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Abstract

We consider a financial market with a single risky asset whose price process S(t) is
modeled by a jump diffusion, and where the agent only has access to a given partial
information flow {& };>0. Mathematically this means that the portfolio ¢ is required
to be £ - predictable. We let A¢ denote the set of admissible portfolios. If U is a
given utility function, we say that the market is (£, U) -viable if there exists a portfolio
¢* € Ag (called an optimal portfolio) such that

sup EIU(X(1)] = BV (X (1) (0.1)

We prove that, under some conditions, the following holds:
The market is (£, U)-viable if and only if the measure Q* defined by

dQ* _ U/(XSO* (T))

= mdP on Fr (0.2)

is an equivalent local martingale measure (ELMM) with respect to £ and with respect
to the &-conditioned price process

S(t) := Eg<[S(t) | &] ; t € [0, T). (0.3)
This is an extension to partial information of a classical result in mathematical finance.
We also obtain a characterization of such partial information optimal portfolios

in terms of backward stochastic differential equations (BSDEs), which is a result of
independent interest.
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1 Introduction

Let (Q, F,{F:}it>0, P) be a filtered probability space and let B(t) = B(t,w) ; t > 0, w € Q
be a Brownian motion and N(dt,d¢) := N(dt,d¢) — v(d¢)dt an independent compensated
Poisson random measure, respectively, on this space.

Consider the following financial market with two investment possibilities:

(i) A risk free asset with unit price So(t) =1; ¢ > 0.

(ii) A risky asset, with unit price S(t) given by the equation

dS(t) = b(t)dt + o(t)dB(t) + / v(t, O)N(dt,d¢) ; >0
S(0) =Sy > 0. (1.1)

Here b(t), o(t) and ~(t, () are given bounded F;-predictable processes on [0,T], where T > 0
is a fixed constant. We refer to [11] for information about the stochastic calculus for Lévy
processes.

Let & C F; be a given subfiltration, representing the information available to an agent
at time t. For example, we could have

(i) & = Fu—s)+ (delayed information flow) or

(i) & = ft(s) (the price observation flow), where .7-"t(s) is the o-algebra generated by the
price process S(s); 0 < s <t;tel0,T].

Let Ag be the family of &-predictable portfolios (t), representing the number of units
of the risky asset held at time ¢, such that

E UOT gp%f)dt} < o0, (1.2)

where E denotes expectation with respect to P. We assume that ¢ is self-financing, in the
sense that the corresponding wealth process X, (t) is given by

AX,(t) = p(t)dS(t) = p(t) (b(t)dt+a<t>d3<t> +f v(t,oN(dt,dc)) 120
X, (0) =z€eR, t>0.

(1.3)

Note that

E UOT XZ(t)dt] < 0. (1.4)
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Let U : (—00,00) — [—00,00) be a given utility function, assumed to be C* on (0, 00),
concave and strictly increasing on [0, co].We assume that

E[U'(X,(T)))*] < o0 (1.5)

for all ¢ € Ag.
We study the following partial information optimal portfolio problem:

Problem 1.1 Find u(x) and ¢* € Ag¢ such that

u(z) = sup E[U(X,(T))] = E[U(X,-(T))]. (1.6)

pEAs

We say that the market is (€,U)-viable if there exists an optimal ¢* € Ag satisfying
(1.6).

Recently there has been much discussion in the literature concerning various concepts of
arbitrage and their relation to stochastic control, viability and equivalent local martingale
measures. See e.g. [5], [6] and [7]. The purpose of this paper is to prove that in our par-
tial information financial market setting, without any no-arbitrage conditions, the following

holds:

The market is (€, U)-viable (with a growth condition added) if and only if the measure
Q" defined by

U'(X-(T))
EU(Xe+(T))]
is an equivalent local martingale measure (ELMM) with respect to £ and with respect to
the &-conditioned process

dQ* = dP on Fr (1.7)

S(t) == Eq-[S(t) | & ; t €[0,T). (1.8)
See Theorem 4.1.

Remark 1.2 In the complete observation case (& = F) this result has been known for a
long time in a variety of settings. One of the first results in this direction seems to be in the
paper [8]. Even in a basic one-period market model a version of this result can be proved;
see e.g. [10]. For a general discussion see [9] and the references therein. A recent model
uncertainty version can be found in [12].

2 A BSDE characterization of optimal portfolios

In this section we give a characterization of portfolios ¢* satisfying (1.6) in terms of a
backward stochastic differential equation (BSDE). This is obtained by applying the maximum
principle for optimal control to the problem, as follows:



The Hamiltonian
H:0,T]xRxRxRxRxRxQ)—R

(where R is the set of functions r(-) : R\{0} — R) is defined by

H(t,z,0,p,q,7(),w) = wb(tjw)erwo(t,w)quva(t@@ﬂé)%@% (2.1)

whenever the integral converges.
Associated to each ¢ € Ag we have a BSDE in the adjoint processes p(t), q(t),r(t,()
given by
OH
Fg()dB(t) + / r(t, VN, dC): 0<t < T (2.2)
R
p(T) = U'(X,(T)).

The partial information necessary maximum principle (see [2]) states that if ¢ € Ag is
optimal for the problem (1.6) and (2.2) has a unique solution p, ¢, then

oH

E %(t,Xw(t),gp(t),p(t)q(t)r(t, N | 6}} =0 a.s., for a.a.t. (2.3)

In our case (2.2) reduces to the form

At = a(OdB(O) + [ r.ON(ddQ) s 0 << T
p(T) = U'(XA(T)).

(2.4)

Note that by the It6 representation theorem this BSDE has a unique solution p(t), q(t), (¢, )
satisfying

e[ [ o+ o+ [reomio}a] <o (25)

In our case equation (2.3) becomes

E lb(t)p(t) +o(t)q(t) + /Rv(t,g)r(t,ou(do | St} =0 a.s., for a.a.t. (2.6)

Conversely, suppose (2.4)-(2.6) hold. Then, since H is a concave function of (z,¢) we
see that ¢ satisfies all the conditions of the partial information sufficient maximum principle
(see e.g. [2]). Therefore we can conclude that ¢ is optimal.

We have proved:

Theorem 2.1 A portfolio ¢ is optimal for the problem (1.6) if and only if the solution
(p,q,7) of the BSDE (2.4) satisfies (2.6).



Recall the generalized Clark-Ocone theorem (see [1] for the Brownian motion case and [3,
Theorem 3.28] for the Lévy process case) which states that if F' € L?(P) is Fr-measurable,
then F' can be written

F:E[F]+/T (D,F | F1AB(1) / / Dy F | FN(dt, d) (2.7)

where D, F' and D, denote the generalized Malliavin derivative at ¢ with respect to B(-)
and at ¢, with respect to N(-,-), respectively.
Applying this to F':= U'(X,(T)) we see that the solution of (2.4) is

p(t) = EU'(X,(T)) | 7] (2.8)
q(t) = E[DU(X,(T)) | 7] (2.9)
r(t,¢) = E[D U'(Xo(T)) | 2. (2.10)

Therefore, by Theorem 2.1 we get the following characterization of the optimal terminal
wealth X, (T) of the partial information portfolio problem:

Theorem 2.2 A portfolio ¢ is optimal for the problem (1.6) if and only if the correspond-
ing terminal wealth X,(T') satisfies the following partial information Mallicvin differential
equation:

Eb(H)U(Xo(T)) + o (t) DiU'(Xo(T))

+ /]R (OO DU (X S(T)(AC) | E] = 0 s t € [0,T]. (2.11)

3 Partial information equivalent local martingale mea-
sures (PIELMMs)

Let @ be a probability measure equivalent to P. Then we can write
dQ(w) = G(T,w)dP(w) on Fr, (3.1)

where G(T,w) > 0 a.s. and E[G(T)] = 1. If we restrict the measures P,Q to F; for t < T,
they are still equivalent and we have

d(Q | Fi)

apTF) ~ FED | Fl =61 >0 (3:2)

By the martingale representation theorem there exist predictable processes 6y(t) and

61(t, ¢) such that

iG(t) =G(t") [eou)dB() [ ot on@na] ose<t
GO) =1

(3.3)



If we assume that 6,(¢,{) > —1 and

E UOT {eg(t) + /Ref(t, g)y(dg)} dt} < 00, (3.4)

then by the Ito formula,

6t = e ([ os1a85) - [ o
b [ [0, s ac)
+/Ot/R{1n(1 +61(5,0)) — 0:(s,0)} u(dg)ds> ; 0<t<T. (3.5)

In the following we write G(t) = Gy(t) and Q = Qp ; 0 = (0o, 0:1), when G(t) is repre-
sented by 6 as in (3.3). We let © denote the family of all predictable processes 6 = (6, 61)
such that (3.3) has a unique martingale solution Gy(t) ; t € [0, 7.

Definition 3.1 We say that S(t) is an (&, Qg)-local martingale if there exists an increasing
famaly of Fi-stopping times 1y, such that 7, — oo when k — oo, a.s. and

Eq,[StNATe) | E) = Eq,[S(s Ai) | & a.s. for all s <t and all k. (3.6)

Note that (3.6) is equivalent to requiring that the &-conditional process

S(t) == Eg,[S(t) | &) ;>0 (3.7)
is an (&, Qp) local martingale.

We now give a characterization of the measures @y such that S(t) is an (&, Q) local
martingale:

Theorem 3.2 The process S(t) given by (1.1) is an (&, Q) local martingale if and only if

o, [o0) + o000+ [ 16,0000, (d) | &] =0
a.s., for a.a. t €[0,T). (3.8)
Proof. By the Tt6 formula we get (see c.g. [11][chapterl])
d(Ge(t)S(t)) = Go(t7)dS(t) + S(t7)dGe(t) + d[Gy, S](t)

= Gy(t7) [b(t)dtJra(t)dB(t) + /R v(t, C)N(dt,d{)}
+5(0) ) (wvaso + [ 06.08na0) |

+Ge(t)0(t)90(t)dt+/RGe(t)’V(t,C)Ql(tC)N(dt,dC)’ (3.9)



where N(dt,d¢) = N(dt,d() + v(d¢)dt.
Collecting the dt-terms we get
Gol0)3(0) = 5O+ [ Gals) {b6s) + 0100(5) + [ 2(5,001(5.O(d)
0
+ dB(s)-integrals + N(ds, d¢)-integrals. (3.10)

Since the dB(s)-integrals and the N (ds, d¢)-integrals are local Fi-martingales, they are
also local &-martingales. Therefore, with 7, as above we get

EqQ,[S(tNT) | E] — Eq,[S(s A i) | &
— BlGy(t A)S(EA ) — Gols AT)S(s ATe) | €]

B[ [ utw) (bt + oo + [ 2ttt vty au ]

ATk

This is 0 for all s <t < T and all 7 if and only if

oo {bt + o) + [ 1001w cmia0) b 6] o

a.s. for a.a. u, (3.11)

which is equivalent to (3.8) O

4 Viability and ELMMs under partial information

We now combine the main results of Sections 2 and 3 to obtain a characterization of viability
in terms of partial information equivalent local martingale measures. The result is the
following;:

Theorem 4.1 The following are equivalent:

(i) The portfolio ¢ € Ag is optimal for the partial information portfolio optimization
problem (1.6), and the solution (p,q,r) of the BSDE (2.4) satisfies the growth condition

gl [ ) { e+ [ Heovaofa] < (11)

(ii) The measure Q defined by

5 U(X(T))

dQ = mdP on Fr

is an equivalent local E-martingale measure for S(t).
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Proof.
(i) = (ii): Suppose (i) holds. Then by Theorem 2.1 we know that the solution (p, g, r) of
the BSDE (2.4) satisfies (2.6). Put

p(t) _ ElU(X,(T)) | 7]

_ _ |
U= 00 = T BT 42
and
_aq(t) _r(t,0)
Oo(t) = (@)’ 01(t,¢) = o) (4.3)
Then by (2.6) and (4.2), (4.3)
dp(t) _ a(t) r(t,0) 5
dG(t) 0) p(o)dB(t)—i- L 0) N(dt,d¢)
_»(t) p(t”) N
) Oo(t)dB(t) + 0) Rﬁl(t, C)N(dt,dC)

Therefore G(t) = Gy(t) satisfies (3.3), and by (4.1) we get that Gy(t) is a martingale. So
by Theorem 3.2 it suffices to verify that

£ |Guto {o0) + o0l + [ ~(.00e.mla0)} 6] ~0
a.s. for a.a. t. (4.4)
This follows by substituting (4.2)-(4.3) into the equation (2.6) for p, ¢ and 7.
(ii) = (i): Conversely, assume that (ii) holds. Define

EU(X,(T) | 7
Coll) = = Er(x, (1))

; te[0,7].

Then by the martingale representation theorem there exists F;-predictable processes
0o(t), 0:1(t, ) such that

{de(t) =G, (t) [Ho(t)dB(t) + [ 91<t,<)N(dt,d¢)} L0<t<T

G,(0) =1. 45)

By Theorem 3.2 we deduce that since S(t) is an (&, Qg) local martingale, we have

2|6, (30 + 000+ [ 2(0.000.00ta0)) 6] =0

a.s. for a.a. t € [0,7]. (4.6)



Define
p(t) == E[U(X,(T))]Gu(t) (4.7)
and
q(t) := EU(X,(T)]Go()00(t),  7(t,C) := EU (X (T)]Gu(t7)01(t, ). (4.8)
Then by substituting (4.7)-(4.8) into (4.5), we see that (p, satisfies the BSDE (2.4).

q,7)
We also obtain (4.1). Moreover, substituting (4.7)-(4.8) into (4.6),we see that (2.6) holds.
Hence ¢ is optimal by Theorem 2.1. O

Remark 4.2 Theorem 4.1 does not hold if we drop the condition (4.1). A counterezample
can be found in [4]
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