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Abstract

Social networks are systems that are generally composed of multiple entities
interacting with each other to provide a desired functionality. The inter-
actions between these entities can be modeled as graphs. Presenting these
interactions in terms of graph models allows system designers to not only
investigate and reason about their systems but also to design new solutions
and applications.

Real interaction data is required to build graph models. However, in
many scenarios it is di�cult to obtain real data because of restrictions, such
as privacy issues, scale of the system and administrative restrictions. There
has been done a great amount of work in the social graph crawling and mod-
eling �eld, however there has not yet been conducted a study of how di�erent
metrics behave when the graph size is changing, combining observations from
both modeling and sampling.

Our contribution with this work is mapping how degree, clustering co-
e�cient, closeness and betweenness distributions are a�ected by scale both
for Watts-Strogatz models and when sampling with Random Walk, Breadth
First Search and Metropolits-Hasting Random Walk. We argue that clus-
tering coe�cient distribution gets further away from the original values for
smaller graphs, and that the rest of the metrics are not a�ected by scale.
We also show that joint degree distribution metric is not under control of
Watts-Strogatz model.
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Nomenclature

BFS Breadth-�rst search

CC Clustering coe�cient

JDD Joint degree distribution

K-S Kolmogorov Smirnov

MHRW Metropolits-Hasting random walk

OSN Online Social Network

RW Random walk

RWRW Re-weighted random walk
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Chapter 1

Introduction

Online social networks (OSNs) are a modern phenomena that has exploded
in popularity the past years, with constantly new social sites popping up
and the old ones growing in range. The reason for this massive popularity
is simple - social networks are entertaining! They introduce a whole new
lifestyle, where you can either take an active part by writing blogs, posting
updates, pictures, marking your favourite movies, posting pictures of your
food (in fact, some of the restaurants - like the one illustrated in Figure 1.1,
have begun to ban custommers who apply any use of social media on their
food).

Figure 1.1 "When Food Instagramming gets Out of Control" (borrowed
from [MessyNessychic, 2013])

There are numerous online social networks with di�erent focus, such as
networking, dating, debating, knowledge sharing, travelling and more. The
most visited of them, according to [Google, 2011] is Facebook. Facebook de-
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scribe themselves as a social platform that " helps you connect and share with
the people in your life" (borrowed from [Facebook, 2013a]). Even though pri-
marily this is a network for connection, Facebook has many other features,
making it appealing for large crowd. With Facebook tools you can create
events, manage groups, send messages, chat, push photos and videos, sign
into a location, poke somebody, have video chats and so much more. Social
networks are entertaining. They are so intertaining that they become addic-
tive. Facebook has indeed become an important part of everyday life, with
millions (latest statistics from [Brain, 2013]) of users checking their Facebook
on daily basis - also popularly known as "the Facebook addiction", which
has in turn lead to numerous jokes, such as the image in Figure 1.2.

Figure 1.2 The Facebook-addiction e�ect (borrowed from
[Risen Sources, 2011])

1.1 Social network research

Social networks are an object of study in many �elds such as anthropology,
biology, economics, geography, information science, organizational studies,
social psychology, sociolinguistics and a number of other scienti�c and not-
so-scienti�c groups.

Studying social graphs can for example show how a disease will spread
amongst a population. For instance in�uensa virus is very contageous and
will therefore spread fast through the neighbors of neighbors further to their
neighbors - a typical breadth �rst search algorithm.

Commersial business have also started to take advantage of the potential
of social networks as well targeting users by their friend circles, interests and
gender.

Recently there has been a big case in the newspapers after Edward Snow-
den's leakages of top secret government documents, revealing that National
Security Agency is monitoring US citizens through their surveillance pro-
gram. The Prism program ([Guardian, 2013]) was tapping directly into user
data collected from the servers of social sites such as Google, Skype, YouTube
and Facebook.

Whom we have in our social networks apparently also control our mood.
Studies have shown that if a person is happy, his or her friends have a 25%
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higher chance of being happy (described in [Passmore, 2011]).

Social networks are good for spreading ideas and receiving inspiration for
new ideas. Networks with so called "weak ties", or bridges between clusters
of user groups are therefore more usefull for their users than tightly connected
networks where everybody knows everyone, as these users are more likely to
share same interests and views and therefore have less new ideas to share
with each other. On a sidenote, there exists a theory by Richard Dawkins
([Dawkins, 2006]) where ideas are using humans to populate, spread and
grow. In this case, human social networks play a big role in the evolution of
ideas.

Even though we usually associate social networking with leisure activ-
ities, they have a great e�ect on our carees as well by creating informal
connections not only with our coworkers, but also employers, potential em-
loyers and people working in the same �eld. How problems are solved, the
structure of organizations, whether or not individuals manage to achieve
their goals, job seeking and many more areas within our careers can all be
a part of our social networking. There have been built several social sites
speci�cally aimed at career networking, such as LinkedIn. Many workplaces
also encourage their employees to actively take part in programming forums
such as StackOver�ow, creating their own blogs, taking parts in conferences,
publishing papers and simply chatting with coworkers on local social sites
such as Yammer.

Social network analysis reveals networks' impact on Internet tra�c. The
results of such analysis can help improve robustness and security of social
networks, as well as mapping the e�ect they may have on Internet in the
future.

Facebook has recently launched a Beta version of Social Graph Search
(January 15th, 2013, [Facebook, 2013b]), making an interesting case of what
can be done with social network analysis. Facebook graph search results are
unique for each user, and include what your friends have shared with you on
the topic you are searching for (for instance which restaurants in Oslo were
recently visited by your friends who like rock music), and other information
that is publically available on the topic. From 1st of October 2013 it is also
possible to search for status updates your friends have shared. This feature
can be very usefull for creating a communal feeling, whenever you need to
borrow something, or want to know who of your other friends would like to
see the same movie noone you have spoken to wants to see, or if you need
someone to rent a place to, you can search for "posts of my friends who
<talk about the same thing as me>""
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1.2 Scale and properties of social graphs

The previous section has shown how important social network analysis is
for many �elds. Such analysis is however di�cult to perform in full scale,
since the networks have grown enourmously over the past years. Running a
simple algorithm on a full scale graph may turn out to be an impossible or
very time consuming task.

Instead, it can be very usefull to take a smaller sample or a model of a
graph, that posesses the same properties (the distribution of metrics) of the
original graph. By verifying that the algorithm works on the smaller scale
graph, we can predict the output of the same algorithm on the original full
scale graph. For instance, if the desired use of a social graph is to see how
an epidemics will spread among the population, we can extract a smaller
portion of the population - a so called representative sample, and run the
algorithm that will simulate the disease spreading. From the measurements
it is then possible to calculate how the same algorithm will behave on a
bigger scale.

There is unfortunately no single answer up to date for which metrics
to use for each individual experiment. The testers should always question
which properties of the graph their tests will a�ect, and adjust the metrics
preserved with scale consequently. It is however challenging to locate the
exact properties that should be preserved for each experiment. The challenge
also lies in replicating a graph in smaller size so that all of the desired
properties are preserved.

By studying the structure of social networks researchers attempt to repli-
cate the desired properties (metrics) of the original graph on a smaller scale.
In order to achieve a smaller replica of a large graph, various techniques such
as sampling and modelling have emerged. There however still is no single
commonly accepted solution, leaving many possible trails to explore in this
�eld.

1.3 Problem de�nition

One of the main issues with graph crawling algorithms today is that they
may produce graphs with signi�cantly di�erent topological properties from
the original graph. This can cause incompleteness of data and introduce a
bias to the sample - for instance it is in the nature of Breadth First Search
algorithm to oversample nodes with high degree, by traversing all neighbors
of a node before proceeding to the next level neighbors of neighbors (see
Section 2.3). It is therefore important for result precision to correct the
bias before analyzing the sampled graph. There are several ways to correct
bias, either with modifying the crawling algorithm or modifying the resulting
graph after the algorithm was run. Before correcting the bias however, it is
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essential to locate which algorithm produces which bias, and which metrics
this bias in turn will a�ect. There is no straight-forward way to do that
yet, other than by running the algorithm and studying metrics of interest.
Metrics most commonly measured when trying to estimate the algorithms'
bias are Node Degree and Clustering Coe�cient. Other metrics however
have not been given as much attention to.

Another technique of producing a smaller graph is modelling. The prob-
lem with modeling is that there is no way to control all the desired metrics
- models are built to take into consideration a handfull of metrics, giving
no guarantee for how the rest of the metrics will behave when scale for
modeled graph changes. Often model documentation only speci�es a few
of the metrics that are controled by that model, leaving the rest for the
reader/developer to �nd out.

1.4 Research questions

Taking into consideration problems with both sampling and modeling tech-
niques, we wish to investigate further and compare how metrics will behave
on graphs produced using both of the techniques, while we modify the size
of the graph. Our research is guided by the following questions:

1. "How do graph metrics change with scale?"

2. "Which sampling algorithm will perform better in regards to preserving
metrics when scaling?"

In order to answer our research questions, we need to �nd out which
metrics are controled by the model we are using, meaning which metrics we
can safely use for comparison, knowing that the values we get from our tests
are representative to any other graph built from the same model using the
same parameters.

Our intuition is that metrics distribution will get further away from the
original graph (become more imprecise) when graphs get smaller, since it
would be more di�cult to preserve the original properties when there are
less nodes.

1.5 Scope of the thesis

Given that our research questions are wide and can lead to numerous inter-
pretations and possible trails, it is important to �nd a scope that will be
reasonable to achieve within the time constrains of a master thesis. We will
look at the metrics' behavior both for the samples we obtain by di�erent
algorithms, as well as for constructed models to identify patterns in the be-
havior. We will only study samples of our Facebook BFS graph and model
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generated graph of equal size, and use one of the known models (Watts-
Strogatz) to determine the "default behaviour" of metrics. It would have
been interesting to compare di�erent real Facebook samples, however these
are di�cult to obtain due to Facebooks changed policies, a problem discribed
in more detail by [Gjoka et al., 2010].

We have compared graphs based on degree, clustering coe�cient, joint
degree distribution, closeness and betweenness metrics, however there are
many more metrics that could have been included, such as k-connectivity,
3K, likelihood, sampling algorithm's start node and more.

Is it safe to assume that the distribution of metrics in a sampled or
modelled graph will correspond to the original graph? Will the distribution
of metrics be di�erent for di�erent scales, but the metrics will still follow a
scaling rule? Will such scaling rule be usefull to researchers studying social
graphs? These questions are very important but also di�cult to answer.
This work brings us one step further by taking a closer look at sampling and
modeling and how the graph scale a�ects some of the metrics chosen.

1.6 Research approach

The aim of this thesis is to investigate how metrics behave when we reduce
the size of the graph. We apply both sampling and modeling techniques to
achieve smaller graphs, and then compare how the results vary for sampled
and modeled graphs. For experiments with graphs it is common to use the
term "ground truth" to describe the baseline for comparison - the original
graph that is either being sampled or modeled. For this project we operate
with two di�erent ground truths to run sampling algorithms on - a Bredth-
First-Search (BFS) sample with 10 000 nodes from Facebook data, and a
graph constructed based on Watts-Strogatz model, equal in size to the BFS
sample. The graphs we are working with are built of nodes that represent
users of the social graph, with links that show the users' connections in terms
of friendship.

Metrics describe structure and properties of a graph. By comparing met-
rics' distribution for two graphs it is possible to say how well they resemble
each other. Since the most commonly used metrics are clustering coe�cient
and node degree, we wish to expand the experiments to include a wider range
of metrics. The metrics we are studying in this thesis are degree (how many
friends a user has), clustering coe�cient (how close friends of a user are to
forming a clique), joint degree distribution (how triples of nodes of certain
degree are connected to each other), betweenness (amount of shortest paths
passing trough a node) and closeness (average distance from a node to all
other nodes).

Our experiments can be grouped into three steps:

1. Sampling
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The task �rst consists of running sampling experiments on our two
ground truths - BFS sample and Watts-Strogats graph. The sampling
algorithms applied are Random Walk (RW), Metropolis-Hastings Ran-
dom Walk (MHRW) and Breadth-First Search (BFS). Sampling algo-
rithms collect nodes "as they go", depending on the algorithms speci-
�cations, untill a given amount of nodes has been reached. At the end
of our sampling experiments we �lter out the one algorithm that has
the closest results to the ground truth in terms of how metrics change
with scale.

2. Modelling
The second step is to construct models of di�erent size and analyze the
di�erence in metrics' change with scale between the modelled ground
truth and the smaller models corresponding in size to our samples
(5000, 2500 and 1000 nodes). Modelling a graph is imitating some of
the desired properties (for instance how many friends an average user
has), the nodes and links are constructed based on the parameters
given to the model, and the properties that are known to be controled
by the model are therefore more predictable than in a sampled graph.

3. Sampling vs Modelling
The third step is to compare the metrics' behaviour with scale between
samples and models.

1.7 Results

We contribute to the social graph research �eld with the following observa-
tions, further described in Section 5.3:

1. Clustering coe�cient was a�ected by scale when measured on models
as well as on some of the samples.

2. Joint degree distribution was not under control of Watts-Strogatz model.

3. When constructing Watts-Strogatz model, clustering coe�cient was
a�ected by the randomness parameter.

4. The degree parameter for Watts-Strogatz generated graph became a re-
striction during sampling, preverting a stable distribution of closeness,
betweenness and degree metrics in the sampled graphs.

5. Watts-Strogatz Small World model did not preserve all of the impor-
tant properties of social graphs (the correlation between clustering co-
e�cient and degree metrics).

6. MHRW and BFS stood out when preserving metrics with changing
scale.

8



7. Real graph samples can be di�cult to immitate with Watts-Strogatz
model, especially in terms of clustering coe�cient, closeness and be-
tweenness metrics.

1.8 Chapter presentation

This thesis is organized into �ve Chapters. Following "Introduction" is the
"Background" Chapter describing state of the art for social networks re-
search, as well as related work. The next Chapter, "Samples, Models, and
their Analysis" presents our methodology, describing the approach used for
constructing, running and evaluating the graphs. The "Testing and Eval-
uation" Chapter shows metric measurements we extracted from comparing
our BFS "ground truth" to crawled samples as well as to model ground
truth and model-generated graphs of di�erent sizes. The Chapter presents
the preferred algorithm to use for sampling, as well as an overview of which
metrics are a�ected by scale and which are not. The "Conclusion" sums up
our experiment and sketches some directions for future work.
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Chapter 2

Background

While Chapter 1 presented the problem we wish to address, this Chapter
aims to give a general description of state of the art related to this work.
Unfortunately for an individual work (but fortunately for research of course),
there exists a huge number of articles on social graphs and their properties,
making it impossible to include it all in a scope of one thesis. The articles
we cite are the main representatives in the �eld that we wish to investigate
further, however it is important to note that the state of the art presented
in this Chapter is only a tip of an iceberg of the existing litterature.

First we describe the background for the type of data we are working on
- social networks, followed by a short description of social graphs in Section
2.1. Social graphs have speci�c properties, such as scale free, power law,
dense core, small world, and the correlation between degree and clustering
coe�cient metrics. In this thesis we only look deeper into cc-degree correla-
tion, however scale free, power law, dense core and small world properties are
important for a deeper understanding of social graphs. The aforementioned
graph properties, together with metrics that we have used for comparison of
the sampled or modeled graph to the original graph are described in Section
2.2. Metrics that we look at in this thesis are degree, closeness, clustering
coe�cient, betweenness and joint degree distribution. These are the most
common metrics applied in social graph research, however there are plenty
more to look into and compare (described in [Passmore, 2011]). Further the
Section describes tools and techniques we have used for analyzing our graphs.
Gephi is used in this thesis as a backup tool to validate the correctness of
our �nal results for degree, closeness, betweenness and clustering coe�cient
metrics. Kolmogorov-Smirnov test is used as a measure of distance between
two distributions. Pearson correlation coe�cient calculates the correlation
between clustering coe�cient and degree metrics. Standard deviation was
used to map how metrics' measurements varied if we ran several identical
runs, to check whether the results we achieved were representative for each
graph.
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The next Sections 2.3, 2.4 and 2.5 present di�erent types of approaches for
minimizing the graphs while keeping their main properties - graph crawling,
graph modeling and the combination of the two. These are the three main
alternatives researches choose from when creating a graph of a given size.
We have chosen to look at modeling and sampling separately, focusing on
the comparison between the two techniques.

For graph sampling we chose Random Walk, Metropolitan Hastings Ran-
dom Walk and Breadth First Search algorithms, based on the algorithms
researched on in related work we have looked at. There are however other
algorithms to choose from, such as Forest Fire, Snowball sampling, Debth
First Search and many more. Graph Modeling . Alternatively we could have
chosen Nearest Neighbor (described in [Sala et al., 2010] as the best model
to depict a social graph), Kronecker Graphs, DK graphs, or one of the other
models.

2.1 Online Social Networks

Social networks are social structures of multiple entities (users) connected by
friendship, common interests and other bonds, as de�ned by [Passmore, 2011].
In social networks, the interaction between users are more important for the
analysis than the attributes of individual users. The interactions between
the users can be modeled as graphs. This allows system designers to not only
investigate and reason about their systems, but also to design new solutions
and applications.

2.1.1 Social Graph

A social graph is a mapping abstraction of social network, where individuals
are abstracted to nodes, and their relationships to links. The graph is usually
highly dynamic, and therefore hard to traverse completely by crawling, an
issue addressed by Tad Miller in his blog [Miller, 2010].

2.2 Analysis of online social networks

In this Section we present metrics we chose to measure in our experiments,
describe some of the most common properties of social graphs and intro-
duce the analysis tools that were used to measure and compare metrics and
properties of our graphs.

2.2.1 Metrics applied in this thesis

[Mahadevan et al., 2006b] stated that up to date there exists no systematic
way to determine which metric to use in a given scenario. Metrics are there-
fore manually picked out for each case. In ours, we have looked at the metrics
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we considered the most essential to graph analysis, based on the metrics most
frequently found in related work.

dK

[Mahadevan et al., 2006b] present a methodology for comparing graph
topologies - dK-series of properties, that re�ects how groups of d
amount of nodes with given degrees interconnect. dK-series is the
simplest basis for statistical analysis of correlations in a complex net-
work. dK-series presented in the article support inclusion and con-
version requirements. Inclusion implies that all properties for series
with a lower d, are satis�ed by the dK. Convergence means that for a
large enough value for d, the generated graph will become isomorphic
(identical based on given properties) to the original graph. Therefore
the authors point out that any metric de�ned on the original graph
will eventually be captured by dK-series, with a large enough d. How-
ever it should also be taken into consideration that with a larger d, the
amount of probability distributions also increase drastically, while only
one of them is isomorphic to the original graph. 0K graph lacks high
degree nodes, 1K has high degree nodes compressed at the core, 2K
graph is pushing the high degree nodes further to the perifery, while
3K topology is similar to the original topology. The authors conclude
that 2 is a su�cient enough value for d for most practical purposes,
and that 3K-series result in an almost identical graph to the original
for all Internet-like graphs.

The following is a brief summary of the three �rst metrics of DK-series:

1. 0K-graphs - average node degree

2. 1K-graphs - node degree distribution (probability calculation of
nodes having degree k. This is re�ected in Facebook through
amount of friends a user has)

3. 2K-graphs - joint degree distribution (number of edges connecting
two nodes/interconnectivity, or number of nodes connecting to
other nodes of di�erent degree)

4. 3K-graphs - interconnectivity among triples of nodes

A problem with dK-series is that it doesn't support non-integer values
for d. In cases where a property is not captured by k value of d,
while it is overrepresented in k+1 value of d, it will overconstrain the
algorithm.

The higher the value of d, the more of di�erent metrics are covered,
making the dK-metric the best metric to use, however also the most
complicated and time-consumig one to measure. This is why we have
chosen to focus only on 1K and 2K metrics.

13



Node degree is perhaps the most ground metric of them all. For graph
analysis it is an important property that identi�es the "key players" in
a network. Removing these nodes may cause the partitioning of a whole
network. Degrees tell us also about the structure of a graph, whether
a graph is random (random number of neighbors for each node), or if
there is a pattern, as explained in [Steen, 2010].

Clustering Coe�cient (CC)

Clustering coe�cient, also known as transitivity, shows how close neigh-
bors of the average k-degree node are to form a clique. A clique between
neighbors of a node means that every node is connected to all other
nodes.

This metric de�nition was borrowed as well from [Mahadevan et al., 2006b].
[Gjoka et al., 2010] describe it also as the "relative number of connec-
tions between the nearest neighbors" of a node.

For practical purposes, clustering coe�cient can be used for identifying
communities. Members of a community tend to be tightly connected to
one another, while there are only few connections between two di�erent
communities. Each user however can be a member of several commu-
nities. Mapping clustering coe�cient properties for nodes in a network
is important for instance for information spreading, as highly clustered
networks are slower on algorithms for gossiping (epidemics). For more
detailed explanation on implementation and appliance of clustering
coe�cient, see [Steen, 2010].

Betweenness centrality

Betweenness centrality is also known as shortest-path betweenness and
measures amount of shortest paths that traverse a node. This metric
de�nition was borrowed from [Ducruet and Rodrigue, 2013]. Another
way of de�ning betweenness (by [wiki.gephi.org, 2013b]) is that it is a
measure of how often a node appears on shortest paths between nodes
in the network. A high betweenness centrality can be interpreted as
the user that connects di�erent parts of the network, according to
[Hirst, 2010]. A user with high betweenness centrality is a popular
user in a social network, and probably in real life as well. Shortest
path centrality can be usefull during construction of subway stations
for instance. The architects should determine which stations are most
likely to have most visitors (typically central or crossroad stations), and
therefore expanding those stations to have greater capacity of travellers
per day.

Closeness centrality

Closeness centrality of a node is described in Networkx api ([NetworkX, 2013b])
as "the reciprocal of the sum of the shortest path distances from that
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node to all other nodes. Since the sum of distances depends on the
number of nodes in the graph, closeness is normalized by the sum of
minimum possible distances." The higher the values of closeness, the
higher is the centrality. Or in other words (by [wiki.gephi.org, 2013a]),
it is the "average distance from a given node to all other nodes in the
network". Returning to our previous subway example, a centralized
system should allow users to be able to travel from any point in the
city to any other point in a relatively equal amount of time. Here
is where centrality plays a role by determining the average amount
of stations that should be placed between the main stations, giving a
hint of how many di�erent lines and directions that need to be added
to the subway net, facilitating users to get around faster and more
conveniently.

The above are the metrics we have decided to apply for this thesis.
Node degree and clustering coe�cient were chosen as a the most com-
mon metrics measured, and therefore easy to compare to previously
done work. Joint degree distribution would give us a picture of how
well connected the graph is, and closeness and betweenness would de-
scribe how centrality is spread among di�erent nodes in our graphs.
Metrics were mainly chosen by "commonly used and easy to compute"
criterias.

2.2.2 Common properties of social graphs

[Mislove et al., 2007] examines multiple online social networks at scale, and
is similar to [Gjoka et al., 2010] in that the authors use crawling techniques
to obtain data sets from social graphs. According to [Ye et al., 2010], their
study is the largest OSN crawling study up to date, and shows that OSNs
have "power-law", "small-world" (average path length between two nodes is
6 hops) and "scale-free" properties.

[Yoon et al., 2007] create a scale-free network model and let a random
walker traverse it. Based on measuring degree distribution, degree-degree
correlation and clustering coe�cient, they �nd that their sampled networks
keep the original graph properties such as power law, degree correlation and
modular structure, measured through clustering coe�cient.

We have chosen to describe deeper some of the properties we considered
essential for understanding structure of online social networks, however we
will only look closer at correlation between clustering coe�cient and degree
in this work.

Scale free and Power law

A network is scale-free if it's degree distribution follows a power-law,
where high degree nodes tend to connect to other high degree nodes,
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and low-degree nodes connect to other low-degree nodes. This is the
case for social graphs, as stated by[Mislove et al., 2007].

Power law degree distribution results in a graph with few high-degree
nodes and many low-degree nodes. The number of nodes with a high
degree decreases exponentially, and the probability of a node having
degree k is proportional to the scaling exponent (1/k)α , where 2 <
α < 3.

Another typical property for scale free network is that degree distribu-
tion remains the same regardless of the range of the graph (for instance
taking di�erent ranges of node id's in a graph and plotting them will
produce the same visual e�ect). The power law and degree distribution
properties are described in more debth by [Steen, 2010].

According to [Mislove et al., 2007], a scale-free network is recognized
by signi�cant clustering among low-degree nodes.

[Leskovec and Faloutsos, 2006] remarked however that in practice so-
cial networks will deviate from the power-law property.

Dense core

[Mislove et al., 2007] measured link-degree correlations, joint-degree
distribution and scale-free metrics. Their results indicated that the
topology consisted of a core of between 1% and 10% of the highest-
degree nodes linking to strong clusters of low-degree nodes at the
fringes of the network. The core of high-degree nodes are critical for
networks' connectivity and removing it would cause a complete discon-
nection of the graph, making it vulnerable to malicious attacks.

[Steen, 2010] however writes that random networks (meaning also so-
cial graphs) consist of a single large component (dense core), with few
small components - many of which contain only one node.

The above two observations, agree on that a dense core, of small size,
is present in any social network graph.

Small world

By de�nition, Small-world networks have small diameter and high clus-
tering. [Mislove et al., 2007] have measured both diameter and clus-
tering for the four major OSNs at that time - Orkut, Flickr, Youtube
and LiveJournal, and concluded with that social networks obey this
property. Small-world e�ect means that most nodes are connected,
and can reach each other in small number of hops through connecting
links. [Steen, 2010] describe such paths between two nodes as weak
links. In order to disconnect a real-world social graph, it is often nec-
essary to remove 70-80% of nodes.
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Correlation between clustering coe�cient and degree

[Yoon et al., 2007] discovered that clustering coe�cient for a node with
degree k was decreasing with increasing k. This has also been observed
by [Mislove et al., 2007], where the authors measured that clustering
coe�cient is inversely proportional to degree.

2.2.3 Tools and Techniques for Graph Analysis

There are numerous tools and techniques for di�erent purposes of graph
analysis. For our analysis we have applied Gephi tool, and Kolmogorov-
Smirnov, Pearson correlation coe�cient, test and Standard deviation tests.

Gephi

During our research we encountered a usefull tool, Gephi [Gephi, 2013],
an open source graph visualization and analysis software. Gephi takes
an edgelist as input, creates a visual graph and computes many of the
most popular metrics. We were able to calculate degree, closeness, be-
tweenness and clustering coe�cient, while the only metric not covered
by Gephi was joint degree distribution.

Kolmogorov-Smirnov

[Leskovec and Faloutsos, 2006] use Kolmogorov-Smirnov (K-S) statis-
tics value to compare results for graph measurements. Kolmogorov-
Smirnov test compares the two samples and indicates how di�erent
they are from each other, measuring the furthest point of the two sam-
ples. The higher the value, the further they are from each other, while a
small value indicates that the two samples have the same distribution.

Pearson correlation coe�cient

Pearson Correlation is described in [StatSoft, 2013] as a way to deter-
mine whether or not two variables are "proportional", or linearly re-
lated to each other. The return value of 0 would imply no correlation
between the two datasets, while 1 or -1 would indicate an exact linear
correlation. If result is positive, it should be interpreted that both x
and y are increasing. A negative correlation means an increasing x and
decreasing y.

Standard deviation

Standard deviation is used to �nd abnormalities from the expected
result. The higher the deviation value, the more spread apart is the
data, according to [Investopedia, 2013].

2.2.4 Conclusion of Social Graph Analysis State of the Art

In this thesis we will look closer at joint degree distribution (2K), clustering
coe�cient, betweenness and closeness centrality. We noticed that there was

17



a higher occurence of these metrics in related work and chose to focus on
these metrics in order to connect our experiments to state of the art, to
facilitate the comparison and use of our results in future work.

Social graphs have many speci�c properties. Since we already had mea-
surements both for degree and clustering coe�cient, it was natural to look
closer into the social graph property of the correlation between clustering
coe�cient and degree metrics, and how well this correlation is maintained
when the size of the graph changes, both for crawled and modeled graphs.
The rest of the properties described in this section were not included due to
the time constrains.

2.3 Graph Crawling

A problem with OSNs, pointed out by [Mislove et al., 2007] is that since
OSNs are getting bigger and bigger, it is di�cult or sometimes impossi-
ble to traverse the whole graph. Sampling or crawling a part of the graph
instead is an inexpensive and e�cient solution, and there are a number
of algorithms commonly applied for that purpose. Crawling is de�ned by
[Gjoka et al., 2010] as a technique to traverse graphs by visiting a node and
then it's neighbors, in the order speci�ed by the algorithm. In di�erent aca-
demic papers sampling in our experience can be refered to as a synonym to
crawling, as in paper by [Leskovec and Faloutsos, 2006], or random querying
for node id's, as for instance in [Gjoka et al., 2010].

2.3.1 BFS, RW, MHRW and RWRW vs uniform sampling

One of the most relevant works for this project is [Gjoka et al., 2010], where
authors compare di�erent approaches to crawling OSN graphs - Breadth
First Search (BFS), Random Walk (RW), Metropolits-Hasting random walk
(MHRW), and Re-weighted random walk (RWRW). They focus on "node
degree distribution" metric and other comparison criterias to measure con-
vergence, such as "sizes of geographical network" and "userID space". For
parameters they used burn-in rate, total running time (walk length) and
thinning (sampling rate). In addition, they compare their algorithms to
a sample obtained through UserID rejection (UNI), which they use as a
"ground truth". They argue that even though a uniform sample is retrieved
by randomly generating user id's and sampling the ones that exist, this ap-
proach would not work with user id's longer than 32bits. Authors therefore
emphasize crawling as the correct sampling technique for OSNs.

2.3.2 Multigraph crawling

The work by [Gjoka et al., 2011] is the �rst in line to sample OSNs by
combining multiple relationships. Instead of sampling from a graph con-
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nected through a single social relation (friendship), [Gjoka et al., 2011] cre-
ate a union multigraph based on connections through memberships in shared
groups and events as well as friendships. By applying re-weighted ran-
dom walk, they crawl Last.fm graph (fragmented, multigraph structured)
by di�erent type of relationships separately. The results are then combined
into a multigraph, by pairing the relationships into sets (Friends-Events,
Friends-Events-Groups, Friends-Events-Groups-Neighbors). The combined
union multigraph is then crawled, and results are compared to the ground
truth - a UNI sample, collected in a similar way as in their previous work, de-
scribed in [Gjoka et al., 2010]. The authors show that multigraph sampling
improves graph coverage when there are many isolated users without any
direct social ties - the connections otherwise not reachable by single-graph
sampling.

As mentioned previously, there are numerous crawling techniques for ob-
taining a graspable sample that maintains the characteristics of the original
graph. There are several algorithms commonly used for graph sampling,
but for this thesis we have chosen to focus on only three, namely Random
Walk (RW), Breadth-First Sampling (BFS), and Metropolis-Hasting Ran-
dom Walk (MHRW).

2.3.3 Random Walk

In RW, the next move is chosen randomly from the current nodes' neigh-
bors, and will therefore lead to more frequent visits to nodes with higher in-
degrees. There are however di�erent random walk variations that according
to [Gjoka et al., 2010] correct the bias, such as Metropolis-Hastings Random
Walk and Re-weighted RandomWalk. The mechanism of this algorithm is il-
lustrated in Figure 2.2. In experiments done by [Leskovec and Faloutsos, 2006]
Random walk has shown to perform better than Forest Fire, Random Node
and Random PageRank Node when decreasing the allowed sample below
50% of the original graph size and down to about 15%.

Figure 2.1 Illustration of Random Walk, where nodes are visited in a ran-
domly fashion from the current node. Image borrowed from [Sprott, 2013]

2.3.4 Breadth-�rst search

Breadth-�st search is one of the more common techniques for sampling,
partly due to its ability to collect a full view of a graph region, and partly
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due to being quite straigh-forward to understand and use. BFS has shown to
be outperformed by MHRW and RWRW in the work by [Gjoka et al., 2010].
The mechanism of this algorithm is illustrated in Figure 2.2.

Figure 2.2 Illustration of Bredth-First Search, where nodes are numbered
in the order they are visited. All children of a node are visited �rst, then
followed by children of children. Image borrowed from [Wikipedia, 2013b]

2.3.5 Metropolis-Hastings Random Walk

According to [Gjoka et al., 2010] Metropolis-Hastings RandomWalk corrects
the weight during the crawl by only moving to a neighbor node if it has lower
degree than the current. In experiments done by [Lee et al., 2006] MHRW
has shown to produce unbiased samples of undirected social graphs and to
perform better in tightly connected graphs, keeping the degree distribution.
[Wang et al., 2011] point out that average clustering coe�cient varies with
the datasets.

[Gjoka et al., 2010] calculate MHRW probability by generating a random
number between 0 and 1. The next step in the MHRW walk is permitted
only if the quotient of current node's degree and neighbor's node degree
is greater than the random number. In their implementation, the rule of
"moving only to lower degree nodes" is not strictly followed, and the move
to a higher degree node will be allowed if the random number is su�ciently
low. This makes it possible to avoid getting stuck at a low-degree node with
only high degree neighbors.

2.3.6 Challenges with crawling algorithms

There are several known challenges assosiated with the crawling technique -
namely bias, performance, de�ning a "good enough" sample, and obtaining
access to the real graph.

Bias

[Lee et al., 2006] measure degree and betweenness centrality distribution, av-
erage path length, assortativity, and CC for performance of node sampling,
link sampling and snowball sampling methods mainly for scale-free graphs.
They point out that bias of a sampling algorithm can be predicted when
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looking for measuring a metric of choice, and investigate bias for each of the
algorithms.

Di�erent algorithms introduce di�erent bias - for instance snowball sam-
pling algorithm tends to underestimate the degree exponent of degree dis-
tribution property, and produce graphs that are more disassortative than
the original. Bias to some metrics can also depend on the network, as is
the case for clustering coe�cient metric for snowball sampling described in
[Lee et al., 2006] [Gjoka et al., 2010]point out that in general BFS and RW
are known to create a bias towards higher-degree nodes.

Node Degree Bias

Some algorithms, for instance BFS and RW in work of [Gjoka et al., 2010]
and [Lee et al., 2006], tend to pick higher degree nodes, overestimating
the node degree distribution metric. The worst-case scenario of this
bias would be when the seed node is a higher or equal degree than
the amount of nodes in the sample. In that case the sample will be
presented as a star network consisting of N nodes, where 1 node is of
degree N, while N-1 nodes will have a degree 1, thus giving a di�erent
network topology than the original graph.

Collecting a larger sample of nodes from the original graph will cor-
rect the node degree bias. To avoid increasing the sample, it is also
possible to take a sample of the crawled subgraph in order to �x the
degree bias while maintaining crawled sample small, as was done by
[Ye et al., 2010].

Clustering Coe�cient Bias

Oversampling nodes with higher degree leads in turn to underestima-
tion of clustering coe�cient. [Ye et al., 2010] observed that clustering
coe�cient increases with the size of the sample.

BFS is again one of the good examples where clustering coe�cient
bias occurs. Even though the overall clustering coe�cient is preserved
by BFS due to bias, as was pointed out by [Mislove et al., 2007], the
algorithm obtains larger average clustering coe�cient than the original
graph, since CC is strongly dependent on node degree, an observation
made by [Wang et al., 2011].

Power-law Bias

BFS tends also to underestimate the level of power-law coe�cient, as
noted by [Mislove et al., 2007].

Performance

There is also room for improvement in crawling algorithms known today
when it comes to performance. It has been shown by [Wang et al., 2011] for

21



instance that graph properties, such as connectivity greatly a�ect sampling
algorithms' performance. We will not however focus on the topic in this
work.

A "good enough" sample

When crawling a ground truth with a goal of obtaining a close enough sample,
it is essential to have an idea of when to stop sampling. How small can a
sample be? When is the sample close enough to the original graph, and
what is the decisive factor of the closeness? How to measure goodness of
a sample? How to measure success? These are the issues addressed by
the authors of [Leskovec and Faloutsos, 2006]. They have used Kolmogorov-
Smirnov statistics to compare the metrics measured. In their work they have
discovered that a sample of down to 50% of the original size, kept the ground
truth properties well.

The implementation we borrowed from [Kurant, 2010] follows these guide-
lines, which is why in our experiments we only look at the sampled graphs
with minimum size of 50% of the original graph, as the algorithm implemen-
tation simply does not allow scaling any lower.

Graph access

Another issue to consider is whether or not it is possible to access the whole
graph. This will highly a�ect the selection of the algorithm, since some of
them require knowledge to all of the nodes and links in ground truth.

2.3.7 Conclusion of Graph Crawling State of the Art

Crawling is used in this thesis as a technique to sample both our ground
truths. There are many di�erent crawling algorithms. We have selected
three of the most common ones - BFS, RW and MHRW to compare how well
they will collect the original graphs in regards to metrics we have chosen.

As we have seen, there are many challenges with using crawling. Another
technique for creating graphs we would like to look at is modeling. We will
use both of the techniques to produce graphs of di�erent sizes to measure
and compare how metrics change with scale for each technique.

2.4 Synthetic graph modeling

Modelling synthetic graphs is one of the approaches of social-graph anal-
ysis described by [Lee et al., 2006]. The graphs are modeled based on real
graph data, modi�ed to comply with selected features (measured by metrics)
observed in real networks, for example small-world e�ect and the power-
law degree distribution. Some of the examples of work using graph mod-
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elling are the dK-series by [Mahadevan et al., 2006b], Small World networks
by [Watts and Strogatz, 1998] and Nearest Neighbor model modi�cation by
[Sala et al., 2010].

2.4.1 DK-series

Figure 2.3 shows an example of graph modeling through dK-metrics, where
a new model is generated for four di�erent values of d (section 2.2 provides
a more in-depth description of the dK-metrics).

Figure 2.3 Illustration of four graph models of the same original "HOT"
graph shows the increasing precision of the modelled graph with the increased
value for d. (Borrowed from [Mahadevan et al., 2006b])

2.4.2 Watts-Strogatz Small World Model

[Watts and Strogatz, 1998] describe in their article highly clustered systems
with short path lengs they call "small-world" networks. They rewire each
edge at random (using a certain probability p) for regular networks to achieve
higher amount of disorder within the graph, where regular graphs have p=0
and disordered graphs have p=1. The so-called Small World networks lie
somewhere in between the two poles.

2.4.3 Nearest Neighbor model

Another important study on the topic is Measurement-Calibrated Graph
Models for Social Network Experiments by [Sala et al., 2010]. It discusses
six graph models within three categories - "structure-driven" with focus on
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structure statistics (Kronecker graphs, dK-graphs), "intent-driven" with cre-
ation process in the middle (Random Walk, Nearest Neighbor) and "feature-
driven" with focus on feature statistics (Barabasi-Albert model, Forest Fire).
These models are used for generating multiple synthetic graphs that substi-
tute real graphs, comparing the results to actual Facebook data collected in
2008. The authors conclude that Nearest Neighbor graph model is the most
consistent and accurate, and we have therefore initially chosen this model as
the second model for our experiments. However, due to the time limit we
were not able to perform the comparison using both models.

2.4.4 Conclusion of Graph Modeling State of the Art

In this section we have chosen to describe three popular models. Small-
World is a well documented and tested model that is refered to by many
researchers, and we have therefore chosen this model as one of our ground
truths. Dk-models are usefull for this work in regards to metrics they control
- we measure and compare 2K metrics for all our graphs. Nearest Neighbor
was chosen as a second candidate for our ground truth, as it has previously
showed to be very accurate in imitating real social graph.

By using modeling technique as a mean to create graphs of di�erent sizes
we achieve "clean" graphs without bias which is usually added by sampling
algorithms. It is therefore possible to study how metrics behave on com-
pletely unbiased graphs, and then compare to metrics behavior on biased
sampled graphs. We also use modeling to create one of our ground truths
that we later run crawling algorithms on to see how the algorithms behave
when sampling a clean graph.

There is up to date no overview over which metrics that are a�ected by
di�erent models. This is a de�nitive limitation when attempting to immitate
a graph with several given properties, as is the case for our thesis' problem.

2.5 Crawling and modeling combined

Some crawling algorithms are known to produce bias (see Section 2.3.6).
Additional methods are required to correct the bias in sample produced by
a crawling algorithm. One solution is to combine the two aforementioned
methods into a hybrid solution where modelling is used to modify the crawled
graphs.

[Gjoka et al., 2012] present a methodology to model 2.5K graphs by com-
bining the two techniques of network sampling (crawling) and topology gen-
eration (graph modeling). The metrics chosen for comparison to the origi-
nal graph are joint degree distribution (maintained by 2K-graph-models of
[Mahadevan et al., 2006b]) and degree-dependent average clustering coe�-
cient. Nodes are collected by independence sampling and random walks,
and then used for generation of synthetic graphs. The results show that the
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generated graphs are similar to the original for other metrics as well, such
as edgewise shared partner distribution, shortest path distribution, maximal
clique distribution, cycles distribution, spectrum and closeness centrality.

The process of "crawling, then modeling" approach from [Gjoka et al., 2012]
is illustrated in Figure 2.4. Further details are outside of the scope of this
thesis, but can be found in paper by [Gjoka et al., 2012].

Figure 2.4 2.5K crawling and modeling approach. The original graph is
�rst crawled to obtain a smaller sample. The values for metrics (in this
case Joint Degree Distribution) are then estimated, and the sample modi�ed
accordingly to produce a generated synthetic graph. Image borrowed from
[Gjoka et al., 2012]

2.6 Summary of Background Chapter

In this Chapter we have looked at what social networks and graphs are, and
described one example of a popular social network - Facebook. A problem
with social graphs is that the graphs have become too large to experiment on,
and this is why more research on proper scaling of social graphs is needed.

We found that there are mainly three di�erent ways to achieve a smaller
sample of the original graph - namely crawling, modeling, and the combi-
nation of the two. Our contribution is to compare the two most known
techniques in regards to how they a�ect di�erent metrics when being scaled
down. There are two metrics that stand out in frequency they are measured
in related work - Node Degree and Clustering Coe�cient. Other popular
metrics were joint degree distribution, betweenness and closeness.

This Chapter also described the challenges researchers face when crawl-
ing a graph. We use the knowledge of algorithm's bias in Chapter 4 when
we interpret results to explain metrics' behaviour behaviour for di�erent al-
gorithms, for instance a very low clustering coe�cient for BFS samples in
comparison to others. We have de�ned the smallest sample we obtain as
half of the original graph, following the ground rules set by the sampling
algorithm implementation we were using, by [Kurant, 2010]. Since we use
an already sampled Facebook graph as our �rst ground truth, and a modeled
graph as our second ground truth, we did not have the issue of getting access
to the real life graph data.

Modeling technique had also some challenges, although they were not
as many and as obvious as the challenges with crawling. The main issue
with modeling is that there is no systematic way to determine which metrics
are controlled by which model. We would therefore like to contribute by
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mapping some of the most common metrics as an aid in the direction of
deciding which metrics to use in a given scenario.

26



Chapter 3

Samples, Models, and their

Analysis

This chapter �rst presents the evalution methods we have used to compare
results for metrics, namely Kolmogorov-Smirnov test, Pearson correlation co-
e�cient and Standard Deviation. It then introduces the Facebook graph and
Watts-Strogatz model we used as our "ground truth", and the graph analysis
methods applied to both samples and models, explaining implementation of
metrics we have previously chosen for this work.

This chapter also presents sampling algorithms we have used. We have
allowed some tests to be a part of this chapter in order to justify our choice
of parameters for Watts-Strogatz model in Section 3.3.2.

3.1 Evaluation approach

Evaluation of the results will be conducted through comparison of metric
distributions for degree, cc, jdd, betweenness and closeness for the models
and samples of di�erent sizes.

3.1.1 Kolmogorov-Smirnov test

Kolmogorov-Smirnov statistics were applied in this work to compare met-
rics distribution. K-S value is calculated based on code borrowed from
[�The Scipy community�, 2013b], a Python library. We de�ne acceptable K-S
distance a value within 0.1.

3.1.2 Pearson correlation coe�cient

Pearson correlation was applied to measure relationship between degree and
clustering coe�cient metrics.

The code was borrowed from [�The Scipy community�, 2013a], a Python
library.
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3.1.3 Standard deviation

The implementation for Standard Deviation was borrowed from a forum
[kaan, 2009], and used "as is". The code was tested by running same se-
quence of numbers as in the example by [Hall, 1998], which gave the same
result. The formula for Standard Deviation provided by [Hall, 1998] is

σ =

√
Σ(x−M)2

N , where x stands for individual scores, M for mean (aver-

age) and N for number of scores in group.

We �rst calculate average metric measurement across all nodes in a given
graph, then apply Standard Deviation algorithm on the average metric values
from each graph to see how much the average measurements vary between
di�erent graphs.

3.2 Sample of Facebook graph as our "Ground truth"

We based our case on data collected from Facebook. Facebook is a social
graph represented with user-nodes that are connected by "social relationship"-
links. Links can be both directed (subscribing to updates) and undirected
(requesting friendship, messaging), however in sample provided by[Gjoka et al., 2010],
all links are undirected and represent friendship only. Previous work by oth-
ers have made it easier to evaluate sampling results by providing already
sampled sets of nodes together with metric measurements. This is especially
valuable now, as more and more OSN providers are setting restrictions that
prevent automated crawling on their social graphs.

The dataset we chose for our initial experiment was a BFS sample graph
with 10000 nodes sampled in turn from another BFS sample provided by
[Gjoka et al., 2010]. However when we attempted to construct a similar
model to our graph, we couldn't get all the metrics to be similar to our
Facebook sample, and therefore assumed that since it is a BFS sample, it
was biased to higher degree nodes, and perhaps did not represent a social
graph well enough. We have therefore chosen to both test on the sampled bias
Facebook graph from [Gjoka et al., 2010], and on a "clean" Watts-Strogatz
model of same size (10000 nodes).

Facebook BFS sample is undirected, static graph converted from an edge-
list into a NetworkX graph for computational convenience by read_edgelist
function found in [NetworkX, 2013f].

3.3 Watts-Strogatz model as our "Ground truth",

model, and baseline for comparison

As re�ected by the title, Watts-Strogatz model plays several roles in this
work. We have �rst generated a graph of size 10 000 to use as:
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1. ground truth for sampling experiments

2. baseline for comparison for smaller graphs of size 5000, 2500 and 1000
nodes

Similar to Facebook graph, Watts-Strogatz model is an undirected static
graph, converted from edge-list into a NetworkX graph for our experiments.

We ran our �rst experiments on a random graph model. Watts-Strogatz
implementation was borrowed from [NetworkX, 2013d] and ran with di�erent
parameters to get a wide enough range of results.

Since the average node degree for our original ground truth sampled
from Facebook is approximately 46 nodes, we used the same number as
value for the �rst parameter - the amount of nearest neighbors each node
is connected to. For the parameter of probability of rewiring each edge we
initially chose 0.5, to construct a Small-World graph, since 0 probability leads
to regular graphs, while 1 as probability produces random graphs, according
to work of [Watts and Strogatz, 1998]. Since we aim to produce a graph with
properties similar to social graphs, these parameters seemed to be suitable.
The third parameter, the amount of attempts to generate a connected graph,
was set to 100 as a high enough number to get a resulting connected graph.
The algorithm guarantees a connected graph as a result, and since it never
produced an exeption during our experiments we can safely assume that the
graphs produced were indeed connected.

3.3.1 Metrics under model's control

To our knowledge, the only metrics under control of the model are degree
(mentioned in [Albert and Barabási, 2002]), path length and clustering coef-
�cient (mentioned in [Watts and Strogatz, 1998]), meaning that they would
not vary for models of same size and will vary predictably for models of
di�erent sizes. We need however to cross check this assumption by run-
ning the experiments for our metrics of interest (degree and clustering co-
e�cient), and also check how the other metrics will behave between two
models of same size. For probability of rewiring with value 0, the degree will
be the same for all nodes. With broadening chaos probability, the degree
will vary slightly, but still remain close to the original degree, described in
[Albert and Barabási, 2002]. [Wikipedia, 2013c] suggests that such degree
distribution is unrealistic for social graph and remains one of the model's
limitations. However since we haven't found other academic sources that
support this, we will have to cross check this assumption with our experi-
ments in Section 3.3.
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3.3.2 Small World vs Random Graph Models

Even though the average degree for the graph we were attempting to imitate
was 46, the range of the degrees in the real graph was between 1 and 485,
while in the model it was between 31 and 63, which is not very representative
of the social graph we were trying to immitate. In order to improve range of
degrees, we decided to see how an increased rewiring probability parameter
would a�ect graph metrics, and have therefore constructed a random Watts-
Strogatz model (by modifying the second parameter to value 1) by deducing
that a random graph would provide a broader range of degrees. It did slightly
improve the range of degrees, from 29 to 68, however the improvement was
not that noticeable. These �ndings support [Wikipedia, 2013c] indication
of limitations of the graph, previously discussed in section 2.4. Table 3.1
presents the K-S distance measured for each of the smaller graphs to the
original 10 000 nodes size, both for Random and Small World graphs. This
comparison was performed in order to �nd the variation that best suits our
experiments and decide which value for rewiring probability parameter to
use during model construction.
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Table 3.1: K-S distance between graph of size 10 000 and smaller graphs for
Small World and Random graphs.

Metric Graph size in nodes
K-S distance to 10000 model

for Small World graph for Random graph

Degree
5000 0.0116 0.0134
2500 0.0083 0.088
1000 0.0167 0.0108

CC
5000 0.056 0.6372
2500 0.1615 0.9667
1000 0.4518 1.0

Closeness
5000 0.9986 0.9996
2500 1.0 1.0
1000 1.0 1.0

Betweenness
5000 0.8613 0.8563
2500 0.9946 0.9941
1000 1.0 1.0

JDD 34
5000 0.0784 0.0626
2500 0.0843 0.0585
1000 0.0569 0.1362

JDD 45
5000 0.0133 0.0128
2500 0.0137 0.0093
1000 0.0169 0.0123

JDD 60
5000 0.0845 0.0743
2500 0.069 0.0541
1000 0.1476 0.0429

Degree

As we can see from table 3.1, there are no big discrepancies for degree
metric between the two graphs.

Clustering Coe�cient

The di�erences between the two models are much more noticeable than
with degree metric. While in Small World only the smallest mod-
els are far away from the 10 000 model, in Random graph all of the
smaller models are completely missing on cc measurements for the 10
000 model. The smallest one, 1000 nodes reaches the maximum K-S
distance of 1 from the biggest graph.

Closeness
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Closeness had a high value for K-S distance for all smaller graphs,
equally high for Random and Small World graphs.

Betweenness

There was neither any noticeable di�erence in Kolmogorov-Smirnov
distance between Random and Small World graphs.

2K

Joint degree distribution (2K) is a complex metric, producing a large
number of results, describing every connected triple of nodes in the
graph. Since we couldn't include all of the trippels in this thesis, we
have selected three degrees to present the joint degree distribution for,
and to compare with each other. First degree, 34 was chosen as one of
the lowest degrees in our random graph, 45 as the degree in the middle,
and 60 as one of the highest degrees.

As we can observe from the table 3.1, all the three degrees had similar
values for both random and small world graph. From that we can
assume that also the rest of the 2K metrics are similar for the two
graphs.

Conclusion on which model is the most suitable model for our tests

The two constructed graphs were very similar in most of the measurements,
however the clustering coe�cient K-S distance for random graph were ex-
tremely high for all model sizes. Even though random graph had a greater
range of degrees and therefore resembled more our original ground truth,
the di�erence was not as big as opposed to clustering coe�cient where Small
World achieved much more stable values. We have therefore chosen Small
World (with rewiring probability of 0.5) as our model of choice to run further
tests on. We have also learned that randomness of Watts-Strogatz graph
a�ects clustering coe�cient, where it gets more unpredictable for smaller
samples of models with high randomness.

3.4 Graph analysis

In order to analyse both sampled and modeled graphs to investigate how
these will vary in scale, we have chosen a handfull of metrics, namely degree,
cc, jdd, betweenness and closeness, previously described in section 2.2, to
study their distribution. These metrics will indicate how well the graph will
"survive" changes in size, how close it stays to the ground truth (in case of
sampling), and how well it will resemble models of greater size.
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3.4.1 Metrics implementation

As a starting point we chose to measure node degree and clustering coe�-
cient, in order to easier compare our results to the results previously achieved
by other authors. After the initial experiments with those most common met-
rics, we will include measurements of the dK-metrics (2K, the joint degree
distribution), and closeness and betweenness centrality.

The metrics were described in detail in section 2.2, while the following is
a description of their implementation in our experiments.

Node Degree and Clustering Coe�cient

Node degree and clustering coe�cient are borrowed from NetworkX
library, from [NetworkX, 2013e] and [NetworkX, 2013c] respectively.

2K

2K metric, or joint degree distribution, earlier de�ned in section 2.2 was
calculated based on the code from [Mahadevan et al., 2006a]. Since
the complete calculation of 2K is three-dimentional (�le is written in
format of degree1-degree2-amount of edges between the two degrees)
and due to the time constraints, we couldn't check the K-S distance to
the ground truth for each of the degree results. Instead, we took three
di�erent degrees for each experiment and extracted the results for the
ks-comparison. The reason why we couldn't choose same degrees for
all the tests was because it was di�cult to �nd three degrees that were
present in each of the graphs and samples.

Closeness and Betweenness centrality

Closeness and Betweenness centrality were computed based on Net-
workX implementation further described in [NetworkX, 2013b] and
[NetworkX, 2013a] respectively.

3.4.2 Metrics results validation

In order to see whether we can trust our �ndings, the code needed some
validation. This Section presents the outcome of our result validation us-
ing [Gephi, 2013] tool and code from [Mahadevan et al., 2006a]. We �rst
plotted our Watts-Strogatz graph model of 10000 nodes into Gephi, and
compared degree, clustering coe�cient, closeness and betweenness calcula-
tions produced to our results for same metrics on the same graph model.
Joint degree distribution was compared by replacing call for 2K calculation
in our code with call to 1K calculation, which is part of the same library and
only required a change of 1 parameter in our code. The idea was to produce
a metric we already have by using the same library and see if it matches our
results.
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Clustering coe�cient and degree Clustering coe�cient and degree had
same output when run with Gephi tool, while closeness and between-
ness had K-S distance of 1 between the two result sets.

Closeness

After looking closer at the algorithms, it turned out that the one we
were using for our experiments ([NetworkX, 2013b]) divided 1 with the
average distance to other nodes for each individual nodes. When we
divided 1 with the result we got from Gephi, the K-S distance shrinked
to 0.0032. With a closer look at our two datasets with divided results,
this small incoherence turned out to be due to decimal rounding.

Betweenness

Betweenness results were di�erent due to a slight variation of algo-
rithms, where in [wiki.gephi.org, 2013b] betweenness centrality was
calculated as the sum of all the amounts of shortest paths between
two nodes (a and b) for all shortest paths that passed through a par-
ticular node (c), while in [NetworkX, 2013a] this amount of shortest
paths through one node was also divided by the total amount of short-
est paths between nodes a and b. We did not modify gephi algorithm
as we did for closeness due to the complexity of [NetworkX, 2013a] al-
gorithm, and assume that the code is correct as the only di�erence to
closeness computation was a call to a di�erent NetworkX library.

Joint degree distribution

We have used 1K (degree distribution) metric as a "control metric"
to verify that the code from [Mahadevan et al., 2006a] behaves the
way we expected. In order to do so, we compared 1K results to
our node degree results, by checking Kolmogorov Smirnov distance
to the ground truth for all our samples, both for degree metric from
NetworkX library, [NetworkX, 2013e] and for 1K metric from Orbis
([Mahadevan et al., 2006a]). The results were the same, and we have
therefore concluded that 2K would represent joint degree distribution
as claimed by [Mahadevan et al., 2006b].

3.5 Sampling Methods

This Section describes how we have generated our RW, BFS and MHRW
samples.

3.5.1 Sample generation approach

We have run the three algorithms described in section 2.3 on both
Watts-Strogatz graph model and Facebook BFS sample as our ground
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truths. All nodes collected are unique, and sample lengths vary from
1000, 2500, to 5000 - which is 10%, 20% and 50% of the total size of our
Ground Truth, respectively. We could unfortunately not sample higher
amount of nodes, due to algorithm's implementation that restricted the
samples to be less in size that 50% of the original graph.

The script-languages used were Python and Bash. First we ran all algo-
rithms ten times each, selecting the best result based on Kolmogorov-
Smirnov distance to Ground Truth for degree distribution (see section
3.5.2. Ten was chosen as a high-enough number to get a representative
amount to select the best run from. Each time the start node was
�xed for all of the algorithms to a high-degree node with degree 302
(the highest degree in the Facebook Ground Truth). A �xed start node
for all experiments was chosen so that we could easier compare the re-
sults, and a high degree node was chosen since the algorithms generally
perform better when they have a well-connected starting point.

Same experiment was then repeated for sample length of 2500 and 5000
nodes, each from a high degree node and a low degree one (degree 302
and degree 1). After comparing the results from both high and low
degree node, we discovered that metrics were further away from the
ground truth for runs with low-degree start node than with high-degree
one, however the di�erences were not as big as we initially thought, and
we have therefore only included results from the high-degree node.

Random Walk and Metropolis-Hastings Random Walk

The code for RW and MHRW was borrowed from [Kurant, 2010]
and used "as is", with a given start node, graph size and unique
node collection as parameters.

Breadth First Search

BFS algorithm was implemented in Python based on pseudocode
from [Wikipedia, 2013a], modi�ed to also take into account the
graph size we wish to sample, uniqueness of nodes, and start node
parameters. The uniqueness of nodes sampled is a parameter used
in [Kurant, 2010] for RW and MHRW implementation, so we have
also included it in our BFS implementation.

3.5.2 Comparison metric to �nd best run

Degree metric was chosen to be the comparison metric and decide the
best run out of ten. In practice, we measured the Kolmogorov Smirnov
distance (described in section 3.1) for degree metric between each run
and our ground truth, compared it to the K-S distance result from the
previous run, and kept the better result and sample as the "currently
best one" until a next run would prove to be better.

35



We realize that this is perhaps not the best way, as it may not fair
to the other metrics, and a good alternative could have been getting
the average measurements for each metric of all the ten runs instead.
However at that point it was unclear which of the two methodologies
would suit better in order to produce metrics distribution that resem-
bled somewhat the Ground Truth.

To �nd out whether "the best out of ten" is representative enough
for the other metrics as well, we ran the same experiment for model
sampling 5 times and compared the average and standard deviation
for graphs of size 5000 nodes. As we can see from Table 3.2, all the
metrics are fairly similar in their average, and have a very small stan-
dard deviation. Variation for betweenness was so small that we did
not include it in the table. Results for joint degree distribution are
not present either, as this metric was unfortunately not suited for our
experiment - we elaborate further on this in Chapter 4, Section 4.1.
We tested also �ve di�erent runs on model sampled graphs of 2500
nodes, which showed that metrics results from our initial experiment
were representative of all �ve runs. We have also performed �ve runs
of same experiment on Facebook sampled graph, which similarly to
model sampling produced very close average results for all of the met-
rics of interest. From that we can conclude that even though the choice
of favorizing best out of ten runs based on degree metric may not have
been the best, the metric results were representative for �ve other inde-
pendent experiments not only for degree metric, but for average values
of cc, closeness and betweenness as well.

Table 3.2: Average for metrics measurements for each of the �ve experiments,
and standard deviation for each metric for model sampled graph of size 5000.

Experiment
Degree CC Closeness

avg std avg std avg std

1 24.0764

0.07362

0.09789

0.00025

0.32656

0.00027
2 24.0664 0.09766 0.32665
3 23.9464 0.09747 0.3261
4 23.8848 0.09713 0.32593
5 23.9604 0.09756 0.32618

3.6 Terminology

Since there are many graphs in this thesis, it is important to give
them names as well to avoid confusion. We have decided to use the
following annotation to describe a graph, Galgorithmorigin (size) where G
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stands for graph, size for size of the graph and origin for whether the
graph is modeled or sampled from Facebook. Sampled graphs have
also algorithm annotation to identify whether they are BFS, RW or
MHRW sample. Some examples of this annotation are listed in Table
3.3

Table 3.3: Annotations for our generated and sampled graphs.

Facebook graph as our Ground Truth GFB(10000)

Facebook RW sample of Ground Truth of size 2500 GRWFB (2500)

Watts-Strogatz generated graph as our Ground Truth GWS(10000)

Watts-Strogatz generated graph of size 5000 GWS(5000)

Watts-Strogatz MHRW sample of Ground Truth of size 1000 GMHRW
WS (1000)

3.7 Summary of Methods chapter

In this chapter we introduced our implementation of Kolmogorov-
Smirnov distance, Pearson correlation coe�cient and measurements
of standard deviation as our tools of metric evaluation. We then
presented Facebook graph sample we used as our ground truth, and
Watts-Strogatz model applied for graph construction, ground truth
for graph sampling and baseline for comparison for smaller models of
the same type, and why we have chosen Small World implementation
of Watts-Strogatz graph over the random walk. We then described
our implementation and validation of degree, clustering coe�cient, be-
tweenness, closeness and joint degree distribution metrics, and how we
collected the samples using the Breadth First Search, Random Walk
and Metropolits-Hasting Random Walk.

Implementation of experiments was probably the most time consuming
part of the whole thesis. All the experiments are summarised in table
3.4.

Table 3.4: Overview of experiments conducted in this thesis.

Graphs Algorithms Graph size Metrics

Watts-Strogatz model RW 1000 Degree
Watts-Strogatz model sampling MHRW 2500 CC

Facebook BFS sampling BFS 5000 JDD (2K)
10000 Betweenness

Closeness

While this chapter explained the implementation of our expreriments,
the next one will present the results.
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Chapter 4

Testing and Evaluation

This chapter is split into two parts - presentation and comparison of
our results. Section 4.2 present how metrics' distribution changed
with scale �rst for Watts-Strogatz graphs GWS(10000), GWS(5000),
GWS(2500) andGWS(1000), then for the "clean" samples ofGWS(10000),
and lastly for sampling of Facebook graph GFB(10000). Before start-
ing with experiments however, we determine in Section 4.1 which of the
metrics that were not controlled by the model, and which we therefore
could not use for our measurements.

Section 4.3 consentrates on our research questions from Section 1.4.
First it justi�es MHRW as the best performing algorithm based on the
results from Section 4.2. After establishing the algorithm of choice, we
compare results produced by that algorithm for GFB(10000) sampling,
to model sampling of graph GWS(10000) and lastly to modelled graphs
GWS(10000), GWS(5000), GWS(2500) and GWS(1000).

Before concluding the chapter, we validate our experiments, by com-
paring our measurements of metrics to results produced by other tools
- Gephi and Orbis.

4.1 Metrics proven to be controlled by Watts-

Strogatz Model

As we mentioned in section 2.4, not all metrics that we wanted to
look at were controlled by model, meaning that they showed an indi-
cation to be very di�erent between two instances of the same model.
To look more systematically at the case, we created two Small World
graphs with exactly same degree (46) and rewiring probability (0.5).
The di�erence between the two graphs for clustering coe�cient was
surprisingly high - K-S distance of value 1. Degree and betweenness
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had an acceptable K-S distance of less than 0.1, while betweenness,
and joint degree distribution for degrees 34, 45 and 60 showed to be
equally una�ected by model. Table 4.1 illustrates the di�erences in
K-S distance for the two instances of the same model.

Table 4.1: K-S distance for metrics between two graphs produced by the
same Small World model with parameters 46 for degree and 0.5 for rewiring
probability.

Metric K-S distance

degree 0.04

cc 1

betweenness 0.06

closeness 0.7

jdd 34 0.65

jdd 45 0.5

jdd 60 0.9

Based on table 4.1 we can assume that the only two metrics controlled
by the model are degree and betweenness. To make sure that this as-
sumpsion is correct, we constructed 10 equal instances of the same
model, measuring standard deviation for each degree measurement
from all 10 instances. Table 4.2 shows the average standard devia-
tion for each metric.

Table 4.2: Average Standard Deviation for metrics of interest for 10 equally
constructed instances of Watts-Strogatz Small World model.

Metric Standard Deviation

degree 0

cc 0.03

betweenness 0.000001

closeness 0.002

jdd 34 11.18

jdd 45 208.332

jdd 60 11.817

As we can see from this overview, degree average is always the same,
which is due to models algorithm that creates the desired degree distri-
bution, with a small percentage of chaos (0.5 in our case). Clustering
coe�cient showed to be a false alarm from previous observation in Ta-
ble 4.1, and the standard deviation showed that such high di�erence in
measurements was only between the two �rst instances of the model,
while for the other eight of them the values smoothed out and proved
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clustering coe�cient a stable metric for this model. Betweenness was as
good as zero in deviation and closeness followed after, also being a false
alarm from previous observations. The three degree measurements for
joint degree distribution had a very high standard deviation, showing
that joint degree distribution is not a reliable metric for this type of
model. Based on these results we can assume that degree, clustering
coe�cient, betweenness and closeness are representative metrics for
Watts-Strogatz model, while joint degree distribution is unpredictable
and therefore unsafe to use for our metrics behaviour comparison.

Table 4.3: Average clustering coe�cient for the 10 graphs constructed the
same way, numbered in the order they were generated.

Graph Average clustering coe�cient

1 0.0045

2 0.0961

3 0.0946

4 0.0949

5 0.0945

6 0.095

7 0.09534

8 0.0955

9 0.0942

10 0.0949

For our tests we will use second generated graph, since after looking
closer at the average results for clustering coe�cient in Table 4.3, the
�rst graph di�ered a lot from the rest for clustering coe�cient (where
�rst graph's average was 0.004, while all the rest of the nine graphs
had a more stable average of 0.9).

It would be interesting to look deeper into why the results from the
�rst graph were so di�erent from the rest of the graphs, however we
leave that for future work.

4.2 Models, model samples and Facebook samples.

This Section presents how metrics' distribution changes with scale �rst for
Watts-Strogatz graphsGWS(10000), GWS(5000), GWS(2500) andGWS(1000),
then for samples of Watts-Strogatz graph GWS(10000) and last for samples
of Facebook graph GFB(10000).

Each case has a small conclusion of which of the metrics were a�ected by
scale. For the sampling experiments we also compared performance of the
three algorithms (BFS, MHRW and RW), and concluded for each case which
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one best preserved the metrics' distribution. The �nal overview is split into
the following three categories:

1. metrics that preserve the original distribution (de�ned by less than
0.1 K-S distance to the ground truth or less than 0.01 pearson value
di�erence)

2. metrics' distributions that change with scale

3. metrics for which the distributions are una�ected by scale and far away
from the ground truth

4.2.1 Change of Metrics with Scale for Watts-Strogatz Mod-

els

We have measured Kolmogorov Smirnov distance for metrics' distributions
between GWS(10000) graph and the smaller graphs GWS(5000), GWS(2500)
and GWS(1000). K-S distance results for degree, cc, betweenness and close-
ness are presented in Table 4.4. Pearson correlation between degree and
clustering coe�cient is shown in Figure 4.1.

Table 4.4: K-S distance for metrics of interest between graphs GWS(5000),
GWS(2500) and GWS(1000) to GWS(10000).

Graph
K-S distance to GWS(10000) for

degree cc closeness betweenness

GWS(5000) 0.0093 0.0663 0.9994 0.8574

GWS(2500) 0.0093 0.154 1 0.9956

GWS(1000) 0.0083 0.4489 1 1.0

Degree

As we can see from the table 4.4, all graphs have a very small, practically
zero K-S distance from the main GWS(10000) graph. Our initial intuition
that the K-S distance to the bigger graph should increase with smaller mod-
els did not stand in this case, as all of the results show a very stable K-S
value. This result is predictable, since degree was one of the parameters
when constructing the model, and was given a value of 0.5 as the probabil-
ity of changing each time a new graph is constructed. The degree metric is
controlled by the model, and is therefore held at a more or less stable level.
If we had constructed a random graph as our model ground truth, we would
most likely have gotten a much greater variation in K-S distance for degree.
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Clustering coe�cient

Unlike the degree metric, clustering coe�cient distribution gets visibly af-
fected by size of the graph. The smaller the graph, the bigger the Kolmogorov-
Smirnov distance. The smallest graph GWS(1000) is halfway to the top of
K-S scale, with a value of approximately 0.45, however the two other smaller
graphs GWS(2500) and GWS(5000) are within the acceptable range of 0.1
K-S distance to GWS(10000). Here we can see the trend of increased K-S
distance for decreasing graph size, which is according to what we have ex-
pected. Interestingly enough, the accepted range of K-S distance for graphs
of bigger size indicate that clustering coe�cient metric is in fact controlled by
Watts-Strogatz Small World model, which is in accordance to our previous
observation from Section 4.1.

Closeness

In comparison with clustering coe�cient and degree metrics, closeness dis-
tribution has a surprisingly high K-S distance (approximately 1) for all of
the smaller graphs. K-S distance of value 1 means that the two samples
have nothing in common, and tells us that closeness is a scale independent
metric in the sence that no matter the scale, it will still not resemble itself
from one sample to another. Graph GWS(5000) has a slightly better K-S
distance than the rest, however still very close to the max distance value.
Closeness distribution was kept when generating di�erent graphs of same
size in Section 4.1, however when the size became also a parameter, close-
ness showed to be an unreliable metric. The results also indicate that while
degree distribution is being kept, the diameter of the network is of variable
size, which is only natural, since the size of the graph is shrinking for each
experiment. We however did not expect such drastic impact on the average
distance between nodes when we produced a graph of half the size of the
original. Perhaps if we had found a way to introduced diameter as an extra
parameter to the model, closeness distribution would have improved.

Betweenness

Similarly to average paths to each node (closeness) distribution, the distri-
bution for amount of shortest paths (betweenness) also su�ers greatly from
the reduced amount of nodes in the graph. What we can see from the results
in Table 4.4 is that betweenness slightly follows the assumption that K-S dis-
tance will increase with decreasing scale, however it is so high to start with
(0.86 for GWS(5000) graph) that it also indicates that similar to closeness,
it is not a�ected by scale.
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Clustering coe�cient vs Degree

Figure 4.1 shows the change of the Pearson correlation between degree and
clustering coe�cient metrics. The baseline correlation to compare others to
is measured on GWS(10000) graph, with a value of approximately -0.2022.
A negative Pearson correlation indicates a negative linear relation where
degree increases while clustering coe�cient decreases, which is according to
the social graph properties previously described in Section 2.2. However,
the value -0.2022 is very close to zero, meaning that the correlation is only a
slight one. The Pearson correlation does not seem to get a�ected by size of
the graph and has a value around -0.2 for all graphs, varying slightly up and
down regardless of the size. From this we can conclude that Watts-Strogatz
Small World model is not preserving this particular social graph property
as well as we had hoped, only resembling slightly the trend of cc-degree
correlation. The fact that the Pearson correlation value remains stable for
most graph sizes is due to stable distribution values for degree and clustering
coe�cient in previously described experiments in this Section.

Figure 4.1 Change of Pearson correlation between degree and clustering
coe�cient metrics.
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Conclusion of model generated graphs

Some of the results supported our intuition of K-S distance increasing with
decreasing scale, however others indicated that the intuition might be an
erroneous one. We have also learned that Watts-Strogatz Small World model
does not preserve the correlation between clustering coe�cient and degree,
an important property of social graphs.

Table 4.5 sums up our results into the following three categories:

1. metrics' distributions that do change with scale according to our intu-
ition

2. distributions that remain stable no matter the size of the model

3. metrics' distributions that are not a�ected by scale and couldn't be
further away from the main model

Degree and cc-degree correlation remain stable, closeness and betweenness
are the furthest they could get from the model of comparison, while clustering
coe�cient distribution seems to be the only one a�ected by scale.

Table 4.5: Overview of metrics change with scale for Small World models of
di�erent sizes.

State Metric

Preserves original value
Degree
CC-Degree

Changes with scale CC

Una�ected by scale, unstable
Closeness
Betweenness

4.2.2 Change of Metrics with Scale on Sampled graphs from

Watts-Strogatz model

This Section presents distributions of degree, clustering coe�cient, between-
ness and closeness and how these change with scale by comparing sam-
ples Galg.WS(5000), G

alg.
WS(2500) and G

alg.
WS(1000) to the "ground truth" graph

GWS(10000). The "alg." annotation stands for algorithm used for sam-
pling, which is either Random Walk, Metropolis-Hasting Random Walk or
Breadth-First Search.

Table 4.6 presents the results for K-S distance to the ground truth for
metrics' distributions individually, while Figure 4.2 illustrates Pearson cor-
relation between degree and clustering coe�cient.

44



Table 4.6: K-S distance for metrics of interest between samples Galg.WS(5000),

Galg.WS(2500) and G
alg.
WS(1000) and the ground truth graph GWS(10000).

Graph
K-S distance to GWS(10000) for

degree cc closeness betweenness

GRWWS (5000) 0.9907 0.1312 0.998 0.8274

GMHRW
WS (5000) 0.9917 0.12 0.9992 0.8308

GBFSWS (5000) 0.9406 0.2092 0.9569 0.7545

GRWWS (2500) 1 0.2322 1 0.9557

GMHRW
WS (2500) 1 0.2199 1 0.9601

GBFSWS (2500) 0.9667 0.325 0.9669 0.8745

GRWWS (1000) 1 0.3389 1 0.9726

GMHRW
WS (1000) 1 0.3739 1 0.9747

GBFSWS (1000) 0.97 0.414 0.95 0.8495

Degree

The K-S distance for all three sample sizes lies at approximately 0.96 for BFS
and 1 for RW and MHRW. The K-S distance for degree distribution is slightly
better for the bigger samples, however the di�erence is very marginal. Since
the degree was well preserved throughout di�erent models of various sizes,
it is interesting to observe that when sampled, the degree distribution is not
preserved at all. When sampled, we do not preserve the original degree of a
sampled node, measuring the resulting degree based on how many neighbors
of that particular node that were also sampled. BFS is therefore producing
slightly better results since it is in the algorithm's nature to sample neighbors
of a sampled node before going deeper into the graph. However, the di�erence
in performance from the two other algorithms is so marginal that it is not
signi�cant for the resulting K-S distance.

So what is the reason for such di�erence in the degree range between the
original and sampled graphs? We know that the ground truth is modelled
to have an average degree of 46. It is perhaps this restriction that creates
a gap in distributions, since we are collecting only a fraction of the original
graph, therefore disturbing the stable average degree balance.

Clustering coe�cient

Clustering coe�cient K-S distance results are suprisingly low, compared to
the degree results. They start with as low as 0.12 for GMHRW

WS (5000) sample,
with GRWWS (5000)and G

BFS
WS (5000) following close by, and slightly increase for

GMHRW
WS (2500) sample to 0.21, and 0.37 for GMHRW

WS (1000) sample.

It seems that the distance gets smaller by 0.1 each time the graph size
is doubled. BFS and RW show the same trend, by going from 0.21 for
GBFSWS (5000) to 0.33 for GBFSWS (2500) to 0.41 for GBFSWS (1000), and from 0.13
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to 0.23 to 0.33 for RW samples GRWWS (5000), G
RW
WS (2500) and GRWWS (1000)

respectively.

For samples of size 5000 and 2500 the graphsGMHRW
WS (5000) andGMHRW

WS (2500)
had the smallest K-S distance, while for samples of size 1000 the GRWWS (1000)
graph was better.

The low clustering coe�cient results indicate that while the degree dis-
tribution was not preserved, the clustering coe�cient distribution mostly re-
mained unchanged, meaning that the neighbors of nodes were equally likely
to form cliques in the sampled graphs as in the original ground truth. From
this we can deduce that the amount of links between neighboring nodes
stayed proportional.

Closeness

K-S distance for closeness distribution is very high (1 or almost 1) for all sizes,
and there seems to be no correlation between sample size and improvement
of measurements. BFS is in the lead, however the di�erence to the other two
is minimal (approximately 0.04 di�erence in K-S value).

Closeness distribution was not kept when we modeled graphs of di�erent
sizes in Section 4.2.1, and has showed not to be preserved when sampling
either. While for the modeled graph we explained this with the changing
diameter of the graphs, in the case of sampling this assumpsion would not
hold, as three di�erent algorithms are not likely to produce graphs of so
di�erent shapes from the ground truth. This is perhaps also due to the
stable average degree of 46 for the ground truth, which produces a stable
amount of average distance between the nodes. When sampling, the degree
distribution is not preserved, meaning that we achieve a much greater range
of degrees, and the average distances from each node to all other nodes are
hence modi�ed.

Betweenness

Similarly to closeness, the K-S distance is very high for all the samples, but
there is also a slight increase of K-S distance for smaller graphs. BFS starts
with value 0.75 for GBFSWS (5000), increases to 0.87 for GBFSWS (2500) but then
decreases again for GBFSWS (000) sample to 0.85. Random walk is next best,
starting with 0.827 for GRWWS (5000) sample, increasing to 0.96 for G

RW
WS (2500)

sample and to 0.97 for GRWWS (1000) sample. MHRW follows RW closely and
has an increase of K-S distance from 0.831 to 0.96 for GMHRW

WS (2500) and
last to 0.97.

As for the closeness and degree distributions, we can assume that this
distance is due to the modi�cation of the average degree in the sampled
graphs.

46



Clustering coe�cient vs Degree

Figure 4.2 shows Pearson correlation between clustering coe�cient and de-
gree metrics. Pearson value for the ground truth is negative, and at the
same time close to zero, which means a slight negative correlation between
cc and degree, where with increasing degree, cc decreases. A value close
to zero means that there is practically no correlation at all. All Pearson
values for samples are positive, meaning that with increasing degree cluster-
ing coe�cient also increases. MHRW starts with the lowest (and in other
words closest to ground truth) value: 0.05 for sample GMHRW

WS (5000) (�gure
4.2a), slightly increases to 0.13 for sample of GMHRW

WS (2500) (�gure 4.2b)
and ends up with 0.14 for the smallest sample GMHRW

WS (1000) (�gure 4.2c).
Random walk is the next best, and starts with 0.06 for GRWWS (5000), follows
MHRW close with 0.14 for GRWWS (2500) sample and 0.15 for G

RW
WS (1000) sam-

ple. BFS has the furthest Pearson value from the ground truth, with 0.27
for GBFSWS (5000), 0.31 for GBFSWS (2500) and 0.33 for GBFSWS (1000).

In all the three algorithms we can observe a slight increase of distance to
the original value each time sample gets smaller.

As observed earlier in this Section, the degree distribution was not pre-
served for the sampled graphs, while clustering coe�cient distribution was
more stable. This explains the big gap in the Pearson values between the
sampled graphs and the Ground Truth.

Conclusion of model sampling

In this Section we have learned that the degree parameter for modeled graphs
is most likely a�ecting the behavior of distributions for degree, closeness
and betweenness when a modelled graph is being sampled. We have in our
experiments with sampled graphs focused on two questions :

1. which metrics are a�ected by scale

2. which algorithm performs better than the others

Comparison of algorithm performance:
As we can see from the results, BFS, RW and MHRW each were very
close to being the best performing algorithm. BFS performed slightly
better for degree, however still very far from the ground truth, and was
best for both closeness and betweenness metrics. MHRWwas better for
clustering coe�cient for higher sample sizes (both for GMHRW

WS (5000)
GMHRW
WS (2500)), while RW was following close by (with 0.01 K-S dis-

tance di�erence from MHRW for sample GRWWS (5000), and 0.02 for sam-
ple GRWWS (2500)), even outperforming MHRW with 0.04 K-S distance
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Figure 4.2 CC vs Degree comparison for Watts-Strogatz samples of size
1000, 2500 and 5000.
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di�erence for the smallest sample GRWWS (1000). MHRW was the best
to preserve the relation between degree and clustering coe�cient. Al-
gorithm comparison is summed up in table 4.7

Table 4.7: Overview of algorithm performance for di�erent metrics measured
on Small World samples of di�erent sizes.

Metric Best algorithm

Degree BFS

CC MHRW/RW

Closeness BFS

Betweenness BFS

Degree vs CC MHRW

Metrics a�ected by scale
Table 4.8 sums up which metrics were a�ected by scale, which remained
stable, and which showed to be unstable and una�ected by scale.

Table 4.8: Overview of metrics change with scale for Small World samples
of di�erent sizes.

State Metric

Preserves original value -

Changes with scale
CC
CC - Degree
Betweenness

Una�ected by scale, unstable
Degree
Closeness

4.2.3 Change of Metrics with Scale on Samples of Facebook

BFS Graph Sample

This Section presents our metrics measurements for degree, clustering coef-
�cient, betweenness and closeness metrics and how these change with scale
by comparing them for samples Galg.FB (5000), G

alg.
FB (2500) and G

alg.
FB (1000) to

the "ground truth" GFB(10000). "Alg." annotation stands for the sampling
algorithms used, which is either Random Walk, Metropolis-Hasting Random
Walk and Breadth-First Search.

Table 4.9 presents the results for K-S distance to the ground truth for
metrics individually, while �gure 4.3 illustrates Pearson correlation between
degree and clustering coe�cient.
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Table 4.9: K-S distance for metrics of interest between samples Galg.FB (5000),

Galg.FB (2500) and the ground truth Facebook sample GFB(10000).

Graph
K-S distance to ground truth for

degree cc closeness betweenness

GRWFB (5000) 0.1344 0.0712 0.3879 0.2166

GMHRW
FB (5000) 0.044 0.045 0.0977 0.2337

GBFSFB (5000) 0.2174 0.0938 0.6597 0.1688

GRWFB (2500) 0.0487 0.0968 0.4211 0.3633

GMHRW
FB (2500) 0.1395 0.0412 0.0994 0.4456

GBFSFB (2500) 0.3042 0.1182 0.8514 0.3406

GRWFB (1000) 0.1461 0.1277 0.4278 0.4278

GMHRW
FB (1000) 0.3179 0.0616 0.2173 0.2173

GBFSFB (1000) 0.3092 0.3116 0.92 0.92

Degree

The K-S distance for all samples of all sizes is relatively low, lying between
0.04 and 0.3. MHRW has the lowest distance to the ground truth, with 0.04
for sample GMHRW

FB (5000). RandomWalk however achieves better results for
GRWFB (2500) sample with 0.05, a self-improvement from 0.13 for GRWFB (5000)
sample. BFS is stabilised on 0.2-0.3 K-S distance for all sample sizes. There
is a trend of increased distance with smaller samples, which is followed only
by MHRW algorithm. RW is more unpredictable, while BFS remains more
or less stable, which is according to the node degree BFS bias previously
described in Section 2.3.6.

Our intuition that K-S distance would become more increasing with de-
creasing size of the sample did not hold in this case, however the degree
metric distribution was relatively well preserved for most samples. This is
perhaps why BFS algorithm performs the worst out of the three, overesti-
mating the node degree (as described in Node Degree Bias in Section 2.3.6),
on an already bias Ground Truth (which itself is a BFS sample of Facebook
graph). Since we are sampling a real graph, the degree distribution of the
original graph is more naturally spread than in the previous experiments on
a modelled graph, where the average degree was more or less �xed (with
0.5 chances of changing whenever a new node was added, leaving the graph
slightly random, however with a restricted variety of the degree - see Section
3.3.2). It has shown to be easier for sampling algorithms to preserve degree
distribution for sampled Ground Truth than for the modelled one.

Clustering coe�cient

Clustering coe�cient results are very low, varying between 0.04 and 0.3. K-
S distance is increasing for BFS with the decreasing scale of nodes. This
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behaviour is accodring to Clustering Coe�cient Bias Section 2.3.6 which
described that BFS tends to overestimate clustering coe�cient. The bias
overestimation becomes bigger when there are less nodes to sample, since
the algorithm has a preference towards higher degree nodes, and therefore
does not represent low-degree nodes well enough. In bigger samples the
di�erence in amount higher and lower degree nodes collected is smaller, and
the results get closer to the ground truth.

All three algorithms have acceptable distance of less than 0.1 for the
largest samples of 5000 node. BFS gets left behind for the smallest sample,
performing better for higher degree nodes. MHRW is best out of all three,
remaining very stable and below 0.1 K-S distance for all three sizes.

Closeness

While cc and degree metrics had somewhat similar values between di�erent
runs, closeness had a much wider range of K-S distance, from 0.98 and up to
0.92 as the highest. Values are slightly increasing with scale, however they
stay very close to each other within di�erent sampling algorithms, varying
only with around 0.1 between K-S distances.

MHRW is the best out of the three, while BFS is completely unable to
preserve closeness for small samples, and even struggles with the biggest
sample GBFSFB (5000). Closeness however is a di�cult metric to preserve, as
described by [Steen, 2010], since the average closeness will vary with di�erent
graph sizes, increasing value for more users in a network and decreasing
with less users. Therefore it makes sence that the variations for closeness
between di�erent algorithms are marginal, while graphs of di�erent size are
almost uncomparable. This observation stands however only for BFS and
RW algorithm, most likely due to the degree bias these two are known to
introduce to their samples. MHRW however is a modi�cation of RW that
slightly �xes the bias, which is why the results for closeness distribution are
better preserved by MHRW.

Betweenness

Curiously enough, BFS performs better for betweenness than for both degree
and closeness previously measured, and even outperforms RW and MHRW
for the two largest samples. Betweenness seems a�ected by scale only for
RandomWalk, while the K-S distance is varying both up and down regardless
of scale both for BFS and MHRW.

Clustering coe�cient vs Degree

Figure 4.3 shows Pearson correlation between clustering coe�cient and de-
gree metrics. Pearson value for the ground truth is negative, and close to
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zero, similar to our previous observation from Small World sampling exper-
iment. All samples keep the negative value, mostly stable and close to the
ground truth pearson value of -0.3, both for sample size 5000 and 2500, while
worstening for sample size 1000. MHRW is best for sample ofGMHRW

FB (5000),
while RW is better for both smaller samples GRWFB (2500) and GRWFB (1000).
We can as well visually con�rm that all three algorithms are more or less
following the Ground Truth measurements with a general trend of decreasing
y-axis (clustering coe�cient). This behaviour is according to what we had
originally expected from our experiments. proven however only to be true
for the "real-graph" sampling case.

Conclusion of Facebook graph sampling

As with experiments on sampled model, we have focused here on which
metrics are a�ected by scale, and which algorithm performs better than the
others.

Comparison of algorithm performance:

Algorithm comparison is summed up in Table 4.10

Table 4.10: Overview of algorithm performance for di�erent metrics mea-
sured on Facebook samples.

Metric Best algorithm

Degree MHRW/RW

CC MHRW

Closeness MHRW

Betweenness BFS/MHRW

Degree vs CC MHRW/RW

Metrics a�ected by scale:

Table 4.11 sums up which metrics were a�ected by scale, which re-
mained stable, and which were not. For this experiment we needed
to introduce a new "state" to the overview Table, in order to describe
metrics that were "slightly a�ected" by scale. In other words, the
change in K-S distance for smaller samples was present, however it
was so small that perhaps for a di�erent sample run it would have
behaved di�erently.
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Figure 4.3 CC vs Degree comparison for Facebook samples of size 1000,
2500 and 5000.
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FB (1000) of GFB(10000) ground truth.
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Table 4.11: Overview of metrics change with scale for Facebook samples.

State Metric

Preserves original value CC

Changes with scale

Degree
Closeness
Betweenness (only for RW)
CC-Degree

Una�ected by scale, unstable Betweenness (BFS and MHRW)

4.3 Comparison of models, model samples and Face-

book samples

In this section we analyze our results from Section 4 between 4 graph sizes
of 10000, 5000, 2500 and 1000 nodes constructed in three di�erent ways
- by modeling (GWS(10000), GWS(5000), GWS(2500) and GWS(1000)), by
crawling the largest model graphGWS(10000) and by crawling a "real graph"
GFB(10000) - a BFS sample of Facebook of 10 000 nodes.

In Section 4.3.1 we compare the sampled graphs based on our results
from Section 4.2 and deduce which algorithm performs better in preserving
di�erent metrics with size. Section 4.3.2 presents the crawling results from
the algorithm of choice, and sums up the comparison between modeling and
crawling to �nd out which metrics were a�ected by scale.

4.3.1 Preferred sampling algorithm

Based on Table 4.7 and Table 4.10 from Chapter 4 we can create a new
overview in table 4.12 to re�ect which algorithm performs better for most
metrics.

Table 4.12: Overview of algorithm performance for di�erent metrics for both
model samples and Facebook graph samples.

Algorithm GWSsamples GFBsamples

MHRW

CC CC
Degree-CC Degree-CC

Closeness
Degree

BFS
Betweenness Betweenness
Degree
Closeness

RW
CC Degree

Degree-CC
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As we can see from Table 4.12, BFS and MHRW are the two algorithms
that outperform RW, however MHRW showed to get better results for more
metrics than BFS, and this is why we have selected MHRW as our algorithm
of choice.

4.3.2 Change of metrics with scale

Table 4.13 combines results from experiments conducted in Section 4.2 for
metric measurements for di�erent graph sizes both for constructed models
and for sampled graphs. For sampling we have only represented MHRW
results, as it has shown to outperform RW and BFS in preserving metrics
measurements. A metric is counted to preserve the original value if the K-S
distance between the measured graph and the baseline graph is less than 0.1,
or in the case of degree-cc correlation a pearson value that di�ers from the
original with less than 0.01.

Table 4.13: Overview of metrics variation with scale summing up the three
experiments of models, sampled models and sampled Facebook graph in one.

State GWS GMHRW
WS samples GMHRW

FB samples

Preserves original value
Degree - -
CC-Degree

Changes with scale
CC CC CC

CC-Degree CC-Degree
Betweenness Closeness

Degree

Una�ected by scale
Closeness Closeness Betweenness
Betweenness Degree

As we can see from Table 4.13, only the model GWS is able to preserve
the original value for degree metric, which is predictable, considering that
degree was used as one of the parameters for model construction. Clustering
coe�cient vs degree correlation is also preserved, most likely due to non-
changing degree, and a relatively small change of clustering coe�cient metric
for bigger models (0.07 K-S distance to the baseline for GWS(5000) graph
and 0.15 for GWS(2500) graph).

Since we don't keep the original full degree of a sampled node, the degree
distribution between nodes is much lower for samples than in the graph being
sampled.

What is common for all the three cases is that clustering coe�cient
changes with scale, increasing the K-S distance to the baseline for each graph
decreased in size. Clustering coe�cient - degree correlation is changing with
scale for both of the sampling cases (GWS(10000) and GFB(10000)). In ad-
dition, betweenness changes with scale for model samples, and closeness with
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degree change with scale for Facebook samples.
Models experiments have in common with model sampling that close-

ness is una�ected by scale and is very far away from the original baseline.
Models and Facebook sampling experiments have betweenness as the metric
una�ected by scale. Model samples experiment also adds degree to the list
of metrics that are una�ected by scale.

4.4 Summary of Testing and Evaluation

This Chapter started with determining which of the metrics that were under
control of Small World model. We have eliminated joint degree distribution
from list of metrics suitable for our experiments, as it varied greatly between
di�erent instances of the same Watts-Strogatz model, and we could therefore
not trust that any conclusion we based on measurements of jdd could be
applied in general to Watts-Strogatz Small World graph.

We have then conducted three experiments to test how metrics vary
with scale for three cases - model construction, model sampling and real
graph sampling. For sampling we have compared three sampling algorithms
- BFS, MHRW and RW and found out that MHRW is preserving clustering
coe�cient and cc-degree correlation better than the other two algorithms,
while BFS is best at preserving betweenness distribution.

For the �rst case, the Watts-Strogatz graph models GWS of di�erent
sizes, only clustering coe�cient was a�ected by scale, while closeness and be-
tweenness showed to be unstable and very di�erent from the ground truth.
Degree and degree-cc correlation preserved well the ground truth's origi-
nal values. When sampled, Watts-Strogatz' smaller graphs (GWS(5000),
GWS(2500) and GWS(1000)) did not manage to preserve any of the original
metrics measurements, however more of the metrics were a�ected by scale
than in the models-only experiment. Degree and closeness were both un-
stable and una�ected by scale, while clustering coe�cient, betweenness and
cc-degree comparison had an increase in their K-S distance to the ground
truth for each time sample size decreased. Unlike model sampling, Facebook
graph sampling preserved clustering coe�cient measurements of the ground
truth throughout its samples. Degree, closeness, and cc-degree correlation
changed slightly with scale, while betweenness showed to be una�ected by
scale and with unstable K-S distance values.

For all the cases clustering coe�cient distribution showed to be a�ected
by scale, while correlation between clustering coe�cient and degree was af-
fected by scale only for the cases with samling.

56





Chapter 5

Conclusion

This Chapter sums up what we have done in this work in Section 5.1, answers
the research questions we have asked in the beginning of the thesis in Section
5.2, concludes our main achievements in Section 5.3 as well as challenges we
faced in Section 5.4 and gives some guidelines for future work in Section 5.5.

5.1 Evaluation of the thesis

The aim of this thesis was to investigate which metrics were a�ected by scale,
either with modeling or with sampling a real graph. In this work we have
performed three tests - two on Watts-Strogatz model, and one on Facebook
graph. Watts-Strogatz models GWS(10000), GWS(5000), GWS(2500) and
GWS(1000) were used as the "ideal case" for how metrics would behave on
a "clean" graph that we could control.

GFB(10000) graph that we had was on the other hand a sample itself by
Breadth First Search algorithm, which made it bias to higher degree nodes
from the original Facebook graph, and therefore an "unclean" sample. This
fact made it also interesting to test for how di�erent sampling algorithms
would behave on this sample contra the "clean" model. We also performed
an experiment where we sampledGWS(10000) graph to see again how metrics
would di�er from the "ideal case" - the constructed models GMHRW

WS , and
also from the "unclean" graph sample.

With the results from these experiments at hand, we can now answer our
research questions.

5.2 Anwering Research Questions

In this section we sum up our �ndings from Chapter 4 to answer our two
main research questions:

1. "How do graph metrics change with scale?"
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Out of the metrics we have measured, clustering coe�cient was the
only one changing with scale for all three cases. Clustering coe�cient
- degree correlation was also a�ected by scale for sampled graphs. For
GWS graphs where degree was �xed, the clustering coe�cient vs degree
correlation was preserved. Degree, betweenness and closeness results
were unconclusive.

2. "Which sampling algorithm will perform better in regards to preserv-
ing metrics when scaling?"
Metropolits-Hasting RandomWalk showed to produce smaller K-S dis-
tance to the baselines of comparison for each experiment, and we there-
fore conclude that for preserving clustering coe�cient and clustering
coe�cient-degree correlation (which is an important property of so-
cial graphs, previously described in Section 2.2), MHRW is the better
algorithm.

5.3 Main achievements

1. We discovered that clustering coe�cient distribution was a�ected by
scale for GWS graphs and GMHRW

WS sampling cases. For GWS graphs
the distribution had a relatively small (less than 0.1) increase in K-S
distance from GWS(5000) to GWS(2500), while from GWS(2500) to
GWS(1000) the change was whole 0.3.

K-S distance for GMHRW
WS samples was more stable, increasing with

approximately 0.1 each time the graph scale decreased with half of the
nodes. Sampling real graph GFB(10000) showed to be least a�ected
by scale for cc distribution, but also most stable with K-S distance
changing less than 0.1 between di�erent samples.

2. An interesting �nding was that joint degree distribution was not con-
trolled by Watts-Strogatz model at all, in contrast to degree, cc, be-
tweenness and closeness.

3. Randomness of Watts-Strogatz graph a�ects clustering coe�cient met-
ric, where clustering coe�cient distribution is more unpredictable for
the smaller models with equal value of randomness.

4. Degree parameter of Watts-Strogatz graph a�ects the distributions of
degree, closeness and betweenness metrics when the modelled graph is
being sampled.

5. Even though Small World model has proven to be a good model for
social graph construction, it failed to preserve one of the important
properties of social graphs - namely the correlation between clustering
coe�cient and degree.
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6. MHRW preserved the original metrics distribution better than RW and
BFS, especially clustering coe�cient and degree - cc correlation. BFS
was good at preserving betweenness.

7. Watts-Strogatz model is not always a good model to use when attempt-
ing to immitate a real sampled graph. We found it di�cult to create
a graph based on Watts-Strogatz model that even slightly resembled a
BFS sample of Facebook, since metrics such as clustering coe�cient,
closeness and betweenness had a very di�erent distribution than the
ground truth.

5.4 Challenges

When constructing models to resemble our Facebook sample, we �rst com-
pared only degree metric. However we quickly learned that it was not suf-
�cient to look at one metric, since low K-S distance value for one metric
does not necessarily mean low K-S distance value for another, which was
the case for clustering coe�cient metric that showed to be a more complex
metric that did not necessarily follow the low K-S distance value the other
measured metrics had. Later we learned that we couldn't construct a model
that resembled our Facebook sample, since it is most likely bias to the higher
degree nodes, and therefore not a very good representative of a social graph.
This is why we also ran sampling experiment on the biggest model, to check
where the sampling would give similar results.

5.5 Future work

The �eld of social graph research is very wide, and we had to limit our
work due to time constrains. It would have been interesting to compare
the obtained results to the results of existing crawling algorithms, such as
the algorithms presented by [Gjoka et al., 2010] and [Mislove et al., 2007],
as well as to models from [Sala et al., 2010], [Mahadevan et al., 2006b] and
[Leskovec et al., 2010].

It would also be valuable to run the sampling algorithms on a di�erent
ground truth, both di�erent social graphs, internet topologies, and others, as
well as di�erent types of models, such as chain graph, high click graph and
more, and also include more metrics, such as likelihood, k-connectivity and
more. Sampling experiments included more metrics that were changing with
size, however the results were not conclusive since closeness and degree was
changing with scale for Facebook graph samples, while for model samples
the two couldn't be further away from the ground truth, and vice versa,
betweenness for model samples was a�ected by scale, while it was completely
una�ected and far away from the ground truth for Facebook graph samples.
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In this thesis we tested how standard deviation would vary for 10 in-
stances of the same Watts-Strogatz model, and concluded with which metrics
were controlled by the model (which metrics had a low value for standard
deviation). It would also be interesting to check how the standard deviation
would vary for models of di�erent sizes, and see whether or not the same
metrics are still controlled by the model.

In our Watts-Strogatz experiments (described in Section 4.1), we encoun-
tered a peculiar case where the metrics variation for clustering coe�cient and
closeness were so high that we thought we could not use these two metrics in
our experiments. After constructing 10 instances of the same model and �nd-
ing standard deviation for all the metrics between 10 graphs we determined
that it was only the �rst graph that had very di�erent results for the two
metrics, while all the other nine had similar average, and therefore produced
an acceptable standard deviation. It would have been interesting to explore
more why two instances of Small World graph had such high variation for
some of the metrics measured, unfortunately we did not have time for that.
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