

Smartphone Assisted, Complex
Event Processing

Marcel Eggum

August 15th, 2014

I

Abstract

This thesis is concerned about the enablement and evaluation of Esper, a state of

the art Complex Event Processing engine that could prove useful within the domain

of ubiquitous, smartphone assisted healthcare and monitoring. Previous attempts to

enable Esper have proven to be inconsistent and incomplete, and measurements

that indicate the performance of this engine are limited.

The main intention of this thesis is therefore to identify and resolve the limitations

that prevent Esper from operating correctly, and to measure the maximum

achievable performance in this environment. Our evaluation includes a collection of

primitive tasks that exercise fundamental principles of event processing and data

stream management. We found that smartphone devices are suitable for the

purpose of ubiquitous event processing but contain constraints that could prove real

time requirements hard to achieve due to an increasing amount of executional

pauses caused by memory allocation and de-allocation procedures. An enablement

of Esper on smartphone device is from our viewpoint best suited to environments

that emit higher level events with low rate of occurrence. Our work has enabled the

use of Esper in contexts that were never before possible and will hopefully ensure

that future revisions of the engine are embeddable and maintainable.

II

III

Preface

I would first and foremost like to thank Kristoffer Robin Stokke for the aid and moral

support that I received during our time. I believe that thesis this would never be

present without you. I wish you the best, and present my deepest gratitude.

I would also like to thank Ellen Munthe-Kaas and Vera Goebel for everything that

they have done for me. You have ensured my growth and given me the possibility to

explore the domain of Informatics in a way that I would never have discovered on

my own.

Thank you Ivana, Lucyna, Julia and Nils. The love and support that I so needed

throughout the time of this work kept me afloat when I just wanted to stop

swimming. I hope to be a better companion, son and brother for the future that is to

come.

This thesis was originally oriented around the use of an Ultra Wideband Impulse

Radar (UWB-IR) [1] that arose from a collaboration between the University of Oslo

and Novelda, and resulted in a low emission, CMOS based sensor that measures only

5x5 millimeters. The UWB-IR could be embedded into appliances that are small and

light enough to be carried by humans, but require a central aggregator that is

capable of extracting and enriching information that it detects. We believed that the

UWB-IR could be utilized to detect motions caused by the heart and lungs and the

main motivation for enabling a Complex Event Processing engine on a smartphone

device, was directly related to this.

A profound amount of time was spent to understand and integrate the UWB-IR with

our work, but our results deviated from the original intent of this thesis and could

not be included. We describe this work and the problems that arose in Appendix A,

and welcome the reader to explore this section as a distinct part of this thesis.

IV

V

Contents

I. Introduction and Background .. 1

1 Introduction .. 3

1.1 Problem statement ... 6

1.2 Contribution .. 7

1.3 Methods .. 7

1.4 Outline .. 7

2 Complex Event Processing .. 9

2.1 Domain .. 9

2.1.1 Classification ... 10

2.1.2 Terminology .. 11

2.2 Principles of Data Stream Management ... 11

2.2.1 Time and Partition... 11

2.2.2 Computing Answers .. 12

2.2.3 Windows ... 12

2.2.4 Selection and Aggregation .. 14

2.3 Principles of Event Processing .. 15

2.3.1 Filtering ... 15

2.3.2 Pattern Detection .. 15

2.3.3 Immutability .. 16

2.3.4 Event Hierarchies .. 17

2.4 Limitations and Challenges ... 17

2.4.1 Temporal Issues .. 17

2.4.2 Uncertainty ... 18

3 Esper ... 19

3.1 Domain .. 19

3.2 Architecture .. 20

3.3 Event Representation ... 23

3.4 Event Processing Language ... 24

3.5 Patterns ... 26

3.6 Knowledge Repository .. 28

4 Android ... 29

VI

4.1 Domain .. 29

4.2 Operating Environment .. 30

4.2.1 Kernel .. 30

4.2.2 Programming Environment ... 31

4.2.3 Runtime Environment ... 32

4.2.4 Memory Management .. 33

4.3 Application Framework ... 35

4.3.1 Application Components... 36

4.3.2 Lifecycle ... 37

II. Design and Implementation .. 39

5 Requirements Analysis .. 40

5.1 Correlation between Esper and Android .. 40

5.2 Performance Evaluation.. 40

6 Asper. Enabling Esper on Android .. 43

6.1 Limitations and Issues ... 43

6.2 Required Changes ... 44

6.3 Relational Database Integration ... 46

6.4 Verification and Distribution ... 48

7 Benchmark Implementation ... 50

7.1 Tasks .. 50

7.1.1 Task 1: Selectivity .. 50

7.1.2 Task 2: Projection .. 51

7.1.3 Task 3: Aggregation ... 51

7.1.4 Task 4: Join – Table ... 52

7.1.5 Task 5: Join – Window to Window .. 53

7.1.6 Task 6: Pattern Detection ... 53

7.1.7 Task 7: Database Integration .. 54

7.1.8 Task 8: Multiple Events and Threads ... 55

7.2 Architecture .. 56

7.2.1 Overview and Domain ... 56

7.2.2 Component Correlation and Application Flow 58

7.3 Implementation .. 61

7.3.1 System ... 61

7.3.2 Task ... 62

7.3.3 Generator .. 64

7.3.4 Worker .. 66

VII

7.3.5 Monitor ... 68

7.3.6 Measurements .. 70

7.3.7 Interface .. 70

7.4 Distribution and Availability .. 71

III. Evaluation and Conclusion ... 74

8 Benchmark Measurements ... 76

8.1 Domain .. 76

8.1.1 Hardware and Software .. 76

8.2 Preliminary Experiments ... 77

8.2.1 Thermal Effects ... 77

8.2.2 Collection and Heap Allocation ... 80

8.2.3 Event Format ... 82

8.3 Measurements .. 83

8.3.1 Setup ... 83

8.3.2 Task 1: Selectivity .. 85

8.3.3 Task 2: Projection .. 86

8.3.4 Task 3: Aggregation and Window Type .. 87

8.3.5 Task 4: Window to Table Join ... 91

8.3.6 Task 5: Window to Window Join ... 92

8.3.7 Task 6: Patterns ... 94

8.3.8 Task 7: Database ... 97

8.3.9 Task 8: Multiple Events ... 99

8.4 Discussion.. 100

9 Conclusions ... 103

9.1 Summary of Contribution ... 104

9.2 Critical Review ... 104

9.3 Future Work .. 105

Bibliography .. 106

Appendices .. 109

Appendix A .. 109

VIII

List of figures

Figure 2.2.3-i Landmark window .. 13

Figure 2.2.3-ii Sliding window ... 13

Figure 2.2.3-iii Jumping window ... 14

Figure 3-2.4.2-i Simplified, architectural overview of Esper [17] 20

Figure 2.4.2-ii Processing model ... 22

Figure 2.4.2-i Architectural overview of Android [20] .. 30

Figure 4.2.3-i Performance distinction. ART against Dalvik [24] 33

Figure 4.2.4-i Garbage collection in Android [24] ... 34

Figure 4.2.4-ii Garbage collection message .. 35

Figure 4.3.1-i Android building blocks .. 36

Figure 4.3.2-i Third party library replacements for Asper .. 45

Figure 7.2.1-i Benchmark component architecture .. 57

Figure 7.2.2-i Benchmark flow diagram .. 59

Figure 7.3.1-i General Benchmark implementation ... 61

Figure 7.3.2-i Description of a JSON based Task ... 62

Figure 7.3.7-i Benchmark interface... 71

Figure 8.2.1-i Thermal effects, single core utilization. .. 78

Figure 8.2.1-ii Thermal effects, quad-core utilization. .. 78

Figure 8.2.1-iii Throttling of throughput imposed by frequency scaling Error!

Bookmark not defined.

Figure 8.2.2-i Pause times imposed by window size on Dalvik 80

Figure 8.2.2-ii Pause times imposed by window size on ART 81

Figure 8.2.2-iii Correlation between pause times and window sizes for Dalvik and

ART. ... 81

Figure 8.2.3-i Performance implications caused by the choice of a data format 82

Figure 8.3.2-i Selectivity measurements ... 85

Figure 8.3.3-i Projection measurements... 86

Figure 8.3.4-i sum(); aggregation measurements over different window types 87

Figure 8.3.4-ii median(), aggregation measurements over different window types .. 88

Figure 8.3.4-iii Garbage collection occurrences for median over a jumping window 89

Figure 8.3.4-iv Throughput over time for median over a jumping window 89

Figure 8.3.5-i Table join measurements ... 91

Figure 8.3.6-i Measurements concerning window to window joins with fixed

selectivity .. 92

Figure 8.3.6-ii Measurements concerning window to window joins with variable

selectivity .. 93

Figure 8.3.7-i Change in throughput for temporal patterns 94

Figure 8.3.7-ii Change in throughput for variable identifier ranges 95

Figure 8.3.7-iii Change in throughput for pattern selectivity 96

Figure 8.3.7-iv Difference between Dalvik and Art for repetitive evaluation policies 97

Figure 8.3.8-i Measurements concerning static database access 97

Figure 8.3.8-ii Measurements concerning cached database access 98

Figure 8.3.9-i Change in throughput for multiple Worker instances 99

https://d.docs.live.net/8d0b05955c56dae9/Thesis/Writings/Marcel%20Eggum%20-%20Thesis.docx#_Toc395908935

IX

Figure 9-i Placement of Asper in an Android based system 103

X

List of tables

Table 3.2-i Overview of external libraries in Esper ... 23

Table 3.4-i Overview of general query operators ... 25

Table 3.4-ii Overview of query operators related to windows 25

Table 3.5-i Overview of pattern operators ... 27

Table 4.3-i Overview of component building blocks in Android 37

Table 5.2-i Tasks and factors regarding performance evaluation of Esper 42

Table 7.2-i General description of benchmark components 58

Table 8.1-i Nexus 5 device specifications ... 77

Table 8.1-ii Nexus 5, runtime environment settings .. 77

Table 8.3-i Change in throughput for selectivity .. 85

Table 8.3-ii Difference between Dalvik and ART for selectivity 85

Table 8.3-iii Change in throughput for projection .. 86

Table 8.3-iv Difference between Dalvik and ART for projection 86

Table 8.3-v Change in throughput for sum() and distinct window types 87

Table 8.3-vi Difference between Dalvik and ART for sum() .. 88

Table 8.3-vii Change in throughput for median() and distinct window types 88

Table 8.3-viii Difference between window type and throughput for median() 90

Table 8.3-ix Difference between Dalvik and ART for median() 90

Table 8.3-x Change in throughput for table joins ... 91

Table 8.3-xi Difference between Dalvik and ART for table joins. 91

Table 8.3-xii Change in throughput for fixed window joins .. 92

Table 8.3-xiii Difference between Dalvik and ART for fixed window joins 92

Table 8.3-xiv Change in throughput for variable window joins 93

Table 8.3-xv Difference between Dalvik and ART for variable window joins 93

Table 8.3-xvi Change in throughput for temporal patterns .. 94

Table 8.3-xvii Difference between Dalvik and ART for temporal patterns 94

Table 8.3-xviii Change in throughput for variable identifier ranges 95

Table 8.3-xix Difference between Dalvik and ART for variable identifier ranges 95

Table 8.3-xx Difference between Dalvik and ART for static database access 98

Table 8.3-xxi Change in throughput for invalidated cache portions 99

Table 8.3-xxii Change in throughput between cached and un-cached access 99

Table 8.3-xxiii Change in throughput for multiple Workers 100

Table 8.3-xxiv Difference between Dalvik and ART for multiple Workers................ 100

XI

Abbreviations

Abbreviation Description

SoC System on Chip

JNI Java Native Interface

NDK Native Development Kit

SDK Software Development Kit

JDBC Java Database Connectivity

SQL Structured Query Language

API Application Programming Interface

JAR Java Archive

CEP Complex Event Processing

DSM Data Stream Management

UWB-IR Ultra Wideband Impulse Radar

XII

1

I. Introduction and Background

2

3

1 Introduction

Population growth and health projections indicate that many modern societies face
situations where the public health sector will not be sufficiently effective in
accommodating the growing majority of elderly or ill citizens.
The cost of housing certain patients becomes high as their situation requires
continuous monitoring, but their state of recovery is at a level that allows them to
stay at home and release the resources of a hospital or elderly home.
The concept of Sensor Information Systems for Assisted Living (SISAL) [2] motivate
for the use of composite sensors to monitor blood levels, respiration, location and
vital-signs. As sensors are enabled to communicate through network interfaces, they
present abilities to form complex images of the situation state. Communication
between such sensors could be formed by a Body Area Sensor Network (BASN) [3].
Their heterogeneity and purpose will require different sampling rate quantization
and exhibit a wide range of power supply requirements, calibration parameters, and
output interfaces.

To prevent recurring engineering costs, each BASN platform would either require

significant volume in a single application, or aggregate volume across several

applications. This will create design tradeoffs between application specific

optimizations and generic programmability. Sampling and data rates are proven to

be very variable. A simple blood pressure sensor operates with a sampling rate of 1

sample / minute and a quantization rate of 64 bits / sample, while a ECG sensor

operates with 240 samples / second and a total bit-rate of 2.9 – 8.7 Kb/ps. This

means that endpoints that retrieve information from these sensors would need to

accommodate multiple, disparate, data-streams, occurring in different intervals over

single or multiple channels.

Disparate application requirements will call for an ability to aggregate information

and integrate BASN systems into existing information technology infrastructure; for

example, emergency systems connected to paramedic entities, or pediatrics that

perform offline analysis on several days or life-sign measurements. Hanson et al. [3]

states that data processing must be hierarchical in order to exploit asymmetry of

resources, preserve system efficiency, and ensure that data is available when

needed. Systems must detect and react to notable occurrences from incoming data

and explicit queries. Such reactions might include heightening the state of

awareness, collecting data at a higher frequency for closer inspection, forwarding

events to higher levels, or providing immediate response. Data processing

performed at the sensor node reveals information specific to the sensor’s locality.

The bigger picture, however, comes from relationships between data collected from

multiple sensors over time.

4

Sharing and combining information would need to happen at lower levels of the

hierarchy, but could require occasional data from higher levels in order to improve

classifications.

A sensors value rests, in large part, on its ability to selectively process and deliver

information. On-node signal processing is required in order to extract information

from events that these sensors detect, and processing data at a given rate should

consume less power on average than transferring the data wirelessly to an

aggregator. This tradeoff will however require the sensor to embed a more complex

operating system, which will allow it to concurrently capture, process, and forward

information while meeting real-time constraints. Dynamic frequency scaling or

power management creates opportunities for lower energy consumption based on

situational needs, but requires contextual awareness and predictive models that

inform and guide these nodes into correct behavior.

In essence, it could be stated that a central body aggregator is needed because

hardware and software needs to inter-operate through multiple levels of

infrastructure and share information gained at each level. However, it should not be

expected that a primitive sensor node is capable of coordinating such actions, and it

can therefore be stated that a more powerful, wearable computer is needed in

order to render the vision of pervasive healthcare true.

Preventive measures and early detection is defined as a proactive approach,
opposed to today’s reactive approach to treatment. Treating diseases that have
matured into complications, could have been avoided if certain symptoms were
detected at earlier stages. However, the definition of proactivity is defined as
change-oriented and self-initiated behavior. Such properties are unpassable without
long term, real time monitoring of vital-signs and contextual information. Varshney
[4] states that proactivity could be achieved through pervasive healthcare, which he
defines as continuous medical monitoring for anyone, anytime, and anywhere. This

Internet

Intranet

Ad-hoc - or

Personal Area

Networks

BASN

Medical data-center

Home

Immediate closeness

5

concept builds on the foundation of contextual, wearable, mobile sensors that aid in
detecting vital-sign parameters. Several examples of smart-homes render how
specially equipped homes can accommodate senior citizens by embedding wall-
powered sensors and central aggregators that communicate wired or wirelessly
through a Local Area Network. However, pervasive healthcare is as stated, anywhere
and anytime. It implies that the patient under monitor is able to move freely inside
or outside of locations with or without necessary infrastructure for network
communication. Such freedom could only be rendered true if a central aggregator is
within the reach of the sensors.

Physical size and weight of the sensors should be of such proportions that they
cause the least interference in life, and the ability to integrate the sensors with
existing technology is preferable as fewer specialized systems would need to be
maintained.

The most profound technologies are those that disappear. They

weave themselves into the fabric of everyday life until they are

indistinguishable from it. – Mark Weiser.

Extracting vital sign parameters is however, in isolation, insufficient without the

inclusion of context and reflection about the person that is being monitored. No two

persons are alike. Gender and age will dictate physical attributes like heart and

thorax physiology, and mental attributes will dictate system understanding and

acceptance. Persona profiling has been proposed in [4] , but would imply that

streams of sensor information is joined with an ever-changing model that could be

presented through tagged encoding, object-orientation or logical rules.

Learning what a normal state is poses requirements on memory and historical data-

access from single or multiple repositories. However, once normal is understood,

then it could be possible to look at vital-sign monitoring from a different perspective

by actively searching for deviation in the accepted state, instead of looking for

occurrences of complex event patterns.

Becoming minimally intrusive in life could, to some extent, be accomplished by

aiding the user in taking suitable decisions on his or her behalf. However, this would

require us to find what the user’s intent is, and intention is stated to be derived from

a person’s past and current actions, with the inclusion of location and identity.

Finding user intent is synonymous to finding patterns, and it can therefore be stated

that inclusion of a pattern modelling language could prove beneficial as the

complexity of our environments are less than minor.

Pervasive healthcare must, as stated by Varshney, include contextual awareness of

our surrounding environment. It implies that our computing devices are aware of

physical locations and temporal context. There is profound difference between

having a high heart rate while running outside, and having a similar rate at night

while lying still in bed. Contextual awareness happens when data is joined and

infused with additional parameters. One cannot, however, just increase the amount

of data, and one should expect that the user might interact with a monitoring

system minutes or hours after an initial query. An answer would then need to be

6

redirected back to a potentially important pattern that the system is trying to

detect.

1.1 Problem statement

Being aware of the challenges that persist in sensor assisted living, proves that it

would do little or no good to study just another vital-sign sensor without trying to

accommodate to some of the challenges. Homogenous, proprietary, and hard-coded

applications have little value in this domain, as change, openness, and ease of use

should be accommodated. A general overview is presented in [3], [4] and renders

that a wearable aggregator should accommodate to multiple, disparate streams.

We imply that a Complex Event Processing (CEP) engine is needed in this context

because it abstracts away complexity that regard handling of data streams.

Information needs to be joined in real-time and prove tolerance between different

architectures and formats by expressing uniform schemas. Reasoning about time,

order, and relation comes naturally to these engines, and expressing intent is done

in a readable format with queries or rules instead of arbitrary nested object-

oriented models. Patterns are usually modelled by a logical language and relate

strongly to the need of expressing rules for contextual awareness and self-imitated,

proactive monitoring. Previous studies of event processing in relation to home-care

and vital-sign monitoring is presented in [5]–[8]. Positive results render that

embedding such an engine into a wearable device, could prove useful.

It is stated that this is a novel field of application as CEP vendors are focused on

enterprise solutions. Embedded systems have until recent years been restrained in

processing capabilities [8], but recent advances and increased computational power

makes it feasible to introduce such overhead. Modern smartphone devices prove

themselves as viable, mobile aggregators as they retain profound processing,

storage, and memory capabilities. Embedding multiple transceivers for cellular, ad-

hoc, and GPS communication effectively renders them useful as bridges between

multiple sources of information. Fully featured operating systems provide us with

modular and sandboxed application environments that tolerate operational faults.

Existing ecosystems and development frameworks remove complexities of software

development and ensure, to some extent, uniformity.

Previous studies [8], [9] render that smartphone devices can work with Esper, an

open sourced, CEP engine. However, results in [9] render low levels of throughput

and imply that this combination has substantial overhead. No studies present viable

indications of how well Esper works on such smartphone devices as a general

benchmark is not present. The only known implementation [10] of Esper for such

devices is severely outdated, and deviates from recent releases of the engine.

A new, runtime environment was recently released for Android, and leverages the

use of Ahead-of-Time compilation, opposed to Just-in-Time compilation. This

distinction could prove Android more suitable to Esper, and render profoundly

higher performance rates.

Our primary intention is to answer whether it proves feasible to utilize an Android

based smartphone device in conjunction with Esper, and to ensure that an

7

enablement retains stability and functionality that enable it for purposes that regard

the domain of pervasive monitoring.

1.2 Contribution

This thesis aims at producing software that answers and resolves the questions and

statements posed in chapter 1.1. A general benchmark that exercises the

fundamental aspects of a CEP engine should expose the limitations of Esper in a

resource constrained, embedded environment. Such measurements are not only

useful to us, but could act as a guideline for others that wish to implement new, or

move existing systems in this domain. A smartphone could offload central servers by

performing more computations locally. The cost of wireless communication is, in

terms of energy consumption, profound opposed to local computations.

Smartphone devices are continuously tasked with new, and increasingly more

complex use-cases. Abstracting away program logic into human readable queries

and rules could improve correctness and impose rapid development cycles.

Alternating existing application behavior is considerably easier with the use Esper as

it enables runtime reconfiguration without service downtime.

1.3 Methods

An initial requirement analysis is needed in order to render the limitations and

possibilities that the existing implementation [10] of Esper imposes. A new

enablement of the engine could impose substantial overhead on our work, but

prove beneficial if we impose increased levels of stability and functionality.

How Esper should be benchmarked, and what factors should be considered requires

an understanding of existing work. Re-using tasks from existing benchmarks could

prove beneficial and enable direct comparisons that render the difference between

a powerful workstation and a smartphone device.

A design-implementation-evaluation procedure is needed in order to support a set

quantitative tests that should aid in an conclusion for this thesis.

1.4 Outline

This thesis is divided into three distinct parts that withhold 9 chapters.

Part I identifies why this thesis is needed and supplies the background information

that is required to understand the fundamental concepts of the software and

hardware components in this thesis.

 Chapter 1 introduces this thesis and renders some of the most profound

challenges in sensor assisted living.

 Chapter 2 introduces the fundamental principles of Complex Event

Processing and highlights primitive functions that reside in such systems.

 Chapter 3 introduces Esper and presents its inner workings by highlighting

how principles from chapter 2 can be expressed. This chapter aids as a

reference for understanding implementations that reside in part II and III.

8

 Chapter 4 introduces Android and explains the inner workings of the

operating system. Effectively supporting design and implementation

decisions that reside in part II.

Part II presents the requirement analysis and aspects that regard the design and

implementation of our work.

 Chapter 5 presents a requirement analysis that is decomposed into two

segments. The first segment is related to the enablement of Esper on

Android and outlines the requirements that must be met in order to render

Esper operational in our context. The second segment is concerned about

tasks and factors related to benchmarking Esper.

 Chapter 6 binds to chapter 5 and describes the how an enablement of Esper

is possible on an Android based device.

 Chapter 7 concerns the design and implementation of the benchmark that is

utilized for our evaluation of Esper in chapter 9. It includes the

implementation of tasks and factors that concern our requirement analysis

and principles from chapter 2.

Part III presents the evaluation and conclusion of our work.

 Chapter 8 describes the set of quantitative tests that utilize the tasks and

implementations from chapter 7. It highlights influential factors that regard

the test and aid in the conclusion of our work.

 Chapter 9 presents the summary of contribution, critical assessment and

provides insights of future work.

9

2 Complex Event Processing

This chapter describes the principles of Complex Event Processing and Data Stream

Management (DSM) The first section introduces the domain of such systems and

presents a unified classification and terminology to aid in the understanding of Esper

and implementation specific details troughout this thesis. The second section

describes the fundamental principles of DSM and aids in the understanding of how

continuous streams of data can be processed and aggregated. The third section

describes fundamental principles that concern CEP and describes how such systems

perform operations that can prove beneficial in context of sensor assisted living.

Section two and three intend to support our requirement analysis, and provide

insight into measurements performed in part III of this thesis. This chapter is

concluded by a reflection on certain limitations that could prove utilization of CEP

problematic in context of sensor assisted, real-time monitoring

2.1 Domain

Online analysis is needed as fast as possible in scenarios that require reactive

behavior. Relational database systems are utilized in applications that require

persistent data-storage with infrequent insertion and alteration, but several

environments are better modeled as transient data-streams, where information is

seen once and never again.

Examples of environments and applications that include such streams are network

monitoring systems that analyze incoming data-packets for the purpose of detecting

intrusions, telecommunication systems that process call records, industrial entities

that rely on the control of events in manufacturing processes, and sensor networks

that report occurrences of real-world events.

Developing stream analysis applications is tedious and results in finite and

homogeneous properties. Such systems can only process a strictly defined form of

data, and analysis is performed according to rules defined by expert architects.

Common for all applications however, is the need to:

 Acquire a concept of timeliness and an ability to continuously query

incoming information, even if it holds structural variability.

 Process information that comes from multiple, outer edges without the

need of persisting it.

 Transform lower level data items and combine them into higher level data

items that hold new and perhaps not previously seen information.

 Discard or recycle old data items that are no longer needed.

Information streams diverge from stored relations in several ways and can be

identified as unpredictable in size and rate – with imprecision and variable

characteristics in format and schema. A stream of information is potentially

unbound in size and has open-ended relations. Quantity of information might prove

infeasible, or of little value to store and reasoning must occur in-memory. The

10

receiving end will have little or no control over the order and rate in which data

items arrive. Reordering, processing, and analytics are therefore dependent on

available system resources.

Information can be useless when viewed in isolation. Events that happen in the real

world are usually complex because they include information about time, location,

and sequence, and can be formed from a correlation of multiple sources. An event

could also be identified as an expected occurrence that never happened.

These requirements led to the development of a new class of systems that were

specifically designed to process streams of information based on a set of processing

rules. More than three decades of contribution from different research communities

resulted in generic approaches to real-time information analysis. However, despite

having a common goal, it can be stated that each community brought its own view

of the problem domain and propositions reflected each community’s background. As

this thesis relies profoundly on stream processing, we state that a clear classification

of such systems and terminology would aid in the understanding of our work.

2.1.1 Classification

Two distinct models are identified in [11], and summarized as follows.

 Data Stream Management; Babcock [12].

DSM install continuous, standing queries that actively process and evaluate

data items as they arrive. An approximated answer to a continuous query is

produced over time, always reflecting the stream of data seen so far. It is

not uncommon to see resemblances to traditional, relational databases as

these systems require schemas that present structure of incoming data and

leverage Structured Query Language (SQL) like operators for selection,

aggregation, and joins.

 Complex Event Processing; Luckham [13] .

CEP based systems view incoming data items as events happening in the

external world. They are more concerned about relational patterns between

data items and their time and order of occurrence. Aggregation occurs by

combining and transforming lower level events into higher levels events that

produce new answers about the world that is monitored. Origin is closely

coupled to Publish/Subscribe systems.

A summary of existing systems that embed such models can be found in [11].

Certain systems, however, classify themselves as CEP, but build around concepts

that resemble DSM engines by embedding query languages that contain operators

for controlling the information flow. Etzion et.al [14] states that CEP is best

understood in the context of how and where its concepts are used and properties

from a DSM model can co-exist as a set of features. When looking at issues

presented in sensor assisted living and pervasive monitoring, we see that the DSM

and CEP models alone, are not sufficiently capable of conforming to all

requirements. It is the combined power of both models that presents itself as a

viable solution.

11

2.1.2 Terminology

We intend to present uniformity throughout this thesis and define a collection of

phrases, closely bound to [11].

 Event

o Something that happened. An object with attributes that signifies an

activity.

 Data Item

o Any kind of data that reflects some knowledge generate by a source,

or notifications about events happening in the observed world.

Event and data items can sometimes be used interchangeably

throughout this thesis, but a data item is represented as an object

that a processing engine can interpret while an event is a note of

occurrence that can be modeled as a data item.

 Source

o Data items that enter the engine are generated or forwarded by an

Information source.

 Stream

o Linearly ordered sequence of events occurring within a time span.

 Query

o A defined set of logical statements that specify how to filter,

combine, aggregate, and project information.

 Engine

o A tool that embeds a set of processing rules which describe how

incoming streams of information should be processed to timely

produce outgoing streams of events to information listeners.

 Listener

o As an engine processes a set of data items according to a set of

queries, it outputs the new streams to one or more listeners that act

as recipients.

2.2 Principles of Data Stream Management

This section introduces the fundamental principles of DSM and describes how

distinct concepts correlate to each other in order to enable DSM true.

2.2.1 Time and Partition

Time can be seen as one of the most profound and fundamental concepts of a

processing engine, as it influences temporal reasoning and temporal ordering of

data items coming from internal or external sources. Time can, in relation to data

items, be presented as a timestamp and Babcock et.al [12] classifies these as :

 Explicit – where the information source appends a timestamp to the data

item; this timestamp corresponds to a real world event at a particular time

as seen from the viewpoint of the source.

 Implicit – where the engine itself adds a timestamp to the arriving data item

and thereby implies its view about the occurrence of this event or data item.

12

Explicit timestamps will identify that data items might not arrive in order. In real-

time analysis, one should only expect an almost sorted sequence of items. The

correlation between an implicit and explicit timestamp is of importance in situations

where we want to state something about potential cumulative delay related to

commutation between receivers and sensors. However, time becomes less clear

when we aggregate or join information. When composing new, higher level

information from a collection of lower level data items, we force ourselves to choose

what the occurrence of this composition should mean.

A Context partition is defined by Etzion [14] as taking a cloud of event instances and

classifying them into one or more sets. A temporal context will therefore divide

events into a set of partitions with their own time span. Spatial context will reason

about the partitions in form of location and distance, and a segmented context will

classify the events by reasoning about their group size. Two contexts can overlap

each other in time and allow us to reason about how events are shared between

streams or patterns. It implies that an event could expire in one pattern and persist

in another, effectively keeping memory allocations from being released. Contextual

partitions in our thesis will, for most part, be defined by windows, which we

describe in chapter 2.2.3.

2.2.2 Computing Answers

A monotonic continuous query implies that order is preserved and that it suffices to
re-evaluate the query and append computed answers by only evaluating arriving
data items. However, this proves infeasible, given the characteristics that a
continuous stream imposes and requires that the set of data items is re-calculated
every time a new item is added. Computation time would increase linearly as the set
gains size and response times would no longer be deterministic.

As a stream can potentially be unbound in size, it imposes requirements to limit the
scope of what the engine currently sees. A limitation would, however, imply that we
will only retrieve approximate answers to the questions that we pose, as the whole
data-set is not available. Backtracking over this set of information could prove
infeasible as it could imply that the engine would block incoming information and
impose performance issues [15] .

An evaluation interval is either defined as eager, where we re-compute an answer
for every data item that qualifies for our query, or batched, where each set of data
items are collected and computed once as a group when the query validity expires.

2.2.3 Windows

The limited scope of a stream is called a Window, and represents lower and upper
bounds that constrain the range of information that is currently seen. Windows can
be classified as time-based (physical), where the bounds are defined by seconds,
minutes or days; or as count-based (logical), where the bounds are dependent on
the amount of items in the window. Memory allocation is fixed and predicable for
logical windows, but care must be taken for physical windows as dynamic allocation
could impose resource depletion. Classification of such windows is further

13

influenced by the way bounds are moved, and results in definitions presented in the
following chapters.

2.2.3.1 Fixed and Landmark

Figure 2.2.3-i Landmark window

A Fixed Window will not move its bounds at all and can be used to limit the scope of
a stream between two distinct periods of time t, that form an interval [tstart, tend]. An
implicitly time-stamped event Eventa, will be included in the window if
and only if tstart ≤ Eventa < tend. A landmark window has a fixed lower bound and a
moving upper bound that accepts any incoming data items until the window is
destroyed. The potential danger of such a window is that it, without additional
constraints, could grow into infinite sizes. However, it proves itself useful in
scenarios related to pattern detection where we know little about the environment.

2.2.3.2 Sliding

Figure 2.2.3-ii Sliding window

Sliding Windows have lower and upper bounds that dynamically advance as new
data items are observed by the engine. Given that the window has a specified length
n, then an instance of Eventa will stay within the window bounds for an interval
defined as 0 ≤ unit ≤ n is true. A unit could either be presented physically or logically
and would imply that the data item is discharged as soon as its validity expires. A
variation of this window is identified as Tumbling, where event instances are
processed in batches upon interval, when an interval expires.

time

time

14

2.2.3.3 Jumping

Figure 2.2.3-iii Jumping window

A Jumping Window will fill up to a size n before it releases all contained data items in

a bulk operation. The main distinction from a sliding window is that each window

will never contain a data item that could have resided the window before it. It

implies that any operation that is performed on the point of expiration of this

window is performed on a set of data items that have not been previously seen by

the engine.

2.2.4 Selection and Aggregation

Selectivity is defined as an ability to output a set of data items that match certain

criteria. Projection, however, is defined as an ability to extract attributes from data

items. The notable distinction is that selectivity delivers references to where a set of

data items can be collected, and projection must reflect over each data item and

construct new data items that contain only a sub-set of the attributes that were

seen. This, however, enables us to control what is seen and processed by other

temporal contexts.

Selectivity does not keep state, and would therefore not block query execution.

Projection, however, needs to embed a reflection strategy that would impose it to

identify attributes by names or indexes. It implies that query execution is blocked

until the appropriate identifier is located and its value is derived.

Aggregation functions are defined as computations related to counting,

summarizing, or averaging. Such functions are unable to produce a correct answer

until the whole input is seen, and implies that they must be utilized within the

bounds of a window. Answers are reflected by data items seen so far and considered

approximate.

The computational cost of performing aggregations is identified by Marques et.al

[16] and implies that the summarization of a set of values can be computed at a

fixed cost regardless of window size or type. Locating the maximum value of the

same set is considered distributive and can only be computed at a fixed cost for

jumping windows. The median of the set is holistic and implies that cost will depend

time

15

on window size. Any nested combination of these functions will therefore affect our

computing ability.

2.3 Principles of Event Processing

This section introduces the fundamental principles of CEP and describes properties

that motivates the use of CEP in relation to sensor assisted living.

2.3.1 Filtering

Our definition of filtering is related to removal of irrelevant data items at certain

stages of processing. It is considered as a fast and small computational step, but

proves significant for the whole chain of processing, as it dictates the amount of

data items currently seen by a pattern, function, or window.

Many irrelevant events must get through initial input channels and should not be

lost as they might be useful or relevant for certain queries. An engine must

therefore accept an initially high throughput of events. Filtering criteria depends

either on goals set by processing rules, where we discard a data item because it

contains attributes that do not match our interests or by window bounds or

temporal contexts that render the data item obsolete.

2.3.2 Pattern Detection

Detection of a pattern is defined as finding one or more events that match a given

pattern signature [14] . Each pattern will reside in one or more partitions that are

defined by time or space, which means that several installed patterns can be

activated or discharged based on context. It implies that an engine should handle

administration of numerous patterns, but that allocation of computational resources

will be decided by the amount of active patterns. Signature complexity and event

occurrence rate can, to a large extend, drive the computational requirements of an

installed pattern. A signature is defined by:

 Occurrence; Where we state that a pattern is rendered true if all, any, or no

events present themselves.

 Threshold assertion; Relates to counting and specifying that a pattern is true

if n occurrences of event e is present.

 Order and sequence; Where order indicates that occurrence of event Eventa

is followed by an occurrence of Eventb, where the implicit or explicit

timestamp of Eventa ˃ Eventb. Sequence, however, is defined as the presence

of one or more instances of Eventa , followed by one or more instances of

Eventb within a logical or physical interval.

 Parameters; Imply any additional values, ranges, or limits that can be

signified by variables or constants

 Dimension; Relates to time, space, or a combination of both. Temporal

context will relate to sequence and spatial context will relate to distance.

Additionally, it is stated that a pattern embeds a set of policies that include:

16

 Evaluation - which is classified as Immediate if the pattern is tested every

time a new qualifying event enters its domain, or as differed if the pattern is

tested incrementally at the end of a temporal context. Evaluation is closely

bound to output generation, and computational impact is signified by the

strategy that is chosen.

 Cardinality – controls the amount of matching sets generated and

outputted in a given partition. A single - policy implies that only one

matching set is generated. A bounded – policy implies that n matching sets

can be generated within a context partition until an upper bound is satisfied.

An unrestricted policy will imply that the pattern should output everything,

every time.

The correlation between evaluation and cardinality policies will affect how well a

processing engine handles the overall throughput of incoming events. There is a

clear distinction between only testing if a pattern renders true and outputting

results. Given that a contextual partition is not ended, the outputting of a set of

matching data items would imply that the engine has to copy some or all of the

correlated data items into a new collection that is transferred to the receiving part.

Failing to do so could invalidate the current pattern because a single data item could

be altered by another observing query.

Patterns can, on a higher level, be classified as:

Basic – where they include only logical operators, thresholds, or selections

and can be utilized in a temporal context, but does not depend on time.

For example, given that temperature sensor reading is initially stating 37.0
oC, if the next 5 readings are higher than 37.0 oC, and each reading is

followed by a reading that is increasing in value, then the pattern indicates a

trend towards a fewer.

Dimensional – relates to temporal and spatial contexts, thereby concerning

itself with location and time in addition to logic and thresholds. For example,

given that medication is consumed at time t1, if medication is consumed

again at t2 and t2 < t1 + 4 hours, then an alert of excessive use should be

invoked.

2.3.3 Immutability

Etzion et.al [14] states that an event should never be altered. As an event signifies

an activity, it becomes questionable what activity the event signifies and it could

lose event causality, which Luckham [13] defines as designing the fact that an

occurrence of event Eventa caused the occurrence of Eventb. The event will lose

significance as traceability becomes an issue of uncertainty.

Alteration or enrichment of an event must be performed on a copy of the event.

Significance is maintained if and only if traceability to the original event is kept.

Estimation of memory requirements must therefore consider that transformation of

data items could impose higher allocation requirements.

17

2.3.4 Event Hierarchies

A complex event is usually an aggregation of a set of events. Occurrence of a pattern

might incur an action that results in the creation of new, lower level events that

contain properties of the pattern that was detected and a summary of important

information that happened. Transforming multiple lower level events into a higher

level event might be more meaningful and result in lower output cardinality.

An example could be stated as detecting a series of movements inside a home.

Imagine that a person moves into the kitchen, turns on the stove, moves out of the

kitchen, and does not return to the kitchen within an interval of four hours. A

pattern should aggregate the movements into a higher level alert concerning a

possible fire hazard in the kitchen. The set of lower level movements and actions can

now be discarded and system resources can be de-allocated.

This implies that events can be divided into multiple layers, each with its own set of

abstractions and rules. It allows us to reason about events in isolation and reduces

the number of events that need to be taken into consideration.

2.4 Limitations and Challenges

We wish to highlight certain challenges in event processing that could relate to

sensor assisted living. The uniform relation between these challenges is that they

impose the system architect to make domain specific decisions that may reside

inside or outside of a processing engine. Our intention is not accommodate these

challenges as they are considered out of scope for this thesis, but to rather inform

the reader about considerations that must be taken if such a system is to be further

developed.

2.4.1 Temporal Issues

 Time intervals

As occurrence of an event is often defined by a single point in time and

represented by a timestamp. Certain scenarios however, require us to

reason about transition of states over time. An example of this can relate

back to our basic-pattern in chapter 2.3.2, where consecutive temperature

readings should indicate presence of a fewer. Given that a fewer was

actually detected, then one could argue that the occurrence of the fewer

could either be represented by the first reading, the last reading – or as the

complete duration of all readings, as an interval. Occurrence of time

becomes ambiguous and pattern signatures must be explicitly defined with

derived timestamps that indicate the start and end of the interval. A generic

approach, is to our knowledge still considered an open issue.

 Order and time synchronization

Communication latency and packet loss could impose cumulative delay on

retrieval of events from a sensor. As this sensor struggles to re-send old

events, the receiving engine still works with events that could be tens of

seconds old – not reflecting the emergency situation at hand. The engine

could identify this issue by comparing It’s implicit timestamp against the

18

events explicit timestamp. This implies however that the sensor utilizes an

internal clock - and deviation between the time of this clock and the

receivers clock should be synchronized as enough inaccuracy would

potentially disturb reason of order. A clock drift of 3.5 microseconds every

hour would impose a deviation of a whole second after approximately three

days. Clock synchronization could, as proposed by Lamport [17], either be

achieved by communicating with a specific time server, or by establishing a

logical sense of order by exchanging a set of collectively produced messages

between participating sensors and receivers. This would however imply that

a central organ has some notion of control over the sensors and that the

sensors themselves are willing to cooperate.

2.4.2 Uncertainty

Uncertainty can occur when inexact information about an event occurs in the

system. It implies that event content has inconsistent attributes that falsely present

what really happened. The cause of such occurrence could be related to unreliable

or imprecise sensor that might be miss-calibrated. The sensor might fail to report a

sub-set of events and certain, installed patterns might never fire because a single

missing event prevents the engine from seeing the whole picture. A different angle

on this issue would state that the engine could see certain event occur in the wrong

order and time and produce false positives that propagate through the system,

placing inexact statements that are observed by queries and patterns. Tracing back

and re-producing such errors could become an immersive task. [14] proposes a set

of solutions that include probability based methods like Bayesian networks,

evidential reasoning or fuzzy logic. Incorporating such mechanisms in a true medical

monitoring system, renders the truth about potential complexities that must be

taken into consideration.

19

3 Esper

This chapter describes the inner workings of Esper. It starts by a discussion of why

Esper fits within the domain of Android and provides a general introduction to the

engine. It then follows by presenting a higher level architecture and describes, on a

fundamental level, how event processing is performed and how Esper operates

within an application. This chapter includes references to all query operators that

are utilized in this thesis, and describes how fundamental principles from DSM and

CEP are expressed. It concludes with a notion of how Esper can join information

from external sources.

3.1 Domain

Existing solutions are extensively surveyed by Cugola et.al in [11]. Several engines

are derived from academic research projects - and we fear to some extend that they

already are – or in near future will be, discontinued. We state that our work could

prove to be of more value for an engine that is actively maintained in an open-

source community as more people could potentially relate to our results and future

engine development is motivated by productivity and solidity. Existing engines

require that their surrounding runtime environment is compatible. It implies that

the embedded system is able to interpret the programming language in which the

engine is developed in - and that the engine is compiled for the right architecture. A

majority of todays smartphone devices operate with ARM-based processors, access

to source code is therefore necessary in order to perform platform specific

compilation and implies that any library dependencies must be gracefully supported

and resolved. We re-visit this issue in chapter 6.1, where we explain how our

environment proves hostile for many of the existing engines. We imply that Esper

conforms to such requirements - and is selected for this thesis because of its

component based architecture, openness, lightweightness and probability of

successful incorporation with a smartphone based operating environment. We are

currently not able to find equal characteristics in other engines, and Esper is

classified as state of the art in its category [11], with positive results from work

conducted by others [5], [8].

Esper is a commercially open sourced, event processing engine with support for

projects that embed the Java or .NET programming environment1. It distinguishes

itself as a component based engine that is not installed and executed as a stand-

alone application, but rather implemented in an existing application as a library. This

distinction disables the need for inter-process message passing or socket

communication - and enables the programmer to control how the engine retrieves

and outputs its data items. It implies that the programmer is in full control of the

information flow, and must explicitly choose strategies for displacement of data, if

throughput becomes too high. All computations are performed in-memory – and

Esper is, with additional libraries, measured to only allocate 4.5 MB of heap

1 Our concerns and statements are, throughout this thesis, only related to Java.

20

memory. We imply that Esper can be identified as a hybrid engine as it presents

extensive concepts from the data stream management model, and embeds a rich

pattern expression language with operators that can relate to event processing.

Esper was initially released in 2006, and retains to this date, continuous release

cycles from an active community.

3.2 Architecture

Figure 3-2.4.2-i Simplified, architectural overview of Esper [18]

Figure 3-2.4.2-i represent a higher level overview of Esper and external components

that work together to form a complete processing environment and these

components are hereby described as:

 Event: e

An event is collected from an external source and pushed into to the engine

as a data item by an explicit processing thread. This can be seen as a de-

multiplexing operation in an environment where sources are numerous. It is

implied that the schema of e is described to the engine before the engine

accepts e, and a unique name for e must be provided.

 Event query and pattern language

Is a component that translates and registers string based queries into rules

Listener

…

Listenern

Event

Processing

Queries

Named

windows

Event query and pattern language

Knowledge

repository

access

Esper

e

Timer

Out

Data item

In

21

that are installed as event processing statements. Each statement is bound

to one or more listeners that retrieves output generated if the statement

resolves to true.

 Event processing query

Are defined as the collection of active queries and patterns that observe

incoming events and notifies listeners. Statements will place qualifying

events into named windows and accumulate any additional processing rules

over time - as new events enter the engine.

 Listener

One or more listeners can apply interest in one or more statements. As a

statement evaluates to true, it delivers a set of data items that the listener

can reason about. A listener implements a specific interface that enables the

engine to communicate with it – but a listener is explicitly defined as a

component in Java, outside of the engine - and acts as a multiplexer.

 Named window

A named window is a window of any type described in chapter 2.2.3. The

window name is unique, and takes, by default, the event name.

 Knowledge repository

Is defined as external persistent repositories that could be represented as

relational databases. A window can join information from repositories to

enrich what the engine knows about the current stream of information.

 Timer

The timer is defined as an internal clock that operates in its own thread and

acts as a guideline to the lifetime of windows and other operations that

require temporal constraints. Timer is, to our knowledge derived from the

underlying operating system - and operates by default, with a 100

millisecond resolution.

An application that embeds Esper, can employ one or more engine instances – each

separately configured. Each instance will internally share resources between

standing queries by constructing a delta-network of data items that only

communicate occurrences of change among themselves. Two queries that declare or

reference the same named window – will only share a single view to it and inverted

indexes are utilized in order to match one or more queries against an incoming data

item.

22

Figure 2.4.2-ii Processing model

Esper is, as stated - a component that one would implement within an application.

This implies, by default, that it is our responsibility to manage how input, output and

concurrency is defined. Any thread that invokes the sendEvent(data item) – function

- will be responsible for the whole chain of processing until the data item is either

discarded or delivered to a listener that has subscribed an interest for this particular

output. This implies that the thread is occupied until all relevant queries are

evaluated and payload is projected. This model will however present us with a sense

of freedom as any thread can push and process any data item and thereby, event. It

implies that a pre-allocated thread-pool of workers could be utilized in order to

leverage the potential of underlying hardware.

Esper will under most circumstances, not copy or clone an arriving data item. We

verified this by tracing the sendEvent() call and found that each data item is simply

wrapped around a container object. A data item copy is, to our knowledge, only

performed when a data item is altered by a query to ensure consistency across

different hierarchies2. This operation imposes expenses that are not taken under

consideration in this thesis, but imply that high frequencies of alteration could

impose a considerable bottleneck.

All communication with an engine, happens through public interfaces. Fine lock

granularity on context partitions enable multiple threads to perform query

alteration and stateful event processing concurrently. An engine will utilize a latch

system to ensure that event causality is preserved from the viewpoint of receiving

listeners. It implies that if two threads work on the same query and produce results

that can be ordered by an attribute – then the engine will ensure that both threads

are finished with their processing before any results are delivered to awaiting

listeners. All execution that concerns Esper, takes place in the process that embeds

the engine.

2 See [19], section 5.21.1

Esper

Thread1 e e a e e

Listener1

.

.

.

Listenern

Thread
n
 e a a

Data item

a

23

Other processing models are available. Esper can itself, maintain a work queue and

thread-pool. This however - implies that data item handoff is done asynchronously

and that we lose notion of how much we are currently processing and how much

our work-queues are accumulating, as they are not referable from an external

viewpoint.

Extension of the engine is possible. User defined functions can be called from any

query and a pluggable architecture ensures query extensibility and computability

with previously unseen data-formats.

Esper also depends on a set of external libraries that must be included. Table 3.2-i

summarize these libraries, and state their purpose.

Library Description

ANTLR

Another Tool for Language Recognition. A parser and
generator for reading or executing structured text and binary
files. Utilized to construct languages and tools by generating
walkable parse trees from existing grammars. Dependent
upon in Esper for query interpretation.

CGlib

Byte Code Generation Library. A Java specific code
generation and transformation library that enables creation
and transformation of classes and functions at runtime,
without the need or re-compilation. Dependent upon in
Esper for alteration and enrichment of objects that reside in
the application.

Xerces

A processor for parsing, serializing and alternating
information presented in Extensible Markup Language
(XML). Utilized in Esper for both configuration management
and event presentation.

Commons logging

Logging API. Implements a set of adapters that act as bridges
between different logging frameworks. Utilized extensively
throughout the source code of Esper for error and
occurrence reporting.
Table 3.2-i Overview of external libraries in Esper

3.3 Event Representation

Event schema is presented to the engine in form of a unique name, a set of

attributes and the data type of each attribute. This schema must be defined

beforehand, but can be provided dynamically during runtime - and must be

presented in one of the following formats:

 Plain object

 Object-array.

 Key-value map

 XML

A plain example of an object-array that describes a temperature reading can be

presented as:

Name Timestamp Value Location

Type Long Double String

24

Arbitrary nested attributes are allowed and takes on an object-oriented style when

referenced. Any incoming event of the name “Temperature” can now be queried

from a window with the same name. This implies that an existing or dynamically

created Java based classes can be added to the engine without any additional

specifications and that legacy systems can adopt Esper with more ease. Schema

definition aids in correctness and optimization of the engine. Attribute lookup is

expensive as it requires reflective properties and Esper has to some part resolved

this by indexing attribute names and accessing them through index positions.

3.4 Event Processing Language

Esper is instructed through an expressive, textual language that derives many

properties from the SQL standard. A complete overview can be found in [19] - our

intention however, is to only describe operators utilized in this thesis. Brackets ‘[]’

signify that the operator is optional and the ordinal order of the operators presented

in Table 3.4-i, holds true when constructing actual queries. All grammar

interpretation is as noted, conducted by ANTLR and based on Extended Backus-Naur

Form. Temporal statements are modeled using Allen’s interval algebra [19].

Operator Description

[INSERT INTO window]

Signifies insertion of data items into a
named window based on selected and
projected attributes defined by the
SELECT operator below.

It implies that we can query one stream
and insert only aggregated values into a
separate stream that retains a different
set of queries.

SELECT attribute [AS name], [f(a)], [,...]

Performs selection, projection and any
functional operations that specify how
the resulting output should render.

[f(a)] signifies an aggregate - or
custom formed function that takes one
or more parameters.

[AS name] re-labels the attribute by
desire and enables us to reference the
projected output of this attribute
within this – or any other query or
listener that observes the output of this
stream.

Replacing ‘attribute’ with a ‘*’ signifies
that we don’t want the engine to
perform projection and instead present
a reference to the complete underlying
data item.

25

FROM window [AS name] [,...]

Implies that the query should observe
one or more named windows, where
each window contains events that are
labeled by name

[WHERE condition [AND/OR …]]

Signifies any restrictive condition(s)
[!,=,<, >= ..] that must be met in order
for this query to produce results. Each
additional condition must be separated
by a logical AND/OR operator

[GROUP BY expression]

Grouping can be performed on
accumulated sets of data items. This
implies that the query is evaluated in a
batched process and outgoing data
items that contain the same expression,
will be clustered together.

[OUTPUT [[all | first | last | snapshot]

every time period]]

Provides output granularity by
specifically stating how often output
should occur, even if the query embeds
eager evaluation.

Table 3.4-i Overview of general query operators

Window types described in chapter 2.2.3, are represented in Table 3.4-ii.

Operator Description

WIN:TIME(unit3)
Represents a physical sliding, eagerly
evaluated window that expires every t
units.

WIN:LENGTH(n)
Represents a logical sliding, eagerly
evaluated window of logical length n

WIN:LENGTH_BATCH(n)
Represents a logical tumbling window
that expires when n data items are
present

Table 3.4-ii Overview of query operators related to windows

A join between two windows can be conducted within the bounds of the FROM

operator with the inclusion of a join condition in the WHERE clause. An example of

this can be presented as:

FROM Eventa [unidirectional], Eventb

WHERE Eventa.timestamp = Eventb.timestamp

We thereby state that only events (Eventa, Eventb) - who has the same implicit

timestamp should be considered for further evaluation. If the term ‘unidirectional’ is

used before one of the event definitions, then we explicitly state that the join should

only be evaluated on the arrival of that event. Additionally, outer, left and right joins

can be performed between distinct windows.

3 A unit represents a physical value that ranges from milliseconds to years.

26

3.5 Patterns

Pattern statements are based on the Rapide [20] pattern language and modeled

with operators that describe order or logic, and atoms that concern themselves with

filters and temporal contexts. Patterns are in Esper, based on state machines that

contain a set of dynamic state trees with branches that nest arbitrary deep. A

generic query is presented below and each operator is described in Table 3.5-i.

SELECT *

FROM PATTERN

[

 [EVERY] [variablea =] Eventa

 ->/and/or

 [EVERY] [variableb =] Eventb [(threshold assertion [, AND/OR assertion ..])]

 [WHERE dimension [AND/OR dimension] [,..]]

]

Operator Description

EVERY

Indicates that the pattern should re-
started every time it encounters a
qualifying Eventx. If the operator is
omitted, then, the engine will stop
looking for new occurrences of Eventx

once the pattern evaluates to true.

Variablex =

Denotes that we will bind an Eventx to a
named variable. This enables us to
reference the event throughout the
query.

Eventx

Denotes any event or data item that
the engine recognizes. Enables us to
reference relations between two
distinct events that may or may not
correlate.

->/and/or

An “arrow” can be identified as the
phrase “followed-by”. It indicates, in
our context, that the engine should
look for another occurrence of a named
Eventx within some specified
constraints.
Alternatively, it is possible to specify
logical relations with the and / or
operators.

Eventx(threshold assertion)

Denotes attribute references and
threshold assertions that we impose
one the event. Enables filtering by
specifying properties that we want our
event to have in order to classify
validity in our pattern. Other events

27

can be referenced if, and only if, they
are bound to a named variable.

WHERE dimension

A where-clause holds a dimensional
constraint that is in Esper, defined by a
temporal timer that expires the validity
of the pattern and is throughout our
thesis defined as :

 :within(t)
 :withinmax(t, n)

Where t designates time expressed in
granularity from milliseconds to days.
‘within’ indicates that occurrence
should happen within some time t.
‘withinmax’ indicates that occurrence
can happen n times or within some
time t. Decided by whichever occurs
first.

Table 3.5-i Overview of pattern operators

As an example, given that we observe a user with cognitive disability and we want to

ensure that the user is not exposing himself to excessive medication intake.

Assuming that we follow the rules stated in chapter 2.3.2, where we exemplified a

dimensional pattern. Excessive medication usage would then be classified as taking

the same medication twice during a time interval that lasts 4 hours.

Given that an event Medication has an attribute name that acts as an unique

identifier, then a pattern could be modeled in the following way:

SELECT *

FROM PATTERN

[

 EVERY a = Medication -> b = Medication(name = a.name)

 WHERE timer:within(4 hours)

]

Assuming that this order of event occurrence is true:

1. Medication [name = ‘Amoxicillin’, time = 12:05]

2. Medication [name = ‘Norvasc’, time = 12:10]

3. Medication [name = ‘Amoxicillin’, time = 13:30]

4. Medication [name = ‘Amoxicillin’, time = 15:00]

It is then implied that pattern would fire twice. Once when medication #1 and #3

occurs - and once again when #4 occurs. It should be noted that when #4 occurs –

then, it will only be matched against the occurrence of #3. If we want the engine to

match against both #1 and #3 – then we have to rewrite our query to match every

followed-by event:

EVERY a=Medication -> EVERY b=Medication

28

This will imply that #1 is retained and will not expire until 4 hours have passed. Our

listeners will retrieve a set of all three event occurrences.

3.6 Knowledge Repository

Information from external sources can be requested into an existing window or

pattern by explicitly referencing it in a query. This enables us to include any

persisted, historical information that could not be retained in memory or to retrieve

information that is not accessible in our domain of operation because it might reside

on a geographically dispersed server.

Integration with a relational database requires that we provide Esper with a Java

Database Connectivity (JDBC) driver4 that supports the specific database we attempt

to communicate with. SQL statements are not inspected by the engine and implies

that vendor specific queries are allowed. However, each statement is sent as a

prepared statement with prefixed variable designations and implies that the JDBC

driver must support this feature.

A query that embeds relational database access can be identified by its reference in

the FROM-clause:

SELECT Eventa.attribute, db.attribute [,..]

FROM Eventa, sql:database-name

[

 “SELECT … FROM table WHERE table.attribute = ${ Eventa.attribute}”

] AS db, [,..]

The above query will, for every occurrence of some named Eventa, perform a lookup

in a relational database denoted by database-name and – in this example, perform a

SQL based SELECT-statement with a parameter from Eventa, denoted by ‘${..}’.

Whatever the database returns, will be reflect in the outer SELECT-statement of our

query. It is also possible to twist the roles around and add a WHERE-clause to the

outer query – thereby only selecting events that have some properties that

correspond with content in the relational database. It would however imply that a

numerous set of rows from the database would have to be transferred to the engine

and inspected separately.

Esper also provides a function for optimizing database communication by caching

common results. It is identified as result caching - and implements a Least Recently

Used (LRU) cache of size n and an optional expiration time. Index keys are defined by

query parameter values, If m rows are returned for a given value, then all m rows

will retain only a single slot in the cache.

4 Java based, data access API that defines how a client may access, query and alter a
database.

29

4 Android

This chapter describes the Android operating system and aims to present the

necessary background information to support our design, implementation and

evaluation chapters. The first section provides an in-depth look at the operating

internals of the system, and starts by describing how the operating system

differentiates itself from traditional Linux based systems. It then describes the

programming environment utilized to construct applications and services, with a

notion on how it deviates from existing desktop environments. It follows by an in-

depth look at the virtual runtime environment and describes both Dalvik and ART. It

then concludes by describing how memory is managed between threads and

processes. The second section concerns itself with application development and

describes how autonomous components can bind together to form systems that fit

within the domain of sensor assisted living. It concludes with a notion of certain

limitations that concern the lifecycle of a process.

4.1 Domain

Android is an open sourced, Linux based operating system, currently maintained by

Google and The Open Handset Alliance5.

The majority of devices that currently run on Android, are mobile cellphone devices,

but the operating environment is embeddable on any system that target a 32 or 64-

bit ARM, x86 or MIPS processor architecture.

Our main motivation for using Android in this thesis, is based upon the notion that

Android is the basis for more than 900 million devices , and implies that the

operating environment is tested to prove itself as a stable and viable platform.

We imply that the target smartphone device that recent releases of Android aims to

support, meets the specifications presented below.

Capacitive 2.5 inch, 100 dpi, 4:3 aspect ratio display.

Support for 802.11x, NFC or Bluetooth.

512 – 2048 MB of SDRAM.

Single / quad - core 1.6 GHz ARM baseband processor.

USB connectivity to external sources.

GPS connectivity.

Internal sensors for sound, light and tilt.

8 - 64 GB of internal storage.

Average battery capacity of 1750 - 2500 mW

5 See http://source.android.com for more information.

30

4.2 Operating Environment

Figure 2.4.2-i Architectural overview of Android [21]

4.2.1 Kernel

Android embeds a custom Linux kernel that deviates from the mainstream revision

as requirements for a smartphone device differentiate from a wall powered, desktop

computer. Noting a majority of these differences is important for the overall

understanding of the operating system. A summarization from [21] is therefore

presented in the following note.

 Access to hardware components like radio transceivers is restricted on per

application basis. Each application must request access by interacting and

quoting the user for confirmation. Any automatic detection and interaction

with nearby devices is therefore depended on some initial user interaction.

 It becomes of the systems best interest to place the device in a sleeping

state where most hardware components are deactivated as we operate on

energy constrained devices. A driver or application can however request

wakelocks that enable them to continue operation, even if the device itself

is not actively used.

 The kernel is more sensitive to memory allocation and weeds out any lower

priority applications that are currently not in the foreground of user

31

interaction if memory availability becomes low. It relies on the principle that

smartphone applications are small and temporary tasks that fulfill specific

goals and are teared down as soon as they lose focus. It should be noted

that any non-vital process is subjected to removal and that the environment

for survival is hostile.

 The kernel does not support the full set of the GNU C library (glibc) which

most Linux distributions use. Instead, Android utilizes its own library, called

Bionic. The result of this - is that libraries and applications that are written

for distributions based on Linux, might not compile or run on Android. Bionic

was introduced to address issues with speed, size and licensing compared to

glibc. The library utilizes its own thread programming interface and differs

from the Native Posix Threads Library. Effectively rendering several POSIX

features obsolete.

Each application has access to system resources on the principle of least-privilege.

By default, root-access to kernel functions are not given to any components, and

users are themselves not allowed to grant such access, even temporarily.

4.2.2 Programming Environment

A variation of Java is utilized as the higher-level application programming language

in Android. Java can be classified as an interpreted language that is compiled into

architecture independent byte-code and executed on a runtime that translates each

program instruction to the underlying plattform. Our interpretation of Java - is that

it consists of a language, a compiler, a set of support libraries and a virtual runtime

environment.

The official Sun/Oracle based Java Development Kit (JDK)6 retains widespread

adaptation, but Android’s version of Java can for most part - only be compared on

semantical aspects of the language. Android utilizes its own compiler and runtime

environment as we describe in chapter 4.2.3. Support libraries that provide higher

level abstractions to concurrency, data-structures, I/O or graphics are extracted

from the Apache Harmony Project (HAP) [21], [22] . It is important to understand

that the libraries derived from HAP are alternated to fit the constrains, and use cases

of smartphone devices. Some libraries are completely removed, as their purpose

does not fit in the context of mobile computing.

Android also presents a Native Development Toolkit (NDK) that enables developers

to interact with C or C++ through the Java Native Interface (JNI). Any existing lower

level libraries or drivers would need conforment with Bionic, and access to lower

levels of the system, is prohibited [21]. NDK is in itself, utilized for cross-platform

compilation of C code to specific architectures.

It cannot be understated that Java maintains importance in the system, and that any

extension of functionality must be coordinated between lower levels of the system if

any higher-level applications should leverage from it.

6 See www.java.com for more information

32

4.2.3 Runtime Environment

We note in the introduction of this chapter that Android supports a variety of

different architectures. All Java based code must be translated to instructions that

the underlying architecture can understand and such interpretation is performed by

a register based virtual machine that in Android is identified as Dalvik.

Code compilation will not result in traditional .class files that mainstream Java

compilers produce. Androids runtime environment is instructed to interpret DEX

(Dalvik Executable) files that must be translated upon compilation before it is

presented to the virtual machine. This custom format provides optimizations that

relate to repetition minimization, shared constant pools and lower memory

footprints [23].

Dalvik was designed for devices that embedded a 250-500 MHz processor and

approximately 20-40 MB of application allocatable memory. The overhead of

runtime interpretation is acceptable because performance critical libraries related to

graphics and networking are natively compiled for each device. Typically, only one

third of the time is spent in the interpreter [24].

Performance however, becomes a problem for compute intensive applications that

operate with tasks related to sorting, transformation and structural traversal.

Optimization for such tasks is performed by a trace-based Just-in-Time compiler (JIT)

that caches commonly used blocks of code in order to prevent reoccurring

translation.

It should be noted that Dalvik utilizes a method-based JIT if the device is connected

to a power source. This is however neglected in this thesis because our interests lies

within the domain of pervasive computing and mobility.

JIT-compilation is performed by profiling hot execution paths that are commonly

visited. Compiled fragments of code are chained together and placed into a per-

process Translation Cache. Return of performance is rapid because of low level

granularity and tight integration with the interpreter. It also implies that simple loop

detection and register promotions are possible without the need to respect method

call boundaries. Trace based profiling does however imply smaller optimization

windows as whole methods are not analyzed and synchronization with the

interpreter must be performed frequently. Profiling is performed on every run of an

application - and implies that knowledge about hot areas are lost upon process

termination [24].

The initial version of Android was released in 2008. Smartphone devices have since

then experienced a multiple magnitudes of increase in processing capabilities and 4-

times increase in memory. Operating internals of Dalvik have proven insufficient for

the use-cases that modern smartphone applications encounter as they move

towards a trend of becoming our primary, personal computers.

Android was, in the third quarter of 2013, enriched with a preview version of a new

runtime environment identified as Android Runtime (ART). The main deviation from

Dalvik, is that ART is based on Ahead-of-Time compilation (AOT). It implies that an

33

application is fully compiled into architecturally specific byte code once, at

installation time and that runtime translation is not needed.

ART has proven itself as a viable replacement for Dalvik in applications that require

extensive processing capabilities. It implies that the CPU can process its tasks faster

and return to a lower state of activity. ART performs less checks regarding to class

initialization and exception verification in relation to Java, and these differences are

rendered in Figure 4.2.3-i, indicating that the runtime environment can achieve

remarkable performance gains opposed to Dalvik [25].

Figure 4.2.3-i Performance distinction. ART against Dalvik [25]

4.2.4 Memory Management

Each process retrieves its own heap space and garbage collector that initially holds

capacity of a few MBytes. Heap size is device specific, but modern smartphones can

hold up to 96-192 MB per process.

Android utilizes a trace based, mark-and-sweep garbage collector that, from recent

revisions has, to some extend, been able to perform its operations concurrently

while the application is running. Tracing implies that the garbage collector must

traverse the entire collection of objects that are accessible by the process. An object

that is object is accessible through some other direct, or indirect object is said to be

alive, while non referencable objects are denoted as dead and should be reclaimed.

Objects are not reclaimed immediately, and unreferenced objects are allowed to

accumulate until available memory has been exhausted [26].

34

Figure 4.2.4-i Garbage collection in Android [25]

Figure 4.2.4-i illustrates how garbage collection is performed in Dalvik. Assuming

that thread t1 wants to allocate a new object, then, an enumeration operation must

be performed in order to locate all live objects. Dalvik will suspend all applications

threads while this procedure is performed and this is denoted by Pause-1. Marking

objects that are alive is then performed concurrently, but Dalvik imposes another

pause in program execution because it needs to verify that no alteration to the state

of dead and live objects occurred between step 1 and 3. If correctness proves valid,

then all dead objects can be de-allocated [25], [26].

Both pauses in Figure 4.2.4-i can accumulate to > 5-10 milliseconds of suspended

execution and depend on the current heap size and number of objects in the

system. Such an operation is referred to as GC_CONCURRENT.

This operation cannot go as planned for t2 because there is no sizable slot available

for its allocation. It implies that application execution is completely paused until de-

allocation is finished and a sizable slot can be located. If no slot can be allocated,

then the heap must be resized. Both operations are referred to as GC_FOR_ALLOC –

and impose considerable suspensions that last > 50 milliseconds.

It is possible to request a manual garbage collection procedure by a system call, but

there is no guarantee that it will be performed, and if multiple threads perform the

request within a short time span, then the request will be blocked and run as a

single, garbage collection operation, sometime in the near future.

ART introduces a set of new algorithms and strategies in regard to garbage

collection. Each application thread is explicitly asked to traverse and enumerate its

own heap stack, effectivity removing the need for Pause-1 in Figure 4.2.4-i, and

allowing concurrent application execution. Fragmentation is reduced because large

New Object Live object Dead object

t1

Heap

E

C

oo

t
1

t
2

Time

1. Allocation and

enumeration

2. Marking reachable

objects

3. Collection and

fragmentation

Pause-1 Pause-2

t
1

t
2

Thread

35

arrays of primitive objects are placed in a separate, managed heap and thereby

effectively excluding occurrences of GC_FOR_ALLOC.

Information about collection and allocation procedures are expressed by the

runtime environment as console log messages. Figure 4.2.4-ii represents a single

message derived from Dalvik. “paused” indicates the amount of milliseconds spent

in the state of Pause-1 and Pause-2. “total” indicates the total amount of time it

took for the thread to perform the collection procedure.

4.3 Application Framework

A general application or service is constructed with a set of different techniques

than what is usual for desktop environments. All applications consist of loosely tied

components that have an ability to invoke each other on specific events. Such an

event is called an Intent and represents an asynchronous message that can be

broadcasted throughout the system. Each application is presented as a unique user

to operating system - and each process is assigned its own runtime environment

that operate its instructions in isolation - within a secured, sandboxed environment.

Communication is therefore conducted through lower level Inter-Process

Communication (IPC) messages [21], [27].

Any interaction with the operating system happens, as presented in Figure 2.4.2-i,

through public interfaces that define a restricted and standardized form of

development.

Figure 4.2.4-ii Garbage collection message

GC_CONCURRENT freed 5414K, 17% free 29894K/35608K,

paused 12ms, total 36ms

36

4.3.1 Application Components

Figure 4.3.1-i Android building blocks

The four main component types that represent capabilities in an Android based

operating environment, are derived from [27], and listed in Table 4.3-i below.

Component Description

Activity

Presents a graphical user interface that can be interacted
with. An activity is run in a separate thread-loop that
should not be extensively blocked with long running
operations.

Service

Represents an interface-less process
that can be implemented as part of an application – or as a
standalone background process.

Interaction from the outside happens through IPC
messages and public interfaces that are described with the
Android Interface Definition Language (AIDL).

If the service is implemented within an application – then
the application is allowed to directly invoke service
methods and any message overhead is subtracted.

Broadcast receiver

Are akin to interrupt handlers. The component listens to
key events and initiates actions on behalf of the
application. Such events can both be system specific
(power, screen or
camera) and application specific, where another
application can broadcast the availability of specific data.

Application A

Application B

Service C

Storage Content

provider

Broadcast

receiver

IPC

IPC

Activity

37

Content provider

Enables external processes to interact with application
specific storage repositories.
It implies that a process can query and alternate an
internal database through publicly defined interfaces.

Storage

Relational database integration is in Android, performed
by utilizing SQLite, a self-contained, server-less, SQL-based
engine. Each application or process can embed one or
more database instances that are private to their host. A
single database instance is presented as a file in the
system, and read access is restricted per process. By
default, any interaction with the database, is performed by
higher level Java, based libraries. A default JDBC7
compliant driver is not present as library access is, form
our observations - performed by lower level, JNI calls that
operate directly on the SQLite instance.

Table 4.3-i Overview of component building blocks in Android

We imply that the combination of sandboxed environments and loosely typed

components proves as a scalable and reasonable architecture for the domain of

medical monitoring. Security and privacy measurements are controlled and intact.

Services are first class citizens that provide processing capabilities for a numerous

set of tasks – and an application can broadcast a request for assistance throughout

the eco-system of the operating environment. A Service can retrieve its own

memory address space, garbage collector and runtime environment, effectively

operating as an individual member of the system that automatically start when the

device is turned on.

It proves, as we mentioned in the introduction of this chapter, that Android could fit

within a heterogeneous environment that resembles our view of the sensor assisted,

monitoring domain. Complex systems can be formed from small, autonomous

components that are individually maintained and interacted with. An event

processing engine could service one or more components and thereby act as a

central aggregator within the operating environment.

4.3.2 Lifecycle

We mention in chapter 4.2.4, that each process will retrieve a very finite amount of

memory and resource reclaiment is performed by the principle of priority and “least-

used”. It implies that a background process can be killed if the operating system

requires more resources for a currently active foreground process – as it is denoted

as the currently most important component for the user.

A differentiation between Dalvik and ART in this domain, is that ART enables code to

be paged on disk and swapped by the kernel on demand. How this affects

termination and process lifecycle, is from our perspective, currently not

documented.

38

Each Activity or Service - is presented with callback functions that handle how

teardown and re-construction operations should be performed. One therefore has,

to some extend control over fatal encounters. It is however important to understand

that tearing down processes who continuously retrieve and process streams of data

from one or more sensors – is not really an option.

Feasible memory footprints and priority settings, can to some extend manipulate

the probability of being elected for execution [21], but it is important to understand

that we cannot assure that the process will never be killed. Work presented in this

thesis could be integrated as a service that reside on lower levels of the

environment in Figure 2.4.2-i. This however classifies as future work, as our

intention is to observe how Android, by default, behaves in our domain.

39

II. Design and Implementation

40

5 Requirements Analysis

This chapter describes a preliminary requirements analysis and divides into two

sections. The first section is related to the existing enablement of Esper on Android

and provides an insight to limitations of the port and a short discussion of why a

new enablement is beneficial. The second section describes existing measurements

and discusses limitations that concern smartphone devices in context of

benchmarks. This discussion is followed by a proposition for how the performance of

Esper can be measured and the factors that should be taken into consideration. It

proposes that a custom benchmark should be utilized in our context, and includes a

notion on how this benchmark should be implemented.

5.1 Correlation between Esper and Android

The only know enablement of Esper on a smartphone device, was performed by

Bade [10] in 2010. Our correspondence with Bade reveals that the project is

discontinued, and it is not stated how much of this work deviates from the current

release of Esper. We know that the source code was alternated and that features

were removed because of stability and conformity issues with Android [28]. No

notion of verification and testing is found. Support for relational database access is

not present and disables us from standardized and structured ways of accessing

historic information. Event representation can only be performed by key-value

maps, and proves that it could be difficult to move any existing applications. Esper

has also undergone changes and certain releases are classified as major8. We imply

that a new enablement of Esper could prove beneficial if we manage to circumvent

some of the issues that Bade experienced, and present an updated, fully featured

revision of Esper for Android.

We state that an enablement of Esper on an Android based smartphone is true

when a newer, stable revision of the engine is embeddable and referable within an

application or service on the device. The engine should retain as much functionality

as possible, as any subtraction would imply deviation from the original project and

cause fragmentation. The way Esper is utilized within a project should preferably not

change. It implies that our distribution must be presented in such a way that existing

Esper based systems need not be altered.

Esper should be able to query Androids default, relational database implementation

as this, in our opinion, is a requirement for several contextual monitoring use cases

that depend on historical data.

5.2 Performance Evaluation

The only known measurements that regard Esper on a smartphone device, are

conducted by Jaein et.al [9]. We state that these measurements are of limited use

8 http://esper.codehaus.org/esper/history/history.html

41

for us as we miss results that regard several principal components presented in

chapter 2. Sparse information on how the measurements were conducted also rises

questions towards online and offline data-generation, communication and runtime

settings.

Mobile devices suffer of certain limitations that disable them from being well suited

as clients for existing benchmarks that are aimed at domain specific problems. We

state that a modern smartphone device with a 802.11x wireless transceiver is not

able to transfer enough data items per second [29] opposed to what Esper should be

able to process in context of certain tasks [30]. The use of an USB enabled TCP/IP-

bridge could provide enough throughput, but would provide the device with power

and activate the method-based JIT-compilation procedure for Dalvik as described in

chapter 4.2.3. Any power preserving algorithms that could affect the overall

performance, would neither be activated in such a context.

Modern smartphone devices have a set of thermal constraints that deviate from
desktop computers. These devices are mere millimeters thin and expected to be
withheld in an enclosed pocket, hand, or against a cheek. Air is not actively pushed
into these devices, and a System on Chip (SoC) will throttle its operating frequencies
and lower the device performance in an effort to reduce the heat that is generated if
certain thermal thresholds are met. This can have substantially negative impact on
Esper, and it is therefore of interest to measure when frequency throttling begins,

and how it affects the throughput of the benchmarks.

Marques et.al [31] argue that the domain of benchmarking DSM and CEP engines is

faced with challenges as there is no standardization between query semantics,

operators and data formats between existing engines [11]. We are at this point not

successful in locating a standardized benchmark that can accommodate to the

domain of our context. We state however that work conducted by Mendes et.al

[30], [31] proves of value for this thesis as it selectively focus on the fundamental

principles of event processing by performing a set of micro-benchmarks that address

common data stream management and event processing features. Such benchmarks

are better suited for our need as they can highlight possible limitations in isolation.

Table 5.2-i presents and overview of tasks and factors that the micro-benchmarks in

[30] take into consideration.

Task Factor

Selection Selectivity.

Projection Attributes.

Aggregation Window type, window size and aggregation type

Join
In memory-table.
Window-to-window
Window size and join selectivity.

Database integration Access and cache incorporation.

Patterns Expiration, cardinality and selectivity.

42

Multiple queries
Parallel, similar queries.
Parallel, distinct queries.
Parallel join of multiple events.

Table 5.2-i Tasks and factors regarding performance evaluation of Esper

Parallel processing of events is to our knowledge not investigated in any recent

studies of Esper. Work conducted in [30], utilized only a single thread of execution

and we therefore pose questions towards the possible gain of performance caused

by utilization of multiple threads and processor cores. Parallel access to similar

queries and parallel access to distinct queries would render how locking affects the

performance when multiple event types are present.

It is clearly indicated in [30] that database communication is identified as a major

bottleneck in queries that include SQL statements that join information from a

database table. LRU-cache (see chapter 3.6) incorporation has previously not been

evaluated. It therefore implies that it would be useful to see how this feature affects

the overall performance of information retrieval.

Chapter 4.2.3 identifies that the introduction of AOT-compilation through the use of

ART as the runtime environment. Figure 4.2.3-i indicates that processor intensive

tasks are performed with a substantial ratio of improvement opposed to Dalvik. We

state however that both runtime environments should be evaluated as Dalvik is

present on the majority of Android enabled devices, and ART is at this stage, not the

default runtime environment for any device.

Observing garbage collection and allocation procedures are also of interest.

Accumulation of objects in large windows could cause execution pauses that range

in hundreds of milliseconds. How real time analysis of incoming data is affected, is

therefore of interest to investigate.

The work in [30] utilizes the FiNCOS framework [32] as a benchmarking tool when
performing their measurements. We state however that we are not capable of
utilizing the same instrument because it requires Remote Method Invocation (RMI)9
procedures. Custom adapters for engine configuration, feeding and result analysis
relies on network communication as FiNCOS will not compile and run on an Android
based device.

We state that a custom Android based application must be constructed in order to
perform the benchmarks, and requirement decomposition for the application tasked
with evaluating our enablement of Esper, is stated in the following note.

 The diversity of tasks that relate to the benchmark, must be accommodated
by query installation and event schema definition procedures. A task should
preferably be separated from the system that conducts the benchmark to
ensure easier maintainability and impose that the benchmark could be used
for other tasks that are not evaluated in this thesis.

 Parallel, multi-threaded processing implies that each thread should work in
sufficient isolation. Shielded from any additional, concurrent access to

9 A Java component for object-oriented Remote Procedure Calls that is not supported by
Android.

43

shared resources that could impose locking and queue mechanisms that
impose potential bottlenecks in our measurements.

 Generation of data items for the measurements must conform to a strategy
that causes the least of interference for the experiments. We stated in
chapter 4.2.4. that Android’s garbage collection procedures are affected by
cardinality of objects in the heap. It implies that a large amount of pre-
allocated data items could affect the measurements because verification
pauses could be of considerable length.

 Monitors must be of such nature that they cause the least disturbance, and
at the same time, ensure continuous observations of all threads that
conduct work without the need of synchronization and concurrent access
procedures.

 Relational database integration must be supported in order to perform
measurements related to relational database joins. A SQLite database must
be constructed and prepopulated between measurements and result-cache
incorporation must be adaptable.

6 Asper. Enabling Esper on Android

This chapter describes how Esper can be embedded in Android. It highlights

challenges that Android imposes and describes the changes that must be conducted

in order to render an enablement true. This is followed by a description on how the

relational database in Android can be bound to Esper. Effectively enabling it to join

historical information and enriching streams of information. This chapter is

concluded with a notion on how this embedment is verified and publicly distributed.

6.1 Limitations and Issues

We state, based on our own observations, that Esper will, by default not run on an

Android based device. Applications will simply not compile because Android, as a

framework, misses several, critical libraries that Esper depend upon.

We indicate in chapter 4.2.2 that Android utilizes an implementation of Java that

differs from the mainstream distribution. Esper and its accompanying third-party

libraries are highly dependent on the mainstream Java implementation, and state it

as a requirement that must be fulfilled in order to prove Esper operational.

Libraries and applications that are developed using the official JDK, will not compile

or execute if they reference any of the excluded or alternated libraries. Introducing

missing libraries is prevented upon compilation if the package namespace is equal to

signatures found in the JDK packages [33]. All missing library components must be

provided at compilation time - and require that we re-package each dependency

into its own namespace and reference it correctly from the source code. Re-

packaging is required to prevent namespace collisions.

We identify, by tracing method calls, that Esper utilizes dynamic class generation to

prevent itself from depending on reflection when accessing attributes or functions.

44

This operation is performed by utilizing CGlib, as we describe in chapter 3.1, and

occurs if we either:

I. Register an event type by providing a plain Java class.

II. Utilize subscribers instead of listeners10.

III. Reference an external function in an installed query.

An application that performs one or more of the operations presented above - will

simply terminate its execution and throw a runtime exception, stating that the

runtime environment is not capable of accepting and interpreting a Class instance.

We state in chapter 4.2.3 that the runtime environment in Android is only capable of

interpreting DEX instances. It therefore indicates that the exception and application

termination is caused Android's inability to convert a Class instance to a DEX

instance at runtime.

These issues require resolvement in order to render an enablement of Esper on

Android true. Our resolution to these problems is presented in the following

chapters, and will hopefully act as a guideline for enablement of newer versions of

engine in the future.

6.2 Required Changes

Missing dependencies are resolved by locating and extracting components11 from

the OpenJDK12[34] initiative. Any component that has unresolvable dependencies of

its own, must also be accommodated in the same manner.

Namespace and signature collisions are resolved by appending the prefix

"com.asper". Each extracted OpenJDK component is therefore refactored to match

this namespace.

This operation results in extraction and refactoring of 187 components across 32

packages. Every reference from within the source code of Esper, is changed to

match the new namespace. This implies that only import statements are changed

and that the risk of introducing subtle errors in the system are kept at minimum as

no functional code is altered.

Third-party libraries, described in chapter 3.1 needs similar resolution. ANTLR

presents, from our perspective, no dysfunction with Android. However, libraries

regarding logging and XML parsing presents exceptions that prevent proper

application execution. Enablement of these libraries is present through other open

sourced projects, and utilization of them is from our opinion, a better practice as

they stand some external testing and relive our time consumption. references these

packages and state their origin.

Library Project

10 See [19], section 14.3.2
11 A component in this context, is any Java based class that follows with the OpenJDK
distribution and provides some utility in regard to networking, graphics, I/O.
12 Open source implementation of the Java development and runtime environment. Any
reference to OpenJDK throughout this thesis, regard to OpenJDK version 6.

45

Commons Logging
SLF4J-Android.
v1.5.8 [35]

Xerces Xerces for Android. v2.11.0 [36]

Figure 4.3.2-i Third party library replacements for Asper

This refactoring procedure is however, too extensive for a particular, internal utility

in Esper. The MetricUtil class, residing in the “espertech.util” namespace, is

responsible for engine and statement metrics that represent CPU utilization and

processing capabilities13. MetricUtil relies on the ManagementFactory and

ThreadMXBean Class instances, both unsupported by Android. These instances

contain an extensive amount of dependencies, and we state that many of these

dependencies root to Swing based GUI components that represent desktop based

graphics (windows, buttons) and have no value for Android. Utilization of MetricUtil

is therefore disabled by retraining method signatures and replacing their content

with a log message warning that activates upon invocation.

We state, in context of dynamic class generation, that CGlib cannot be excluded as

the library is too extensively used throughout the source of Esper. Tracing proves

that only a sub-set of CGlib is utilized by Esper, and that this sub-set is primarily

concerned about effective method and attribute access through indexation, rather

than recursive, string based, name comparison. We therefore feel confident in

selecting a resolution strategy where we re-write CGlib to only include the method

signatures that Esper depend upon, and thereafter change these methods to

perform reflection rather than indexation and class generation. The classes that

concern these changes are identified as FastClass and FastMethod and reside under

the “net.sf.cglib” package namespace. Error! Reference source not found. presents

he methods that are altered.

13 See [19], section 14.14

46

package com.asper.sources.net.sf.cglib.reflect;

public class FastClass {

 protected FastClass(Class type) { }

 public static FastClass create(Class type) { }

 public static FastClass create(ClassLoader loader, Class type) { }

 public Object invoke(String name, Class[] parameterTypes, Object obj, Object[] args) { }

 public Object newInstance() { }

 public Object newInstance(Class[] parameterTypes, Object[] args) { }

 public int getIndex(String name, Class[] parameterTypes) { }

 public int getIndex(Class[] parameterTypes) { }

 public int getIndex(Signature signatureA) { }

 public Object invoke(int index, Object obj, Object[] args) { }

 public Object newInstance(int index, Object[] args) { }

 public int getMaxIndex() { }

 protected static String getSignatureWithoutReturnType(String name, Class[] parameterTypes) { }

}

Code sample 6.2-i CGLib; changed method implementations to support reflection

It could be stated counterintuitive to introduce reflection when the purpose of CGlib

was to remove it. However, we state in chapter 5.1 that stability and compatibility is

a primary goal, and that execution exceptions are of no tolerance. It implies that the

performance increase achieved by indexing, is at this point of insufficient relevance.

An optimal resolution this problem will require an in depth study of how the runtime

environment could be invoked to perform Class to DEX compilation at runtime, from

within an application.

6.3 Relational Database Integration

We state in chapter 3.6, that Esper requires a JDBC compliant driver in order to

communicate with a relational database. Androids integration relies on a set of

higher level API functions. Tracing these functions render that database interaction

is performed by a set of lower-level, pre-compiled, JNI calls, and Esper is not capable

of utilizing these functions as it is instructed to invoke standardized JDBC method

interfaces.

The solution to this problem, is from our view, to compile and present a JDBC

compliant driver to the application as a library, as this automatically distributes the

driver with the application, and prevents specific configuration of each individual

47

device. A fully featured implementation of SQLite is redundant, as the database is

already embedded in Android, and could cause implications that relate to rights

management (see chapter 4.2.1).

A project named SQLDroid[37] intend to present a JDBC compliant SQLite driver to

the Android platform, but fails to implement interfaces that support prepared

statement execution. Utilizing this driver will cause runtime termination upon query

registration as Esper depends on prepared statements when it embeds projected

attributes from an event, as variables in a SQL statement. Joining information

between a stream and persisted data, would therefore not be possible.

We propose that it should be sufficient to only provide an application with the

appropriate API, and a reference to where a SQLite instance is located. The Berkeley

Database project [38] leverages a compliant JDBC driver as it incorporates support

for SQLite as a drop-in. It embeds the necessary API, but leaves inclusion of SQLite

optional.

Compilation of this driver requires utilization of the Android NDK as it imposes lower

level JNI calls. It implies that our implementation is platform specific, supporting

only smartphone devices that embed an ARM based processor14. Procedures for

compilation are available at [39]. The driver is identified as “sqlite.jar”, located

under the “libs” directory. Any utilization requires that the driver requires that the

library is included in the build path of the application.

This driver will not return metadata for precompiled, prepared SQL statements. It

proves as a problem for Esper because the engine relies on this information for

query validation and output projection15. An engine instance must therefore be

configured to perform lexical analysis of the SQL statement, thus enforcing a custom

engine configuration.

A complete configuration sample is presented in Code sample 6.3-i.

<Path to database> denotes the absolute file path to a SQLite database instance.

<Database name> identifies this database in an installed query.

14 Related to the hardware presented in chapter 8.1.1
15 See [19], section 5.13.7

48

// Obtain a configuration reference
ConfigurationDBRef reference = new ConfigurationDBRef();

// Provide a notion of the driver to use – and where an instance of our
// database can be located in the file-system.
reference.setDriverManagerConnection (
"SQLite.JDBCDriver", "jdbc:sqlite: <Path to database>",
new Properties()
);

// State that meta-data retrieval should happen through sampling
reference.setMetadataOrigin(ConfigurationDBRef.MetadataOriginEnum.SAMPLE);

// Relate the configuration reference to a named database that,
// on a later point can be referenced from a query.
configuration.addDatabaseReference(“<Database name>”, reference);

Code sample 6.3-i Database configuration sample

6.4 Verification and Distribution

The complete port of Esper, including all third-party libraries and our SQLite driver is

presented as public, open source project identified as Asper. Access is present for

anyone and located in Repository 1 below.

https://github.com/mobile-event-processing/Asper

Repository 1 Asper source repository

Asper represent version 4.8.0 of Esper, as this is the most current release of the

engine at the point of this thesis. Any reference to Asper in this thesis, represents

our alternated version of Esper.

Verification is conducted by running 766 distinct unit-tests that each isolate and

verify small pieces of testable code. These test are distributed with the source code

of Esper and leverage JUnit16 for execution. The complete test suite is larger and

relies on over 85 tests that concern database communication. These tests will fail

because they rely on MySQL, a relational database that is not supported by Android.

Tests that rely on the MetricUtil component will also fail because of our exclusion.

(see chapter 6.2).

The core of Esper is packaged as a JAR (Java Archive) and retains the same

procedures for utilization as its original counterpart. Any documentation that

regards Esper, should therefore also regard Asper in the same way. All third-party

libraries accept for CGlib are separated, and must be included in the build path upon

16 A unit testing framework for Java.

49

compilation. Separation is conducted to ensure easier maintainability, and to retain

the same project structure that Esper imposes.

Embedding future releases of Esper should be performed with ease as it should be

sufficient to only copy components from the "com.asper" namespace, and alternate

all import statements. Integrated Development Environments could automate this

task by performing regressive text replacement operations, and we state that an

automated script is not needed.

EsperTech, which retains the rights to Esper, imposes that Asper must retain the

original, GPL-2.0 license for distribution.

50

7 Benchmark Implementation

This chapter is divided into three sections and describes how the performance

benchmark from chapter 5.2 is designed and implemented. The first section

describes the design and implementation of a set of tasks that each exercises

distinct properties of DSM and CEP systems, and are bound to a set of experiments

in part III. The second section presents an architectural overview of the benchmark

and highlights how different components coordinate their actions in order to render

a measurement true. The third section describes the benchmark implementation

and highlights details about specific components from section two. This chapter is

finally concluded with a notion about the availability and distribution of this

benchmark.

7.1 Tasks

The intention of our benchmark is, as noted in chapter 5.2, to evaluate if it proves

feasible to utilize our port of Esper on a smartphone device. Asper must therefore

be presented to a set of disparate tasks, that each places pressure on distinct

principles that regard both stream management, and event processing.

Chapter 5.2 uncovers the set of tasks and factors that we consider important in

order to evaluate our implementation of Esper. We proceed this chapter by

presenting the design and implementation of each task, and render their relation to

principles that concern DSM and CEP in chapter 2.

7.1.1 Task 1: Selectivity

The intention of this task is to measure how filtration effects the throughput of the

engine by altering the predicate selectivity. A higher selectivity rate will force the

engine to output results more often and render how the output mechanism could

affect the overall throughput of the engine. A lower selectivity rate will render how

many events the engine is able to consume and analyze in scenarios where the

chance of finding the event we are looking for is low.

Schema, Eventa :

Attribute Type Value

Id Integer Random: [1, In]

a1 String Fixed

Query 7.1.1-i

SELECT id, a1

FROM Eventa (id <= K)

51

Query 7.1.1-ii

In Query 7.1.1-i,, K is used to project the desired predicate selectivity by specifying

that only event instances with identifiers with lower or equal In cardinality should be

selected for output.

It should be noted that Query 7.1.1-i is implemented with a filter on the actual event

stream, and filtration will be performed before the event enters a window.

Projection is limited to two distinct attributes to exercise selectivity in isolation.

Query 7.1.1-ii has the intention of selecting and outputting each and every data item

that enters the engine. Its purpose is to remove any aspect of filtration from our

processing chain, and solely measure the ability to output data to listeners.

7.1.2 Task 2: Projection

Projection should render how attribute selection affects overall performance. It is in

our interest to see if the engine is capable of selecting a high amount of samples

that could represent a variety of data items. Inspecting multiple attributes

simultaneously, could prove beneficial in situations where we are scanning for

patterns, because we are not sure where favorable information is present.

Schema, Eventa :

Attribute Type Value

a1 … a512 Double Fixed Random: [1.0, 1000.0]

Attribute ax denotes how many attributes the event schema and projection query

should include. Query 7.1.2-i will select all incoming instances of Eventa and project

its attributes as output.

7.1.3 Task 3: Aggregation

The intention of this task is to evaluate a set of aggregation functions with jumping

and sliding windows of variable length. We note in chapter 2.2.4, that aggregation

functions will have different computational costs based on their intention and

affiliation with specific window types. Sliding windows will impose eager re-

evaluation as new data items arrive, while a jumping window performs the re-

evaluation in a batch process when window boundaries are met.

Schema, Eventa :

Attribute Type Value

SELECT id, a1

FROM Eventa

SELECT a1 … a512

FROM Eventa

Query 7.1.2-i

52

a1 Double Fixed Random: [1, 1000]

Query 7.1.3-i represents both a sliding, and a jumping window, differentiated by the

inclusion of “_batch”. Wn denotes the window size. f(ax) denotes the aggregation

function and is replaced with SUM() and MEDIAN(). ax denotes the data item

attribute that should be computed.

The choice of aggregation functions is based on [16], and can be summarized by the

following note :

 SUM(ax) returns the sum value of n data items and can be computed at

fixed cost independent of window length and policy.

 MEDIAN (ax) computes the median of ax, and its computational cost will

depend on window size.

7.1.4 Task 4: Join – Table

The intention of this task is to perform a join between two distinct event types

Eventa and Eventb, where Eventa is preloaded in a window that acts as a static

lookup-table and every incoming instance of Eventb is matched against one and only

one instance of Eventa. The purpose is to measure how joins between a static

window that contains pieces of historic information, and a dynamic window that

continuously moves affects the overall performance of the engine.

Schema, Eventa , Eventb :

Attribute Type Value

Id Integer Random: [1, Wn]

a1 Integer Fixed

sequence Integer Sequential: [1, Wn]

Wn ensures that the lookup table retains a fixed window size. Wn instances of Eventa

must be preloaded into this window before the measurements starts.

‘UNIDIRECTIONAL’ ensures that our query is only evaluated on the arrival of Eventb .

The WHERE-clause performs the actual join by specifying that the id attribute of

Eventb , which takes a random value between 1 and Wn , should correspond to the

generated sequence number of some Eventa , and thereby ensure that a match will

SELECT Eventa.a1 , Eventb.a1

FROM Eventa.win:length(Wn) , Eventb UNIDIRECTIONAL

WHERE Eventb.id = Eventa.sequence

Query 7.1.4-i

SELECT f(a1)

FROM Eventa.win:length [_batch] (Wn)

Query 7.1.3-i

53

be located for any incoming instance of Eventb. Projection enforces extraction of

joined information.

7.1.5 Task 5: Join – Window to Window

This task exercises continuous joins between two sliding windows of variable size.

Window size and predicate selectivity are factors under analysis, as a considerably

sized window could imply a performance degradation caused by garbage collection

and allocation procedures (see chapter 4.2.4). Exercising window size and predicate

selectivity in isolation, ensures that we inspect allocations and collections

distinctively.

Schema, Eventa , Eventb :

Attribute Type Value

id Integer Random: [1, In]

a1 Integer Fixed

This task is divided into two distinct measurements that each individually place

above factors under analysis:

a. Varies window size and keeps selectivity fixed at 100%.

Wn, which denotes the window size, and In, which denotes the event

identifier range, takes the same value to ensure that each Eventa will

find at least one Eventb in the other window.

b. Retains window size fixed and vary join selectivity.

Wn is set to n and In is set to Wn * 10, 1 and 0.1 to ensure that each

instance of Eventa , will on average find 10, 1 and 0.1 instances of

Eventb in the other window.

7.1.6 Task 6: Pattern Detection

The pattern matching task will search for the occurrence of an event that has the

same identifier within a temporal context. Predicate selectivity is imposed by stating

that a secondary attribute must be above some constant value. The intention is to

place pressure on cardinality and evaluation policies by altering how many, and how

frequent event sets the pattern sees in a context. High range of identifier variability

will force the engine to keep notion of many distinct events, while a large temporal

context will imply that many events can accumulate and pose higher requirements

for output generation.

Schema, Eventa :

Attribute Type Value

Id Integer Random: [1, In]

SELECT Eventa.a1 , Eventb.a1

FROM Eventa.win:length(Wn) , Eventb.win:length(Wn)

WHERE Eventa.id = Eventb.id

Query 7.1.5-i

54

a1 Double Random: [1.0, 100.0]

The duration of a temporal context is defined by Wn and denotes retainment of

Eventa instances. Selectivity is imposed by a correlation of K and a1, and ranges from

1.0 to 100.0 to ensure a desired percentage. In denotes the amount of distinct

identifiers. Evaluating different pattern policies can be exercised in isolation by

varying a single predicate Wn, K or In, while retaining the other predicates static. The

additional [Every] operator should denote the cost of attempting to match every

previously seen instance of x and y, effectively retaining a history of seen events and

placing pressure on output generation.

7.1.7 Task 7: Database Integration

This task concerns itself with joins between a prepopulated relational database and

Asper. The intention is to measure how communication overhead could affect the

engine performance, and to identify the maximum achievable amount of data items

that can be joined from within a query. We mention in chapter 3.6 that Esper

embeds a result cache that stores a set of recently retrieved database results in

order to prevent the need for reoccurring database entry. How this cache improves

performance is of interest to exercise in order to reveal the potential gains that lies

within.

Schema, Eventa :

Attribute Type Value

Id Integer Random: [1, In]

a1 Double Fixed

Schema, database:

Attribute Type Value

Id Integer Sequential: [1, In]

t1 … t5 Double Fixed

SELECT *

FROM PATTERN

[

EVERY x = Eventa ->

[EVERY] y = Eventa (id = x.id AND a1 > K) WHERE timer:within(Wn)

]

Query 7.1.6-i

55

Every instance of Eventa is joined with a single record in a pre-populated database.

The amount of records is denoted by In and represents a sequential primary key. The

implications of result caching could be measured by balancing cache misses. Thereby

forcing the engine to re-query the database and update the cache before an answer

is returned.

7.1.8 Task 8: Multiple Events and Threads

The intention of this task is to render if, and how disparate event types and multiple

threads affect the performance. We are concerned about scenarios where high-

priority events from one or more sensors retrieve their own processing thread and

output listener, but must share the same engine instance.

1 - n separate threads work with 1 - n instances of Query 7.1.1-i from Task 1. Each

instance of Query 7.1.1-i references a separate event type and each thread will only

process one type of event to ensure that no reentrant locks could occur between

the n queries. Selectivity is set to 25% and each instance of Query 7.1.1-i retrieves

its own listener.

SELECT Eventa.a1, Db.t1

FROM Eventa, SQL:database

[

 “SELECT t1 FROM table WHERE id = ${ Eventa.id }”

] AS Db

Query 7.1.7-i

56

7.2 Architecture

This section aims to present a higher-level overview of the benchmark that

implements and measures each distinct task from chapter 7.1.

7.2.1 Overview and Domain

The collection of tasks presented in chapter 7.1, renders how disparate the tests and

event-types can be.Each task has a set of queries that must be installed. One or

more unique event schemas that must be registered and one or more attributes that

require a name and random value assignment. Certain events must be pre-loaded

into the engine in order to perform static joins between windows and must

therefore be omitted when the actual test is conducted. All tasks are in this way,

uniformly similar – but small distinctions prevents us from constructing a simple,

hardwired and generic model that that accommodates to all needs.

We state in chapter 4.2.3 that the default runtime environment in Android retains a

JIT-compiler that optimizes segments of code for faster execution. Such an operating

environment will also embed a set of buffers that might render a distinctly higher

throughput rate if it is allowed to run for a certain amount of time. We also state, in

chapter 5, that smartphone devices are not actively cooled. It could imply that

processing capabilities differ as time progresses. Retainment of reproducible

measurements require that we are able to place the environment in a certain state.

A pre-measurement procedure is therefore required in order to warm up the

runtime environment, the engine and the device.

Monitoring of the effective throughput can be conducted by measuring how many

data items we are able to process per second. However, unpredictability in output

generation requires us to place a monitor at the input-end of the engine. We state in

chapter 3.1 that Esper retains an architecture where each thread that delivers a data

item to the engine – is also responsible for processing it all the way to an awaiting

listener. Latency is therefore – from our viewpoint – not of importance to measure

explicitly as answers are produced near instantaneously. Detecting when the engine

should have generated output, would require us to hard code every test and any

generalization would be lost. Effectively rendering a benchmark framework useless

for other purposes.

Multiple, parallel-working threads must, as stated earlier, be exposed to the least

amount of locking and waiting to prevent any impact on the measurements. We

state that a shared data item repository imposes that 2-4 accessing threads will use

15-30% of their time waiting for access. Each thread should therefore retain its own

data item repository and local monitor to prevent parallel access. Dealing with equal

and disparate event-types in Task 5 and Task 8 – also imposes a notion of correct

event distribution among the workers. Each worker must retain some notion of

synchrony – and a set of barriers and conditions must be met to ensure that all

workers start and pause their measurements and processing on equal terms.

A higher-level overview of the system is presented in Figure 7.2.1-i. Each component

in this figure is described in Table 7.2-i

57

Figure 7.2.1-i Benchmark component architecture

Coordinator

Generator Preloader

Tasks

Task1

Taskn

…

tn

Repository

d1 dn …

Asper

Listener1 … Listenern

…

Worker1

Monitor1

Worker
n

Monitor
n

dn

DAO

Database

dn

58

Component Description

Task

A Task is an abstraction that retains information about the current
task to perform. Each Task withholds the queries to be installed
and information about the events that should be utilized for a
particular test. A single Task is also denoted by tn.

Tasks

The Tasks component acts as a central coordinator for the
collection of Task instances that reside in the system. It is
responsible for load and retainment of the currently active Task
that the system utilizes in an active test sequence.

Coordinator

The Coordinator is responsible for instantiations and reset
procedures between each test. A Coordinator will ensure
administration of Worker and Task instances, additionally to data
generation. The Coordinator will not perform any extensive
operations – but rather call abstracted methods in an ordered
sequence.

Generator
A Generator resolves Task instances to data items that can be
presented to the engine. A single data item is also denoted by dn

Preloader
A Preloader ensures that a predefined amount of data items
Is presented to the engine before a test starts.

Data Access
Object
(DAO)

DAO acts as an abstraction to the relational database. Its
responsibilities relate to teardown, setup and preloading
procedures. DAO works with a private instance of a Database
component that represents a SQLite reference and information
about the database schema. Asper by itself, will not work with this
component, as all our queries must be performed within the
engine, which retains its own, separate connection pool.

Repository
A Repository retains a set of generated data items, placed in a
particular order by a Coordinator.

Worker
A Worker represents a distinct thread that utilizes an instance of
Asper to feed and process data items. Each Worker withholds its
own instance of a Monitor and a local storage of data items.

Monitor
A Monitor withholds a notion of time and throughput of currently
processed events.

Asper
Asper presents an abstraction of an engine instance. It ensures
query installation, event-type registration and output listener
initialization.

Listener
A Listener retrieves output from installed queries, but performs no
further computations and sheds the output immediately.

Table 7.2-i General description of benchmark components

7.2.2 Component Correlation and Application Flow

The flow of operation between components described in chapter 7.2.1 is presented

in Figure 7.2.2-i. It renders an image of method invocations for a single test.

Effectively showing how a set of the most important components correlate to one

another.

59

Figure 7.2.2-i Benchmark flow diagram

Coord. Tasks Gen. Cond. Asper Repo.

Worker

setCurrent(t)

addEvent(e)

addQuery(q)

repositoryIsFilled

make(e, n)

List<d>

add(List<d>)

repositoryIsFilled

wait

notify

get

List<d>

preload

testCanStart
wait

warmup

testCanStart
break

Monitor

timer

send(e)

pause

timer

60

The flow of operation in Figure 7.2.2-i can be described by the following three

segments:

I. The Coordinator (denoted by Coord.) will set a Task t as the currently

active task.

Each event type is then registered. Asper is able to interpret an event-

type and registers a model of its schema.

All queries from the current Task are subtracted and presented to Asper

for installation. Asper will at this point install each query and initialize a

Listener for it.

The Coordinator will locate any event-types that require preloading and

ensure their presence through the use of a Preloader component if

necessary.

II. All Worker components are instantiated and activated. Each Worker will

synchronize with a Condition (denoted Cond.) component that withholds

a lock labeled repositoryIsFilled.

The Coordinator then ensures that each event-type in the system is

generated by invoking the Generator (denoted by Gen.) component to

make ne items of each event-type. Where ne is decided by the total

amount of data items to be generated in the system divided by the

amount of event-types in the test. Each generated item is collected

locally and the complete set of data items is, if required, randomly

shuffled before being sent to the central Repository.

The repositoryIsFilled condition is then notified and all awaiting Worker

components will retain an equal set of data items. The Coordinator will

at the same time await at a barrier labeled testCanStart.

All Worker components will start a warmup procedure where they

perform work without any monitoring. Each Worker will then

synchronize and await at the testCanStart barrier, effectively breaking it

and signaling to the Coordinator and any awaiting Workers that the test

is ready to be initiated.

III. The Coordinator winds up an internal timer that fires after a

predetermined amount of time and invokes a pause procedure. Each

Worker component invokes at this time its local Monitor component,

that itself winds up a reoccurring timer that snapshots the currently

processed set of data items.

Each Worker processes a set of data items and invokes an update

procedure on the Monitor until paused by the Coordinator. State is at

this point retained for further calculation until a new test starts.

61

7.3 Implementation

The intention of this chapter is to describe how certain and important components are implemented

to form the system presented in Figure 7.2.1-i. Each individual part in this chapter, reside in

Repository 2, presented in chapter 7.4. Certain code samples represent only an outtake each

implementation.

7.3.1 System

The system that we present in chapter 7.2, can be implemented in several ways. We state in chapter

4.3.1 that Android retains a set of components that acts as sandboxed building blocks for complex

applications.

Figure 7.3.1-i General Benchmark implementation

Figure 7.3.1-i presents an implementation proposal. System denotes all components from Figure

7.2.1-i. The Main and Reporter Activity components denote graphical interfaces that retain control

over user interaction. Their presence is described in chapter 7.3.7. The Database component

represents a physical SQLite database instance.

It could be stated sensible to place the Generator component in a separate Service and thereby

ensure that it retains its own Heap and runtime environment. Such a setup would be more true to a

scenario where Asper itself, is implemented as a Service that acts as a central aggregator for all

events that happen on a device. We state however that the main bottleneck for such a setup is

directly related to the amount of IPC messages a particular device is able to process. We state that

the hardware presented in chapter 8.1.1, is only capable of processing approximately 8k IPC17

messages per second. Marshaling and queue retainment is the primary factor for this cost of

operation and a single test will be severely affected by the overhead. Our primary intention is to

17 Payload is represented by a plain Java object with 3 numeric attributes. IPC messages are sent by invoking
service interfaces, described directly by AIDL. It implies that we do not use the higher-level Messenger
component in Android as it imposes a fixed 1 MB buffer that terminates the whole application upon overflow.

Application

Data-

base

System
Main

Activity

Reporter

Activity

62

measure how well our port of Esper operates on an Android based device. We therefore state the

proposal in Figure 7.3.1-i is sensible as it allows us to perform measurements in sufficient isolation,

effectively rendering the engines true performance.

7.3.2 Task

A single Task instance is, in the application, identified as a plain Java object. Each instance must

include a notion of names, queries, attributes, values and preloading options that aid the system in

understanding how the test should be conducted. Esper requires that we, for each named event,

state each attribute name, position and datatype. We state that the functional aspects of the system

and the tasks themselves, should be separated from application as it enables us to create a generic

framework that can run a disparate set of tasks without the need of recompilation and profound

expertise of the programming environment.

Each Task is therefore written in JavaScript Object Notation (JSON)18 – and can be described in a

human readable way. We state that this enables an external user to write a set of Tasks that may

relate to domain specific scenarios that we do not cover in this thesis. We also state that if our work

is to be extended in the future and include a networked client/server model, then, it should, with

small alterations be possible to omit local data item generation – and simply transmit a string of JSON

to inform the engine about the events that are to arrive.

An example of a JSON based Task is presented in Code sample 7.3-i. A description of each key is

presented in Figure 7.3.2-i below.

Key Description

Label Represents a human readable task name

Queries
Presents an array of one or more textual queries that are to be installed
within an engine.

Events
Presents and array one or more event-types, where each event is
represented a separate object of type Event

(Event) Name
The event name. An engine will recognize and match a data item to a query
by this value

(Event) Preload
An optional attribute that denotes if this event-type should be preloaded. A
numeric value denotes how many instances to preload.

(Event) Variables
Presents an array of one or more event variables / attributes that are to be
generated and expected by an engine.

(Variable) Name
Presents an attribute/variable name. Utilized in relation to event-schema
generation and in any installed queries.

(Variable) Range

Presents that this value should be picked randomly from a span that ranges
from the first, to the last number in the array. The numeric value can either
be presented by an Integer, or Decimal. Decimal numbers will retain
randomness on both sides of the decimal point.

(Variable) Value Presents a fixed value that can either be a Number, String, Char or Boolean.
Figure 7.3.2-i Description of a JSON based Task

18 An open and standardized, textual, key-value object description format that can be used as an alternative to
XML. See http://json.org for more information.

63

 label: "Task name, type",

 queries:
[
 "Query1", "Queryn"
],

 events:
[
 {
 name: "A",
 preload: 1000 (optional)

 variables:
 [
 {
 name: "ID",
 range: [1, 1000] || [1.0, 1000.0]
 },
 {
 name: "A1",
 value: "text" || true || 1.0
 }
]
 }
]

Code sample 7.3-i Example of a JSON based Task

Transformation between a JSON based Task and a Java based object is performed by GSON19, a third-

party library that parses JSON based content and maps it to a predefined Java Class that holds an

equal structure. All type conversion is performed automatically, but it implies that any limitations

must be accommodated by custom conversion adapters for any non-primitive types that one would

wish to add as an extension in the future. Our implementation of GSON is abstracted to enable such

adapters in the future without the need of extensive refactoring and resides in the JSON Class located

in the utilities package.

A single Task can be written in any text editor, and should be saved with the “.json” extension. Such a

<file> can be pushed to the smartphone device by utilizing the shell command presented in Code

sample 7.3-ii20.

adb push <file> /sdcard/Asper-Benchmark/Tasks

Code sample 7.3-ii Command to place a task on a smartphone device

19 An Android compliant, Google supported, serialization library for JSON. See
https://code.google.com/p/google-gson/
20 It implies that the Android Debug Bridge (ADB) – utility is installed on the host machine. See
http://developer.android.com/tools/help/adb.html

64

7.3.3 Generator

The Generator component is responsible for production of data items from a model imposed by the

currently active Task in the system. The algorithm that performs the actual data item creation is

presented in Code sample 7.3-iii.

Code sample 7.3-iii Data generation sequence

/**
 * Helper function for Data-item creation.
 * Parses a given Event type and generates
 * an Object[] representative of the event.
 *
 * @param event the event to model
 * @return a Data-item representation
 */
 private static Data create(Event event)
 {
 // Collection of event attributes
 List<Variable> variables = event.getVariables();

// Data-item payload.

 Object[] dataset = new Object[variables.size()];

 /*
 * For each attribute, retain its value
 * and place it in the data-item payload
 */
 for (int i = 0; i < dataset.length; i++)
 {
 Variable variable = variables.get(i);
 Object value = variable.getValue();

 /*
 * Determines whether or not this
 * attribute is a range and should be
 * selected randomly.
 */
 if (variable.hasRange())
 {
 List range = variable.getRange();

 value = pickRandomNumber(
 (Number) range.get(0),
 (Number) range.get(1)
);
 }
 dataset[i] = value;
 }
 return new Data(event.getName(), dataset);
 }

A Coordinator component will call a Generators make() command as noted in Figure 7.2.2-i. The

make() command itself is responsible for sequencing the data items. It will append an attribute called

65

“SEQUENCE” at the end of each data item and enable reference from any installed query.

Sequencing is – as a reminder, an important part of Window to table joins presented in chapter 7.1.4

Random number generation is performed by the “pickRandomNumber(nmin,nmax)” function that

resides in the same component. This function follows, for verification, Equation 7.3-i and relies on

“java.util.Random” with a fixed seed.

Equation 7.3-i

Online generation of data items imposes problems that relate to production of enough objects per

second without affecting the benchmark. A generation sequence requires us to reflect over how an

event should be modeled and Esper itself, requires us to present a data item that corresponds to a

pre-registered schema. It implies that name, datatype and order must be exact for the engine not to

throw an exception.

Simple measurements indicate that the algorithm presented in Code sample 7.3-iii, is only capable of

producing approximately 40 000 data items per second. A simplified version that creates a single

randomly attributed data item and places it in an array – is capable of producing approximately

100 000 items per second at the cost of 15-20 % CPU utilization21. It could be stated that each task

should be explicitly programmed to minimize the overhead of generation. However, we state that we

are currently not able to control processor or thread affinity in Android, and cannot ensure that our

Worker components are operating in isolation on separate processor cores.

Pre-allocating several million data items is unfeasible because a typical device is only capable of

retaining 96 - 192 MB of heap memory. This limitation is possible to circumvent by manual

configuration of the smartphone device – but several million inactive objects in the heap will affect

garbage collection traversal and impose pause times that last up to a second (see chapter 4.2.4).

Custom, large heaps are not presentable for the majority of devices that run Android and any results

would prove of little use.

Object cloning is however, a feasible solution. Java is not capable of performing a shallow, or deep-

copy of a plain object without additional assistance and implies that reflection must be utilized in

order to create a generic solution. This situation is however different for arrays that contain

primitives. Java is fully capable of performing a native array-copy operation and present the result as

an individual object in the system.

We feel confident in proposing a solution where only a sub-set of the events that are to be

processed, are generated once, and then looped through and cloned by each individual Worker. This

ensures that Esper, and the Garbage Collector in Android is working with data items that do not

retain any static references, and prove themselves collectable when discarded. Preliminary tests that

measure the offset of throughput between instantiated and cloned data items, render a negligible

difference22.

The noticeable limitation, imposed by this decision, is that Task components should only contain

primitive attributes. Using nested objects will imply that only references to these objects are copied.

21 Task: 7.1.1, at 25% selectivity on hardware presented in chapter 8.1.1
22 Task: 7.1.1 and Task: 7.1.5. The offset in time between cloning a three attributed array and instantiating it, is
measured to be approximately 40 milliseconds for 100 000 arrays.

min + (𝑟𝑎𝑛𝑑𝑜𝑚 ∗ ((𝑚𝑎𝑥 − 𝑚𝑖𝑛) + 1))

66

It also implies that only object-arrays are viable as a data item format. This however, proves to be a

positive decision as object-arrays, are in chapter 8.2.2, rendered to be the fastest format for Asper.

7.3.4 Worker

A Worker component represents a single thread that performs the actual data item processing. Its

procedure of execution is presented in Code sample 7.3-iv and renders a set of stages that the

Worker goes through. The intention of this chapter is to render and verify that the Worker

component itself, is of a simple nature, not imposing any substantial overhead or locking procedures.

All variables mentioned in Code sample 7.3-v, are local the Worker instance. The engine variable

represents an instance of Espers EPRuntime Class and represents an engine instance, derived directly

from the Asper component.

67

 /*
 * Main run procedure.
 * Initiated upon Thread start.
 */
 public void run()
 {
 try
 {
 storage.clear();

 // Waits for a notion about
 // data-repository content availability
 synchronized (Conditions.repositoryIsFilled)
 {
 Conditions.repositoryIsFilled.wait();
 }

 // Retrieves a calculated set of data-items
 storage.addAll(Repository.get());

 // Initiates warm-up procedure
 warmup();

 // Arrives at barrier related to
 // test invocation.
 Conditions.testCanStart.await();

 // Initiates the monitor timer
 monitor.reset();
 monitor.initiate();

 // Starts work procedure
 work();

 } catch (Exception e)
 {
 …
 }
 }

Code sample 7.3-iv Worker run procedure

The actual work() procedure is presented in Code sample 7.3-v. The warm-up procedure will simply

perform the work() procedure for a specified amount of time by winding up a fixed timer that will

cause the Worker to pause execution. The Monitor component is reset and initiated just before the

actual test is about to begin.

68

 /*
 * Performs the actual engine
 * feeding / processing procedure.
 * Loops continuously through a set of
 * data-items until paused.
 */
 private void work()
 {
 // Current storage index
 int index = 0;
 // Continuity indicator
 keepWorking = true;
 // Storage size
 int size = storage.size();

 while (keepWorking)
 {
 // Resets the index if
 // it surpasses the storage size.
 if (index >= size)
 index = 0;

 // Retrieves the next data-item
 Data e = storage.get(index++);
 // Sends / processes the event
 engine.sendEvent(e.data.clone(), e.name);
 // Notifies the monitor
 monitor.increment();
 }
 }

Code sample 7.3-v Worker work procedure

7.3.5 Monitor

The Monitor component is responsible for retaining a notion of how many data items a Worker

managed to process for a certain amount of time. Code sample 7.3-vi presents an outtake of the

most important functions that the Monitor retains. The initiate() procedure will wind up a

reoccurring timer that begins after one second, and reoccur every second23. The timer is

implemented by “java.util.Timer” and leverages an internal timer daemon. Any components that rely

on a reason of time, utilize the same procedure as this Monitor. We state that manual, continuous

time retrieval through the use of “System.nanoTime()”24 affects the measurements (4.6%±2.1)

presented in chapter 8.3, as it imposes higher overhead than the timer. Time synchronization

between components is not directly resolved. Instead, the Coordinator component will have a small

23 Denoted by Settings.MONITORGRANUALITY, which by default, is set to 1000 milliseconds.
24 Java Virtual Machine high-resolution time source.

69

offset in its temporal interval to ensure that it will not end the test before any of the Monitor

components complete their cycles.

 private volatile long i;
 private Timer timer;
 private TimerTask task;
 private final Monitor self = this;
 private LinkedList<Number> measurements;

 /**
 * Initiates the Monitor timer. Ensures saving cycles.
 */
 public void initiate()
 {
 task = new TimerTask()
 {
 @Override
 public void run() {
 self.save();
 }
 };

 timer.scheduleAtFixedRate(
 task,
 Settings.MONITORGRANUALITY,
 Settings.MONITORGRANUALITY
);
 }

 /**
 * Increments the local counter that withholds a notion of how many
 * data items a Worker has processed for a given interval.
 */
 public void increment()
 {
 ++i;
 }

 /**
 * Persists the current counter
 * value and resets it.
 */
 private void save()
 {
 measurements.add(new Long(i));
 i = 0;
 }

Code sample 7.3-vi Monitor implementation

70

7.3.6 Measurements

A single test can consist of one or more individual runs. A single run is denoted as a complete cycle of

the flow presented in chapter 7.2.2. Each run should retain the same operational environment, and

must impose pause times between runs to ensure that a device is not affected by thermal constraints

(see chapter 8.2.1). The Coordinator component will discard any Worker instances, and unregister

any event types, queries and listeners that reside in context of Asper, before internally destroying the

engine instance to ensure that each run retains the same environment. An explicit garbage collection

procedure is initiated, but cannot be assured to run as denoted in chapter 4.2.4.

The collection of samples from each distinct Monitor component is persisted between individual

runs. The average throughput is calculated for each individual Worker by utilizing Equation 7.3-ii,

where t denotes a single Monitor sample that represents the amount of data items processed during

an interval.

Equation 7.3-ii

Equation 7.3-iii

Deviation between the population of samples denoted by 𝜎, is given by Equation 7.3-iii. Simply

calculating the sum of data items processed over time, will, from our viewpoint not uncover

information about garbage collection pauses and thermal effects over time, and potentially, present

higher, average throughput rates. Persisted measurements can be retrieved through the following

command:

adb pull /sdcard/Asper-Benchmark/Measurements

Code sample 7.3-vii Command to retrieve a measurement

7.3.7 Interface

The application that encapsulates the system is presented with a simple interface that enables a

given user to control how a test is conducted and to visually see how the engine performed under

different circumstances.

𝑇 =
∑ 𝑡𝑖

 𝑛
 𝑖=1

𝑛
, 𝑤ℎ𝑒𝑟𝑒 {

 𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑢𝑛𝑡
𝑡 = 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

𝜎 = √
∑ (𝑡𝑖 − 𝑡 ̅)2𝑛

𝑖=1

𝑛
, 𝑤ℎ𝑒𝑟𝑒 {

𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑢𝑛𝑡
𝑡 = 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

𝑡 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡

71

Figure 7.3.7-i Benchmark interface

Figure 7.3.7-i-a displays the main screen that is rendered upon initialization and reflects the Main

Activity from Figure 7.3.1-i. A user is able to select the task that is to be performed, and if multiple

tasks are identified by the system, then all of them will be present in in a drop-down list. Data item

population decides the amount of items to generate and distribute amongst the Workers (excluding

events that are to be preloaded). Database population decides the amount of rows that are to be

populated in a given table. Database cache decides how big an engines LRU result cache should be.

Figure 7.3.7-i-b represents the interface that is rendered when a test sequence is completed and

represents the Reporter Activity from Figure 7.3.1-i . A simple graph shows the effective throughput

of each Worker. The y-axis represents data items and the x-axis represents time in seconds. We state

that that a graph is of use in our context as it enables a user to see if the results are affected by

frequency throttling and temperature over time. We visit this issue in chapter 8.2.1 – and state that

devices behave quite differently.

7.4 Distribution and Availability

This application and an implementation of each Task described in chapter 7.1 is present as an open

sourced project, located in Repository 2 below.

https://github.com/mobile-event-processing/Asper-Benchmark

Repository 2 Asper Benchmark

The project structure consists of two main folders. “Measurements”, that contain a set of JSON based

Task implementations – and “Application”, which contains the source code of this system.

Task instances must be pushed to a device using the command presented in Code sample 7.3-ii. We

state that this is a sensible model for distribution as each Task retain its own alteration history.

a. b.

72

Storing Task files in the source code will imply that a complicated writing procedure upon application

installation.

73

74

III. Evaluation and Conclusion

75

76

8 Benchmark Measurements

This chapter describes experiments and measurements related to the set of questions posed in the

requirement analysis presented in chapter 5.2. The first section presents the domain of our

measurements and highlights objectives that must be met in order to render our results true. Section

two includes a set of preliminary experiments that aid in understanding of how Esper behaves on an

Android based device and describes influential factors that affect our measurements. Section three

presents measurements and results that concern the task presented in chapter 7.1. This chapter is

then concluded with a discussion that concerns the feasibility of utilizing Esper on Android.

8.1 Domain

The primary intention of this experiment is to utilize our implementations from chapter 7 for the

purpose of determining the maximum achievable throughput for each task presented in chapter 7.1.

A preliminary set of experiments must be conducted in order to answer the questions posed in the

requirement analysis (see chapter 5.2). Specifically, we want to answer how thermal constrains and

garbage collections can influence the performance of Asper in negative ways. Executional pauses

imposed by sizable windows could influence deviations, and a preliminary study should answer how

these procedures are conducted in Dalvik and ART. Our alteration of CGlib (see chapter 6.2) imposes

the use of reflection instead of attribute indexing. We therefore state that a comparison between

distinct data item formats must be in place in order to render if our choice is affected severely. These

properties are regarded as influential factors that should aid in system design when Asper is present.

8.1.1 Hardware and Software

All set of experiments are conducted on a Nexus 5, LG-D821 smartphone device. The choice of device

is reflected by its support of both ART and Dalvik as very few devices currently retain the possibility

of incorporating both environments.

Hardware and software specifications are presented in Table 8.1-i. Runtime environment settings are

presented in Table 8.1-ii and retain default values. The possibility of overriding default values is

present on unrestrained devices. Our intention is however, to retain default values as they are

representable for a larger majority of existing devices.

This device is under all tests set into airplane mode to ensure that no transceivers are operational.

Only stock background processes are running, as uninstallation and disablement causes exceptions

from what we believe, are daemon processes.

Component Description

SoC
Quad-core, 2.26 GHz Qualcomm Snapdragon 800, Model
8974-AA. 2x 16 KB L1 Cache, 2x 2 MB L2 Cache.

Main Memory (RAM)
2 GB LPDDR3-1600 RAM.
800MHz 32-bit dual-channel. (12.8 GB/s)

Local storage memory Sandisk SDIN8DE4 16 GB NAND flash

Battery capacity 3.8 V, 2300 mAh

Android, version Android 4.4.2. Build KOT49H

77

Kernel, version 3.4.0-gadb2201
Table 8.1-i Nexus 5 device specifications

Property Value Description

dalvik.vm.heapstartsize 8 MB Specifies the initial size of the managed heap

dalvik.vm.heapgrowthlimit 96 MB
Specifies the maximum size a standard
application is allowed to allocate

dalvik.vm.heapsize 192 MB
Specifies the maximum size an application is
allowed to allocate if it is set with the property
android:largeHeap in the manifest document.

dalvik.vm.heaptargetutilization 0.75
Imposes how full (%) the managed heap should
be before it needs to be increased.

dalvik.vm.heapminfree 512 KB
Lower bound soft limit garbage collector
heuristic

dalvik.vm.heapmaxfree 8 MB
Upper bound soft limit garbage collector
heuristic

Table 8.1-ii Nexus 5, runtime environment settings

8.2 Preliminary Experiments

This section presents the collection of influential factors noted in chapter 8.1.

8.2.1 Thermal Effects

Smartphone devices are, as stated in chapter 5, not actively cooled and could affect the SoC

performance notably under long and intensive processing operations. Understanding how a test

device scales its operating frequency should aid us in understanding how Asper is affected over time.

Observing the SoC temperature readings both under, and after an intensive task, should present how

much time a specific device needs in order to recover from an intensive operation.

We measure this effect by utilizing a simple application that places a set of threads under a

continuous, high workload, effectively placing all processor cores at approximately 90% load. A

separate thread conducts frequency and temperature sampling at a rate of 10 samples per second,

for 600 seconds, before it interrupts the working threads and resumes sampling of temperature and

frequency readings for another 300 seconds.

Frequency samples are derived on a per core basis from the following endpoint on each device:

/sys/devices/system/cpu/cpu[core]/cpufreq/scaling_cur_freq

Temperature samples are for the Nexus 5 derived from:

/sys/class/thermal/thermal_zone7/temp

It must be noted that we are currently not able to confirm that the mentioned thermal endpoints,

are in fact, representing the SoC temperature. Attempts to query official vendor forums have yielded

in no statements that could be presented as answers. We see however, that the samples correspond

to operational temperatures located in the device service-manual. Android is itself, from our

perspective, not instrumented with any standardized, higher level API endpoint that derive this

reading.

Figure 8.2.1-i and Figure 8.2.1-ii presents measurements that utilize one or four processor cores

simultaneously. The left y-axis represents the frequency for each individual core, and the right y-axis

represents the SoC temperature in Celsius.

78

Figure 8.2.1-i Thermal effects, single core utilization.

Figure 8.2.1-ii Thermal effects, quad-core utilization.

0

10

20

30

40

50

60

70

80

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

Te
m

p
er

at
u

re
 (

C
*)

Fr
eq

u
en

cy
 (

M
H

z)

Time

Core-1 Temperature

0

10

20

30

40

50

60

70

80

90

100

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

Te
m

ep
er

at
u

re
 (

C
*)

Fr
eq

u
en

cy
 (

M
H

z)

Time

Core-1 Core-2 Core-3 Core-4 Temperature

79

Figure 8.2.1-iii Throttling of throughput imposed by frequency scaling

Placing pressure on all four cores simultaneously forces the SoC to throttle its frequency drastically in

order to remain an operational temperature. The frequency scaling strategy is shifted profoundly

between measurements in Figure 8.2.1-i and Figure 8.2.1-ii, where a single core will continuously

scale the frequency between 2265.6, 1574.4 and 1267.2 MHz until it drops after approximately 240

seconds. We see, by utilizing the Top25-command and disabling our internal measurer, that dual

cores are activated when the test is initiated, and that processing is moved between both cores on

several occasions. Measurements in Figure 8.2.1-ii miss such an ability as all four cores are occupied,

and present and an acute, yet stable drop to 1574.4 MHz after approximately 50 seconds. It retains

this operation for another 110 seconds, before it starts to throttle in a predictable wave-pattern.

Temperature readings retain stability after approximately 85 seconds, but are likely influenced by the

active thread that still queries the device every 100 milliseconds.

Figure 8.2.1-ii renders that highly intensive, multi-threaded event processing will be affected over

time, and that one could expect a performance drop of up to 83% for certain periods of time.

Deviation between measurements that regard Asper, could be presented as a result of frequency

scaling rather than engine design. Any results presented in chapter 8.3, should be interpreted with

the notion that performance may degrade over time.

Error! Reference source not found. presents task 8-a (see chapter 7.1.8) with a selectivity predicate

of 5%, over an interval of 600 seconds with 1, 2 and 4 Workers. It verifies that high deviation in

certain, long running measurements, could simply be cause by frequency scaling, and not by Asper

itself. Throttling sequences start later because continuous processing of such data items imposes an

average toll of 70-80% on the processor. Lower levels of processed data items per second for more

than one Worker, is discussed in chapter 8.3.9.

25 Linux based shell command for statistics that concern the most consuming, current processes.

7500

12500

17500

22500

27500

32500

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

5
2

9

5
5

1

5
7

3

5
9

5

D
at

a-
it

em
s/

se
co

n
d

Time (seconds)

1 Worker 2 Workers 4 Workers

80

8.2.2 Collection and Heap Allocation

We state, in chapter 4.2.4, that operations related to garbage collection and heap allocation cause

executional pauses that effect a threads ability to perform work. Queries that utilize sizable windows,

enforce a policy of retainment, and require allocation of space over time. Queries that produce

output, will enforce collection procedures to de-allocate the memory space once a receiver is

finished processing it. Understanding how long such pauses can be, aids in the decision of choosing

window sizes for tasks presented in chapter 7.1, and renders how Dalvik differs from ART in our

context. A query that represents a sizable window and enforce continuous output generation, can be

presented as follows:

SELECT * FROM Eventa.win:length(Wn)

Query 8.2.2-i

Figure 8.2.2-i and Figure 8.2.2-ii presents a series of measurements that utilize Query 8.2.2-i , on a

single Worker, for 240 consecutive seconds. Wn takes, in Query 8.2.2-i, a value that ranges from 5k to

500k26, and effectively decides the window size. All pause times are derived by observing log

messages generated by the runtime environment (see chapter 4.2.4), and presents the total amount

of time spent for collection. Each form represents an occurrence of a garbage collection operation.

Figure 8.2.2-i Pause times imposed by window size on Dalvik

26 Attempts to set Wn of 5M resulted in application termination because of exhausted heap resources.

0

50

100

150

200

250

300

350

400

450

-10 40 90 140 190 240

P
au

se
 (

m
ill

is
ec

o
n

d
s)

Time (seconds)

5K 50K 500K

81

Figure 8.2.2-ii Pause times imposed by window size on ART

Figure 8.2.2-iii Correlation between pause times and window sizes for Dalvik and ART.

Figure 8.2.2-iii derives its values from Figure 8.2.2-i and Figure 8.2.2-ii. The y-axis presents, for the

average pause columns, the amount of milliseconds a pause lasts, and the amount of such pauses for

the occurrence columns. The figure implies that ART embeds an improved garbage collector.

Windows sizes that retain 5K data items, present only 4 occurrences of collection while Dalvik

imposes 228 occurrences for the same sequence. This difference is profound as Dalvik would pause

processing of data items for, on average, 100 milliseconds, once every second. The garbage collector

in Dalvik could prove to be more efficient for window sizes that surpass 50K. Overall pause times are

approximately 24% lower than for ART during the same time span, but inflicts pauses that last up to

400 milliseconds.

We mention in chapter 4.2.4 that threads would, for most part, attempt to run their collection

procedures concurrently, and only impose stop-the-world pauses upon verification, or when no

0

50

100

150

200

250

300

-10 40 90 140 190 240

P
au

se
 (

m
ill

is
ec

o
n

d
s)

Time (seconds)

5K 50K 500K

0

100

200

300

400

500

600

700

Size: 5K Size: 50K Size: 500K Size: 5K Size: 50K Size: 500K

Runtime:
ART

Runtime:
ART

Runtime:
ART

Runtime:
Dalvik

Runtime:
Dalvik

Runtime:
Dalvik

Average pause (milliseconds) Pause occurrence (cardinality)

82

sizeable slot is available in the heap. Dalvik imposes, almost exclusively; only GC_FOR_ALLOC

operations opposed to ART, and struggles to maintain sizable windows. Queries could be limited

from presenting answers in a timely manner upon high bursts of incoming data. ART is less conflicted

about this manner because it retains a separate heap for large allocations. Stop-the-world pauses are

for windows that retain a size of up to 50K, only 5.1 milliseconds, and for 500K, only 25.4

milliseconds on average. It implies that other threads can run will less disturbance.

Discussions that regard jumping windows, are presented in chapter 8.3.4.

8.2.3 Event Format

The choice of a data format that represents data item instances is profoundly influenced by the

implementation of our Generator component, presented in chapter 7.3.3. How performance is

affected by the choice of a format, is however, of interest to study as we operate on a resource-

constrained device. We state, in chapter 6.2, that we alter the way plain Java objects are interpreted

by the engine. Utilization of reflection, opposed to indexes, should have an impact on the amount of

data items an engine processes as each attribute lookup is performed by costly name comparisons.

We utilize the projection query from task 2, and configure it to utilize three distinct attributes. The

Generator component is itself, instructed to generate data items that present an object-array, plain

object or a string based key-value map. Worker components are instructed to not clone data items as

this is proven problematic for plain objects (see chapter 7.3.3)

Figure 8.2.3-i Performance implications caused by the choice of a data format

Figure 8.2.3-i presents a single, 60 second measurement, on a single Worker, with ART as the runtime

environment. Our measurements render an improvement in the amount of data items processed per

second, and present a difference of 19.6 % between a key-value map and an object-array and 13.4 %

between a plain object and an object-array. An improvement between the use of plain object and a

map proves as an interesting result because it was initially expected that a Java based map

embedded lookup algorithms that were more effective than attribute traversal imposed by our

alteration of CGlib.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Map Object Object-Array

%

Format

83

8.3 Measurements

This section presents measurements that concern the tasks in chapter 7.1. It begins by describing the

general setup and follows by a presentation of each individual task.

8.3.1 Setup

All measurements are conducted with the benchmark application presented in chapter 7. Each task is

implemented, configured and expressed through JSON, before being loaded onto the device.

Parameters for each task are set individually and result in over 50 distinct tests that each exercise an

unique factor. Each distinct test is conducted in three repetitions on both Dalvik and ART in order to

render the difference between the runtime environments. Switching between runtime environments

implies that the device recompiles every application that is present. No difference in terms of

stability or performance is seen from this procedure.

8.3.1.1 Time and Rest

Warmup procedures and measurement procedures retain equal length.

Results presented in conjunction to thermal effects (see chapter 8.2.1) render that test durations can

influence the performance over time. This will present higher deviations in the measurements and

generate noise that could be difficult to distinguish from how Asper behaves.

We state that it is sufficient for a test that embeds only a single Worker, to perform a warmup and

measurement procedure that lasts for 60 seconds (each). This is however different when the number

of Workers increase or when temporal contexts are used. Separate measurement times are

described in each task that operates in such context.

The device is instructed to rest for 120 seconds between each repetition in order to ensure that it is

properly cooled down.

8.3.1.2 General Parameters

Task parameters are toned down because of the memory and processing capabilities that reside on a

smartphone device.

In general, 100k unique data items are generated before each test sequence. This imposes an

allocation of 46,2 MB. Patterns and joins between windows are highly dependent on random number

generation. A fixed seed is present but twice the amount of random numbers should be picked to

ensure correctness when matching that requires 100 % selectivity is performed as lower numbers

present some fluctuations between tests. We observe that allocation of more than 100k affects test

measurements because of considerably high deviations caused by allocation procedures27. This

implies that window sizes must at most; retain a size of 50k.

8.3.1.3 Presentation

All measurements are calculated by the procedure described in chapter 7.3.6. 𝑇 denotes the average

throughput per second as expressed by Equation 7.3-ii. All results are presented as the average

amount of data items processed per second, for all repetitions combined.

27 Measured on Task 1, with 25 % selectivity on Dalvik.

84

Each task contains a comparison between distinct exercise factors, and represent these in the

percent increase or decrease in the format ∆ ± 𝜎 where:

∆ =
(𝑇𝑏 − 𝑇𝑎)

𝑇𝑎

 𝑥 100

 𝜎 = 𝑐𝑣𝑎 + 𝑐𝑣𝑏 , 𝑤ℎ𝑒𝑟𝑒 𝑐𝑣𝑥 =
𝑇𝜎𝑥

𝑇𝑥

𝑥 100

Equation 8.3-i

85

8.3.2 Task 1: Selectivity

Figure 8.3.2-i Selectivity measurements

Figure 8.3.2-i represents Query 7.1.1-i and Query 7.1.1-ii. Eventa.id takes the range 1-100k. Predicate

selector K takes the values 5k, 25k and 50k to render a selectivity of 5, 25 and 50%. Query 7.1.1-ii

imposes no filtration and ensures 100% selectivity.

∆ Selectivity % Dalvik % ART %

 5 – 25 -25.8 ± 6 -25.5 ±1.7

 25 – 50 -23.7 ± 7.4 -24.2 ± 1.9

 50 – 100 -1 ± 10.4 -1.1 ± 1.8
Table 8.3-i Change in throughput for selectivity

Table 8.3-i presents the negative effect an increase in selectivity has on the throughput. It is clearly

indicated that there little or no difference between Dalvik and ART when windows or functions are

absent as both retain a stable decrease in performance. Figure 8.3.2-i indicates that removing

filtration imposes that processing will not be affected by the approximate drop of 25%. It is

considerably cheaper to not impose any filtration, if the main interest lies within extraction of

attributes from the arriving data items.

Selectivity % ∆da %

 5 59.3 ± 4.0

 25 59.s9 ± 3.7

 50 59 ± 5.6

100 58.8 ± 6.6
Table 8.3-ii Difference between Dalvik and ART for selectivity

Table 8.3-ii presents the difference in throughput between Dalvik and ART for each parameter. It

identifies a baseline that renders how well ART outperforms Dalvik when only pure processing is

needed. Low deviation between the measurements is indicated by the fact that the engine is not

required to withhold any data in windows, and Dalvik manages to perform its garbage collection

procedures without a profound amount of GC_FOR_ALLOC incidents.

0

5000

10000

15000

20000

25000

30000

35000

40000

5 % 2 5 % 5 0 % 1 0 0 %

D
at

a-
it

em
s

/
se

co
n

d

Selectivity

Dalvik ART

86

8.3.3 Task 2: Projection

Figure 8.3.3-i Projection measurements

Figure 8.3.3-i represents Query 7.1.2-i. The amount of data items generated is lowered to 1k to

accommodate the increased size that a high number of attributes impose. Cardinality of projected

attributes are presented on the x-axis.

∆ Attributes Dalvik % ART %

32-128 -69 ± 21.7 -56.6 ± 4

128-512 -69.1 ± 23.9 -72.6 ± 8.2
Table 8.3-iii Change in throughput for projection

Table 8.3-iii presents how an increase in the cardinality of attributes affects the overall throughput.

Projection is in this context, performed by array-traversal and indicates that more time is spent on

looping and index lookup rather than processing of events. Garbage collection procedures come in

affect for Dalvik when 32 attributes are projected as more data items must be collected at the output

channels, and thereby cause deviations, but these collection procedures seize to exist.

Attributes ∆da %

32 104.8 ± 12.2

128 187.7 ± 17.3

512 155.5 ± 18.6
Table 8.3-iv Difference between Dalvik and ART for projection

Table 8.3-iv presents the difference in throughput between Dalvik and ART for each attribute

cardinality. The increase in performance between 32 and 128 attributes is difficult to explain, but we

question the presence of JIT-optimization for Dalvik as ART presents a remarkable performance gain.

Profiling method calls indicates that Asper performs more than 35 distinct calls to perform the

primitive task of projection. The short time spent in each area could impose a toll that prevents

Dalvik from constructing an efficient translation cache. We therefore believe that other areas

(arithmetic operations, temporal comparisons) could be equally effected, rendering Dalvik less

suitable overall.

0

2000

4000

6000

8000

10000

12000

a : 3 2 a : 1 2 8 a : 5 1 2

D
at

a-
it

em
s

/
se

co
n

d

Attributes

Dalvik ART

87

8.3.4 Task 3: Aggregation and Window Type

This section is separated into three distinct sub-sections that each present an aggregation function,

denoted by the sub-section name. Results include both sliding and jumping window types to indicate

the difference on performance that they impose. All measurements utilize Query 7.1.3-i. Window

size Wn takes the value 500, 5k and 50k and each and every data item that enters the stream is

outputted to a single, awaiting listener that retrieves the calculated value of the aggregation function

f(ax).

8.3.4.1 Sum

Figure 8.3.4-i sum(); aggregation measurements over different window types

Figure 8.3.4-i presents the SUM () function over a sliding and jumping window. Distinction between

both window types is profound as a sliding window imposes eager evaluation and produces answers

continuously as new data items enter the window. A jumping window will retain its data items until it

expires and perform the same calculations in a batch operation, effectively creating an offset

between sizable allocations of heap space, and continuous cleanup of processed data items.

∆ Window size / type Dalvik % ART %

500 / sliding-jumping 93.3 ± 29.7 91.4 ± 4.2

5k / sliding-jumping 92.2 ± 31.1 91 ± 6.1

50k / sliding-jumping 82.7 ± 39.8 88 ± 10.2
Table 8.3-v Change in throughput for sum() and distinct window types

Table 8.3-v presents the increase in throughput between a sliding and a jumping window with

respect to each window size. We mention in chapter 7.1.3 that the SUM() function should compute

its answers at fixed cost, independently of window length and policy. However, it becomes clear that

window sizes over 5k are subjected to garbage collections that impose throughput variability. The

main distinction lies however between Dalvik and ART, where Dalvik presents that throughput may

deviate by over 30% for jumping windows.

Window size / type ∆da %

500 / sliding 92.7 ± 12.4

5k / sliding 91.7 ± 18.7

0

5000

10000

15000

20000

25000

30000

35000

5 0 0 5 k 5 0 k

D
at

a-
it

em
s

/
se

co
n

d

Window size

Dalvik-sliding Dalvik-jumping ART-sliding ART-jumping

88

50k sliding 87.9 ± 20.7

500 / jumping 90.7 ± 18.5

5k / jumping 90.4 ± 18.4

50k / jumping 93.4 ± 29.3
Table 8.3-vi Difference between Dalvik and ART for sum()

Table 8.3-vi presents the increase in throughput between Dalvik and ART for each window type and

size and renders that ART imposes near twice as high throughput for each combination. Discussions

regarding jumping windows and garbage collections are present in chapter 8.3.4.2 below.

8.3.4.2 Median

Figure 8.3.4-ii median(), aggregation measurements over different window types

Figure 8.3.4-ii presents the MEDIAN() function over a sliding and jumping window. We state that

calculation of the median is cannot be performed at fixed cost for either window type, and this

exercise renders how profoundly throughput can drop as the window size increases.

∆ Window size / type Dalvik % ART %

 500-5k / sliding -8.4 ± 15.9 -10 ± 7.3

 5k – 50k / sliding -41.2 ± 34.8 -43.6 ± 6.4

 500-5k / jumping -16.8 ± 36.9 -22.4 ± 9.6

 5k – 50k / jumping -54.7 ± 170.7 -61 ± 162.5
Table 8.3-vii Change in throughput for median() and distinct window types

Table 8.3-vii presents how an increase in window size, effectively decreases the throughput. The

profound distinction lies between a window size of 5k and 50k, where both window types drastically

drop by over 40%. We initially believed that this effect is influenced by executional pauses from the

garbage collection procedures that we mention in in chapter 8.2.2. This however, renders untrue

when comparing the garbage collection messages.

0

5000

10000

15000

20000

25000

5 0 0 5 k 5 0 k

D
at

a-
it

em
s

/
se

co
n

d

Window size

Dalvik-sliding Dalvik-jumping ART-sliding ART-jumping

89

Figure 8.3.4-iii Garbage collection occurrences for median over a jumping window

Figure 8.3.4-iii presents garbage collection samples derived from 30 seconds of MEDIAN() on a

jumping window of size 500, 5k and 50k. The y-axis presents, for the average pause columns, the

amount of milliseconds a pause lasts, and the amount of such pauses for the occurrence columns.

The cardinality of pauses is low opposed to a sliding window, and implies that our measurements

should not be affected so profoundly. Visualization of the measured throughput rendered no distinct

deviation until we lowered the level of granularity that our Monitor component operated on (see

chapter 7.3.5) from 1 sample per second, to one sample every 100 milliseconds.

Figure 8.3.4-iv Throughput over time for median over a jumping window

Figure 8.3.4-iv presents the throughput every 100 milliseconds for the same 30 second run, and each

shade of gray represents a distinct window size. This implies that the high deviations from Figure

8.3.4-ii are caused by computational pauses imposed by the engine for windows with higher size

than 5k. Data item feeding is blocked for long periods of time until computations are performed and

answers are given. Espers documentation state that only aggregate values are kept and updated as

0

50

100

150

200

250

300

Size: 500 Size: 5k Size: 50k Size: 500 Size: 5k Size: 50k

Runtime:
ART

Runtime:
ART

Runtime:
ART

Runtime:
Dalvik

Runtime:
Dalvik

Runtime:
Dalvik

Average pause (milliseconds) Pause occurrence (cardinality)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

D
at

a-
it

em
s

/
se

co
n

d

Time

500 5k 50k

90

new data items enter the stream28. This could explain why the garbage collection procedures are not

affecting our measurements, but implies that that the computational complexity of locating the

median value of a set, is distinctively different from locating the sum of all values. This could imply

that custom aggregate functions could suffer from the same endeavor, and that blocking, even for

smaller windows, could prove as the main cause for data items repository overflows.

∆ Window size / type Dalvik % ART %

500 / sliding-jumping 34.7 ± 21.3 77.6 ± 7.4

5k / sliding-jumping 22.4 ± 31.6 53.3 ± 9.4

50k / sliding-jumping -5.6 ± 173.2 6.1 ± 159.5
Table 8.3-viii Difference between window type and throughput for median()

Table 8.3-viii presents the increase or decrease in throughput between a sliding and jumping window

with respect to each window size. The increase in throughput is near half of what the SUM() function

presented on the same setup, and the stability of a 50k sized window makes this comparison near

impossible to render.

Window size / type ∆da %

500 / sliding 42.3 ± 15.8

5k / sliding 39.7 ± 19.4

50k sliding 33.9 ± 23.8

500 / jumping 87.6 ± 19.2

5k / jumping 75 ± 27.3

50k / jumping 50.6 ± 305.9
Table 8.3-ix Difference between Dalvik and ART for median()

Table 8.3-ix presents the difference between Dalvik and ART for each window size and type and

renders that ART is over 35% more performant on sliding windows and near to 80% more performant

when jumping windows are utilized.

28 http://esper.codehaus.org/tutorials/faq_esper/faq.html#keep_in_memory

91

8.3.5 Task 4: Window to Table Join

Figure 8.3.5-i Table join measurements

Figure 8.3.5-i presents measurements that concern joins between a pre-populated window of size 1k,

10k, and 100k. Query 7.1.4-i ensures that a match is found for every arriving data item that enters

the stream and implies that listeners retrieve information continuously.

∆ Table size Dalvik % ART %

1k – 10k 3.7 ± 22.1 0.1 ± 2.4

10k – 100k -20 ± 20.1 0.1 ± 2.2
Table 8.3-x Change in throughput for table joins

Table 8.3-x presents the decrease in throughput for each table size and immediately implies that

Dalvik suffers from continuous generation of output. Attempting to lower the chance of finding a

match in the table (down to 10%) will result in profoundly more stable throughput rates, and match

what we see for ART. We believe that Dalvik must traverse the whole chain of preloaded data items

in order to find whether or not they are considered dead as projection of joined data enforces small

and continuous allocations and this could indicate that Dalvik is not directly able to efficiently

annotate recently swept heap areas. Joining information from a static window can be performed at

fixed cost. Attempting to increase the number of attributes that should be joined to 10, will not

present any profound distinction, and could indicate that Esper / Asper performs some attribute

indexing in order to optimize matching.

Table size ∆da %

1k 58 ± 15.3

10k 52.7 ± 9.2

100k 91.1 ± 13.1
Table 8.3-xi Difference between Dalvik and ART for table joins.

Table 8.3-xi presents the difference in throughput between ART and Dalvik for each table size. ART is,

as seen, not affected by the issues that Dalvik imposes, and present a stable environment of

operation. Effectively rendering a throughput of more than 50%.

0

2000

4000

6000

8000

10000

12000

1 k 1 0 k 1 0 0 k

D
at

a-
it

em
s

/
se

co
n

d

Table size

Dalvik ART

92

8.3.6 Task 5: Window to Window Join

This section presents two distinct tests that exercise window to window joins from different

perspectives. The first test varies the window size, but retains probability of locating matching events

at 100%, and the second test retains a fixed window size and exercises how matching and output

generation affects the overall performance.

8.3.6.1 A. Variable Window Size and Fixed Selectivity

Figure 8.3.6-i Measurements concerning window to window joins with fixed selectivity

Figure 8.3.6-i represents Query 7.1.5-i over a sliding window where the size Wn and the identifier

range ln of Eventa and Eventb takes the value 500, 5k and 50k in order to ensure that each instance of

Eventa will find a matching presence of Eventb in the other window (and vice versa).

∆ Window size Dalvik % ART %

500-5k -8.1 ± 11.8 -9.9 ± 11.1

5k-50k -8.3 ± 17.6 -9.5 ± 11.5
Table 8.3-xii Change in throughput for fixed window joins

Table 8.3-xii presents the decrease in throughput between each increase in window size and renders

a stable and low drop for both environments. Dalvik seems unprecedented by the issues that arose

on windows of size 50k in measurements presented table joins in chapter 8.3.5, and enforces the

belif that continuous clean up of data items that leave the bounds of the sliding window, aids in the

overall stability of the operating environment.

Window size ∆da %

500 27.1 ± 10.1

5k 24.6 ± 12.7

50k 22.9 ± 16.3
Table 8.3-xiii Difference between Dalvik and ART for fixed window joins

Table 8.3-xiii presents the difference between Dalvik and ART for each window size and renders that

the actual distinction between both engines becomes lower when tasks include a combination of

projection, comparisons and windows. Effectively representing a different truth than the tasks who

exercise a primitive factor in isolation.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 0 0 5 k 5 0 k

D
at

a-
it

em
s

/
se

co
n

d

Window size

Dalvik ART

93

8.3.6.2 B. Fixed Window Size and Variable Selectivity

Figure 8.3.6-ii Measurements concerning window to window joins with variable selectivity

Figure 8.3.6-ii represents Query 7.1.5-i over a sliding window of size 5k. The identifier range In for

Eventa and Eventb takes the values 50k, 5k and 500 in order to ensure that each instance will find 0.1,

1 and 10 presences in the other window.

∆ Selectivity Dalvik % ART %

0.1 – 1.0 -27.3 ± 10.3 -28.3 ± 9.8

1.0 – 10.0 -64.6 ± 11.8 -66.8 ± 12.9
Table 8.3-xiv Change in throughput for variable window joins

Table 8.3-xiv presents a profound drop in throughput when the cardinality of matches increase. We

know that Esper / Asper is forced to construct previously unseen information and implies that

listeners will retrieve an array of information that represents each match. It becomes apparent that

this operation is profoundly costly regardless of runtime environment. The cardinality of garbage

collection procedures increases by approximately 12% for Dalvik and 5% for ART, and indicate that

this might not be the deciding factor for why throughput is so severely decreased. Previous tasks fail

to exercise this factor as they only produce a single answer and this effect is again seen in chapter

8.3.7.3, where patterns are enforced to output every event that has previously been seen.

Selectivity ∆da %

0.1 20.6 ± 6.3

1.0 18.9 ± 13.8

10.0 11.5 ± 10.9
Table 8.3-xv Difference between Dalvik and ART for variable window joins

Table 8.3-xv presents the difference between Dalvik and ART for each increase in selectivity and

indicates that the decrease is closely related to the engine, rather than the operating environment.

0

2000

4000

6000

8000

10000

12000

0 , 1 1 , 0 1 0 , 0

D
at

a-
it

em
s

/
se

co
n

d

Selectivity

Dalvik ART

94

8.3.7 Task 6: Patterns

This section presents three distinct tests that each exercise various aspects of pattern detection. The

first test is concerned about temporal intervals, while the second test exercises the amount of

unique attributes that the pattern engine must keep notion of, and the third test exercises

selectivity.

8.3.7.1 Time

Figure 8.3.7-i Change in throughput for temporal patterns

Figure 8.3.7-i presents Query 7.1.6-i over a temporal context that lasts for 10, 60 and 360 seconds.

The warmup procedure retains equal length for the context that lasts 360 seconds. Selectivity is fixed

at 1% and the identifier cardinality is set to 1k. The high deviations imposed by Dalvik are from our

perspective, not exclusive to patterns. Standard deviation is stable at approximately 400 data items

per second and relate to deviations seen in task 1 and 5. Lowering the monitoring granularity to 100

milliseconds present no distinct processing pauses.

∆ Window size (seconds) Dalvik % ART %

10-60 -17.3 ± 58.6 -1.8 ± 9.6

60-360 -25.1 ± 75 -27.5 ± 20.9
Table 8.3-xvi Change in throughput for temporal patterns

Table 8.3-xvi presents the decrease in throughput for each increase in window length. ART retains

stability when the temporal context increases from 10 to 60 seconds as the cardinality of garbage

collection procedures is, on average, unchanged.

Window size (seconds) ∆da %

10 16.2 ± 29.7

60 38 ± 38.6

360 33.5 ± 57.2
Table 8.3-xvii Difference between Dalvik and ART for temporal patterns

Table 8.3-xvii renders that the difference between Dalvik and ART is faded because of the high

deviations caused by Dalvik. The main distinction between both environments lies in the garbage

collector and enforces stability for ART.

0

500

1000

1500

2000

2500

1 0 6 0 3 6 0

D
at

a-
it

em
s

/
se

co
n

d

Window size (seconds)

Dalvik ART

95

8.3.7.2 Identifier Range

Figure 8.3.7-ii Change in throughput for variable identifier ranges

Figure 8.3.7-ii presents Query 7.1.6-i over a temporal context that lasts 60 seconds and retains a fixed

selectivity of 1%. The range of unique event identifiers takes is set between 1k and 100k, and

imposes that the pattern engine must accommodate to retaining an increased amount of different

states that continuously expire. 1% selectivity cannot be assured for a range of 100k as it would

impose pre-allocation of more than 100k data-items to ensure that the appropriate random numbers

are drawn. Thereby imposing a distinct setup that cannot compare to the other measurements.

∆ Identifier range Dalvik % ART %

1k-10k -22.1 ± 43.7 -5.3 ± 9.3

10k-100k -1.6 ± 82.4 -12.5 ± 22
Table 8.3-xviii Change in throughput for variable identifier ranges

Table 8.3-xviii presents the decrease in throughput for each increase in identifier range. The decrease

between 1k and 100k is surprisingly low given the amount of state that the engine must retain, but

imposes profound garbage collection procedures that blocks processing and introduces spikes of

executional pauses. ART experiences a stable decrease in throughput and increase in deviation that

we have not explored further.

Identifier range ∆ da %

1k 13.5 ± 14.3

10k 38 ± 38.6

100k 22.6 ± 65.8
Table 8.3-xix Difference between Dalvik and ART for variable identifier ranges

A clear distinction between Dalvik and ART is again faded because of the high deviations but imposes

that the main distinction is operational stability over time.

0

500

1000

1500

2000

2500

1 k 1 0 k 1 0 0 k

D
at

a
it

em
s

/
se

co
n

d

Identifier range

Dalvik ART

96

8.3.7.3 Selectivity

Figure 8.3.7-iii Change in throughput for pattern selectivity

Figure 8.3.7-iii presents Query 7.1.6-i over a temporal context that lasts 60 seconds and retains a

variable selectivity from 0.1, to 10%. The range of unique event identifiers takes is set to 1k and the

main intention of this task is to render the distinction between the use of the every Eventa -> Eventb

and every Eventa -> every Eventb, where the latter places pressure on the cardinality and evaluation

policies of a pattern.

The utilization of a single every operator presents little or no distinction between the measurements

as the low selectivity rate enforces little or no output projection. We experience however, a different

story when utilizing the every -> every operator as both Dalvik and ART suffers profoundly from the

increase in evaluation and retainment of previously seen pattern matches. ART was under no

circumstance able to finish a single test sequence with this setup, as memory allocations accumulate

to a degree that forces the application to terminate, and Dalvik experiences the same problem with

10% selectivity.

0

500

1000

1500

2000

2500

0 . 1 % 1 % 1 0 %

D
at

a-
it

em
s

/
se

co
n

d

Selectivity

Dalvik (every) ART (every) Dalvik (every -> every)

97

Figure 8.3.7-iv Difference between Dalvik and Art for repetitive evaluation policies

Figure 8.3.7-iv presents a single measurement that utilizes the every->every operator over a 10

second temporal context at 0.1 %, where no warmup time is present and the runtime is set to 60

seconds. Distinction between lower identifier ranges prove no distinct difference and imply that

output projection could be the deciding factor that renders Dalvik and especially ART, nearly useless

in this scenario. ART will, almost immediately suffer from continuous garbage collection procedures

that do not stop long after the test is ended. We believe that this could be caused by an operational

fault in the design of the garbage collector as we fear that sizable arrays of data items are stored in a

separate heap intended for large objects. If the cleanup policies for this heap are of such nature that

they are conducted on low intervals, then it could explain the terminations that we experience.

Dalvik retains operational stability as it constantly performs GC_FOR_ALLOC operations and ensures

that the heap is maintained. Attempts to utilize a logical pattern expiration policy rather than a

temporal, rendered no difference for this matter.

8.3.8 Task 7: Database

Figure 8.3.8-i Measurements concerning static database access

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
at

a
it

em
s

/
se

co
n

d

Time

Dalvik (every -> every) ART (every -> every)

0

200

400

600

800

1000

1200

1400

1600

1800

Dalvik ART

D
at

a
it

em
s

/
se

co
n

d

Runtime

98

Figure 8.3.8-i presents Query 7.1.7-i, where each en every data item that enters the stream is joined

and enriched with information from a prepopulated SQLite database that contains 10k entries. It is,

without doubt presented that higher throughput rates are unachievable as the main bottleneck lies

in between the layer of communication between Asper and the database [30] . We know that Asper

will allocate a thread pool that establishes a stable connection to the database and perform query

executions upon request29. Resizing this thread pool to include 10, 20 and 30 threads yielded in no

difference with respect to throughput. We started to question our implementation of the driver that

enables Asper to communicate with SQLite, and performed therefore a simple experiment where we

disabled the driver and performed the same joins through a custom function30 that utilized Androids

embedded API for database communication. This function would simply retrieve a numeric index of

the primary key that we wanted to locate, and returned a key-value map of the projected table

columns that the database returned. This experiment yielded the same results as seen in Figure

8.3.8-i, and indicate, to some extend, that our driver implementation is as efficient as the one

embedded in Android.

∆da %

6.4 ± 10.5
Table 8.3-xx Difference between Dalvik and ART for static database access

Table 8.3-xx presents the difference in throughput between Dalvik and ART, and render that there is

little or no distinction between the runtime environments. Higher throughputs can be achieved with

result caching, but will impose tradeoffs between increased memory consumption and real time

requirements.

Figure 8.3.8-ii Measurements concerning cached database access

Figure 8.3.8-ii presents the same experiment as above, with the distinction of including an LRU result

cache (see Chapter 3.6). The cache retains a fixed size of 1k and cache miss probability is imposed by

alternating the event identifier range. An identifier range of 1 - 1k, 1.5k and 2k renders that the result

cache will, on average, experience that 0, 33 and 50% of its repository is invalidated.

29 See [19] , section 15.4.9.1
30 See [19], section 9.3

0

2000

4000

6000

8000

10000

12000

0 % 3 3 % 5 0 %

D
at

a-
it

em
s

/
se

co
n

d

Portion of invalidated cache

Dalvik ART

99

∆ Invalidated portion % Dalvik % ART %

0 – 33 -53.7 ± 12.2 -66.2 ± 5.2

33 – 50 -23.7 ± 19.2 -24.4 ± 8.6
Table 8.3-xxi Change in throughput for invalidated cache portions

Table 8.3-xxi presents the difference between each increase of portion invalidation and implies that

the cost of invalidation can be high, but still profoundly better than without the use of any caching.

∆ Invalidated portion / no cache % Dalvik % ART %

0 / 100 312.8 ± 14.7 516.4 ± 4.5

33 / 100 90.8 ± 11.8 108.1 ± 7.4

50 / 100 45.5 ± 21.7 57.3 ± 7.9
Table 8.3-xxii Change in throughput between cached and un-cached access

Table 8.3-xxii presents the increase in throughput between the use of a partly invalidated cached and

the use of no cache. A cache with no invalidated portions operates with a throughput that is nearly

on pair with regular window to window joins. Attempting to increase the portion of invalidated cache

to 100 and 200 % yield in little or no difference when comparing it to an un-cached join and implies

that lookup procedures are cheap as they index on query parameters.

8.3.9 Task 8: Multiple Events

Figure 8.3.9-i Change in throughput for multiple Worker instances

Figure 8.3.9-i presents Task 8, where 1-8 distinct Workers operate on 1-8 distinct queries and event

types. The range of unique and random event identifiers takes an initial value of 1-100k, and is then

divided by the amount of Workers that currently operate. Selectivity predicate K is lowered by half

for every increase in Workers and ensures that the engine only outputs 25% of the events seen

across all installed queries. Each Worker retains only a single event type in its repository.

Local throughput presents the average throughput achieved by each separate Worker, while the

global throughput is denoted as the average sum of data items processed by all Worker instances

during the test duration.

∆ Workers / type Dalvik % ART %

1-2 / local -15.7 ± 7.8 -23.6 ± 4.2

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 4 8

D
at

a
it

em
s

/
se

co
n

d

Workers

Dalvik - local Dalvik - global ART - local ART - global

100

2-4 / local -38.6 ± 15.2 -54.6 ± 7.5

4-8 / local -48 ± 18.9 -51.4 ± 7.3

1-2 / global 68.6 ± 7.6 52.6 ± 4

2-4 / global 22.6 ± 13.1 -9.2 ± 6.7

4-8 / global 3.8 ± 16.5 -2.9 ± 5.5
Table 8.3-xxiii Change in throughput for multiple Workers

Table 8.3-xxiii presents the difference between each increase of Workers both locally and globally.

We initially hoped that the average local throughput between 1-4 Workers would present lower

drops in performance as the queries share no state or references between them. Attempting to set

explicit context partitions31 for each separate query render no difference from our state of view, and

indicate that locking could occur on the input or output channels. Attempting to profile32 the

benchmark application yield in no direct conclusion, as we cannot see any distinct increase in the use

of locks. The profoundly high amount of method calls that Asper imposes for its operations makes it

difficult to identify distinct segments.

The higher global throughput rates render that the Workers are able to process more work, but it

should be noted that it is only exclusive to distinct queries and events. Attempting to utilize multiple

Workers for fewer queries and events will present an unchanged, or lower global throughput as the

engine must retain correctness and lock segments to avoid issues that relate to concurrency.

Workers ∆da %

1 59.9 ± 3.8

2 44.9 ± 8.2

4 7.2 ± 14.5

8 0.2 ± 11.5
Table 8.3-xxiv Difference between Dalvik and ART for multiple Workers

Table 8.3-xxiv Presents the difference between Dalvik and ART. We cannot find any references that

state if ART embeds a differentiated threading or scheduling model, but some indications on Figure

8.3.9-i prove that this could be true.

8.4 Discussion

Utilizing Esper on an Android based smartphone device proves to be a feasible solution. A direct

comparison between these measurements and the results presented by Mendes et.al [30] renders

that this solution achieves approximately 1/5 of the throughput opposed to a powerful workstation

machine. This decrease is expected as ARM processors embed reduced instruction sets and

architectures that favor size, thermal abilities and energy consumption over processing power.

The main intention of this benchmark is to identify the limitations of Asper in order to verify whether

its presence on a mobile device is of such level that it could prove feasible to use, thereby acting as a

guideline. Measurements are primitive and lack the notion of multiple queries that correlate and

depend on each other. It should not be unexpected that actual performance is in realistic scenarios,

comfortably lower. A true system would likely have to allocate distinct threads that handle incoming

data items from multiple disparate channels. Concurrent access to data repositories, additional

locking and waiting and additional garbage collection procedures imposed by the system could all

render a different truth about the actual throughput of the engine. Our enablement of Esper has

31 See [19], section 4.1
32 With utilization of TraceView [41]. Method based profiling with 1000 microsecond resolution.

101

never before been present in the environment that we tested. Starting at lower levels and measuring

primitive aspects of the engine proved necessary as we identified executional errors that we imposed

by our enablement in Chapter 6.

We can without doubt state that the presence of ART enables Esper to operate with increasingly

higher throughput and stability, and future revisions of Android will be better suited for operations

that require real time constrains. We expect that the official release of ART will be embedded as the

default runtime environment on newer smartphone devices during the third or fourth quarter this

year. Statements from [25] indicate that ART will embed new and optimized memory allocation

procedures (Rosalloc) that enable concurrent threads to operate with less distraction. We question

the presence of JIT-optimization in context of Dalvik as even primitive filtering operations yielded

profoundly lower results than what we see for ART. We believe however, that the main distinction

comes from the improved garbage collection algorithms that ART embed. Heap and runtime

environment settings could be tweaked for each distinct device in order to enable Asper to operate

optimally for certain scenarios. Asper could be better suited with settings that enable the system to

allocate up to 1024 MB of heap space and impose low and frequent collection procedures. Our own

experimentation with these settings rendered this concept achievable, but garbage collection must

eventually happen. Executional pauses are for Dalvik identified as a major bottleneck as our

observations indicate that the garbage collector is unable to annotate and discard collections without

imposing executional pauses that will affect all threads within the process. It imposes itself as a

dangerous concept because small buffers could overflow upon pauses that last for more than 3-400

milliseconds.

The combination of temporal or logical contexts and output generation appears, from the

perspective of task 5 and task 6 to be of profound cost as the environment is forced to allocate,

project, discard and reflect over the data that arrives. Both tasks could be rendered distinctively

important as they perform operations that we actually expect to locate in true systems. Projecting

large collections of data proves to be poorly handled by both runtime environments as we see in

Task 2 and Task 6. Esper and Asper is designed to produce a distinct data set that in our

measurements is presented as an “EventBean”-object that contains a key value set of each projected

attribute. The cost of producing this object could be omitted if queries utilize the “*” operator to

reference the underlying data item. We also investigated the use of a Subscriber33 instead of a

Listener, where the Subscriber retains a fixed method signature that retrieves the outputted events

as references. We found however that throughput was lowered as invocation of these method

signatures are performed by our implementation of CGLib and involves the use of reflection every

time the engine outputs information.

Caches will, in context of database communication impose improved overall performance, but must

impose timeout procedures to ensure that inconsistent information is not presented to the query

that performs the join. The most important aspect of database communication is not necessarily the

throughput, but rather the ability of embedding persistent, historic information of occurrences that

prove of no value to retain in memory.

We state that it is misfortunate to see that the individual performance of each Worker in task 8 was

to such degree lowered as the number of concurrent queries grew. High priority information that

requires real time constrains could be subjected to the presence of other threads and queries. It

could however prove sensible to a design a system that pre-allocates pool of at most two threads

33 See [19], section 12.3.2

102

that process any event that enters the application domain. Care must however be taken in order to

prevent that thermal constrains take effect.

The rate and cardinality of data that arrive from one or more sensors will likely not be as profound as

the setup that we present, and render that Asper is presents itself as a feasible system for processing

of information within the domain of pervasive healthcare.

103

9 Conclusions

Esper was originally developed with the intention of processing intensive amounts of financial

information, but its design and size indicates that it could be feasible to utilize it as a central

aggregator in context of medical monitoring and pervasive healthcare. We cannot directly imply that

it would be sensible to utilize Asper for the purpose of transforming and aggregating high rates of

raw data streams. Such transformations should be conducted on the sensor itself and Asper should

only retain a notion about the higher-level event that occurs. The introduction of ART resolves many

performance related issues that was previously seen with Dalvik [9], and proves that future revisions

of Android could be suitable for this enablement.

The true power of this enablement comes from the fact that CEP assisted data stream processing

becomes ubiquitous. Effectively abstracting away complexities of data stream management by

embedding expressive queries instead of application specific code. We envision that Asper could be

implemented as a central service that handles streams from multiple disparate sensors and

information sources. Android embeds a set of primitive building blocks that could be formed into a

truly heterogeneous and scalable system, where a single instance of Asper retains notion of every

event that occurs in the externally observed world.

Figure 9-8.3.9-i Placement of Asper in an Android based system

Communication could be formed through the use of IPC-messages and simple API endpoints that

enable any service to register event types and queries of interest. Listeners could broadcast event

occurrences or route projected events back to subscribing services by the sole use of existing

framework components. Some sense of state could be retained as Esper enables declaration and

updating of variables through one time queries. Moving installed queries and variables between a

static aggregator at home and to Asper could prove possible through the use of Modules34 that

contain summaries of the current engine configuration. We state that an enablement of Esper on

Android is sensible, as it could prove useful for other purposes than pervasive healthcare. Two

distinct organizations placed interest in Asper during our implementation and evaluation cycles and

expressed scenarios where Asper could be utilized to offload central servers by moving logic and

34 See [19], section 12.2

104

processing into the smartphone domain as communication is seen as a profound cost in terms of

energy consumption.

9.1 Summary of Contribution

Our contributions can be summarized in the following note:

 We identified the main factors that prevented an enablement of Esper on Android true. Each

factor was accommodated and resolved to ensure that Esper would retain functionality

without the need of profound alternation of the existing source code. We thereby state that

this groundwork will ease future implementations of Esper, and enable continuity and use of

what we believe, is the only fully functional CEP engine that can be utilized on smartphone

devices.

 We located, compiled and verified a specific JDBC driver that enabled Esper to communicate

with the embedded relational database on Android. Thereby effectively presenting a

standardize and maintainable mean of performing structured joins between persisted,

historic information that we believe is important for an enablement of contextual, pervasive

healthcare monitoring.

 Our enablement of Esper was benchmarked with a set of primitive tasks that covered

fundamental principles of both DSM and CEP to present a general guideline for this system

and to identify possible implications that could render this enablement problematic. The

benchmark application retains a generic structure that could prove useful for others that

want to evaluate Asper for tasks that this thesis did not cover.

 Both Dalvik and ART was individually studied and where we uncovered differences that could

render useful outside the scope of this thesis and relate directly to processing intensive

amount of data on an Android based smartphone device. ART is, from our knowledge at this

point still sparsely documented and external measurements that concerns this runtime

environment is not present.

9.2 Critical Review

Initial measurements that concerned Asper where conducted wrongfully as we believed that Esper

would, by itself clone any data items that entered named window in order to maintain immutability.

This however, proved false after a discussion with an EsperTech representative and existing

measurements had to be discarded as the garbage collection procedures were unaffected by the fact

that no data items were ever reclaimed. This thesis contained additional tasks that exercised the use

of multiple Workers under scenarios where joins between multiple windows were conducted

concurrently, but was not included due to the lack of time imposed by measurement repetitions. The

exclusion of garbage collection procedures should have been identified in earlier stages as a simple

observation would have indicated that something was wrong. We also believe that our focus should

have been retained on complex tasks that utilize several principles form both CEP and DSM

concurrently. The value of a simple filtration or projection could be stated limited.

105

Information about the internal workings of ART were not available until the third quarter of 2014

[25]. We misinterpreted how the internal garbage collector operated and relied to a large extend on

literature that was present for Java and not Android. We state that literature concerning Dalvik and

ART is limited, but this should not have prevented us from conducting the experiments from chapter

8.2.2 earlier, as they would have given us much needed information about the distinction between

ART and Dalvik.

9.3 Future Work

We believe that our implementation of CGLib could be performed differently by the use of Dexmaker

[40] to perform dynamic code generation and to disable the use of reflection. Our investigations on

this matter where at the time of this thesis sparse and it could be stated that this would be an

optimal solution.

The benchmark application that we present should include the possibility of retaining data items

from external sources in order to render how the inclusion of communication and unmarshaling of

information can effect the overall performance of the engine. The benchmark application itself

should support the use of predefined arrays of data that could render it useful for scenarios that

require queries to reason about the content that reside in the data items.

106

Bibliography

[1] “Novelda. UWB-IR overview.” [Online]. Available:
https://www.xethru.com/content/technology-0. [Accessed: 01-Aug-2014].

[2] J. A. Stankovic, I. Lee, A. Mok, and R. Rajkumar, “Opportunities and obligations for physical
computing systems,” Computer (Long. Beach. Calif)., vol. 38, no. 11, pp. 23–31, Nov. 2005.

[3] H. C. Powell, A. T. Barth, K. Ringgenberg, and B. H. Calhoun…, “Body area sensor networks:
Challenges and opportunities,” Computer (Long. Beach. Calif)., 2009.

[4] U. Varshney, Pervasive healthcare computing: EMR/EHR, wireless and health monitoring.
2009, pp. 1–282.

[5] S. Støa, M. Lindeberg, and V. Goebel, “Online analysis of myocardial ischemia from medical
sensor data streams with Esper,” Appl. Sci. …, 2008.

[6] J. Soberg, V. Goebel, and T. Plagemann, “Commonsens: Personalisation of complex event
processing in automated homecare,” in Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2010 Sixth International Conference on, 2010, pp. 275–280.

[7] S. Hong, R. P. Sahu, M. R. Srikanth, S. Mandal, K.-G. Woo, and I.-P. Park, “Real-Time analysis of
ECG data using mobile data stream management system,” in Database Systems for Advanced
Applications, 2012, pp. 224–233.

[8] J. Dunkel, R. Bruns, and S. Stipkovic, “Event-based smartphone sensor processing for ambient
assisted living,” in 2013 IEEE Eleventh International Symposium on Autonomous Decentralized
Systems (ISADS), 2013, pp. 1–6.

[9] K. Jaein, K. Nacwoo, Y. Simkwon, and L. Byungtak, “A study on CEP performance in mobile
embedded system,” in 2012 International Conference on ICT Convergence (ICTC), 2012, pp.
49–50.

[10] D. Bade, “Esper-Android / JESPA-Android,” 2010. [Online]. Available: http://vsis-
www.informatik.uni-hamburg.de/oldServer/teaching//projects/esper-android/. [Accessed:
12-May-2013].

[11] G. Cugola and A. Margara, “Processing flows of information,” ACM Comput. Surv., vol. 44, no.
3, pp. 1–62, Jun. 2012.

[12] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in data stream
systems,” in Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems - PODS ’02, 2002, p. 1.

[13] D. Luckham, The power of events, vol. 204. Addison-Wesley Reading, 2002.

[14] O. Etzion and P. Niblett, Event Processing in Action. Manning, 2010, pp. 1–325.

[15] L. Golab and M. T. Özsu, “Issues in data stream management,” ACM Sigmod Rec., vol. 32, no.
2, pp. 5–14, 2003.

107

[16] “Stream and Complex Event Processing. PhD Course: On benchmarking Information Flow
Processing Systems,” Politecnico di Milano, 2013. [Online]. Available:
http://streamreasoning.org/schep-phd-course-2013. [Accessed: 01-Aug-2014].

[17] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Commun. ACM,
vol. 21, no. 7, pp. 558–565, 1978.

[18] “Esper. Open source, project page.” [Online]. Available: http://esper.codehaus.org/.
[Accessed: 01-May-2014].

[19] “Esper, v.4.8.0 documentation.” [Online]. Available: http://esper.codehaus.org/esper-
4.8.0/doc/reference/en-US/html/index.html. [Accessed: 01-Aug-2014].

[20] D. Luckham, “Rapide: A language and toolset for causal event modelling of distributed system
architectures,” in Worldwide Computing and Its Applications — WWCA’98 SE - 8, vol. 1368, Y.
Masunaga, T. Katayama, and M. Tsukamoto, Eds. Springer Berlin Heidelberg, 1998, pp. 88–96.

[21] K. Yaghmour, Embedded Android: Porting, Extending, and Customizing. 2013.

[22] “Apache Harmony Project. Open source, Java distribution.,” 2010. [Online]. Available:
http://harmony.apache.org/.

[23] D. Bornstein, “Google I/O 2008 - Dalvik Virtual Machine Internals,” 2008. [Online]. Available:
https://www.youtube.com/watch?v=ptjedOZEXPM. [Accessed: 20-Oct-2013].

[24] B. Cheng and B. Buzbee, “Google I/O 2010 - A JIT Compiler for Android’s Dalvik VM,” 2010.
[Online]. Available: https://www.youtube.com/watch?v=Ls0tM-c4Vfo. [Accessed: 10-Apr-
2014].

[25] A. Ghuloum, B. Carlstrom, and I. Rogers, “Google I/O 2014 - The ART runtime,” 2014. [Online].
Available: https://www.youtube.com/watch?v=EBlTzQsUoOw. [Accessed: 26-Jul-2014].

[26] P. Dubroy, “Google I/O 2011: Memory management for Android Apps.” [Online]. Available:
https://www.youtube.com/watch?v=_CruQY55HOk.

[27] R. Meier, Professional Android Application Development. 2012, p. 432.

[28] “Discussion thread. Implications that regard porting of Esper to Android.” [Online]. Available:
http://esper.13850.n7.nabble.com/Esper-on-Android-td8669.html. [Accessed: 10-Oct-2013].

[29] R. Friedman, A. Kogan, and Y. Krivolapov, “On Power and Throughput Tradeoffs of WiFi and
Bluetooth in Smartphones,” IEEE Trans. Mob. Comput., vol. 12, no. 7, pp. 1363–1376, Jul.
2013.

[30] M. R. N. Mendes, P. Bizarro, and P. Marques, “A performance study of event processing
systems,” in Performance Evaluation and Benchmarking, Springer, 2009, pp. 221–236.

[31] M. R. N. Mendes, P. Bizarro, and P. Marques, “A framework for performance evaluation of
complex event processing systems,” Proc. Second Int. Conf. Distrib. eventbased Syst. DEBS 08,
p. 313, 2008.

108

[32] M. Mendes, P. Bizarro, and P. Marques, “FINCoS: benchmark tools for event processing
systems,” in Proceedings of the 4th ACM/SPEC International Conference on Performance
Engineering, 2013, pp. 431–432.

[33] “Dalvik Wiki. Inclusion of Javax packages.” [Online]. Available:
https://code.google.com/p/dalvik/wiki/JavaxPackages.

[34] “OpenJDK - JDK6 Project page.” [Online]. Available: http://openjdk.java.net/projects/jdk6/.
[Accessed: 17-Apr-2014].

[35] “SLF4J - Android.” [Online]. Available: http://www.slf4j.org/android/. [Accessed: 01-Aug-
2014].

[36] “Xerces for Android.” [Online]. Available: http://code.google.com/p/xerces-for-android/.
[Accessed: 01-Aug-2014].

[37] “SQLDroid. SQLite JDBC driver for Android.” [Online]. Available:
https://github.com/SQLDroid/SQLDroid. [Accessed: 05-Jul-2014].

[38] “Oracle Berkeley Database.” [Online]. Available:
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/.
[Accessed: 01-Aug-2014].

[39] “Building the Android JDBC Driver / Building Berkeley DB for Android.” [Online]. Available:
http://docs.oracle.com/cd/E17076_02/html/installation/build_android_jdbc.html. [Accessed:
01-Aug-2014].

[40] “Dexmaker. Programatic code generation for Android.” [Online]. Available:
https://code.google.com/p/dexmaker/. [Accessed: 10-Aug-2014].

[41] “Android. Profiling with Traceview and dmtracedump.” [Online]. Available:
http://developer.android.com/tools/debugging/debugging-tracing.html. [Accessed: 01-Aug-
2014].

109

Appendices
Appendix A

The intention of this section is to describe and discuss the problems that arose and prevented us

from including the UWB-IR presented in the preface of this thesis. We believed that locating the

maximum, achievable throughput renders only an image of fictive workloads and isolated

measurements that miscorrelate with our perception of ubiquitous monitoring. A realistic scenario

would render how well Asper works over time and project if the overhead of utilizing Asper is of such

kind that it would deplete the smartphone device of its resources.

A working prototype was constructed and intended to present a proof-of-concept. The intention of

this prototype was to ensure that the surrounding application logic was as minimal, only embedding

a simple producer/consumer model, and that Asper should handle all processing and classification by

utilizing principles from the domain of DSM and CEP. A separate requirements analysis was

conducted where we identified that we under no circumstances intended to develop a fully featured,

heart-rate and respiration monitoring system as this would require expertise in a domain that

outranges the purpose of this thesis. We could however, place a set of factors, presented below,

under consideration and effectively render a baseline cost of operation.

Factor Description

Processor

How much toll is placed, on average on the processor? If
a high percentage of processor utilization is demanded –
then it will impose implications for other applications and
services that reside on the device.

Energy consumption

Information about processor utilization is of little value if
presented without a notion how long such computations
can prevail. Pervasive vital-sign monitoring is of limited
value if consumption levels are of such kind that the
device will cease of function after a quarter day.

Response time

Delay between the presence of a vital sign and Aspers
detection of it could be caused by a combination of the
runtime environment and Asper itself. Any delays would
prove useful to identify as real-time vital-sign monitoring
requires a notion of timeliness.

Sampling of data was conducted by monitoring standing, young male with on-body antennas that

were placed on bare skin towards solar plexus in order to render a clearer separation between the

heart and the lungs.

A single, 60 second sample includes a resolution of approximately 150 data items per second and

results in several million individual data items that must be filtered out as they include information

and noise that is useless in our context. Filtration and cleaning operations were conducted offline, by

utilizing a simple, 5-point Triangular Weighted Smooth algorithm that conducted 50 iterations on the

sample in order to present a stream of data that Asper could process without wrongfully classifying

noise as actual vital signs.

110

Figure A i

Figure A i presents motions that regard ventricular filling and ejection of the heart. Similar motions

are detected from the lungs and represent inhalation and exhalation patterns. Asper itself should be

responsible for reasoning about the stream of information coming from the sample. This implies that

installed queries should perform selection, transformation and identification of heartbeats by

detecting changes in motion. The point to point intervals of this mechanism is aggregated into a

higher level representation of the heartbeat, and any lower level data-items that represented this

instance, are discarded as high accumulation of objects in the heap could case unnecessary

executional pauses. A higher level representation of the heartbeats would render the average Beats

Per Minute (BPM) interval by embedding a set of aggregation functions. Respiration detection can be

detected as a separate stream and reasoned upon in isolation. Identification of inhalation and

exhalation and classification of a respiration cycle will render possible breathing patterns that could

be utilized for a set of contextual purposes.

All operations are performed in-memory, and the transformed sample is identified as a Radarsignal

event that embeds the following schema:

Timestamp Heart Respiration

Unix timestamp representing the occurrence of this
sample

Decimal / Double Decimal / Double

The sample itself is manually annotated with special values that highlights zero derivatives and

identifies turning points for each heartbeat (value: 1001) and respiration (value: 1002) cycle. The

intention of this was to identify, extract and timestamp these values in order to classify their

occurrence and directly compare the applications notion of a cycle, and Aspers notion of a cycle.

0 iterations 50 iterations

111

Figure A ii

Figure A ii presents how the raw sample from Figure A ii is interpreted by Query A i. The main

intention of this query is to identify the current slope of the stream by utilizing a jumping window of

size n that denotes how many data-items we require in order to properly classify the slope without

introducing false positives. We know that a single, sampled heartbeat occurs approximately every

0.6-0.7 seconds and n can for this sample be set to ± 25 to effectively evaluate the slope 6 times per

second. n will however vary if the heart rate increases, and would for such purposes require a higher

classification interval of the slope 35. A respiration cycle occurs, on average every 4-6 seconds, and

implies that we can set n to 100 as re-evaluation of the stream is not needed as often.

Query A i

Query A i utilizes an embedded, statistical function from Esper / Asper and takes two parameters.

Signal denotes either a single heart or respiration sample that represents a fictional y-axis, and time

denotes the explicit timestamp that denotes a fictional x-axis. The output of Query A i is present to

Query A ii, which sole purpose is to look for a simple pattern that identifies whether a cycle has

occurred by classifying the occurrence of positive and negative slopes.

Query A ii

35 Could utilize explicit query variables to dynamically re-calculate n as the heart or respiration rate increases or
decreases.

112

Query A ii presents how heart cycles can be classified. The extraction of timestamps from the

underlying stream allows us to project a higher-level event that includes information about when

ventricular filling occurred (denoted by a), when it stopped (denoted by b) and when ventricular

ejection completed (denoted by c). This event is then outputted into a separate stream named

Heartbeats (presented by Figure A iii), and allows us to discard any remaining, lower level

information and the same procedure applies for respiration cycles.

Figure A iii

Classification of the Beat-Per-Minute (BPM) and whether inhalation or exhalation is occurring can

now simply be performed on the higher level events as presented in Query A iii.

Query A iii

We managed to verify that our queries performed the correct classifications, but measurements that

concerned processor and energy consumption were in no order presentable. Profiling of this

application was conducted by utilizing Trepn36, but the high overhead that this profiling utility

imposed, was not distinguishable from the overhead that Asper imposed. Trepn utilized

approximately 35-40% of a single processor core when sampling at a rate of 10 samples per second.

Our implementation of Asper and this vital sign detection application was running on a separate

thread, but utilized the same, single processor core throughout all samples that we conducted. We

initially attempted to profile the application when no queries were running, but could not directly

compare the average consumption of a non-working application to a working one based on 10

consecutive runs. Attempting to run the Top-command37 on the smartphone device rendered that

our prototype application consumed, on average 10 ± 3 % of available processor time, but we could

not locate the same numbers when analyzing profiles that Trepn conducted. This simple exercise

rendered doubt in the utility, and we could no longer trust that measurements concerning energy

consumption rendered true.

Our idea of calculating the average response time by comparing time stamped annotations from the

sample resulted in uncorrelated timestamps that deviated profoundly (± 500 milliseconds). We

36 A profiling utility from Qualcomm, capable of extracting information about the current processor, memory
and energy consumption. See https://developer.qualcomm.com/mobile-development/increase-app-
performance/trepn-profiler
37 A Linux specific shell command that presents consumption statistics about distinct processes that reside on
the system.

113

believe that the cause of this deviation was directly related to poor annotation schemes and to the

use of un-synchronized timers. Query A i utilizes a jumping window that expires differently for each

application run. Attempting to replace the logical window with a temporal window, yielded in the

same issues as we believe that the internal notion of time in Asper should have been synchronized by

an external clock that both our application, and Asper utilized.

We could not construct a specialized application for this purpose as this thesis was beyond its dead-

line, and impose that these measurements are therefore omitted. We are however concerned about

the high consumption levels that the Top-command presented, and state that Asper might not be

directly usable in context of continuous, mid/high-rate data arrival on an energy constrained device.

It does however, not imply that Asper should be utilized as a tool for abstracting complex tasks that

would require a profound amount of application logic. All queries in this section present how easy it

can be to perform simple tasks without the need of domain specific knowledge about the framework

and programming environment that reside on a smartphone device.

