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Abstract

We consider a financial market with a single risky asset whose price process S(t) is
modeled by a jump diffusion, and where the agent only has access to a given partial
information flow {Et}t≥0. Mathematically this means that the portfolio ϕ is required
to be E - predictable. We let AE denote the set of admissible portfolios. If U is a
given utility function, we say that the market is (E , U) -viable if there exists a portfolio
ϕ∗ ∈ AE (called an optimal portfolio) such that

sup
ϕ∈AE

E[U(Xϕ(T ))] = E[U(Xϕ∗(T ))]. (0.1)

We prove that, under some conditions, the following holds:
The market is (E , U)-viable if and only if the measure Q∗ defined by

dQ∗ =
U ′(Xϕ∗(T ))

E[U ′(Xϕ∗(T ))]
dP on FT (0.2)

is an equivalent local martingale measure (ELMM) with respect to E and with respect
to the Et-conditioned price process

S̃(t) := EQ∗ [S(t) | Et] ; t ∈ [0, T ]. (0.3)

This is an extension to partial information of a classical result in mathematical finance.

We also obtain a characterization of such partial information optimal portfolios
in terms of backward stochastic differential equations (BSDEs), which is a result of
independent interest.
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1 Introduction

Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space and let B(t) = B(t, ω) ; t ≥ 0, ω ∈ Ω
be a Brownian motion and Ñ(dt, dζ) := N(dt, dζ) − ν(dζ)dt an independent compensated
Poisson random measure, respectively, on this space.

Consider the following financial market with two investment possibilities:

(i) A risk free asset with unit price S0(t) = 1 ; t ≥ 0.

(ii) A risky asset, with unit price S(t) given by the equation

dS(t) = b(t)dt+ σ(t)dB(t) +

∫
R
γ(t, ζ)Ñ(dt, dζ) ; t ≥ 0

S(0) = S0 > 0. (1.1)

Here b(t), σ(t) and γ(t, ζ) are given bounded Ft-predictable processes on [0,T], where T > 0
is a fixed constant. We refer to [11] for information about the stochastic calculus for Lévy
processes.

Let Et ⊆ Ft be a given subfiltration, representing the information available to an agent
at time t. For example, we could have

(i) Et = F(t−δ)+ (delayed information flow) or

(ii) Et = F (S)
t (the price observation flow), where F (S)

t is the σ-algebra generated by the
price process S(s) ; 0 ≤ s ≤ t ; t ∈ [0, T ].

Let AE be the family of Et-predictable portfolios ϕ(t), representing the number of units
of the risky asset held at time t, such that

E

[∫ T

0

ϕ2(t)dt

]
<∞, (1.2)

where E denotes expectation with respect to P . We assume that ϕ is self-financing, in the
sense that the corresponding wealth process Xϕ(t) is given bydXϕ(t) = ϕ(t)dS(t) = ϕ(t)

(
b(t)dt+ σ(t)dB(t) +

∫
R
γ(t, ζ)Ñ(dt, dζ)

)
; t ≥ 0

Xϕ(0) = x ∈ R, t ≥ 0.
(1.3)

Note that

E

[∫ T

0

X2
ϕ(t)dt

]
<∞. (1.4)
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Let U : (−∞,∞) → [−∞,∞) be a given utility function, assumed to be C1 on (0,∞),
concave and strictly increasing on [0,∞].We assume that

E
[
U ′(Xϕ(T )))2

]
<∞ (1.5)

for all ϕ ∈ AE .
We study the following partial information optimal portfolio problem:

Problem 1.1 Find u(x) and ϕ∗ ∈ AE such that

u(x) = sup
ϕ∈AE

E[U(Xϕ(T ))] = E[U(Xϕ∗(T ))]. (1.6)

We say that the market is (E , U)-viable if there exists an optimal ϕ∗ ∈ AE satisfying
(1.6).

Recently there has been much discussion in the literature concerning various concepts of
arbitrage and their relation to stochastic control, viability and equivalent local martingale
measures. See e.g. [5], [6] and [7]. The purpose of this paper is to prove that in our par-
tial information financial market setting, without any no-arbitrage conditions, the following
holds:

The market is (E , U)-viable (with a growth condition added) if and only if the measure
Q∗ defined by

dQ∗ =
U ′(Xϕ∗(T ))

E[U ′(Xϕ∗(T ))]
dP on FT (1.7)

is an equivalent local martingale measure (ELMM) with respect to E and with respect to
the Et-conditioned process

S̃(t) := EQ∗ [S(t) | Et] ; t ∈ [0, T ]. (1.8)

See Theorem 4.1.

Remark 1.2 In the complete observation case (Et = Ft) this result has been known for a
long time in a variety of settings. One of the first results in this direction seems to be in the
paper [8]. Even in a basic one-period market model a version of this result can be proved;
see e.g. [10]. For a general discussion see [9] and the references therein. A recent model
uncertainty version can be found in [12].

2 A BSDE characterization of optimal portfolios

In this section we give a characterization of portfolios ϕ∗ satisfying (1.6) in terms of a
backward stochastic differential equation (BSDE). This is obtained by applying the maximum
principle for optimal control to the problem, as follows:
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The Hamiltonian

H : [0, T ]× R× R× R× R×R× Ω)→ R

(where R is the set of functions r(·) : R\{0} → R) is defined by

H(t, x, ϕ, p, q, r(·), ω) = ϕb(t, ω)p+ ϕσ(t, ω)q +

∫
R
ϕγ(t, ζ, ω)r(ζ)ν(dζ), (2.1)

whenever the integral converges.
Associated to each ϕ ∈ AE we have a BSDE in the adjoint processes p(t), q(t), r(t, ζ)

given by 
dp(t) = −∂H

∂x
(t,Xϕ(t), ϕ(t), p(t), q(t), r(t, ·))dt

+q(t)dB(t) +

∫
R
r(t, ζ)Ñ(dt, dζ) ; 0 ≤ t ≤ T

p(T ) = U ′(Xϕ(T )).

(2.2)

The partial information necessary maximum principle (see [2]) states that if ϕ ∈ AE is
optimal for the problem (1.6) and (2.2) has a unique solution p, q, r then

E

[
∂H

∂ϕ
(t,Xϕ(t), ϕ(t), p(t)q(t)r(t, ·)) | Et

]
= 0 a.s., for a.a.t. (2.3)

In our case (2.2) reduces to the formdp(t) = q(t)dB(t) +

∫
R
r(t, ζ)Ñ(dt, dζ) ; 0 ≤ t ≤ T

p(T ) = U ′(Xϕ(T )).
(2.4)

Note that by the Itô representation theorem this BSDE has a unique solution p(t), q(t), r(t, ζ)
satisfying

E

[∫ T

0

{
p2(t) + q2(t) +

∫
R
r2(t, ζ)ν(dζ)

}
dt

]
<∞. (2.5)

In our case equation (2.3) becomes

E

[
b(t)p(t) + σ(t)q(t) +

∫
R
γ(t, ζ)r(t, ζ)ν(dζ) | Et

]
= 0 a.s., for a.a.t. (2.6)

Conversely, suppose (2.4)-(2.6) hold. Then, since H is a concave function of (x, ϕ) we
see that ϕ satisfies all the conditions of the partial information sufficient maximum principle
(see e.g. [2]). Therefore we can conclude that ϕ is optimal.

We have proved:

Theorem 2.1 A portfolio ϕ is optimal for the problem (1.6) if and only if the solution
(p, q, r) of the BSDE (2.4) satisfies (2.6).
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Recall the generalized Clark-Ocone theorem (see [1] for the Brownian motion case and [3,
Theorem 3.28] for the Lévy process case) which states that if F ∈ L2(P ) is FT -measurable,
then F can be written

F = E[F ] +

∫ T

0

E[DtF | Ft]dB(t) +

∫ T

0

∫
R
E[Dt,ζF | Ft]Ñ(dt, dζ) (2.7)

where DtF and Dt,ζ denote the generalized Malliavin derivative at t with respect to B(·)
and at t, ζ with respect to N(·, ·), respectively.

Applying this to F := U ′(Xϕ(T )) we see that the solution of (2.4) is

p(t) = E[U ′(Xϕ(T )) | Ft] (2.8)

q(t) = E[DtU
′(Xϕ(T )) | Ft] (2.9)

r(t, ζ) = E[Dt,ζU
′(Xϕ(T )) | Ft]. (2.10)

Therefore, by Theorem 2.1 we get the following characterization of the optimal terminal
wealth Xϕ(T ) of the partial information portfolio problem:

Theorem 2.2 A portfolio ϕ is optimal for the problem (1.6) if and only if the correspond-
ing terminal wealth Xϕ(T ) satisfies the following partial information Malliavin differential
equation:

E[b(t)U ′(Xϕ(T )) + σ(t)DtU
′(Xϕ(T ))

+

∫
R
γ(t, ζ)Dt,ζU

′(Xϕ(T ))ν(dζ) | Et] = 0 a.s.; t ∈ [0, T ]. (2.11)

3 Partial information equivalent local martingale mea-

sures (PIELMMs)

Let Q be a probability measure equivalent to P . Then we can write

dQ(ω) = G(T, ω)dP (ω) on FT , (3.1)

where G(T, ω) > 0 a.s. and E[G(T )] = 1. If we restrict the measures P,Q to Ft for t < T ,
they are still equivalent and we have

d(Q | Ft)
d(P | Ft)

= E[G(T ) | Ft] =: G(t) > 0. (3.2)

By the martingale representation theorem there exist predictable processes θ0(t) and
θ1(t, ζ) such thatdG(t) = G(t−)

[
θ0(t)dB(t) +

∫
R
θ1(t, ζ)Ñ(dt, dζ)

]
; 0 ≤ t ≤ T

G(0) = 1.
(3.3)
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If we assume that θ1(t, ζ) > −1 and

E

[∫ T

0

{
θ2
0(t) +

∫
R
θ2
1(t, ζ)ν(dζ)

}
dt

]
<∞, (3.4)

then by the Itô formula,

G(t) = exp

(∫ t

0

θ0(s)dB(s)− 1

2

∫ t

0

θ2
0(s)ds

+

∫ t

0

∫
R

ln(1 + θ1(s, ζ))Ñ(ds, dζ)

+

∫ t

0

∫
R
{ln(1 + θ1(s, ζ))− θ1(s, ζ)} ν(dζ)ds

)
; 0 ≤ t ≤ T. (3.5)

In the following we write G(t) = Gθ(t) and Q = Qθ ; θ = (θ0, θ1), when G(t) is repre-
sented by θ as in (3.3). We let Θ denote the family of all predictable processes θ = (θ0, θ1)
such that (3.3) has a unique martingale solution Gθ(t) ; t ∈ [0, T ].

Definition 3.1 We say that S(t) is an (Et, Qθ)-local martingale if there exists an increasing
family of Ft-stopping times τk such that τk →∞ when k →∞, a.s. and

EQθ [S(t ∧ τk) | Es] = EQθ [S(s ∧ τk) | Es] a.s. for all s < t and all k. (3.6)

Note that (3.6) is equivalent to requiring that the Et-conditional process

S̃(t) := EQθ [S(t) | Et] ; t ≥ 0 (3.7)

is an (Et, Qθ) local martingale.

We now give a characterization of the measures Qθ such that S(t) is an (Et, Qθ) local
martingale:

Theorem 3.2 The process S(t) given by (1.1) is an (Et, Qθ) local martingale if and only if

EQθ

[
b(t) + σ(t)θ0(t) +

∫
R
γ(t, ζ)θ1(t, ζ)ν(dζ) | Et

]
= 0

a.s., for a.a. t ∈ [0, T ]. (3.8)

Proof. By the Itô formula we get (see e.g. [11][chapter1])

d(Gθ(t)S(t)) = Gθ(t
−)dS(t) + S(t−)dGθ(t) + d[Gθ, S](t)

= Gθ(t
−)

[
b(t)dt+ σ(t)dB(t) +

∫
R
γ(t, ζ)Ñ(dt, dζ)

]
+ S(t−)

[
Gθ(t

−)

(
θ0(t)dB(t) +

∫
R
θ1(t, ζ)Ñ(dt, dζ)

)]
+Gθ(t)σ(t)θ0(t)dt+

∫
R
Gθ(t

−)γ(t, ζ)θ1(t, ζ)N(dt, dζ), (3.9)

6



where N(dt, dζ) = Ñ(dt, dζ) + ν(dζ)dt.
Collecting the dt-terms we get

Gθ(t)S(t) = S(0) +

∫ t

0

Gθ(s)

{
b(s) + σ(s)θ0(s) +

∫
R
γ(s, ζ)θ1(s, ζ)ν(dζ)

}
dt

+ dB(s)-integrals + Ñ(ds, dζ)-integrals. (3.10)

Since the dB(s)-integrals and the Ñ(ds, dζ)-integrals are local Ft-martingales, they are
also local Et-martingales. Therefore, with τk as above we get

EQθ [S(t ∧ τk) | Es]− EQθ [S(s ∧ τk) | Es]
= E[Gθ(t ∧ τk)S(t ∧ τk)−Gθ(s ∧ τk)S(s ∧ τk) | Es]

E

[∫ t∧τk

s∧τk
Gθ(u)

{
b(u) + σ(u)θ0(u) +

∫
R
γ(t, ζ)θ1(u, ζ)ν(dζ)

}
du | Es

]
.

This is 0 for all s < t ≤ T and all τk if and only if

E

[
Gθ(u)

{
b(u) + σ(u)θ0(u) +

∫
R
γ(u, ζ)θ1(u, ζ)ν(dζ)

}
| Eu
]

= 0

a.s. for a.a. u, (3.11)

which is equivalent to (3.8) �

4 Viability and ELMMs under partial information

We now combine the main results of Sections 2 and 3 to obtain a characterization of viability
in terms of partial information equivalent local martingale measures. The result is the
following:

Theorem 4.1 The following are equivalent:

(i) The portfolio ϕ ∈ AE is optimal for the partial information portfolio optimization
problem (1.6), and the solution (p, q, r) of the BSDE (2.4) satisfies the growth condition

E

[∫ T

0

{
1

p2(t)
[q2(t) +

∫
R
r2(t, ζ)ν(dζ)]

}
dt

]
<∞ (4.1)

(ii) The measure Q̃ defined by

dQ̃ :=
U ′(Xϕ(T ))

E[U ′(Xϕ(T ))]
dP on FT

is an equivalent local Et-martingale measure for S(t).
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Proof.
(i) ⇒ (ii): Suppose (i) holds. Then by Theorem 2.1 we know that the solution (p, q, r) of
the BSDE (2.4) satisfies (2.6). Put

G(t) :=
p(t)

p(0)
=
E[U ′(Xϕ(T )) | Ft]
E[U ′(Xϕ(T ))]

(4.2)

and

θ0(t) =
q(t)

p(t)
, θ1(t, ζ) =

r(t, ζ)

p(t−)
. (4.3)

Then by (2.6) and (4.2), (4.3)

dG(t) =
dp(t)

p(0)
=
q(t)

p(0)
dB(t) +

∫
R

r(t, ζ)

p(0)
Ñ(dt, dζ)

=
p(t)

p(0)
θ0(t)dB(t) +

p(t−)

p(0)

∫
R
θ1(t, ζ)Ñ(dt, dζ)

= G(t−)

[
θ0(t)dB(t) +

∫
R
θ1(t, ζ)Ñ(dt, dζ)

]
.

Therefore G(t) = Gθ(t) satisfies (3.3), and by (4.1) we get that Gθ(t) is a martingale. So
by Theorem 3.2 it suffices to verify that

E

[
Gθ(t)

{
b(t) + σ(t)θ0(t) +

∫
R
γ(t, ζ)θ1(t, ζ)ν(dζ)

}
| Et
]

= 0

a.s. for a.a. t. (4.4)

This follows by substituting (4.2)-(4.3) into the equation (2.6) for p, q and r.

(ii) ⇒ (i): Conversely, assume that (ii) holds. Define

Gϕ(t) :=
E[U ′(Xϕ(T )) | Ft]
E[U ′(Xϕ(T ))]

; t ∈ [0, T ].

Then by the martingale representation theorem there exists Ft-predictable processes
θ0(t), θ1(t, ζ) such that{

dGϕ(t) = Gϕ(t)
[
θ0(t)dB(t) +

∫
R θ1(t, ζ)Ñ(dt, dζ)

]
; 0 ≤ t ≤ T

Gϕ(0) = 1.
(4.5)

By Theorem 3.2 we deduce that since S(t) is an (Et, Qθ) local martingale, we have

E

[
Gϕ(t)

(
b(t) + σ(t)θ0(t) +

∫
R
γ(t, ζ)θ1(t, ζ)ν(dζ)

)
| Et
]

= 0

a.s. for a.a. t ∈ [0, T ]. (4.6)
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Define
p(t) := E[U ′(Xϕ(T ))]Gϕ(t) (4.7)

and
q(t) := E[U ′(Xϕ(T ))]Gϕ(t)θ0(t), r(t, ζ) := E[U ′(Xϕ(T ))]Gϕ(t−)θ1(t, ζ). (4.8)

Then by substituting (4.7)-(4.8) into (4.5), we see that (p, q, r) satisfies the BSDE (2.4).
We also obtain (4.1). Moreover, substituting (4.7)-(4.8) into (4.6),we see that (2.6) holds.
Hence ϕ is optimal by Theorem 2.1. �

Remark 4.2 Theorem 4.1 does not hold if we drop the condition (4.1). A counterexample
can be found in [4]
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