Viability and martingale measures under partial information

Claudio Fontana* Bernt Øksendal[†] Agnès Sulem[‡]
9 February 2013

Abstract

We consider a financial market with a single risky asset whose price process S(t) is modeled by a jump diffusion, and where the agent only has access to a given partial information flow $\{\mathcal{E}_t\}_{t\geq 0}$. Mathematically this means that the portfolio φ is required to be \mathcal{E} - predictable. We let $\mathcal{A}_{\mathcal{E}}$ denote the set of admissible portfolios. If U is a given utility function, we say that the market is (\mathcal{E}, U) -viable if there exists a portfolio $\varphi^* \in \mathcal{A}_{\mathcal{E}}$ (called an optimal portfolio) such that

$$\sup_{\varphi \in \mathcal{A}_{\mathcal{E}}} E[U(X_{\varphi}(T))] = E[U(X_{\varphi^*}(T))]. \tag{0.1}$$

We prove that, under some conditions, the following holds: The market is (\mathcal{E}, U) -viable if and only if the measure Q^* defined by

$$dQ^* = \frac{U'(X_{\varphi^*}(T))}{E[U'(X_{\varphi^*}(T))]} dP \text{ on } \mathcal{F}_T$$

$$\tag{0.2}$$

is an equivalent local martingale measure (ELMM) with respect to \mathcal{E} and with respect to the \mathcal{E}_t -conditioned price process

$$\tilde{S}(t) := E_{Q^*}[S(t) \mid \mathcal{E}_t] \; ; \; t \in [0, T].$$
 (0.3)

This is an extension to partial information of a classical result in mathematical finance.

We also obtain a characterization of such partial information optimal portfolios in terms of backward stochastic differential equations (BSDEs), which is a result of independent interest.

^{*}INRIA Paris-Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, Le Chesnay Cedex, 78153, France, and Université Paris-Est, email: claudio.fontana@inria.fr

[†]Center of Mathematics for Applications (CMA), Dept. of Mathematics, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway, email: oksendal@math.uio.no The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no [228087].

[‡]INRIA Paris-Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, Le Chesnay Cedex, 78153, France, and Université Paris-Est, email: agnes.sulem@inria.fr

MSC (2010): 93E20, 91G80, 94A17, 91B70, 60G44, 60G51, 60G57.

Keywords: Optimal portfolio, viability, martingale measures, partial information.

1 Introduction

Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, P)$ be a filtered probability space and let $B(t) = B(t, \omega)$; $t \geq 0$, $\omega \in \Omega$ be a Brownian motion and $\tilde{N}(dt, d\zeta) := N(dt, d\zeta) - \nu(d\zeta)dt$ an independent compensated Poisson random measure, respectively, on this space.

Consider the following financial market with two investment possibilities:

- (i) A risk free asset with unit price $S_0(t) = 1$; $t \ge 0$.
- (ii) A risky asset, with unit price S(t) given by the equation

$$dS(t) = b(t)dt + \sigma(t)dB(t) + \int_{\mathbb{R}} \gamma(t,\zeta)\tilde{N}(dt,d\zeta) ; t \ge 0$$

$$S(0) = S_0 > 0.$$
 (1.1)

Here b(t), $\sigma(t)$ and $\gamma(t,\zeta)$ are given bounded \mathcal{F}_t -predictable processes on [0,T], where T>0 is a fixed constant. We refer to [11] for information about the stochastic calculus for Lévy processes.

Let $\mathcal{E}_t \subseteq \mathcal{F}_t$ be a given subfiltration, representing the information available to an agent at time t. For example, we could have

- (i) $\mathcal{E}_t = \mathcal{F}_{(t-\delta)^+}$ (delayed information flow) or
- (ii) $\mathcal{E}_t = \mathcal{F}_t^{(S)}$ (the price observation flow), where $\mathcal{F}_t^{(S)}$ is the σ -algebra generated by the price process S(s); $0 \le s \le t$; $t \in [0, T]$.

Let $\mathcal{A}_{\mathcal{E}}$ be the family of \mathcal{E}_t -predictable portfolios $\varphi(t)$, representing the number of units of the risky asset held at time t, such that

$$E\left[\int_0^T \varphi^2(t)dt\right] < \infty,\tag{1.2}$$

where E denotes expectation with respect to P. We assume that φ is self-financing, in the sense that the corresponding wealth process $X_{\varphi}(t)$ is given by

$$\begin{cases} dX_{\varphi}(t) &= \varphi(t)dS(t) = \varphi(t)\left(b(t)dt + \sigma(t)dB(t) + \int_{\mathbb{R}} \gamma(t,\zeta)\tilde{N}(dt,d\zeta)\right) \; ; \; t \geq 0 \\ X_{\varphi}(0) &= x \in \mathbb{R}, \; t \geq 0. \end{cases}$$
(1.3)

Note that

$$E\left[\int_0^T X_{\varphi}^2(t)dt\right] < \infty. \tag{1.4}$$

Let $U: (-\infty, \infty) \to [-\infty, \infty)$ be a given utility function, assumed to be C^1 on $(0, \infty)$, concave and strictly increasing on $[0, \infty]$. We assume that

$$E\left[U'(X_{\varphi}(T))\right)^{2}\right] < \infty \tag{1.5}$$

for all $\varphi \in \mathcal{A}_{\mathcal{E}}$.

We study the following partial information optimal portfolio problem:

Problem 1.1 Find u(x) and $\varphi^* \in \mathcal{A}_{\mathcal{E}}$ such that

$$u(x) = \sup_{\varphi \in \mathcal{A}_{\mathcal{E}}} E[U(X_{\varphi}(T))] = E[U(X_{\varphi^*}(T))]. \tag{1.6}$$

We say that the market is (\mathcal{E}, U) -viable if there exists an optimal $\varphi^* \in \mathcal{A}_{\mathcal{E}}$ satisfying (1.6).

Recently there has been much discussion in the literature concerning various concepts of arbitrage and their relation to stochastic control, viability and equivalent local martingale measures. See e.g. [5], [6] and [7]. The purpose of this paper is to prove that in our partial information financial market setting, without any no-arbitrage conditions, the following holds:

The market is (\mathcal{E}, U) -viable (with a growth condition added) if and only if the measure Q^* defined by

$$dQ^* = \frac{U'(X_{\varphi^*}(T))}{E[U'(X_{\varphi^*}(T))]}dP \text{ on } \mathcal{F}_T$$
(1.7)

is an equivalent local martingale measure (ELMM) with respect to \mathcal{E} and with respect to the \mathcal{E}_t -conditioned process

$$\tilde{S}(t) := E_{Q^*}[S(t) \mid \mathcal{E}_t] \; ; \; t \in [0, T].$$
 (1.8)

See Theorem 4.1.

Remark 1.2 In the complete observation case $(\mathcal{E}_t = \mathcal{F}_t)$ this result has been known for a long time in a variety of settings. One of the first results in this direction seems to be in the paper [8]. Even in a basic one-period market model a version of this result can be proved; see e.g. [10]. For a general discussion see [9] and the references therein. A recent model uncertainty version can be found in [12].

2 A BSDE characterization of optimal portfolios

In this section we give a characterization of portfolios φ^* satisfying (1.6) in terms of a backward stochastic differential equation (BSDE). This is obtained by applying the maximum principle for optimal control to the problem, as follows:

The Hamiltonian

$$H: [0,T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathcal{R} \times \Omega) \to \mathbb{R}$$

(where \mathcal{R} is the set of functions $r(\cdot): \mathbb{R} \setminus \{0\} \to \mathbb{R}$) is defined by

$$H(t, x, \varphi, p, q, r(\cdot), \omega) = \varphi b(t, \omega) p + \varphi \sigma(t, \omega) q + \int_{\mathbb{R}} \varphi \gamma(t, \zeta, \omega) r(\zeta) \nu(d\zeta), \tag{2.1}$$

whenever the integral converges.

Associated to each $\varphi \in \mathcal{A}_{\mathcal{E}}$ we have a BSDE in the adjoint processes $p(t), q(t), r(t, \zeta)$ given by

$$\begin{cases}
dp(t) &= -\frac{\partial H}{\partial x}(t, X_{\varphi}(t), \varphi(t), p(t), q(t), r(t, \cdot)) dt \\
&+ q(t) dB(t) + \int_{\mathbb{R}} r(t, \zeta) \tilde{N}(dt, d\zeta) ; 0 \le t \le T \\
p(T) &= U'(X_{\varphi}(T)).
\end{cases} \tag{2.2}$$

The partial information necessary maximum principle (see [2]) states that if $\varphi \in \mathcal{A}_{\mathcal{E}}$ is optimal for the problem (1.6) and (2.2) has a unique solution p, q, r then

$$E\left[\frac{\partial H}{\partial \varphi}(t, X_{\varphi}(t), \varphi(t), p(t)q(t)r(t, \cdot)) \mid \mathcal{E}_t\right] = 0 \text{ a.s., for a.a.t.}$$
(2.3)

In our case (2.2) reduces to the form

$$\begin{cases} dp(t) = q(t)dB(t) + \int_{\mathbb{R}} r(t,\zeta)\tilde{N}(dt,d\zeta) ; \ 0 \le t \le T \\ p(T) = U'(X_{\varphi}(T)). \end{cases}$$
(2.4)

Note that by the Itô representation theorem this BSDE has a unique solution $p(t), q(t), r(t, \zeta)$ satisfying

$$E\left[\int_0^T \left\{p^2(t) + q^2(t) + \int_{\mathbb{R}} r^2(t,\zeta)\nu(d\zeta)\right\} dt\right] < \infty.$$
 (2.5)

In our case equation (2.3) becomes

$$E\left[b(t)p(t) + \sigma(t)q(t) + \int_{\mathbb{R}} \gamma(t,\zeta)r(t,\zeta)\nu(d\zeta) \mid \mathcal{E}_t\right] = 0 \text{ a.s., for a.a.t.}$$
 (2.6)

Conversely, suppose (2.4)-(2.6) hold. Then, since H is a concave function of (x, φ) we see that φ satisfies all the conditions of the partial information *sufficient* maximum principle (see e.g. [2]). Therefore we can conclude that φ is optimal.

We have proved:

Theorem 2.1 A portfolio φ is optimal for the problem (1.6) if and only if the solution (p,q,r) of the BSDE (2.4) satisfies (2.6).

Recall the generalized Clark-Ocone theorem (see [1] for the Brownian motion case and [3, Theorem 3.28] for the Lévy process case) which states that if $F \in L^2(P)$ is \mathcal{F}_T -measurable, then F can be written

$$F = E[F] + \int_0^T E[D_t F \mid \mathcal{F}_t] dB(t) + \int_0^T \int_{\mathbb{R}} E[D_{t,\zeta} F \mid \mathcal{F}_t] \tilde{N}(dt, d\zeta)$$
 (2.7)

where $D_t F$ and $D_{t,\zeta}$ denote the generalized Malliavin derivative at t with respect to $B(\cdot)$ and at t, ζ with respect to $N(\cdot, \cdot)$, respectively.

Applying this to $F := U'(X_{\varphi}(T))$ we see that the solution of (2.4) is

$$p(t) = E[U'(X_{\varphi}(T)) \mid \mathcal{F}_t] \tag{2.8}$$

$$q(t) = E[D_t U'(X_{\varphi}(T)) \mid \mathcal{F}_t]$$
(2.9)

$$r(t,\zeta) = E[D_{t,\zeta}U'(X_{\varphi}(T)) \mid \mathcal{F}_t]. \tag{2.10}$$

Therefore, by Theorem 2.1 we get the following characterization of the optimal terminal wealth $X_{\varphi}(T)$ of the partial information portfolio problem:

Theorem 2.2 A portfolio φ is optimal for the problem (1.6) if and only if the corresponding terminal wealth $X_{\varphi}(T)$ satisfies the following partial information Malliavin differential equation:

$$E[b(t)U'(X_{\varphi}(T)) + \sigma(t)D_{t}U'(X_{\varphi}(T)) + \int_{\mathbb{R}} \gamma(t,\zeta)D_{t,\zeta}U'(X_{\varphi}(T))\nu(d\zeta) \mid \mathcal{E}_{t}] = 0 \text{ a.s.; } t \in [0,T].$$

$$(2.11)$$

3 Partial information equivalent local martingale measures (PIELMMs)

Let Q be a probability measure equivalent to P. Then we can write

$$dQ(\omega) = G(T, \omega)dP(\omega) \text{ on } \mathcal{F}_T,$$
 (3.1)

where $G(T, \omega) > 0$ a.s. and E[G(T)] = 1. If we restrict the measures P, Q to \mathcal{F}_t for t < T, they are still equivalent and we have

$$\frac{d(Q \mid \mathcal{F}_t)}{d(P \mid \mathcal{F}_t)} = E[G(T) \mid \mathcal{F}_t] =: G(t) > 0.$$
(3.2)

By the martingale representation theorem there exist predictable processes $\theta_0(t)$ and $\theta_1(t,\zeta)$ such that

$$\begin{cases} dG(t) = G(t^{-}) \left[\theta_{0}(t)dB(t) + \int_{\mathbb{R}} \theta_{1}(t,\zeta)\tilde{N}(dt,d\zeta) \right] ; 0 \leq t \leq T \\ G(0) = 1. \end{cases}$$
(3.3)

If we assume that $\theta_1(t,\zeta) > -1$ and

$$E\left[\int_0^T \left\{\theta_0^2(t) + \int_{\mathbb{R}} \theta_1^2(t,\zeta)\nu(d\zeta)\right\} dt\right] < \infty, \tag{3.4}$$

then by the Itô formula.

$$G(t) = \exp\left(\int_{0}^{t} \theta_{0}(s)dB(s) - \frac{1}{2} \int_{0}^{t} \theta_{0}^{2}(s)ds + \int_{0}^{t} \int_{\mathbb{R}} \ln(1 + \theta_{1}(s, \zeta))\tilde{N}(ds, d\zeta) + \int_{0}^{t} \int_{\mathbb{R}} \left\{\ln(1 + \theta_{1}(s, \zeta)) - \theta_{1}(s, \zeta)\right\} \nu(d\zeta)ds\right) ; 0 \le t \le T.$$
(3.5)

In the following we write $G(t) = G_{\theta}(t)$ and $Q = Q_{\theta}$; $\theta = (\theta_0, \theta_1)$, when G(t) is represented by θ as in (3.3). We let Θ denote the family of all predictable processes $\theta = (\theta_0, \theta_1)$ such that (3.3) has a unique martingale solution $G_{\theta}(t)$; $t \in [0, T]$.

Definition 3.1 We say that S(t) is an $(\mathcal{E}_t, Q_\theta)$ -local martingale if there exists an increasing family of \mathcal{F}_t -stopping times τ_k such that $\tau_k \to \infty$ when $k \to \infty$, a.s. and

$$E_{Q_{\theta}}[S(t \wedge \tau_k) \mid \mathcal{E}_s] = E_{Q_{\theta}}[S(s \wedge \tau_k) \mid \mathcal{E}_s] \text{ a.s. for all } s < t \text{ and all } k.$$
 (3.6)

Note that (3.6) is equivalent to requiring that the \mathcal{E}_t -conditional process

$$\tilde{S}(t) := E_{Q_{\theta}}[S(t) \mid \mathcal{E}_t] \; ; \; t \ge 0 \tag{3.7}$$

is an $(\mathcal{E}_t, Q_\theta)$ local martingale.

We now give a characterization of the measures Q_{θ} such that S(t) is an $(\mathcal{E}_t, Q_{\theta})$ local martingale:

Theorem 3.2 The process S(t) given by (1.1) is an $(\mathcal{E}_t, Q_\theta)$ local martingale if and only if

$$E_{Q_{\theta}}\left[b(t) + \sigma(t)\theta_{0}(t) + \int_{\mathbb{R}} \gamma(t,\zeta)\theta_{1}(t,\zeta)\nu(d\zeta) \mid \mathcal{E}_{t}\right] = 0$$
a.s., for a.a. $t \in [0,T]$. (3.8)

Proof. By the Itô formula we get (see e.g. [11][chapter1])

$$d(G_{\theta}(t)S(t)) = G_{\theta}(t^{-})dS(t) + S(t^{-})dG_{\theta}(t) + d[G_{\theta}, S](t)$$

$$= G_{\theta}(t^{-}) \left[b(t)dt + \sigma(t)dB(t) + \int_{\mathbb{R}} \gamma(t, \zeta)\tilde{N}(dt, d\zeta) \right]$$

$$+ S(t^{-}) \left[G_{\theta}(t^{-}) \left(\theta_{0}(t)dB(t) + \int_{\mathbb{R}} \theta_{1}(t, \zeta)\tilde{N}(dt, d\zeta) \right) \right]$$

$$+ G_{\theta}(t)\sigma(t)\theta_{0}(t)dt + \int_{\mathbb{R}} G_{\theta}(t^{-})\gamma(t, \zeta)\theta_{1}(t, \zeta)N(dt, d\zeta), \tag{3.9}$$

where $N(dt, d\zeta) = \tilde{N}(dt, d\zeta) + \nu(d\zeta)dt$.

Collecting the dt-terms we get

$$G_{\theta}(t)S(t) = S(0) + \int_{0}^{t} G_{\theta}(s) \left\{ b(s) + \sigma(s)\theta_{0}(s) + \int_{\mathbb{R}} \gamma(s,\zeta)\theta_{1}(s,\zeta)\nu(d\zeta) \right\} dt + dB(s)-\text{integrals} + \tilde{N}(ds,d\zeta)-\text{integrals}.$$
(3.10)

Since the dB(s)-integrals and the $\tilde{N}(ds, d\zeta)$ -integrals are local \mathcal{F}_t -martingales, they are also local \mathcal{E}_t -martingales. Therefore, with τ_k as above we get

$$E_{Q_{\theta}}[S(t \wedge \tau_{k}) \mid \mathcal{E}_{s}] - E_{Q_{\theta}}[S(s \wedge \tau_{k}) \mid \mathcal{E}_{s}]$$

$$= E[G_{\theta}(t \wedge \tau_{k})S(t \wedge \tau_{k}) - G_{\theta}(s \wedge \tau_{k})S(s \wedge \tau_{k}) \mid \mathcal{E}_{s}]$$

$$E\left[\int_{s \wedge \tau_{k}}^{t \wedge \tau_{k}} G_{\theta}(u) \left\{b(u) + \sigma(u)\theta_{0}(u) + \int_{\mathbb{R}} \gamma(t, \zeta)\theta_{1}(u, \zeta)\nu(d\zeta)\right\} du \mid \mathcal{E}_{s}\right].$$

This is 0 for all $s < t \le T$ and all τ_k if and only if

$$E\left[G_{\theta}(u)\left\{b(u) + \sigma(u)\theta_{0}(u) + \int_{\mathbb{R}} \gamma(u,\zeta)\theta_{1}(u,\zeta)\nu(d\zeta)\right\} \mid \mathcal{E}_{u}\right] = 0$$
a.s. for a.a. u , (3.11)

which is equivalent to (3.8)

4 Viability and ELMMs under partial information

We now combine the main results of Sections 2 and 3 to obtain a characterization of viability in terms of partial information equivalent local martingale measures. The result is the following:

Theorem 4.1 The following are equivalent:

(i) The portfolio $\varphi \in \mathcal{A}_{\mathcal{E}}$ is optimal for the partial information portfolio optimization problem (1.6), and the solution (p,q,r) of the BSDE (2.4) satisfies the growth condition

$$E\left[\int_0^T \left\{ \frac{1}{p^2(t)} [q^2(t) + \int_{\mathbb{R}} r^2(t,\zeta)\nu(d\zeta)] \right\} dt \right] < \infty \tag{4.1}$$

(ii) The measure \tilde{Q} defined by

$$d\tilde{Q} := \frac{U'(X_{\varphi}(T))}{E[U'(X_{\varphi}(T))]} dP \text{ on } \mathcal{F}_T$$

is an equivalent local \mathcal{E}_t -martingale measure for S(t).

Proof.

(i) \Rightarrow (ii): Suppose (i) holds. Then by Theorem 2.1 we know that the solution (p, q, r) of the BSDE (2.4) satisfies (2.6). Put

$$G(t) := \frac{p(t)}{p(0)} = \frac{E[U'(X_{\varphi}(T)) \mid \mathcal{F}_t]}{E[U'(X_{\varphi}(T))]}$$
(4.2)

and

$$\theta_0(t) = \frac{q(t)}{p(t)}, \quad \theta_1(t,\zeta) = \frac{r(t,\zeta)}{p(t^-)}.$$
 (4.3)

Then by (2.6) and (4.2), (4.3)

$$\begin{split} dG(t) &= \frac{dp(t)}{p(0)} = \frac{q(t)}{p(0)} dB(t) + \int_{\mathbb{R}} \frac{r(t,\zeta)}{p(0)} \tilde{N}(dt,d\zeta) \\ &= \frac{p(t)}{p(0)} \theta_0(t) dB(t) + \frac{p(t^-)}{p(0)} \int_{\mathbb{R}} \theta_1(t,\zeta) \tilde{N}(dt,d\zeta) \\ &= G(t^-) \left[\theta_0(t) dB(t) + \int_{\mathbb{R}} \theta_1(t,\zeta) \tilde{N}(dt,d\zeta) \right]. \end{split}$$

Therefore $G(t) = G_{\theta}(t)$ satisfies (3.3), and by (4.1) we get that $G_{\theta}(t)$ is a martingale. So by Theorem 3.2 it suffices to verify that

$$E\left[G_{\theta}(t)\left\{b(t) + \sigma(t)\theta_{0}(t) + \int_{\mathbb{R}} \gamma(t,\zeta)\theta_{1}(t,\zeta)\nu(d\zeta)\right\} \mid \mathcal{E}_{t}\right] = 0$$
a.s. for a.a. t. (4.4)

This follows by substituting (4.2)-(4.3) into the equation (2.6) for p, q and r.

 $(ii) \Rightarrow (i)$: Conversely, assume that (ii) holds. Define

$$G_{\varphi}(t) := \frac{E[U'(X_{\varphi}(T)) \mid \mathcal{F}_t]}{E[U'(X_{\varphi}(T))]} \; ; \; t \in [0, T].$$

Then by the martingale representation theorem there exists \mathcal{F}_t -predictable processes $\theta_0(t)$, $\theta_1(t,\zeta)$ such that

$$\begin{cases} dG_{\varphi}(t) &= G_{\varphi}(t) \left[\theta_{0}(t) dB(t) + \int_{\mathbb{R}} \theta_{1}(t, \zeta) \tilde{N}(dt, d\zeta) \right] ; \ 0 \leq t \leq T \\ G_{\varphi}(0) &= 1. \end{cases}$$
(4.5)

By Theorem 3.2 we deduce that since S(t) is an $(\mathcal{E}_t, Q_\theta)$ local martingale, we have

$$E\left[G_{\varphi}(t)\left(b(t) + \sigma(t)\theta_{0}(t) + \int_{\mathbb{R}} \gamma(t,\zeta)\theta_{1}(t,\zeta)\nu(d\zeta)\right) \mid \mathcal{E}_{t}\right] = 0$$
a.s. for a.a. $t \in [0,T]$. (4.6)

Define

$$p(t) := E[U'(X_{\varphi}(T))]G_{\varphi}(t) \tag{4.7}$$

and

$$q(t) := E[U'(X_{\varphi}(T))]G_{\varphi}(t)\theta_{0}(t), \quad r(t,\zeta) := E[U'(X_{\varphi}(T))]G_{\varphi}(t^{-})\theta_{1}(t,\zeta). \tag{4.8}$$

Then by substituting (4.7)-(4.8) into (4.5), we see that (p, q, r) satisfies the BSDE (2.4). We also obtain (4.1). Moreover, substituting (4.7)-(4.8) into (4.6),we see that (2.6) holds. Hence φ is optimal by Theorem 2.1.

Remark 4.2 Theorem 4.1 does not hold if we drop the condition (4.1). A counterexample can be found in [4]

References

- [1] K. Aase, B. Øksendal, N. Privault and J. Ubøe: White noise generalizations of the Clark-Haussmann-Ocone theorem, with application to mathematical finance. Finance and Stochastics 4 (2000), 465–496.
- [2] F. Baghery and B. Øksendal: A maximum principle for stochastic control with partial information. Stoch. Anal. Appl. 25 (2007), 705-717.
- [3] G. Di Nunno, B. Øksendal and F. Proske: Malliavin Calculus for Lévy Processes with Applications to Finance. Springer (2009)
- [4] C. Fontana, B. Øksendal and A. Sulem: In preparation
- [5] C. Fontana and W. J. Runggaldier: Diffusion-based models for financial markets without martingale measures. To appear in F. Biagini et al. (eds.): Risk Measures and Attitudes, EAA Lecture Notes, Springer (2013).
- [6] I. Karatzas and C. Kardaras: The numeraire portfolio in semimartingale financial models. Finance and Stochastics 11 (2007), 447-493.
- [7] C. Kardaras: Market viability via absence of arbitrage of the first kind. Finance and Stochastics 16 (2012), 651-667.
- [8] D. Kreps: Arbitrage and equilibrium in economics with infinitely many commodities. J. Math. Economics 8(1981), 15-35.
- [9] M. Loewenstein and G. Willard: Local martingales, arbitrage and viability. Economic Theory 16(2000), 135-161.
- [10] S. Pliska: Introduction to Mathematical Finance. Blackwell 1997.

- [11] B. Øksendal and A. Sulem: Applied Stochastic Control of Jump Diffusions. Second Edition. Springer 2007.
- [12] B. Øksendal and A. Sulem: Forward-backward SDE games and stochastic control under model uncertainty. J. Optimization Theory and Applications; DOI: 10.1007/s10957-012-0166-7.