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1. Introduction 
 

 

Chapter Contents  

 

1.1 Focused Impedance Measurement (FIM) Technique 

1.2 Electrical Bioimpedance and its Numerical Analysis 

1.3 Lung Impedance Measurement and Existing Techniques 

1.4 Previous Study on Lung Impedance due to Ventilation Using FIM & its 

Prospects 

1.5 Electrode Configuration and Sensitivity Plotting of FIM for Lung 

Impedance Study 

1.6 Present work of Lung Impedance Study Using FIM 

 

Starting from the middle of the last century, bioelectricity as well as bioimpedance gained 

much attention of the researchers, scientists and academicians. Especially for healthcare 

purpose, bioimpedance has shown its potentiality through different research. 

In 1911 Rudolf Hoeber, a German physicist discovered frequency dependence of conductivity 

of blood and postulated the existence of cell membranes. Ten years later Philippson measured 

tissue impedance as a function of frequency and found that capacitance varied approximately 

as the inverse square root of the frequency.  However, Gildemeister’s contribution of constant 

phase character of tissue in late 1920s also enhanced the knowledge of electrical properties of 

living tissues.  
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Kenneth S. Cole, who worked in Deby’s laboratory for a long period, calculated the 

impedance of a suspension of spheres (1928a). Here the sphere was coated with a layer 

having capacitive properties. Experimentally he presented the measuring cell and tube 

oscillator used and the results obtained with a suspension of cells (1928b). In 1934 he 

repeated his presentation with quasi-four-element equivalent circuit. In another original paper 

in 1940, Kenneth S Cole introduced the famous Cole equation. It was for the first time that a 

mathematical impedance dispersion corresponding to the circular arc was found empirically. 

One year later the famous Cole-Cole equation was presented, which instigated long debate 

about its interpretation. Though it is was not completely for biological tissues, rather Kenneth 

S Cole and Robert H. Cole put emphasis on permittivity and the equation focused on 

dielectrics. The paper also presented the equivalent circuit for the Cole-Cole equation. In 1963 

Hodgkin and Huxley won the Nobel Prize as they revealed some of the principle features of 

nerve transmission.  

In 1950, Herman Paul Schwan, one of the founder of the biomedical engineering discipline, 

first revealed the frequency dependence of muscle tissue capacitance and established it as a 

relaxation phenomenon. He was the first to put light on dispersion and described α-dispersion 

in muscle tissue (Schwan 1954). His two mostly cited papers (Schwan 1957 and 1963) 

discussed elaborately on electrical properties of tissue and various processes to determine 

biological impedances. He categorised different dispersions such α, β, γ in his 1957 paper. In 

addition Schwan pioneered (Schwan et al 1962) other features for example low frequency 

precision measurement, four electrode techniques and gigahertz measurements. Besides, he 

explored the field of electrophoresis, electrorotation and non-linear phenomena of interfacial 

polarization (Schwan’s law of linearity, McAdams and Jossinet, 1994). 

However, as the knowledge on bioelectricity and bioimpedance gradually developed, lung 

transfer impedance has become an area of interest for the researchers and scientists of this 

field. Here the major reason is to employ bioimpedance as medical diagnosis as well as 

practical application for the humankind. Some techniques such as Electrical Impedance 

Tomography (EIT) and Tetra Polar Impedance Measurement (TPIM) etc have been employed 

to measure lung transfer impedance (details can be found in section 1.3). Focused Impedance 

Measurement (FIM) technique is another approach to measure transfer impedance for 

different tissues and organs including lungs, though proper standardization is required to turn 

FIM technique into a commercial tool  
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1.1 Focused Impedance Measurement (FIM) Technique 

Focused Impedance Measurement (FIM) is a technique where two pairs (orthogonal to each 

other) of electrodes are used to inject current to the conductor and another two or four of 

electrodes are used to measure the potential drop across the desired zone.  

Rabbani et al 1998, 1999 & 2010 showed how two sets of independent current carrying (CC) 

electrodes develop a central zone when one or two pair of electrodes is employed to measure 

the potential drop.  In Figure 1.1.1 (Rabbani et al 1998 & 1999), it can be seen that A & B and 

C & D are the two sets of CC electrodes, perpendicular to each other whereas p, q, r & s are 

potential measurement electrodes. They are establishing the common zone of interest in 

Figure 1.1.1 Here, p and q work for the CC pair A & B while r and s perform the same for CC 

pair C, D.  

Conventional Tetra Polar Electrode Measurement (TPIM) through ApqB gives the effective 

impedance of the zone bounded by equipotentials aa' and bb' (shown shaded) with sensitivity 

falling away from the center at any given depth. Similarly, measurement through electrodes 

CrsD gives the effective impedance between the equipotentials cc' and dd' (shown shaded) 

with sensitivity varying in a similar way. 

If these two perpendicular measurements are summed up, the impedance of the central 

common zone obtains an enhanced weight, thus offering focusing effect. The combination can 

be performed by algebraic addition of admittance or of impedance when an enhanced 

sensitivity for the central zone can be expected (Rabbani et al 1998 & 1999, 2010). 
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model of the zone of interest for FIM. 
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An estimate of the zone focusing was provided using a simple admittance model as shown in 

Figure 1.1.2 (Rabbani et al 1998, 1999 & 2010) for an equally spaced electrode system where 

the curved equipotentials have been replaced by straight lines.  

The square zone bounded by the current electrodes and divided into 9 squares as shown in 

Figure 1.1.2 is assumed to be the total sensitive zone. Each of the small 9 zones is labeled 

with an admittance value (Y11, Y12, …etc.). It is assumed that the admittance of a zone is the 

same if measured along any direction. When current is driven through AB and potential is 

measured across pq, the measured admittance is thus the combination of (kY21+Y22+kY23), 

where k is a constant factor, usually less than 1, which takes care of the sensitivity differences 

between the central zone and the outer ones.  

Similarly for the perpendicular measurement through electrodes CrsD, the admittance is 

(kY12+Y22+kY32).  

An algebraic addition of the two measurements gives the total measured admittance (YT) as 

           (1.1.1) 

                                  (1.1.2) 

                       (1.1.3) 

where i and j stand for the other subscripts in the above equation. 

These two derivatives present a simple picture of the sensitivity differences of the outer zones 

from the central one. Since k<1, the central zone has more than twice the sensitivity of the 

outer ones. Thus in this description the central zone may be said to be 'focused'.  

For impedance, the algebraic addition of the two perpendicular impedance measurements 

would be, using the same subscripts as before, 

          (1.1.4) 

Nevertheless the sensitivity in the central zone is not easy to obtain.  However, it can be said 

that the impedance of the central zone (Z22) would have more contribution compared to the 

outer zones.  
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Practically, the equipotentials would change shape and location if there are objects of various 

conductivities in the active region. Nonetheless, assuming that the conductivities do not differ 

much from a case of uniform conductivity throughout, this model would provide a simple 

approach. 

In the study of measuring gastric emptying, FIM with its 3D sensitivity was found effective 

(Rabbani et al 1999). The FIM techniques have shown great potential for a wide range of 

other applications such as cancer diagnosis (Amin et al 2014), bladder emptying and lung 

ventilation (Rabbani et al 2011).  

Measurement of abdominal fat thickness is another area of application of FIM (Surovy et al  

2012, Haowlader et al 2010). A linear relationship to change in expired volume of air was 

found in a previous study when implemented to a focused zone of the lung in a subject (Kadir 

et al 2009) which led to further studies on FIM on lung impedance. 

 

1.2 Electrical Bioimpedance and its Numerical Analysis   

Bioimpedance is an electrical property of biological tissue by which it shows the ability to 

impede or hinder the electric current flow through the tissue. Since it is a passive electrical 

property, it can only be measured exogenically as a response to a known electric excitation 

unlike an action potential from nerve which is endogenic by nature. However electric 

excitation can emerge if current is applied or if a volume of tissue is coupled in a galvanic 

way using electrodes. 

The resulting impedance of a certain volume can be obtained if a current is applied and the 

potential drop is measured over that volume like in the Focused Impedance Measurement 

described in section 1.1. The opposite of impedance is admittance, it is measured when 

potential is applied and current passing through a certain volume is measured.  

Immittance is another term which is also used to describe the conducting status of the tissue 

and to combine both impedance and admittance.  

Biological tissues are considered as electrical conductors as they are composed of both the 

free and bound charges, and due to the free charges they have the ability to conduct electrical 

current. On the contrary, dielectric contribution comes from the bound charges.  
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The rate of the movement of ions within the tissue is dependent on water content, ion 

concentration and cellular structures (Grimnes and Martinsen, 2008). 

 

 

 

 

 

 

Different tissues (e.g. muscle, bone etc.) have different intrinsic conductivities. This electrical 

conductivity is a characteristics property of different tissues. Therefore measurement and 

images of electrical conductivity can often resolve structure and even be indicative of 

pathology (Crile et al 1922).  

The impedance of heterogeneous biological tissue involves two components, the resistance 

and reactance. The conductive characteristics of body fluids provide the resistive component; 

whereas the cell membranes behave as imperfect capacitors, add frequency dependence.  

In the biological tissue, the membranes behave as a dielectric or an insulator separating two 

conducting media (Grimnes and Martinsen, 2008); the extra-cellular fluid and the intra-

cellular fluid. These fluids act the role of armatures of the biological capacitor. Since the 

membranes are not good insulators, they make up leakage capacitors. Current at low 

frequencies does not penetrate cell membranes because of the high reactance of the membrane 

capacitance, but will pass through cell membrane at higher frequencies because the reactance 

will be relatively lower (Figure 1.2.1).  

As tissues of the living body are made of non-homogeneous material, their physiological 

properties should be considered carefully. Different tissues, body fluids such as blood, saliva 

etc. and organ layers have miscellaneous cell structures. In general tissues, electrolytes and 

body have small cellular density. Dielectric behavior may arise from confined polarizable 

molecules and the movement of ions along membranes in the tissue. It will also contribute to 

the characteristic time constants and such variation may have effect on the measured 

impedance and in what manner it varies with the measurement frequencies.  

         Figure 1.2.1: Current flow through the cell at (a) low frequency (b) high frequency   

(a) (b) 
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Bode Plot 

In 1957, HP Schwan illustrated different mechanisms for the dielectric dispersion of 

biological tissue. He developed three groups for relaxation mechanism such as α, β and γ 

dispersions (Figure 1.2.2). In bode plots (for detail on dispersion and electric properties of cell 

and tissue, see Grimnes & Martinsen, 2008); it can be found that there is a clear drop in 

modulus between two plateaus and a corresponding rise in the phase shift.  In Figure 1.2.3, 

dispersions can be seen as circular elements.  

In Figure 1.2.2 the modulus and phase angle are plotted as a function of frequency 

(impedance spectra). Logarithmic scale is widely used when the measured modulus spans 

more than a decade of ohms. The logarithmic scale in Y-axis is also a better choice for curve 

fitting Fricke’s law (Fricke 1932) or constant phase element (CPE, eq 1.2.1, 1.2.2), which is 

introduced in the Cole model (eq. 1.2.3). They both show exponential relationship with 

frequency. Such quantity can be evaluated by fitting a straight line in a logarithmic plot 

(Schwan 1992, Khambete et al 1995, Raicu et al 1998, and Bordi et al 2001). For admittance 

model, the phase angle varies from 0 to 90 degree whereas for impedance, it goes to the 

opposite scale. Because of negative phase angle, inverse Y-scale is given priority for 

impedance model.  

    

 

 

 

 

 

 

 

Wessel Diagram 

Figure 1.2.3 is known as Wessel diagram, it is often used to illustrate bioimpedance.  Here 

complex numbers are plotted with the real part (Re) on X-axis whereas the imaginary part (Im 

or j) takes place on Y axis.  
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Cole Model  

Figure 1.2.4 shows a possible equivalent circuit for the mathematical model developed by 

Kenneth S Cole from curve fitting to a large number of measurements (Cole 1940).  

 

 

 

 

 

This model is vastly taken up as a general model for one dispersion system. More complex 

systems, can be developed by adding Cole-elements in Figure 1.2.4. 

Frequency spectra of biological tissue often have frequency independent phase angle and it is 

a challenge to model it with a finite number of ideal resistors and capacitors, therefore the 

model is developed with a so-called Constant Phase Element (CPE). The CPE is defined by 

setting up φCPE to a constant value. Here, real and imaginary parts of the CPE are considered 

to be dependent on the frequency in such a way that the phase angle remains frequency 

independent. Grimnes and Martinsen (2008) showed that the CPE can be presented as an 

impedance (ZCPE) or an admittance (YCPE) such as, 

                           (1.2.1) 

                        (1.2.2) 

Here, Rˊ and Gˊ are the resistance (Ω) and conductance (S) respectively, ω is the angular 

frequency (2πf), τ is the characteristic time constant and α is an exponent with relation to the 

phase angle. 

The equivalent circuit in Figure 1.2 4 can be understood from the Cole equation which is,  

       

                      (1.2.3) 

∆R 

R∞ 

Ycpe 

Figure 1.2.4: Cole Model  
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where the impedance Z of the system is given by YCPE (eq. 1.2.2) and the resistance at zero 

(R0) and infinite (R∞) frequency.  

Sensitivity Calculation 

The sensitivity in a given point in the sample (voxel) can be calculated using following 

equation. 

  [1/m4]                        (1.2.4) 

Here,  Jˊ cc is the unity current density vector (the ratio between local current density vector & 

the total excitation current) in the voxel that is formed by external currents from the current 

carrying electrodes.  

Jˊreci is the theoretical reciprocal unity current density vector, which is obtained from the 

current density vector when electrode pairs in the voxel are exchanged i.e., voltage pick up 

electrodes are employed to send the excitation signal and current carrying electrodes pick up 

voltage in the volume.  

The spatial sensitivity for a particular measurement arrangement in a single voxel can be 

obtained from eq. 1.2.5.  The contribution from one voxel in the total measured impedance is 

called Volume Impedance Density (VID). 

It is defined as follows: Volume Impedance Density (VID) = ρSdv                       (1.2.5) 

Where, S is the local sensitivity, ρ is resistivity and dv is the infinitesimal volume of the voxel. 

In a monopolar or bipolar arrangement the reciprocal current is identical to the excitation 

current. Thus, Jˊreci equals  Jˊ cc.  So sensitivity for a given point is achieved by the squaring 

the local unity current density (S=|Jˊ|2). The total impedance (Z) of any particular 

arrangement can be found by taking the integral over all voxels as given in eqn (1.2.6).  

  [Ω]                     (1.2.6) 

In some cases analytical calculations for spatial sensitivity are often used if the shape of a 

particular set-up is less complex and if it fits to standard models.  

However, in practical life, various difficulties arise when steps are taken to measure local 

resistivity and dimensions of any particular set. Therefore good approximations of the 

sensitivity field through analytical calculation can assist in this regard. So to measure lung 
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transfer impedance with FIM it is important to gather information on lung anatomy as well as 

how the respiratory system functions in the human body, which is described in section 1.3. 

 

1.3 Lung Impedance Measurement and Existing Techniques  

There are two lungs in the chest of the human body, one on right side and another on the left 

side (Figure 1.3.1). Each lung is comprised of sections called lobes. The lung is soft and 

protected by the ribcage. The purposes of the lungs are to fetch oxygen into the body and to 

eradicate carbon dioxide from it.  

In humans each lung is encased in a thin membranous sac called the pleura, and each is 

attached with the trachea (windpipe) by its main bronchus (large air passageway) and with the 

heart by the pulmonary arteries.  

                       

 

 

After entering the nose or mouth (http://en.wikipedia.org/wiki/Lung), air travels down 

through the trachea. Behind the trachea, the oesophagus is located. The trachea is distributed 

into two breathing tubes; the bronchi.  The left bronchus is directed to the left lung and the 

right bronchus leads to the right lung.  

 

1Image taken from http://www.methuen.k12.ma.us/mnmelan/respiratory_system_study_guide.htm 
  
2Images taken from http://www.thoracic.org/clinical/copd-guidelines/for-patients/anatomy-and-function-of-the-
normal-lung.php 
 

 Figure 1.3.22:  Ventilation process of human body Figure 1.3.11: Lung in human body 

(a) (b) 
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The main bronchus branches out several times inside the lung forming an upside down tree 

which finally leads to the alveoli, where oxygen and carbon dioxide are interchanged between 

the respiratory spaces and the blood capillaries.  

The complete process of respiration is regulated by the diaphragm, a large muscle below the 

lungs. It lies under the lungs and separates lungs from the organs below, such as the stomach, 

intestines, liver, etc. 

As the diaphragm moves down, the ribs flare outward, the lungs enlarges and air is drawn in. 

This process is known as inhalation or inspiration (Figure 1.3.2 (a)). when the diaphragm 

relaxes, air leaves the lungs and they come back to their original position. This is known as 

exhalation or expiration (Figure 1.3.2 (b)). The diaphragm, muscles between the ribs and one 

of the muscles in the neck called the scalene muscle participate in almost every breath we take. 

The process by which the air enters the lungs is called ventilation.  

Transfer impedance of lungs increases during the process of inspiration as air goes inside and 

decreases during expiration as air is released (Nopp et al 1993). Therefore, from the change in 

impedance due to ventilation, it would probably be possible to investigate lung condition if 

proper standardization is achieved beforehand. 

Additionally, for a diseased lung, where part of the lungs is filled with water or some other 

fluid, air will not enter into these zones of lungs; so impedance changes between inspiration 

and expiration will be different compared to that of normal lungs which offer an arena to 

examine with one of the impedance measurement technique. 

As mentioned in the beginning there are several tools to measure lung impedance change for 

pathological purpose such as Electric Impedance Tomography (EIT) (Barber and Brown 

1984), Tetra Polar Impedance Measurement (TPIM), Magnetic Resonance Imaging (MRI), 

Positron Emission Tomography (PET) (Ter-Pogossian, 1975; Phelps, 1975).   X-ray (Rontgen 

1895) etc is also used to produce lung imaging for disease diagnosis.  

Electrical Impedance Tomography (EIT) is extensively developed in Sheffield, UK (Barber 

and Brown 1984). In EIT current is injected (about 1 mA) into one electrode pair and the 

voltage between other electrodes are recorded (Rosell et al 1988b).  Current injection is 

successively shifted so that all electrode pairs are used. This technique has also been referred 

to as conductivity imaging, impedance CT and Applied Potential Tomography (APT). 

Electrical Impedance Tomography (EIT) provides images of tissue impedance distribution.  
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When a current is applied to two points on the peripheral surface of a cylindrical biological 

material through a cross sectional plane, a potential distribution is established within that 

plane (Figure 1.3.3). If this is sampled by making measurements of peripheral potentials at 

various points, such measurements can be backprojected along the curved isopotentials to 

create an image. Repeating the procedure for different locations of the stimulating electrodes 

leads to a form of computed tomography.  

In comparison with the other imaging modalities, the distinguishing features of EIT are: the 

possibilities of very rapid data collection, modest computing requirements, relatively low cost, 

and no known significant hazards. Against these, limitations can be summed up as poor 

spatial resolution and technical difficulties arising from the over–simplified assumptions 

concerning the distribution of the isopotentials. When the number of drive electrodes is 

increased, the practical problems of data collection rise. 

As the resolution of EIT is not satisfactory, usage of EIT for vast clinical application is a 

challenge to overcome till today. EIT is employed for gastric function (Mangnall et al 1987, 

Smallwood et al 1994), pulmonary ventilation (Harris et al 1987), perfusion, brain 

haemorrhage (Murphy et al 1987), hyperthermia (Griffiths et al 1987), epilepsy and cortical 

spreading depression (Holder 1992), swallowing disorder and breast cancer (Jossinet, 1996).  

As mentioned earlier, to measure the change of lung transfer impedance due to ventilation and 

using this phenomenon for lung disease detection and lung monitoring has been one of the 

major area of interest for the scientists of this field over the years.                        

Khambete et al (1999) narrated experimental and theoretical studies to determine an optimum 

placement of four electrodes for impedance pneumography. The studies showed that the 
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sensitivity of an electrode pair is dependent on the distance between the drive and receive 

electrode pair. In addition it is dependent on the anatomical location of the lungs with respect 

to placement of the electrode. However, focusing a region of lungs with the existing 

techniques such as EIT and TPIM has remained a challenge to overcome.  

However, as seen in section 1.4, the relatively new Focused Impedance Measurement 

technique has shown potentials in this regard. From the previous studies it was found that 

more research is necessary in order to develop FIM as lung disease detection tool. 

 

1.4  Previous Studies on Lung Impedance Using FIM and its Prospects  

In the Focused Impedance Measurement (FIM) process, electrodes are applied on the surface 

of the human body. For lung ventilation study electrodes are placed on a certain area of the 

thorax and voltage change between inspiration and expiration were measured (Kadir et al 

2009 , Rabbani & Kadir et al 2011).  The output voltage, measured after amplification, is 

proportional to the amplitude of the potential developed between the voltage measuring 

electrodes. This measurement is also proportional to the impedance of the region within the 

voltage measuring electrodes (Rabbani and Kadir et al 2011). In the referred studies, subjects 

were directed to take deep breath and then expired air at a time in steps and held the breath for 

a short while each time. During the breath holding period the FIM data was recorded from 

electrodes placed over the right anterior thorax.  

 

 

The volume of air expired was also measured simultaneously using a standard type spirometer. 

Fig. 1.4.1 (Rabbani and Kadir et al 2011) shows a typical data from one of the subjects and 

the very good correlation between the relative FIM values and the volume of air expired 

Fig. 1.4.1: Relationship between changes in relative 
Impedance vs change in air volume 
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showing the utility of FIM in measuring lung ventilation in localised regions, and from any 

direction.   

In another assessment study (Kadir et al 2010) for healthy individuals, localized ventilation 

maps in terms of transfer impedance were obtained from two normal male subjects using 6-

electrode FIM with some modifications. The measurement was carried out in a matrix 

formation around the thorax, both at anterior plane and posterior plane of the human body 

with limited number of samples.  

Here focused impedance values for inspiration and expiration were measured and the 

percentage difference with respect to the latter was employed for investigation purpose. 

Besides some of the measured values had artefacts due to movements of the heart and the 

diaphragm in the relevant anatomical positions which suggested to be considered in future 

with due care for any further interpretation for lung impedance change.  

A study carried by Kadir et al 2010 gave a brief idea on how to analyse lung impedance as 

well as to develop thorax mapping in terms of impedance using a FIM in depth approach. In 

the study it was also intended to see if FIM could be used to detect and quantify changes in 

localised lung ventilation as it is important for potential use of FIM in detection and diagnosis 

of localized lung ventilation disorders. The idea of the study was change in impedance due to 

ventilation in a particular segment of lung will be different when measured with FIM, if that 

part of the lung is filled with water, blood of injury, or any other substance. Thus to be able to 

compare, calibration of change in impedance due to ventilation of healthy lungs is required in 

great extent.   

Moreover, if it is possible to detect the change of lung impedance using non-invasive FIM 

technique, it would benefit many who suffer pulmonary problems but due to financial status 

cannot bear the healthcare costs.  

Study shows that in developing countries like Bangladesh and others, lung disease is a major 

problem. Among them Pneumonia is the leading cause of infant and childhood deaths 

globally (Bryce et al 2005) and 90 % of all deaths occur in developing countries (Mulholland 

et al 2003; Black et al 2003), including Bangladesh (Ahmed et al 2000; Baqui et al 2001).  In 

Bangladesh Demographic Health Survey 2004 conducted by National Institute of Population 

Research and Training, Dhaka/Calverton 2005 showed that in Bangladesh serious infections, 
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including lower respiratory tract illness, are responsible for up to 52 % of the mortality among 

children aged below 5 years. 

Population-based studies also have reported a high incidence of pneumonia among children 

aged below 5 years who live in rural areas (0.23 episodes per child-year) and urban areas 

(0.56 episodes per child-year) in Bangladesh (Brooks et al 2005; Zaman et al 1997). So it 

would be highly beneficial to have a disease detection tool which can provide first-hand 

information to the physicians for early cure especially for the new-born babies who face 

pneumonia and cannot ask for medical help because of their tender age. On the contrary, the 

existing techniques such as X-rays, PET, and MRI etc. (mentioned in section 1.3) require 

human resources with very special skills along with higher installation cost. X-ray has 

radioactive hazards too.   

Therefore it can be said that Focused Impedance Measurement (FIM), which is developed in 

the Biomedical Physics laboratory in the University of Dhaka (Rabbani et al 1998; Rabbani et 

a1 999) can show a great potential with its less complex characteristics, non- invasive 

criterion and minimum level of education in FIM handling, if proper research is executed.  

Nonetheless to achieve the mentioned goals, it is important to have sensitivity mapping of the 

volume conductors such as lungs with proper electrode configuration which basically offers 

more area for further research.  

 

1.5 Electrode Configuration and Sensitivity Plotting of FIM for Lung Impedance 

Studies  
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Several electrode configurations can be developed using Focused Impedance Measurement 

(FIM) technique. Figure 1.1.1 illustrates 8-electrode FIM configuration whereas 6-electrode 

electrode configuration with FIM has been outlined in Figure 1.4.1 (Rabbani et al 1998; 

Rabbani et al 1999).  

In 6-electrode configuration current carrying (CC) electrode pairs are A, B and C, D (same as 

FIM-8, Figure 1.1.1), but voltage pick up (PU) electrodes are placed in the diagonal position 

of the focused zone only to reduce the number of electrodes to avoid hazard and complexity 

(Figure 1.4.1, Rabbani et al 1999). 

Karal et al 2008, has shown that 4-electrode FIM can be developed (Figure 1.4.2) making 

FIM even less complex in terms of electrode number. In 4-electrode-FIM current is injected 

through electrodes A and B and voltage are picked by electrodes C and D. Then again current 

is passed through B and C, which is perpendicular to A and B, and the voltage is measured by 

D and A. The zone with gradient effect in Figure 1.4.2 shows the zone of interest which is 

being focused with FIM whereas lines a1b1, a2b2 & c1d1, c2d2 show the equipotential lines for 

FIM with four electrodes. With different electrode configurations, it is important to know the 

sensitivities which vary due to the separation of current carrying (CC) and voltage pick up 

(PU) electrode. 

Iquebal et al 2010 has shown the depth sensitivity of the 6 electrode FIM using a fixed-

geometry-phantom-saline model. In the referred studies, depth sensitivities of spherical 

conductors, insulators and of pieces of potato (targeted objects) of different diameters were 

measured for fixed CC and PU electrodes. The sensitivity dropped drastically with depth 

steadily levelling off to background for insulating and living tissue (piece of potato), and 

objects could be identified down to a depth of about twice their diameters. The sensitivity at a 

certain depth increases showed almost linear relationship with volume for objects with the 

same conductivity in the referred studies.   

Karal et al 2008 showed a study of the sensitivity with three cylindrical objects of different 

conductivities using 4-electrode FIM technique.  It was performed using a 2D phantom made up of 

saline with a focused square zone at the centre where neighbouring square zones showed sensitivities 

of about 22% of that at the centre for the insulator, it shrunk to 13% for the conductor and about 10% 

for potato (living tissue). The outward zones had insignificant sensitivities.  

Degrees of perturbation of equipotential lines (Figure 1.4.2) were indicated to be the cause of the 

above differences in focusing. In short it can be said that less perturbation would give optimum 
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focusing in 4-electrode FIM. In this study, few negative sensitive zones were found in the sensitivity 

map with an organic conductor.  Negative sensitive zones appeared more when measured with the 

remaining two objects of different conductivities. Therefore, Karal et al 2008 concluded that the 

difference between the conductivity of the saline and the object might be the cause for this observed 

difference but to make concrete conclusion further study were suggested.  

Brown et al, 2000 and Islam et al 2010 have also referred the difficulties of investigating the 

sensitivity field distribution using Matlab simulations based on Geselowitz’ lead field theory 

(Geselowitz 1971) in detail for different configuration of FIM.  

These analyses were performed for points in a mesh with 1 mm distance in the x, y, and z-directions. 

The models were made of 343 000 and 8000 000 points, respectively. These models can be used to 

determine the sensitivity in each point.  

However, to obtain a finer model further studies are required. For instance the Matlab-based model 

only gave sensitivities but to have current density vectors and potential available for all points in a 

model, further simulation study was necessary for better understanding. Another interest was to 

achieve a graphical display of the sensitivities and to calculate transfer impedance from the simulation. 

Moreover the Matlab-based model was limited to a semi-infinite homogenous medium.  

Nevertheless to develop a model with FIM which would be applicable to any geometrical shape is a 

challenge to overcome. Besides, from the eqn (1.2.4), it can be seen that negative sensitivity in a given 

point in the sample (voxel) arise when Jˊreci  and Jˊ cc  have opposite direction with each other.  

So to determine the negative zones in sample with inhomogeneity applying FIM technique is 

an area of interest as well.  It is also important to compare different electrode configurations of FIM 

and to find out the impact of the electrode configuration on the measurement result as the sensitivity 

field distribution of FIM becomes significant when the transfer impedance of biological tissue or any 

sample of non-homogenous nature is measured.  

In short it can be said that if a new tool is developed for selecting the optimal electrode configuration 

for a given FIM problem (lung impedance study for present work), it could benefit the above 

mentioned problem. This basically paved the path for simulation study with FIM using Finite Element 

Model (FEM) based software programme, Comsol Multiphysics, in the present work.  

 

1.6 Present work of Lung Impedance Study Using FIM  

In 2009, a pilot study was executed by the author using 6-electrode FIM configuration with a 

spring loaded hand-held electrode probe in order to develop a thorax map of the human body 

due to ventilation in terms of change (%) in lung transfer impedance. 
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A paper template with 6 X 4 matrices, shown in Figure 1.6.1, was employed to serve the 

purpose. Since the study was taken as part of time-bound master’s thesis project, it was not 

possible to carry out the study on a large number of samples at that point of time. 

                     

 

However, during the development of the study, it was evident that substantial information can 

be extracted from the lung impedance study using FIM, if further research is carried out.  

For instance, comparing the change in impedance (%) with respect to expiration at both 

anterior plane and posterior plane it was found that measurements of the former vary more 

than that of the latter. Though to establish this as a concrete conclusion, more in depth 

research was required.   

However, since many features of FIM regarding simulation and negative sensitive zones were 

still to be explored at that point of time, it was a challenge to analysis the data obtained from 

the pilot study in detail. Furthermore, as lung is an organ which is exposed to air successively, 

so how the smoking habit of the subjects influences lung impedance change (%) due to 

ventilation when measured using FIM was also considered something to be looked upon with 

great interest.  To develop the relation between physiological properties of the subjects such 

as body Mass index (BMI), age of the subjects and lung impedance change (%) due to 

ventilation was also required for practical implementation of FIM. But limited knowledge of 

statistics restricted the study further. 

Considering all the limitations, it was a demand of the situation to run another project in large 

scale in terms of sample subject and time, where priority would be given to curb the obstacles 

faced during analysing the data of the pilot project as well to acquire more information on 

lung impedance study using FIM including its simulation and lung impedance related 

statistics for further interpretation of the results.  

Figure 1.6.1 Paper template to develop body mapping matrix 
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2. Aim & Objectives of the Study 
 

 

 

The ultimate aim of the present work is to develop a low cost, simple and non-invasive tool to 

detect lung disease among the children in developing countries such as Bangladesh, India etc. 

In this regard the Focused Impedance Measurement (FIM) technique has shown potentials in 

previous research works, as mentioned in section 1.4.  

However, to use FIM technique for lung disease detection commercially and on the grass root 

level, more investigation are required with an in depth approach. In order to achieve such a 

final goal a comparative study and several pilot studies were executed in the present work 

using the FIM technique. 

The sub-goals of each paper can also be found in the reprints of the Paper I-IV. In short the 

sub-goals can be listed as: 

1. To compare change in impedance (%) at anterior plane and posterior plane of 

the body using FIM 

From the Paper I and Paper II, it can be found that change of impedance of lungs due 

to ventilation were measured using 6-electrode and 8-electrode FIM at both anterior 

and posterior plane among a very limited number of subjects.  

As the anatomical structure of human body is different at anterior plane and posterior 

plane (more muscle tissue at back) and lungs are spread over on the upper portion of 

the body, a comparative study of the impedance change of lungs between anterior 
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plane and posterior plane became an area of interest and inspired us to take up studies 

with large number of samples. 

 

2. To determine the cardiac contribution in the change in lung impedance (%) of 

lungs due to ventilation 

During the result analysis of pilot study described in Paper II, it was found that the 

anterior plane of thorax has higher value of change in impedance (%) due to 

ventilation. As the heart of the human body is located mostly in the anterior plane of 

thorax, it could contribute to the result. So an effort was made to determine the 

cardiac contribution to the change in impedance of lungs due to ventilation when 

measured using 6-electrode FIM.  

 

3. To eliminate the complications that arose during the process of developing body 

mapping matrix on the subjects when a spring loaded hand-held electrode probe 

is used 

During the second pilot study (Paper II), a paper template having a 6 X 4 matrix was 

used to develop sensitivity mapping of the entire thorax in terms of lung impedance 

change (%) due to ventilation (Figure 1.6.1). It was believed that such mapping would 

be beneficial for standardization of lung impedance change (%) among healthy 

subjects.  

But through the practical experiment, it was found that the subjects felt exhausted as it 

is a lengthy process. Moreover after analysing the result we can conclude that such 

small element of matrix would not be able to bring fruitful result. So in the next pilot 

study (submitted Paper IV) thorax plane had been divided into eight segments for data 

collection (Table 3.3.2.1 and Table 2.4 in submitted paper IV).  

In addition a spring-loaded electrode probe (Figure 3.1.3, Figure 3 of Paper II) was 

used to measure the impedance change (%) due to ventilation. During the experiment 

it was experienced that such a rigid electrode probe faced problems when it is placed 

on the human thorax due the curviness of human structure. Therefor the next 

challenge became to design an electrode probe which will be flexible and fit on the 

human thorax. The next pilot study (Submitted Paper IV) was carried out with a 

newly designed pillow-like hand-held probe (Figure 3.3.1, Figure 2.2.2 of Submitted 

IV). 
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4. To compare different types of FIM configurations such as 4, 6, 8-electrode FIMs 

using Comsol Multiphysics numerical software  

There are different types of FIM configurations such as 4-electrode FIM, 6-electrode 

FIM, and 8-electrode FIM. It was also necessary to compare different FIM 

configurations so that the limitations and advantages of each type of FIM can be 

obtained. To serve the purpose a Finite Element Model (FEM) based on Comsol 

Multiphysics (MPH) was employed (Paper III). 

 

5. To develop a model which calculates current density and potentials at all points, 

when applied FIM technique 

FIM can focus the sensitivity to a region roughly shaped as a half-sphere (Rabbani et al 

1999). But it is still difficult to know to what degree different sub-volumes in the 

conductor contribute to the measured result, i.e. the sensitivity field distribution. 

Besides the cases where we want to measure the impedance in a particular volume with a 

uniform sensitivity in our target volume and as little influence from others volumes as 

possible, the challenge becomes more complex. FEM-based MPH enabled us to calculate 

current density and potentials at all points in a model when different types of FIM are applied 

on a volume conductor (Paper III).   

 

6. To graphically display sensitivities and to calculate transfer impedance using 

volume impedance density and sensitivity equations using FEM-based MPH 

Islam et al 2010 in his sensitivity analysis study obtained only sensitivity at each 

point of the model using the Matlab software programme. But with the models 

developed in FEM-based MPH it was possible to add expressions for sensitivity 

(equation 3.5) and volume impedance density (equation (equation 3.6)) which enabled 

us to graphically display sensitivities and to enable us to calculate transfer impedance 

(Paper III).  

 

7. To find out whether smokers have different respiration-derived impedance 

change compared to non-smokers 

As physiology of the inner lung surface changes due to smoking (Scott 2004), it was 

assumed that change of transfer impedance of lungs due to ventilation would also be 

affected for smoking. In order to achieve such goal in the next pilot study between 

smokers and non-smokers a linear statistical model was developed where smoking 
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habit of the subjects was kept as a factor to the impedance change (%) of lung 

(Submitted Paper IV).  

 

8. Which electrode position is best suited for measuring changes in respiration-

derived impedance due to smoker status?  
In the third pilot study, the thorax was divided in to eight positions for data collection, 

as mentioned before (Table 3.3.2.1 and Table 2.4 of Submitted Paper IV). Here, one 

of the interests was which of the thorax position among the eight is best suited for 

measuring change of lung transfer (%) impedance when measured using 8-electrode 

FIM technique among smokers and non-smokers, and using 5 kHz and 50 kHz.  

 

9. To test if different ages of the subjects have different effects on impedance 

changes due to ventilation for the same frequencies  
In the pilot study carried in submitted Paper IV the ages of the subjects were 

considered as a factor in the statistical model to investigate if it has any influence on 

change on impedance (%) due to ventilation when measured using 8-electrode FIM at 

5 kHz and 50 kHz.  
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3. Materials and Methods 
 

 

Chapter Contents  

 

3.1 Analysing Data for Thorax Mapping Using FIM----A Pilot Study 

3.2 A Simulation Study for different configuration of FIM with Comsol 

Multiphysics 

3.3 Study of Change in Lung Transfer Impedance due to Ventilation Using 

FIM technique 

 

 

This section of the thesis is comprised with the description on the methods and materials that 

were employed for the experimental studies. However, as described in Section 1, the studies 

can be divided into three segments. 

Each of the segments benefited the research work to move forward to the next step with a 

broader approach. Short descriptions on each segment are given below whereas published and 

submitted papers on each topic with the details can be found in the next section of this thesis.  

 

3.1 Analysing Data for Thorax Mapping Using FIM----A Pilot Study 

This work was run in the Department of Biomedical Physics and Technology of University of 

Dhaka, Bangladesh. The main aim of this work was to investigate lung impedance change due 
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to ventilation in order to develop a complete mapping of the thorax in terms of impedance 

using the Focused Impedance Measurement (FIM) technique with 6-electrodes.  

The block diagram of the instrument is shown in Figure 3.3.1. A sinusoidal signal, 10 kHz, is 

divided into two isolated current drives (AA  and BB ) through voltage to current converters 

and isolating transformers.  

 

 

 

 

 

 

  

     

In this process a spring loaded hand held electrode-probe (Figure 3.1.3) was used to measure 

the change of lung impedance (%) with the electrode configuration given in Figure 3.1.2.  

 

  

Figure 3.1.2: The Schematic 
diagram of ‘Diamond’ type 
electrode configuration for the 6- 
electrodes FIM system, the 
shaded square region bounded 
by red colour represents the 
focused zone. 
 

Figure 3.1.3: The handheld 
electrode probe. Wet cotton 
wool is inserted into recesses 
touching the metallic electrode 
inside. The stems of the 
electrodes are spring loaded to 
ensure good contact at curved 
body surfaces. 
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Figure 3.1.1: A block diagram of the 6-electrode FIM 
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  A paper template was used to develop a matrix (Figure 3.1.4) on both anterior plane and  

 

 

 

 

 

 

posterior plane of the subjects. Moreover, Figure 3.1.5 shows how the hand-held electrode 

probe was placed on the body mapping matrix to measure transfer impedance change due to 

ventilation. 

 

Four volunteers aged between 18-26 years, who reportedly had no lung complains before, 

participated in this pilot project. They were instructed to breathe in with their full capacity and 

asked to hold their breath to record the transfer impedance due to inspiration at 10 kHz while 

injecting 1 mA (rms). The same process was followed to measure transfer impedance for 

breathe out. Vital capacity, height, weight, and chest perimeters of the subjects were also 

recorded to develop a correlation with transfer impedance change. The relative change in 

impedance (%) with respect to expiration (when the lung is empty) was calculated to gather 

the general indication of the link between transfer impedance and other the recorded 

covariates.   

Figure 3.1.4: Technique for marking out identification of points on thorax for the desired matrix for 
measurement. The cell numbers shown were superimposed later on the photographs. 

Figure 3.1.5: Measurement of localised ventilation using the hand- held probe with spring loaded electrodes. 
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3.2 A Simulation Study for Different Configuration of FIM with Comsol 

Multiphysics 

From the study in section 3.1 and description in 1.5, it was evident that a simulation task was 

needed to understand the sensitivities of FIM with its entire configurations such as 4, 6, or 8 

electrodes. Moreover, the sensitivity field distribution turns out to be a significant dimension 

in all living tissue which is non-homogenous in character. To serve the purpose Finite 

Element Method (FEM) based computer software COMSOL Multiphysics was used in this 

section of the present work (Pettersen F-J et al 2014). As mentioned earlier, FIM is a special 

set-up for impedance measurement where two or four electrodes are current carrying (CC), 

and two or four electrodes are used for voltage pick-up (PU). Some configurations have two 

steps where the electrode usage is changed. In these cases, the configuration requires simple 

post-processing.  

3.2.1 Model Description 

All models in the simulation work were 50 cm wide × 50 cm long × 25 cm high. The height 

was set to half the width since previous work (Brown et al 2000, Islam et al 2010) had shown 

that sensitivity decreases when moving away from the electrode plane. The electrodes were 

placed on top of the models. Electrode radii were 2, 4, 6 and 8 cm for each of the simulation 

set. The electrode height was equal to electrode radius. A half-sphere was made under the 

electrode. The half-sphere had the same electrical properties as the bulk material, and was 

used to make the mesh finer in these regions and to specify a region for volume integration. 

The radius of this half-sphere was varied from the same radius as the electrode and up to 10 

mm in 2 mm steps. The inner electrodes for all models form a square with 4 cm sides. For 

FIM6, FIM8a, and FIM8b, the CC electrodes form a square with 12 cm sides (Figure 3.2.1). 

A sphere of 1.33 cm, with the same electrical properties as the bulk material, was placed just 

underneath the surface and it touched the top surface of the model.                                         

                   

 
Figure 3.2.1: Top view of FIM electrode configurations. (Dimensions are not 

to scale) (a) FIM4 (b) FIM6, (c) FIM8a, (d) FIM8b. 
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To simulate the impact of an inhomogeneous material under an electrode, two ellipsoids were 

placed under one CC-electrode in the FIM8a-model. One ellipsoid was placed in the region 

with positive sensitivity and the other in the region with negative sensitivity. The regions of 

positive and negative sensitivity were found in the previous simulations. The ellipsoid had 

radius identical to the radius of the electrode in x-direction, and y-direction, and radius 

identical to half the electrode radius in the z-direction, which is shown in Figure 3.2.2.  

                

 

 

The meshes were generated with settings that gave approximately 75 000 tetrahedral elements. 

Material Conductivity (sigma) (S/m) Description 

Bulk 1 The bulk of the model 

Electrode 100 Electrode material 

Low conductivity 0.01 Inhomogeneity below electrode 

High conductivity 100 Inhomogeneity below electrode 

 

 

For all set-ups, it can be said that several measurements were taken of the same quantity. In a 

standard setting, each measurement would have given the same value, and a summation of 

two measurement results would have given the double of the real value, therefore, to achieve 

the actual value, we calculated the mean of the two values. To be specific, what was done was 

to calculate the sensitivities for the different measurements and then average was calculated 

with MPH. This method is different to the work by Islam et al where results were added 

Figure: 3.2.2:  Placement of ellipsoids beneath one electrode. The one marked A is in the region of 
negative sensitivity, while the one marked B is in the region of positive sensitivity. 

Table 3.2.1: Material properties
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together (Islam et al 2010). Adding the results benefited us for comparison. However, it did 

not let us use the result when calculating expected transfer impedance as we also do. The 

validity of our method has been verified by comparing FIM-simulations to phantom 

measurements (Abir et al 2013). Since all set-ups gave different results, normalization might 

also be an option, but the idea was abandoned as only the estimation of final impedance was 

the priority. 

3.2.2 Simulation Set-up 

Simulations were done in COMSOL MPH version 4.3. A set of partially differential equations 

was required to define how the FEM-tool would do its calculations. As an appropriate pre-

defined equation set was not defined, the generic equations (3.1) through (3.4) were used. It 

must be noted that for the case of COMSOL MPH, an arrangement of pre-defined equation 

sets that model several physical systems such as heat flow, electric currents, magnetic fields, 

acoustics, fluid flow etc. can be found. For our models, a predefined set called Electric 

Currents physics interface (COMSOL 2013) which contains the equations (3.1) through (3.4), 

were employed. 

The interior of the materials were handled by 

                                             (3.1) 

     (3.2) 

      (3.3) 

and the external boundaries by 

      (3.4)  

The simulations are done for DC only, which means that  = 0 in equation (3.2). 

The symbols in equations (3.1) through (3.4) mean: 

  is the divergence of a vector field. 

J is electric current density. 

E is electric field intensity. 

Qj is electric charge. 
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 is electric conductance. 

j is the imaginary unit. 

 is frequency in radians per second. 

0 and r are vacuum permittivity and relative permittivity, respectively. 

Je is external current density. 

V is the gradient of the potential. 

For a complete explanation please see the MPH reference manual (COMSOL 2013). For 

further information on FEM for electromagnetic problems, there are excellent text books 

available (Humphries 1997). 

3.2.3. Extracted Numbers 

Several numbers are extracted from the model simulations. 

3.2.3.1 Fractions 

The negative fraction (NF) described how much volumes with negative sensitivity contribute 

to the measured transfer impedance. This was a number between 0 and 1, and should ideally 

be 0. The next number was called sphere fraction (SF) and it gave an idea on how much the 

sphere just below the model surface contributes to the measured impedance. SF was a number 

between 0 and 1 for a configuration with NF = 0 and should ideally be 1 if we wanted to focus 

our measurement on the sphere. Non-zero NF meant the number might be higher than 1. 

To calculate NF and SF, volume impedance density (z) was defined for each point in the 

model. This was sensitivity multiplied by the resistivity as shown in (3.6) whereas Sensitivity 

is given in equation (3.5). The integral of Z for all the points in the volume gave the transfer 

impedance. If integration was done over a smaller volume, VSUB, then it delivered the 

contribution from VSUB to the total transfer impedance. MPH allowed us to select such smaller 

volumes based on geometry or any available numerical property of a given point. This 

functionality allows us to investigate regions of special interest 

     (3.5) 
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     (3.6) 

Where, 

 is the resistivity of the material. 

S is sensitivity. 

 is the current density originating from simulation where current is sent into the 

model through the CC electrodes. 

 is the current density originating from simulation where current is sent into the 

model through the PU electrodes, i.e. the reciprocal current. 

 is the measurement current used in the model. 

 is the reciprocal measurement current used in the model. 

Both ICC and IPU are set to 1 A to simplify calculations. Then the NF is calculated using 

d
Zd

     (3.7) 

Where 

     (3.8) 

and SF is calculated  

d

d
     (3.9) 

3.2.3.2 Depth of Negative Sensitivity 

To quantify how deep the region where S is negative is, the parameter 

negative sensitivity depth is defined as 

            (3.10) 

It was found by probing an isosurface plot of S = 0. 
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3.2.3.3 Sensitivity Ratios 

Two ratios of sensitivities are defined in table 3.2.3.3. SRMAX defines how large the sensitivity 

ratios are. A very high number indicates regions with high sensitivity that could potentially 

cause problems. The SRSPHERE says how high the sensitivity is in the sphere where we want 

sensitivity to be high is. A high number means that the focus on the sphere is high. 

 

Variable definition Description 

 Ratio between maximum |S| for the whole model and average S for 

the whole model. Electrodes are not included. 

 Ratio between average S for the sphere and average S for the whole 

model. Electrodes are not included. 

 

3.2.3.4. Contribution from Electrode Regions 

The fine simulation mesh in the electrode regions allowed us to have a closer look at the 

contribution to final impedance form these regions. Four electrode related contributions are 

defined in table 3.2.3.4 

Variable definition Description 

d  
Contribution from electrodes A, B, C and D to final 

measured impedance 

d  
Contribution from half-sphere below electrodes 

A, B, C and D to final measured impedance 

d  
Contribution from electrodes p, q, r and s to 

final measured impedance 

Zd  
Contribution from half-sphere below electrodes 

p, q, r and s to final measured impedance 

Table 3.2.3.3 Sensitivity variables

Table 3.2.3.4: Impedance contribution definitions 
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3.2.3.5 Inhomogeneity

An extra set of simulations was done to the FIM8 a-model to investigate the effect of 
inhomogeneity in the region below the electrodes. A base simulation was done with no 
inhomogeneity, and a number of combinations of low and high conductivities in the two 
regions were simulated. The percentage change in total averaged transfer impedance was 
found. 

 
3.3 Study of Change in Lung Transfer Impedance due to Ventilation Using FIM 

technique 

3.3.1 Instrument and Electrode Configuration 

In this section, a BioScan 920-II, made by Maltron, UK was employed to measure the lung 

impedance change due to ventilation (submitted Paper IV). The measurements were taken in 

order to develop a relationship between change in impedance with other physiological factors 

of the subjects such age, smoking status and body mass indices (BMI).  

In addition, how smoking status of the subjects influences the change in impedance (%) when 

measured using FIM technique was also an area of interest in this study. The used instrument 

had two channels and each channel has four leads. The leads were connected to a handheld 

probe (discussed later). The measurements on each subject were carried out at two 

frequencies i.e. 5 kHz and 50 kHz. In this case transfer impedance of lungs due to ventilation 

was measured using two pairs of electrodes, which are orthogonal to each other. These 

quantities were summed up and divided by two to get the average transfer impedance for 

inspiration and expiration. The change in impedance (%) was calculated as follows: 

If lung transfer impedance due to inspiration =   

and lung transfer impedance due to expiration =   

Then, change in impedance (%) due to ventilation with respect to inspiration,  

M =                          (3.11) 

and change in impedance (%) due to ventilation with respect to expiration, 

 N =                            (3.12) 
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A customized handheld probe (Figure 3.3.1) was used to measure change in lung impedance 

(%) due to ventilation. This is an improved and modified version of the spring loaded 

electrode probe that was used in previous studies [Kadir et al 2010], [Ferdous et al 2013] with 

FIM. At one end, there are eight leads whereas the other end has specially designed electrodes. 

The pillow-like probe, made by leather, had foam inside it to keep it soft, smooth, and user-

friendly. The foam also gave the opportunity to bend the probe slightly when it was placed on 

the human body. 

3. 3. 2 Subject Selection & Measurement  
 

 

 

 

 

 

 

Here twenty male subjects were chosen whose ages were between 23 and 30 years. They were 

divided into two groups; one was constituted by the subjects who were aged between 23 years 

and 26 years while another group is comprised of 27-30 years old subjects. These subjects 

were also categorised into two more groups based on their smoking habit, thus one group 

possessed smokers and another non-smokers. They were also labelled with different colours 

for convenience.   

Thorax 
Plane Thorax Position Abbreviation 

A
nt

er
io

r 
Pl

an
e 

Front Right Top FRT 
Front Right Bottom FRB 

Front Left Top FLT 
Front Left Bottom FLB 

Po
st

er
io

r 
Pl

an
e 

Back Right Top BRT 
Back Right Bottom BRB 

Back Left Top BLT 
Back Left Bottom BLB 

  Table 3.3.2.1: Thorax positions

Figure 3.3.1(a), (b) & (c): Different angles of the hand-held probe used in 
the measurement of lung impedance due to ventilation 
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In addition, the thorax of each subject was divided into eight positions given in Table 3.3.2.1 

Figure 3.3.2.1(a), (b), (c), (d) shows the thorax positions for FRT, FLB, BRT, and BLB of a 

subject respectively. Figure 3.3.2.2 (a), (b), (c), (d) shows how the hand-held electrode probe 

was placed on each of the thorax position for the measurement of lung impedance change (%) 

due to ventilation using FIM technique. Similar ways were followed to measure the other 

positions (FRB, FLT, BRB, and BLT) of the thorax.    

In previous studies in Paper I & Paper II with FIM6, a paper template was used to develop a 6 

x 4 or 6 x 5 body mapping matrix on the thorax (Figure 1. 6 and Figure 3.1.4) on the basis of 

anatomical shape of the thorax. It was found that to develop such thorax consumes long 

period of time (2.5-3hours for each subject for both plane at single frequency) which makes 

the entire system non-user-friendly and lengthy. Therefore in the submitted Paper IV, the 

thorax of each subject was divided into eight segments such as four in the front and four in the 

back (Table 3.3.2.1).          

                      

                                   

 

           

            
             

Each of the subjects were instructed to take a deep breath and hold it for a while, then the 

handheld electrode probe was placed in the anterior plane first at FRT positions described in 

section 3.3.2 [Figure 3.3.2.1-a and Figure 3.3.2.2-a] and photographs were taken on transfer 

impedance shown in the Maltron 920-II ’s display screen. Then the subject was asked to 

Figure 3.3.2.1:  Thorax Position (a) FRT (b) FLB (c) BRT (d) BLB on a subject with superimposed 
electrode configuration of FIM 8-electrode B 

Figure 3.3.2.2: Measurement of lung transfer impedance due to ventilation on (a) FRT (b) FLB (c) 
BRT (d) BLB with the hand-held electrode probe on a subject 
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breathe out with full capacity keeping the hand-held probe on the same place (FRT in this 

case) as it was during inspiration and a similar procedure was followed to record the transfer 

impedance for exhalation. In this way the handheld electrode was placed at the other positions 

such as FRB, FLT, FLB, BRT, BRB, BLT, BLB and measurements were taken for lung 

impedance change due to ventilation at 5 kHz and 50 kHz. The measurements during 

inspiration and expiration were taken at 5 kHz first, followed by 50 kHz later for each subject 

at each position, i.e., in total eight positions for each subject.  

The Maltron equipment generated a sinusoidal constant current of 0.5 mA (rms) amplitude. 

As per the International Electrotechnical Commission, the safe current boundary for medical 

equipment is 100 A (rms)/kHz, so that 0.5 mA at 5 kHz is within this safe range (IEC1977). 

A larger safe margin is obtained at 50 kHz.  

Finally a dataset with 640 measurements (20 subject times 8 electrode positions for both 

inspiration and expiration using 5 kHz and 50 kHz) was recorded. They were grouped 

according to the factors Smoker Status, Age Group and Electrode position. The body mass 

index (BMI) was acquired for each subject in order to enable adjustment for this parameter in 

the statistical analysis. Table 3.3.2.2 gives a structural overview of the data and variables. 

Variable name Description Type of variable Values 

Electrode position Electrode Nominal [FRB, FLT, FLB, BRT, BRB, 
BLT, BLB] 

%Zin(Electrode position) 

Percentage wise change 
in impedance 
relative to inspiration, 
according to electrode 
position 

Dependent variables 
Continuous, 

 

%Zout(Electrode position) 

Percentage wise change 
in impedance 
relative to inspiration, 
according to electrode 
position 

Dependent variables 
Continuous, 

 

Smoking status 

Classification of 
subjects based on 
whether they smoked 
regularly or not 

Fixed factor [Smoker, non-smoker] 

Age Group 
Classification of 
subjects based on two 
age-groups. 

Fixed factor [23-26y ,27-30y ] 

Frequency Impedance 
measurement frequency Fixed factor [5kHz, 50kHz] 

BMI Adjustment for body-
mass index Covariate Continuous 

 

 
Table: 3.3.2.2: Structural overview of the data and variables 



Materials & Methods 
 

40 
 

3.3.3 Statistical analysis 

The purpose of the statistical analysis was to observe the effect that the factors Smoking 

Status, Age Group and Frequency had on %Zin and %Zout for all the electrode positions 

when measured using FIM technique. A multivariate analysis of covariates (MANCOVA) 

was used to achieve this. These statistical operations were done in the computer software 

programme SPSS v18 using the General Linear Model function. 

In the beginning, all interaction terms were included to the model and discarded if found to be 

non-significant. For significant interaction terms, separate analyses were executed. BMI was 

considered as a covariate to the model, and the MANCOVA was run with and without BMI 

correction for comparison.  

A p-value below an alpha = 0.05 was considered to reject the null-hypothesis of the smoker 

status or age group factors not having an effect on the measured impedance change.  

However, alpha came down to 0.025 due to multiple testing from the impedance change with 

respect to both inspiration and expiration.  

In addition, for interaction terms and simple effects analysis, Bonferroni correction was 

considered. Thus it was adjusted by the number of simple effects within each factor. In order 

to compare different electrode positions with respect to detecting differences in impedance 

change due to Smoking Status and Age Groups, the p-values for the smoker status factor 

within each electrode position were compared against each other.  
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Multiphysics 

5.3 Study of Change in Lung Transfer Impedance due to Ventilation Using 

FIM technique 

5.4 Lung disease detection with FIM and Present work 

 

 

 

As the present study had been split into three phases (described in the Methods and Materials 

sections), the Discussion segment is also divided in such a way for convenience. At the end of 

this section an overall assessment of the pilot studies (Paper I, II, Submitted Paper IV) and the 

simulation study (Paper III) has been presented to describe how present work will be 

beneficial for lung disease detection. However, readers are humbly requested to consider that 

the discussions on Paper IV are subject to change as the paper has been submitted for 

publication.  
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5.1 Analysing Data for Thorax Mapping Using FIM----A Pilot Study 

This pilot study based on the Focused Impedance Measurement (FIM) technique with few 

subjects (a total of four) was analysed (Paper II) only to give a general idea on how the 

transfer impedance of the lungs change due to ventilation when it is measured using FIM. 

Because of low sample number, the opportunity to develop a solid conclusion was very 

narrow. Though some features were found that lead us to put emphasis on more investigation 

in the area of lung impedance (Paper III & Paper IV). Therefore the observations achieved in 

this pilot study helped in structuring further studies in the same area. Some on the key features 

and other conclusions drawn from Paper II are highlighted below. 

5.1.1 Higher Change in Impedance (%) at Anterior Plane 

From the pilot study (Paper II), it was seen that the maximum change in impedance (%) due 

to ventilation occurred at the anterior plane of the subject. This conclusion is made after 

analysing the data in this regard for all the subjects. The anterior plane of the subjects also 

possessed the second maximum change in impedance (%). 

It must be mentioned that the electrode array was always kept in position on the body between 

the measurements recorded at inspiration and expiration so that any measurement error caused 

by repositioning of the electrodes can be avoided. 

However, it was noticed that the edge of the thorax (the right most and the left most column at 

each plane) had larger values in comparison with the other columns, though the change in 

impedance (%) in the frontal plane still remained prominent than that of the back plane. A 

reason for higher values of impedance percentages in the anterior plane might be the location 

of heart or result from the greater depth of the lung tissue in the posterior plane. Variations in 

vital capacity for each subject were possibly also a cause in this regard. Subjects unable to 

follow the instruction of full expiration and full inspiration may have influenced the result too. 

5.1.2 Cardiac Contribution on Change in Impedance (%)   

It was found in Paper II that the average ratio between total impedance percentage change of 

the anterior plane and posterior plane is 2.1 i.e., on average the total impedance percentage 

changes at the frontal plane is twice as much as that of the back plane for each subject, which 

left an important dimension to look into in future studies. The probable reason for such higher 

values of impedance percentage change at the anterior plane might be the location of the heart. 
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The matrix column 2, 3, 4, 5 (Figure 3.1.4) at the frontal plane resembles the cardiac region of 

the human body and from the obtained changes in impedance (%) due to ventilation, it can be 

seen that the impedance percentage change in these focused zones varied significantly, 

especially when the anterior plane was under consideration. Thus the ratio also briefly tells on 

how the heart and solid ribs contribute to the impedance change of the lungs due to ventilation, 

though studies with larger number of subjects are required to establish this result.  

Besides, it was found from the pilot study that the impedance percentage change of the right 

side of the frontal plane of the human body is ~1.6 times that of the left side of the same plane. 

The same value came down to ~1 when the comparison of the right and left side of the back 

plane is considered. The possible reasons for such a difference might be the same as 

mentioned earlier, i.e., contribution of the heart at the frontal plane and existence of muscles 

at the back plane.  

5.1.3 Dependence on Anatomical Structure and other Physiological Properties  

Principally, the analysis in the pilot study (Paper II) was carried out to get an overview of 

localized impedance change across the thorax of the human body due to breathing employing 

6-electrode FIM. The ultimate target of such a study was to introduce the non-invasive FIM 

technique in detecting lung disease.  

It is based on the understanding that the change in impedance of diseased lungs during 

ventilation would be significantly different compared to that of a healthy one since air content 

will vary by the presence of water, blood, fluid, other substance or any other injury. 

Nevertheless, this idea will only be useful when the calibration is executed with a large 

number of normal lungs and a standard set of values are offered to compare with the diseased 

lungs of different categories.  

Furthermore, the changes in impedance at different regions at each plane (both front and back) 

are also dependent on anatomical structure of the lung as well as the body structure of the 

subjects, which led us to use a 6×6 matrix or 6×5 matrix. The change in impedance at the 

lower side (the bottom most row in each matrix) of the lungs of each plane varies abruptly in 

some cases. The likely reason could be the diaphragm of the lungs, which expands and 

shrinks due to ventilation in this region and contributes to the change in impedance (%). So 

lung impedance studies using FIM for different shapes of the thorax as well as different age 

groups are needed for an in-depth understanding (Paper IV). 
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It is also essential to understand how lung condition influenced on the change in impedance 

due to ventilation when using the FIM technique. As the smoking habit of the subjects and 

similar habits of the subjects influence lung condition, it is also essential to develop a model 

which would predict how the change in impedance interacts with such habits of the subject 

(submitted Paper IV).  

5.1.4 User Friendly Electrode Probe for Measurement 

In paper II, a spring loaded handheld electrode-probe was used to measure the lung 

impedance on the subjects. But due to the curved shape of the body and due to rigidity it was 

sometimes difficult to make contact with the body using the spring loaded electrode probe. So 

to develop a user friendly probe was a demand to extract more information from lung 

impedance measurements. To meet the demand a pillow like electrode probe was developed 

in order to place the electrodes on thorax in such a way so that the effect of cylindrical shape 

reduces. 

5.1.5 Negative Sensitivities and Electrode Configuration 

Because of thoracic movement during respiration, it is possible to obtain negative sensitivities 

when lung impedance changes are measured.   So in the pilot study, there were matrix 

positions where negative values were also found. N D Khambete et al in 2000 carried out a 

study by establishing a volume conductor model of the thoracic cavity and simulated 

movement artefacts by shifting the electrodes to a different location. A six-electrode 

configuration was used in this study and the measurements were suitably combined to reduce 

the movement artefacts. But negative values were not considered during the result analysis 

although these negative sensitivity zones paved the path to carry out more studies with FIM. 

Furthermore it prompted us to think about an accurate electrode configuration of FIM (like 4-

electrode FIM, 8-electrode FIM) for extended object like lungs of human body. However, 

negative sensitivity zones provide important information on physiological and anatomical 

features of lungs and this ultimately led us to take up the simulation study (Section 5.2 & 

Paper III) on FIM.   

5.2 A Simulation Study for Different Configuration of FIM with Comsol 

Multiphysics 

5.2.1 Sensitivity plots 
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There are noteworthy differences among the FIM electrode configurations. The sensitivity 

fields of FIM4, FIM8a, and FIM8b (Paper III) are symmetrical around the x- and y-axis, while 

FIM6 (used in Paper II) is clearly not symmetrical. The simulations with inhomogeneities 

(table 6 of Paper III) showed us that the impact is small, which can be explained by seeing the 

electrode and the inhomogeneity as a different shaped electrode. Figure 8 in Paper III gave an 

idea on how the sensitivity is changed if there are inhomogeneities. The plots also illustrate 

that in general the sensitivity is low when conductivity is low.  

Besides, we can compare different shapes of negative sensitivity regions for different 

configurations of FIM from the figure 4-7 in the Paper III. These plots, developed by the 

Finite Element Model (FEM) based Comsol Multiphysics (MPH) software programme would 

be beneficial in order to select suitable FIM configuration for any particular purpose without 

real life experiment as it is mentioned in Section 2. 

5.2.2 Numbers 

The results in table 4 of Paper III described that large differences would occur for different 

electrode configurations of FIM. If only one electrode radius is considered, 4 mm, NF 

(Negative Fraction) varies from 0.208 for FIM4 to 0.532 for FIM6. So the risk of errors 

caused by objects placed in a region with negative sensitivity is higher for FIM6 (used in 

Paper II) than for the other configurations. The SF (Sphere Fraction) in Paper III tells us that 

the contribution to the sphere is highest for the FIM4 configuration, though the SF still 

remains in the range of 0.100–0.262.  

The electrode size influences all numbers, but the sensitivity ratio numbers (SRMAX and 

SRSPHERE) are most affected. The smaller the electrodes are, the higher the sensitivity ratios 

are leaving us to think that large electrodes might be better if not other factors dictates use of 

small electrodes. The SF and NF were relatively little affected by electrode size for all models 

except FIM4. FIM4 has best values for SF and NF, but if constant electrode size is to be 

considered, then FIM4 might get less priority. 

The results in table 5 of Paper III narrated us that the contributions from the electrodes and the 

regions just below the electrodes are small even if the local sensitivities are very high. Even 

for high inhomogeneities in these regions (Table 6 of Paper III). The inhomogeneites were 

modelled as ellipsoids with conductivity that was either 100 times higher or lower than the 

conductivity of the surrounding material placed under the electrode as shown in Figure 2 of 
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Paper III. It can be said that where the resistivity of a region is increased, the current density 

will naturally decrease as long as the current has an alternative way to flow (as it has here), 

and thus reduce sensitivity according to equation (5) of Paper III. When looking at equation (6) 

of Paper III, we see that the regions contribution to measured impedance is not only given by 

sensitivity, but also by resistivity, and that is changing in the opposite direction, and thus 

trying to cancel out the effects of sensitivity change. More detail can be found in the 

Discussion section of Paper III in this regard.  

 

5.3 Study of Change in Lung Transfer Impedance due to Ventilation Using FIM 

technique 

5.3.1 Change in Impedance (%) due to Ventilation at Anterior and 

Posterior Plane 

From the Figures 3.1.1 and 3.1.2 of Paper IV, it was found that if we compare the anterior 

plane and posterior plane at 5 kHz and 50 kHz, the anterior plane produces the maximum 

amount of change in impedance (%) due to ventilation among a large number of subjects in 

this study. It supported the previous studies of Papers I and II. Contribution of the heart and 

bone structure of the ribcage could cause for higher impedance change (%) at the anterior 

plane, as mentioned in Paper II. However, the electrode probe was placed on the same place 

of a few subjects, for instance FRT, and transfer impedance of lungs was recorded using FIM 

technique to ensure reproducibility of the study. It must be noted too that the electrode array 

was always kept in position on the body between the measurements recorded at inspiration 

and expiration so that  any measurement error caused by repositioning of the electrodes can  

be avoided. 

5.3.2 Negative Sensitive Zones of Thorax among the Subjects at 5 kHz and 

50 kHz 

Between the two frequencies used in Submitted Paper IV, a higher numbers of negatively 

sensitive zones due to ventilation of the thorax lie at 50 kHz (Figure 3.1.3 of Paper IV). 

However, most subjects gave negative sensitivities at 5 kHz in the thorax location FRB (Front 

Right Bottom). Negative sensitive zone is found when unity current density vector set up by 

the excitation signal from the current carrying electrodes and the reciprocal unity current 
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density vector have opposite direction in an area of interest. Since FRB is a location where the 

bone structure of the ribcage is located (also mentioned in 5.3.1), this might influence the 

change in impedance (%).  

In addition, as diaphragm of the lungs and other organs such as heart, arteries, vain move due 

to breathing process, they might influence on the change of impedance due to ventilation and 

cause negative values of impedance change (%) in the studies. 

During the experiment the volunteers were asked to stand still and requested not to move their 

other body parts. It was possible to follow the instruction as adult volunteers were chosen for 

study but for the babies specially the new born babies this would be a challenge to overcome 

for further studies.  

5.3.3 The Effect of Smoking Status, Age Group and Frequency 

It is seen from Table 3.3. of the submitted Paper IV that the Back Left Top (BLT) became an 

influential position of the thorax for measuring differences in ventilation-derived impedance 

due to smoking and age. Whenever the factor Age Group and Smoking Status were taken 

account for developing a model, it showed significant p-value.  But among the 20 subjects 

only a few had their maximum change in impedance in terms of inspiration and expiration at 

the posterior position BLT when measured at 5 kHz and 50 kHz (Figure 3.1.1 of submitted 

Paper IV) using the 8-electrode FIM technique. 

From Figure 3.3 of the submitted Paper IV, we can conclude that there is a disparity between 

smokers and non-smokers in changes in impedance (%) with respect to inspiration and 

expiration at 5 kHz (though some outliers are also present) when measured with the FIM 

technique. It demands a study where data will be collected from a larger number of samples.  

At 50 kHz, in the change in impedance (%) with respect to inspiration and expiration, this 

difference between the smokers and the non-smoker was not present in the Submitted paper 

IV.  

During the study of lung impedance with tetra polar impedance measurement system (TPIM), 

it was obtained that at 5 kHz, beta-dispersion can be observed and at 50 kHz the measured 

tissues show their distinctive characteristic behaviour [Martinsen et al 2014], at 5 kHz 

membranes have poor conductivity while at 50 kHz current lines can pass through the cell 

membranes.  
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However for the smokers it can be expected that tars and other chemicals will deposit on sac 

walls and cell linings of the alveoli of their lungs. That results physiological changes in the 

lung inner surface [Scott 2004]. Due to physiological change of the lungs, smokers could have 

higher change in impedance at 5 kHz. Deposition of tar at extra cellular level in the inner 

lungs of the smokers will also reduce the effective capacitance and the dispersion frequency 

will be different.  

Therefore the values at 5 and 50 kHz should show less discrepancy for smokers compared to 

that for non-smokers. On the other hand smokers should have less change than that of the 

non-smokers at the frequency where both conduct current in good manner (such as 50 kHz). 

This can be found in Figure 3.1.1 (a) and Figure 3.3 of submitted paper IV. 

The influence of Age Group on impedance change (%) due to ventilation can be found from 

the Table 3.2.2 of submitted Paper II with and without BMI correction. This factor showed an 

influence on the outcome when change of impedance (%) is considered with respect to 

expiration when measured at 5 kHz and 50 kHz.  

It is also true for inspiration, though based on the p-values, we found that it is not the same as 

Age Group influenced change in impedance with respect to expiration at 5 kHz.  

However, it must be noted that as we implemented the conservative Bonferroni correction to 

the hypothesis test, only the influence from Age Group with respect to expiration was taken 

account of when it was statistically significant; even though the uncorrected p-values were 

also low due to inspiration (0.06 and 0.03 for with and without BMI correction at 5 kHz 

respectively).  

Considering these results and the point that Age Group had a statistically significant effect 

both with respect to inspiration and expiration for the BLT position, we found that age has an 

influence on the ventilation-derived impedance signal in general but further studies are 

needed to consider it as a dependant variable of lung impedance change (%) due to ventilation 

using FIM where data will be collected from higher number  of subjects. 

5.3.4 Comparison of Change in Impedance (%) with Respect to 

Inspiration and Expiration 

In Papers I and II, changes in impedance (%) were determined only with respect to expiration, 

whereas in the submitted Paper IV change in impedance (%) with respect to inspiration and 
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expiration were considered in order to run the study with broader approach. If the air volume 

that enters the lung during inspiration is high, a minimal change in impedance with respect to 

inspiration will be found, according to eq. 3.11, though it depends on lung capacity and 

physical condition of the lungs too.  

Moreover, as lung condition can be influenced by the smoking habit and age (WHO report, 

2008), it was assumed that these two factors influence the change in impedance (%) of lungs 

with respect to inspiration. Therefore, change in lung transfer impedance (%) with respect to 

inspiration can be considered in a similar study with FIM. 

 

5.4 Lung disease detection with FIM and Present work 

As the ultimate aim for the present work is to use FIM to detect lung disease, the pilot studies 

and the simulation studies presented in this thesis will guide the future research work in 

several ways despite having a few shortcomings as referred in the section 4.3 of Paper III.  

In this simulation study it was found that even if we have good focus in a particular region, 

the contribution to the total transfer impedance is partly originating from outside the focus 

region, even for 4-electrode FIM, which is found to be the superior among all configurations.  

Even though the studies with FIM were carried out as the other lung function monitoring 

techniques such as the widely used X-ray has radiation hazards, and MRI and PET have high 

installation costs. Commercial patent is also another challenge for the developing countries to 

deal with for manufacturing low cost lung detection tool.     

On the other hand, in order to achieve the sub-goals mentioned in Section 2 the pilot studies 

and simulation study were executed. Several targets such as comparison of change in 

impedance of lungs due to ventilation at anterior and posterior plane of thorax using FIM was 

achieved by the third pilot study (Submitted Paper IV).  

The results, where it was found that higher changes occurred at anterior plane, which supports 

the previous pilot study (Paper II), give a validation on FIM measurement for lung impedance 

change. 
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Determination of cardiac contribution on pulmonary impedance change due to ventilation 

(Paper II), gives us a brief idea on how heart located on the upper portion on the thorax can 

influence the result when measured using 6-electrode FIM (sub-goal 3 of section 2).  

However, comparison between sum of change in impedance due to ventilation of column two 

and three of body mapping matrix and column four and five body mapping matrix also 

enhanced the knowledge in this regard. 

In the present work, subjects were chosen from the age range 18-30 years. Women were also 

kept aside in these pilot studies. Fat tissues present on the anterior plane among the females 

possibly would influence the change in impedance due to ventilation when measured using 

FIM.  

Nevertheless, measurement on women would be a large area of research for further studies. 

So to establish FIM as diagnosis tool, it is required to carry out experiments among babies, 

infants and aged subjects as well as women.   
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6. Conclusions 

 

 

 

The following conclusions can be made after carrying out the pilot studies and simulation 

study on Focused Impedance Measurement (FIM) technique. They are as follows: 

 

On Pilot Study (Paper II)  

 The pilot study enhanced the fundamental understandings of lung impedance change 

due to ventilation with relatively simple and low-cost 6-electrode Focused Impedance 

Measurement (FIM) technique.  

 It also supported the findings of Paper I where it was found that maximum change in 

impedance occurs at the anterior plane of the subject. However, the focused zone was 

‘‘Diamond’’ in shape in Paper I. 

 It directed us to explore more on various aspects and features of lung impedance 

change using FIM with different electrode configurations. 
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On Simulation Study (Paper III) 

 The simulation study with Comsol Multiphysics (MPH) showed that MPH is a very 

useful FEM tool to investigate volume impedance measurement problems, especially 

when we consider models where there are large ratios between small and large objects 

and their inhomogeneities.  

 Simulations allow us to explore the electrode configuration space and visualize and 

quantize alternative configurations. The simulations showed us that of the four 

configurations analysed here, the FIM4 configuration is superior in terms of SF and 

NF but when it is necessary to keep electrode size constant FIM4 should be given less 

priority. In addition 6-electrode FIM system shows asymmetry in the focused zone, 

which led us to choose a different configuration for further studies.  

 The simulations also showed that the sensitivities in and beneath the electrodes were 

surprisingly high, but even so, the inhomogeneity beneath the electrodes did not affect 

the measurements as much as one might expect. 

 

On Statistical Analysis (Paper IV) 

 At the anterior plane of the human body, the maximum change in impedance (%) in 

terms of inspiration and expiration occurs at FLB (Front Left Bottom) when measured 

using 5kHz. At 50 kHz, the maximum change in impedance (%) in terms of inspiration 

occurs at FRB (Front Right Bottom). 

 At the posterior plane of the human body, the maximum change in impedance (%) in 

terms of inspiration occurs at BRT (Back Right Top) at 5 kHz. However, maximum 

numbers of subjects have their maximum change in impedance (%) in terms of 

expiration at BRB (Back Right Bottom) when measured using 50 kHz at the posterior 

plane. 

 In comparison of the anterior plane to the posterior plane at 5 kHz and 50 kHz, the 

anterior plane gives the maximum amount of change in impedance (%) due to 

ventilation among the highest number of subjects. 

 Between two frequencies used in the present work, higher numbers of negative 

sensitive zones due to ventilation of thorax lie mostly at 50 kHz. 
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 Change in impedance (%) of lungs in terms of inspiration and expiration is affected by 

smoking status of the subjects and different age groups of the subjects. 

 Thorax position BLT (Back Left Top) turned out be significant among the eight 

specified positions. It is influenced by smoking status and the age factor of the 

subjects according to this analytical study. 

 

Therefore, it can be said that the sub-goals listed in Section 2 of this thesis, two objectives 

which include the effect of smoking habit and ages of the subjects on lung transfer 

impedance, are partly acquired from the statistical linear model. To determine the cardiac 

contribution in change in lung transfer impedance (sub-goal 2) and the suitable position to 

measure lung impedance changes in terms of inspiration and expiration, have been 

partially achieved as well. However, to establish age and smoking habit as variables of 

respiration-based impedance change more investigations are required with larger sample 

size and higher age span.  

On the other hand 5 among 9 have been achieved such as comparison of change of lung 

transfer impedance (%) due to ventilation at anterior plane and posterior plane, developing 

a user friendly hand-held electric probe, comparing different configurations of FIM, to 

produce models providing current density and potentials at all points when applying FIM 

technique and to calculate transfer impedance using volume impedance density and 

sensitivity equations using Finite Element-based Multiphysics software programme.  

 

 

  



Conclusions 
 

56 
 

 

 

 

 



Future Directions 
 

57 
 

 

 

 

 

 

 

7. Future Directions 

 

 

 

The study of the present work on Focused Impedance Measurement (FIM) technique has left 

the research in a place with the following new ideas on which future studies can be executed.  

 

To Collect Data from a Larger Sample for Better Result 

Since the present work has been carried out among a small number of subjects (20), there is 

always an opportunity to have a larger sample which would minimize the errors in the result. 

Moreover, from Papers II and IV, it was found that lung problems depend on personal habits 

such as smoking behaviour and different age group.  

So a large sample size of each category can have more in detail information related to transfer 

lung impedance change (in %) due to ventilation. 

 

To Compare the Result with the Existing Methods  

To establish FIM as pathological tool, it is important to compare the change in impedance (%) 

due to ventilation between FIM and other existing techniques such as EIT, X-ray, Ventiscan 
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etc. So with a large sample a comparison work can be performed between FIM and other 

existing techniques of lung disease detection.  

 

To Determine the Cardiac Contribution of Change in Impedance (%) of Lungs 

As it was seen from Paper II that change in impedance (%) due to ventilation varies from the 

anterior plane to the posterior plane of the subjects due to the location of the heart in the 

frontal plane, a further study can be carried out with FIM to determine the cardiac 

contribution in lung transfer impedance. 

 

To Improve the User-friendly Handheld Probe  

In the pilot study of Paper II, a spring loaded box-type hand-held electrode was used to 

measure the impedance change of the lungs due to ventilation. But at the curves of the human 

thorax, this handheld electrode probe experienced challenges due to its higher rigidity.  

This problem was minimised by developing a pillow like electrode probe with more flexibility 

during probe placement on the thorax. However, to establish FIM for the mass it is necessary 

to have a very user-friendly electrode probe with which a wide range of thorax shapes can be 

measured with fewer hazards.  This could also be an area of interest for future work on FIM.  

 

To Compare Change in Impedance (%) with Larger PU Electrode Spacing   

In the statistical study in Paper IV, the spacing between the voltage Pick Up (PU) electrodes 

was 2.8 cm. In the future, a study can be performed to look at how the change in impedance 

varies with the spacing between the PU electrodes in the electrode configuration. Although 

simulation software enables us to see the features for larger spacing between PU electrodes, 

comparing them with real life results would be another dimension of lung impedance study. 
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8. Appendix 
 

 

Chapter Contents  

8.1 General Definitions  and Definitions Related to Impedance & Admittance 

Model 

8.2 Electrical Impedance of lungs using Focused Impedance Measurement 

(FIM) technique during inspiration and expiration 

8.3 Table for Change in impedance  (%) with respect to Ventilation Using 8-

electrode FIM 

 

8.1 General Definitions  and Definitions Related to Impedance & 
Admittance Model 

Table for General definitions and definitions related to impedance & admittance 

model 

General Definitions Definitions Related to 
Impedance  Model (Z) 

Definitions Related to 
Admittance  Model (Y) Physical Property Symbol Unit 

Current I [A]                           ܼ = ௎ூ               
                          ܻ = ூ௎ = ܼିଵ     [S] Potential U [V] 

Resistivity   
   ܼ = ܴ + ݆ܺ ܻ = ܩ +  Time t [s] ܤ݆

Frequency f [Hz] ܺ = െ ܤ               ܥ1߱ =  [Hz]   ܥ߱
Resistance R                                       |ܼ| = ඥܴଶ + ܺଶ 

 
        |ܻ| = ξܩଶ +   ଶ) Reactance Xܤ

Capacitance C F   ܼ = |ܼ|݁௜ఝ  ܻ = |ܻ|݁௜ఝ  Conductance G [S] 
Susceptance B [S] 

   ߮ = ݊ܽݐܿݎܽ ௑ோ  ߮ = ݊ܽݐܿݎܽ ஻ீ Imaginary Unit j ݆ = ξെ1 

  
Table 8.1.1 
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8.2 Electrical Impedance of lungs using Focused Impedance Measurement 
(FIM) technique during inspiration and expiration 

8.2.1 Electrical Impedance of lungs of the Non-Smokers aged between 23-26 
years  

Non-Smoker, Age 23-26years 

Subject 1 Weight 
92 kg 

Height 
170,2 cm 

Frequency = 5 kHz Frequency = 50 kHz 
Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 70,65 46,4 25,3 25,95 
FRB 29,9 31,6 18,1 10,65 
FLT 11,15 15,9 22,8 25,65 
FLB 82,95 42,2 46,2 15,2 
BRT 24 9,9 16,1 16,45 
BRB 14,1 14,3 14,55 12,75 
BLT 11,7 13,9 14,1 17,1 
BLB 16,05 14,4 11,8 10,65 

Subject 2 Weight 
115 kg 

Height 
177,8 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 42,45 37,25 20,9 16,2 
FRB 46,1 28,7 22,65 16,95 
FLT 38,15 15,05 16,75 18,05 
FLB 130 108 17,2 26,55 
BRT 59,2 42,25 10,85 9,3 
BRB 30,55 13,75 12,8 14,4 
BLT 18,45 9,25 12,7 12,2 
BLB 13,4 25 15,7 16,45 

Subject 3 Weight 
85 kg 

Height 
165,1 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 49,05 44,15 55,75 17,15 
FRB 101,65 115,8 54,7 27,1 
FLT 48,25 42,9 35 23,75 
FLB 41,95 27,5 13,45 28,4 
BRT 16,6 16,7 8,55 16,25 
BRB 18,05 13,9 11,55 12,75 
BLT 34,8 24,45 10,6 12,1 
BLB 31,3 35,5 12,6 7,35 

Subject 4 Weight 
78 kg 

Height 
172,7 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 19,8 11,35 20,7 16,95 
FRB 29,25 32,6 11,1 13,45 
FLT 67,65 50,3 17,05 16,25 
FLB 70,7 22,3 16 42,85 
BRT 96,25 67,1 26,35 20,95 
BRB 38,15 18,7 11,85 8,9 
BLT 33,25 20,75 10 10,35 
BLB 25,25 42,4 11 11,5 

Subject 5 Weight 
56 kg 

Height 
165,1 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 90,8 51,45 87,25 46,4 
FRB 44,85 49,8 141,9 127,85 
FLT 72,4 46,7 45,35 38,2 
FLB 55,35 115 55,75 53,2 
BRT 53,5 51,8 45,25 30,1 
BRB 100 46,05 54,15 30,7 
BLT 78,95 49,8 37,5 37,4 
BLB 46,05 37,95 64,15 57,55 

 
Table 8.2.1 
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8.2.2 Electrical Impedance of lungs of the Non-Smokers aged between 27-30 
years  

Non-Smoker, Age 27-30years 

Subject 
1 

Weight 
95 kg 

Height 
172,72 cm 

Frequency = 5 kHz Frequency = 50 kHz 
Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 113,85 103,15 57,65 19,25 
FRB 31,2 16,85 119,8 72,55 
FLT 72,1 35,6 38,55 37,1 
FLB 111,15 87,35 71,6 71,5 
BRT 38,7 57,2 65,15 16,3 
BRB 73,05 72,8 86,5 26,75 
BLT 46,1 60,65 28 28,65 
BLB 38,35 34,05 14,45 12,6 

Subject 
2 

Weight 
95 kg 

Height 
166,37 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 37,75 53,9 22,8 26,6 
FRB 35,9 25,05 23,9 21,05 
FLT 23,35 15,15 23,7 18,05 
FLB 19,2 13 21 17,2 
BRT 10,65 10,45 18,15 18,3 
BRB 22,9 19,8 18,5 18,4 
BLT 11,7 13,45 16,95 17,6 
BLB 20,25 21,05 17,15 16,45 

Subject 
3 

Weight 
64 kg 

Height 
165 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 12,3 48,3 12,9 15,35 
FRB 66,85 65,1 63,6 36,5 
FLT 97 55,4 66,15 27,75 
FLB 126,85 100,15 115,8 69,15 
BRT 92,05 47,1 21,65 21 
BRB 29,95 57,35 32,85 19,85 
BLT 31,95 41,85 26,6 16,1 
BLB 78,45 40,5 67,55 62,6 

Subject 
4 

Weight 
84 kg 

Height 
177,8 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 26,5 26,25 20 19,25 
FRB 22,95 31,95 17,1 82,55 
FLT 46,05 54,9 25,85 28,1 
FLB 44,6 29,7 31,5 28,35 
BRT 13,9 17,2 12,55 11,35 
BRB 27,75 16,7 21,8 13,75 
BLT 15,75 28,8 15,4 15,8 
BLB 39,2 17,85 21,75 19,35 

Subject 
5 

Weight 
92 kg 

Height 
172,7 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 46,55 48,55 27,15 21,7 
FRB 11,9 12,4 41 17,4 
FLT 14,3 14,05 42,25 24,2 
FLB 112,25 65,6 19,3 15,55 
BRT 9,05 13,3 11,6 7,75 
BRB 11,35 10,65 20,3 10,15 
BLT 9,25 8,05 16,75 11,1 
BLB 12,55 14,35 64,85 12,25 

 Table 8.2.2 
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8.2.3 Electrical Impedance of lungs of the Smokers aged between 23-26 years  

Smoker, Age 23-26y 

Subject 1 Weight 
60,5 kg 

Height 
163,8 cm 

Frequency = 5 kHz Frequency = 50 kHz 
Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 92,8 70,5 17,15 15,45 

FRB 112,5 51,35 17,05 37,15 

FLT 95,95 11,45 11,7 10,6 

FLB 89,75 71,9 21,55 8,8 

BRT 16,15 14,9 13,75 7,65 

BRB 35,5 13,95 7,85 9,15 

BLT 24,95 10,1 8,7 7,45 

BLB 40,95 33,6 8,9 9,95 

Subject 2 Weight 
70,3 kg 

Height 
172,72 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 157 60,5 26,3 16,7 

FRB 48,6 56,95 76 117,35 

FLT 140,9 112 15,5 15,2 

FLB 76,95 51,45 44,55 37,05 

BRT 20,85 21,75 6,5 5,65 

BRB 57,05 58,2 13,05 7,3 

BLT 34,6 15,4 8,1 8,05 

BLB 24,25 10,9 8,95 8,25 

Subject 3 Weight 
78 kg 

Height 
165,1 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 21,4 18,7 20,55 12,55 

FRB 26,3 23,25 20,5 18,25 

FLT 15,75 16,1 24,35 22,05 

FLB 34,9 26,8 25,35 42,7 

BRT 44 11,6 9,15 16,95 

BRB 15,8 9,85 10,7 10,2 

BLT 12,6 8,5 19,05 10,9 

BLB 62,7 41,1 11 13,35 

Subject 4 Weight 
59 kg 

Height 
167,64 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 79,85 69,2 30,15 19,25 

FRB 25,3 20,55 46,85 17,95 

FLT 52,7 45,95 5,65 4,15 

FLB 78,55 62,15 50,7 5,35 

BRT 37 10,55 8,3 7,75 

BRB 22,65 2,5 9 9,4 

BLT 45,9 31,9 5,9 6,05 

BLB 17,85 16,05 25,9 26,95 

Subject 5 Weight 
57 kg 

Height 
166,4 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 43,25 50,3 111,5 69,5 

FRB 101,6 46 106,55 61,3 

FLT 51,1 44,6 34,25 38,1 

FLB 58,3 40,8 47,5 21,35 

BRT 61,35 15,2 37,25 51,65 

BRB 85 36 26,6 25,7 

BLT 115,8 103,1 56,9 51,4 

BLB 55,4 47,85 34,6 22,45 

 Table 8.2.3 
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8.2.4 Electrical Impedance of lungs of the Smokers aged between 27-30 years  

 

Smoker, Age 27-30 years 

Subject 1 Weight 
56,4 kg 

Height 
175,26 cm 

Frequency = 5 kHz Frequency = 50 kHz 
Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 164,65 156,1 46,5 31,1 
FRB 25,4 30,06 64,35 49,5 
FLT 69,45 29,91 73,85 64,1 
FLB 180,05 149,34 73 60,95 
BRT 71,5 43,96 10,2 7,45 
BRB 33,25 43,06 14,65 6,95 
BLT 29 23,79 11,1 6,3 
BLB 49,05 25,29 40,55 41,25 

Subject 2 Weight 
58 kg 

Height 
177,8 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 104,65 121 128,5 103,7 
FRB 283,5 299,5 28,9 18,45 
FLT 323 277,5 398 403,5 
FLB 104 82,1 14,85 17,85 
BRT 137,2 35,35 32,9 15,65 
BRB 87 56,3 21,4 22,1 
BLT 44,5 32,6 18,85 16,75 
BLB 147,5 121,5 84,2 85,35 

Subject 3 Weight 
68,2 kg 

Height 
160,02 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 29,2 17,2 14,4 15,95 
FRB 40,9 32,65 43,7 15 
FLT 10,6 10,5 17 15,4 
FLB 90,5 39,45 57,35 47,3 
BRT 29,65 16,9 11 13,4 
BRB 10,6 8,05 8,25 11,7 
BLT 12,65 10,85 10,65 11,2 
BLB 21,4 15,4 9,85 9,35 

Subject 4 Weight 
72,1 kg 

Height 
170,2 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 63,7 46,75 8,75 11,55 
FRB 68,9 29,1 11,15 10,75 
FLT 14,3 29,3 8,85 11,5 
FLB 11,95 15,25 40,45 20,55 
BRT 9,65 9,55 10,3 7,2 
BRB 23,55 17,2 6,6 4,45 
BLT 19,65 12,15 6,4 7,7 
BLB 18,4 11,7 8,8 8,3 

Subject 5 Weight 
76 kg 

Height 
167,6 cm 

Electrode 
Position Zin (ohms) Zout (ohms) Zin (ohms) Zout (ohms) 

FRT 104 73 132,25 111,35 
FRB 366 155,9 77,2 46,9 
FLT 150,9 143 62,6 57,95 
FLB 107 91,85 257 195,5 
BRT 43,1 32,5 8,75 6,9 
BRB 63,2 43,35 35 37,7 
BLT 42,4 25,05 12,25 10,15 
BLB 18,95 12,75 15,4 11,75 

Table 8.2.4 



Appendix 
 

64 
 

8.3 Tables for Change of Impedance (%) due to Ventilation Using 8-
electrode FIM 
8.3.1: Change of Impedance (%) with Respect to Inspiration 
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Subjects No of 
Obs. BMI 

change of Impedance (%) in Electrode Position (Inspiration) 

FRT FRB FLT FLB BRT BRB BLT BLB 

Age 23-26y, Non-
Smoker 

1,0 31,8 34,3 -5,7 -42,6 49,1 58,8 -1,4 -18,8 10,3 
2,0 36,3 12,2 37,7 60,6 16,9 28,6 55,0 49,9 -86,6 
3,0 31,2 10,0 -13,9 11,1 34,4 -0,6 23,0 29,7 -13,4 
4,0 26,0 42,7 -11,5 25,6 68,5 30,3 51,0 37,6 -67,9 
5,0 20,0 43,3 -11,0 35,5 -107,8 3,2 54,0 36,9 17,6 

Age 27-30y, Non-
Smoker 

1,0 32,1 9,4 46,0 50,6 21,4 -47,8 0,3 -31,6 11,2 
2,0 34,5 -42,8 30,2 35,1 32,3 1,9 13,5 -15,0 -4,0 
3,0 23,5 -292,7 2,6 42,9 21,0 48,8 -91,5 -31,0 48,4 
4,0 26,5 0,9 -39,2 -19,2 33,4 -23,7 39,8 -82,9 54,5 
5,0 30,7 -4,3 -4,2 1,7 41,6 -47,0 6,2 13,0 -14,3 

 
Age 23-26y, Smoker 

1,0 22,1 24,0 54,4 88,1 19,9 7,7 60,7 59,5 17,9 
2,0 23,8 61,5 -17,2 20,5 33,1 -4,3 -2,0 55,5 55,1 
3,0 28,7 12,6 11,6 -2,2 23,2 73,6 37,7 32,5 34,4 
4,0 20,1 13,3 18,8 12,8 20,9 71,5 89,0 30,5 10,1 
5,0 20,7 -16,3 54,7 12,7 30,0 75,2 57,6 11,0 13,6 

Age 27-30y, Smoker 

1,0 32,2 5,2 -18,3 56,9 17,1 38,5 -29,5 18,0 48,4 
2,0 18,3 -15,6 -5,6 14,1 21,1 74,2 35,3 26,7 17,6 
3,0 26,6 41,1 20,2 0,9 56,4 43,0 24,1 14,2 28,0 
4,0 24,9 26,6 57,8 -104,9 -27,6 1,0 27,0 38,2 36,4 
5,0 27,2 29,8 57,4 5,2 14,2 24,6 31,4 40,9 32,7 
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Age 23-26y, Non-
Smoker 

1,0 31,8 -2,6 41,2 -12,5 67,1 -2,2 12,4 -21,3 9,7 
2,0 36,3 18,6 31,5 -5,7 -20,2 9,6 -11,0 3,5 -6,4 
3,0 31,2 69,2 50,5 32,1 -111,2 -90,1 -10,4 -14,2 41,7 
4,0 26,0 18,1 -21,2 4,7 -167,8 20,5 24,9 -3,5 -4,5 
5,0 20,0 46,8 9,9 15,8 4,6 33,5 43,3 0,3 10,3 

Age 27-30y, Non-
Smoker 

1,0 32,1 66,6 39,4 3,8 0,1 75,0 69,1 -2,3 12,8 
2,0 34,5 -16,7 11,9 23,8 18,1 -0,8 0,5 -3,8 4,1 
3,0 23,5 -19,0 42,6 58,0 40,3 3,0 39,6 39,5 7,3 
4,0 26,5 3,8 -382,7 -8,7 10,0 9,6 36,9 -2,6 11,0 
5,0 30,7 20,1 57,6 42,7 19,4 33,2 50,0 33,7 81,1 

Age23-26y, Smoker 

1,0 22,1 9,9 -117,9 9,4 59,2 44,4 -16,6 14,4 -11,8 
2,0 23,8 36,5 -54,4 1,9 16,8 13,1 44,1 0,6 7,8 
3,0 28,7 38,9 11,0 9,4 -68,4 -85,2 4,7 42,8 -21,4 
4,0 20,1 36,2 61,7 26,5 89,4 6,6 -4,4 -2,5 -4,1 
5,0 20,7 37,7 42,5 -11,2 55,1 -38,7 3,4 9,7 35,1 

Age27-30y, Smoker 

1,0 32,2 33,1 23,1 13,2 16,5 27,0 52,6 43,2 -1,7 
2,0 18,3 19,3 36,2 -1,4 -20,2 52,4 -3,3 11,1 -1,4 
3,0 26,6 -10,8 65,7 9,4 17,5 -21,8 -41,8 -5,2 5,1 
4,0 24,9 -32,0 3,6 -29,9 49,2 30,1 32,6 -20,3 5,7 
5,0 27,2 15,8 39,2 7,4 23,9 21,1 -7,7 17,1 23,7 

Table 8.3.1 
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8.3.2: Change of Impedance (%) with Respect to Expiration  
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Subjects No of 
Obs. BMI 

change of Impedance (%) in Electrode Position (Expiration) 

FRT FRB FLT FLB BRT BRB BLT BLB 

Age 23-26y, Non-
Smoker 

1,0 31,8 52,3 -5,4 -29,9 96,6 142,4 -1,4 -15,8 11,5 
2,0 36,3 14,0 60,6 153,5 20,4 40,1 122,2 99,5 -46,4 
3,0 31,2 11,1 -12,2 12,5 52,5 -0,6 29,9 42,3 -11,8 
4,0 26,0 74,4 -10,3 34,5 217,0 43,4 104,0 60,2 -40,4 
5,0 20,0 76,5 -9,9 55,0 -51,9 3,3 117,2 58,5 21,3 

Age 27-30y, Non-
Smoker 

1,0 32,1 10,4 85,2 102,5 27,2 -32,3 0,3 -24,0 12,6 
2,0 34,5 -30,0 43,3 54,1 47,7 1,9 15,7 -13,0 -3,8 
3,0 23,5 -74,5 2,7 75,1 26,7 95,4 -47,8 -23,7 93,7 
4,0 26,5 1,0 -28,2 -16,1 50,2 -19,2 66,2 -45,3 119,6 
5,0 30,7 -4,1 -4,0 1,8 71,1 -32,0 6,6 14,9 -12,5 

Age 23-26y, Smoker 

1,0 22,1 31,6 119,1 738,0 24,8 8,4 154,5 147,0 21,9 
2,0 23,8 159,5 -14,7 25,8 49,6 -4,1 -2,0 124,7 122,5 
3,0 28,7 14,4 13,1 -2,2 30,2 279,3 60,4 48,2 52,6 
4,0 20,1 15,4 23,1 14,7 26,4 250,7 806,0 43,9 11,2 
5,0 20,7 -14,0 120,9 14,6 42,9 303,6 136,1 12,3 15,8 

Age 27-30y, Smoker 

1,0 32,2 5,5 -15,5 132,2 20,6 62,7 -22,8 21,9 94,0 
2,0 18,3 -13,5 -5,3 16,4 26,7 288,1 54,5 36,5 21,4 
3,0 26,6 69,8 25,3 1,0 129,4 75,4 31,7 16,6 39,0 
4,0 24,9 36,3 136,8 -51,2 -21,6 1,0 36,9 61,7 57,3 
5,0 27,2 42,5 134,8 5,5 16,5 32,6 45,8 69,3 48,6 

Fr
eq

ue
nc

y 
=5

0K
H

z 

Age 23-26y, Non-
Smoker 

1,0 31,8 -2,5 70,0 -11,1 203,9 -2,1 14,1 -17,5 10,8 
2,0 36,3 18,1 53,5 -5,1 -61,5 9,4 -12,5 2,9 -7,0 
3,0 31,2 225,1 101,8 47,4 -52,6 -47,4 -9,4 -12,4 71,4 
4,0 26,0 22,1 -17,5 4,9 -62,7 25,8 33,1 -3,4 -4,3 
5,0 20,0 88,0 11,0 18,7 4,8 50,3 76,4 0,3 11,5 

Age 27-30y, Non-
Smoker 

1,0 32,1 199,5 65,1 3,9 0,1 299,7 223,4 -2,3 14,7 
2,0 34,5 -14,3 13,5 31,3 22,1 -0,8 0,5 -3,7 4,3 
3,0 23,5 -16,0 74,2 138,4 67,5 3,1 65,5 65,2 7,9 
4,0 26,5 3,9 -79,3 -8,0 11,1 10,6 58,5 -2,5 12,4 
5,0 30,7 25,1 135,6 74,6 24,1 49,7 100,0 50,9 429,4 

Age 23-26y, Smoker 

1,0 22,1 11,0 -54,1 10,4 144,9 79,7 -14,2 16,8 -10,6 
2,0 23,8 57,5 -35,2 2,0 20,2 15,0 78,8 0,6 8,5 
3,0 28,7 63,7 12,3 10,4 -40,6 -46,0 4,9 74,8 -17,6 
4,0 20,1 56,6 161,0 36,1 847,7 7,1 -4,3 -2,5 -3,9 
5,0 20,7 60,4 73,8 -10,1 122,5 -27,9 3,5 10,7 54,1 

Age 27-30y, Smoker 

1,0 32,2 49,5 30,0 15,2 19,8 36,9 110,8 76,2 -1,7 
2,0 18,3 23,9 56,6 -1,4 -16,8 110,2 -3,2 12,5 -1,3 
3,0 26,6 -9,7 191,3 10,4 21,2 -17,9 -29,5 -4,9 5,3 
4,0 24,9 -24,2 3,7 -23,0 96,8 43,1 48,3 -16,9 6,0 
5,0 27,2 18,8 64,6 8,0 31,5 26,8 -7,2 20,7 31,1 

Table 8.3.2 
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Abstract: Focused Impedance Method (FIM) provides an opportunity for localized impedance 
measurement down to reasonable depths within the body using surface electrodes, and has a 
potential application in localized lung ventilation study. This however needs assessment of 
normal values for healthy individuals. In this study, localized ventilation maps in terms of 
electrical impedance in a matrix formation around the thorax, both from the front and the back, 
were obtained from two normal male subjects using a modified configuration of FIM. For this 
the focused impedance values at full inspiration and full expiration were measured and the 
percentage difference with respect to the latter was used. Some of the measured values would 
have artefacts due to movements of the heart and the diaphragm in the relevant anatomical 
positions which needs to be considered with due care in any interpretation.  

1. Introduction 
Monitoring of physiological events by impedance has become a subject matter of great interest for the 
last few decades. Dielectric properties of lungs tissue change as a function of air content [1], therefore 
lungs ventilation makes a potential area of application of electrical impedance techniques. Electrical 
Impedance Tomography (EIT) has been applied in the study of lungs ventilation successfully to 
explore lungs physiology as well as to monitor and diagnose lungs disorders and injury [2][3]. A 
relatively new development in the field of bio-impedance measurement is the Focused Impedance 
Method (FIM) [4][5], developed at the authors’ laboratory at Dhaka University, in which two pairs of 
current drive electrodes perpendicular to each other over a common zone at the center are used to 
apply alternating currents of constant amplitude separately. Two potential measuring electrodes with a 
smaller separation, placed at the centre at an angle of 450 to either of the current drive directions, are 
used to measure the potentials resulting from each of the current drives. The sum of the two measured 
potentials has a dominant contribution from the central region, approximately a square with the 
potential electrodes at the diagonal points. Therefore this gives localized sensitivity at the central 
region which has been termed as the focused region. Because of a 3D sensitivity, FIM electrodes, 
placed on the skin surface, may be used to monitor changes at a depth, and has been successful in 
measuring gastric emptying [5]. FIM applied to a localized region of lung showed a linear relationship 
to change in expired volume of air in a subject [6]. It needs to be seen if FIM could be used to detect 
and quantify changes in localised lung ventilation, for potential use in detection and diagnosis of 
localized lung ventilation disorders. In this preliminary study, the FIM impedance change between 
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maximum inspiration and maximum expiration at different localized segments of the thorax of some 
healthy human subjects was measured using the 6 electrode FIM system to get a ventilation mapping 
matrix, with the above aim. 

2. Methods and Measurements 
Here the FIM has been applied with some modifications in order to facilitate measurement and 
standardization as shown in figure 1. A 10kHz alternating current of constant amplitude (approx. 
0.5mA) was passed, in sequence, through two orthogonal electrode drive pairs A-A’ and B-B’ as 
shown, by switching the pairs manually. These electrodes were placed such that they make the largest 
possible approximate square on the chest. Using a hand-held probe, two potential measuring 
electrodes, 10cm apart, were then placed vertically at different places, such as at 1&2, 3&4, etc. on 
the chest. For each placement, the two potentials developed due to the two orthogonal current drives 
were recorded and summed, which essentially gave a value proportional to the focused impedance 
within the respective zones F1, F2, etc., since the current amplitudes were constant. Measurements 
were taken with the subject taking a deep breath (maximum inspiration) and then with the subject 
breathing out as much as possible (maximum expiration). The difference was expressed as a 
percentage of the value at maximum expiration, which is described as the %change of focused 
impedance in this work. Each measurement was repeated once and averaged to minimise the effect of 
changing blood volume in the heart. This %change in impedance is essentially a ventilation parameter 
of the lungs in the respective focused region, down to a certain depth. The procedure was then 
repeated with the potential electrode pair placed at different points on the chest in a predefined matrix. 
Similar measurements were carried out on the back as well. The breast nipple level (indicated by n-n) 
was taken as an anatomical reference for placement of potential electrodes. Measurements were made 
with the subject standing upright. The total volume of air exhaled by the subject in each of these 
procedures is a function of the lungs volume and is known as the Vital Capacity (VC), which was 
measured using a bellows type spirometer and recorded. Measurements were carried out on two 
normal healthy young male subjects having no complaints regarding respiration. 

3. Results and observations 
The %change of focused impedance between maximum inspiration and maximum expiration at 
localized segments of the thorax were calculated for each subject to get the ventilation mapping 
matrix, from the front and from the back, and are presented in figures 2 and 3 respectively. These are 
superimposed on the outline of a human thorax giving the outline of the lungs and the heart as well. 
The positions of the current electrodes are shown as grey circles. The matrix positions obtained from 
the back were flipped horizontally to give the same right and left orientation. Some relevant subject 

A
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B

B’

nn

1

2

3

4

5

F1 F2

F3

Figure 1. Electrode configuration and 
focused zones for ventilation mapping 
of human thorax. Current electrode 
pairs: A-A’, B-B’. Potential electrodes 
pairs: 1-2, 3-4, 4-5, etc. giving focused 
zones F1, F2, F3, etc. respectively. 
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information including their vital capacity (VC) are given in the respective figure captions. Two 
extreme left and right regions on ventilation mapping matrix represent the impedance changes on 
lateral curved parts of the thorax. The back side offered measurements on a few extra matrices at the 
top, and are also shown. The positions of the nipples of the breasts are shown as black dots.  

4. Discussions 
The present work was taken up to have an overall idea of localized impedance change throughout the 
thorax due to lung ventilation using the newly developed 6-electrode FIM system. It is expected that 
the change in air content will be reduced if part of the lung is filled with water, blood of injury, or any 

Figure 3. Ventilation mapping of another subject from front (a) and back (b). Subject age: 
20yrs, height: 1.68m, weight: 56 kg, Vital Capacity: 4.1 litres, non-smoker. 

  6.2 9.9 14.8 3.1 

    10        10.7  10.2    4.6

    6.5    8.1    9.8 5.1 

R
ig

ht

Le
ft

a) measured from front 

  9.2  5.6  3.9 4.6 

    3.5         4  4.3    5.2

    7.8    3.8    5.5 7 

2.5             3.5

R
ig

ht

Le
ft

b) measured from back 

Figure 2. Ventilation mapping of a subject from front (a) and back (b). Matrices from back 
has been arranged to match the view from the front. Subject age: 26 yrs, height: 1.71m, 

weight: 52 kg, Vital Capacity: 4.8 litres, non-smoker. 
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other substance. In such cases, the impedance change measured in that region would be significantly 
reduced and this can possibly be detected by FIM. However to predict such distinction between 
localized zones of a healthy lung and a diseased lung a standard set of values are needed, and this 
should be based on measurements taken on a large number of healthy normal subjects. 
   The changes in air contents during ventilation in different regions of the lungs are different 
depending on the anatomical structure of the lungs. The expected change of impedance due to change 
in air content is visible from the maps in figures 2 and 3. The values in the corresponding matrices 
along the level of the nipple in the frontal measurement are similar for both the subjects; however for 
matrices above and below, there appears to be some difference. For subject 1 values of corresponding 
zones from the front and from the back are similar for nipple level, but are different at other levels. On 
the other hand, values from the front and back for subject 2 are different even at nipple level. Further 
work is required to resolve, or understand the cause for such discrepancies. The differences in VC 
between the two subjects need to be noted. Besides, there could be experimental error due to variation 
in the effort a person exerts in full inspiration and full expiration and posture of the subject. The inter-
electrode separation plays a big role in the measurement [7] and has to be considered to set up a 
standard. The contribution of perfused blood should also be taken into account, however, by 
averaging the readings over a few seconds with breath-hold, this effect may be eliminated.    
   FIM looks at a limited region of the lungs, however, there is some spread in sensitivity including 
negative values beyond the focused zone [7] which may become significant in certain situations, and 
should be considered to get an improved result and standardization. Again, if the sensitive zone 
includes a boundary of the lungs, particularly on the lower side, it may cause a large error since the 
changes will be due to several factors including the movement of the diaphragm, besides lung 
ventilation. Therefore these areas need to be avoided. Similarly the cardiac region is best avoided 
because of the movement of the heart between the breathing cycles. Measurements from the sides and 
back may be useful for measurements around the heart. Again for female subjects, frontal 
measurements of lungs may be difficult because of fatty tissues, and measurement from the back may 
be desired.  
   Although EIT appears to offer pixel level resolution, 2D EIT images are cluttered by objects in 3D, 
and have limited accuracy. Therefore, for applications such as studies of lungs, the much simpler FIM 
may offer an acceptable solution for clinical applications, and therefore it seems justified to take up 
further study in this direction. 
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Abstract 
Focused impedance measurement (FIM) is a technique where 
impedance can be measured with the optimum level of 
localization without much increase in complexity of measuring 
instrument. The electrodes are applied on the skin surface while 
the organs inside also contribute to the measurement, as the body 
is a volume conductor. In a healthy and disease free lung region, 
the air enters at breathe-in, increases the impedance of the lung, 
and impedance reduces during breathe-out. In contrast, for a 
diseased lung, where part of the lungs is filled with water or some 
fluid, air will not enter into this zone reducing impedance change 
between inspiration and expiration. With this idea, the current 
work had been executed to have general view of localized 
impedance change throughout thorax using 6-electrode FIM. This 
generated a matrix mapping from both the front and from the back 
of the thorax, which showed how impedance change due to 
ventilation varies from frontal plane to back plane of human 
bodies. 
 
Keywords: Focused impedance measurements, FIM, lung 
impedance, bioimpedance 
 
 
Introduction 
 
Focused impedance measurement (FIM) [1, 2] is a com-
paratively new technique that had been developed at the 
Department of Biomedical Physics and Technology 
(BMPT) of the University of Dhaka for measuring 
impedance. It has three versions having 8, 6 and 4 
electrodes in special configurations. In a 6-elctrode-FIM, 
current is driven through two concentric pairs of orthogonal 
electrodes while another pair of electrodes with a smaller 
separation is placed at 45° to either of the current drive 
directions at the central zone for potential measurement. 
The resultant potential measurement possesses has a 
dominant influence from the central zone, which is nearly a 
square with the potential electrodes at the diagonal points. 
Thus it localizes the sensitivity at the central area, which 
has been termed the “focused zone.”  

FIM with its 3D sensitivity had been effective in the 
study of measuring gastric emptying [2]. A linear 
relationship to change in expired volume of air was found 
in a previous study when implemented to a focused zone of 
the lung in a subject [3]. In principle, the dielectric 
properties of lung tissue varies greatly as a result of air 
ventilation, between expiration and inspiration [4], which 

ultimately offers an area of opportunity to implement 
electrical impedance measurement systems for further 
study, such as for lung disease detection. However, to apply 
FIM for lung impedance study and disorder detection, it is 
essential to verify whether FIM can be applied to measure 
the changes of lung impedance due to ventilation in 
localized regions. In the current work the 6-electrode FIM 
had been applied to some healthy human subjects to 
measure the change in impedance in between full 
inspiration and full expiration. 

 
Materials and methods 

 

Instrumentation for FIM developed earlier at BMPT was 
used for the present study. A simplified block diagram is 
shown in Figure 1 [2]. A sinusoidal signal, 10 kHz, is split 
up into two isolated current drives (AA’ and BB’). This was 
done through appropriate voltage to current converters and 
isolating transformers. The circle in Figure 1 represents an 
object under test, which could be a human body. 
Amplitudes of each of the current drives were adjusted to 
have two equal perpendicular driving currents. The phases 
of the current drives were adjusted through the electrode 
connections such that the output signal at u and v of both 
the orthogonal drives appear in phase. Thus a single 
measurement of potential across u and v gives the sum of 
the combined transfer impedance in both the orthogonal 
directions. Subsequent amplification and signal 
conditioning circuitry gives a dc signal that is proportional 
to the combined impedance. This dc output voltage was 
measured using a digital voltmeter. 

 

The present work was performed at BMPT and volunteers 
were mainly students of this department, with no known 
acute or chronic lungs disease and with no previous 
complaint of respiratory problems.  All of them were non-
smokers and their ages ranged from 17 to 26 years. 

 

The electrode arrangement was indicated in Figure 1, where 
electrode pairs AA’ and BB’ were the current drives while 
the potential was measured across the pair uv.  In the 
present experiment this electrode configuration was used to 
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map the lungs both from the front and from the back of the 
thorax.  In this electrode configuration the focused region is 
defined by a square with uv as the diagonal, shown shaded 
in Figure 2.  

To map consecutive focused zones on the thorax we 
placed the electrodes in a ‘diamond’ configuration, as 
shown in Figure 2, since the focused zone is tilted at 45° to 
the sides of the larger square formed by the current drive 
electrodes. As shown, the sides of the larger square were 4 
inches ( 10cm) while the diagonal of the smaller square 
was 2 inches ( 5cm), corresponding to sides of about 1.4 
inches ( 3.5cm).  The measurement required a common 
reference electrode, which was placed at the center (small 
black circle). The colors red and black are used for the two 
current drive pairs of electrodes in Figure 2 to indicate the 
relative phases (red indicating positive polarity at an 
instant). Figure 3 shows a picture of the hand held electrode 
probe used. Wet cotton wool is inserted into cylindrical 
 
 

 
Fig. 2: The schematic diagram of ‘diamond’ type electrode 
configuration for the 6-electrode FIM system, the shaded square 
region bounded by red color represents the focused zone. 

recesses touching the metallic electrode inside an insulated 
cylindrical structure. Each electrode has a spring-loaded 
stem allowing perpendicular movement in order to ensure 
good connections at curved body surfaces. 
 

 
Fig. 3: The handheld electrode probe, seen from the electrode 
side. Wet cotton wool is inserted into recesses touching the 
metallic electrode inside. The stems of the electrodes are spring-
loaded to ensure good contact at curved body surfaces. 

 

As mentioned above, the side of the focused region is about 
1.4 inches ( 3.5cm). Therefore, to obtain the lung 
impedance map at successive square regions in a matrix as 
shown in Figure 4, we moved the electrode by the same 
distance horizontally and vertically, as indicated in Figure 
5. To facilitate measurement on human subjects guiding 
points were marked out on the front and back of the thorax 
using a paper template as shown in the photographs of 
Figure 6. The cell numbers shown in the last two 
photographs were superimposed in computer later; these 
were not marked on the human subjects. Thus a standard 
design was developed so that the impedance changes at 
individual matrix locations can be compared among 
subjects of similar body size. Figure 4 also shows the 

To   meter  
or computer 

u 

v 

A 

B 

A’ 

B’ 
Body 

Voltage to Current Converter with 
amplitude adjustment and electrical 

isolation 

Amplifier, filter, rectifier and DC signal conditioner 

Voltage to Current Converter with 
amplitude adjustment and electrical 

isolation 

Sinusoidal 
Oscillator 

Fig. 1: A block diagram of the 6-electrode FIM instrumentation 
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reference matrix numbers that were used in the analyses 
presented later. 
 

 
Fig. 4: The desired body-mapping matrix with values of 
impedance. The measurements are performed both from the 
front and the back. 

 

 
Fig. 5: Movement of hand held electrode probe to obtain the 
desired body mapping matrix. 

 

Measurements were made with the subject standing 
straight. The output voltage of the FIM system, which was 
measured using a digital multi-meter, is proportional to the 
impedance of the focused region defined before. For each 
position of the electrode, a reading of the focused 
impedance was taken with the subject breathing in fully 
(forced maximum inspiration) and another reading with the 
subject breathing out as much as possible (forced maximum 
expiration). The difference was expressed as a percentage 
of the value at forced maximum expiration at that location. 
Measurements were taken from both the front and the back 

according to the matrix described before. Figure 7 shows 
typical measurement procedures from the front and from 
the back. The spring-loaded electrode stem allowed a good 
contact even at curved regions. The total volume of air 
between forced maximum inspiration and forced maximum 
expiration is known as forced vital capacity (FVC), which 
was measured using a bellows type spirometer. 
 
Results 

 
The results of the study on four subjects are presented in 
Table 1. The left major column shows the localized 
percentage change in impedance in each matrix location 
measured from the front of the thorax while the right major 
column shows the same as measured from the back. The 
right-left orientation of the measured values from the back 
was rearranged in the matrices to match that from the front, 
to enable a simple visual comparison. The age, height, 
weight, and forced vital capacity of the subjects are all 
indicated in the tables. 

The values at each matrix element are assumed to 
correspond to localized ventilation within that region. It 
needs to be appreciated that the measured impedance values 
have the major contribution from the soft tissue underlying 
the skin, which does not change with ventilation. The depth 
sensitivity of the FIM decreases sharply with depth [5, 6], 
therefore, a small contribution comes from the ventilating 
lungs. Subtraction of the two values of impedance on 
inspiration and on expiration accentuated the ventilation, 
which was the justification of these attempts at 
measurement of ventilation. 

Table 2 shows the comparison between the impedance 
percentages changes at frontal plane and backplane of the 
human bodies. However, the measured values near the 
edges were expected to be erroneous, because of two 
reasons: i) large curvatures at the sides making it difficult, 
even impossible for all electrodes of the probe to touch the 
skin properly, and ii) the movement of the edges of the 
expanding and contracting lungs falling within the 
measured regions, contributing to the measurement 
significantly. Therefore, the central matrix elements 
numbered 22 to 45 were considered for the present analysis. 

Table 3 was developed to represent the comparison of 
impedance percentage change between the right side and 
the left side of each plane. In this particular comparison 
column 2 and 3 of each plane were considered the right side 
of the body whereas column 4 and 5 were considered the 

Fig. 6: Technique for marking out identification of points on thorax for the desired matrix for measurement. The cell 
numbers shown were superimposed later on the photographs. 
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left side of the body leaving out 1 and 6 column at each 
plane due to it erroneousness, as mentioned earlier. The 
second row in each plane is deemed ‘’top’’ in Table 3. 
Similarly, the third and fourth rows of each plane are 
referred to as “mid” and “low,” respectively in Table 3, for 
understanding the comparison at a glance.  
 

 
Fig. 7: Measurement of localized ventilation using the hand held 
probe with spring loaded electrodes. 

 
Table 1: Percentage change in localized impedance in each 
individual matrix, as measured from the front and from back. 
The right-left orientation are arranged to be the same on both 
views, for easy visual comparison. 

 
 
After summing up the impedance percentage change of 
column 2 and 3 for each level [top (22, 23), mid (32, 33), 
and low (42, 43)], the values for right (Rt) in the Table 3 
were obtained. A similar process is followed for achieving 
left (Lt) values in Table 3. In the former case matrix 
elements 24 and 25 are used in summing up impedance 
percentage change at top level of each plane. For mid-level, 
the impedance percentage change of matrix elements 34 
and 35 are summed up and for the low level, matrix 
elements 44 and 45 are taken into account for each plane. 

The ratio between Rt and Lt for each level of each plane 
was calculated. The mean value of these ratios for frontal 
and backplane gives an idea how impedance varies from 
right to left side of each plane.  
 

Table 2: Comparison of summed values from front and back for 
12 matrix elements, 22 to 45. 

 
 

Table 3: Comparison of summed values between right and left 
sides, for three horizontal levels for 12 matrix elements, 22 to 45 
of front plane and back plane 

 
 

Discussion 
 
Primarily, this study was carried out to have a generalized 
view of localized impedance change across the thorax of 
human body due to breathing using 6-electrode FIM 
system. The ultimate objective was to employ the non-
invasive FIM to detect lung disease based on the idea that 
the change in impedance measurement of diseased lung 
during breathe in and breathe out would be significantly 
less compared to that of a healthy one since air content will 
be reduced by the presence of water, blood, fluid, other 
substance or any other injury. This indication can only be 
functional and influential when the study on the large 
number of normal lungs takes place and a standard set of 
values are available to compare with the diseased lungs of 
different category. Furthermore the changes in impedance 
at different region at each plane (both front and back) are 
also dependent on anatomical structure of the lung as well 
as the body structure of the subjects, which led to use at 
times 6×6 matrix or 6×5 matrix.  

It is noticeable from the Table 1 that the changes in 
impedance are greater when it is measured from the anterior 
plane than that of the posterior plane.  For the  in 
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Table 1, the maximum change occurred in the frontal plane 
(14.1%) with a second maximum change of 13.9%, whereas 
the maximum change in impedance in the back plane for 
the same subject was 7.6% with a second maximum of 
6.1%.  

For the next subject (  in Table 1), the 
maximum change of impedance was 20.4% and a second 
maximum change of impedance is 19.1% for frontal plane, 
whereas when measured from the back the maximum and 
the second maximum change in impedance shrunk to 14.1% 
and 10.7%, respectively. 

Analyzing  in Table 1, it was found that the 
maximum change of impedance was 30.6% and the second 
maximum change of impedance was 26.2% for the frontal 
plane. When it was measured from the back, the maximum 
and the second maximum change in impedance were 15.4% 
and 13.2%, respectively. 

 in Table 1 also supports us in this conclusion, 
as the maximum change of impedance in this subject was 
8.6% with a second maximum change of impedance of 
7.2% for the frontal plane. When it was measured from the 
back, the maximum and the second maximum change in 
impedance became 6.8% and 6.1%, respectively. This may 
be because the sensitivity of the focused zone decreases 
with depth. 

Moreover, the right most and the left most column at 
each plane usually possess larger values compared to the 
other column. Here also the change in impedance (%) in 
frontal plane remained higher than that of the back plane. 
One of the reasons for this could be due to the presence of 
solid bones right under these focused zones. Differences in 
vital capacity for each subject should be taken into account 
too. The human error of in regards to the instructions of full 
expiration and full inspiration may also cause to this result. 

There are some cases when negative values do occur – 
though not considered in this study to avoid complication – 
and are needed to develop advanced FIM applications. The 
change in impedance at lower side (the bottom most row in 
each matrix) of the lungs of each plane varies abruptly in 
some cases such as the frontal and backplane of  
and back plan of  in Table 1. The possible reason 
could be the diaphragm of the lungs, which expands and 
shrinks due to ventilation in this region and contributes to 
the impedance change to great extent. 

In addition, it is seen from Table 2 that the average 
ratio between total impedance percentage change of the 
frontal plane and back plane is 2.1 (Table 2) i.e., on average 
the total impedance percentage changes at the frontal plane 
is twice as much as that of the backplane for each subject. 
This leaves another field to explore with more detail 
approach.  

The potential reason for such higher values of 
impedance percentage change at the front plane might be 
the existence of heart at the frontal plane. The matrix 
column 2, 3, 4, 5 at frontal plane resembles cardiac region 
of human body and from Table 1 it is seen that the 
impedance percentage change in these focused zones varied 

significantly, especially when measured from the front, as 
mentioned earlier. So the ratio value from Table 2 also 
insinuates how heart and solid ribs contribute to the 
impedance change, though experiments with larger number 
of subjects are required to establish this result. 

From Table 3, it is found that the impedance percentage 
change of the right side of frontal plane of human body is 
~1.6 times that of left side of the same plane. The same 
value shrinks to ~1 when the comparison of right and left 
side of back plane is considered. The possible reason for 
such difference might be the same as mentioned earlier, i.e., 
contribution of heart at frontal plane and existence of 
muscle at back plane.   

Nevertheless, it becomes more critical for the female 
subjects in terms of impedance change measurement due to 
the presence of fat tissue on anterior plane of thorax 
providing the same result found when the change in 
impedance was measured using the dice or diamond shape 
localized zone [7].  

 
Conclusion 

 
This present work has enhanced our understanding on lung 
impedance change due to ventilation with relatively simple 
and low-cost instrumental FIM setup. Consequently, 
advance study in this direction should explore different 
aspects and features.   
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Abstract
Focused impedance measurements (FIM) are used in several fields, and
address the problem of measuring the volume impedance of an object
within a volume conductor. Several electrode configurations are possible,
and these have different properties. Sensitivity fields of four configurations
have been investigated. We present one new development of an existing FIM
configuration, and we made finite element models of the configurations to
analyse and compare them both graphically and numerically. The models
developed have a variable-sized mesh that allows us to build complex models
that fit easily in computer memory. We found that one configuration in
particular, FIM4, was superior to the others in most aspects. We also analysed
the effects of very high sensitivities in and under the electrodes. We found
that even if the sensitivity is very high under the electrodes, the effects of
inhomogeneities were not as high as one might expect.

Keywords: focused impedance measurement, finite element model, simulation,
three Rs

(Some figures may appear in colour only in the online journal)

1. Introduction

Electrical impedance in volume conductors is measured in many ways. For all but the simplest
cases, it is difficult to know to what degree different sub-volumes in the conductor contribute
to the measured result, i.e. the sensitivity field distribution. This means that in many volume
impedance measurements, the understanding of the complete measurement problem is too
low. An extension to this problem is the cases where we want to measure the impedance in a
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specific volume with as uniform sensitivity in our target volume and as little influence from
other volumes as possible.

Focused impedance measurement (FIM) using four, six, and eight electrodes has been
presented in Rabbani et al (1999) and Rabbani and Karal (2008). These methods are focusing
the sensitivity to a region roughly shaped as a half-sphere below a flat surface.

The FIM techniques may be applied for a wide range of applications such as cancer
diagnosis, bladder emptying, and lung ventilation (Rabbani and Kadir 2011). FIM can be
useful since it enables us to target the measurement in tissues or organs of interest. In the
study of measuring gastric emptying, FIM along with its 3D sensitivity was found effective
(Rabbani et al 1999). A linear relationship to change in expired volume of air was found in
a previous study when implemented to a focused zone of the lung in a subject (Rabbani and
Kadir 2011). In principle, the dielectric properties of lung tissue varies greatly as a result of
air ventilation, between expiration and inspiration (Nopp et al 1993), which ultimately offers
an area of opportunity to implement electrical impedance measurement systems for further
study with FIM (Kadir et al 2010). One such pilot study showed that to have a thorax mapping
in terms of transfer impedance an appropriate model is required before FIM technique is
implemented (Ferdous et al 2013). One of the appealing properties of the technique is that it
is possible to make simple and low-cost equipment based on FIM. A FIM based instrument is
typically based on a low-end microcontroller and a handful of analogue components. This is in
contrast to more advanced systems like EIT, x-ray, MRI, and ultrasound. Since the equipment
is low-cost, it is especially suited for use in poor countries.

Brown et al, and Islam et al have addressed the problem of analysing the sensitivity
field distribution using Matlab simulations based on Geselowitz’ lead field theory (Geselowitz
1971). These analyses were done for points in a mesh with 1mm distance in the x, y, and
z-directions. The models consisted of 343 000 and 8000 000 points, respectively. The models
can be used to calculate sensitivity in each point. Our approach is also based on the Geselowitz
theory, but we realize it in COMSOL Multiphysics (MPH) finite element models (FEM)
that gives us some extra possibilities such as a variable mesh that can be made finer, i.e. the
distance between nodes is smallest around small geometrical objects, around regions of special
interest. For instance, in our models the highly interesting electrodes are made as 372 tetrahedra
instead of only a point in the previous work. In addition to this, the Matlab models only gave
sensitivity while our models have current density vectors and potentials available for all points.
Expressions for sensitivity (equation (5)) and volume impedance density (equation (6)) are
added to enable us to graphically display sensitivities and to enable us to calculate transfer
impedance. The previous work is limited to semi-infinite homogenous volumes while the
presented FEM models do not have this limitation. In addition, the FEM model allows us
to model almost any geometrical shape. The larger feature-set of the FEM-tool enables us
to extract more interesting information out of the model. Furthermore, we present some
new metrics that should be taken into account when evaluating a given measurement
configuration.

The software models were used to analyse the different FIM set-ups in silico. Using
the models described in the paper we are able to measure with the different electrode
configurations and determine how they are influencing the measurement results. The sensitivity
field distribution can be crucial when measuring in biological tissue or other sample of non-
homogenous nature.

Different configurations of electrodes have been used to measure impedance. FIM is a
special set-up for impedance measurement where two or four electrodes are current carrying
(CC), and two or four electrodes are used for voltage pick-up (PU). Some configurations have
two steps where the electrode usage is changed. In these cases, the configuration requires
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(a) (b) (c) (d)

Figure 1. Top view of electrode configurations. Dimensions are not to scale. (a) FIM4,
(b) FIM6, (c) FIM8a, (d) FIM8b.

simple post-processing. The benefit of FIM is that simple circuitry allows us to measure in the
region of interest (Rabbani et al 1999).

However, one of the major problems of such impedance studies is that unless real
life experiments have been executed it is difficult to avail information beforehand, which
is obviously time-consuming and challenging to rectify if necessary. To solve these problems,
the experiments can be done in silico using FEM software for modelling. Another benefit of
in silico experiments is replacement of animal experiments in accordance with the three Rs of
animal welfare (Russel and Burch 1959).

We are presenting a new tool for selecting the optimal electrode configuration for a given
FIM problem. Examples of such problems are the thoracic mapping where the use of a FEM-
tool could aid in choosing the best FIM configuration, and to improve understanding of the
measurement results.

2. Method

2.1. Model descriptions

All models are 50 cm wide × 50 cm long × 25 cm high. The height is set to half the width since
previous work (Brown et al 2000, Islam et al 2010) have shown that sensitivity is decreasing
rapidly when moving away from the electrode plane. The electrodes are placed on top of the
models. Electrode radius is varied according to column 2 in table 4. The electrode height is
equal to electrode radius. In addition to the electrode itself, a half-sphere is made under the
electrode. The half-sphere has the same electrical properties as the bulk material, and is used
to (a) force the FEM tool to make the mesh finer in these regions, and (b) to define a region
for volume integration. The radius of this half-sphere is varied from the same radius as the
electrode and up to 10 mm in 2 mm steps. The inner electrodes for all models form a square
with 4 cm sides. For FIM6, FIM8a, and FIM8b, the CC electrodes form a square with 12 cm
sides. Configurations are shown in figure 1. A sphere is placed just underneath the surface
for the same reasons as for the half-spheres. The sphere has the same electrical properties as
the bulk material. The sphere radius is 1/3 of the spacing between the inner electrodes, i.e.
1.33 cm, and is touching the top surface of the model. The works presented in Brown et al
(2000) and Islam et al (2010) suggest that this is a depth where sensitivity might be high.

To simulate the effect of an inhomogeneous material under an electrode, two ellipsoids
were placed under one CC-electrode in the FIM8a-model. One ellipsoid was placed in the
region with positive sensitivity, and the other in the region with negative sensitivity. The regions
of positive and negative sensitivity were determined in the previous simulations. The ellipsoid
has radius identical to the radius of the electrode in x-direction, and y-direction, and radius
identical to half the electrode radius in the z-direction, which is shown in figure 2.
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Figure 2. Placement of ellipsoids beneath one electrode. The one marked A is in the
region of negative sensitivity, while the one marked B is in the region of positive
sensitivity.

Figure 3. Surface mesh illustrating variable mesh structure.

The meshes were generated with settings that gave approximately 75 000 tetrahedral
elements.

Figure 3 shows how the mesh is getting finer around the region of interest (the electrodes).
For simplicity, only the surface meshes are shown.

The materials properties are shown in table 1.
The current flows from the electrode designated by the first letter through the model to the

electrode designated by the second letter. Letters, where the first letter identifies the positive
terminal and the second letter identifies the negative terminal, also identifies voltage pick-up
electrodes.

For all set-ups, we are may say that we are making several measurements of the same
quantity. In an ideal setting, each measurement would give the same value, and a summation
of two measurement results would give the double of the real value, so to get the real value, we
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Table 1. Material properties.

Material Conductivity (sigma) (S m−1) Description

Bulk 1 The bulk of the model
Electrode 100 Electrode material
Low conductivity 0.01 Inhomogeneity below electrode
High conductivity 100 Inhomogeneity below electrode

would have to calculate the average of the two values. Here, we follow the same logic; we
do several transfer impedance measurements and take the average. In particular, what we
do is to calculate the sensitivities for the different measurements and then average these.
These calculations are all done within MPH. This method is in contrast to the work by Islam
et al where results were added together (Islam et al 2010). Adding the results would enable
comparison, but it would not let us use the result when calculating expected transfer impedance
as we also do. The validity of our method has been verified by comparing FIM-simulations to
phantom measurements (Abir et al 2013). Since all set-ups give different results, we may also
argue that all measurements should be normalized, but we did not do this since we wanted to
estimate final impedance.

2.1.1. FIM4. Four electrodes in a square. As described in Rabbani and Karal (2008). Electrode
placement is as shown in figure 1(a).

The procedure:

(1) Measure transfer impedance using AC as CC, and BD as PU.
(2) Measure transfer impedance using AB as CC, and CD as PU.
(3) Calculate the average Z (transfer impedance).

2.1.2. FIM6. Six electrodes as described in (Rabbani et al 1999). Two independent current
sources AB and AC. One PU, pq. Electrode placement is as shown in figure 1(b).

2.1.3. FIM8a. This is a set-up where two 4-electrode measurements are done, and the results
averaged. For each of the two 4-electrode set-ups, the electrodes are placed in a row. The two
set-ups are 90◦ on each other. Electrode placement is as shown in figure 1(c).

The procedure:

(1) Measure transfer impedance using AB as CC, and pq as PU.
(2) Measure transfer impedance using CD as CC, and rs as PU.
(3) Calculate the average Z (transfer impedance).

2.1.4. FIM8b. FIM 8b is an evolvement of FIM6 and FIM8a. Two sets of independent CC-
electrodes 90◦ on each other. Two sets of PU-electrodes rotated 45◦. Current is delivered
simultaneously in the two CC-pairs, and PU is done in two rounds. Electrode placement is as
shown in figure 1(d).

The procedure:

(1) Measure transfer impedance using AC and CD as CC simultaneously, and pq as PU.
(2) Measure transfer impedance using AC and DC as CC simultaneously, and rs as PU.
(3) Calculate the average Z (transfer impedance).
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2.1.5. Simulation set-up. Simulations are done in COMSOL MPH version 4.3. A set
of partially differential equations is needed to define how the FEM-tool are doing its
calculations. In the cases where an appropriate pre-defined equation set is not defined, the
generic equations (1) through (4) can be used. For the case of COMSOL MPH, there exist
arrange of pre-defined equation sets that models several physical systems such as heat flow,
electric currents, magnetic fields, acoustics, fluid flow, etc. For our models, we have used a
predefined set called Electric Currents physics interface (COMSOL 2013) which contains the
equations (1) through (4).

The interior of the materials are handled by

∇ · J = Qj (1)

J = (σ + jωε0εr)E + Je (2)

E = −∇V (3)

and the external boundaries by

n · J = 0. (4)

The simulations are done for DC only, which means that ω = 0 in equation (2).
The symbols in equations (1) through (4) means:
∇· is the divergence of a vector field.
J is electric current density.
E is electric field intensity.
Qj is electric charge.
σ is electric conductance.
j is the imaginary unit.
ω is frequency in radians per second.
ε0 and εr are vacuum permittivity and relative permittivity, respectively.
Je is external current density.
∇V is the gradient of the potential.
For a complete explanation please see the MPH reference manual (COMSOL 2013).

For further information on FEM for electromagnetic problems, there are excellent text books
available (Humphries 1997).

2.2. Extracted numbers

Several numbers are extracted from the model simulations.

2.2.1. Fractions. The negative fraction (NF) tells us how much volumes with negative
sensitivity contribute to the measured transfer impedance. This is a number between 0 and
1, and should ideally be 0. The next number is called sphere fraction (SF) and tells us how
much the sphere just below the model surface contributes to the measured impedance. SF is a
number between 0 and 1 for a configuration with NF = 0 and should ideally be 1 if we want
to focus our measurement on the sphere. If the NF is non-zero, the number might be higher
than 1.

To calculate NF and SF, we first define volume impedance density (z) for each point in
the model. This is simply sensitivity multiplied by the resistivity as shown in (6). Sensitivity
is given in equation (5). If we integrate z for all points in the volume, we end up with the
transfer impedance. If we integrate over a smaller volume, VSUB, then the contribution from
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Table 2. Sensitivity variables.

Variable definition Description

SRMAX = max(|S|)
SAVERAGE

Ratio between maximum |S| for the whole model and average S for the
whole model. Electrodes are not included.

SRSPHERE = SAVERAGE−SPHERE
SAVERAGE

Ratio between average S for the sphere and average S for the
whole model. Electrodes are not included.

VSUB to the total transfer impedance is the result. MPH has mechanisms to allow us to select
such smaller volumes based on geometry or any available numerical property of a given point.
This functionality allows us to investigate regions of special interest

S =
−→
JCC.

−→
JPU

ICCIPU

[
1

m4

]
(5)

z = ρS

[
�

m3

]
(6)

where
ρ is the resistivity of the material.
S is sensitivity.−→
JCC is the current density originating from simulation where current is sent into the model

through the CC electrodes.−→
JPU is the current density originating from simulation where current is sent into the model

through the PU electrodes, i.e. the reciprocal current.
ICC is the measurement current used in the model.
IPU is the reciprocal measurement current used in the model.
Both ICC and IPU is set to 1A to simplify calculations. Then the NF is calculated using

NF =
∣∣� zNEG dV

∣∣�
z dV

(7)

where

zNEG =
{

if z � 0 : z
if z > 0 : 0

. (8)

And SF is calculated using

SF =
�

SPHERE z dV�
z dV

(9)

2.2.2. Depth of negative sensitivity. To quantify how deep the region where S is negative is,
the parameter negative sensitivity depth is defined as

NSD = Depth of negative S

Distance between inner electrodes
(10)

and was found by probing an isosurface plot of S = 0.

2.2.3. Sensitivity ratios. Two ratios of sensitivities are defined in table 2. SRMAX defines how
large the sensitivity ratios are. A very high number indicates regions with high sensitivity that
could potentially cause problems. The SRSPHERE say how high the sensitivity is in the sphere
where we want sensitivity to be high is. A high number means that the focus on the sphere is
high.
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Table 3. Impedance contribution definitions.

Variable definition Description

ZEL−ABCD = �
ELECTRODES ABCD z dV [�] Contribution from electrodes A, B, C and D

to final measured impedance
ZHSP−ABCD = �

HALFSPHERES ABCD z dV [�] Contribution from half-sphere below electrodes
A, B, C and D to final measured impedance

ZEL−pq[rs] = �
ELECTRODES ABCD z dV [�] Contribution from electrodes p, q, r and s

to final measured impedance
ZHSP−pq[rs] = �

HALFSPHERES ABCD z dV [�] Contribution from half-sphere below electrodes
p, q, r and s to final measured impedance

2.2.4. Contribution from electrode regions. The fine simulation mesh in the electrode regions
allowed us to have a closer look at the contribution to final impedance form these regions.
Four electrode related contributions are defined in table 3.

2.2.5. Inhomogeneities. An extra set of simulations was done to the FIM8 a-model to
investigate the effect of inhomogenities in the region below the electrodes. A base simulation
was done with no inhomogeneities, and a number of combinations of low and high
conductivities in the two regions were simulated. The percentage change in total averaged
transfer impedance impedance was found.

3. Results

3.1. Sensitivity plots

Sensitivity plots from the simulations are given in figures 4–8.

3.1.1. Comparison of configurations. Figures 4 through 7 show plots of sensitivity for the
different configurations. There are four plots for each configuration. Plot (a) shows the interface
between the zone of negative and positive sensitivity. The plot is created by plotting a sensitivity
isosurface with S = 0. For (b), (c) and (d) in all figures the plot range is from −150 000

[
m−4

]
(dark blue) to 150 000

[
m−4

]
(dark red) via 0 (light grey), with the exception of the FIM4-plots

(figure 4) where the range is ±350 000
[
m−4

]
due to lower and higher sensitivities. For plot

(b), the inner rings in the electrodes are the electrode dimensions, while the outer ring is the
half-sphere below the electrodes. The plots show the sensitivity in three different planes:

(1) One plane parallel to the electrode plane (figure n b)). This plane cuts the sphere in the
middle, i.e. 1.33 cm below the surface.

(2) One vertical plane that is parallel with one of the sides of the model (figure n c)).

(3) One vertical plane that is rotated 45◦ (figure n d)).

To ease comparison, the viewpoint is the same for all models. The electrode radius is
4 mm for all plots.

3.1.2. Sensitivities in presence of inhomogeneities. The plots in figure 8 shows how the
sensitivity changes in presence of inhomogeneities under an electrode.
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(b)(a)

(d)(c)

Figure 4. Shape of negative sensitivity region, and sensitivities for three different planes
for FIM4.

3.2. Numbers

Tables 4 and 5 show the extracted number for all configurations.
The contributions to the average transfer impedances of the electrodes and the half-spheres

under the electrodes are presented in table 5.
Percentage change of impedance due to inhomogeneities is presented in table 5 and

figure 8.

4. Discussion

4.1. Model limitations and strengths.

By using a variable size mesh instead of the fixed-size mesh used by Brown et al and Islam
et al we introduced a method to reduce the numerical problem, and thus made it easier to
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(b)(a)

(d)(c)

Figure 5. Shape of negative sensitivity region, and sensitivities for three different planes
for FIM6.

keep the entire model in the computer memory. This may not be an issue for relatively small
models, but by using variable-size grid, we may be able to analyse larger models than we were
if we used fixed-grid models. Here, the term large model also means a model with high spatial
resolution since it would require a large amount of grid points. It also means that it is possible
to model geometries that are small compared to the complete model accurately. The Matlab
method uses arguably less resources than a FEM-tool if the mesh was similarly sized and if
we limit the model to only deal with a semi-infinite homogenous model.

For more complex models, and if we choose to extend the model to include frequency
dependent properties, the variable mesh may make it difficult to find a numerical solution, and
we may have to give up some of the dynamics in mesh size, and is by that falling back towards
a mesh with points with fixed distance.

The model in the work presented here is for DC only since simulations in the frequency
domain is identical but with numbers replaced with complex numbers. For models describing
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(b)(a)

(d)(c)

Figure 6. Shape of negative sensitivity region, and sensitivities for three different planes
for FIM8a.

real-world geometries such as body organs with much more complex tissue properties like
presented by Gabriel and Gabriel (1996) a frequency simulation would be appropriate. An
example of such a model is given by Pettersen and Høgetveit (2011).

The number-crunching capabilities of Matlab are impressive. But Matlab has no
infrastructure to let users create a simulation model. This effectively limits the complexity of
Matlab models to very simple models similar to the ones presented by Brown et al (2000) and
Islam et al (2010). MPH and other FEM-tools have an infrastructure that is geared towards
complex models and powerful post-processing.

A half-sphere with the flat surface on the model surface would probably have given
better SF for all models, but was not used since one goal of developing a FIM-method is
to locate materials with different electrical impedance below the surface, and a submerged
sphere is therefore more realistic. Examples may be a cancer tumour below the skin surface
and measurement of the electric impedance of a specific organ.

1077



Physiol. Meas. 35 (2014) 1067 F J Pettersen et al

(b)(a)

(d)(c)

Figure 7. Shape of negative sensitivity region, and sensitivities for three different planes
for FIM8b.

The configurations investigated here are only a small sub-set of all possible configurations.
Which configuration to use depends on several factors like allowed complexity, focus
requirements, and ability to detect a particular feature in the measurand.

The electrodes are modelled as cylinders that have a conductivity that is 100 times higher
than the bulk material. The electrodes are set up to either carry no current or to carry a given
current. In the case of no current, the electrodes are simply geometries with higher conductivity
than the surroundings. In the other case, the top surfaces of the electrodes are defined to be a
surface where a given current of 1 [A] is flowing. Since we are using an ideal dc current source,
we do not have to consider interface effects such as polarization or contact impedance. We
could do simulations with higher detail levels, and by that be able to see effects of interfaces.
The given set of equations (1) through (4) will not be able to model all effects that are caused by
the ionic nature of electrical bioimpedance and the interfaces between domains with electronic
end ionic charge carriers. The simulations of inhomogeneities beneath one electrode will to
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(a) (b)

(c) (d)

Figure 8. Effect of inhomogeneities illustrated by plotting sensitivity. The plots represent
different configurations of conductivity in the regions of negative and positive sensitivity
(a) low–low, (b) low–high, (c) high–low, (d) high–high.

Table 4. Numerical results from simulations. El. radius is electrode radius, and the
variables NF, SF, SRMAX and SRSPHERE are defined previously.

Configuration El. radius (mm) NF SF SRMAX SRSPHERE

FIM4 2 0.213 0.262 536 115 1651
4 0.208 0.260 272 715 1641
6 0.196 0.257 104 252 1617
8 0.172 0.248 69 521 1565

FIM6 2 0.532 0.114 885 596 717
4 0.532 0.114 448 783 719
6 0.530 0.115 178 640 726
8 0.527 0.118 126 373 746

FIM8a 2 0.491 0.100 725 337 627
4 0.491 0.100 279 517 627
6 0.491 0.100 124 070 632
8 0.527 0.102 79 798 641

FIM8b 2 0.396 0.114 504 024 717
4 0.396 0.113 235 780 715
6 0.491 0.113 97 120 713
8 0.527 0.113 65 690 713

a small degree illustrate some effects of what happens if the electrodes are not perfect or
perfectly attached to the rest of the measurand. Since the models are simplified, and we use
no 2- or 3-electrode configurations, we considered that the simplifications did not change the
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Table 5. The contributions to the total average transfer impedance from electrodes and
spheres below the electrodes are given as percentage of measured average transfer
impedance.

Configuration Variable Min Average Max

FIM4 ZEL−ABCD − 0.029 0.144 0.815
ZHSP−ABCD 0.053 0.816 2.049

FIM6 ZEL−ABCD − 0.085 − 0.022 0.038
ZHSP−ABCD 0.004 0.049 0.138
ZEL−pq − 0.077 0.087 0.425
ZHSP−pq 0.033 0.335 0.793

FIM8a ZEL−ABCD − 0.128 − 0.039 0.022
ZHSP−ABCD 0.006 0.049 0.159
ZEL−pqrs − 0.035 0.326 1.302
ZHSP−pqrs 0.012 0.510 1.205

FIM8b ZEL−ABCD − 0.080 − 0.022 0.021
ZHSP−ABCD 0.004 0.048 0.144
ZEL−pqrs − 0.001 0.465 1.796
ZHSP−pqrs 0.015 0.622 1.449

Table 6. Results of inhomogeneities under electrode.

Conductivity–positive Conductivity–negative Measured impedance
Region region change (%)

1 1 Reference
0.01 0.01 −0.30
0.01 100 −4.15
100 0.01 2.38
100 100 −1.14

results significantly. Details on error sources in tetrapolar impedance measurements can be
found in Grimnes and Martinsen (2007), and should apply here with some modifications.

4.2. Sensitivity plots

There are clearly significant differences between the configurations. As expected the FIM4,
FIM8a, and FIM8b have sensitivity fields that are symmetrical around the x- and y-axis, while
FIM6 is clearly not symmetrical. It is interesting to see how high the sensitivities in and beneath
the electrodes are. It may be naturally to assume that any inhomogeneity in these regions would
affect measurements to a high degree, but the simulations with inhomogeneities (table 6) shows
us that the effect is surprisingly small. This can be explained by seeing the electrode and the
inhomogeneity as a different shaped electrode. Figure 8 shows how the sensitivity is changed
if inhomogeneities are present. The plots show us that where the conductivity is low, the
sensitivity is low too. This can be explained by seeing the electrode and the inhomogeneity as
a different shaped electrode.

4.3. Numbers

The results in table 4 tells us that there are large differences in what the actual measured value
consist of depending on which configuration we choose. If we consider only one electrode
radius, 4 mm, looking at NF, we see that the negative fraction varies from 0.208 for FIM4 to
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0.532 for FIM6. This means that the risk of errors caused by objects placed in a region with
negative sensitivity is higher for FIM6 than for the other configurations.

The SF tells us that the contribution to the sphere is much highest for the FIM4
configuration. But even so, the SF is still only in the range 0.100–0.262. This means that
even if we have relatively good focus in our focus region, 73.8%–90% of the contribution to
the total transfer impedance is originating from outside the focus region. Which again indicate
that the FIM configurations analysed here, and probably similar configurations too, may have
a rather limited use.

The electrode size affects all numbers, but the sensitivity ratio numbers (SRMAX and
SRSPHERE) are most affected. The smaller the electrodes are, the higher the sensitivity ratios
are. This tells us that large electrodes might be better if not other factors dictates use of small
electrodes. The SF and NF were relatively little affected by electrode size for all models except
FIM4. FIM4 has best values for SF and NF, but if constant electrode size is important, then
FIM4 might be a poor choice.

The results in table 5 tell us that the contributions from the electrodes and the regions
just below the electrodes are small even if the local sensitivities are very high. Even if we
put inhomogeneities in these regions, we see (table 6) that the effect is relatively small. The
inhomogeneities were modelled as ellipsoids with conductivity that was either 100 times higher
or lower than the conductivity of the surrounding material placed under the electrode as shown
in figure 2. The small effects on overall result may be explained in several ways. We may say
that where the resistivity of a region is increased, the current density will naturally decrease too
as long as the current has an alternative way to flow (as it has here), and thus reduce sensitivity
according to equation (5). Similarly, in the case where resistivity is decreased, the sensitivity
will be increased due to higher current density. When looking at equation (6), we see that
the regions contribution to measured impedance is not only given by sensitivity, but also by
resistivity, and that is changing in the opposite direction, and thus trying to cancel out the
effects of sensitivity change. Another way of seeing it is that the inhomogeneities are causing
an effective change of electrode placement and shape in the 3D-volume. But since the changes
were relatively small compared to the distances between the electrodes, the effects were small.

As mentioned above, inhomogeneities will alter sensitivity. To further illustrate this, we
can consider the case where an object with reduced conductivity is placed within our desired
sensitivity region. Two things will happen:

(a) A low conductivity object will cause currents to move around it and thus move the
sensitivity region away. This will result in reduced transfer impedance according to
equation (6).

(b) A low conductivity object has higher resistivity, and will therefore result in higher transfer
impedance according to equation (6).

This means that we may see the problem form an entirely different angle. If conductivity
in our focus region differ much from the surroundings, then we start measuring more or less
of the surroundings.

5. Conclusion

The presented work has shown that MPH is a very useful FEM tool to investigate volume
impedance measurement problems. This is especially true when we consider models where
there are large rations between small and large objects and inhomogeneities. Simulations
allow us to explore the electrode configuration space and visualize and quantize alternative
configurations.
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The simulations showed us that of the four configurations analysed here, the FIM4
configuration is superior in terms of SF and NF. The simulations also showed that
the sensitivities in and beneath the electrodes were surprisingly high, but even so, the
inhomogeneities beneath the electrodes did not affect the measurements as much as one
might expect. Similarly, effects of objects within our focus region will not have as much
influence as we might expect.
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