + σ2.

In the Maxwell branch, the stress is the same in both of the components,

σ2 = σS2 = σD.

Combining these relationships gives the constitutive relationship for the SLS
model. First,

σ2 = ηε̇D = η(ε̇− ε̇S2) = ηε̇− ησ̇2/E2,

and,

ηε̇ = σ2 + ησ̇2/E2 = σ − σ1 + η(σ̇ − σ̇1)/E2 = σ − E1ε+ ησ̇ − ηE1ε̇/E2.

Therefore,

σ + ησ̇ = E1ε+ η

(
1 +

E1

E2

)
ε̇.

Letting τε = η
E2

and τσ = ηE1+E2

E1E2
, the constitutive relationship using the SLS

model is given by

σ + τεσ̇ = E1(ε+ τσε̇). (3.15)
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3.3.3 Behavioral analysis of the viscoelastic models

So far, three different constitutive relationships for linear viscoelasticity have been
introduced. In order to find out which of the relationships is the more accurate for
modelling the spinal cord, a creep/relaxation analysis is performed for all three
models, (3.13), (3.14) and (3.15). To analyse the models, the stress relaxation and
creep functions of the models are considered. Creep and relaxation experiments
are simulated, testing how the models respond when a step strain or step stress
are applied respectively. Before starting the analysis, some terminology is defined.

Definition 3.2 (Laplace transform). A one-dimensional Laplace transform is
given by

f(s) = L{F (t)} =

∞̂

0

e−stF (t)dt, (3.16)

where F (t) is a function of the real variable t and s is a complex variable [3].

Definition 3.3 (Heaviside step function [3]). The Heaviside step function is
defined by its properties

H(t) =


0, t < 0,
1
2
, t = 0,

1, t > 0.

(3.17)

Definition 3.4 (Dirac delta function). The Dirac delta function can be viewed
as the derivative of the Heaviside step function [10],

d

dt
[H(t)] = δ(t). (3.18)

The Dirac delta function centred at t0 has the properties

δ(t) = 0, x 6= t0, (3.19)

f(t0) =

bˆ

a

f(t)δ(t− t0)dx, (3.20)

where f(t) is any well-behaved function and t0 ∈ [a, b] (adapted from [4]) .

The stress relaxation function corresponds to the relaxation that occurs as a result
of a set constant strain imposed on the body. Specifically, the stress relaxation
function is given by the solution σ(t) to the constitutive relationships (3.13), (3.14)
or (3.15) when the strain is given by

ε(t) = ε0H(t− t0), (3.21)
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where ε0 is a constant. In the stress relaxation test σ(0) = 0.

The creep function corresponds to the creep that occurs due to an applied constant
stress. Specifically, the creep function is given by the solution ε(t) to (3.13), (3.14)
or (3.15) when the stress is given by

σ(t) = σ0H(t− t0), (3.22)

where σ0 is a constant. In the creep test ε(0) = 0.

In both cases, the time t = t0 is when the step strain/stress is applied.

Laplace transforms are used in the analysis to obtain the stress relaxation/creep
functions for the different models. The following properties of the Laplace trans-
form for the Heaviside function, the Dirac delta function and for a single derivative
are used:

L{H(t− t0)f(t)} = e−t0sL{f(t)} (3.23)

L{δ(t− c)} = e−cs, (3.24)

L{ẏ(t)} = sL{y(t)} − y(0) (3.25)

Here, the overdot in (3.25) denotes a derivative with respect to t.

Analysis of the Maxwell model

Solving the differential equation

1

η
σ +

1

E
σ̇ = ε0δ(t− t0) (3.26)

for σ(t) yields the stress relaxation function for the Maxwell model. Taking the
Laplace transform on both sides of the equation gives

1

η
L{σ(t)}+

1

E
L{ ˙σ(t)} = ε0L{δ(t− t0)}. (3.27)

Using the properties (3.24) and (3.25) of the Laplace transform for the Dirac delta
function and for the single derivative respectively results in

1

η
L{σ(t)}+

1

E
sL{σ(t)} = ε0 e

−t0s (3.28)
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Letting σ̂(s) = L{σ(t)}, and rearranging:

σ̂(s) = Eε0
e−t0s

s+ E
η

. (3.29)

The inverse transform of (3.29) gives

σ(t) = E e−
E
η

(t−t0)ε0H(t− t0), (3.30)

which is the stress relaxation function for the Maxwell model. Plots of the step
strain and the stress relaxation function σ(t) are shown in Figure 3.9.

ε0

ε

t0 t

(a)

Eε0

σ

t0 t

(b)

Figure 3.9: Plot of the step strain (a) and the stress relaxation function (b) for
the Maxwell model.

The shape of the plot in Figure 3.9b is similar to the shape of the plot of stress
relaxation in Figure 3.5 in that there is an instantaneous elastic response followed
by a gradual decrease in the stress over time. This suggests that stress relaxation
is modelled well by the Maxwell model.

The creep function for the Maxwell model is given by the solution ε(t) of the
differential equation

ε̇(t) =
σ0

η
H(t− t0) +

σ0

E
δ(t− t0). (3.31)

The calculations for the creep function are analogous to the calculations above,
and yield

ε(t) =

[
1

E
+

1

η
(t− t0)

]
σ0H(t− t0). (3.32)
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σ0

σ

t0 t

(a)

Eε0

ε

t0 t

(b)

Figure 3.10: Plot of the step stress (a) and the creep function (b) for the
Maxwell model.

Plots of the step stress and the creep function ε(t) are shown in Figure 3.10.

The shape of the plot in Figure 3.10b does not display the creep property shown
in Figure 3.4. There is an instantaneous elastic response as expected, but the
strain is allowed to increase unbounded over time. A material displaying this
property will be allowed unrestricted flow, suggesting that the Maxwell model
models the behaviour of a viscoelastic fluid rather than a solid.

Analysis of the Kelvin-Voigt model

The KV model is formulated as an explicit expression for the stress, and inserting
(3.21) gives the stress relaxation function directly,

σ(t) = Eε0H(t− t0) + ηε0δ(t− t0). (3.33)

Plots of the step strain and the stress relaxation function σ(t) are shown in
Figure 3.11.

Comparing Figure 3.11 and Figure 3.5, we see that the plots do not have similar
shapes. In fact, the plot of the stress relaxation function in Figure 3.11b does
not display the property of gradually decreasing stress under a constant applied
strain at all. So, the KV model does not model stress relaxation.

Solving the differential equation

Eε+ ηε̇ = σ0H(t− t0) (3.34)

for ε(t) yields the creep function for the KV model. The calculations are analogous
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ε0

ε

t0 t

(a)

Eε0

σ

t0 t

(b)

Figure 3.11: Plot of the step strain (a) and the stress relaxation function (b)
for the KV model.

to the calculations for the Maxwell model, and yield

ε(t) =
1

E

[
1− e−E(t−t0)/η

]
σ0H(t− t0). (3.35)

Plots of the step stress and the creep function ε(t) are shown in Figure 3.12.

σ0

σ

t0 t

(a)

σ0
E

ε

t0 t

(b)

Figure 3.12: Plot of the step stress (a) and the creep function (b) for the KV
model.

The creep function in Figure 3.12b has a similar shape as the plot in Figure 3.4, in
that there is a gradual, but bounded, increase in the strain when a constant stress
is applied. This strain reaches an equilibrium at the value σ0

E
. Thus it would seem

that the KV model works for predicting creep in a viscoelastic solid.
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Analysis of the Standard Linear Solid model

The analysis is similar to the analyses above. Laplace transforms are used to find
expressions for both the stress relaxation function and the creep function.

Beginning with the stress relaxation function, the differential equation

σ(t) + τεσ̇(t) + E1(ε0H(t− t0) + τσε0δ(t− t0)) (3.36)

is solved for σ(t). As before, the Laplace transform is applied on both sides of the
equation, and the properties (3.23), (3.24) and (3.25) of the Laplace transform
are used. This results in the stress relaxation function for the SLS model,

σ(t) = [E1 + E2 e
−(t−t0)/τε ]ε0H(t− t0). (3.37)

The calculations for the creep function are similar, and yield

ε(t) =
1

E1

[
1 +

(
τε
τσ
− 1

)
e−(t−t0)/τσ

]
σ0H(t− t0). (3.38)

The plots of the stress relaxation and creep functions are shown in Figure 3.13
and Figure 3.14 respectively.

ε0

ε

t0 t

(a)

E1ε0

E1ε0τσ
τε

σ

t0 t

(b)

Figure 3.13: Plot of the step strain (a) and the stress relaxation function (b)
for the SLS model.

The shape of the plot in Figure 3.13 is similar to that in Figure 3.5, in that there
is an instantaneous elastic response when the step strain is applied, followed by a
gradual decrease in the stress over time. The similarity of the plots suggests that
the SLS model models stress relaxation well.

The shape of the plot in Figure 3.14 is similar to that in Figure 3.4, in that there
is an instantaneous elastic response when the step stress is applied, followed by



23 CHAPTER 3. MATHEMATICAL MODELS
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Figure 3.14: Plot of the step stress (a) and the creep function (b) for the SLS
model.

a gradual, bounded increase in the strain over time. The similarity of the plots
suggests that the SLS model models creep well.

Summary of the behavioral analysis

The outcome of the analysis of all three constitutive relationships are summarized
in Table 3.1.

Models:

Model Creep Relaxation

Maxwell No* Yes
KV Yes No
SLS Yes Yes

Table 3.1: Summary of results from behavioral analysis of the viscoelastic models.
* Does not model creep for viscoelastic solids.

Because the spinal cord is assumed to be a solid, the Maxwell model is not
adequate for modelling the response of the spinal cord, and is thus discarded.
Since it has been shown in numerous experiments that the spinal cord undergoes
stress relaxation [12], the KV will not be adequate in modelling the response of
the spinal cord, and is also discarded.

The SLS model models both stress relaxation and creep adequately, while modelling
a viscoelastic solid. Therefore the chosen model for the viscoelastic response of
the spinal cord is the SLS model.
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3.4 SLS relationship on integral form

The constitutive relationship (3.15) is given in differential form. Following the
methodology in [45], (3.15) can be rewritten in the integral form (3.11) by using
an internal variable approach.

This approach is to consider the stresses and strains within each branch from its
components separately. This means that in the lowermost branch (Figure 3.8) we
must consider a stress and a strain due to the spring, and similarly a stress and
a strain due to the dashpot. These stresses and strains are denoted by σS2, εS2

and σD2, εD2 respectively. In addition, we have the stress and strain from the
uppermost branch, denoted by σS1, εS1. The springs both obey (3.7), while the
dashpot obeys (3.12). So far, this is analogous to the derivation of the SLS model
shown earlier in this chapter. However, the following calculations give rise to an
equivalent, but different looking, formulation.

The total strain of the system is the same for both branches, but the total strain
in the lowermost branch is given by the sum of the strains from the components,
giving

ε = εS2 + εD2 (3.39)

The stress over the lowermost branch is the same throughout, thus

σD2 = σS2. (3.40)

This gives

E2εS2 = σD2 = ηε̇D2 = η(ε̇− ε̇S2). (3.41)

Rearranging (3.41) gives the differential equation

ε̇S2 +
1

τ
εS2 = ε̇ (3.42)

where τ = η/E2, with solution

εS2(t) = e−t/τε(0) +

tˆ

0

e−(t−s)/τεs(s)ds. (3.43)

Introducing the stress relaxation function
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D(t) = E1 + E2 e
−t/τ , (3.44)

using the fact that the total stress of the system is given as the sum of the stresses
from the branches, and integrating by parts gives

σ(t) = D(0)ε(t)−
tˆ

0

Ds(t− s)ε(s)ds, (3.45)

where the subscript s denotes a derivative with respect to the variable s. This is
our constitutive relationship on the form (3.11).

3.5 Extending the SLS model to 2D and 3D

The SLS model is developed using a combination of two springs and a dashpot.
The use of these components only takes into account the extension/contraction
along one axis; in the case shown in Figure 3.8, this is the horizontal axis. The
extension of the model from 1D to 2D/3D is done analogously to the linear
elasticity case, which is explained here. Elastic materials (in 1D, a spring) obey
Hooke’s law. In 1D, Hooke’s law may be written as

σ = Eε,

where E is Young’s modulus. This relationship may also be written as

σ = 2µε, (3.46)

where µ is one of the Lamé parameters, defined in (3.9) in terms of the Young’s
modulus and the Poisson ratio ν. The parameter µ is also known as the shear
modulus. In 1D, ν = 0 and E = 2µ.

Note that while (3.46) is valid in 1D, 2D and 3D, it is missing a term compared to
(3.8). This is because in 2D and 3D, effects of compressibility become important.
In 1D, ν = 0, because there are no other directions than along the given axis,
and a material can thus not expand in directions perpendicular to the applied
stress. Thus, (3.46) is enough. However, in 2D and 3D the so-called Poisson effect
becomes important, and the term λtr(ε)I is non-zero, resulting in (3.8).

Since the constitutive relationship for the SLS model is built up from the consti-
tutive relationships of springs and dashpots, a term addressing the Poisson effect
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must be included in order to make the model accurate for 2D and 3D. Redefining
the functions D(t) and Ds(t) to instead be operators on ε(t), where

D(t)ε(t) = 2µ(t)ε(t) + λ(t)tr(ε(t))I, (3.47)

Ds(t− s)ε(s) = 2µs(t− s)ε(s) + λs(t− s)tr(ε(s))I, (3.48)

the constitutive relationship (3.45) also applies in 2D and 3D. The functions µ(t)
and λ(t) are stress relaxation functions on the form (3.44),

µ(t) = µ1 + µ2 e
−t/τ ,

λ(t) = λ1 + λ2 e
−t/τ .

Assuming that ν is constant in time, λ(t) may be defined by

λ(t) = Cµ(t), (3.49)

where C is a constant [44], and is chosen to reflect the value of ν. Letting E1 = 2µ1

and E2 = 2µ2 only the parameters E1 and E2 need to be determined.

3.6 Determining parameters for the models

The constitutive relationships (3.8) and (3.45) to be used in simulating the response
of the spinal cord both require respective parameters. The relationship (3.45)
requires two elasticity parameters, E1 and E2 representing the stiffness of the
springs in the SLS model, and one viscous parameter η, representing the viscosity
of the dashpot in the SLS model, see Figure 3.8. The relationship (3.8) requires
the two Lamé parameters µ and λ. As mentioned in subsection 3.3.1, these
parameters may be expressed in terms of Young’s modulus and Poisson ratio, as
shown in (3.9)-(3.10).

By finding parameter values that are used in the literature, appropriate values for
representing the spinal cord may be determined. This section aims at giving an
overview of the information available in literature on the spinal cord. This is a
challenging task, considering the amount of material that is available. Overall, the
range of values that appear in the literature for elastic or viscoelastic parameters of
the spinal cord (and brain) is quite large, for example in the order of 1− 1000kPa
in magnitude for the Young’s modulus. In addition, there are very few parameter
values that are directly applicable to the SLS model. Parameter values from the
literature therefore need to be adapted to the SLS model.

The papers reviewed are concerned with material properties for both the spinal
cord and the brain. This review is not in any way exhaustive. For detailed reviews
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of material properties of the spinal cord, either from experimental data or used in
computer simulations, see the reviews by for example Cheng et al. [12] or Banks
et al. [5], results from which are included here.

3.6.1 Parameter summary for linear elasticity

Parameters found in the literature for the elastic properties of the spinal cord are
summarized in Table 3.2.

Paper / article Region Model Parameters

Hung et al. [25] spinal cord Experimental E = 0.26 MPa

Ben-Hatira et al. [6] spinal cord Nonlinear elastic E = 1.4 MPa
ν = 0.499

Ozawa et al. [37] spinal cord Experimental E = 16 kPa

Smith and Humphrey [48] brain Poroelastic E = 5.0kPa
ν = 0.479

Cheng et al. [12] spinal cord Review E = 0.0119− 1.98MPa

Clarke [13] spinal cord Review E = 0.012− 1.37MPa

Persson et al. [38] spinal cord Review E = 0.26− 1.3MPa
(linear elastic)

Table 3.2: Parameter summary from literature, including values reported in
review articles.

Note that there is quite a large range of values reported / used in the literature.
For example, [50] reported a span of 5− 1000kPa for values of Young’s modulus in
literature concerning studies on syringomyelia. The reviews by Cheng et al. [12]
and Clarke [13] report many of the same values from the same studies. Note also
that the values reported in Persson et al. [38] are relatively high. It is suggested
by Cheng et al. [12] and Clarke [13] that an increased strain rate may lead to a
higher reported pseudo modulus (the slope of the linear part of the stress-strain
curve), meaning that the values for Young’s modulus in the order of magnitude
1MPa may be more relevant when dealing with traumatic spinal cord injury, and
less relevant for the simulations in this thesis.

The study by Støverud et al. [50] modelling the SC as a poroelastic medium also
used a linear elasticity model as a reference material. The parameter values used
in the study were the Young’s modulus reported by Ozawa et al. [37], E = 16kPa
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and Poisson’s ratio ν = 0.479 used by Smith and Humphrey [48]. In order to
compare results, these are the values we select for the linear elasticity model.

3.6.2 Parameter summary for viscoelasticity

Parameters found in the literature for viscoelastic properties of the spinal cord
are summarized in Table 3.3.

Paper / article Region Model Parameters

Miller [35] brain Hyperelastic linear E1 = 1.05 kPa
viscoelastic E2 = 1.96 kPa

Klatt et al. [28] brain SLS E1 = 0.84 kPa
E2 = 2.03 kPa
η = 6.7 Pa s

Sack et al. [42] brain KV E = 1.56± 0.07 kPa
η = 3.4± 0.2

Green et al. [21] brain Experimental (KV) G′ = 2.9kPa (E = 2.9kPa)
G′′ = 2.5kPa (η = 4.42Pa s)

Table 3.3: Summary of parameter values found in the literature for viscoelastic
models for the spinal cord

Note that the second entry in Table 3.3 are parameter values that have been
developed specifically for the SLS model. This is very valuable, and the values
found by Klatt et al. [28] are therefore used as the default parameters for the
simulations of the spinal cord with the SLS model. More details of the data
obtained by Klatt et al. [28] is shown in Table 3.4 and Table 3.5 below.

From Tables 3.4 and 3.5 it is clear that experimental results vary a good deal,
sometimes also with the same test subject. Getting accurate parameter values is
therefore a challenge.

The parameter values obtained by Klatt et al. [28] are from MRE experiments on
the brain. However, since the spinal cord is made up of grey and white matter it
is assumed that these values may be applied to the spinal cord. These values also
provide a rough reference for the ratios between the parameters E1, E2 and η.

Note that the elastic parameter values appear to be generally much higher than the
viscoelastic parameter values / properties. It is possible that this is because the
parameter values from for example Klatt et al. [28] are developed from experiments
on brain tissue, which may well be softer than spinal cord tissue. The difference
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Parameter Exp. 1 Exp. 2 Exp. 3 Exp. 4 Mean*

η (Pa s) 6.3 5.6 6.5 7.2 6.4 (0.7)
E1 (kPa) 1.08 1.29 0.72 0.91 1.00 (0.24)
E2 (kPa) 2.27 2.42 1.82 2.26 2.19 (0.26)

χ (kPa) 0.05 0.17 0.05 0.12 0.08

Table 3.4: Volunteer 1, brain experiments: viscoelastic parameters and error of
the fit χ according to the SLS model [28]. The parameters are derived from four
independent experiments. The mean (with SD in brackets) for η, E1 and E2 was
calculated from the parameter values over the four experiments, while χ∗ was
calculated as the error to the fit using the mean viscoelastic parameters.

Parameter Vol. 1 Vol. 2 Vol. 3 Vol. 4 Vol. 5 Mean**

η∗ (Pa s) 6.4 7.5 7.6 5.2 6.7 6.7
(0.7) (0.3) (2.0) (0.1) (1.3) (1.0)

E1∗ (kPa) 1.00 0.67 0.65 1.00 0.87 0.84
(0.24) (0.10) (0.24) (0.08) (0.13) (0.17)

E2∗ (kPa) 2.19 1.85 2.03 2.10 1.96 2.03
(0.26) (0.06) (0.13) (0.20) (0.10) (0.13)

χ∗ (kPa) 0.08 0.13 0.11 0.14 0.09 0.10

Table 3.5: Results of brain experiments: mean viscoelastic parameters and χ∗
of the brain of five volunteers (Vol. 1-5) according to the Zener (or SLS) model
(SD in brackets). The asterisk indicates that the given quantities were averaged
over four independent experiments. The interindividual mean and SD (**) of the
viscoelastic parameters are shown in the last column, whereas χ ∗ ∗ is calculated
as χ∗ in Table 3.4, this time using the interindividual mean parameter values.

may also arise due to the differences in methodology. However, the values from
Klatt et al. [28], Sack et al. [42] and Green et al. [21] are in quite good agreement.
In addition, the values reported in a review by Bilston [9] for low strain rates are
of similar magnitudes.

3.6.3 How should parameters be chosen?

The parameter values found in the literature for viscoelastic models such as the
SLS model seem to be relatively consistent. However, values for Young’s modulus
vary greatly in magnitude. A question of how parameters should be chosen such
that the results from the linear elasticity model and the SLS model may be
compared arises.
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Clearly, in order to compare the results in this thesis with the results using the
poroelastic / purely elastic equations in [50], the same Young’s modulus should
be used, i.e. E = 16kPa. On the other hand, the values obtained by Klatt et al.
[28] are directly applicable to the SLS model. Comparing the magnitudes of the
displacements from a simple, preliminary simulation using E = 16kPa, ν = 0.479
for the linear elasticity case, and E1 = 0.84kPa, E2 = 2.03kPa, η = 6.7Pas for
the linear viscoelasticity case with the SLS model, results in the maximum
displacement in a single point in the mesh to have values listed in Table 3.6.

Model Max. displacement

Linear elasticity 4.65×10−4cm
(E = 16kPa)

SLS 1.18× 10−2cm
(E1 = 0.84kPa, E2 = 2.03kPa,

η = 6.7Pas)

Table 3.6: Comparing magnitudes for displacement in a single point in the
solution with linear elasticity and SLS model respectively. Note that the same
point was used for both models.

The results in Table 3.6 show maximum displacements in a chosen point that are
two orders of magnitude different. Thus, it is unlikely that it is of interest to
compare displacement magnitude results of simulations run with these parameters.

In order to obtain results that are comparable, tests are done to find out for
what value of E the solutions are closest in magnitude when E1 = 0.84kPa, E2 =
2.03kPa, η = 6.7Pas, and vice versa. The results are summarized in Table 3.7. All
the parameters listed in Table 3.7 will be used in simulations.

Parameter values
Linear Elasticity SLS model

E = 0.65kPa∗, ν = 0.479 E1 = 0.84kPa, E2 = 2.03kPa,
η = 6.7Pa s

E = 16kPa, ν = 0.479 E1 = 21kPa∗, E2 = 52.5kPa∗,
η = 0.17kPa s∗

Table 3.7: Parameter values giving corresponding displacements.
*: Calculated value.

Another interesting parameter to investigate is η – what happens when η is
doubled? Therefore, simulations will also be run with the default values, but
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where η has a higher value. A summary of the parameters to be used in the
simulations is given in Table 6.10 in section 6.2.
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Chapter 4

Numerical methods for PDEs

Numerical methods are widely used to solve many different types of mathematical
problems, such as partial differential equations (PDEs).

This chapter aims at creating an overview of the methods that will be used to solve
the elasticity and viscoelasticity problems numerically. A review of the solution of
partial differential equations using the finite element method is provided, followed
by a brief introduction to numerical integration. Sources of error in the numerical
methods are identified and discussed. Finally, methods for solving the large
systems that arise from the discretization of the elasticity and viscoelasticity
problems are discussed.

4.1 The finite element method

The finite element method is a general method for solving differential equations,
particularly PDEs, numerically. Since partial differential equations can be very
complicated and thus difficult to solve analytically, numerical methods may be
useful alternatives; the finite element method is one such method. This section
contains a short introduction to the finite element method. For illustration
purposes, an example equation is used. For a more thorough review of the finite
element method, see for example [27, 30].

Consider Poisson’s equation, find u = u(x) such that

−∆u = f, x ∈ Ω, (4.1a)

u = uD, x ∈ ΓD, (4.1b)

−∂nu = g, x ∈ ΓN . (4.1c)

33
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Here, ∆ is the Laplace operator, ∆ = ∇2. As before, ΓD denotes the Dirichlet
boundary, where the solution u has a prescribed value, while ΓN denotes the
Neumann boundary. The notation ∂n represents the normal derivative, given by

∂nu = ∇u · n

.

The method is as follows: the equation (4.1a) is multiplied with a test function v
and integrated over the domain, giving

ˆ

Ω

−∆u · v dx =

ˆ

Ω

f · v dx (4.2)

The test function is chosen such that it vanishes at the Dirichlet boundary,
v|ΓD = 0. The left hand side is integrated by parts in order to reduce the double
derivative to a single derivative:

ˆ

Ω

−∆u · v dΩ =

ˆ

Ω

∇u · ∇v dΩ−
ˆ

∂Ω

∂nu · vd∂Ω (4.3)

Inserting (4.3) into (4.2), and splitting the boundary into ΓD and ΓN give

ˆ

Ω

∇u · ∇v dΩ−
ˆ

ΓD

∂nu · v dΓ−
ˆ

ΓN

∂nu · v dΓ =

ˆ

Ω

f · v dΩ. (4.4)

Since the test function v is required to vanish on the Dirichlet boundary, the
second term on the left hand side of (4.4) also vanishes. Inserting the Neumann
boundary condition (4.1c) and defining

V = {v ∈ H1(Ω) : v = uD on ΓD}, (4.5)

V̂ = {v ∈ H1(Ω) : v = 0 on ΓD}, (4.6)

the variational formulation of (4.1) is given by:

Find u ∈ V such that

ˆ

Ω

∇u · ∇v dΩ =

ˆ

Ω

f · v dΩ−
ˆ

ΓN

g · v dΓ, ∀ v ∈ V̂ . (4.7)
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The space V is called the trial space and the space V̂ is called the test space. As
such the unknown function u is known as a trial function, while, as mentioned, v
is known as a test function.

Defining for this example

a(u, v) =

ˆ

Ω

∇u · ∇v dΩ,

L(v) =

ˆ

Ω

f · v dΩ−
ˆ

ΓN

g · v dΓ,

the variational form can also be written on a more abstract form:

Find u ∈ V such that

a(u, v) = L(v), ∀v ∈ V̂ . (4.8)

Here, a(·, ·) is called a bilinear form and L(·) is called a linear form. This abstract
formalism will be used extensively in the discretization of the elasticity problems.
However, in order to see the details of the finite element method, the explicit
versions of the variational form will be used in the remainder of this example.

The problem (4.1) may be discretized by restricting the variational formulation
(4.7) to the discrete function spaces V h and V̂ h. To obtain these function spaces,
the domain Ω is partitioned into a set of cells, T , such that T |T∈T = Ω . The
cells may not overlap. Together, the cells make up the mesh.

On each cell, a local function space V is defined. Each cell also has a set of degrees
of freedom, called nodes. The number of nodes on the cell depend on the function
space V . The function space V can be represented by a set of basis functions. The
cell, together with the function space V and the nodes make up a finite element.

Cells are typically triangles in 2D and tetrahedra in 3D. An example of a finite
element is the Lagrange element of degree 1, also known as the P1 element. In
2D it is a triangle, with three nodes, as illustrated in Figure 4.1.

On this triangle, the local function space V = P1 is defined, that is, the space of
all polynomials of degree 1. For the P1 element, the basis functions for V must
be continuous with the basis functions of neighbouring elements in the nodes.
Combining all the cells, the global function space for the mesh is made up of
the local function spaces, and is in this example thus piecewise linear. The finite
element approximation, with the use of P1 elements, will then be a piecewise
linear approximation. For a thorough review of finite elements and finite element
function spaces, see for example [27].
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Figure 4.1: The Lagrange finite element of degree 1 in 2D. Nodes are displayed
as black dots.

In general, it is assumed that there is a basis {φj}Nj=1 for V h and a basis {φ̂i}Ni=1

for V̂ h, made up from combining the local function spaces for each cell in the
mesh.

The discrete finite element formulation is given by:

find uh ∈ V h ⊂ V such thatˆ

Ω

∇uh · ∇v dΩ =

ˆ

Ω

f · v dΩ−
ˆ

ΓN

g · v dΓ, ∀v ∈ V̂ h ⊂ V̂ , (4.9)

Using abstract formalism:

Find uh ∈ V h such that

a(uh, v) = L(v), ∀v ∈ V̂ h, (4.10)

where a(·, ·) and L(·) are defined as before.

The finite element solution uh may be approximated as a linear combination of
the basis functions of V h,

uh = uh(x) =
N∑
j=1

Ujφj(x). (4.11)

Here, U ∈ RN is an unknown vector of degrees of freedom to be computed. Once
U is computed, the solution uh can be found via (4.11). Inserting (4.11) into (4.9)
and replacing v with φ̂i(x) gives
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ˆ

Ω

∇
(

N∑
j=1

Ujφj

)
· ∇φ̂i dΩ =

ˆ

Ω

f · φ̂i dΩ−
ˆ

ΓN

g · φ̂i dΓ, i = 1, ..., N

By linearity, the sum
N∑
j=1

Uj can be moved outside the integral, giving

N∑
j=1

Uj

ˆ

Ω

∇φj · ∇φ̂i dΩ =

ˆ

Ω

f · φ̂i dΩ−
ˆ

ΓN

g · φ̂i dΓ, i = 1, ..., N

Define the matrix A = {Aij}Ni,j=1 by

Aij =

ˆ

Ω

∇φj · ∇φ̂i dΩ,

and the vector b = {bi}Ni=1 by

bi =

ˆ

Ω

f · φ̂i dΩ−
ˆ

ΓN

g · φ̂i dΓ.

To compute U , and thus to find the solution uh, is then a matter of solving

AU = b. (4.12)

Thus, the finite element method ultimately results in a linear system of equations.
Methods for solving such systems are introduced in section 4.4.

4.2 Numerical integration

As with differential equations, there exist many complex integrals that are chal-
lenging, if not impossible, to solve analytically. This motivates the use of numerical
methods for calculating integrals. There exists a large amount of different methods
for this – in this section the basic idea of numerical integration is explained, and
the chosen method, known as the trapezoidal rule is introduced. The following
review of numerical integration is adapted from the textbook by Dahlquist &
Björck [15].
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Numerical integration involves the approximation of a definite integral,

I[f ] =

bˆ

a

f(t)dx. (4.13)

Here, f = f(t) is a given function and [a, b] is a finite interval. A numerical
integration rule, or quadrature rule, typically takes the form

I[f ] ≈
n∑
i=1

wif(ti), (4.14)

where the function f(t) is evaluated in the discrete points/nodes t1 < t2 < · · · < tn
in [a, b], and w1, w2, ..., wn are weights. There are many examples of quadrature
rules – in this section interpolatory quadrature formulas will be considered.
Specifically, only rules where the nodes ti, i = 1 : N are equally spaced will be
reviewed. These are called Newton-Cotes formulas.

Interpolatory quadrature rules approximate the integral in question by

bˆ

a

f(t)dx ≈
bˆ

a

p(t)dx, (4.15)

where p(t) is the unique polynomial of degree n− 1 interpolating the function f(t)
at the distinct points t1 < t2 < · · · < tn. Classical examples of such quadrature
rules include the trapezoidal, midpoint and Simpson’s rules. For simplicity the
trapezoidal rule is used for numerical integration in this thesis. An overview of
how the trapezoidal rule is derived is given below, and the error in the trapezoidal
rule is stated.

4.2.1 The trapezoidal rule

The trapezoidal rule is based on linear interpolation of f(t) in two nodes, t1 = a
and t2 = b. Thus f(t) is approximated by

p(t) = f(a) + (t− a)
f(b)− f(a)

b− a .

The integral represents the area under the graph of the function, thus the integral
is approximated by
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bˆ

a

f(t)dt ≈ (b− a)

2
(f(a) + f(b)), (4.16)

t0 = a tn = b

f

t1 t2 t3 t4 t5

Figure 4.2: Illustration of the trapezoidal rule with one interval n = 1 (green)
and six intervals n = 6 (red).

Unless the function f is linear, a linear interpolation in two points is generally
not very accurate. A simple way to improve the accuracy of the approximation is
to divide the interval [a, b] into n subintervals [ti, ti+1] where

t0 = a, ti = t0 + i∆t, tn = b.

See Figure 4.2 for an example. It is assumed that f(ti) is known. Here, ∆t =
(b− a)/n is the (time) step length. The trapezoidal approximation is then used
on each of the subintervals, so



4.3. ERROR IN THE NUMERICAL SOLUTION 40

ti+1ˆ

ti

f(t)dt ≈ ∆t

2
(f(ti) + f(ti+1)).

Summing the contributions from all the subintervals gives rise to the composite
trapezoidal rule,

bˆ

a

f(t)dt =
∆t

2
(f0 + fn) + ∆t

n−1∑
i=1

fi +RT , (4.17)

where fi = f(xi). RT is the global truncation error in the trapezoidal rule, given
by

RT = − 1

12
(b− a)∆t2f ′′(ξ), ξ ∈ [a, b] (4.18)

From the expression for the truncation error, it is clear that the error depends on
∆t2. This means that decreasing ∆t by a factor 2 should result in a decrease in
the error by a factor of 22 = 4.

4.3 Error in the numerical solution

The numerical solution is an approximation to the exact solution of the problem,
and as an approximation, the numerical solution contains some error. This section
aims at addressing the sources of such errors.

There are two overall approximations made in the numerical scheme (5.16) that
is developed in the next chapter, namely the finite element approximation, and
approximation of the temporal integral in (3.45) using numerical quadrature.
These two approximations are the main source of error.

The error in the numerical solution is defined as the difference between the true
solution u and the numerical approximation uh, such that

eh = u− uh.

To obtain a single number that represents the size of the error in the numerical
solution, the L2-norm of the error may be used,

||eh||L2(Ω) = ||u− uh||L2(Ω), (4.19)



41 CHAPTER 4. NUMERICAL METHODS

where the L2-norm is defined by

||v||L2(Ω) =

ˆ
Ω

|v|2 dΩ

 1
2

(4.20)

The L2-norm is useful because it gives information about the average size of a
function [30], thus providing a general overview of how the error behaves. Two
different types of error estimates are a priori estimates which provide an estimate
of the error in terms of the unknown solution u, and a posteriori estimates which
provide an error estimate in terms of the finite element approximation uh. A
priori and a posteriori error estimates for the linear elasticity problem are well
defined and may be found in the text by Larson and Bengzon [30]. A priori
and a posteriori error estimates for the linear viscoelasticity problem using the
SLS model may be found in the papers by Shaw and Whiteman [47] and Shaw
and Whiteman [46] respectively. The error analysis in this thesis will focus on
the actual error values given by (4.19) when computing uh. These errors will be
analysed when verifying the implementation of the numerical schemes.

The finite element method provides an approximation in space, and is thus
dependent on the resolution of the mesh on which the problem is solved. This
means that the solution should get better and better (i.e. the error should get
smaller) when the mesh is refined. We use the variable h to denote the largest
cell diameter in the mesh, or more precisely twice the largest circumradius in
the mesh. As h gets smaller, so should the error. Specifically, when using the
L2-norm, we expect the error to converge at a rate of 2 when using elements of
degree 1, and at a rate of 3 when using elements of degree 2 [27]. To exemplify
what this means, if we double the mesh resolution, i.e. decrease h by a factor of
2, a convergence rate of 1 corresponds to the error also decreasing by a factor
2; a convergence rate of 2 corresponds to the error decreasing by a factor 4; a
convergence rate of 3 corresponds to the error decreasing by a factor 8, and so on.
The convergence rate of the error can be calculated by the formula

r =
ln( Ei

Ei−1
)

ln( hi
hi−1

)
, (4.21)

where i is the experiment number. Therefore, to calculate convergence rates, the
errors from at least two experiments with different values of h are required.

As mentioned, the second approximation that appears in the numerical scheme
(5.16) is the use of numerical quadrature to approximate the time integral in the
viscoelastic constitutive relationship. Note that this error source is not relevant for
the linear elasticity case. Again, we are most interested in the actual error values
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from the numerical scheme, rather than a theoretical analysis. The errornorm
(4.19) is used to measure the size of the error. In this case, as ∆t becomes
smaller, it is expected that the numerical solution will become more accurate. The
expected convergence rate for the trapezoidal rule is 2, seeing as the truncation
error goes as ∆t2 (see section 4.2). Therefore we expect a convergence rate of 2 in
time for the error in the numerical solution for the linear viscoelasticity case.

In order to test whether an implementation displays the expected convergence rates
in the errornorm, an exact solution is needed. Because finding an exact solution
to the linear elasticity and linear viscoelasticity problems can be challenging, a
different approach is used.

4.3.1 The method of manufactured solutions

The chosen method is called manufactured solutions, in which a solution ue, any
solution, is chosen. The terms in the governing equations (3.4) are calculated
from this solution. Specifically, the constitutive relationship, either (3.8) or (3.45),
is used to calculate σ from the chosen solution, u. Then the Neumann boundary
term, g, is calculated from its definition, σ · n = g, and the source term, f , is
calculated from the governing equation

−∇ · σ = f

A test is performed to check whether the implementation returns the chosen
solution when the calculated values are used.

The error in the solution uh returned by the implemented solver when compared
to the manufactured solution ue is recorded for several values of h, and, in the
linear viscoelasticity case, for several values of ∆t.

4.4 Solving linear systems of equations

As mentioned in section 4.1, using the finite element method on PDEs results in
a system of equations that must be solved. In the context of the linear elasticity
and linear viscoelasticity problems, these systems are linear. In general, a linear
system

Ax = b (4.22)

is solved by computing the inverse of the matrix A, and multiplying it with the
system such that
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A−1Ax = A−1b

⇒ x = A−1b

This may, however, be problematic in the context of the finite element method.
First of all, the matrix A is typically sparse [27], containing O(N) non-zero entries.
The inverse of A will not be sparse, which means that calculating

x = A−1b

requires O(N3) operations. This is very costly when the system becomes large,
and motivates the use of faster methods to solve the system.

4.4.1 Direct methods for linear systems

A classical method for solving linear systems is Gaussian elimination, in which
the matrix A is turned into an upper triangular matrix through row operations,
see Figure 4.3.

Figure 4.3: Schematic of Gaussian elimination [33].

The system is then solved using a backwards algorithm, starting at the bottom
and working up the system. It can be shown that the Gaussian elimination of
a matrix A leads to an LU factorization of A, so A = LU where L is a lower
triangular matrix and U is an upper triangular matrix [33]. Assuming that A
is an N ×N matrix, Gaussian elimination may require up to O(N3) arithmetic
operations and up to O(N2) storage spaces. When the system becomes large this
may become problematic.
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4.4.2 Iterative methods for linear systems

Iterative methods are much more efficient in both arithmetic operations and
storage requirements, in that both are O(N) [32]. Iterative methods begin with
an initial guess x0 to the solution x. Then a sequence of approximations {xk} are
computed, hopefully in such a way that xk converges towards x [11]. One family
of iterative methods are Krylov methods.
Definition 4.1 (Krylov subspace method (adapted from [41])). A Krylov subspace
method is a method that seeks an approximate solution xm from an affine subspace
x0 +Km of dimension m by imposing the condition

b− Axm ⊥ Lm,

where Lm is another subspace of dimension m.

Here, Km is the Krylov subspace

Km(A, r0) = span{r0, Ar0, A
2r0, ..., A

m−1r0},

where r0 = b − Ax0. Different versions of Krylov methods arise from different
choices of Lm and different choices of preconditioners.

One such Krylov subspace method is the generalized minimal residual method
(GMRES), which works when solving non-symmetric systems [11] and will be
used in the simulations of the response of the spinal cord. For a detailed review of
iterative methods, Krylov methods and GMRES, the reader is referred to [11, 41].

GMRES may require a preconditioner. A preconditioner modifies the linear system
Ax = b in such a way that it becomes easier to solve by an iterative solver, but
does not change the system mathematically. Thus a preconditioner B may be
applied to the linear system such that

BAx = Bb.

According to [32], an incomplete LU factorization (ILU) preconditioner, or an
algebraic multigrid (AMG) preconditioner may be suitable for use with GMRES,
thus both will be tested in the implementation. For details on ILU and AMG
preconditioners, see for example the texts by Saad [41] and Stüben [51] respectively.



Chapter 5

Discretization of the elasticity
and viscoelasticity equations

The previous chapter contained a review of the tools needed to solve the elasticity
and viscoelasticity problems numerically. In this chapter those tools are applied,
and the variational formulation for the general elasticity problem is developed.
This is followed by a consideration of the constitutive relationships and how their
respective variational formulations appear. In particular, the linear viscoelasticity
problem is addressed in detail due to the temporal integral in the SLS model.

A computationally efficient scheme for computing the temporal integral is presented
and tested. Boundary conditions are discussed, and further constraints are added
on the boundary to make the implementation stable. Finally, a review of the
implementations of the numerical schemes is given.

5.1 Continuous variational formulations

This section deals with developing variational formulations for the linear elasticity
and linear viscoelasticity problems. First the general variational formulation
for the governing equation (3.4a) is obtained, followed by considerations of the
constitutive relationships, showing how they factor into the variational formulation.

5.1.1 Variational formulation – Governing equations

Multiplying (3.4a) with a test function v and integrating over the domain gives:

45
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ˆ

Ω

−(∇ · σ) · v dΩ =

ˆ

Ω

f · v dΩ, (5.1)

where σ = σ(u(x, t)). Integrating by parts and inserting the boundary condition
(3.4c) gives

ˆ

Ω

σ : ∇v dΩ−
ˆ

ΓN

g · v dΓ =

ˆ

Ω

f · v dΩ (5.2)

The general variational form for the governing equations thus becomes:

Find u ∈ V such that

a(u, v) = L(v), ∀ v ∈ V̂ , (5.3)

where

a(u, v) =

ˆ

Ω

σ : ∇v dΩ, (5.4)

L(v) =

ˆ

Ω

f · v dΩ +

ˆ

ΓN

g · v dΓ. (5.5)

The spaces V and V̂ are defined as in (4.5) and (4.6) respectively.

In the following sections, the variational formulation (5.3) is developed in more
detail, giving specific variational formulations for the two different constitutive
relationships we are working with.

5.1.2 Variational formulation – linear elasticity

First, the variational formulation for the linear elasticity problem is developed.
Recall that the constitutive (or stress-strain) relationship for linear elasticity for
an isotropic material is given by

σ = 2µε+ λtr(ε)I.

This is inserted into (5.3), giving
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ˆ

Ω

2µε : ∇v dΩ +

ˆ

Ω

λtr(ε)I : ∇v dΩ

︸ ︷︷ ︸
a(u, v)

= L(v), ∀ v ∈ V̂ . (5.6)

This is really no different from the variational formulation for the governing
equations. Moving on to linear viscoelasticity and the SLS model, more work is
required to develop a variational formulation.

5.1.3 Variational formulation – linear viscoelasticity

Recall that the constitutive relationship for the SLS model, is given by

σ(t) = D(0)ε(t)−
tˆ

0

Ds(t− s)ε(s) ds,

where ε(t) = ε(u(x, t)). Inserting this into (5.3) results in

ˆ

Ω

D(0)ε(t) : ∇v dΩ−
ˆ

Ω

tˆ

0

Ds(t− s)ε(s) ds : ∇v dΩ

︸ ︷︷ ︸
a(u, v)

= L(v) ∀ v ∈ V̂ . (5.7)

The bilinear form a(u, v) is now split into two parts, b(u, v) and c(u, v), allowing
the temporal integral to be dealt with separately. Defining

b(t, t;u, v) =

ˆ

Ω

D(0)ε(t) : ∇v dΩ, (5.8a)

c(t, s;u, v) =

ˆ

Ω

Ds(t− s)ε(s) : ∇v dΩ, (5.8b)

the variational formulation for the linear viscoelasticity problem becomes: Find
u ∈ V such that

b(t, t;u, v)−
tˆ

0

c(t, s;u, v) ds = L(v), ∀ v ∈ V̂ . (5.9)
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5.2 Discrete variational formulations

The problems (5.6) and (5.9) will now be discretized both in time and in space.
We introduce uh as the discrete finite element approximation to u, and consider
the discrete time points ti, i = 0, ..., N . Uniformly spaced points in time are used,
thus ti = i∆t where ∆t = ti− ti−1. The discrete solution at time level i is denoted
by uhi .

5.2.1 Linear elasticity – discrete variational formulation

The discrete variational formulation for the linear elasticity problem is found
simply by inserting uhi in place of u in the continuous variational formulation
(5.3). Note that σhi denotes σ(uhi ) = σ(uh(ti)).

For each i, find uhi ∈ V h ⊂ V such that

a(uhi , v) = L(v), ∀ v ∈ V̂ h, (5.10)

where

a(uhi , v) =

ˆ

Ω

σhi : ∇v dΩ (5.11a)

L(v) =

ˆ

Ω

fi · v dΩ +

ˆ

ΓN

gi · v dΓ (5.11b)

Seeing as the governing equations are quasi-static, the solution itself will not be
time dependent. It is the values of fi and gi (which can both vary in time) that
can affect the solution uhi . Thus, if f and g are constant in time, then the solution
uhi will also be constant, while if f and g vary in time, the solution uhi will also
vary in time.

5.2.2 Linear viscoelasticity – discrete variational formula-
tion

As with the linear elasticity case above, the discrete variational formulation for
the linear viscoelasticity case may be found by inserting uhi into (5.9):

Find uhi ∈ V h such that
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b(ti, ti;u
h
i , v)−

tiˆ

0

c(ti, s;u
h(s), v) ds = L(v), ∀ v ∈ V̂ h, (5.12)

where

b(ti, ti;u
h
i , v) =

ˆ

Ω

D(0)εhi : ∇v dΩ, (5.13a)

c(ti, s;u
h(s), v) =

ˆ

Ω

Ds(ti − s)εh(s) : ∇v dΩ (5.13b)

Here, (5.12) is still continuous in time. To discretize it completely, the temporal
integral may be approximated by a numerical quadrature rule, giving a discrete
equation on the form

b(ti, ti;u
h
i , v)−

i∑
j=0

ω̄ijc(ti, tj;u
h
j , v) = L(v), (5.14)

where ω̄ij is a weight arising from a weighted quadrature rule. The trapezoidal
rule is a simple example of such a quadrature rule (see section 4.2). Applying
this rule to (5.14) gives

b(ti, ti;u
h
i , v)− ∆t

2

i∑
j=1

[c(ti, tj;u
h
j , v) + c(ti, tj−1;uhj−1, v)] = L(v) (5.15)

Rewriting and simplifying gives the problem: For each i, find uhi ∈ Vh such that

b(ti, ti;u
h
i , v)− ∆t

2
c(ti, ti;u

h
i , v) = L(v) +

∆t

2
c(ti, t0;uh0 , v) + ∆t

i−1∑
j=1

c(ti, tj;u
h
j , v)

(5.16)

for all v ∈ V̂h.
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5.3 An efficient discrete scheme for viscoelastic-

ity

When i becomes large, the sum-term on the right hand side of (5.16) will be a
long sum that needs computing. Since the sum must be recomputed for every
time step, this can become very time consuming. Fortunately, the sum term in
(5.16) can be rewritten in terms of the sum from the previous time step and the
solution from the previous time step. Note that the considerations here are for
the 1D model. The extension to 2D/3D is trivial because the stress relaxation
functions µ(t) and λ(t) are on the same form as D(t), and thus both include the
factor e−t/τ .

Recall that for the SLS model in 1D, we have

D(t) = E1 + E2 e
−t/τ .

In the constitutive relationship (3.45), the derivative of D with respect to s,
Ds(t − s), is also required. Here, s is the variable being used for the time
integration. The expression for this derivative is

Ds(t− s) =
E2

τ
e−(t−s)/τ . (5.17)

Due to the nature of the exponential function, the sum term from (5.16) can be
rewritten as a function of the sum from the previous time step.

The details are as follows:

i−1∑
j=1

c(ti, tj;u
h
j , v) =

i−1∑
j=1

ˆ

Ω

Ds(ti − tj)εj : ∇v dΩ

=
i−1∑
j=1

ˆ

Ω

E2

τ
e−(ti−tj)/τεj : ∇v dΩ. (5.18)

Here, the expression (5.17) for Ds(t− s) has been inserted into the sum term on
the right hand side of (5.16). Since

ea eb = ea+b,

the factor e−(ti−ti−1)/τ can be taken outside the sum in (5.18), giving
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i−1∑
j=1

c(ti, tj;u
h
j , v) = e−(ti−ti−1)/τ

i−2∑
j=1

ˆ

Ω

E2

τ
e−(ti−1−tj)/τεj : ∇v dΩ

+

ˆ

Ω

E2

τ
e−(ti−ti−1)/τεi−1 : ∇v dΩ.

The sum term on the right hand side here is equal to the original sum term in
(5.18), in the previous time step ti−1. Changing this back to the abstract form
results in

i−1∑
j=1

c(ti, tj;u
h
j , v) = e−(ti−ti−1)/τ

i−2∑
j=1

c(ti−1, tj;u
h
j , v) + c(ti, ti−1;uhi−1, v). (5.19)

The sum for the new time step can thus be calculated using only the sum calculated
in the previous time step, and the solution from the previous time step.

5.3.1 Analysis of the efficient scheme

It is expected that the use of the new, efficient sum (5.19) will give considerable
speedup in the calulations of (5.16). A simple analysis will explain why. When
using the regular trapezoidal rule, the integral is approximated by a sum, and
for each new time level the sum must be calculated. Accordingly, at time level ti,
O(i) operations are required. To calculate the solution for N time levels requires
1 + 2 + . . .+N = O(N2) operations.

In comparison, using the sum (5.19) means that at each time step, all that is
required is one multiplication and one addition. Thus to calculate the solution for
N time levels requires 2N = O(N) operations in total. When N becomes large,
this will make a huge difference. For example, imagine we have N = 105. With
the efficient sum (5.19), O(105) operations are required, while for the trapezoidal
sum, O(1010) (!) operations are required.

In addition to the actual computations being much faster, we can also save memory.
When using the trapezoidal rule, every solution from previous time levels must
be kept available in order to calculate a solution at a new time level. This will
require O(N) storage locations in the memory, where N again denotes the total
number of time levels. For large N this may cause problems. With the new sum
(5.19), only the sum calculated at the previous time step, and the solution for the
previous time step need to be kept available, reducing the memory requirements
drastically.
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5.4 Boundary conditions

Thus far, the Dirichlet BC has been treated as a general BC u = uD, for simplicity.
This is because the Dirichlet BC can be strongly enforced, in that the linear
system that arises from the variational formulations (5.10) or (5.16) can be altered
to incorporate the Dirichlet BCs. As per the discussion in section 3.2 on the
Dirichlet BCs, uz = 0 seems to be a natural choice.

However, using only the constraint uz = 0 on the boundaries Γ1 and Γ2, as
suggested in section 3.2 means that the spinal cord is free to move in any direction
except for along the z-axis. The constraint uz = 0 is not sufficient for obtaining
even qualitatively correct solutions, except for in very special cases when the
mesh is symmetric. More constraints are required, as the geometry is free to be
translated and/or rotated.

Checking eigenvalues of the matrix A

An investigation into the eigenvalues of the matrix A for the linear elasticity
problem is a useful tool in determining what happens with the geometry under
different constraints / boundary conditions. Any eigenvalue with value zero (or
close to zero) indicates an unconstrained degree of freedom in the solution. The
eigenvalues are calculated for different combinations of BCs. The results of the
eigenvalue tests are summarized in Table 5.1.

1. No essential (Dirichlet) BCs at all:

With no Dirichlet BCs, the matrix A has 6 eigenvalues with value (≈) zero.
From plots of the corresponding eigenvectors, it appears that all the degrees
of freedom are rotational.

2. u = 0 at Γ1 and Γ2:

Using the original BC og holding u = 0 on the Γ1 and Γ2 results in all
non-zero eigenvalues. Thus this constraint is sufficient for the all the degrees
of freedom to be restrained. However, this is hardly a realistic BC as the
spinal cord segment would not be allowed to compress / dilate on Γ1 and
Γ2.

3. uz = 0 at Γ1 and Γ2:

Holding the z−component of u fast on Γ1 and Γ2 results in the matrix
A having 3 eigenvectors with value (≈) zero. Two of the corresponding
eigenvectors appear to be rotational, while one appears to be translational.

4. Weakly enforcing a no-rotation condition (u · eθ = 0) at Γ1 and Γ2:
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Imposing a no-rotation condition on Γ1 and Γ2 (using Nitsche’s method,
details follow below) results in the matrix A having one eigenvalue with value
(≈) zero. The eigenvector appears to be translational in the z-direction.

5. u = 0 at a point in Γ1 and Γ2:

Setting u = 0 at a point in Γ1 and Γ2 rather than on the whole of Γ1 and
Γ2 is a condition which tethers the cord in place while still allowing it to
contract/dilate along its entire length. Imposing this condition results in
the matrix A having one eigenvalue with value (≈) zero. The corresponding
eigenvector appears to be rotational.

6. Combining uz = 0 at Γ1 and Γ2 with u = 0 at a point in Γ1 and Γ2:

The results are similar to BC 5 (above).

7. Combining u · eθ = 0 with uz = 0 at Γ1 and Γ2:

Combining these two BC’s results in the matrix A having all non-zero entries.
It seems that this is the minimum condition we need.

BC No. of ≈ zero eigenvalues

Rotation Translation Total

1 6 0 6
2 0 0 0
3 2 1 3
4 0 1 1
5 1 0 1
6 1 0 1
7 0 0 0

Table 5.1: Summary of findings when checking the eigenvalues of the matrix A.

5.4.1 Weakly enforcing a no-rotation BC using Nitsche’s
method

In order to make sure that the spinal cord is tethered and unable to rotate, we
impose the following Diriclet BCs:

uz = 0, x ∈ Γ1,2, (5.20)

u · eθ = 0, x ∈ Γ1,2, (5.21)

u = 0, x ∈ Γ3,4, (5.22)
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where, as before, the boundaries Γ1 and Γ2 represent the entire top and bottom
surface of the cord geometry respectively, while Γ3 and Γ4 are introduced to
represent a point in the top and bottom surface respectively, see Figure 5.1.

3

2

1

0

Γ

Figure 5.1: Colour schematic of the different boundaries.

The problem to be solved is now

−∇ · σ = f, in Ω (5.23a)

uz = 0, on Γ1,2, (5.23b)

u · eθ = u0 · eθ = 0, on Γ1,2, (5.23c)

u = 0, on Γ3,4, (5.23d)

σ · n = g, on ΓN , (5.23e)

Using the method outlined in [50] we define the vector eθ as a unit vector for
rotation in the xy-plane ,

eθ =

−(y0+y)
r

x0+x
r

0

 (5.24)

where r =
√

(x0 + x)2 + (y0 + y)2. The values x0 and y0 depend on the geometry
of the mesh.
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The BCs in (5.23) are now handled one by one. First of all, the BC (5.23e) is the
same as before, and will appear in the variational formulation, exactly as before.
Next, the BCs (5.23b) and (5.23d) can be enforced strongly and thus no changes
need to be made to the variational forms on account of these. The BC (5.23c),
however, can not be enforced strongly and must instead be enforced weakly. This
is done via Nitsche’s method. An overview of the use of Nitsche’s method on
general problems can be found in [26]. The following result adapted from [26] for
weakly enforcing a Dirichlet BC will be used:
Theorem 5.1. Nitsche’s method applied to the Dirichlet problem

−∆u = f in Ω

u = u0 on Γ

results in the variational form

(∇uh,∇v)Ω −
〈
∂uh
∂n

, v

〉
Γ

−
〈
uh,

∂v

∂n

〉
Γ

+
∑
E∈Gh

1

γhE
〈uh, v〉E

= (f, v)Ω −
〈
u0,

∂v

∂n

〉
Γ

+
∑
E∈Gh

1

γhE
〈u0, v〉E

(Recall the variational form (4.7) for the Poisson equation where the Dirichlet BC
is implemented strongly.)

Adapting Theorem 5.1 to the variational formulation (5.3) results in the problem:

Find u ∈ V such that

ˆ

Ω

σ(u) : ∇v dΩ +
γ

hE

ˆ

Γ1,2

(u · eθ)(v · eθ) dΓ

−
ˆ

Γ1,2

(σ(u) · n · eθ)(v · eθ) dΓ−
ˆ

Γ1,2

(σ(v) · n · eθ)(u · eθ) dΓ

=

ˆ

Ω

f · v dΩ +

ˆ

ΓN

g · v dΓ +
γ

hE

ˆ

Γ1,2

(u · eθ)(v · eθ) dΓ

−
ˆ

Γ1,2

(σ(v) · n · eθ), (u0 · eθ) dΓ, ∀ v ∈ V̂ ,

(5.25)
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where γ > 0 is a stabilization parameter. Deriving the specific variational
formulations for the two constitutive relationships follows the exact same procedure
as in section 5.2, and the details are not shown here.

5.5 Implementation

This section contains a review of the implementation of the linear elasticity
problem and the linear viscoelasticity problem with the SLS model. An overview
of the language used and the code structure are presented, followed by a detailed
review of some of the important functions that are implemented. Finally, details of
usage of the implementation are provided. The entire code for the implementation
is published on Bitbucket,
https://bitbucket.org/nkylstad/master_thesis_src.

5.5.1 Programming language and software

The code is, in its entirety, written in Python. Because implementing the large
framework of the finite element method would be a thesis unto itself, and because
there exist implementations of this already, finite element software compatible with
Python was used. The chosen software was FEniCS, ”a collection of free software
with an extensive list of features for automated, efficient solution of differential
equations” [1]. FEniCS uses a tool called UFL (Unified Form Language) which
allows the user to write the code almost exactly like mathematical formula. See
Appendix B for an example on the use of FEniCS.

The use of the finite element method typically results in a matrix equation on the
form

AU = b,

see section 4.1 for an example. FEniCS calls on external libraries to solve these
linear (or sometimes nonlinear) algebra problems. The linear algebra backend
used in the implementation is PETSc. The direct and iterative (Krylov) solvers
mentioned in section 4.4 are implemented in PETSc.

5.5.2 The code structure

As mentioned above, the code is written entirely in Python. Seeing as the linear
elasticity problem and the linear viscoelasticity problem share some attributes,

https://bitbucket.org/nkylstad/master_thesis_src
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1-ElasticityProblem

0-LinearElasticityProblem 0-ViscoElasticityProblem

2-object

Figure 5.2: Class hierarchy for implementation

such as BCs, an object oriented approach was chosen. The class hierarchy used
can be seen in Figure 5.2.

Superclass – ElasticityProblem

The superclass ElasticityProblem contains all the methods that the linear
elasticity and linear viscoelasticity problems have in common, such as setting
up the BCs, and the solver-method. Seeing as the solver-method is central in
obtaining a solution, key parts are shown below.

1 def solver(self , i, a=None , L=None , matrix=False ,

boundary_parts=None , bcs=None):

3

# Assemble system:

5 if matrix:

self.calculate_vector_b(i)

7 A = self.A

b = self.b

9 else:

A = assemble(a, exterior_facet_domains=boundary_parts)

11 b = assemble(L, exterior_facet_domains=boundary_parts)

13 # Apply boundary conditions:

for bc in bcs:

15 bc.apply(A, b)

17 # Solve system:
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u = Function(self.V)

19 if self.direct:

# Use direct (LU) solver

21 solve(A, u.vector (), b)

else:

23 # Use iterative (Krylov) solver

solve(A, u.vector (), b, "gmres", "amg")

25

return u

Code 5.1 : ElasticityProblem.solver

The solver-method obtains the stiffness matrix A and the RHS-vector b from
methods implemented in the subclasses. The BCs are then applied to the system,
and the system is solved using a PETSc linear algebra solver. Note that the
direct LU solver is the default with PETSc. Specifying (..., "gmres", "ilu")

or (..."gmres", "amg") tells PETSc to use the Krylov method GMRES with
the ILU and AMG preconditioners respectively (see section 4.4).

In order to make the subclasses as similar as possible, they both implement the
following methods:

• form a

• calculate vector b

Details of the implementation for the two subclasses are shown below.

Subclass – LinearElasticityProblem

The subclass LinearElasticityProblem contains the methods and variables that
only apply to the linear elasticity problem. Methods of note are

• sigma – calculates σ using the constitutive relationship (3.8):

def sigma(self ,u, i=None):

2 eps = self.eps

mu, lmbda = self.mu, self.lmbda

4 sigma = 2*mu*eps(u)+ lmbda*tr(eps(u))*Identity(self.dim)

return sigma

Code 5.2 : LinearElasticityProblem.sigma

• form a – calculates the matrix A from the bilinear form a(u, v) in (5.6):

1 def form_a(self , i=0):

self.a = inner(self.sigma(u), grad(v))*dx

3 if theta_proj is not None:

self.a = self.a \
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5 + gamma/h*inner(u, theta_proj)*inner(v, theta_proj)*(

ds(1)+ds(2)) \

- inner(self.sigma(v)*n, theta_proj)*inner(u,

theta_proj)*(ds(1)+ds(2)) \

7 - inner(self.sigma(u)*n, theta_proj)*inner(v,

theta_proj)*(ds(1)+ds(2))

9 # Assemble matrix

self.A = assemble(self.a, exterior_facet_domains=self.bp)

Code 5.3 : LinearElasticityProblem.form a

and

• calculate vector b – calculates the vector b from the linear form L(v) in
(5.6):

def calculate_vector_b(self , i=0, f=None , g=None):

2 self.L = dot(f,v)*dx + dot(-g*n,v)*ds

if theta_proj is not None:

4 self.L = self.L\

+ gamma/h*inner(no_rotation , theta_proj)*inner(v,

theta_proj)*ds(1)\

6 + gamma/h*inner(no_rotation , theta_proj)*inner(v,

theta_proj)*ds(2)\

-inner(no_rotation , theta_proj)*inner(self.sigma(v)*n,

theta_proj)*ds(1) \

8 -inner(no_rotation , theta_proj)*inner(self.sigma(v)*n,

theta_proj)*ds(2)

10 # Assemble RHS vector

self.b = assemble(self.L, exterior_facet_domains=self.bp)

Code 5.4 : LinearElasticityProblem.calculate vector b

Subclass – ViscoElasticityProblem

The subclass ViscoElasticityProblem contains the methods and variables that
only apply to the linear viscoelasticity problem. Methods to note are

• sigma LHS – calculates the part of σ, given by (3.45), containing the unknown
displacement ui at time level i only, given by

σLHSi = D(0)ε(ti)−
∆t

2
Ds(0)ε(ti) (5.26)

1 def sigma_LHS(self , u, i):

lhs = mu(0)*eps(u) + lmbda(0)*div(u)*I

3 if i > 0:



5.5. IMPLEMENTATION 60

lhs = lhs - Constant(0.5*dt)*mu_s(0)*eps(u) -

Constant(0.5*dt)*lmbda_s(0)*div(u)*I

5 return lhs

Code 5.5 : ViscoElasticityProblem.sigma LHS

• sigma RHS –calculates the part of σ, given by (3.45), containing the known
displacements from the previous time levels, given by

σRHSi =
∆t

2
Ds(ti − t0)ε(t0) + ∆t

i−1∑
j=1

Ds(ti − tj)ε(tj) (5.27)

The known part of sigma (from previous time steps) in the Nitsche boundary
term

tˆ

0

ˆ

Γ1,2

(σ(u(s)) · n · eθ)(v · eθ) dΓ ds,

are also calculated in this method.

1 def sigma_RHS(self , i):

tmp_first = assemble(inner(Constant(0.5*dt)*(mu_s(i*dt)*

eps(u0) + lmbda_s(i*dt)*div(u0)*self.I), grad(v))*dx ,

3 exterior_facet_domains=bp)

rhs = tmp_first.copy()

5 if theta_proj is not None:

tmp_first_n = assemble(inner(Constant(-0.5*dt)

7 *(mu_s(i*dt)*eps(u0) + lmbda_s(i*dt)*div(u0)*self.

I)*n, theta_proj)

*inner(v, theta_proj)*(ds(1)+ds(2)),

exterior_facet_domains=bp)

9 rhs += tmp_first_n

11 if i > 1:

if i > 2:

13 self.prev_sum *= exp(-dt/tau)

tmp_sum = self.prev_sum.copy()

15 tmp_sum *= dt

rhs += tmp_sum

17 if theta_proj is not None:

self.prev_sum_n *= exp(-dt/tau)

19 tmp_sum_n = self.prev_sum_n.copy()

tmp_sum_n *= -dt

21 rhs += tmp_sum_n

23 end_term = assemble(inner ((mu_s(dt)*eps(up) +

lmbda_s(dt)*div(up)*self.I), grad(v))*dx ,

exterior_facet_domains=bp)
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tmp_end = end_term.copy()

25 tmp_end *= dt

rhs += tmp_end

27 self.prev_sum += end_term

if theta_proj is not None:

29 end_term_n = assemble(inner ((mu_s(dt)*eps(up) +

lmbda_s(dt)*div(up)*self.I)*n, theta_proj)

*inner(v, theta_proj)*(ds(1)+ds(2)),

exterior_facet_domains=bp)

31 tmp_end_n = end_term_n.copy()

tmp_end_n *= -dt

33 rhs += tmp_end_n

self.prev_sum_n += end_term_n

35 return rhs

Code 5.6 : ViscoElasticityProblem.sigma RHS

Other methods of note are the methods

• form a – similar to the corresponding method in LinearElasticityProblem,
but uses the sigma LHS instead, calculating (5.26).

1 def form_a(self , i=0):

self.a = inner(sigma_LHS(u,i), grad(v))*dx

3 if theta_proj is not None:

h, gamma = self.h, self.gamma

5 self.a = self.a \

+ Constant(gamma)/h*inner(u, theta_proj)*inner(v

, theta_proj)*(ds(1)+ds(2)) \

7 - inner ((self.sigma_vD*eps(v))*n, theta_proj)*

inner(u, theta_proj)*(ds(1)+ds(2)) \

- inner ((self.sigma_vL*div(v)*I)*n, theta_proj)*

inner(u, theta_proj)*(ds(1)+ds(2))\

9 - inner(sigma_LHS(u,i)*n, theta_proj)*inner(v,

theta_proj)*(ds(1)+ds(2))

Code 5.7 : ViscoElasticityProblem.form a

• calculate vector b – similar to the corresponding method in LinearElasticityProblem,
and in addition uses the sigma RHS-method, calculating (5.27).

1 def calculate_vector_b(self , i=0, f=None , g=None):

# L(v):

3 self.myform = dot(f,v)*dx + dot(-g*n,v)*ds

5 if self.no_rotation is not None:

if self.theta_proj is not None:

7 self.myform += Constant(gamma)/h*inner(self.

no_rotation , self.theta_proj)*inner(v, self.

theta_proj)*(ds(1)+ds(2)) \

- inner(self.no_rotation , self.

theta_proj) \
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9 *inner ((self.sigma_vD*self.eps(v) +

self.sigma_vL*div(v)*self.I)*n,

self.theta_proj)*(ds(1)+ds(2))

11 # Putting together b vector:

self.b = assemble(self.myform , exterior_facet_domains=bp

)

13 if i > 0:

self.b += sigma_RHS(i)

Code 5.8 : ViscoElasticityProblem.calculate vector b

The methods implemented in the classes ElasticityProblem, LinearElasticityProblem
and ViscoElasticityProblem are used to run simulations. A Python script takes
in arguments from the command line, treats these arguments, and calls on a
function compute. This function is described in detail below.

The function compute sets up the problem to be solved. A parameter prob type

determines if the problem should be a linear elasticity problem or a linear vis-
coelasticity problem. Parameter values relevant to the model used are sent in and
stored.
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def compute(prob_type , Nx , pval , degree , dim , pres_file , dt=0.1,

2 makeplot=False , T=0.0, rectangle=False , cord=False ,

cordval=None , save_sol=False , direct=False ,

4 simple=False , path=None , eigentester=False):

6 # Set up problem

if prob_type == ’viscoElast ’:

8 problem = ViscoElasticityProblem(degree , dim , dt , T,

direct=direct)

10 E1 = 0.84E3; E2 = 2.03E3; eta = 6.7

C = 22.8/2

12 problem.set_parameters(C, E1=E1 , E2=E2 , eta=eta)

elif prob_type == ’linElast ’:

14 problem = LinearElasticityProblem(degree , dim , dt , T,

direct=direct)

16 E = 16e3

problem.set_parameters(E=E, nu=0.479)

18 else:

print "Error. Please enter valid problem type."

20

# Set up mesh , function space , functions etc.

22 problem.setup(Nx , mesh=None , rectangle=rectangle , cord=cord ,

cordval=cordval)

24 # Set up path for saving solutions and save all parameter

values

# used to file.

26 if save_sol:

problem.set_save_file(path)

28 problem.save_parameters(Nx , pval , degree , dim , dt ,

makeplot ,

T, cordval , direct , simple)

30

Nt = problem.Nt

Code 5.9 : compute solutions.py (1)

The mesh is set up using problem.setup, and the different parameters this
function takes determine what geometry the mesh will have.

The Neumann BC, acting as the applied pressure, comes in two forms – simple -
a constant value p over the entire geometry for t ∈ [0, T/2], followed by p = 0 for
t ∈ (T/2, T ]. This form of the BC is for testing, to check if the solution behaves
as exprected. The other form comes from reading pressure data, measured from a
patient, from file. This pressure data is obtained from Støverud et al. [50].
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# Set up boundaries , Dirichlet BCs and NO-ROTATION condition.

2 problem.set_bc ()

gamma = 2.0e3

4 problem.set_no_rotation(gamma)

6 # Set up body force

f = Constant([0.0]*dim)

8

# Set up boundary pressure

10 if simple:

p = np.zeros(Nt+1)

12 p[:Nt/2.] = pval

gval = Expression("p", p=float(p[0]))

14 else:

v_wave = 200.0 # cm/s

16 tt, pres_heartbeat = problem.read_pressure_file(pres_file

)

shift_val = 0.0

18 pres_spline = splrep(tt, pres_heartbeat-shift_val)

gval = problem.applied_pres(v_wave , pres_spline , dim)

20

problem.set_g(gval)

22 problem.set_f(f)

Code 5.10 : compute solutions.py (2)

A for-loop is used to solve for Nt time levels. For the viscoelasticity problem, the
bilinear form (a(u, v)) is slightly different for the initial time level, at t = 0.
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1 # Special case for the first time step for viscoElast.

# For linElast , this will just calculate the first time step

3 # normally.

problem.form_a(0)

5 U0 = problem.solver(0, matrix=True)

problem.update(U0 , save_sol=save_sol)

7

# Set up time loop for computation

9 progress = Progress("Time -stepping ...")

11 if prob_type == ’viscoElast ’:

# Update bilinear form to include all terms

13 problem.form_a(1)

15 for i in range(1, Nt+1):

# Check progress

17 print i, " of ", Nt-1

progress.update(i*dt/T)

19

# Update parameters

21 if simple:

problem.update_g(float(p[i]), pressure=True)

23 else:

problem.update_g(t[i], time=True , simple=simple)

25

# Solve

27 U = problem.solver(i, matrix=True)

29 # Update solution , save the solution to file if save_sol

is True.

problem.update(U, i=i, save_sol=save_sol)

Code 5.11 : compute solutions.py (3)

The solution at each time level may be saved to file for analysis at a later time.
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Chapter 6

Results

The simulations documented in this chapter are separated into two categories:

(i) Verification of the implementations. This category uses a constant applied
pressure to display properties of the solutions. Errors in the results from
these simulation are analysed using the method of manufactured solutions.

(ii) Measuring the response of the spinal cord under realistic conditions. The
simulation scenario is described in section 3.2. The response using both the
linear elasticity and SLS models is documented.

As such, this chapter is divided into two sections. The first section aims at
verifying that the implementations give the expected results. The second section
aims at documenting the response of the spinal cord, and comparing results
from the viscoelastic and purely elastic models. Note that the parameter choices
discussed in section 3.6 are summarized at the beginning of this section.

6.1 Verification of the implementations

Before any actual simulations can be run, the implementation of the schemes must
be tested to make sure everything is working correctly. A simple preliminary test
is a visual one – do plots of the solution behave as expected? Following this visual
test is a more mathematical test, checking whether the implementations give the
expected solutions under given constraints. The testing process is automated with
the use of scripts to run the tests. The tests are run on a unit square (2D) or unit
cube (3D) geometry for simplicity.

67
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6.1.1 Linear Elasticity

This section covers the testing and verification of the implementation for the
linear elasticity case. The parameters used in the verification tests are listed in
Table 6.1.

Parameter Value

E 0.65kPa
ν 0.479
T 1.0s
∆t 0.005
p0 2.0

mesh Unit Square
h 8.84× 10−2*

degree 1*

Table 6.1: Parameters used in verification tests for the linear elasticity imple-
mentation.
* Unless otherwise stated

Visual test

A simple pressure simulation is done on a unit square geometry. The Neumann
boundary condition, σ · n = g = −pn, where p is a scalar, simulates the applied
pressure.

The pressure p is made to vary as

p =

{
p0 if 0,≤ t ≤ 0.5,

0, if t > 0.5,
(6.1)

where p0 is a constant. The pressure variation, as well as the displacement u
in the point (0.2, 0.5) in the mesh over time from the simulation are shown in
Figure 6.1.

A quick look at Figure 6.1 is reassuring – the chosen point in the unit square
reaches equilibrium instantaneously and remains at this equilibrium until the
pressure is removed.

With confirmation that the implementation appears to be working , more rigorous
tests are performed in order to determine that the solver actually delivers the
correct results. To do this, a more mathematical test is required, with quantifiable
results.
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Figure 6.1: (a) Pressure variation over time, and (b) Resulting displacement
over time in a chosen point in the mesh from simple pressure simulation using
linear elasticity solver on unit square geometry (2D). Parameters used are listed
in Table 6.1.

Test using the method of manufactured solutions

See subsection 4.3.1 for an overview of the method of manufactured solutions.

The chosen solution ue for testing the implementation is

ue =

(
(1− y) epx

(1− y) epx

)
. (6.2)

The software Mathematica was used to calculate σ, g and f from (6.2), and the
solution from the solver was tested against the exact solution (6.2). The L2-norm
of the error,

||e||L2 = ||ue − u||L2 ,

was calculated for different mesh resolutions. The results for a test in 2D are
shown in Table 6.2.

Performing a similar test in 3D gives the results shown in Table 6.3.

The convergence rates of the errors are calculated using (4.21).

In the 2D case there is a clear second order convergence for elements of degree
1 and a clear third order convergence for elements of degree 2, which is exactly
as expected. In the 3D case, the error displays tendencies towards second order
convergence for elements of degree 1 and third order convergence for elements
of degree 2, and it is assumed that the convergence in 3D is adequate. This
assumption is acceptable because the implementation is nearly independent of the
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Degree 1 Degree 2

h e rate e rate

2.50E-01 1.53E-01 – 2.33E-03 –
1.25E-01 4.46E-02 1.78 2.78E-04 3.07
6.25E-02 1.17E-02 1.93 3.41E-05 3.03
3.12E-02 2.97E-03 1.98 4.22E-06 3.01
1.56E-02 7.46E-04 1.99 5.26E-07 3.01
7.81E-03 1.87E-04 2.00 6.56E-08 3.00

Table 6.2: Errors in the numerical solution u for linear elasticity, when compared
to a manufactured exact solution ue, for elements of degrees 1 and 2 in 2D using
direct LU solver. h represents the mesh resolution, and is defined as the maximum
cell diameter in the mesh.

Degree 1 Degree 2

h e rate e rate

5.00E-01 5.47E-01 – 3.51E-02 –
2.50E-01 1.75E-01 1.64 2.84E-03 3.63
1.25E-01 5.05E-02 1.79 2.71E-04 3.39
8.33E-02 1.35E-02 1.91 2.99E-05 3.18
7.14E-02 8.72E-03 1.95 1.50E-05 3.09

Table 6.3: Errors in the numerical solution u for linear elasticity, when compared
to a manufactured exact solution ue, for elements of degrees 1 and 2 in 3D using
direct LU solver. h represents the mesh resolution, and is defined as the maximum
cell diameter in the mesh.

problem’s dimension. Thus it would seem that the implementation of the linear
elasticity problem gives the correct results for elements of degree 1 and 2, both in
2D and 3D.

6.1.2 Linear Viscoelasticity

This section covers the testing and verification of the implementation of the linear
viscoelasticity problem, using the SLS model. The parameter values that are used
in the testing of the viscoelasticity solver are summarized in Table 6.4.
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Parameter Value

E1 0.84kPa
E1 2.1kPa
η 6.7Pas
C 22.8*
T 1.0s
∆t 0.005
p0 2.0Pa/100

mesh unit square
h 8.84× 10−2*

degree 1*

Table 6.4: Parameters used in verification tests for the linear viscoelasticity
implementation.
* Unless otherwise stated

Visual test

As with the linear elasticity problem, a look at some plots to check if they look
sensible may be useful. The solution is expected to display a viscoelastic creep
effect when a constant pressure is applied. A simulation is run with the pressure
variation given by (6.1). Again, the pressure variation as well as the magnitude
of the displacement of the point (0.2, 0.5) in the mesh over time, are shown in
Figure 6.2.
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Figure 6.2: (a) Pressure variation over time, and (b) Resulting displacement
over time in a chosen point in the mesh from simple pressure simulation using
linear viscoelasticity solver on unit square geometry (2D). Parameters: T = 1.0s,
∆t = 0.005, E1 = 0.84kPa, E2 = 2.1kPa and η = 6.7Pa s.
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The shape of the plot looks excellent; under a constant applied pressure, an
arbitrary point in the mesh displays an instantaneous elastic response followed
by a gradual, bounded increase in displacement. Since the displacement is
directly proportional to the strain, the chosen point thus displays the viscoelastic
property of creep (see Figure 3.4). This suggests that the implementation of the
viscoelasticity problem is working. Note that the viscoelastic range is short, as
the point appears to have fully crept by approximately 0.05s.

The Method of Manufactured Solutions

See subsection 4.3.1 for an overview of the method of manufactured solutions.

The chosen solution ue for testing the implementation is given by (6.2).

The software Mathematica was used to calculate σ, g and f from (6.2), and
the solution u from the solver was tested against the exact solution (6.2). The
L2-norm of the error,

||e||L2 = ||ue − u||L2 ,

was calculated for different mesh resolutions. The results for a test in 2D for
elements of degree 1 are shown in Table 6.5, while results for a test in 2D for
elements of degree 2 are shown in Table 6.6. Note that C = 0 was used in the
test with the manufactured solution.

∆t \ h 3.54E-01 1.77E-01 8.84E-02 4.42E-02 2.21E-02 1.10E-02

2.00E-02 4.19E-03 3.96E-03 5.64E-03 6.09E-03 6.21E-03 6.23E-03
1.00E-02 7.90E-03 1.18E-03 9.64E-04 1.38E-03 1.49E-03 1.51E-03
5.00E-03 8.91E-03 2.12E-03 3.10E-04 2.40E-04 3.43E-04 3.68E-04
2.50E-03 9.16E-03 2.37E-03 5.42E-04 7.87E-05 5.98E-05 8.37E-05
1.25E-03 9.22E-03 2.44E-03 6.07E-04 1.37E-04 1.98E-05 -*
1.00E-04 9.24E-03 2.46E-03 6.29E-04 1.58E-04 3.95E-05 -*
5.00E-05 9.24E-03 2.46E-03 6.29E-04 1.58E-04 3.96E-05 -*

Table 6.5: Errors in the numerical solution for linear viscoelasticity (SLS model),
when compared to a manufactured exact solution, for elements of degree 1 in 2D
using direct LU solver. h represents the mesh resolution, and is defined as the
maximum cell diameter in the mesh. ∆t represents the time step size.
* Note that these error values are missing due to the large time requirements for
the computations.

The expected convergence rate in space for the error is 2 for elements of degree 1,
and 3 for elements of degree 2. The expected convergence rate in time is 2. See
section 4.3 for a review of the errors in the numerical solution.
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∆t \ h 3.54E-01 1.77E-01 8.84E-02 4.42E-02 2.21E-02

2.00E-02 6.25E-03 6.25E-03 6.25E-03 6.25E-03 6.25E-03
1.00E-02 1.53E-03 1.53E-03 1.53E-03 1.53E-03 1.53E-03
5.00E-03 3.85E-04 3.80E-04 3.79E-04 3.79E-04 3.79E-04
2.50E-03 1.06E-04 9.51E-05 9.47E-05 9.47E-05 9.47E-05
1.25E-03 4.61E-05 2.45E-05 2.37E-05 2.37E-05 2.37E-05
1.00E-04 3.69E-05 5.13E-06 6.89E-07 1.75E-07 1.52E-07
5.00E-05 3.69E-05 5.12E-06 6.70E-07 9.37E-08 3.94E-08

Table 6.6: Errors in the numerical solution for linear viscoelasticity (SLS model),
when compared to a manufactured exact solution, for elements of degree 2 in 2D
using direct LU solver. h represents the mesh resolution, and is defined as the
maximum cell diameter in the mesh. ∆t represents the time step size.

There are some clear tendencies in the errors. We begin by looking at Table
6.5. In the bottom row, where ∆t is very small, there is a clear second order
convergence in space, just as in the linear elasticity case. Clearly, the ∆t error
is sufficiently small to display the behaviour of the spatial error. There is also a
tendency towards a second order convergence on the diagonal. In the far right
column, where h is small, there is a second order convergence in time to begin
with. It is possible that an even finer mesh in space is required to fully capture the
behaviour of the error in time; however, due to the very long computing times this
would require, it is not prioritized, and it is assumed that the error has adequate
convergence in time.

In Table 6.6, there is a second order convergence on the diagonal. There is also
a clear second order convergence in the rightmost column, as well as tendencies
towards a third order convergence in the bottom row, corresponding to the third
order convergence we saw in the linear elasticity problem for elements of degree 2.

Overall it appears that the error in the solution for the linear viscoelasticity
problem converges much as expected, and the implementation is assumed to be
verified.

6.1.3 Testing the efficient scheme for the trapezoidal sum

To test whether the scheme (5.19) is more efficient than actually calculating the
entire sum

i−1∑
j=1

c(ti, tj;uj, v),
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a test is set up with a simple integral, on the same form as the history integral
from the constitutive relationship (3.45), with known solution:

tˆ

0

e−(t−s) sin(s) ds (6.3)

We test the how well the new method converges towards the exact solution of
(6.3) comparing the error in the new, possibly more efficient sum to the error in
the trapezoidal sum. Several experiments are performed, with smaller and smaller
∆t, meaning that the sum to be calculated becomes longer and longer. The results
of this test are found in Table 6.7.

The time taken to calculate the longest sum (∆t = 7.81E − 04) for the two
methods is also compared, to see if there is any real computational speedup. The
results from this test are shown in Table 6.8.

Trapezoidal Efficient

∆t eh rate eh rate Difference

1.00E-01 7.938E-04 – 7.938E-04 – 0.0
5.00E-02 1.735E-04 2.19 1.735E-04 2.19 2.07E-17
2.50E-02 4.067E-05 2.09 4.067E-05 2.09 4.76E-18
1.25E-02 9.852E-06 2.05 9.852E-06 2.05 4.67E-17
6.25E-03 2.425E-06 2.02 2.425E-06 2.02 8.34E-17
3.13E-03 6.015E-07 2.01 6.015E-07 2.01 3.55E-18
1.56E-03 1.498E-07 2.01 1.498E-07 2.01 9.79E-16
7.81E-04 3.738E-08 2.00 3.738E-08 2.00 3.95E-16

Table 6.7: Comparing errors in the solution for trapezoidal sum and efficient
sum (5.19).

Time taken (s)

Trapezoidal 1.294
Efficient 0.017

Speedup 74.6

Table 6.8: Comparing time taken to obtain solution when using trapezoidal sum
and efficient sum (5.19).

From Table 6.7, it is clear that the error in both methods have the expected
convergence rate of 2 (see section 4.3). Note that the errors in both methods are
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very close to each other, and in fact appear identical in Table 6.7. This is expected,
as the only difference in the efficient sum (5.19) from the regular trapezoidal sum
is that it exploits a property of the exponential function. Therefore the two sums
should be mathematically equal, and yield the same results.

The results in Table 6.8 show that there is a significant speed-up (a factor ≈
70) when using (5.19) to calculate the integral as compared to using the regular
trapezoidal sum.

The code for these tests can be found in Appendix A.1.

6.1.4 Testing the solver on large systems

As stated, there are ≈ 1, 150, 000 cells in the mesh, resulting in a very large system
to be solved. As mentioned in section 4.4, iterative solvers perform better than
direct solvers for large linear systems. The performance of iterative solvers vs. a
direct solver for the linear system that arises from (5.10) is investigated. Let the
system size be N ×N . The solvers are tested on larger and larger systems to see
how this is handled. The results are displayed in Table 6.9.

SYSTEM SIZE Direct (LU)** GMRES, ILU GMRES, AMG
N Time (s) Time (s) Iterations Time (s) Iterations

2523 0.199 0.020 44 0.087 10
11661 1.233 0.179 98 0.504 11
21063 3.964 0.399 120 1.178 11
40593 11.96 1.277 208 2.581 11
58692 31.41 1.943 213 4.418 11
95754 69.15 3.480 238 7.910 12
128076 –* 6.694 325 12.408 13
605958 –* –* >10000 98.113 26

Table 6.9: Results from testing three different solvers on larger and larger linear
systems.
* The solver failed.
** Number of iterations are not relevant for a direct solver.

From the results in Table 6.9, it is clear that the direct solver can not compete
with the iterative solvers. It seems that the (GMRES, ILU) combination solves
the system faster for smaller systems than the (GMRES, AMG) combination.
However the number of iterations increases quite drastically with system size for
(GMRES, ILU), while it remains relatively constant for (GMRES, AMG). This
problem becomes visible for the largest system tested – this is the size of the
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system when elements of degree 1 are used with a mesh of an actual spinal cord –
when the (GMRES, ILU) combination failed to converge in 10000 iterations. This
is clearly a huge drawback, and the simulations henceforth will be run using an
AMG preconditioner.

6.2 Simulation results

This section contains the results of the simulations using a spinal cord segment
geometry, as outlined in section 3.2. Six different simulations are run; four
using the SLS model and two using the linear elasticity model, all with different
parameter choices. A summary of all the different model parameters that are used
is shown in Table 6.10.

Constitutive
relationship E1(Pa) E2(Pa) η(Pa s) C E(Pa) ν

Model 1 SLS 0.84× 103 2.03× 103 6.7 22.8 – 0.479∗
Model 2 SLS 0.21× 105 0.53× 105 1.7× 102 22.8 – 0.479∗
Model 3 SLS 0.84× 103 2.03× 103 13.4 22.8 – 0.479∗
Model 4 SLS 0.84× 103 2.03× 103 6.7 0 – 0.0∗
Model 5 Lin. elast – – – – 1.6× 104 0.479
Model 6 Lin. elast – – – – 6.5× 102 0.479

Table 6.10: Summary of the parameters to be used in simulations.
*Defined implcitly through C.

The other (default) parameters used in the simulations are listed in Table 6.11.

Parameter Value

degree 1
T 0.85s
∆t 0.005
γ 2000*
x0 1.5cm
y0 0.7cm

Table 6.11: Other (default) parameters used in simulations.
* For Model 2, γ = 1× 104 was required.

In addition to the simulations defined by Models 1-6 and Table 6.11, simulations
using Models 1 and 6 are run over four cycles (T = 3.4s).
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This section is divided into two parts. The first part contains only simulation
results from using the SLS model, while the second contains comparisons between
results from the SLS model and the linear elasticity model. The results are
displayed in such a way that two simulations are compared at a time. The
comparisons consist of plots of the displacement patterns and magnitudes over
the spinal cord geometry, as well as line plots, displaying the magnitude of the
displacement of selected points in the geometry over time. Three points are chosen
for these line plots; one point towards the top of the geometry, one point near the
middle and one point near the bottom. The coordinates for the points are given
in Table 6.12.

Point coordinates

x y z

xT (top) 2.0 0.56 3.3
xM (middle) 2.0 0.56 1.7
xB (bottom) 2.0 0.56 0.1

Table 6.12: Coordinates for points in the mesh where displacement magnitude
is recorded over time.

In addition, one simulation is run using Model 1 with T = 3.4s. A plot of the
magnitude of the displacements in the points specified in Table 6.12 is included.

6.2.1 Viscoelastic response of the spinal cord

A comparison of the results of Models 1 and 3 can be seen in Figure 6.3, where η
has been doubled from Model 1 to Model 3, while the remaining parameters are
the same. The comparison in Figure 6.3 suggests that changing η does not have
a large effect on the displacement pattern. Qualitatively the plots look similar.
However, it should be noted that the magnitude of the displacements decreased
noticeably by just doubling η.

Recording the magnitude of the displacement in the points specified by Table 6.12
for Models 1 and 3 result in the plots shown in Figure 6.4.

The plots in Figure 6.4 have very similar shapes; at first glance they appear
identical. The magnitude of the displacement is the largest for the middle point
xM , while the displacements for the top and bottom points (xT , xB) have similar
magnitudes, with peak displacements approximately half the value of the peak
displacement of xM .

Model 3 (with the higher value of η) has a smaller displacement magnitude in all the
points than Model 1. This is to be expected considering the plots in Figure 6.3. An
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Figure 6.3: Visual comparison of Model 1 and Model 3 at t = 0.075s. The
displacement patterns are similar for Models 1 and 3, while the magnitudes of
the displacement differ slightly.
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Figure 6.4: Displacement magnitude over time for chosen points in the geometry
for Model 1 and Model 3. The two plots show the similar qualitative behavior,
but differ in magnitude.

observation can be made about the ratios between the instantaneous displacement
at t = 0 and the peak displacement for Models 1 and 3. The magnitude of the
displacement is largest in the middle point, thus this point is used for comparison.
Since the values of E1 and E2 are the same for Models 1 and 3, the initial
displacement at t = 0 is the same. Denoting u0 as the instantaneous displacement
at t = 0 and umax as the peak displacement in xMs, the ratios umax/u0 are shown
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umax u0
umax
u0

Model 1 3.08× 10−3 1.34× 10−1 43.6
Model 3 3.08× 10−3 7.57× 10−2 24.6

Table 6.13: Comparing peak displacement of a point in the middle of the
geometry over time for Model 1 and Model 3.

in Table 6.13.

From Table 6.13, it is clear that the parameter η has a pronounced effect on the
peak displacement, as the ratio umax

u0
of Model 1 is nearly twice that of Model 3.

As a result of this, the displacement magnitude over time appears slightly damped
for Model 3 in comparison with Model 1. Both Model 1 and Model 3 reach peak
displacement at t = 0.045s.

As explained in section 3.5, in order to get an accurate model in 2D and 3D, the
simple model developed from a combination of springs and dashpots is expanded
to account for the effect of compressibility. However, it is interesting to see if
the effects of compressibility are of any significance. To that end, a comparison
between Model 1 and Model 4 (C = 0) is shown in Figure 6.5.
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Figure 6.5: Visual comparison of Model 1 and Model 4 at t = 0.075s. The
displacement patterns are drastically different for Models 1 and 4, as are the
magnitudes of the displacement.

From the comparison in Figure 6.5, it is clear that the effect of compressibility is
very important, as the plots look very different. The maximum displacements at



6.2. SIMULATION RESULTS 80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

|u
|[

cm
]

top
middle
bottom

(a) Model 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

|u
|[

cm
]

top
middle
bottom

(b) Model 4

Figure 6.6: Displacement magnitude over time for chosen points in the geometry
for Model 1 and Model 4. The two plots differ both in qualitative behavior and
in magnitude.

the time level depicted are focused mainly around the centre of the geometry for
Model 1, while the maximum displacements for Model 4 are focused around the
sides of the geometry.

Recording the magnitude of the displacement in the points specified by Table 6.12
for Models 1 and 4 result in the plots shown in Figure 6.4.

For Model 1, as mentioned, the displacements in the points xT (top) and xB
(bottom) are smaller than the displacement in the point xM (middle). This is not
the case for Model 4. The displacements in the points xT , xM and xB are similar
in magnitude, and the plots for the three points are similar in shape.

The magnitude of the displacements is one order of magnitude larger for Model
4 than for Model 1. A displacement in the order of 1cm is extremely large
considering that the length of the spinal cord segment is approximately 3.4cm,
and approximately 1.5cm at the widest. Clearly the compressibility effect is
significant.

Following a point in the geometry for Model 1 over time for several cycles results
in the plot shown in Figure 6.7.

Qualitatively, the displacement appears the same for each of the cycles. Denote the
peak displacement in each cycle for the points xT , xM and xB by uT,max, uM,max

and uB,max respectively. The peak displacements for the three points for each
cycle are shown in Table 6.14.

There is a definite, but small difference in the values of the peak displacements
over the four cycles in all three points, in the order of 0.1µm. The peaks for the
point xM (the point with the largest displacement) are equidistant, and occur
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Figure 6.7: Displacement in the points specified in Table 6.12 over four cycles
(T = 3.4s).

Cycle uT,max(cm) uM,max(cm) uB,max(cm)

1 0.064560 0.134180 0.0534309
2 0.064612 0.134151 0.0534311
3 0.064609 0.134119 0.0534312
4 0.064609 0.134119 0.0534312

Table 6.14: Peak displacements for the points xT , xM and xB for each cycle,
using Model 1 with T = 3.4. The difference in the peak displacements over four
cycles is in the order of 1× 10−7m for each of the points.

0.045s into each cycle.

6.2.2 Comparing the viscoelastic model with the purely
elastic model

A comparison of the results of Models 1 and 6 can be seen in Figure 6.8. The
parameters for the Model 6 have been computed in order to allow the displacement
magnitudes to be compared.

From the comparison in Figure 6.8, the displacement patterns for Models 1 and 6
appear relatively similar. The only clear difference at this time level is that the
largest displacements are focused slightly more along the sides of the geometry for
Model 6, and more in the centre of the geometry for Model 1. Viewing the plots
for the whole time series shows why the patterns are slightly different; Model 1
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Figure 6.8: Visual comparison of Model 1 and Model 6 at t = 0.075s.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

|u
|[

cm
]

top
middle
bottom

(b) Model 6

Figure 6.9: Displacement magnitude over time for a chosen point in the geometry
for Model 1 and Model 6. The two curves show the similar qualitative behavior,
but differ in magnitude.

has a slight lag in response when compared to Model 6. This can also be seen
with plots of the points xT , xM and xB over time for Models 1 and 6, as shown in
Figure 6.9.

The suggested lag of Model 1 in comparison to Model 6 may be quantified by
testing when the point xT , xM and xB reach their peaks for the respective models.
The results of such a test are shown in Table 6.15.

There is a clear lag of 10− 15ms overall for Model 1 when compared to Model 6.
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Reaches peak after (s)

Point Model 1 Model 6

xT 0.055 0.04
xM 0.045 0.035
xB 0.14 0.125

Table 6.15: Time taken to reach peak displacement for the chosen points in
Model 1 and Model 6.

A comparison of the results of Models 2 and 4 can be seen in Figure 6.10. The
parameters for the Model 2 have been computed in order to allow the displacement
magnitudes to be compared.
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Figure 6.10: Visual comparison of Model 2 and Model 5 at t = 0.075s.

The results shown Figure 6.10 in are very similar to the results in Figure 6.8. The
results in Figure 6.8a and Figure 6.10a show very similar displacement patterns;
the same goes for the results in Figure 6.8b and Figure 6.10b. At the given time
level, the largest displacements in Figure 6.10 (Models 2 and 5) are one order of
magnitude smaller than the the largest displacements in Figure 6.8 (Models 1 and
6).

The results from following the chosen points over time for Models 2 and 5 are
displayed in Figure 6.11. The plots display behaviour that is similar in shape to
the plots in Figure 6.9, in that the plots in Figure 6.11b lag somewhat behind the
plots in Figure 6.11a. The magnitude of the displacements shown in Figure 6.11
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Figure 6.11: Displacement magnitude over time for a chosen point in the
geometry for Model 2 and Model 5. The two curves show the similar qualitative
behavior, but differ in magnitude.

are two orders of magnitude smaller than those shown in Figure 6.9.

Running a simulation for Model 6 over several cycles (T = 3.4s) results in a plot
similar in shape to Figure 6.7. Measurements of the displacement magnitude of
the peak at each cycle for the points xT , xM and xB are shown Table 6.16.

Cycle uT,max(cm) uM,max(cm) uB,max(cm)

1 0.0765298 0.166881 0.0600790
2 0.0765298 0.166881 0.0600790
3 0.0765298 0.166881 0.0600790
4 0.0765298 0.166881 0.0600790

Table 6.16: Peak displacements for the points xT , xM and xB for each cycle,
using Model 6 with T = 3.4. There is no difference in the magnitude of the peak
displacement for each cycle.

The results in Table 6.16 show that there is no difference in the magnitude of the
displacement at each peak for the points xT , xM and xB for Model 6. The peaks
for the point xB (the point with the largest displacement) occur equidistantly, at
0.035s into the cycle.



Chapter 7

Discussion

Simulations were run using six different models; four models used a viscoelas-
tic constitutive relationship, and two models used a linear elastic constitutive
relationship. The different models are summarized in Table 6.10. The greatest
difference in magnitude in the displacement results was between Models 1 and
5. The greatest difference in displacement patterns and behaviour was between
Models 1 and 4. The results are discussed in detail below.

The results showed displacements in the order of 1mm for the SLS model with
default parameter values (Model 1), and displacements in the order of 70µm
for the linear elasticity model with default parameter values (Model 5). Thus,
with the default parameters for both models, Model 1 resulted in displacement
magnitudes approximately 15 times larger than Model 5.

Doubling the viscosity parameter η from the SLS model with default values (Model
3) resulted in a decrease in displacement magnitude by a factor of approximately
1.6 when compared to Model 1. The ratio of the peak displacement to the initial
displacement was approximately 1.8 times higher for Model 1 than for Model 3.

Neglecting the effects of compressibility (Model 4) resulted in displacement magni-
tudes one order of magnitude larger than when these effects were included (Model
1).

Running a simulation for several cycles with Model 1 showed that the peak
displacement differed slightly (in the order of 10−7 − 10−8m) in the first three
cycles; the difference between the peak displacements in cycles 3 and 4 was
not visible. A similar test using linear elasticity (Model 6) did not show any
difference between the peak displacements in the four cycles. The change in
peak displacement became smaller and smaller for each cycle with Model 1. It is
therefore anticipated that a simulation over more than four cycles will display the
same changes in the peak displacement over the first three / four cycles, but that
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the change in peak displacement will diminish with each cycle.

The behaviour of the results using the SLS model with default and calculated
parameters (Models 1,2) displayed a lag of approximately 10ms when compared
to the corresponding linear elasticity models (Models 5,6). This can be seen in
Figure 6.9.

Parameter values

Changing parameter values in the models had some effect on the results. Scaling
up/down the parameter values, for example from Model 1 to Model 2 or from
Model 5 to Model 6 had a clear effect on the magnitude of the displacements, as
can be seen in Figures 6.8-6.11.

Doubling η caused the displacement magnitude to decrease by a factor of ≈ 1.6
which is quite substantial. The displacement patterns in Figure 6.3 appear to
be the same. However, viewing the plots for selected time steps over the time
interval showed that while the displacement patterns were very similar, they were
not identical at every time step. This is supported by the plots in Figure 6.4,
where the plot in Figure 6.4b displays a more damped behaviour than the plot in
Figure 6.4a. The choice of η was based on the MRE study by Klatt et al. [28].
The values obtained in that study are supported by values obtained in studies by
Green et al. [21] and Sack et al. [42], although Green et al. [21] obtained values
that were slightly higher. Reviews by Bilston [9] and Clarke [13] report values of
the same magnitude, as well as higher values.

The choice of η, as well as the elastic parameters E1 and E2 are clearly important
to the magnitude of the displacement for the viscoelastic model.

The parameter ν appears in the linear elasticity model, and also appears implicitly
in the viscoelastic model. This parameter provides information about a materials
compressibility. As mentioned, ν = 0 means a material is completely compressible,
while ν = 0.5 means a material is completely incompressible. The effect of
compressibility was investigated using Models 1 and 4, where Model 1 used the
parameter value C = 22.8 to implicitly set ν ≈ 0.479, while Model 4 used C = 0
to set ν = 0. The results, displayed in Figure 6.5 and Figure 6.6 suggest that
the solution is sensitive with respect to the value of ν, and that the effects of
compressibility must be included in the model to get believable results.

Overall, selecting appropriate parameter values, both for the SLS model and for
the linear elasticity model is challenging due to the large number of different
values reported in the literature. In Model 6, the Young’s modulus was calculated
in order to give similar displacement magnitudes for Models 1 and 6. The value
for Young’s modulus used in Model 6 is in the order of 1kPa, and is slightly below
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the range found in the literature, see section 3.6. Thus it seems likely that a
higher Young’s modulus is more accurate for modelling the spinal cord.

Model 5 uses the same parameter values as Støverud et al. [50], with E = 16kPa.
This seems to be a more realistic value considering what is reported in the
literature, see subsection 3.6.1. However, using Model 5 results in displacements
that are at least one order of magnitude smaller than with Model 1. The calculated
parameter values used in Model 2 result in similar displacement magnitudes as
Model 5, but these values are slightly above the range of values reported by for
example Bilston [9] and Clarke [13]. Higher values typically arise from testing
with higher strain rates and strains.

Considering the pronounced effect the parameter values had on the displacement
magnitude in the results, as well as having some effect on the displacement patterns,
there is a clear need for an established methodology for obtaining parameter values
from observations This may allow for the development of standardized parameter
values for the spinal cord.

Viscoelastic effect

The results show a small but clear effect of using a linear viscoelastic model, as
compared to a linear elastic model, when simulating the response of the spinal
cord under pressure. Plots of selected points in the geometry over time, as shown
in for example Figure 6.9 and Figure 6.11 display a lag of approximately 10ms in
the viscoelastic displacement when compared to the linearly elastic displacement.

Running simulation using Model 1 over four cycles (T = 3.4s) and recording the
magnitude of the displacements in the points specified in Table 6.12 results in
the plot displayed in Figure 6.7. A measurement of the peak displacement in the
points for each cycle, as listed in Table 6.14, shows that the peak displacement
does vary for the first three cycles, by approximately 0.1µm. This does not occur
in a similar simulation, using Model 6 and T = 3.4s, see Table 6.16.

However, it is unclear whether the viscoelastic effect is important in the context
of syrinx formations. Seeing as the simulations using the SLS model display
behaviour very similar to that of the simulations using the linear elasticity model,
it is unlikely that the effect is significant.

Comparing viscoelastic reponse to poroelastic response

Using results obtained by Støverud et al. [50], we may compare the results using
the SLS model to results using a poroelastic model. The comparison is shown in
Figure 7.1. Note that the top and bottom 0.5cm have been discarded for the result
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from Model 1, so that the geometries are comparable. Note also that the plot
for Model 1 is at a different time level than the two other plots. This is because
the time level for the plots in Figure 7.1a and Figure 7.1b is chosen because the
displacement is at it’s maximum at this time level. However, as shown above,
Model 1 (and the other viscoelastic models) reaches peak displacement at a later
time level.

(a) Poroelastic [50] (b) Linear elastic [50]

0.08

0.1

0.12

0.14

|u| (cm)

0.0613

0.142

Time: 0.050 s

(c) SLS, Model 1

Figure 7.1: Comparison of results from Støverud et al. [50] with viscoelastic
results using Model 1. Note that the top and bottom 0.5cm have been cut from
the geometry to display the same geometry as Støverud et al. [50].

From the visual comparison, there displacement pattern for Model 1 appears
similar to the patterns obtained by Støverud et al. [50] using poroelastic and
linear elastic models. The biggest difference between the results is the magnitude
of the displacement. Note that the magnitude of the displacement for Model 5 is
similar to that shown in Figure 7.1b at the corresponding time step.

The main difference between the viscoelastic and the poroelastic models is that
the viscoelastic model models the spinal cord a solid, while the poroelastic model
also takes into consideration fluid flow within the spinal cord.

Limitations

The most significant limitation in modelling the spinal cord mathematically is the
lack of standardized parameter values. Because the range in values is large in the
literature, choosing appropriate parameter values is challenging.

Because the geometry modelled is only a small part of the spinal cord, selecting
appropriate boundary conditions is also a challenge. It is possible that restricting
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the geometry in the axial direction at the top and bottom boundaries is not entirely
accurate. The Neumann boundary condition simulating the applied pressure is
also a simplification. The walls of the subarachnoid space, where CSF flows, may
be elastic and dampen the pressure wave. Other effects like an obstruction in the
SAS may also have an effect on the pressure wave. This limitation also applies to
the poroelastic model, as stated by Støverud et al. [50].

Modelling the spinal cord as an elastic solid allows for understanding of how the
spinal cord deforms under pressure. However, the models do not take into account
the fluid flow within the cord. The fluid that is present in a syrinx must come
from somewhere, and a model that includes fluid flow within the cord, such as a
poroelastic model, may give a better idea of how a syrinx forms than a model
that considers the spinal cord as a solid.
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Chapter 8

Conclusions

This thesis has developed two mathematical models for simulating the response of
the spinal cord under pressure induced by CSF flow. The simulations were done on
a mesh created from the geometry of an actual spinal cord segment from a sheep.
The applied pressure was based on pressure data from a patient with the Chiari I
malformation. The mathematical models were discretized using the finite element
method and the discretizations were implemented in Python using FEniCS[1]. The
implementations were verified using visual tests and the method of manufactured
solutions. The use of an efficient scheme when calculating the integral in the
viscoelastic constitutive relationship (3.45) resulted in a computational speed
comparable to the calculations of the linear elasticity constitutive relationship
(3.8).

Simulations using the spinal cord geometry were run with both the SLS model
and the linear elasticity model, and different model parameters were tested.
Simulations over several cycles were also run. The results from using the SLS
model with different parameters were compared, and results from using the SLS
model were compared with results from using the linear elasticity model.

There was a small but distinct effect in using a viscoelastic model as compared
to a purely elastic model, in that the behaviour of the viscoelastic model lagged
behind that of the linear elastic model by approximately 10ms. There was also a
small variation in the peak displacements when running a simulation over several
cycles using the viscoelastic model in the order of 10−7 − 10−8; this did not occur
when using the linear elastic model. However, it is unclear whether this has any
effect in the context of syrinx formation.

Apart from the lag discussed above, the viscoelastic model displayed results that
were qualitatively very similar to the results from the linear elasticity model.
Although the magnitudes of the displacements were approximately 15 times larger
for the viscoelastic model than for the linear elastic model with default parameters,
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the difficulty in selecting appropriate parameter values may be the cause of this.

Due to the fact that the viscoelastic model exhibited behaviour very similar to
that of the linear elastic model, it is unlikely that using a linear viscoelastic model
will further understanding of syrinx formation. In that respect, a poro-elastic
model, which takes into account fluid flow within the spinal cord, may be of more
interest in further studies into the underlying mechanisms of syringomyelia.

An interesting extension to this thesis would be to obtain MRE data as well as
patient specific geometries from a set of healthy and unhealthy patients. This
would allow for simulations using parameter values that are specific to a given
patient.

As using a linear viscoelasticity model did not produce results that create new
insight into the mechanics of syringomyelia, the use of a non-linear model may be
of interest.

Another interesting extension would be to couple a simulation of CSF flow, using
computational fluid dynamics, to an anatomically realistic geometry. Doing this
would allow for example the effect of an obstruction in the SAS on a patient-specific
spinal cord geometry to be investigated.



Appendix A

Code

A.1 Testing numerical integration

"""

2 Testing two different methods of approximating an integral in

time:

- Trapezoidal sum

4 - Efficient sum based on the trapezoidal sum

6 This script calculates solutions for a given integral and

compares them tol

the exact solution for both methods.

8 """

10 from matplotlib.pyplot import *

from trapeziodal_test import Trap_Tester , Efficient_Trap_Tester

12 import numpy as np

import math as m

14 import sys , time

16 def compute(n, rule):

a = 0; b = 1;

18 test = rule(a, b, n)

t = test.t

20 dt = test.dt

sol = np.zeros(n)

22 # trapn = 0.5*dt*test.Ds(0)*test.eps(t[-1])

t0 = time.time()

24 sol[0] = test.sum(0)

for i in range(1,n):

26 sol[i] = test.sum(i) + test.end_term(i)

t1 = time.time()

28 t_comp = t1 - t0

error = test.exact(t) - sol
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30 E = m.sqrt(dt*sum(error**2))

return E, t_comp

32

def convergence(compute , rule):

34 h = [] # dt

E = [] # errors

36 nlist = [10, 20, 40, 80, 160 , 320 , 640 , 1280]

N = 8

38 for n in nlist:

h.append(1./n)

40 Eval , t = compute(n, rule)

E.append(Eval)

42

44 print "Finished computing h and E."

print E

46

# Convergence rates

48 from math import log as ln #(log is a dolfin name too)

print "Convergence rate:"

50 print "h=%10.2E, E=%12.10E , r=--" % (h[0], E[0])

for i in range(1, len(E)):

52 r = ln(E[i]/E[i-1])/ln(h[i]/h[i-1])

print "h=%10.2E, E=%12.10E , r=%.4f" % (h[i], E[i], r)

54 # Return time taken to compute last (longest) sum

return t

56

def plot_stuff(rule):

58 n = 101

if rule == "trap":

60 E, sol , t, exact = compute_trapezoidal(n)

elif rule == "efficient":

62 E, sol , t, exact = compute_efficient(n)

64 plot(t, exact , ’-’, t, sol , ’--’)

legend([’Exact’, ’Numerical (%s)’ % rule])

66 show()

68

if __name__ == ’__main__ ’:

70 print "--------- Regular trapezoidal rule -----------"

t0 = convergence(compute , Trap_Tester)

72 # plot_stuff ("trap")

print "----------------------------------------------"

74 print "-------- Efficient trapezoidal rule ----------"

t1 = convergence(compute , Efficient_Trap_Tester)

76 # plot_stuff (" efficient ")

print "Time taken for regular trapezoidal rule: ", t0

78 print "Time taken for efficient trapezoidal rule: ", t1

print "Speedup: ", float(t0)/(t1)

80
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h = []

82 E_T = [] # errors

E_E = []

84 nlist = [10, 20, 40, 80, 160 , 320 , 640 , 1280]

N = 8

86 for n in nlist:

h.append(1./n)

88 Eval , t = compute(n, Trap_Tester)

E_T.append(Eval)

90 Eval , t = compute(n, Efficient_Trap_Tester)

E_E.append(Eval)

92

print "Finished computing h and E."

94 print "Differences (T, E):"

for i in range(len(E_E)):

96 print "h=%6.2g, E_T=%10g , E_E=%10g , diff=%g" % (h[i], E_T[i

], E_E[i], E_T[i]-E_E[i])

/home/nina/Dropbox/bitbucket/master thesis src/src/integral test.py

""" Implement the trapezoidal rule and test it for a given

function """

2 """

def trapezoidal(self , i):

4 Ds, u = self.Ds, self.u

t, dt = self.t, self.dt

6 eps = self.eps

s = 0*eps(self.u[0])

8 for j in range(1, i):

s += Ds(t[i]-t[j])*eps(u[j]) + Ds(t[i]-t[j-1])*eps(u[

j-1])

10 return 0.5*dt*s

"""

12 import numpy as np

import math as m

14 import matplotlib.pyplot as plt

16 class Problem:

def exact(self , t):

18 return 0.5*(np.exp(-t) + np.sin(t) - np.cos(t))

20 def Ds(self , t):

return m.exp(-(t))

22

def eps(self , u):

24 return m.sin(u)

26 class Trap_Tester(Problem):

28 def __init__(self , a, b, n):

self.t = np.linspace(a, b, n)

30 self.dt = self.t[1] - self.t[0]
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32 def sum(self , i):

t, dt = self.t, self.dt

34 Ds, eps = self.Ds, self.eps

s = 0.5*Ds(t[i] - t[0])*eps(t[0])

36 for j in range(1, i):

s += Ds(t[i] - t[j])*eps(t[j])

38 return dt*s

40 def end_term(self , i):

t, dt = self.t, self.dt

42 Ds, eps = self.Ds, self.eps

return 0.5*dt*Ds(0)*eps(t[i])

44

class Efficient_Trap_Tester(Problem):

46

def __init__(self , a, b, n):

48 self.t = np.linspace(a, b, n)

self. dt = self.t[1] - self.t[0]

50 self.tot_sum = 0

self.temp_sum = 0

52

def sum(self , i):

54 t, dt = self.t, self.dt

Ds, eps = self.Ds, self.eps

56 if i == 0:

self.temp_sum = Ds(t[i]-t[0])*eps(t[0])

58 self.tot_sum = 0.5*dt*self.temp_sum

else:

60 self.temp_sum = np.exp(-(t[i]-t[i-1]))*self.temp_sum \

+ Ds(t[i]-t[i-1])*eps(t[i-1])

62 self.tot_sum = dt*self.temp_sum

return self.tot_sum

64

def end_term(self , i):

66 t, dt = self.t, self.dt

Ds, eps = self.Ds, self.eps

68 return 0.5*dt*Ds(0)*eps(t[i])

/home/nina/Dropbox/bitbucket/master thesis src/src/trapeziodal test.py



Appendix B

The FEniCS Software – usage

This chapter shows an example of the syntax one may use with the FEniCS
software. The example is based on the Poisson problem discretized in section 4.1,
thus the discrete problem to be implemented is

Find uh ∈ V h such that

a(uh, v) = L(v), ∀v ∈ V̂ h, (B.1)

a(u, v) =

ˆ

Ω

∇u · ∇v dΩ,

L(v) =

ˆ

Ω

f · v dΩ−
ˆ

ΓN

g · v dΓ.

The domain Ω will in this example be the unit square. The functions f , g are
chosen to be

f = 10 e−((x−0.5)2+(y−0.5)2)/0.02 (B.2)

g = sin(5x) (B.3)

The Dirichlet boundary ΓD is chosen to be the vertical boundaries of the unit
square, with boundary condition u = 0. The Neumann boundary is chosen to be
the horizontal boundaries.
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Implementation

Note: the following example is taken from the Poisson demo in the FEniCS docu-
mentation, http://fenicsproject.org/documentation/dolfin/1.3.0/python/
demo/documented/poisson/python/documentation.html.

First, the dolfin module is imported:

from dolfin import *

Code B.1 :

We begin by defining a mesh of the domain and a finite element function space V
relative to this mesh. As the unit square is a very standard domain, we can use a
built-in mesh provided by the class UnitSquareMesh. In order to create a mesh
consisting of 32 x 32 squares with each square divided into two triangles, we do
as follows

1 # Create mesh and define function space

mesh = UnitSquareMesh(32 ,32)

3 V = FunctionSpace(mesh , "CG", 1)

Code B.2 :

The second argument to FunctionSpace is the finite element family, while the
third argument specifies the polynomial degree. Thus, in this case, our space V
consists of first-order, continuous Lagrange finite element functions (or in order
words, continuous piecewise linear polynomials).

Next, we want to consider the Dirichlet boundary condition. A simple Python
function, returning a boolean, can be used to define the subdomain for the Dirichlet
boundary condition (ΓD). The function should return True for those points inside
the subdomain and False for the points outside. In our case, we want to say that
the points (x, y) such that x = 0 or x = 1 are inside on the inside of ΓD. (Note
that because of rounding-off errors, it is often wise to instead specify x < ε or
x > 1− ε where ε is a small number (such as machine precision).)

1 # Define Dirichlet boundary (x = 0 or x = 1)

def boundary(x):

3 return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS

Code B.3 :

Now, the Dirichlet boundary condition can be created using the class DirichletBC.
A DirichletBC takes three arguments: the function space the boundary condition
applies to, the value of the boundary condition, and the part of the boundary on
which the condition applies. In our example, the function space is V, the value of
the boundary condition (0.0) can represented using a Constant and the Dirichlet

http://fenicsproject.org/documentation/dolfin/1.3.0/python/demo/documented/poisson/python/documentation.html
http://fenicsproject.org/documentation/dolfin/1.3.0/python/demo/documented/poisson/python/documentation.html
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boundary is defined immediately above. The definition of the Dirichlet boundary
condition then looks as follows:

1 # Define boundary condition

u0 = Constant(0.0)

3 bc = DirichletBC(V, u0 , boundary)

Code B.4 :

Next, we want to express the variational problem. First, we need to specify the
trial function u and the test function v, both living in the function space V . We
do this by defining a TrialFunction and a TestFunction on the previously defined
FunctionSpace V .

Further, the source f and the boundary normal derivative g are involved in the
variational forms, and hence we must specify these. Both f and g are given by
simple mathematical formulas, and can be easily declared using the Expression
class. Note that the strings defining f and g use C++ syntax since, for efficiency,
DOLFIN will generate and compile C++ code for these expressions at run-time.

With these ingredients, we can write down the bilinear form a and the linear form
L (using UFL operators). In summary, this reads

1 # Define variational problem

u = TrialFunction(V)

3 v = TestFunction(V)

f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)

) / 0.02)")

5 g = Expression("sin(5*x[0])")

a = inner(grad(u), grad(v))*dx

7 L = f*v*dx - g*v*ds

Code B.5 :

Now, we have specified the variational forms and can consider the solution of
the variational problem. First, we need to define a Function u to represent the
solution. (Upon initialization, it is simply set to the zero function.) A Function
represents a function living in a finite element function space. Next, we can call
the solve function with the arguments a == L, u and bc as follows:

1 # Compute solution

u = Function(V)

3 solve(a == L, u, bc)

Code B.6 :

settings for solving a variational problem have been used. However, the solution
process can be controlled in much more detail if desired.
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A Function can be manipulated in various ways, in particular, it can be plotted
and saved to file. Here, we output the solution to a VTK file (using the suffix
.pvd) for later visualization and also plot it using the plot command:

1 # Save solution in VTK format

file = File("poisson.pvd")

3 file << u

5 # Plot solution

plot(u, interactive=True)

Code B.7 :
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