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Summary 

The overall aim of this work is to contribute to a better understanding of the 

reactions taking place at the oxygen electrode in proton ceramic fuel cells (PCFCs) 

and, moreover, to develop new materials with improved performance for this 

electrode. PCFCs and their cathode reactions are the main focus of the study, but 

these reactions are often running in parallel with reactions associated with other 

charge carriers that also need to be addressed. Most proton conducting ceramics 

exhibit also transport of oxide ions, and although small at intermediate temperatures, 

the relative contribution from partial oxide ion conductivity increases with 

temperature and eventually dominates at higher temperatures. Hence, 

characterization of the performance of a PCFC cathode may at higher temperatures 

in reality be affected by or even directly reflect the cathode reactions of an oxide ion 

conducting solid oxide fuel cell (SOFC) rather than that of a PCFC. The crossover 

between SOFCs and PCFCs with respect to the oxygen electrode reactions is 

emphasized in this work.  

The first manuscript presents status and challenges of PCFC research 

undertaken in Norway by the start of 2010. The work comprises manufacturing of 

single cells and cell stacking, focusing on the performance, the mechanical and 

thermal properties, as well as, the chemical stability of the different PCFC 

component materials. State-of-the-art cathode material at that time, La0.8Sr0.2MnO3 

(LSM), showed a polarization resistance (Rp) 
2 at 800°C on proton 

conducting Ca doped LaNbO4 electrolyte, revealing the necessity for a significant 

improvement in the cathode performance. New materials had to be found and their 

microstructural design optimized, based on the requirements specific for the proton 

conductor oxygen reaction. 

Reaction kinetics, with particular emphasis on the features specific for the 

PCFC oxygen electrode is investigated in manuscripts II, III and V. In manuscript IV, 

the experimental conditions are such that the SOFC reactions dominate the electrode 

process. The electrolyte/electrode interfacial exchange of protons instead of oxide 
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ions distinguishes PCFCs from oxide ion conducting SOFCs and entails that water is 

formed on the oxygen side of the electrolyte. A major challenge with the PCFC 

cathode candidate materials studied so far is the confinement of the electrochemical 

process to pass the electrolyte / electrode / gas triple phase boundary (tpb), instead of 

utilizing the whole electrode area as for the best mixed conducting SOFC electrodes. 

The challenges related to tpbs as a bottleneck are addressed by microstructural 

improvements. Moreover, a novel material with simultaneous transport of electrons 

and protons is introduced that will enable also the PCFC cathode reactions to occur 

over the electrode surface, thereby extending the tpb reaction zone.  

The effect of water formation on the cathode reaction is studied in detail on a 

Pt model electrode. The results show higher reaction rates upon increased water 

vapor partial pressure, pH2O. Since the Pt electrode is rate limited by surface 

diffusion both under dry and wet conditions, the pH2O effect is explained by the 

formation of surface hydroxyls with high surface mobility relative to the adsorbed 

oxide ions which dominate under drier conditions. The presence of surface hydroxyls 

is confirmed by X-ray photoelectron spectroscopy. Water is looped in the oxygen 

reaction series, acting both as reactant and product. In manuscript V and in the 

results part of the thesis it is shown that ambient water vapor gives the same positive 

effect for the mixed conducting electrodes BaGd0.8La0.2Co2O6-  (BGLC) and 

BaPrCo2O6-  (BPC) when operated on a BaZr0.7Ce0.2Y0.1O3 (BZCY72) proton 

conducting electrolyte. At higher temperatures where BZCY72 is mainly oxide ion 

conducting, water vapor on the other has an adverse effect on the electrode reaction 

rate for the same mixed conducting electrodes. With the mixed oxide ion-p-type 

electron conductor La2NiO  (LNiO) as electrode and La27.16W4.85O55.27

5.6; LWO56) as electrolyte (manuscript IV), the electrode performance was 

independent of pH2O under conditions where oxide ion conductivity dominates in the 

electrolyte (above 700°C). 

Three well-established routes to improve the electrode microstructure were 

followed in this work; (i) addition of nano-sized catalysts by infiltration, (ii) 

improvement of the functional layer close to the electrolyte and (iii) manufacturing of 
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composite electrodes by mixing electrode and electrolyte materials. The two first 

methods showed promising results: Addition of Pt nanoparticles in the LSM electrode 

lowered significantly the polarization resistance; from 2 at 650°C. 

Characterization of the microstructure of BGLC and BPC electrodes showed that a 

fine-grained functional layer was successfully manufactured. The composite 

electrode approach did, however, not prove to enhance the performance of an 

electrode rate limited by surface reactions. 

The materials investigated in this work range from well-known pure electron 

conductors such as Pt and LSM, used first and formerly for the detailed 

characterization of the electrode reactions, via the promising mixed conducting 

candidate LNiO, to the novel mixed conducting double perovskites BGLC, BPC and 

their B-site iron-substituted variants BaGdCo1.8Fe0.2O6-  (BGCF) and 

BaPrCo1.4Fe0.6O6-  (BPCF). For Pt and LSM, high capacitance processes like surface 

diffusion is limiting the overall electrode reaction rate. For the mixed conducting 

electrodes LNiO and BGLC, the oxide ion transfer is shown to happen through the 

electrode interior. The latter also shows indications of partial bulk proton 

conductivity concluded based on the pH2O dependencies encountered for Rp and 

supported by hydration of the material at low temperatures with a hydration enthalpy 

of -50 kJ/mol. Bulk proton transport would facilitate the low temperature PCFC 

cathode reaction and widen the triple phase reaction zone improving the electrode 

performance. The behavior of these mixed conducting double perovskites, especially 

BGLC but possibly also BPC, with polarization resistances measured to 0.05 and 
2 at 650°C for BGLC and BPC, consequently gives indications of the first 

established mixed proton / electron conducting materials with sufficient 

electrochemical performance on a proton conducting electrolyte.  

To account correctly for mixed conductivity in the electrolyte is challenging 

when studying electrode reactions. In manuscript III and V, a model for the 

separation of the measured polarization resistance into the contributions from more 

than one charge carrier is developed. The model accounts also for the effect of 

parallel non-faradaic current during high temperature measurements under oxidizing 
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conditions. The results of the modelling show that the measured polarization 

resistance for the system investigated here and reported above for 650°C is 

underestimated by approximately one order of magnitude. The same underestimation 

would apply to any other oxygen electrode measured on BZCY72 if the effect of 

electrolyte p-type partial conductivity was not properly addressed. In a running fuel 

cell or electrolyzer cell, the fuel-side reducing conditions are expected to induce a 

blocking layer for electronic conductivity in the electrolyte. 

resistance will therefore be higher when the partial short circuit is absent. At lower 

temperatures, this effect of parallel non-faradaic current is less pronounced during 

half-cell electrode characterization. 

BGLC exhibits a total polarisation resistance for proton transport of only 10 

cm2 at 350°C, with an activation energy of 50 kJmol-1 ascribed mainly to the 

surface electrode reaction. Based on this, there is reason to believe that further 

improvements of the cathode performance can be achieved by enhanced 

microstructural processing, such as infiltration of BGLC in a BZCY backbone. 
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List of symbols and abbreviations  

PCFC: Proton ceramic fuel cell 

SOFC: Solid oxide fuel cell 

LSM: La0.8Sr0.2MnO3 

R: Resistance 

Rp: Polarization resistance 

Rel.l: Electrolyte resistance 

Rion: ionic resistance 

Rel: Electronic resistance 

tpb: Triple phase boundary 

BGLC: BaGd0.8La0.2Co2O6-   

BPC: BaPrCo2O6-  

BZCY72: BaZr0.7Ce0.2Y0.1O3  

LNiO: La2NiO4+  

LWO56: La27.16W4.85O55.27 

BGCF: BaGdCo1.8Fe0.2O6-   

BPCF: BaPrCo1.4Fe0.6O6-   

CHP: Combined heat and power 

YSZ: Yttria-stabilized zirconia 

ASR: Area specific resistance 

O-MIEC: Mixed oxide ionic / electronic conductor 

SSC: Sm0.5Sr0.5CoO3 

BSCF: Ba0.5Sr0.5Co0.8Fe0.2O3-  

LSCF: La0.6Sr0.4Co0.2Fe0.8O3-  

P-MIEC: Mixed protonic / electronic conductor 

BPC: PrBaCo2O   

PNO: Pr2NiO4  

: Foreign, -1 effectively negatively charged metal dopant 

: +2 effectively positively charged oxygen vacancy 

n: In defect chemistry: Concentration of defect electrons. In impedance spectroscopy: CPE parameter 

/
MMf

Ov
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p: Concentration of defect electron holes 

Kn: Equilibrium constant for the formation of electrons 

Kp: Equilibrium constant for the formation of electron holes 

KHydr: Equilibrium constant for the formation of proton defects by hydration 

: Conductivity 

z : Charge 

e : Elementary charge 

c : Concentration 

: In transport: Mobility. In electrochemistry: Chemical potential 

dm: Molar density 

EA: Activation energy 

: Electric potential 

~ : Electrochemical potential 

F  

a: Activity 

k: In electrode kinetics: Reaction rate constant. In impedance spectroscopy: Chemical parameter of 
Gerischer element 

k+: Forward reaction rate constant 

k -: Reverse reaction rate constant 

FE : Fermi energy 

0
OxE : Energy of oxidized adsorbate molecule orbital most likely to be occupied by transferred 

electron 

redE : Reduction potential 

: Overpotential 

R: Universal gas constant 

T: Temperature (K) 

r: Reaction rate 

i: Current density 

: Anodic symmetry coefficient   

: Cathodic symmetry coefficient 

d: Diffusion 
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ct: Charge transfer 

SDC: Ce0.8Sm0.2O2-   

BCS: BaCe0.8Sm0.2O3-  

C: Capacitance 

EIS: Electrochemical impedance spectroscopy 

: Phase shift 

Z: Impedance 

j: Imaginary number 

: Angular frequency 

U: Voltage 

I: Current 

: Time constant 

CPE: Constant phase element 

Y0: In CPE: Capacitance parameter. In Gerischer element: Admittance parameter 

PCEC: Proton ceramic electrolyzer cell 
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Introduction1.

US Department of Energy released in 2009 their technical and cost targets for 

the development of energy production based on fuel cells: Within 2015, the 

efficiency for combined heat and power (CHP) should reach 87.5 %, with 40 % being 

electrical efficiency and with a lifetime of 40,000 hrs, for 1-10 kW residential fuel 

cell systems running on natural gas. Status in 2008 was 80 % efficiency (34 % 

electrical) and 6000 hrs lifetime. CHP demands high temperature systems causing 

challenges with degradation. This is particularly demanding, as also reflected in the 

large discrepancy between the 2008 status and 2015 targeted lifetime [1]. The fuel 

cell research is still striving towards the 2009 targets, and in 2012, almost 1000 fuel 

cell related patents were issued in the US alone - more than for any other clean 

energy technology including solar. This clearly shows that fuel cell research is 

proceeding with full momentum. 

The 2008 state-of the-art SOFC was based on oxide-ion conducting yttria-

stabilized zirconia (YSZ) as electrolyte. Its operation temperature is 800-1000°C, and 

even though YSZ-based systems show high CHP efficiency, the high operation 

temperature causes severe degradation problems: High temperature seals degrade 

upon thermal cycling, interconnect materials, such as the ceramic La1-xCaxCrO3, 

subjected to dual atmospheres and ambient water at high temperatures suffer from 

growth of oxide scales, and electrodes are easily poisoned by volatile interconnect 

elements such as Cr-containing species. Therefore, lowering the operation 

temperature is desirable, allowing for the use of ferritic stainless steel interconnect 

materials and glass seals.  

The relatively high activation energy for oxide ion transport in the YSZ 

electrolyte limits the possibility to decrease the operating temperature with this 

electrolyte and YSZ is generally replaced with intermediate temperature ionic 

conductors such as acceptor doped CeO2 and LaGaO3-based materials [2]. However, 

a stable, combined area specific resistance (ASR) for anode, electrolyte and cathode 
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2 with sufficient operation lifetime is challenging to reach at 

intermediate temperatures. 

1.1 Background 

Proton ceramic fuel cells with proton conducting electrolyte materials present 

a good alternative to the oxide ion conducting SOFCs at intermediate temperatures. 

Transport of protons generally shows lower activation energy than for oxide ions [3], 

and proton conductors thus potentially have higher conductivity at lower 

temperatures than oxide ion conductors [4, 5]. Development of proton conducting 

ceramics started with Iwahara s reports on SrCeO3 with proton conduction in 1981 

[6], followed by SrZrO3, BaCeO3 and BaZrO3 in 1983 [7]. More recently new proton 

conductors have been discovered, such as lanthanum tungstate in 2001 [8] and Ca-

doped LaNbO4 in 2006 [9]. The structural and chemical parameters determining 

formation and mobility of proton defects by formation of a solid solution of 

Y:BaZrO3-BaCeO3 system was discussed in a review in 2003 [10], resulting in a 

renewed interest in BaZr1-x-yCexYyO3 as a chemically stable, high temperature proton 

conductor. Figure 1-1 presents different proton conducting ceramics and their proton 

conductivities. 
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Figure 1-1: Examples of different proton conducting oxides and their conductivities 
[10]. 

Besides reaching sufficient electrolyte conductivity at intermediate 

temperatures, the most important challenge has, for both SOFC and PCFC, been the 

slow reaction kinetics at the cathode. The search for new mixed oxide ionic / 

electronic conductors (O-MIECs) with the required properties to serve as a cathode is 

one of the main focuses in developing high efficiency SOFCs / PCFCs. The most 

efficient cathode materials for SOFCs so far are Co-based perovskites such as 

Sm0.5Sr0.5CoO3 (SSC) [11], Ba0.5Sr0.5Co0.8Fe0.2O3-  (BSCF) [12] and 

La0.6Sr0.4Co0.2Fe0.8O3-  (LSCF) [13, 14]. Unfortunately, these materials either show 

too high polarization resistances at intermediate temperatures or they are not 

chemically stable under operating conditions. Recently, high ionic and electronic 

conductivity have been reported at relatively low temperatures for B-site Co-based 

perovskites by substituting Rare Earth (RE) elements such as Pr and Gd for Ba on the 

A-sites. This results in layered double perovskites with alternating RE / Ba(Sr) layers 

where oxygen vacancies order in the RE layers, creating channels for oxide ion 
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transport [15]. The mixed conductivity of these double layered perovskites, e.g. 

PrBa0.5Sr0.5Co0.8Fe0.2O5+  [16], GdBa1-xSrxCo2O5+  [15] and the family of 

LnBaCo2O5+  (Ln = La, Pr, Nd, Sm and Gd) [17] makes them promising materials for 

SOFC cathode candidates. 

There is an increased interest in testing the best SOFC cathode materials for 

PCFCs, and several studies have presented promising results. In 2008, a PCFC with a 

65 μm BaZr0.1Ce0.7Y0.2O  (BZCY17) electrolyte and a Sm0.5Sr0.5CoO3-  (SSC) 

cathode was reported to reach a peak power density of 0.6 Wcm-2 at 650°C [18]. The 

same SSC cathode material was tested for SOFC application on a 25 μm electrolyte 

of Sm0.2Ce0.8O1.9 [11]. Even though direct comparison is difficult, this interestingly 

gave a cell with lower peak power density at 500°C than the aforementioned PCFC at 

the same temperature, despite having less than half the electrolyte thickness. Another 

similar comparison that can be made is for BSCF tested as a cathode for both SOFC 

and PCFC applications. Shao and Haile [12] reported in their letter to Nature in 2004 

a peak power density of 0.4 Wcm-2 at 500°C for an SOFC with a 20 μm electrolyte of 

Sm0.15Ce0.85O2 and with a BSCF cathode. This is probably the best intermediate 

temperature SOFC performance reported so far. The same cathode material was 

tested on a 50 μm BCY electrolyte for PCFC applications [19]. In this study, a peak 

power density of 0.225 Wcm-2 was reported at 500°C. The SOFC power output was 

less than double that for PCFC, indicating that the PCFC can be capable of producing 

power densities in the range of the best reported SOFC. It is important to recognize 

the issues of stability and lifetime for both BCY and BSCF when applied as cell 

components.  

In a more recent study [20], a similar BSCF cathode was tested on a 10-15 μm 

proton-conducting BZCY26 electrolyte. Peak power density was measured to slightly 

above 0.5 Wcm-2 at 600°C, and by testing the single cell reversibility, the ASR was 

measured to 0.46 and 0.26 2 for fuel cell and electrolysis modes, respectively 

(Figure 1-2). The BSCF electrode showed the ability to oxidize H2O forming O2 and 

protons, yielding a hydrogen evolution rate of 7.1 ml min-1 cm-2 at the cathode with a 
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current density of 1.5 Acm-2, close to the theoretical faradaic production rate of 7.3 

ml min-1 cm-2.  

Figure 1-2: Performance of BZCY-based single cell in fuel cell and 
electrolysis mode at 600°C [20]. 

The latter results are intriguing in the sense that they open for new questions 

regarding the reaction mechanisms taking place at the oxygen electrode in both 

anodic and cathodic operation. The fact that oxidation of water seems to take place on 

BSCF in anodic operation, and given the high oxygen understoichiometry of 3-

~2.3 at 600°C [21], investigations of the hydration properties and partial proton 

conductivity of BSCF and other O-MIEC perovskites is called for. Although the 

number of detailed studies of reaction kinetics for proton conducting oxygen-side 

electrodes is limited, it is widely accepted that a mixed protonic / electronic 

conductor (P-MIEC) as oxygen electrode would extend the triple phase boundary 

reaction OH2H2eO 2  over the electrode surface [22, 23]. This is shown 

schematically in the illustration by Dailly et al. (Figure 1-3), who investigated the 

relation between hydration and electrode performance for Ln2MO4 based materials 

and perovskite BSCF. Pr2NiO4  and BSCF exhibit the best electrode performance, 

but there was no direct sign of significant hydration of the bulk. The Ln2MO  

materials have also been tested as SOFC cathodes, again with Pr2NiO  as the best 

material [24].  
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Figure 1-3: Illustration of difference between mixed proton / electronic and 
oxide ion / electronic conducting materials on air-side oxygen reaction by 
Dailly et al [22]. 

In a more recent study, hydration and PCFC cathode performance of BSCF, 

BaPrCo2O  (BPC), Pr2NiO4 (PNO) and LSCF [25] were studied. Under wet 

conditions at 600°C, the two first candidates showed highest water content whereas 

the two latter did not exhibit any significant uptake of water. Still, analysis of 

polarization resistances (Rp) showed enhanced performance for BSCF, BPC and PNO 

with increasing pH2O. These three materials are in the paper referred to as triple 

conducting oxides  showing conduction of electron holes, oxide ions and protons. 

Based on pO2 and pH2O dependencies of Rp, at 600°C it was concluded that the 

overall cathode reaction for the materials was rate limited by electrolyte / electrode 

interfacial proton transfer (PNO) and electrode water formation (BSCF, BPC, PNO). 

LSCF, which showed no hydration, displayed a negative dependency of Rp on pH2O 

suggesting that ambient water inhibits the oxygen reduction reaction rather than being 

a reactant in cathodic operation. BPC and PNO showed the lowest Rp of the four. 

1.2 Objectives 

The first manuscript gives an overview of the status in Norway with respect to 

research and manufacturing of proton ceramic fuel cells at the end of 2009. In this 

manuscript, all PCFC parts are assessed in general. The main part of the PCFC 

research in Norway was up until then focused around the acceptor doped LaNbO4 

electrolyte, and fundamental PCFC cathode studies was in its infancy, not only in 
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Norway, but also in general. The 2009 state-of-the-art materials is the starting point 

for our studies. 

The objectives of this work are 

i. To study the effect of ambient water on the operation of the oxygen

electrode. Some studies have aimed to resolve the elementary cathodic

reaction steps for PCFCs [25, 26]. The different systems show different

properties, and all in all there is a need to know more about both the

elementary reaction steps and how materials properties can be designed

to optimize the performance of the PCFC oxygen electrode. The

reversibility of the electrode, meaning whether it is capable of oxidizing

water, is also of key importance, as hydrogen production from

electrolysis is an upcoming technology in fields like energy storage for

renewable energy systems.

ii. To investigate the effect of different microstructural improvements on

the oxygen electrode performance. It has previously been shown that by

microstructural processing, such as infiltration of the electronic phase

on a backbone of the proton conducting electrolyte phase, a significant

lowering of cathode ASR can be achieved [27]. Improvements of the

tpb surface kinetics and micro structure by addition of nano-sized

catalysts is a way to widen the tpb reaction zone and increase the

reaction rate. Furthermore, fine-grained functional layers and graded

porosity will give increased numbers of tpb reaction sites.

iii. To describe the electrode reactions in a system with more than one type

of charge carriers. Most ionic electrolyte materials exhibit, to some

extent, parallel transport of oxide ions and protons, the first normally

dominating at high temperature, and the latter at low. In a transition

temperature region, there will be mixed proton and oxide ion

conductivity. A model will be developed, allowing Rp to be resolved in

elementary reaction steps for protons and oxide ions, and the model
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parameters will be fitted to the measured results, assigning partial 

resistances to each charge carrier and their individual rate limiting 

electrode process. 

iv. To investigate cathode reactions under experimental conditions where

oxide ions dominate the charge transport.

v. The investigations will show to what extent electrolyte transport of

electron holes affect the measured polarization resistance. Studying

electrode reactions at elevated temperatures in oxidizing conditions

often entails increased partial electronic conductivity in the electrolyte

material. This electronic conductivity will partially short circuit the cell.

In an operating fuel cell or electrolyzer cell, the reducing conditions on

the fuel side will create a barrier for p-type conductivity in the

electrolyte and such a partial short circuit will therefore be less

significant or non-existing. If the polarization resistance under

operating conditions is to be investigated at high temperatures and

under oxidizing conditions by separate electrode measurements, the

electronic partial short circuit must be accounted for. The model in iii,

separately accounting for different charge carriers will be elaborated to

comprise also electron holes.

vi. To present new and improved PCFC cathode materials. Mixed

conducting double perovskite materials with the general formula

BaRE1-xLaxCo2-yFeyO6- (RE = Gd, Pr) will be investigated as oxygen

electrodes on a proton conducting electrolyte.
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Methodology2.

Electrode measurements were performed by impedance spectroscopy on 

ceramic electrolyte supported button cells (discs) mounted in a ProboStat measuring 

cell (NorECs, Norway) as illustrated in Figure 2-1 [28] 

Figure 2-1: Example of connection to disk samples for impedance measurements. 
The schematics show principle of spring loads and regular 2-electrode 4-wire setup 
with dual gas supplies and thermocouple [28]. 

 The ProboStat is supplied with electrode and thermocouple feedthroughs as 

well as gas in- and outlets for both inner and outer compartments. By this, the sample 

environment can be controlled with respect to temperature and partial pressures of the 

reactant gasses. Figure 2-2 shows the base unit [28]. 



 21

Figure 2-2: ProboStat base unit with feedthroughs [28]. 

The various gas mixtures were obtained by use of an in-house built gas mixer 

designed to control the dilution of reactant gasses as well as the water vapor pressure 

in the measurement cell. A schematic illustration of the gas mixer is given in Figure 

2-3. 
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Figure 2-3: Schematic illustration of gas mixer. 

The electrodes were applied to the pellets in several ways, as described 

separately in each manuscript. Impedance measurements were performed in two-

point and three-point configurations, where two wires (current lead and voltage 

probe) were contacted to the top (working) electrode and the bottom electrode acted 

as counter electrode contacted by the low current lead. The low potential probe was 

contacted to the counter electrode in the two point configuration, and to a reference 

electrode painted around the pellet circumference in the three point configuration. 

Figure 2-4 illustrates the three point configuration. 
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Figure 2-4: Three point configuration with working, counter and reference 
electrodes connected to the impedance analyzer. 

The Impedance measurements were conducted with oscillating voltages 

between 15 and 50 mV RMS in the frequency range 1 MHz to 1 μHz. Different 

temperatures and gas environments demand different voltages and frequency ranges, 

and for high electrode impedances with slow relaxation, it turned out to be necessary 

to measure down to as low frequencies as 1 μHz. The voltage amplitude was set as 

low as possible to avoid affecting the activation energy of the electrode reaction by 

the applied voltage and also to avoid diffusion controlled conditions for the charge 

transfer current. The impedance data were deconvoluted by use of the ZView 

software from Scribner Associates, Inc. 
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Theory3.

3.1 Proton ceramic fuel cells 

The PCFC is characterized by oxidation of H2 at the anode, transport of 

protons in the dense ceramic electrolyte, reduction of oxygen at the cathode and 

transfer of protons across the electrolyte / cathode interface to produce water at the 

oxygen side, as illustrated in Figure 3-1. 

Figure 3-1: Illustration of a proton ceramic fuel cell (PCFC). 

The ideal ceramic electrolyte is a pure proton conductor. In such a proton 

conductor, the conductivity is expressed by the concentration and mobility of the 

protons. There are, however, often more charge carriers contributing to the overall 

conductivity. Seeing these charge carriers as defects in the perfect metal oxide 

structure enables the quantification of partial conductivities. 
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3.1.1 Defects 

Some metal oxides dissolve hydrogen in the form of protons in their oxygen 

sublattice, creating hydroxide groups on oxygen sites ( OOH ) [29]. The dissolution of 

protons into the electrolyte of a running PCFC happens at the hydrogen anode: 

)(electrode2ete)(electroly2OHte)(electroly2O(g)H 2
O2   (1) 

The proton concentration in the PCFC electrolyte can be increased by acceptor 

doping the electrolyte material. This is done by introducing a foreign metal of for 

example one less positive charge than the native metal, forming monovalent, 

effectively negative acceptor sites ( /
MMf ). The acceptors are charge compensated in 

the structure by the formation of oxygen vacancies, Ov  which can be hydrated by 

dissolution of more proton defects. 

Oxygen vacancies can be formed also intrinsically, by Schottky disorder or 

oxygen deficit at external and internal surfaces, charge compensated by metal 

vacancies or electrons. Or they can form in intrinsic Frenkel reactions inside the 

material, where lattice oxide ions are in equilibrium with oxygen vacancies and 

interstitials. Equation 2 is an example of formation of oxygen vacancies and 

electrons. 

(g)1/2O2eO 2
/

O
x
O v  (2) 

By introducing acceptor dopants, the oxygen vacancy concentration is increased and 

fixed, and under the relevant temperature and atmospheric conditions, concentrations 

of acceptors and vacancies (in dry state) and / or protons (in hydrated state) will be 

much higher than that of electronic defects in a typical electrolyte material. The 

dissolution of MO in a M2O3 metal oxide can be written 

x
OO

/
M 2Ov2Mf2MfO(s)  (3) 

The electroneutrality in the dry state, dominated by acceptors and oxygen vacancies, 

can then be approximated by: 
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constant2 /
MO Mfv  (4) 

In an ionic conductor (oxide ion or proton conducting), electronic defects (electrons 

and electron holes) are present in small concentrations contributing to minor n- and 

p-type conductivities. These minority defects are formed by intrinsic thermal 

excitation across the semiconductor band gap or as charge compensators when 

temperature or pressure conditions cause the material to deviate from stoichiometry. 

One example of this, formation of oxygen vacancies charge compensated by 

electrons is given in Equation 2. An equilibrium constant for the formation of 

electrons in the dry state (Kn) as given in Equation 2 can be written 

2/1
2

2 pOn
O

v
K

x
O

O
n  (5) 

Under extrinsic conditions, dominated by acceptors and oxygen vacancies, the 

combination of Equations 4 and 5 gives the concentration of minority electrons, 

expressed by the equilibrium constant for reaction 2, the acceptor dopant 

concentration, and pO2: 

4/1
2

2/1/2/1)2( pOMfKn Mn  (6) 

The oxidation of oxygen vacancies to create electron holes can be written 

2hO(g)1/2O x
OO2 v   (7) 

By using the equilibrium constant for the formation of electron holes in dry state 

(Kp), a pO2-dependency for the concentration of electron holes can be obtained 

4/1
2

2/1/2/1)2( pOMfKp Mp          (8)

The oxygen vacancies can be hydrated in wet atmospheres given favorable hydration 

thermodynamics. The hydration of oxygen vacancies can be written 

O
x
OO2 2OHOO(g)H v  (9) 
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The formation of electrons in hydrated state can be given by combining Equations 2 

and 9.  

(g)1/2O2e2OH2OO(g)H 2
/

O
x
O2  (10) 

The formation of electron holes comes in the same way by the combination of 

Equations 7 and 9. 

O(g)H2h2O(g)1/2O2OH 2O2O
x  (11) 

The simplified electroneutrality condition in the extrinsic region when all oxygen 

vacancies are hydrated is 

constant/
MO MfOH          (12)

Using the equilibrium constants for the formation of electrons and protons, the 

concentrations of electrons and holes can be given by 

4/1
2

2/1
2

1/2/1 pOOpHMfKKn MHydrn        (13)

and  

4/1
2

2/1
2

/2/11 pOOpHMfKKp MHydrp  (14) 

The hydration equilibrium constant of reaction 9, is a function of the standard entropy 

and enthalpy of hydration ( 0
HydrS  and 0

HydrH ) 

RT

H

R

S

OpHvO

OH
K HydrHydr

O
x
O

O
Hydr

00

2

2

expexp (15) 

And the electroneutrality under extrinsic conditions, including both oxygen vacancies 

and protons is 

constant2 /
MOO MfOHv         (16)
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When the defect concentrations are relatively small, and the concentration of oxygen 

on oxygen sites can be considered equal to the stoichiometric composition, the 

concentration of protons is given by a standard concentration expression derived from 

the hydration equilibrium expression (Equation 15) and the electroneutrality for 

protons, oxygen vacancies and dopants (Equation 16): 

4

8
11

2

/

2
OpHKO

Mf
OpHKO

OH
Hydr

M
Hydr

O (17) 

The combination of Equations 16 and 17 gives correspondingly the concentration of 

oxygen vacancies. 

4

8
11

2

1 2

/

2

/
OpHKO

Mf
OpHKO

Mfv
Hydr

M
Hydr

MO (18) 

The pO2 and pH2O dependencies of electrons and holes can be found by combining 

the expression for the concentration of protons (Equation (17)) and the red-ox 

equilibria in wet conditions (reactions in Equations 10 and 11). 

1

2

/

2

4/1
2

2/1
2

2/1

4

8
11

OpHKO

Mf
OpHKO

pOOpHKKn
Hydr

M
Hydr

Hydrn (19) 

4

8
11

2
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2

4/1
2

2/1
2

2/11
OpHKO

Mf
OpHKO

pOOpHKKp
Hydr

M
Hydr

Hydrp (20) 
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Schematic variations of all charge carrying defects in the extrinsic region as a 

function of pO2 and pH2O are given in Figures 3-2 and 3-3, respectively.  

Figure 3-2: Concentrations of oxygen vacancies, protons and electronic defects as 
a function of pO2 when the oxygen vacancy concentration dominates over protons, 
determined by the concentration of acceptor dopants. 

Figure 3-3: Concentrations of protons, oxygen vacancies and electron holes as a 
function of water vapor pressure under oxidizing conditions in a material where the 
acceptor dopants are charge compensated by oxygen vacancies or protons, 
depending on pH2O. 
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3.1.2 Transport 

The conductivity, i, of a charged species, i, is given by its charge, zie, its 

concentration, ci and its mobility, μi.  

iiii ecz   (21) 

The total electrolyte conductivity in oxidizing conditions is hvHtot
O

. The 

partial conductivities, i, may change relative to each other when changing 

measurement or operation conditions. The charge carrier concentrations are described 

above. The concentration term favours proton transport at lower temperatures, and 

though the concentration of protons decreases with increasing temperature, proton 

conductivity goes through a maximum due to the higher mobility at higher 

temperatures. The mobility of a diffusing charged species, i, in the case of ions and 

charged point defects as well as small polaron electronic defects can be written 

RT

H

T
imob

ii
,0 exp

1
 (22) 

The proton conductivity is hence expressed as 

RT

H

T
dOHFezc Hmob

HmOHHHH

,0 exp
1

(23) 

Here,  is 1 and dm is the molar density of the material. Protons move in the oxide 

through jumps between adjacent oxide ions, where mob is the enthalpy associated 

with s -

exponential factor can be expressed [30] 

B
H Vk

veZ

6

022
0  (24) 

, where Z is the number of jump directions,  is the jump distance (O-O distance), e is 

the elementary charge, v0 is the attempt frequency, V is the unit cell volume and kB is 

the Boltzmann constant.  

H
z



 31

At higher temperatures, mobile oxygen vacancies in the electrolyte will 

facilitate a partial net transport of oxide ions. Combining Equations 16, 21 and 22, the 

partial oxide ion conductivity can be written 

RT

H

T
dOHMfFezc O

OOOOO

vmob

vmOMvvvv

,0/ exp
1

(25) 

The proton and oxide ion conductivities can be obtained from Eqs. 23 and 25, 

respectively, after insertion of simplified or full expressions for the proton 

concentrations from the preceding section. 

The mobilities of electrons and holes are much higher than the mobilities of protons 

and oxygen vacancies. Therefore, these minority defects often contribute to the total 

conductivities at higher temperatures and under reducing (electrons) or oxidizing 

(holes) conditions. At high temperatures, electronic defects are more often localized 

at metal sites, and the transport mechanism is regarded as a jumping process (small 

polaron hopping). Combining Equations 21 and 22 gives an expression for p-type 

conductivity 

RT

H

T
Fpd hmob

hmh
,0 exp

1
 (26) 

Inserting Equation 8 and 20 for the electron hole concentration, p, will give partial p-

type conductivity with pressure dependencies in dry and wet conditions, respectively. 

In the characterization of fuel cell components, and electrodes in particular, it 

is important to bring the contributions from the various charge carriers to the 

electrolyte conductivity under control. If the electrolyte exhibits a mix between two 

or more charge carriers, the reactions at the electrodes will be affected accordingly. 

3.2 Red-ox potential 

Electrode reactions most often occur across a phase boundary. In solid state 

electrochemistry, reactions take place not only over the electrode / electrolyte phase 
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boundary, but also at the interface between the electrode and the gas phase. The 

reduction of an adsorbed hydroxyl by the transfer of one electron at a metal electrode 

is an example: 

)surfaceelectrode(OH)surfaceelectrode(OH)metal(e   (27) 

The difference in potential of the electron in the metal (the Fermi level) and in 

the available orbital of the hydroxyl molecule constitutes a driving force towards 

equilibrium where difference in chemical potentials, μ, is balanced against 

difference in electric potential, . The sum of these two potentials is called the 

difference in electrochemical potential, ~ .  

zFii
~   (28) 

If adsorbed hydroxyls are considered to be in equilibrium with the surrounding 

oxygen gas and water vapor, the chemical potential of adsorbed OH can be written: 

)()()( 22
24 gOHgOadsOH  (29) 

The chemical potential of a reactant, i, is related to its activity through 

)ln(0
iii aRT   (30) 

One can thus write for oxygen gas 

0
2

20
)()( ln

22 pO

pO
RTgOgO  (31) 

and for water vapor: 

0
2

20
)()( ln

22 OpH

OpH
RTgOHgOH  (32) 

For the transfer of one electron between electrode interior and the adsorbed hydroxyl, 

we have for the change in electrochemical potential: 
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)()()(
~~~

metaleadsOHadsOH
 (33) 

By inserting Equation 29 in Equation 33, the electrochemical potential change is 

)(

)()(

)(
~

24
~~ 22

metale

gOHgO

adsOH
 (34) 

Equilibrium is reached when 0~ , and hence:

)()(

)()( ~~
24
22

adsOHmetale

gOHgO  (35) 

If we now want to relate the equilibrium potential to pO2 and pH2O, we insert 

Equations 31 and 32: 

)()(2

0
)(

2

0
)( ~~)ln(

22
)ln(

44
22

adsOHmetale

gOHgO OpH
RT

pO
RT

(36) 

, which can be simplified to 

)()(
2

1

2
4

1

2

0
)(

0
)( ~~ln

24
22

adsOHmetale

gOHgO OpHpORT (37) 

To separate the chemical and electrical potentials, we use the relation given in 

Equation 28 and get 

)(

0

)()(
0

)(
2

1

2
4

1

2

0
)(

0
)( ln

24
22

OHadsOHmetalmetale

gOHgO FFOpHpORT  (38) 

Here, 
)(OH
 is the electric potential felt by the electron in the OH orbital most likely 

to be occupied. The difference in electric potential is thus 

2
22

0

)(

0

)(
0

)(
0

)(

)()( ln
424

22 OpHpO
F

RT

FFFF
adsOHmetalegOHgO

OHmetal (39) 

, or 
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2
22

0 ln
4

OpHpO
F

RT
 (40) 

, where 0  is the standard half-cell potential. The electric potential, , is the 

potential difference for electrons in the electrode orbitals versus in the available 

orbitals of the adsorbed hydroxyls. Equation 40 yields the Nernst equation for the 

electrode half-cell reduction potential. 

3.3 Reaction rate expressions 

When elementary reaction steps take place between gas phase and surface, on 

the electrode surface, between electrode bulk and adsorbates, and between the 

electrode and the electrolyte, there are energy barriers to overcome. The electron 

orbitals in the metal electrode are prone to be extended somewhat beyond the 

outermost atomic layer at the surface as a result of kinetic energy. This extension can 

induce a dipole layer where adsorbed molecules, atoms or ions are oriented in one 

direction, causing electrostatic repulsions towards adsorption of reactants and transfer 

of charged species. The adsorption layer is charge compensated in the outermost 

electrode layers by accumulations or depletions of electrons and thereby changing the 

work function of the electrode [31]. The build-up and discharge of these surface 

dipole layers are seen as capacitive contributions to the electrochemical current, and 

will contribute to the polarization of the electrode. In addition there is a double-layer 

impedance with interfacial accumulations or depletions of charge carriers giving rise 

to capacitive current at the electrode / electrolyte interface. 

For a current to pass, thermal or electrical energy must be supplied to 

overcome these barriers. This activation energy (EA) can be determined by the 

temperature dependency of the electron transfer rate (Figure 3-4). 
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Figure 3-4: Energy diagram of electron transfer in a red-ox process. 

When studying electrode reactions, as the one in Equation 27, we are 

interested in current vs voltage relations. The current is proportional to the reaction 

a current is running 

determines the resistance of the investigated process over which the potential drop is 

measured. Therefore, we seek to describe the reactions by their rates at given applied 

potentials and partial pressures 

RT

nFE
ka

RT

nFE
kar y

red
x
ox expexp   (41) 

Here, the reaction is seen in forward direction upon reduction in cathodic operation, 

k+ and k - are rate constants in the forward and backward direction and n is number of 

electrons in the reaction. Since the chemical potentials are dependent on 

concentration, a concentration term, a, with reaction orders x and y for oxidized and 
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reduced species, respectively, is incorporated in the rate expression. As the surface 

coverage of one species is dependent on available adsorption sites and partial 

pressure of the adsorbing gas, it can sometimes also be useful to relate the surface 

coverage, and thus also the rate of the electrochemical reaction, to partial pressures of 

other adsorbing gasses that might affect the availability of adsorption sites. Most 

often, however, surface coverage dependencies of reaction rates are given at low 

surface coverages, where adsorption sites are abundant and competing absorbents are 

neglected.  

As seen earlier,  is the difference in electrical potential for the electrons in 

the electrode material versus in the available orbital of the oxidized adsorbate. 

Converted to energy, we thus have 

redOxF neEneEE 0  (42) 

, where e is the electron charge and 0
OxE  is the average energy of the adsorbate 

orbitals most likely to be occupied by the transferred electrons. Furthermore, an 

applied potential, , alters the potential of the metal by shifting its Fermi energy level, 

FE , relative to 0
OxE : 

00
0)( neEneEE redOxF   (43) 

The rate expression in Equation 41 can thus be written as 

RT

EnF
ka

RT

EnF
kar rednm

red
rednm

ox

)(
exp

)(
exp ,, (44) 

By inserting Equation 40 for Ered, the pO2- and pH2O-dependency of the half-cell 

potential can be merged with any possible concentration related pO2- or pH2O-

dependency given by nm
oxa ,  and nm

reda , . In this way, the partial pressure dependencies of 

the measured resistance can be compared with the theoretical dependencies of the 

reaction rate. If we simplify Equation 44 and multiply with F and the area, A, we have 

an expression for the electrochemical current density, i, which is a form of the Butler-
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Volmer equation. By convention, forward direction is now anodic operation. The 

pO2- and pH2O-dependencies are incorporated in the exchange current density, i0. 

RT

nF

RT

nF
iAi expexp0  (45) 

Here,  and  are coefficients related to the symmetry of the energy barrier in anodic 

and cathodic direction, respectively. For a one-electron process,  +  = 1. 

The rate expression (Equation 44) can be used also for other elementary 

electrode steps than the electron transfer in Equation 27, making it possible to relate 

current, potential and measured partial electrode resistances to partial pressures of the 

reactant gasses. 

3.4 Electrochemical processes at the oxygen 
electrode 

The electrochemical red-ox reaction at the oxygen electrode is a multistep 

process, in which several species can be involved, and where the rates of each 

reaction step is dependent on the physical properties of the electrode materials as well 

as on the concentrations of, interactions between and mobilities of the involved 

species. Normally these processes are divided into two sub-groups; one involving all 

types of adsorption, desorption and diffusion of reactants and products, both in gas 

phase, on surfaces and in electrode interior, and another one describing processes of 

exchanging charge across different interfaces. These two divisions of processes will 

from now on be abbreviated d (diffusion) and ct (charge transfer). 

In a PCFC, water is formed on the cathode side, and hence there will be 

ambient H2O in the vicinity of the triple phase boundary (tpb). There are several 

interaction possibilities between the electrode surface, electrolyte surface, H2O and 

O2.  

The overall reaction in the PCFC oxygen electrode is: 
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O(g)2H4e4H(g)O 22  (46) 

This can be divided into a series of elementary reaction steps, first presented by 

Uchida, Tanaka and Iwahara in 1984 as a five-step process [32]. Later, the reaction 

series has been elaborated [26], suggesting a reaction series divided in eight steps 

(Table 3.4-1): 

Table 3.4-1: PCFC elementary cathode reaction step series [26] 

Reaction step Elementary reaction m n

1 adsOgO 2)(2 1 0 

2 adsads OeO 3/8 0

3 TPBads OO 1/4 0 

4 2
TPBTPB OeO 0 0

5 2

eelectrolyteelectrolyt
OHOH TPB 0 1/2 

6 TPBTPBTPB OHHO2 0 1/2

7 TPBTPBTPB OHHOH 2 0 1 

8 )(22 gOHOH TPB  0 1

The columns m and n in Table 3.4-1 give the reaction orders, nm OpHpOR 22  

for the resistance associated with each elementary reaction step. These reaction orders 

are commonly used to assign polarization resistance to one or more of the suggested 

reaction steps. By doing so, it is important to bear in mind that these reaction orders 

are theoretical, valid at low surface coverages only and that real systems are affected 

also by other processes, such as electrostatic repulsions from adsorbed species [33] 

and competitive adsorption behaviour involving also other gaseous species. Still, the 

logarithmic pO2-and pH2O dependencies give valuable information regarding the 

nature of the rate limiting reaction step. 
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Table 3.4-1 presents a simplified reaction series, where step 3 describes the 

transport of O- from the electrode surface to the TPB without further elucidation of 

the transport mechanism. In reality this transport can be facilitated in several ways. O 

can diffuse neutral, singly- or doubly charged, and even as hydroxyls or hydroxide 

ions on the electrode surface. It can also be transported in parallel to the surface 

diffusion as O2- through electrode bulk and out at tpb if the electrode material is an O-

MIEC.  

An example of a more elaborated reaction path for a PCFC composite cathode 

has recently been suggested. In the study, it is reported that an oxide ion conductor 

such as Ce0.8Sm0.2O2-  (SDC) can cooperate with an electrocatalytic O-MIEC such as 

Sm0.5Sr0.5CoO3 (SSC) to work as a composite cathode on a PCFC with a 

BaCe0.8Sm0.2O3-  (BCS) electrolyte, and that this composite improves cathode 

performance as compared to a composite electrode with a proton conductor as ionic 

component. To explain this unexpected phenomenon, a series of reaction steps is 

presented that involves the transfer of OH- across the electrolyte / electrode interface, 

moving from a regular O site in the proton conducting electrolyte, leaving an oxygen 

vacancy in the electrolyte and an interfacial surface hydroxide: 

OinterfO vOHOH  (47) 

As there is fast oxide transport in the electrode material, the electrolyte vacancy is 

rapidly consumed and transferred to the electrode material by the transfer of one O2- 

from the electrode to the electrolyte: 

O(cathode)
-2

yte)O(electrolyte)O(electrol
-2

O(cathode) vOvO  (48) 
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Figure 3-5: The schematic diagrams showing the different cathode reaction 
models of (a) SSC+BCS and (b) SSC+SDC. With SSC+BCS, oxygen is 
reduced and water is formed at the same sites (H-TPB). With SSC+SDC, 
oxygen is reduced at O-TPB while water is formed at interface site where 
proton and oxygen-ion are available. Oxygen reduction and water 
generation also occurs at H-TPB confined to the interface of SSC+SDC 
[34]. 

In this way, a net transfer of one proton has taken place, assisted by the oxide ion 

conducting electrode material [34]. The suggested reaction series is presented in 

Table 3.4-2. 
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Table 3.4-2: PCFC elementary cathode reaction series for an O-MIEC / 
oxide ion conductor composite electrode with pO2 and pH2O reaction 
orders m and n [34]. 

Reaction 
step 

Elementary reaction m n 

1. adsOgO 2)(2  1 0 

2. adsads OeO 3/8 0 

3. TPBads OO 1/4 0 

4. 2
TPBTPB OeO 1/8 0 

5. 2
)()(

2
TPBOTPBOTPB OvO 0 0 

6. )(
2

).().(
2

TPBOelectrodeinterfOcathodeinterfOTPB vOvO 0 0 

7. eelectrolytinterfeelectrolytbulkO OHOH .).( 0 1/2 

8. )()( ctrolyteinterf.eleOinterfacectrolyteinterf.eleO vOHOH 0 1/2 

9. )(
2

)(
2

).().( electrodeOeelectrolytOelectrodeinterfOeelectrolytinterfO vOOv 0 0 

10. 2
)(2)( ctrolyteinterf.eleOinterfaceinterfacectrolyteinterf.eleO OOHOHOH 0 1 

11. )(22 gOHOH interface  0 1 

The reaction series in Table 3.4-2 is more elaborate than the series presented in 

Table 3.4-1, but nevertheless, it bears the same weaknesses regarding transport 

mechanisms and reactant interactions, even though Table 3.4-2 present a new 

perspective on the interfacial charge transfer reaction. The kinetic models in Tables 

3.4-1 and 3.4-2 are, however, insufficient when an elementary reaction step has m 

and n , which can easily be the case, especially for surface reactions. It is also 

worth noting that while in Table 3.4-1 m for reaction step 4, electron transfer is 

reported to be 0.  Table 3.4-2 claims it to be 1/8. This disagreement is not pursued 

here. 

3.5 Impedance spectroscopy 

3.5.1 Impedance 

The electric double layer at the electrode / electrolyte interface contributes to 

the polarization, constituting a charge transfer resistance (Rct) and a double layer 
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capacitance (Cdl). Surface exchange, accumulation of adsorbates and interaction 

between these causes polarization of the surface layers, and this polarization can, as a 

first approximation, be described as a parallel combination of a resistor and a plate 

capacitor [33]. The surface related capacitance and resistance will in this work be 

Cd) and Rd), respectively.  

The accumulation and depletion of charge in the double layers at the surface 

and electrode / electrolyte interface exhibit discrete relaxation time constants, . 

When performing electrochemical impedance spectroscopy (EIS), a small AC 

perturbation with frequencies corresponding with  gives a phase shift between 

current and potential, , and the complex relation between relaxation and phase shift 

is simplified through Fourier transforms of the current and voltage from the time to 

the frequency domain. By doing this, the AC current potential relation becomes 

 

)(/)()( jIjUjZ (49)

The impedance of the double layer is well represented by a parallel combination of a 

resistor and a capacitor, where Z( ), is related to capacitance, C, and resistance, R, 

through 

222

2

1
)(

CR

CRjR
ZRC (50) 

It can be seen from Equation 50 that at DC conditions, RDCZR )(  and that a pure 

capacitive impedance (or reactance) is )/(1)( CjZC . Furthermore, Z( ) can be 

expressed by its real and imaginary components: 

///)( jZZZ (51)

And by plotting the impedance with polar coordinates, we can see the relation 

between impedance, |Z|, and phase angle: 
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Figure 3-6: Impedance as a planar vector, using polar and Cartesian 
coordinates. 

The real and imaginary parts of the impedance are thus related to the phase angle 

through 

)cos(/ ZZ (52)

and 

)sin(// ZZ (53)

In a Nyquist plot, Z/ and Z// are plotted over a given frequency range, where 

the phase angle and total impedance at every frequency determines the imaginary and 

real components. The time constant can be related to the peak angular frequency 

through  

p

1
 (54) 

The double layer and diffusion capacitances arises from 

appear as two distinguishable semi circles in the Nyquist plot, and  is related to a 

combination of a capacitor and a resistor through [35] 
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RC   (55) 

3.5.2 Deconvolution, equivalent circuits and circuit elements 

When performing EIS, impedance data are obtained, containing information 

about specific parts of our measured system. The data are fitted to equivalent circuits, 

with circuit elements like capacitors and resistors mathematically simulating the 

dielectric properties of the system. In the following, an overview of the equivalent 

circuits and elements chosen for the studies included in this work is given. 

The relation between the relaxation time constant, resistance and capacitance 

presented in Equation 55 holds only for a situation where a reaction step has one 

defined . On an electrode surface, there is a radial distribution of reaction sites as 

well as local currents and potentials, and hence also a distribution of s. One must 

also assume that surface defects and different crystallographic orientations makes the 

surface nonuniformly active towards adsorbates [35]. Finally, there are numerous 

ways of interaction between the surface and the different gas phase species, involving 

surface exchange, red-ox and chemical reactions that are not part of the reaction 

series described in Tables 3.4-1 and 3.4-2, all giving rise to an even wider distribution 

of s. In deconvoluting the impedance data, this distribution of time constants can be 

represented by a constant phase element (CPE). The impedance of a CPE can be 

expressed as 

nCPE jY
Z

)(
1

0

 (56) 

The values of Y0 and n are related to the CPE in such a way that Y0 gives the 

value of the capacitance of a pure capacitor if n = 1. The value of n is related to the 

phase angle, and for 10 n , the CPE yields a pseudo-capacitance (Cp) which can be 

calculated from 

1
11

0
nn

p RYC  (57) 
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There are, however, some limitations to the use of a CPE to represent the sum 

of electrode surface processes. The first is that the CPE assumes a continuous 

distribution of s. Secondly, and maybe more important for studies of electrode 

surface reactions, it is only realizable at a finite range of frequencies, as the   0 

limit for ZCPE does not exist [36]. This implies that surface processes with long 

relaxation times and low peak angular frequencies are not well defined by the CPE. A 

multi-step process element like a Gerischer element will be more appropriate in 

representing these lower frequency reaction steps [37]. A Gerischer element 

effectively accounts for distributed chemical-electrochemical (CE) reactions [37, 38], 

and should be well suited, given the variety of interaction possibilities that adds to the 

electrochemical oxygen reaction on a PCFC cathode. The complex impedance 

associated with a Gerischer element (ZG) can, in the simplest form, be calculated 

according to 

jkY
ZG

0

1
)(  (58) 

Here k represents the effective transfer rate for the chemical part of the CE 

process [39] with units s-1, and Y0 is for the Gerischer element the electrochemical 

admittance at  = 1 rad·s-1/2, taking values of S·s-1/2. A schematic representation of a 

Gerischer-like transmission line is shown in Figure 3-7.  

Figure 3-7: Gerischer transmission line with distributed chemical / 
electrochemical reactions. 
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The Gerischer element gives a response recognizable in the complex 

impedance spectrum as a characteristic drop-shaped curve, and at DC, Equation 58 

reduces to 

kY
ZG

0

/ 1
)0(  (59) 

The choice of deconvolution model and circuit elements should be subject to 

careful considerations, as oversimplifying can give misleading or insufficient 

information, whereas a more complex model can suffer from correlated parameters or 

give too many local minima in the iteration process. The representation generally 

chosen in our studies is based on the Randles-type equivalent circuit [40] with Cdl and 

Cd in parallel, as opposed to the commonly used series of two parallel RC 

combinations. The Gerischer element is added in series after the Randles circuit in 

order to account for the low frequency responses. 

One challenge encountered when studying the electrode processes, is to 

 [41]. To assume pure 

ionic conduction in the electrolyte renders that all transport of charge undergoes an 

electrochemical red-ox process at the electrodes, and implies that the measured data 

are represented by an equivalent circuit consisting of only one charge carrier 

pathway. The true situation, however, can easily be such that the transport of charge 

through the electrolyte is mixed between ionic and electronic species, given 

measurement conditions. Such a mix of charge carriers will affect the resolved value 

of the total Rp, as electrons may pass through the whole system without participating 

in an electrochemical reaction, thereby creating a charge carrier pathway parallel to 

the electrochemical transfer of charge and mass. Hence, a T, pO2 or pH2O 

dependency can easily be misinterpreted as arising from an electrode process alone 

when it, in fact, could reflect a relative change in the electronic / ionic conductivity in 

the electrolyte. In modelling electrode behaviour, this issue is addressed by two 

different approaches. The simplest way is by representing the total system with an 

equivalent circuit consisting of a separate electronic rail in parallel to the sum of the 

circuit elements representing ionic transport (electrolyte) and electrochemical 
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processes (electrodes). The number of free parameters in the equivalent circuit 

representation should be limited by applying a fixed ratio between the ionic (Rion) and 

electronic (Rel) resistances in the electrolyte based on separate measurements. The 

relation between partial and total electrolyte resistances is  

elion

el.l 11
1

RR

R  (60) 

Rel.l 

Nyquist plot. Figure 3-8 shows the deconvolution model. 

Figure 3-8: Equivalent circuit model based on a Randles-like circuit in 
series with a Gerischer element and in parallel with an electronic "leaky 
current" rail. 

Another way of handling partial electronic current in the electrolyte is by 

deconvoluting impedance data without the parallel electronic rail. In this case one 

must recognize that the measured resistances are in fact parallel combinations of 

resistances in the electronic and ionic current paths, weighed by their electrolyte 

partial conductivities. Measured partial resistances are thus only apparent resistances 

and modelling of the individual charge carrier partial resistances is necessary. In 

manuscript I, the model shown in Figure 3-8 is used, and in manuscripts III and V, 

the impedance data are deconvoluted without electronic rail and a novel method for 

modelling partial resistances in mixed conducting systems is presented. 
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Manuscript I4.

Development of Proton Conducting SOFCs Based on LaNbO4 
Electrolyte  Status in Norway
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Manuscript II5.

A Pt point contact electrode on proton conducting Ca-doped 

LaNbO4 studied by impedance spectroscopy and XPS 
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Manuscript III 

Reaction kinetics of protons and oxide ions in La0.8Sr0.2MnO3 / 

lanthanum tungstate SOFC / PCFC cathodes with and without Pt 

nanoparticle activation 
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Manuscript IV6.

La2NiO  as oxygen electrode on lanthanum tungstate electrolyte 
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Manuscript V7.

Gd- and Pr-based double perovskite cobaltites as oxygen side 

electrodes for proton ceramic fuel cells and electrolyser cells. 
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Summarizing discussions8.

In this part the aim is to highlight and discuss the specific objectives assigned 

in the study of the oxygen electrode. The manuscripts address different topics, but the 

central objectives might be addressed from different angles throughout the 

manuscripts. Some results not included in the manuscripts will also be presented here, 

as they bring additional information and help to put the different parts presented in 

the manuscript into a larger perspective. What are the characteristics of the reaction 

kinetics at the proton conductor oxygen electrode, and what demands do these 

characteristics put on materials properties? What is the role of water in the oxygen 

red-ox reaction series? How can we optimize the electrode microstructure to facilitate 

the most efficient reaction path? What are the effects of non-faradaic partial 

electronic conductivity in the electrolyte and what means of interpretation do we 

utilize to meet this challenge under various experimental circumstances? And finally: 

Have we through our investigations been able to present new and promising oxygen 

electrode materials for proton conducting fuel cells or electrolyzer cells? 

8.1 The oxygen red-ox reaction 

8.1.1 Rate limiting reaction steps 

We have shown through all five manuscripts that the overall oxygen electrode 

reaction is rate limited by reaction steps at the electrode surface in temperature ranges 

where protons dominate the charge transport. For the Pt model electrode investigated 

in manuscript (II), surface diffusion was shown to be rate limiting in the temperature 

interval 600-700°C. The charge transfer reaction was fast, yielding a low partial 

resistance, Rct, as compared to the diffusion resistance, Rd. The same diffusion limited 

behavior is seen for the PCFC reaction on Pt-modified LSM in manuscript (III), 

though for this system with a somewhat higher relative contribution from charge 

transfer resistance. The investigations in (III) did not conclude with which of the 

elementary surface steps that was rate limiting, but there was a gradual shift in 

apparent activation energy for the rate limiting surface step from high to low 
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temperatures. This  is explained by a parallel 

combination of surface processes s and different slopes for 

reactions associated with transport of protons and oxide ions, where the first 

dominates at high temperatures and the latter at low. The relative change in charge 

carriers in the electrolyte over the investigated temperature range will thus give the 

gradual shift in the slope of the logarithmic plot of combined resistances for protons 

and oxide ions versus inverse temperature. The proton related surface process on Pt-

modified LSM was modelled and fitted to the experimental data with an activation 

energy of ~90 kJ mol-1. This can be compared to the activation energy of 105 kJ mol-1 

for OH surface diffusion on Pt obtained in (II). The activation energies for the PCFC 

surface reactions in (II) and (III) are comparable. Both Pt and LSM are pure 

electronic conductors in the respective temperature ranges, and the diffusion of 

oxygen species at the electrode is thus a surface process for both materials. In (II) this 

diffusion is shown to be via surface hydroxyls. The possible splitting of water and 

formation of surface hydroxyls on the LSM electrode is not investigated in (III). 

The same shift in apparent activation energy over a wide temperature window 

is also seen for the double perovskite MIEC BaGd0.8La0.2Co2O6-  (BGLC) electrode 

on BZCY72 electrolyte in manuscript (V). The oxygen reduction reaction on this 

material is also rate limited by surface processes, especially at temperatures lower 

than 600°C. BZCY72 is also, like LWO56, a mixed ionic conductor dominated by 

protons at low temperature. At higher temperatures and under oxidizing conditions, 

charge transport in BZCY72 is dominated by oxide ions and electron holes. The 

charge transfer and surface processes for BGLC on BZCY72 are therefore also 

combinations of SOFC and PCFC reactions. Parallel transport of oxide ions and 

protons makes it useful to fit each measured partial electrode resistance to a 

. The PCFC surface 

reaction, dominating polarization resistance at low temperatures exhibit an activation 

energy of 50 kJ mol-1. This is about half the activation energies for the PCFC surface 

reactions on Pt and LSM, suggesting that the surface reaction involving protons on 

BGLC is easier and faster than on the pure electron conductors. 
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BGLC is an O-MIEC, and at high temperatures where oxide ions and electron 

holes dominate the charge transport in BZCY72, charge transfer and diffusion 

resistances give equal contributions to Rp. The activation energies for the surface 

processes are lower than for the electrodes in (II), (III) and (IV) both in high 

temperature SOFC and low temperature PCFC operation. All the O-MIEC double 

perovskites in (V) exhibit orders of magnitude lower polarization resistances than for 

the pure electron conducting LSM in (III) and mixed conducting LNiO.  

The high temperature reactions in (III), (IV) and V are SOFC reactions and can 

as such be compared when evaluating the differences between O-MIECs and a pure 

electron conductor for the oxide ion conducting regime. The mixed conducting LNiO 

in (IV) has two comparable components of Rp arising from charge transfer and 

oxygen incorporation. LSM is close to purely electronically conducting over the 

measured temperature range in (III) and only at the highest temperatures is the 

The activation energy for the SOFC surface reactions on LSM and LNiO in (III) and 

(IV) is around 150 kJ mol-1 for both materials. The reaction mechanisms, however, is 

most probably different, being surface exchange or surface transport related for the 

first and oxygen incorporation for the latter. 

The double perovskite MIECs in manuscript V all provide fast oxygen kinetics 

at the electrode surface. The surface related resistance for oxide ions in BGLC is as 

low as 100 kJ mol-1. In the oxide ion dominated temperature range, Rp is dominated 

by both charge transfer and diffusion resistance. 

To be general, the investigations suggest that the surface reaction of a PCFC 

cathode exhibits lower activation energy than the surface reaction in an SOFC 

cathode. So why then the higher polarization in the PCFC-regime? 

The results in (III) and (V) suggest attempt rates, i.e., the pre-exponentials of 

1/Rp, increased by orders of magnitude for the high temperature SOFC reactions. In 

(III), the attempt rates are higher for the SOFC surface reaction only, while the charge 

transfer reaction exhibits similar (low) attempt rates for protons and oxide ions. This 
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may be caused by the pure electron conducting LSM, forcing both protons and oxide 

ions through the tpb only. The surface reaction, on the other hand, is a distributed 

reaction but only at high temperatures is LSM partly O-MIEC. The partial oxide ion 

conductivity increases the active surface area and thus also the surface attempt rate as 

compared to in the PCFC reaction at lower temperatures. 

In (V) the attempt rates are orders of magnitude higher for the SOFC charge 

transfer and surface reactions as compared to the equivalent PCFC reactions. The 

results indicate that the SOFC reactions are more distributed than the PCFC reactions, 

probably due to better O-MIEC than P-MIEC properties of BGLC. Hence, a 

development of microstructure through porous composites or nano structuring is 

needed to facilitate the PCFC operation. 

8.1.2 The effect of ambient water 

The first and obvious characteristic of the proton conductor oxygen side 

electrode reaction is the forming of water from reduced oxygen and protons in 

cathodic operation, and the oxidation of water to oxygen gas and protons in anodic 

operation. These reactions are facilitated either on the electrode surface or on the 

triple phase boundary between gas phase, electrolyte and electrode materials. On a 

pure electron conducting electrode material, the cathodic and anodic oxygen to water 

reaction is generally accepted as being a two-proton transfer process at the tpb. 

Manuscript II suggests a one-proton transfer process at tpb and presents a detailed 

kinetic model to describe each elementary reaction step in the oxygen reaction on 

such a pure electron conducting electrode material. This model, along with 

spectroscopic data, reveals that Pt is catalytically active towards splitting of H2O at 

temperatures as low as 700°C, yielding surface hydroxyls that enter the oxygen 

reaction line. The H2O produced at tpb is recycled into the oxygen red-ox reaction, 

acting both as reactant and product. This adds new insight to the universal description 

of the electrode process on the proton conductor oxygen electrode, where water is 

present as reaction product.  



187

The effect of water vapor on the oxygen electrode reaction was also measured 

at high and low temperature in manuscript V. In the temperature range where the 

ionic current is purely protonic, BGLC on BZCY72 showed increased 

electrochemical performance when shifting from dry to wet atmosphere at 400°C. In 

additional measurements not included in manuscript V, BaPrCo2O6-  (BPC) showed 

the same increase in performance in wet atmosphere at 400°C. In manuscript V we 

present hydration studies of four double perovskites, where only BGLC showed 

weight gain upon exposure to ambient water. The results of the dry to wet switch on 

BGLC and BPC electrodes at low temperature indicate that also for MIEC electrodes, 

water acts as both reactant and product in the electrode process. This is the case even 

though hydration is not seen in separate measurements, as in the case of BPC. At 

higher temperatures, however, water appears to impede the electrode reaction. 

BZCY72 shows a transition from proton to oxide ion conduction at higher 

temperatures, and for this electrolyte, the dependency of the electrode reaction rate on 

ambient water at 650°C is negative for both BPC and BGLC electrodes. Nyquist plots 

with dry to wet switch for BPC are given in Figures 9-1 and 9-2 for 400 and 650°C, 

respectively. The sweeps at 400°C are taken at pO2 = 1 atm and the sweeps at 650°C 

are taken at pO2 = 3.8·10-4 atm. The findings in manuscripts II and V conclude that 

water enhances the electrode reaction for the protonic oxygen-side electrode reaction 

both for a pure electron conductor, an O-MIEC, and a P-MIEC electrode material. 

Manuscript V also concludes with water impeding the electrode reaction rate when 

the ionic current is partly by oxide ions. 
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Figure 8-1: Dry to wet switch for the BPC electrode at 400°C and pO2 = 1 
atm. Electrolyte resistance is subtracted. 

Figure 8-2: Dry to wet switch for the BPC electrode at 650°C and pO2 = 
3.8·10-4 atm. Electrolyte resistance is subtracted. 
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8.2 Microstructure 

In the four experimental manuscripts (II V), microstructure is treated in four 

different manners. In (II), the kinetic model was investigated, and microstructural 

effects were thus eliminated by applying a model electrode with a defined triple 

phase boundary length. In (III), Pt nanoparticles were infiltrated in a coarse 

microstructure, thereby lowering polarization resistance at 650°C from 260 for the 

non- 2 for the Pt-infiltrated electrode. The aim in (III) was to see 

the qualitative effect of infiltration, and given the positive effect, an increase of Pt 

load or the use of alternative oxide nano-sized catalysts such as cobalt oxide might be 

ways to further optimize the performance. 

Manuscript (IV) addresses the well-established method of microstructural 

improvement by mixing electrolyte and electrode materials in a ceramic-ceramic 

composite electrode. We tested different ratios of LWO56 / LNiO and compared with 

the pure LNiO electrode. The results showed that inclusion of the electrolyte phase in 

the LNiO electrode phase did not lower polarization resistance in this case. 

In (V) we applied a functional electrode layer by dripping a suspension of ball-

milled MIEC electrode powder onto the sample surface before screen-printing a 

coarser electrode layer on top. The result was a graded microstructure with a well-

sintered, fine-grained functional layer, displaying apparent polarization resistances of 

0.05 and 10 2 at 650 and 350°C, respectively. The functional layer can be further 

optimized with respect to particle size, layer thickness and temperature treatment. 

The fine-grained suspension can be applied also by spray coating, and the method is 

thus well suited for up scaling to industrial scale. In the end, infiltration as in (III) in a 

functional layer as in (V) will give the optimal functionality with respect to 

microstructure, given the importance of the tpb length for the PCFC oxygen 

electrode. 
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8.3 Effect of partial electronic conductivity 

In manuscript II, one of the pitfalls that are often overlooked when studying 

electrode performance is addressed. Many ceramic proton conductors exhibit mixed 

electronic / ionic conductivity at elevated temperatures and oxidizing conditions, and 

the non-faradaic flow of electronic charge carriers (current not undergoing a red-ox 

reaction at the electrodes) in the electrolyte is increasing with temperature and 

oxygen partial pressure relative to the ionic transport. If this partial electronic 

conductivity is not handled properly, it can lead to misinterpretations of the 

governing electrode processes as well as erratic conclusions on electrode 

performance. Erratic activation energies might in this case be calculated from 

ln(1/R) vs. inverse temperature. When the high temperature 

current is partly non-faradaic and the low temperature current is purely faradaic, the 

faradaic part, which is limited by electrode performance, must be treated separately in 

the interpretations of impedance data, and the non-faradaic current must be seen as 

running in parallel to the ionic. Under PCFC / PCEC operation, the electronic 

conduction in the electrolyte is ideally blocked by the reducing conditions at the fuel 

side, and the electrode polarization will thus be higher than what is seen in pure 

electrode measurements in oxidizing conditions.  

In manuscript II, we present a deconvolution model with a parallel electronic 

rail used to resolve the partial resistances adding up to the polarization resistance 

after correcting for partial non-faradaic current. The model gives values for 

polarization resistance more in accordance with what will be expected under PCFC 

operation conditions. 

In Manuscript III and V we present a more elaborate method for modelling 

partial polarization resistances in mixed conducting systems. The model enables us to 

see how the individual charge carriers participate in the polarization of the electrodes 

and in (V) we see how the non-faradaic current diminishes the polarization when 

measuring in oxidizing conditions. What can be seen by modelling of partial 

resistances is that the apparent polarization resistance, measured in oxidizing 
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conditions is approximately one order of magnitude lower than what will be expected 

under operation in a PCFC / PCEC at 650°C. At lower temperature, the leaky current 

is smaller, and the measured results are more in accordance with expected resistances 

as they would appear under operation. 

8.4 Materials 

The BaZr1-x-yCexYyO3 (BZCY) electrolyte is the state-of-the-art material class 

for PCFCs. MIECs materials such as Sm0.5Sr0.5CoO3 (SSC), Ba0.5Sr0.5Co0.8Fe0.2O3-  

(BSCF), La0.6Sr0.4Co0.2Fe0.8O3-  (LSCF), PrBa0.5Sr0.5Co0.8Fe0.2O , 

GdBa1-xSrxCo2O5+  and the family of LnBaCo2O  (Ln = La, Pr, Nd, Sm and Gd) 

have all shown good performance on this electrolyte. In Figure 9-3, we compare 

some of the best reported oxygen electrodes on BZCY / BCY [19, 22, 43] with our 

reported results for the LSM electrodes in (III), LNiO in (IV) and BGLC in (V). It 

must be noted here that the values are apparent Rp p-type 

contributions 

Figure 8-3: Rp vs 1000/T for LSM (III), LSMPt (III) and BGLC (V) compared 
with other cathode materials reported for PCFC application. 
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At 700°C, Rp for BGLC is close to reported values for BSCF and BGCF. Our 

studies in (V), however does not support such high performance for BGCF. And 

BSCF has, as earlier mentioned, proven not to be chemically stable. The results for 

BGLC are, to the best of our knowledge, the best so far for a chemically stable 

electrode material on a proton conducting electrolyte. The other materials, BPC, 

BPCF and BGCF, investigated in (V) are also among the best reported materials, 

though not as good as BGLC. The LSM and LNiO electrodes show much higher 

polarization, but it must be noted that they are tested on LWO electrolyte. This 

material exhibits close to pure ionic conductivity, and as shown above, the 

considerable p-type conductivity of BZCY shifts the polarization down around one 

order of magnitude as compared to under operation conditions for this electrolyte 

material. Still, the best MIEC electrodes would outperform even the Pt-impregnated 

LSM by one order of magnitude also after accounting for the effect of non-faradaic 

current. 
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Conclusions9.

The investigations have revealed new knowledge on reaction mechanisms, 

electrochemical properties and materials requirements for the PCFC cathode. The 

kinetic reactions steps at a pure electron conductor electrode have been described 

using a Pt electrode on a proton conducting electrolyte. For the first time, the role of 

ambient water as reactant in the cathodic oxygen reduction reaction is included in the 

reaction series, where the positive effect of ambient water on the cathodic reaction 

rate is explained by the formation of surface hydroxyls. The positive effect of 

ambient water is shown for a pure electron conductor, an O-MIEC and a P-MIEC 

electrode material on proton conducting electrolytes. The effect on ambient water of 

the cathode reaction rate is shown to be negative when the electrolyte is mainly oxide 

ion conducting. 

The effect of microstructural improvements on electrode polarization has been 

shown through infiltration of Pt nanoparticles, and fine-grained powder suspensions 

have been utilized for functional layer preparation in high-performing electrodes. 

A novel model for analyzing mixed conducting systems has been developed, 

enabling detailed descriptions and modelling of the simultaneous contributions from 

three types of charge carriers to electrolyte resistance and electrode polarization. The 

model presents a solution to measurement conditions-induced effect of partial 

electronic conductivity in the electrolyte, making it possible to model expected real 

polarization under operating conditions. The model also enables the simultaneous 

modelling of SOFC-like and PCFC-like electrode reactions in a system of mixed 

proton / oxide ion conductivity. 

New mixed conducting double perovskite materials have been investigated as 

PCFC / PCEC oxygen electrodes, revealing performances close to- and beyond- state-

of-the-art. The highest performing double perovskite material, BaGd0.8La0.2Co2O6-  

(BGLC) exhibits a hydration enthalpy of -50 kJ mol-1 and an apparent polarization 
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-2 at 650°C, and is suggested as a novel proton mixed ionic-

electronic conductor (P-MIEC).  

The objectives undertaken in the investigations have shown that a well 

performing PCFC oxygen electrode is within reach, given certain specific 

improvements. The activation energy of the pure PCFC electrode reaction is most 

probably sufficiently low, but the pre-exponential values are still too high, and should 

be lowered by around one order of magnitude. A distributed surface reaction zone 

will give lower pre-exponentials and thus higher attempt rates and overall 

performance. This can be achieved through microstructural improvements and/or by 

enhanced partial proton conductivity in the electrolyte material. BGLC shows P-

MIEC characteristics, and the search for improved P-MIECs should be emphasized. 

Conductivity and thermogravimetric studies, possibly coupled with isotope tracer 

diffusion studies should be undertaken on mixed conductors with sufficient A-site 

basicity (for perovskites) to facilitate hydration of native oxygen vacancies. With 

microstructural improvements, such as infiltration in a porous electrolyte backbone, 

the series of BaGd1-xLaxCo2O6-  (0.2  X 1) might be the new state-of-the-art PCFC 

oxygen electrode materials.
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