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Chapter 1
Introduction to the Thesis

This thesis studies certain aspects of model selection and Bayesian nonparamet-

rics in time series models, types of non-standard regression models and in function

estimation. In this regard, with the particular models and applications set aside,

there are two main themes, those of model selection and Bayesian nonparametrics.

It is tempting to view these as opposites. Model selection is essentially frequentistic,

data driven and typically belongs to the realm of finite-dimensional models. On the

other hand, we have Bayesian nonparametrics, which is concerned with high- and

infinite-dimensional objects and by design intended to include subjective elements in

the analysis. Moreover, these high-dimensional models are valid under very general

conditions, seemingly making model selection irrelevant.

In traditional parametric modelling we usually consider a finite number of mod-

els, each with a fixed and low number of parameters. The use of model selection is

therefore often very relevant as a guide to determine the appropriate level of com-

plexity that is required. Among other things, we wish to avoid so-called over/under

fitting issues which result from a mismatch in the model complexity compared to

the underlying truth. In general, such model selection strategies are data-driven

with the intention of letting data ‘speak for themselves’ in order to find the model,

among the carefully selected candidates, that ‘best’ describes the observations.

The idea of making data responsible for selection, makes most model selec-

tion strategies reminiscent of classic frequentist ideas. There are some Bayesian

approaches, but these are rarely proper Bayesian and usually push proper prior

specification out of the discussion by quickly introducing flat, or non-informative,

prior distributions wherever it may be needed.

The Bayesian nonparametric label is commonly associated with a Bayesian ap-

proach to classical (frequentist) nonparametric modelling; a less restrictive class of

models with a high level of flexibility. As a consequence of the Bayesian paradigm,

7



8 1. INTRODUCTION TO THE THESIS

they are intended to be subjective. Also, if properly specified, they tend to be more

transparent and honest, through the process of prior specifications, with regards

to the underlying model assumptions. Describing prior distributions on such large

objects is ‘risky business’ and seemingly reasonable constructions may result in a

meaningless posterior distributions without any real or practical use. There are some

strategies invented to uncover and prevent this from happening in practice, however,

e.g. frequentistic justification, such as posterior consistency and convergence rates,

and also so-called Bernshtĕın–von Mises theorems. This provides good theoretical

large-sample insurance and are among the important topics of this thesis.

The nonparametric modelling approach suggests that by working with such large

and flexible objects we may avoid the model selection phase altogether, at least if

the sample size is sufficiently large. The origin of this view probably stems from

the built-in flexibility and ‘model free’ construction, which is commonly believed

to sufficiently sort out all the necessary details and find an appropriate fit – all by

itself.

In small samples, the more traditional and finite-dimensional parametric models

become important tools to be able to do anything at all, since large nonparametric

structures are not necessarily possible to fit in such cases. There is also a general

discomfort in fitting models that are more complex than what is actually needed.

The adaptable nonparametric machinery is therefore clearly not always the best

answer. The Bayesian approach to nonparametric modelling can provide just the

right amount of structure needed for the model to behave reasonably across its

domain, even in small samples. At the same time, the nonparametric models are

flexible enough to adapt as the number of observations increases and information

starts to accumulate.

As a last comment, there is a general concern related to how much one should

rely on data in general, with clear implications for both model selection methodology

and nonparametric modelling. This is essentially an open question and we do not

intend to give the complete solution here. In the work presented in this thesis, there

is an underlying assertion that proper structure, through prior or focused modelling,

is indeed often needed.

The general introduction now follows with a summary of time series modelling

in the frequency domain, Bayesian nonparametrics and some basic model selection

methodology in Sections 1–3. This provides the necessary background and will

also include results needed in the discussion of the four papers that constitute this

thesis. These papers are then presented separately in Sections 4–7, each with its

own introduction and general summary. In addition, we will also discuss and point

at some potential extensions, applications and future work.
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1. Time series analysis in the frequency domain

The aim of the present section is to give a short introduction to time series mod-

elling in the frequency domain and to establish some of the main results necessary

for the following sections; more complete introductions can be found in Brillinger

(1975), Priestley (1981) and Dzhaparidze (1986). As a motivating illustration, we

consider the number of skiing days in a winter season, defined as the number of days

with at least 25 cm snow, at the particular location of Bjørnholt in Oslo’s skiing

and recreation area Nordmarka, see Figure 1.1. Besides being of great interest to

skiing enthusiasts, this number is a good indicator of how cold a winter is and is

also an indication of the general temperature over a given period of time. To under-

stand the underlying dynamics, the estimated dependency structure is of interest.

Moreover, the potential interaction, or joint effect, of trend and dependency (if any)

has implications, especially for predictions. Such considerations call out for model

selection and assessments tools, since we will be needing proper methodology to

decide which model, e.g. with or without a decreasing trend, is ‘best’ and should be

used for making inference; we will return to such questions in Sections 3, 5 and 7

below.

Figure 1.1. The number of skiing days for the winter seasons 1954-55 to 2012-

13 at Bjørnholt, a location in the countryside just outside Oslo.

The global linear trend (dotted line) is seen to be decreasing with

estimated slope about −0.9, indicating that the number of skiing

days has on average declined by almost one day each year since the

mid 1950s.

Let y1, . . . , yn be realisations from a stationary Gaussian time series {Yt} with

mean zero. These models are completely defined by their dependency structure,

which in the time domain is given by the covariance function C(h), for all lags
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h = 0, 1, 2, . . .. The covariance has an alternative and unique representation in the

so-called frequency domain by the Fourier transform, which in the current framework

of real-valued time series simplifies to

C(h) =

∫ π

−π

cos(ωh)g(ω) dω, where g(ω) =
C(0)

2π
+

1

π

∞∑
h=1

C(h) cos(ωh) (1.1)

is the spectral density with corresponding cumulative function G referred to as the

spectral measure; see among others Brillinger (1975) or Priestley (1981).

We will often prefer to work with the frequency representation. There are

various reasons for this, but of most importance here is that it is much easier to

construct functions within the frequency domain that results in suitable covariance

functions. For a function C(h) to be a proper covariance function it must be positive-

semidefinite, which means that for all n ≥ 1 the following holds: atΣna ≥ 0 for all

vectors a ∈ Rn, where Σn is the covariance matrix with elements C(|i − j|), for
i, j = 1, . . . , n. This condition, which is often difficult to verify directly, is e.g. re-

quired to ensure that there will always be non-negative variances. The conditions for

positive-semidefiniteness are much easier to verify in the frequency domain, however,

which are establish in the following theorem.

Theorem 1. (Priestley, 1981, Wold’s Theorem) A necessary and sufficient

condition for C(h), for h ≥ 0, to be a covariance function for some real valued

stationary process {Yt} is that there exists a non-decreasing function G on the

interval (−π, π) such that

C(h) =

∫ π

−π

cos(ωh) dG(ω), for all h ≥ 0,

and where G(−π) = 0 and G(π) = Gπ < ∞.

For this reason we will often write

Cg(h) =

∫ π

−π

cos(ωh) dG(ω) = 2

∫ π

0

cos(ωh)g(ω) dω, for h ≥ 0, (1.2)

where the last equality follows under the assumption that G has a spectral density

g as its derivative. This is not always true, but if not otherwise stated we will work

under the condition that G has a spectral density g, which is further assumed to be

at least Lipschitz continuous.

1.1. Maximum likelihood estimation and model misspecification. The

purpose of this section is to introduce the basic properties of the maximum likelihood

estimator in a misspecified modelling framework, which is especially important for

the derivation of Akaike’s information criterion (AIC; Akaike (1973)) in Section 7. As
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Figure 1.2. The estimated correlation function (solid line), with Ĉ(0) =

(24.16)2, for the Bjørnholt series in Figure 1.1 (left panel) In the

right panel, the periodogram (solid line), a nonparametric estimate

for the spectral density (see Section 1.2 below), is plotted against

the spectral density for the fitted autoregressive process of order

three (dashed line), see e.g. Brockwell & Davis (1991) for introduc-

tion and conditions. The frequency estimates are scaled to integrate

to one, i.e. the analogue of (1.2) for the correlation function.

a gentle start and motivation, we will first discuss estimation under the assumption

that the model is correctly specified.

Let fθ, with θ ∈ Θ ⊂ Rp for a finite p, be a parametric spectral density function,

the corresponding Gaussian log-likelihood is then

�n(fθ) = −1
2
[n log(2π) + log |Σn(fθ)|+ yt

n
Σn(fθ)

−1y
n
], (1.3)

where Σn(fθ) is the covariance matrix with elements Cfθ(|i− j|) for i, j = 1, . . . , n,

and yt
n
= (y1, . . . , yn). The maximum likelihood estimator is then defined as θ̂n =

argmaxθ �n(θ). Suppose the true underlying spectral density fθ0 , for a unique θ0 in

a compact subset of Θ, is bounded away from both zero and infinity and is such

that
∑

h≤∞ h|Cfθ0
(h)|2 < ∞; a type of short memory condition, see Remark 1 below

for some additional comments. Then, as the sample size approaches infinity, the

normalised maximum likelihood estimator has the following weak limit

√
n(θ̂n − θ0) →d U ∼ Nk(0, J(fθ0)

−1), (1.4)

in Pfθ0
-probability, where

J(fθ) =
1

4π

∫ π

−π

∇Ψθ0(ω)∇Ψθ0(ω)
t dω, (1.5)

with Ψθ = log fθ and ∇Ψθ as the k-dimensional vector of partial derivatives with

respect to θ. Note that (1.4) implies that θ̂n → θ0 in Pfθ0
-probability; see among

others Dzhaparidze (1986) for more details and references.
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Remark 1. By application of an integration by parts argument, it is fairly

straightforward to show that the short memory condition
∑

h≤∞ |h||C(h)| < ∞ holds

if the spectral density g is both continuous and bounded from above. Moreover,

stronger convergence rates of the type
∑

h≤∞ |h|k|C(h)|α < ∞, for finite k ≥ 1 and

α ≥ 1, can be shown to follow from the existence of smooth higher order derivatives

of g, see Carslaw (1921, p. 249) for details.

Consider the case where y1, . . . , yn are realisations from the stationary time series

model with true spectral density g and let fθ be a parametric spectral density from

the class of parametric candidates that do not necessarily span or include the true

underlying g, i.e. we are working in a potentially misspecified modelling framework.

Then the maximum likelihood estimator θ̂n does not converge to the ‘true parameter

value’, since this does not necessary exist in a misspecified modelling framework. The

estimator is instead commonly said to converge to the so-called ‘least false parameter

value’, i.e. θ̂n →Pg θ0 = argminθ d(g, fθ), where

d(g, fθ) = − 1

4π

∫ π

−π

(
log

g(ω)

fθ(ω)
+ 1− g(ω)

fθ(ω)

)
dω, (1.6)

see Dahlhaus & Wefelmeyer (1996) for details. Note that d is positive and fulfills

d(g, fθ) = 0 in and only if g is equal to fθ almost everywhere. The main large-sample

properties for θ̂n in the present framework are summarised in the theorem below.

Theorem 2. (Dahlhaus & Wefelmeyer, 1996, Theorem 3.3) Assume that the

true spectral density g is Lipschitz-continuous and that g and fθ are bounded away

from zero and infinity. If the least false parameter value θ0 = argmin d(g, fθ) is

a unique solution in a compact subset Θ ⊂ Rp, with p finite, and fθ is two times

differentiable with respect to θ, with derivatives that are continuous in both θ and

ω and uniformly bounded in a neighbourhood around θ0. Then

√
n(θ̂n − θ0) →d J(g, fθ0)

−1U, where U ∼ N(0, K(g, fθ0)),

with J and K defined by

J(g, fθ0) =
1

4π

∫ π

−π

[
∇Ψθ0(ω)∇Ψθ0(ω)

tg(ω) +∇2Ψθ0(ω)(fθ0(ω)− g(ω))

]
1

fθ0(ω)
dω

and

K(g, fθ0) =
1

4π

∫ π

−π

∇Ψθ0(ω)∇Ψθ0(ω)
t

[
g(ω)

fθ0(ω)

]2
dω,

where Ψθ(ω) = log fθ(ω) and ∇Ψθ(ω) and ∇2Ψθ(ω) are the vector and matrix of

partial derivatives with respect to θ, respectively.



1. TIME SERIES 13

1.2. The Whittle approximation, periodogram and estimating the spec-

tral measure. The Whittle log-likelihood is an approximation to the full Gaussian

log-likelihood (1.3), originally suggested by P. Whittle in a series of works (cf. Whit-

tle (1953)) from the 1950s and is defined by

�̃n(f) = −n

2

{
log 2π +

1

2π

∫ π

−π

log[2πf(ω)] dω +
1

2π

∫ π

−π

In(ω)

f(ω)
dω

}
, (1.7)

where

In(ω) =
1

2πn

∣∣∣∣∑
t≤n

yt exp{iωt}
∣∣∣∣2 (1.8)

is the periodogram. The Whittle approximation is close to the full Gaussian log-

likelihood in the sense that

�n(f) = �̃n(f) +OPg(1) (1.9)

uniformly in f , see Coursol & Dacunha-Castelle (1982) for details; see also Dzha-

paridze (1986) for a comprehensive introduction and discussion of the Whittle ap-

proximation above and related topics. The approximation motivates an alternative

estimation procedure, i.e. the Whittle estimator θ̃n = argminθ �̃n(fθ). Moreover, the

large-sample results in (1.4) above is known to be true with the maximum likelihood

estimator replaced by θ̃n (cf. Dzhaparidze (1986)) and similarly the conclusions of

Theorem 2 can also be shown to stay true, see Dahlhaus & Wefelmeyer (1996) for

details.

The Whittle approximation is useful in several real applications and is also con-

venient as a tool in large-sample derivations. The reason is that the spectral density

is included more directly in its formulation. In comparison, the full Gaussian log-

likelihood (1.3) has the spectral density hidden inside the inverse of the covariance

matrix, making estimation and derivation of large-sample properties much more

complicated; this is e.g. clearly illustrated in Hermansen & Hjort (2014a,b,d).

The periodogram In above, originally introduced to find hidden periodicities

(Schuster, 1898), is commonly used as a nonparametric estimator for the underlying

spectral density. For stationary time series processes with mean zero, it follows from

Brillinger (1975, Theorem 5.2.2) that

Eg In(ω) = g(ω) +O(n−1)

provided
∑

h≤n |h||Cg(h)| < ∞.

For this reason, the periodogram is commonly used as a basis for estimating the

cumulative spectral measure G and related functionals, e.g. the covariance function
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(1.2), however, there are two canonical alternatives

G̃n(ω) = 2

∫ ω

0

In(u) dω or Ĝn(ω) =
4π

n

∑
uj≤ω

In(uj), (1.10)

where uj = 2πj/n, for j = 0, . . . ,m andm = 
n/2�. These are both well studied, see

among others Taniguchi (1980) for properties regarding G̃n, and Ĝn are extensively

discussed in Brillinger (1975, Ch. 5.10). There are good reasons to why we commonly

prefer Ĝn, e.g. under the assumption that
∑

h≤n |h||Cg(h)| < ∞

In(uj) ≈d g(uj)Ej and Cov{In(uj), In(uj′)} = O(n−1), (1.11)

for uj = 2πj/n, j 
= j′ and j, j′ = 1, . . . , 
n/2� and where Ej ∼ Exp(1); see

among others Brillinger (1975, Ch. 5) for details. Moreover, we know the process

convergence

√
n{Ĝn(ω)−G(ω)} →d W

(
2π

∫ ω

0

g(u)2 du

)
, for ω ∈ [0, π], (1.12)

where W (·) is a standard Wiener process (this also holds for G̃n), see Ibragimov

(1963) for a complete derivation. Note that by application of the continuous map-

ping theorem (cf. Billingsley (2009)), the weak limit result above automatically

induces several large-sample properties (and justifies approximations) for continu-

ous functionals of the spectral distribution, e.g. the nonparametric estimate for the

covariance function

Ĉ(h) =

∫ π

−π

cos(ωh) dĜ(u),

for h ≥ 0. The estimator above and similar constructions will be discussed more

thoroughly below, also in the framework of Bayesian nonparametrics.

2. Bayesian nonparametrics

The phrase Bayesian nonparametrics is commonly used for a large and diverse

collection of models and methods that extends the classical parametric (finite-

dimensional) Bayesian modelling framework; for a complete introduction to para-

metric modelling from a Bayesian perspective see e.g. Gelman et al. (2013). With

respect to the parametric approach, Bayesian nonparametrics typically refers to

Bayesian models with a large or infinite number of parameters, i.e. a really large

parametric model. In this sense, it can be viewed as a Bayesian take on nonpara-

metric frequentist modelling, e.g. nonparametric regression, density or distribution

estimation. The label is also used in relation to parametric models where the number

of parameters increases with the size of data, as in Ghosal (2000) and Hermansen
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& Hjort (2014a). In general, Bayesian nonparametrics has been successfully imple-

mented and used in a variety of statistical models, e.g. density estimation, nonpara-

metric regression, clustering, hazard rate and survival function estimation and in

time series modelling; see Hjort et al. (2010) and references therein for additional

examples and applications.

More generally, we can view Bayesian nonparametrics as families of distributions

or models that are, or become, dense in a some large space of distributions relevant

to the problem at hand. This makes an indirect reference to prior specification,

which is as always central to the Bayesian construction. Specifying good priors in

standard parametric models is difficult, and for nonparametric problems it becomes

even harder and failing to do so properly may cause serious problems, see among

others Diaconis & Freedman (1986a,b).

The task of constructing priors that actually represent and model our underlying

prior knowledge is difficult and rarely done properly, even in simple and classical

parametric models. This task becomes in general even more daunting (but also more

important to get right) for nonparametric models, since we now have to specify priors

on infinite-dimensional parameter spaces, such as the set of all density functions or

all continuous functions on the unit interval, as might be the case in a regression

setup.

The aim of the present section is to introduce Bayesian nonparametric modelling

in statistics and we will focus on how to build priors on a space of infinite-dimensional

objects. The discussion will be built around the classical problem of estimating

unknown distribution functions, where we will follow the presentation of Ferguson

(1973). It is not intended to be complete and more comprehensive introductions to

Bayesian nonparametrics can be found in Ghosh & Ramamoorthi (2003) and Hjort

et al. (2010).

2.1. Random probability measures and the Dirichlet process. As al-

ready commented on, Bayesian nonparametrics can be seen as a Bayesian approach

to nonparametric frequentist methodology, as summarised e.g. in Wasserman (2006).

In nonparametric modelling the objects of interest (or parameters) are typically func-

tions indexed by large or infinite-dimensional sets, like regression, density or hazard

rate functions. Then, following the Bayesian paradigm we now have to specify a

prior on these infinite-dimensional objects/functions in an infinite-dimensional pa-

rameter space. The fundamental idea is that this can be achieved by using stochas-

tic processes to make random functions, e.g. random density, regression or spectral

density functions; common choices are types of Gaussian processes and independent

increment processes (e.g. Lévy processes), see Hjort et al. (2010, Ch. 1).
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In this introduction we focus on Dirichlet processes, which is the ‘natural’ ex-

tension of the Dirichlet distributed random variable and was introduced in Ferguson

(1973). The Dirichlet process was originally introduced as a prior for the distribution

functions, i.e. a method for constructing random distribution functions, see Fergu-

son (1973, 1974) and Antoniak (1974); this is the motivation we will follow here.

The Dirichlet process has since been used extensively as a basis in several Bayesian

nonparametric constructions, e.g. infinite mixtures models, hierarchical extensions,

clustering and hidden Markov models, see e.g. Hjort et al. (2010, Ch. 2, 3 & 5).

The empirical distribution, a frequentist solution to nonparametric estimation

of the distribution function, is well studied and its properties under standard mod-

els are well known, see among others van der Vaart (1998). In order to obtain a

successful Bayesian analogue, we need a proper prior construction, methods for pos-

terior inference, theoretical justification and properties, potential limitations and

restriction.

In order to make the connection to Dirichlet processes, we remember that the

multinomial distribution defines a probability measure on the sample space of finitely

many integers. In order to motivate the nonparametric construction we therefore

start by discussing this parametric relative, i.e. the multinomial model with a Dirich-

let prior, which can be viewed as a prior on the sample space of finitely many integers.

We will first consider the simple case with a sample space with two outcomes

{1, 2}, i.e. a Bernoulli experiment, e.g. flipping an unfair coin. The corresponding

space of probability distributions can be represented as {π = (π1, π2) : π1, π2 ≥
0 and π1 + π2 = 1}. Since π2 = 1 − π1 for 0 ≤ π1 ≤ 1, any probability measure

on [0, 1] defines a prior distribution on this simple set of two outcomes. In other

words, a random number on the unit interval provides a suitable random measure.

The ‘standard’ solution is to use a beta distribution where π1 ∼ Beta(α1, α2). Let

x1, . . . , xn be a sequence of independently distributed random variables according

to p. It is then easy to show that the posterior distribution of p is a new beta

distribution with parameters α1 +
∑

i≤n δxi
(1) and α2 +

∑
i≤n δxi

(2). This gives

valuable insight into the prior specification and posterior by

E π1 =
α1

α1 + α2

and E {π1 | data} =
α1 +

∑
i≤n δxi

(1)

α1 + α2 + n
.

The extension to the case with m outcomes, say {1, . . . ,m}, is straightforward.
This can be thought of as throwing an m sided loaded dice where we do not know

the probability of a certain face and the task is to make inference about the corre-

sponding unknown probabilities (π1, . . . , πm). Note that in the classical framework,

if we toss the dice n times, then we will estimate πj = Pr{the dice showing j} by

nj/n, for j = 1, . . . ,m. These maximum likelihood estimates are reasonable and
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good if we have enough data, but for cases with few observations, it may not work

properly (consider the case where we do not observe any θk, for some subsets of k).

The Bayesian approach with the Dirichlet distribution as a conjugate prior, may

still behave reasonably well in such situations, however.

The idea motivating the Dirichlet process as a probability measure on the space

of measures, is the construction of a process that works as a finite-dimensional

Dirichlet distribution when data are grouped, however, this should be true for any

type of grouping mechanism, see Ferguson (1973).

The Dirichlet processes define a prior over probability measures and its sample

paths behave almost surly as a discrete distribution function. To motivate this,

let H0 be a probability measure on the real line R and let α0 be a positive real

number. A Dirichlet process is the distribution of a random probability measure

H on R such that, for any finite partition (B1, . . . , Bk) of R, the random vector

(H(B1), . . . , H(Bk)) is distributed as a finite-dimensional Dirichlet distribution, i.e.

(H(B1), . . . , H(Bk)) ∼ Dir(α0H0(B1), . . . , α0H0(Bk))

Typically, we write H ∼ DP(α0H0) if H is a random measure distributed according

to the Dirichlet process. The probability measure H0 is often referred to as the base

measure and α0 is called the concentration parameter.

As we obtain samples from the underlying model, say x1, . . . , xn, we update the

posterior distribution. For a fixed partition, we get a standard Dirichlet update,

in the sense that for the cell containing x1 the exponent is increased by one, all

others stays the same. This is true for all cells, which suggests that the posterior

is a Dirichlet process with an additional atom at x1. This is indeed the case and it

can further be shown that

H | x1, . . . , xn ∼ DP

(
α0H0 +

∑
i≤n

δxi

)
, (2.1)

see e.g. Ghosh & Ramamoorthi (2003). This now implies that the posterior mean

of H given x1, . . . , xn can be expressed as

Hn = E {H | x1, . . . , xn} =
α0

α0 + n
H0 +

n

α0 + n
Hn

where Hn is the empirical distribution; this also gives some intuition on α0 as the

concentration/precision parameter.

2.2. Posterior consistency and Bernshtĕın–von Mises theorems. For

standard finite-dimensional models, most reasonable priors will usually be domi-

nated by data as the sample size increases. In this sense the selected prior will

eventually be washed out and is therefore not that important, at least if there is
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sufficient amount of data. For the nonparametric models, however, proper specifica-

tion of the prior becomes much more important and reasonably well behaved priors

may produce ill-behaved posterior distributions as pointed out above.

Posterior consistency and Bernshtĕın–von Mises theorems are types of frequen-

tistic validation of Bayesian procedures. These are intended to provide large-sample

justification for Bayesian procedures, in the sense that as data, and the amount of

information increases, the prior beliefs ‘disappears’ as the information accumulate.

In short, posterior consistency means that the posterior distribution concen-

trates around the true parameter value (parametric or nonparametric) as the sam-

ple size increases. Bernshtĕın–von Mises theorems usually refer to situations where

the posterior distribution (suitable normalised) approaches a Gaussian limit dis-

tribution. It is also used as a label for models (and prior constructions) where

the corresponding frequentist estimator (typically the maximum likelihood estima-

tor) and the posterior distribution share the same type of large-sample properties,

with respect to limit distributions and efficiency. In this sense, both posterior con-

sistency and Bernshtĕın–von Mises theorems aim at providing classical frequentist

large-sample justifications.

Let θ ∈ Rp, where p is finite, and x1, . . . , xn be i.i.d. observations from the

model with density function hθ0 . Then for most well-behaved models the maximum

likelihood estimator θ̂n is consistent, in the sense that θ̂n →P θ0, as the sample size

increases. Moreover, it follows further that
√
n(θ̂ − θ0) →d N(0, I(θ0)

−1),

where I(θ0) is the Fisher information matrix, see e.g. Ferguson (1996); similar results

are known to be true in more general models, see e.g. van der Vaart (1998).

Let π be a prior density for θ representing the underlying beliefs about the

parameter. Then for most well-behaved and regular priors (typically π is assumed

to be positive and continuous in a neighbourhood of the true parameter θ0) it follows

that θ | data →P θ0 and moreover
√
n(θ − θ̂n) | x1, . . . , xn →d N(0, I(θ0)

−1).

Depending on the tradition, such pairs of common weak convergence, as we quite

informally have described above, is what we mean when we refer to Bernshtĕın–

von Mises theorems; more detailed and general derivations can be found in van der

Vaart (1998) or Ghosh & Ramamoorthi (2003). As a final remark we point out that

(in both cases) the latter weak convergence is easily seen to imply the consistency

result.

In nonparametric estimation all of this becomes more complicated, especially in

the Bayesian tradition, where there are few, or essentially no, general theorems that
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establish sufficient conditions for establishing types of Bernshtĕın–von Mises theo-

rems. The case of nonparametric posterior consistency is somewhat more successful

(cf. Ghosh & Ramamoorthi (2003, Ch. 4)), but both approaches typically require

much more caution than with the simpler parametric models; we do not intend to

go into details here, however.

For the Dirichlet process prior above, it was shown in Lo (1983) that the posterior

of
√
n(H − Ĥn), with H as in (2.1), converges weakly to a H0-Brownian bridge, see

e.g. van der Vaart (1998, Ch. 18) for a definition. This now matches up with the

well known Donsker theorem that establishes that
√
n(Ĥn−H0) has a H0-Brownian

bridge limit. The derivation uses techniques that rely on the particular structure

of the Dirichlet distribution and is therefore not easy to generalise. This is also

the case for Hermansen & Hjort (2014a), which is discussed in Section 4. For a

somewhat different application of the Dirichlet process, see Hjort & Petrone (2007)

for nonparametric inference for quantiles, which also result in types of Bernshtĕın–

von Mises theorems.

Posterior consistency and types of Bernshtĕın–von Mises results in Bayesian

nonparametrics are both fields of ongoing research, the reader is referred to both

Ghosh & Ramamoorthi (2003) and Hjort et al. (2010) for more comments, details

and further references.

3. Model selection and focused inference

The task of selecting an appropriate model is an important and integrated part

of parametric modelling in statistics. The simple intuition is that in most real life

situations we, as statistical model builders, usually have more than one reasonable

candidate for modelling the phenomena under study. Model selection has a long his-

tory, ranging from visual inspection, to goodness-of-fit tests and the so-called model

information criteria; for a general introduction to model selection see Claeskens &

Hjort (2008).

The well-known bias–variance trade-off is illustrated in Figure 3.1, where a com-

mon expectation is that a ‘good’ model selection strategy should balance out com-

plexity against simplicity and precision in a reasonable way. The preferred model

should be rich enough to capture the essential features, with high enough precision

to be useful, and at the same time still be simple enough to be intelligible.

The above considerations focus on model fit and assessment, how good the

model is at describing or approximating the observed data. There is another aspect

to model selection that is more related to interpretation and is in our view often a bit

under-communicated. The idea is easily illustrated with the number of skiing days

dataset in Figure 1.1 above. Suppose that we have two candidate models, e.g. (i)
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Figure 3.1. Bias–variance trade-off: By visual inspection, the model (solid line)

in the middle panel is in some sense just right. The other two are

either a little to simple (left panel) or to complex (right panel) cap-

turing more noise than signal. A good model selection procedure

should hopefully guide the user to make similar conclusions in situ-

ations that not as easily inspected as the one above.

yt = a+b×yeart+εt or (ii) yt = a+ηt, where {εt} and {ηt} are stationary time series

processes of the same (or similar) structure. If model (i) is judged as better than

model (ii), this will have consequences for the inference, especially future predictions,

however, we may have learned something new and important about phenomenon we

study, i.e. that the number of skiing days at Bjørnholt is actually decreasing.

The popular model information criteria, e.g. Akaike’s information criterion (AIC;

Akaike (1973)), the Bayesian information criterion (BIC; Schwarz (1978)) and the

focused information criterion (FIC; Claeskens & Hjort (2003)), have a considerable

appeal, since these are typically simple in both structure and use, resulting in scores

which can be used to rank candidate models from best to worst in accordance with

some predefined measure of discrepancy. This simplicity has led to widespread and

uncritical use of such criteria, especially the AIC, which is commonly used without

any concern for the underlying motivation; we will return to this in Section 3.3

below. The AIC and the BIC, which lead to one ‘best’ model, aiming respectively

at the one minimising a certain Kullback–Leibler divergence from the underlying

true data generating mechanism to the model in question, and the one maximising

the posterior model probability. These are global perspectives, that prefer models

that, in some more or less practical sense, capture the main characteristics of the

underlying distribution function.

3.1. The Focused information criterion (FIC). The focused information

criterion (FIC) was introduced in Claeskens & Hjort (2003) and Hjort & Claeskens

(2003) and is based on the comparison of the estimated accuracy of individual model

estimators for a chosen focus parameter/function μ. Instead of aiming at a model
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that is ‘reasonably good at everything’, the motivation underlying the FIC is that

the intended use of the model and the focus of the investigation should play a central

part of the selection procedure. One and the same model is typically not the best

for all applications; this is e.g. evident for regression models, where some covariates

may be important for some types of questions but of lesser importance for other

aspects of what is being studied.

Let μ = μ(θ, γ) be the parameter of interest, i.e. the focus parameter or function,

e.g. quantiles or certain important regression parameters. For time series models

(cf. Hermansen & Hjort (2014d)) the canonical example is h-step ahead predictions,

i.e. the task of finding the model the is best for predicting h time steps into the future

(cf. Akaike (1969) and Linhart & Göttingen (1985)). Moreover, a wide variety of

other focused questions, with more or less of a time series specific nature, are easily

motivated, such as estimation of threshold probabilities, determination of confidence

bounds, the effect of certain covariates or more direct features like certain covariance

lags or properties of the spectral density for frequencies close to zero, to name a few;

see also Section 5 for additional comments.

The idea leading to the FIC is to approximate the mean squared error (mse) of

μ̂S for each candidate model in a set of nested submodels index by {S} and prefer

the model that achieves the smallest value. This will be solved in a large-sample

framework, where the actual mse will be approximated by estimating the squared

bias and variance of
√
n(μ̂S −μtrue) in the limit experiment, where μtrue is the focus

function evaluated in the true model. This involves certain technical constructions

needed to ensure fruitful approximation formulae, see Claeskens & Hjort (2003) and

Claeskens & Hjort (2008, Ch. 5 & 6) for a more complete discussion and additional

comments. A more detailed introduction of the FIC, with focus on the stationary

time series models, will be given in Section 5 below.

As a last comment, we note that Akaike’s final prediction error (FPE; Akaike

(1969)) is an example of a criterion that also aims at answering a more precise

question. This criterion is derived with the motivation of finding the autoregressive

model that will minimise the one-step ahead prediction error in a given dataset; see

also Linhart & Göttingen (1985) and Hermansen & Hjort (2014d) for generalisations.

Nevertheless, the scores made by the FPE are often viewed as a type of proxy and

the criterion must often compete against the global criteria at finding the ‘true’

model.

3.2. The Akaike information criterion (AIC). Akaike’s information crite-

rion (AIC) is among the more popular and important model selection strategies. In
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its general form it is defined by

AIC(M) = 2 log-likelihoodmax(M)− 2 dim(M), (3.1)

for each candidate model M , where dim(M) is the length of the parameter vector.

In short, the AIC machinery is to prefer the model that attains the largest value of

(3.1) above.

Let �n(θ) be the log-likelihood function based for some model parametric model

represented by the density hθ from a class of potential candidates. Now, the general

AIC formula above becomes AIC = 2(�n(θ̂n) − p), where θ̂n = argmax �n(θ) is the

maximum likelihood estimator. The AIC machinery becomes readily available and

a convenient measure for comparing candidate models, which has led to widespread

and indiscriminate use of the AIC in statistics and other related fields of research.

In our view, a particular model selection procedure, like the AIC, should not

be used, or preferred above others, simply because it is convenient. In order to

prefer one criterion above others, a proper rational motivation and understanding

is needed, since we need some guarantee that the model preferred, say by the AIC,

is the one that actually has the properties that we really care about. Moreover, the

rational for using the AIC construction relies on a precise and well motivated chain

of large-sample arguments that do not necessarily hold up in general. This means

that there is not necessarily a rational motivation for using the AIC as a model

selection procedure and ranking the models by their AIC-score, i.e. the attained

values of (3.1), become random or irrelevant; see Grønneberg & Hjort (2014) for a

case where the general AIC formula is not well motivated and further exploration is

required.

Motivated by classical likelihood theory, the structure of the AIC formula seems

quite reasonable, since among competing models the one with the largest log-

likelihood provides the ‘best’ fit to data. This strategy, by itself, makes us very

vulnerable to overfitting and will have a clear preference for models resulting in a

large generalisation errors. For this reason, the second term in (3.1) is commonly

interpreted as a penalty term, that penalises models with unnecessarily high com-

plexity. This is partly incorrect (cf. Claeskens & Hjort (2008) or Hermansen & Hjort

(2014d)) and for most standard parametric models for i.i.d. observations, the par-

ticular structure of the AIC formula has a precise and well motivated large-sample

justification, however.

3.3. The AIC for parametric models for i.i.d. data. The aim of this sec-

tion is to justify the AIC as an coherent extension of the maximum likelihood prin-

ciple, for estimation across families of parametric models.
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Let x1, . . . , xn be i.i.d. realisations from the model with density h◦ and let

hθ represent a parametric candidate, where θ ∈ Rp for a finite p and h◦ is not

necessarily included or spanned by the set of candidate models, i.e. meaning we

are working in a potentially misspecified modelling framework. Then under mild

regularity conditions, the maximum likelihood estimator converges θ̂n →a.s. θ0 =

argminθ KL(h◦, hθ), with

KL(h◦, hθ) =

∫
R

log
h◦(x)
hθ(x)

h◦(x) dx =

∫
R

h◦(x) log h◦(x) dx−R(θ) (3.2)

being the Kullback–Leibler divergence and where we refer to R(θ) = Eh◦ log hθ(X) =∫
h◦ log hθ dx as the model specific part, see e.g. Claeskens & Hjort (2008, Ch. 2)

for additional comments.

The maximum likelihood estimator for a particular model hθ aims at minimising

the Kullback–Leibler divergence above. In order to evaluate its performance and

compare it with the other competing candidate models, we will study the actually

attained Kullback–Leibler divergence

KL(h◦, h
̂θn
) =

∫
h◦(x) log h◦(x) dx−R(θ̂n) (3.3)

which is a random variable. The first term is the same across all models, meaning

that it is sufficient to study R(θ̂n), which further suggests that

Qn = Eh◦ R(θ̂n) = Eh◦

∫
h◦(x) log h

̂θn
(x) dx

is a reasonable measure for the success. This motivates a model selection strategy

by preferring the model that attains the largest value of Qn. This model is also

expected to minimise (3.3) and can therefore be viewed as best at what the maximum

likelihood estimator can be interpreted of trying to achieve, i.e. to be close to the

true density h◦ with respect to the expected Kullback–Leibler discrepancy.

In order to implement this strategy in practice we need to calculate Qn for

each candidate model, which depends on the true underlying density h◦, which is

unknown, meaning that attained values have to be estimated from data. Since we

expect �n(θ)/n to be close to R(θ) by the law of large numbers, a natural estimator

for Qn is Q̂n = �n(θ̂n)/n. This motivates in turn the strategy of preferring the model

that maximises Q̂n. This simple log-likelihood based estimator Q̂n has a tendency to

overshoot its target Qn and a bias correction is therefore needed, however. In short,

the bias correction of Q̂n justifies AIC(θ) = 2n{Q̂n − 1
n
dim(θ)} = 2(�n(θ̂n) − p) as

an (approximative and asymptotic) first order bias corrected estimator for Q, see

also Claeskens & Hjort (2008, Ch. 2) for a more complete derivation and comments.

The penalisation term p has therefore a more substantial meaning as a bias

correction term, which is related to the Kullback–Leibler divergence and maximum
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likelihood estimation. If this more profound justification were not present, the pre-

cise structure of the penalty term becomes essentially arbitrary, since there is no real

reason why we should prefer the AIC above any other similar constructions such as

2(�n(θ̂n)− 1
2
p), 2(�n(θ̂n)−√

p) or 2(�n(θ̂n)− 1
2
(log n)p).

In Akaike (1973) the AIC formula is motivated, by following the so-called ex-

tended likelihood principle, which dictates that we should prefer the model that

maximises

Eh◦ log h
̂θn
(X) = Eh◦

∫
h◦(x) log h

̂θn
(x) dx, (3.4)

where θ̂n is the corresponding maximum likelihood estimator and X is a new in-

dependent random variable. The expectation to the left is therefore with respect

to both the random variable X and the estimator θ̂n. The derivation of the AIC

formula then follows along a similar line of arguments as presented above.

Note that (3.4) is equivalent to the expected model specific part of the attained

Kullback–Leibler divergence above. In the original papers by Akaike, the connection

to estimation in a misspecified model framework is not made explicitly. The principle

is instead commonly interpreted in relation to a type of predictive performance

for a new unobserved point and justified via the connection to Kullback–Leibler

divergence, which is further made rational by referring to information theory and

entropy, see Akaike (1973, 1974) for more details. The reasoning is unfortunately

somewhat vague making the general ideas harder to grasp.

In our view, the best motivation and justification for the AIC, at least for clas-

sical parametric models for i.i.d. observations, is from the rational coupling between

the AIC formula, via Kullback–Leibler divergence, and the large-sample properties

of the maximum likelihood estimator in a misspecified modelling framework. The

aim of establishing such connections is the part of the underlying motivation for the

work in Hermansen & Hjort (2014d) and Grønneberg et al. (2014, p. 43).

As a final remark, we note that there is a model robust alternative to the AIC

formula defined above, often referred to as Takeuchi’s information criterion (TIC;

Takeuchi (1976)). It is obtained by relaxing a hidden assumption made in the

derivation of the general AIC formula. In order to get dim(M) in (3.1) we have

to assume that each candidate model spans the true model, which is an unrealistic

and somewhat strange assumption. Let Mp be a p-dimensional candidate model,

meaning that dim(Mp) = p and suppose we aim at a more model robust strategy; in

the sense that we do not assume that the candidates contain the true model. In this

case, it turns out that the right correction is rather given by p∗ = tr(J−1K), where

K and J are analogue to the Fisher information matrices obtained from the variance

of the first and the expectation of minus the second derivative of the log-likelihood

function, respectively. If the model is correctly specified it follows that J = K and
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we obtain the standard formula by p∗ = tr(J−1K) = tr(Ip) = p. In a misspecified

model setup, however, the two matrices are not guaranteed to be equal, meaning

that p∗ 
= p. Note that this robust correction term can no longer be interpreted

without approximations using data.

4. Bernshtĕın–von Mises theorems for nonparametric function analysis

via locally constant modelling: A unified approach

The paper Hermansen & Hjort (2014a) emerged from unfinished work and ideas

of the master thesis Hermansen (2008). The ambitious goal of this master project

was to develop Bernshtĕın–von Mises theorems for nonparametric estimation of co-

variance functions for time series and spatial processes. Moreover, we intended to

study processes over both continuous and discrete time domains. In hindsight, a

quite demanding project and also somewhat overwhelming, however, at the time I

did my best effort and the result was an interesting and very educational exercise,

i.e. a good master project. Although I was not able to complete everything, I was

still able to establish a good groundwork and sketch out reasonable and heuristic

strategies. More importantly, it motivated the study of Bernshtĕın–von Mises the-

orems for nonparametric function estimation and a family of (quite suitable) prior

distribution, the so-called piecewise constant priors, i.e. a prior construction with

a growing number of parameters by sample size, which became one of the main

building blocks in my first PhD project Hermansen & Hjort (2014a).

4.1. Introduction and summary. In the present section we intend to give a

brief overview and motivation for the locally constant prior construction alluded to

above. This introduction is needed for the discussion and derivations in Sections

4.2 and 4.3 below, where we intend to sketch some actual solutions to some of the

unfinished goals of Hermansen (2008) and Hermansen & Hjort (2014a). The overall

idea and construction is easiest motivated by discussing the prototype example of

Hermansen & Hjort (2014a, Section 3).

Consider the model

Yi = f ◦(i/n) + εi, where εi ∼ N(0, σ◦ 2) (4.1)

for i = 1, . . . , n, and where the signal f ◦ is an unknown smooth and bounded function

on the unit interval. The purpose is to make inference for the cumulative function

F ◦(t) =
∫ t

0
f ◦(u) du, which is almost the same as F ◦

n(t) =
1
n

∑
i/n≤t f

◦(i/n) for 0 ≤
t ≤ 1. A canonical estimator for F ◦ is the cumulative average process

F ∗
n(t) =

1

n

∑
i/n≤t

Yi for 0 ≤ t ≤ 1. (4.2)
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In this simple model it is easily shown that F ∗
n(t) is uniformly strongly consistent

and that there is process convergence

√
n{F ∗

n(t)− F ◦
n(t)} →d W (σ2

0t) as n → ∞, (4.3)

where W (·) is a standard Wiener process (i.e. Brownian motion). This holds also

without the Gaussian assumption of (4.1), see Hermansen & Hjort (2014a) for ad-

ditional details and comments.

To simplify the current presentation we assume that σ◦ is known. Let fπ repre-

sents our prior guess about f and σπ our precision, a simple conjugate approach is

to use f(i/n) ∼ N(fπ(i/n), σ
2
π), for i = 1, . . . , n. From familiar conjugacy properties

of normal-normal Bayesian models it follows that our object of interest, the cumu-

lative function Fn(t) = n−1
∑

i/n≤t f(i/n), has a Gaussian posterior distribution.

Moreover, it is straightforward to derive exact formulae for the mean and variance.

This simple approach turns out to be too naive and possesses some undesirable

features, however, e.g. it is easy to verify that we are not able to ensure posterior

consistency with this prior, see Hermansen & Hjort (2014a, Section 3). The initial

prior construction is in a sense too informative, with a separate prior for each of n

parameters, not quite leaving the information in the n data points the chance to

accumulate and wash out the prior, as typically seen in lower-dimensional models.

To reduce the influence of the prior we shall instead work with a class of priors

for which f is taken as piecewise constant on a set of subintervals, or windows, and

where the number m = mn of windows will be allowed to increase with sample

size n. The windows are for the current presentation assumed to be of equal size

and hence catching essentially the same number of data points. Writing kj for the

number of i/n points inside window Wj = ((j − 1)/m, j/m] we have kj
.
= n/m. We

will explore the dynamics between the number of windows and the number of data

points in each window, with the main task being to derive conditions required to

arrive at the appropriate Bernshtĕın–von Mises results.

Let Ȳj be the average of the observations in window Wj, then the frequentist

equivalent to the piecewise constant modelling above, is to estimate the cumulative

F by

F̂n(t) =
1

m

∑
j/m≤t

Ȳj for t of type �/m, (4.4)

with linear interpolation between these points, i.e. F̂n(t) = F̂n((j − 1)/m) + {t −
(j − 1)/m}Ȳj for t in window Wj. Moreover, in view of (4.3), it now follows that

√
n{F̂n(t)− F ◦

n(t)} →d W (σ2
0t) as n → ∞, (4.5)

provided
√
n/m2 → 0, see Hermansen & Hjort (2014a, Section 9.2).



4. BVM FOR LOCALLY CONSTANT PRIORS 27

Let fj be the level of the function inside window Wj and if fπ, a bounded

function on the unit interval, that represents our prior belief, then we take the prior

distribution to be given by

fj ∼ N(fπ(wj), σ
2
π) for j = 1, . . . ,m, (4.6)

independently across windows, with wj denoting the midpoint of window Wj. Pro-

vided m → ∞ and m/
√
n → 0, it now follows that

√
n{Fn(t)− F̂n(t)} | data →d W (σ2

0t) as n → ∞. (4.7)

This may be seen as half of a Bernshtĕın–von Mises result, in partial parallel with

result (4.3), which involves F ∗
n of (4.2) rather than F̂n of (4.4), as here. Summarising

the above, we have shown that the conditions

m/
√
n → 0 and

√
n/m2 → 0, (4.8)

which translate to m2/n → 0 and m4/n → ∞ as m → ∞, secure the Bernshtĕın–

von Mises theorem (4.5)–(4.7). Note that if m = cnα, for example, then we need

α ∈ (1
4
, 1
2
). In general, there are additional technical conditions needed to extend

the result to general models beyond the simple Gaussian with a conjugate prior.

4.2. Extending to processes over a d-dimensional window. In Hermansen

& Hjort (2014a) all functions f ◦ considered were assumed to be defined on some

finite one-dimensional interval. There are examples where piecewise constant mod-

elling over higher-dimensional domain will be natural, however, e.g. as with Poisson

maps, where rate estimates are presented county by county. It is, however, not en-

tirely straightforward to extend the general large-sample results (this includes the

frequentistic and Bayesian extensions) to include such cases.

In the techniques used to prove the Bernshtĕın–von Mises theorems, the true

cumulative function and the corresponding estimators do, in a sense, not ‘know’

the shape or size of the window partition, making it easy to extend the results to

processes over d-dimensional domains, with d ≥ 2. The main difficulty with the

extension is related to approximation accuracy of the piecewise constant model in

relation to the Riemann sum representation of the integral.

To indicate the problem, let f ◦ be a function defined on the unit square, which is

furthermore divided into m2 equal squares, or windows. Then, given n equidistant

observations, the number of observations in each window is kj � n/m2, for all

j = 1, . . . ,m2. This suggests that in order to ensure posterior consistency, we have

to limit the number of windows m2 such that
√
n/maxj≤m2{kj} � m2/

√
n → 0 is

satisfied; this is analogue to the one-dimensional case.
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Secondly, we need to make sure that the difference in mean, between the fre-

quentistic piecewise constant model F̂n and the cumulative average process F ∗
n , is

negligible. By a similar argument to that of Hermansen & Hjort (2014a, Lemma

9.1) it follows that the largest contribution by one window, to the total difference,

is of order m−3 and there are at most 2m such small contributions. Therefore, to

ensure that the total is negligible, at the claimed level of precision, it is required

that
√
n/m2 → 0, which violates the condition needed for posterior consistency.

This suggests that some additional care is needed to generalise the results to

processes defined over high-dimensional domains. As an alternative, we could re-

consider what we see as our natural frequentist target for the Bernshtĕın–von Mises

theorems, since the problem is related to the accuracy of the piecewise constant

representation of a function over such domains.

4.3. Nonparametric Bayesian estimation of the covariance function

for stationary time series. In general, there seems to be little work on Bayesian

nonparametric methods for either covariance or spectral density/measure estimation

in the statistical literature. In Choudhuri et al. (2004a) a Bernstein polynomial prior

(developed in Petrone (1999a,b) to construct a nonparametric prior for probability

densities on the unit interval) is used to describe prior distributions on the space of

spectral densities. It is really the only other proper attempt we know of today. It is

an interesting paper and parts of the work presented below will use techniques and

results presented there; in general there is essentially no real overlap with our work,

however.

As a motivating, we consider two failed attempts for making random covariance

functions. Let

C(h) = exp{−G(h, α, β)}, (4.9)

where G is a for example a Gamma process for suitable choices of α and β, i.e. to

concentrate the prior around a reasonable prior guess, say C(h) = ρ|h|. As already

pointed out, this will not work in practice. The reason is that the construction above

may produce invalid covariance functions, i.e. functions that do not necessarily result

in positive-semidefinite covariance matrices. The failure of the construction is easiest

checked through simulations.

The solution to this problem is to work in the frequency domain, see (Wold’s)

Theorem 1 above, since essentially all positive bounded functions on [0, π] will result

in a valid construction. Let

C(h) =

∫ π

−π

cos(ωh) dB(ω ;α, β) (4.10)

where B is a for example a Beta process defined on [−π, π]. This construction

will indeed produce the right type of functions, i.e. covariance functions, and can
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therefore be viewed as an prior on the space/subspace of covariance functions. The

prior support of this construction is still an open question and we do not intend to

solve this here, however. Analogously to the discussion of the prototype example

discussed in Section 4.1 above, it will become impossible to ensure good large-

sample properties such as Bernshtĕın–von Mises or posterior consistency with this

prior. This conclusion will be independently verified in Section 4.6 below.

The above considerations motivate a construction, or strategy, where belief

about the covariance structure are translated to the frequency domain and repre-

sented by an analogue prior on the spectral measures. This prior is then updated, be-

fore the posterior distribution is translated back to the time domain, where (Wold’s)

Theorem 1 is used to preserve the validity of the different mappings (the proper ‘co-

varianceness’ of the functions) and properties are ‘carried along’ by the continuous

mapping theorem (cf. Billingsley (2009)). The workflow is illustrated below:

π{CG}
(i)

��

π{CG | data}

π{G}
(ii)

�� π{G | data}
(iii)

��

From Section 1.2 we also already know that
√
n{Ĝn(ω) − G(ω)}, with Ĝn as

defined in (1.10), converges weakly to a Wiener process, as shown in (1.12). More-

over, even without the different mappings, deriving types of Bernshtĕın–von Mises

theorems within this frequency domain is indeed interesting in itself, see Brillinger

(1975), Priestley (1981) and Gray (2006) for several applications.

Now, remember that the sequence of periodogram ordinates {In(uj)}j≤m, where

uj = 2πj/n for j ≤ m = 
n/2�, behaves (according to (1.11) above) almost as

a sequence of independent exponentials. Therefore, in view of the discussion in

Section 4.1, it seems reasonable to follow the general approach of Hermansen &

Hjort (2014a), using the locally constant prior construction. This introduces the

view of g as constant over an increasing number of small windows given by a sample

size dependent partition of 0 = v0 < v1 < · · · < vm = π, where m = cnα, for
1
4
< α < 1

2
and suitable finite constant c. The function, or parameter, of interest is

now

Gn(ω) =
∑
vj≤ω

gjΔj, for ω ∈ {vj}j≤m (4.11)

with linear interpolation between these points and where Δj = vj+1 − vj.

Let Bn(ω) =
√
n{Gn(ω) − Ĝn(ω)}, then the second half of the Bernshtĕın–von

Mises theorems follows provided

Bn(ω) |y1, . . . , yn →d W

(
2π

∫ ω

0

g(u)2 du

)
, for ω ∈ [0, π], (4.12)
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in Pg-probability, where W (·) is a Wiener process.

Remark 2. The ‘in probability’ statement used in (4.12) should be considered

to mean that for all ε > 0 and large n, the set of observations y1, . . . , yn that violate

the convergence in (4.12) has a probability less than ε.

This ‘direct’ attack above makes the analytical derivations and the update of

the prior complicated, since our target, the spectral measure, is hidden inside the

inverse of the covariance matrix. The results in (1.11) suggests, however, that we

will have a more direct method for inference if we change the perspective and take

a more pseudo-Bayes approach where we aim at establishing

Bn(ω) | In(u1), . . . , In(um) →d W

(
2π

∫ ω

0

g(u)2 du

)
, for ω ∈ [0, π], (4.13)

in Pg-probability.

4.4. Contiguity of the Whittle measure for a Gaussian time series. The

goal is now to apply the general result of Hermansen & Hjort (2014a) to establish

(4.13), these are not directly applicable by the assumption of independent observa-

tions, however. It turns out that we are able to bypass this difficulty by application

of a contiguity result from Choudhuri et al. (2004b); for a general introduction to

the concept of contiguity see Roussas (1972) or van der Vaart (1998, Ch. 6).

Definition 1. Let Pn and Qn be two sequences of probability measures defined

on the same measurable space (Ωn,An) for n ≥ 1. Then Pn and Qn are said to be

mutually contiguous if, for every sequence of sets An ∈ An, Pn(An) → 0 if and only

if Qn(An) → 0.

Corollary 1. (Choudhuri et al., 2004b, Corollary 1) Let {Yt} be a stationary

Gaussian time series with spectral density g that is bounded away from zero and

has absolute summable covariance function in the sense that
∑

h |h|αCg(h) < ∞, for

α > 1. Then the actual joint distribution of the periodogram ordinates {In(uj)}j≤m

and the joint distribution of independent exponential random variables with means

g(uj) are mutually contiguous.

The result of Corollary 1 establishes a link or connection between the peri-

odogram ordinates and sequences of independent exponentials. It implies that in

practice, for all problems regarding convergence in probability, we can work with

the sequence of periodogram ordinates In(ω1), . . . , In(ωm) as if they actually were

the sequence g(u1)E1, . . . , g(um)Em, where E1, . . . ,Em is a sequence of i.i.d. expo-

nential where Ej ∼ Exp(1). Then, under the conditions of Corollary 1 it follows

from Hermansen & Hjort (2014a, Illustration 5.3) that (4.13) is indeed true.



4. BVM FOR LOCALLY CONSTANT PRIORS 31

4.5. Bridging the gaps. A link or bridge from the sequences of periodogram

ordinates to independent exponentially distributed variables is created by the conti-

guity results of Choudhuri et al. (2004b). The Bernshtĕın–von Mises results derived

by updating the prior with the sequence In(ω1), . . . , In(ωm) are indeed valid, inter-

esting and creates a nice symmetry with the empirical spectral measure estimated

using the same sequence.

The hope is to take this a step further and also establish (4.12). To do this we

need a second ‘bridge’ indicated by the double arrow (i) below

{Yt}t≤n
(i)←→ {In(uj)}j≤m

(ii)←→ {g(uj)Ej}j≤m.

The strategy is to appropriately replace the full Gaussian log-likelihood �n, as

defined in (1.3), with the numerically and analytically simpler �̃n of (1.7). This will

automatically introduce the periodogram ordinates into the derivations and we may

then apply Corollary 1 and the general results of Hermansen & Hjort (2014a) to

obtain (4.12).

First of all, note that it is not possible to simply replace �n with �̃n in the

derivations. This can be seen since �n(f) = �̃n(f)+Δn, uniformly over f , where Δn

is merely OPg(1) and not oPg(1), see (1.9). Moreover, it follows further that if fθ,

with θ ∈ Θ ⊂ Rk, is k times uniformly differentiable in θ and Θ is compact, then

∇k�n(fθ) = ∇k�̃n(fθ) + Δ′
n, uniformly over fθ, where Δ′

n is again OPg(1), making a

standard Taylor expansion not necessarily directly applicable either.

Remark 3. If the spectral measure Gm is a step function with m = 
n/2� is

the number of steps. It is then possible, with carefully designed set of the jump/step

locations, to obtain �n(Gm) = �̃n(Gm). This result indicates that we can hope for a a

better approximation rate than OPg(1) as in (1.7) for the locally constant g1, . . . , gm

of (4.11); this will require additional exploration.

The uniform bounds above are in a sense too general for our purpose. To

illustrate this and indicate what is actually needed, let y1, . . . , yn be realisations

form a stationary Gaussian time series process with true spectral density fθ0 , where

θ0 ⊂ R; the p-dimensional parametric spectral densities can be solved similarly.

Define Hn(t) = �n(θ̂n + t/
√
n) − �n(θ̂n) and let π be the prior density representing

our beliefs regarding θ. Then under conditions (i)–(v) of Ghosh & Ramamoorthi

(2003, Theorem 1.4.2) asymptotic normality of
√
n(θ̂n − θ0) is obtained provided∫

R

∣∣∣∣π(θ̂n + t/
√
n) exp{Hn(t)} − π(θ̂n) exp{−t2Jn/2}

∣∣∣∣ dt →Pθ0
0 (4.14)

where Jn = −∇2�n(θ̂n)/n, which converges in probability to J(θ0) as defined in

(1.5).
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The proof of Ghosh & Ramamoorthi (2003, Theorem 1.4.2), which is similar to

the strategy used in Hermansen & Hjort (2014a), is structured such that (4.14) is

shown to be small on three separate regions of the real line, namelyA1 = {t : |t| <
c log

√
n}, A2 = {t : c log√n < t < δ

√
n} and A3 = {t : |t| > δ

√
n}. In the present

discussion we will not worry about A3, since what we intended to change does not

affect this part of the argument.

To see how we can introduce the Whittle approximation, observe that

Hn(t) = �n(f̂θn+t/
√
n)− �n(f̂θn)

=
t2

2n
∇2�n(f̂θn) +

1

6

(
t√
n

)3

∇3�n(fθ̄n) =
t2

2n
∇2�n(f̂θn) +Rn(t),

where |θ̄n − θ̂n| < |θ0 − θ̂n| and by the analogue of condition (ii) in Ghosh &

Ramamoorthi (2003) it follows that Rn(t) = OP0(t
3/
√
n) for large n. A simi-

lar expansion is easily obtained from the Whittle approximation, where H̃n(t) =

t2/(2n)∇2�̃n(θ̃n) + R̃n(t), with R̃n(t) = OP0(t
3/
√
n) under essentially the same con-

ditions to those introduced above. Then, since

Hn(t) = H̃n(t) + rn(t) + [Rn(t) + R̃n(t)],

we are ‘allowed’ to replace the full Gaussian log-likelihood the Whittle approxima-

tion, provided rn(t) = OP0(t
3/
√
n) on A1 ∪ A2 or otherwise become negligible.

From Coursol & Dacunha-Castelle (1982) it now follows that

|rn(t)| = t2

2n
|∇2�n(θ̂n)−∇2�̃n(θ̃n)| =

{
oPθ0

(1), for t ∈ A1

OPθ0
(δ), for t ∈ A2

,

which is easily seen to be sufficiently small to allow the change of log-likelihood

without breaking the validity of the general argument.

This means that with some additional work we are able to successfully obtain

Bernshtĕın–von Mises theorems for parametric spectral densities, via sequences of

independent and non-identical exponentially random variables, with the result that

√
n(θ − θ̂n) | y1, . . . , yn →d U ∼ N(0, J(fθ0)

−1), in Pθ0-probability (4.15)

where J is as defined in (1.5).

Finally, extending the above arguments to the nonparametric framework with

a locally constant prior should be fairly straightforward since rn(t) can in general

be shown to be uniformly smaller than the remainder Rn(t) above; additional care

and work is need to make it into a rigorous proof and we do not intend to solve this

here, however.
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4.6. Convergence of experiments and some related ideas. As illustrated,

working directly with the full Gaussian log-likelihood is often impractical with re-

spect to the underlying spectral density, since it is hidden inside the inverse of the

covariance matrix. The introduction of the Whittle approximation in Section 1.2

and the corresponding connection, by contiguity, with a sequence of independent

exponentials in Section 4.4, made it possible to derive types of large-sample results

more easily. In this section we attempt to motivate an alternative approach, which

also creates a bridge to a simpler, but different, modelling framework, using the no-

tion of convergence, or equivalence, of statistical experiments/models (cf. Blackwell

et al. (1951)); see among others Le Cam & Yang (2000) and van der Vaart (1998,

Ch. 6, 7 & 9) and also Florens et al. (1990) for a more Bayesian related discussion

of this topic.

First of all, a collection of probability measures E = {Ph : h ∈ H} defined on a σ-

algebra A of subsets of X is a collection of statistical models and as a mathematical

construction this is what we refer to by the phrase statistical experiment.

As an initial illustration, suppose that instead of experiment E above we have

the opportunity to carry out a different experiment Fn = {Qh : h ∈ H} on (Y ,B),
but for some reason we are not able to perform both. The question is then which

one should we prefer. This motivates the need to compare statistical experiments

in a relevant fashion and to answer when an experiment E is more informative

than experiment F ; see Le Cam (1996) and Le Cam & Yang (2000) for a complete

discussion.

In what follows we will give a quick summary to introduce the notation and the

general idea of convergence of sequences of statistical experiments, see Golubev et al.

(2010) and references therein for a more complete discussion. Consider two sequences

of experiments, or families of measures, En = (Xn,An, Pn,h : h ∈ H) and Fn =

(Yn,Bn, Qn,h : h ∈ H), then we will say that En and Fn are asymptotically equiva-

lent, and write En ≈ Fn, if Δ(Fn, En) → 0, where Δ(F , E) = max(δ(F , E), δ(E ,F))

and δ(E ,F) = infK suph ‖Ph−KQh‖ is the total variation distance between the two

measures and K is a Markov kernel such that KQ is a measure on the same space

as P .

The following results shows that the statistical experiment with a stationary

Gaussian time series processes is asymptotically equivalent to the simpler experiment

consisting of a sequences of independent normal variables.

Theorem 3. (Golubev et al., 2010, Theorem 1.1) For symmetric spectral

densities f ∈ L2(−π, π) assume there exist an M > 0 and α > 1/2 such that

Cf (0)
2 +
∑

h |h|2αCf (h)
2 ≤ M and f is bounded below by 1/M , for all f . Then
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the experiment given by {yt}t≤n, a stationary Gaussian sequence with mean zero

and spectral density f , and the one given by {zi}i≤n, where zi are independent

N(0, Ji,n(f),

Ji,n(f) = n

∫ ωi

ωi−1

f(u) du

and ωi = 2πi/n− π, are asymptotically equivalent.

The result of Theorem 3 suggests that we should be able to obtain the result

of (4.15), at least, from the simpler asymptotically equivalent experiment of inde-

pendent and non-identical sequences of Gaussian random variables. This should

follow by similar arguments as used above, which exploits the implied nearness of

likelihoods by the converging experiments; a rigorous proof is needed, however. This

also motivates a potential extension to nonparametric models, using the piecewise

constant prior construction; we do not intend to do this here, however.

As an additional remark, Theorem 3 provides an independent verification and

motivation for the piecewise constant prior construction for the time series pro-

cesses. The reason is that we can not expect to have more information, or better

performances, than in the asymptotically equivalent experiment. This means that

in order for the data to accumulate and to ensure interesting large-sample results

in this modelling framework (such as Bernshtĕın–von Mises theorems), it is nec-

essary to apply the piecewise constant strategy of Hermansen & Hjort (2014a), or

another similar construction, which is easily seen from the asymptotically equivalent

sequences of independent normals.

5. Focused information criteria for time series

The idea for deriving a variation of the focused information criterion (FIC) for

stationary time series processes was initially intended as an independent section in

the Hermansen & Hjort (2014d), which at that point was a broad draft discussing

several model selection related issues for stationary time series processes. As the

projects evolved, however, we realised that both would prosper more as separate

papers. Compared to the remarkably difficult-to-write Hermansen & Hjort (2014d),

the parametric framework of the FIC made it easier to develop the results needed.

The extension of the FIC to time series processes did indeed require new method-

ology, but by building on the existing framework of Hjort & Claeskens (2003) and

Claeskens & Hjort (2003), and also by modifying methodology and results in Davis

(1973) and Dzhaparidze (1986), we had a rapid progression for quite some time.

We therefore decided that the project should be extended to include station-

ary models with trend. From the familiarity with the work of R. Dahlhaus we

decided to develop this within the general family of locally stationary processes, see
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e.g. Dahlhaus (1997). This general class of models, which also includes time series

models with smooth trend functions, resulted in FIC methodology for a large family

of models. Moreover, developing the methodology for these general models provided

a unified framework for interpretation, theory, and focused model selection.

After the introduction and extension to locally stationary processes, we realised

more fully the added complexity of developing such focused model selection method-

ology for time series processes. The time aspect and the introduction of dependency

meant that several interesting focused questions, like predictions or estimation of

future threshold probabilities, are most naturally formulated as conditional on past

observations. This type of dependency required a new and extended modelling

framework, which in turn led to a proper generalisations and also motivated a new

conditional focused information criterion (cFIC).

5.1. Introduction and summary. The aim of this section is to provide the

basic introduction and motivation needed to derive the FIC machinery for stationary

Gaussian time series processes. The motivation, which eventually will result in the

FIC, is to obtain suitable large-sample approximations that can be used to estimate

the mean squared error of the model estimates for the focus parameters μ, see Section

3.1 above for an informal introduction.

In order to do this properly, we will be needing a series of technical conditions

and assumptions. This is an important part of the general construction and is

needed for the discussion below. Let y1, . . . , yn be realisations from the model with

true spectral density

ftrue = fθ0,γ0+δ/
√
n, (5.1)

where (θ0, γ0) is an inner point in a compact parameter space Θ × Γ ⊂ Rp+q. The

idea behind studying the behaviour of estimators and model selectors in this local

large-sample framework is to ensure that the variances and squared biases are all

of size O(1/n), leading to fruitful approximation formulae, see Claeskens & Hjort

(2003) and Claeskens & Hjort (2008, Ch. 5 & 6) for a more complete discussion and

additional comments.

The candidate models are nested between a smallest model fθ = fθ,γ0 , i.e. the

baseline model included in all submodels, and the largest fθ,γ that includes all mod-

elling parameters. Then, via all possible inclusion/exclusion arrangements of the

elements in γ, the result is a set of 2q potential submodels, one for each subset S of

{1 . . . , q}, ranging from the narrow model, with S = ∅, to the full wide model where

S = {1 . . . , q}. In practice, we include only the submodels we regard as sufficiently

interesting or plausible.
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The FIC methodology will allow for a wide variety of focused questions, but

for the present purpose we shall assume that μ = μ(θ, γ) depends the underlying

model only through the parameters. The different submodel estimates for the focus

function are then given by

μ̂S = μ(θ̂S, γ̂S, γ0,Sc), (5.2)

where S ⊆ {1 . . . , q} and Sc is the complement of S, i.e. the indexes of the param-

eters we do not estimate for that model.

The FIC now follows from the derivation of a large-sample approximation for

the mean squared error of
√
n(μ̂S − μtrue) for each submodel S, where μtrue =

μ(θ0, γ0+ δ/
√
n) is the focus parameter evaluated in the true model. A key element

in this derivation is the large-sample properties of the scaled score functions

Zn =
√
n(Un, Vn) =

1√
n
∇�n(θ0, γ0), (5.3)

evaluated in the narrow null-model. Before we derive the asymptotic distribution of

Zn, observe that

Jwide = lim
n→∞

VarP0 Zn = lim
n→∞

1

2n
tr{(Σ−1

0 [∇Σ0])
2} =

1

4π

∫ π

−π

∇Ψ0(ω)∇Ψ0(ω)
t dω,

(5.4)

where Σ0 = Σn(f0), Ψ0(ω) = log f0(ω), f0 = fθ0,γ0 and where P0 = P0,n represents

the distribution associated with a Gaussian vector of length n from the model with

spectral density f0. We will also be needing the following block-representation

Jwide =

(
J00 J01

J10 J11

)
, with inverse J−1

wide =

(
J00 J01

J10 J11

)
, (5.5)

where J00 is the upper p×p -matrix of Jwide and the other block matrices are defined

accordingly.

Proposition 1. (Hermansen & Hjort, 2014b, Proposition 3.2) Let y1, . . . , yn

be realisations from the model (5.1) and let Pδ = Pδ,n be the associated probability

measure. Furthermore, suppose the spectral density fθ,γ is continuous and bounded

away from zero and infinity and that fθ,γ is also two times differentiable in (θ, γ),

with derivatives that are differentiable in ω with uniformly continuous derivatives,

in a neighbourhood of (θ0, γ0). Then

Zn =
√
n

(
Un

Vn

)
→d

(
J01δ

J11δ

)
+ Z, where Z ∼ Np+q(0, Jwide), (5.6)

and J01 and J11 are block elements of Jwide as defined in (5.5). Moreover, Ĵn(θ̄n, γ̄n) =

−∇2�n(θ̄n, γ̄n)/n →Pδ
Jwide, provided (θ̄n, γ̄n) →Pδ

(θ0, γ0).
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With the above results in place, we have almost all the elements needed to obtain

the limiting mean squared error for the normalised submodels estimators from (5.2).

A bit more notation is needed first, however. Define Q = J11 = (J11 − J10J
−1
00 J01)

−1

and for each submodel S ⊂ {1, . . . , q} define the projection matrix πS that maps the

vector v = (v1, . . . , vq)
t to the subvector πSv = vS with components vj for j ∈ S. Let

QS = J11,S = (πSQ
−1πt

S)
−1, GS = πt

SQSπSQ
−1 and finally ν = J10J

−1
00 ∇θμ(θ0, γ0)−

∇γμ(θ0, γ0) and τ 20 = ∇θμ(θ0, γ0)
tJ−1

00 ∇θμ(θ0, γ0).

From Hermansen & Hjort (2014b, Section 3.2) it now follows that

√
n(μ̂S − μtrue)

d−→ ΛS = Λ0 + νt(δ −GSD), (5.7)

where D ∼ Nq(δ,Q) and Λ0 ∼ N(0, τ 20 ) are independent random variables. The

mean squared error of (5.7) is then

mse(S, δ) = τ 20 + νtGSQGt
Sν + νt(Iq −GS)δδ

t(Iq −GS)
tν. (5.8)

In the limit experiment, the quantities appearing in (5.8) are known, apart from

δ, for which the statistical information is D ∼ Nq(δ,Q), with known variance matrix

Q. Since DDt has mean δδt+Q, the unbiased estimator of δδt is DDt−Q. Thus an

unbiased risk estimate here is r(S) = τ 20 + νtGSQGt
Sν + νt(Iq −GS)(DDt −Q)(Iq −

GS)
tν. Estimating the required quantities from the data at hand we arrive at

FIC(S) = τ̂ 20 + ν̂tGSQ̂Gt
S ν̂ + ν̂t(Iq − ĜS)(DnD

t
n − Q̂)(Iq − ĜS)ν̂, (5.9)

seen as an estimate of the limiting risk mse(S, δ) of (5.8). The model with smallest

FIC(S) is then preferred; for more details and discussion see Hermansen & Hjort

(2014b, Section 3) and Claeskens & Hjort (2008, Ch. 5 & 6).

In Hermansen & Hjort (2014b, Sections 5 & 6) the FIC methodology for foci of

the type μ = μ(θ, γ) is extended along with the modelling framework to handle wider

range of focus functions that include predictions and functions that may also depend

on the sample size n and/or parts of the already observed time series. These sections

are particularly important, since they extended the original work to allow for foci

that are more relevant in a time series framework, e.g. h-step ahead predictions but

also μ(θ, γ, y1, . . . , ym) = Pr{Yn+1 > α, Yn+2 > α | y1, . . . , ym} for a suitable choice

of α. In addition, it motivates a new and more general data-dependent versions of

the FIC as well as the so-called conditional focused information criterion (cFIC);

the argument is somewhat involved and is therefore omitted from this presentation.

5.2. Local asymptotic normality and an alternative proof for Proposi-

tion 1. The purpose of this section is to elaborate on the original argument used to

prove Proposition 1 above, which was discarded from Hermansen & Hjort (2014b)

after the introduction and inclusion of the locally stationary processes of Dahlhaus
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(1997), which essentially made it obsolete. The original proof is shown to be true

under weaker conditions, however, and we also believe that it shows interesting use

of techniques.

In order to show how, we need to introduce some ideas from the theory of so-

called local asymptotic normal sequence of statistical models/experiments (LAN),

see Le Cam & Yang (1990), Le Cam & Yang (2000) or van der Vaart (1998, Ch. 7).

The goal is to show that under standard LAN conditions, the main results needed to

establish the FIC machinery, i.e. the analogue of Proposition 1 above, follows quite

easily and without too much additional work.

A parametric family of distributions {Pθ,n : θ ∈ Θ ⊂ Rp}, where p is finite, is

said to be LAN at a fixed point θ0 if {Pθ0+δ/hn,n} and {Pθ0,n} are contiguous (see

Section 4.4 above for a definition) and there exist a sequence of random vectors

Δθ0,n →d Δθ0 ∼ N(0, Iθ0) and a positive definite p× p-matrix Iθ0 such that Λn(θ0 +

δ/hn, θ0) = log{dPθ0+δ/hn/dPθ0} satisfies

Λn(θ0 + δ/hn, θ0)−
[
δtΔθ0,n +

1
2
δtIθ0δ

]
= oPθ0,n

(1),

for all p-dimensional vectors δ; see also Davis (1973) and Dzhaparidze (1986) for a

time series oriented discussion.

In particular, we are interested in what is commonly known as Le Cam’s third

lemma, which states (with a slight abuse of notation) that if

(Zn, log{dPδ/dP0}) →d Np+q+1

((
μ

−1
2
σ2

)
,

(
Σ ρ

ρt σ2

))
, (5.10)

is true under P0, it follows that Zn →d Np+q(μ + ρ,Σ) under Pδ, see e.g. van der

Vaart (1998, Example 6.7).

If Zn is the score functions of (5.3), Le Cam’s third lemma provides a general

method for obtaining the large-sample behaviour of Zn, in the local large-sample

framework, from properties of the simpler null-model. This implies that if (5.10) is

known in advance for a particular class of models, the results needed to justify the

FIC will follow by application of standard techniques. Moreover, in several LAN

experiments it is straightforward to establish (5.10), as we intend to illustrate for

the time series processes with the new/old proof of Proposition 1 below.

Proposition 2. Let y1, . . . , yn be realisations from the model (5.1) and let

Pδ = Pδ,n be the associated probability measure. Suppose that in a neighbourhood

of (θ0, γ0) the spectral density fθ,γ is continuous and uniformly bounded away from

both zero and infinity. Moreover, suppose that fθ,γ is also two times differentiable,

with respect to (θ, γ), with derivatives that are continuous and uniformly bounded
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in both ω and θ in a neighbourhood of (θ0, γ0). Then

Zn =
√
n

(
Un

Vn

)
→d

(
J01δ

J11δ

)
+ Z, where Z ∼ Np+q(0, Jwide),

with Jwide as defined in (5.4). Moreover, Ĵn(θ̄n, γ̄n) = −∇2�n(θ̄n, γ̄n)/n →Pδ
Jwide,

provided (θ̄n, γ̄n) →Pδ
(θ0, γ0).

Proof. To see how we can obtain (5.10) in the current framework, we remind

ourselves that the large-sample behaviour of

Zn = (4n)−1/2{tr(Σ−1
0 [∇Σ0]) + yt

n
Σ−1

0 [∇Σ0]Σ
−1
0 y

n

is already well studied and that Zn →d N(0, Jwide), under the narrow model, i.e. where

y
n
is generated by P0, see among others Dzhaparidze (1986, Ch. I and II); see also

Lemma 1 and Remark 5 below for some additional comments. This implies that

μ = 0 and Σ = Jwide in (5.10). Then, by Lemma 11.1 in Hermansen & Hjort

(2014b) it is clear that

ρ = lim
n→∞

CovP0(Zn, log{dPδ/dP0})

= lim
n→∞

− 1

2
√
n
tr{[∇Σ0](Σ

−1
δ − Σ−1

0 )} = lim
n→∞

− 1

2
√
n
tr([∇Σ0]Σ

−1
δ [Σ0 − Σδ]Σ

−1
0 )

= lim
n→∞

1

2n
tr([∇Σ0]Σ

−1
δ Σn(δ

t∇γ fθ0,γ̄n)Σ
−1
0 ) =

1

4π

∫ π

−π

∇θ Ψ0(ω)[δ
t∇γ Ψ0(ω)] dω,

where |γ̄n − γ0| ≤ δ/
√
n. This means that we have the claimed result provided the

joint limit of (5.10) can be established. From Dzhaparidze (1986, Section 2.2) we

have

log{dPδ/dP0} = −2−1(log |Σ0|/|Σδ|+ yt
n
(Σ−1

δ − Σ−1
0 )y

n
)

d−→ N(−1

2
σ2, σ2),

where σ2 = δtJwideδ, which means that all that is needed is a fairly standard Cramér–

Wold type of argument, which is omitted here. The second part of the proposition is

included for completeness and we do not intend to prove this again here; the results

are also extensively discussed in Hermansen & Hjort (2014b). �

Remark 4. It is possible to derive the results of Proposition 2 using more

standard techniques, such as those used in Dzhaparidze (1986) and Dahlhaus &

Wefelmeyer (1996). The local large-sample framework, however, makes the deriva-

tions quite cumbersome and the use of Le Cam’s third lemma simplifies the argument

considerably.

Lemma 1. Let Xn ∼ Nn(μ,Σn) and Yn = Xt
nWnXn, then

Un =
Yn − EYn√
Var(Yn)

→d N(0, 1),
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if and only if maxi≤n λi/(
∑

i≤n λ
2
i )

1/2 → 0, where λ1, . . . , λn is the eigenvalues of

ΣnWn.

Proof. See the technical report Hermansen & Hjort (2014c). �

Remark 5. From Lemma 1 it is fairly straightforward to apply a Cramér–Wold

type of argument to show that (5.10) is indeed satisfied under the narrow-null model.

The main observations needed is the existence of suitable bounds on the eigenvalues,

which can be shown to follow provided that there exist positive and finite numbers

m and M such that 0 < m ≤ f0, fδ ≤ M < ∞ and ‖∇f0‖, ‖∇fδ‖ ≤ M .

5.3. Parametric or nonparemtric. In the work presented above, and also

in Hermansen & Hjort (2014b), all models worked with are assumed to be nested

parametric models in a so-called local large-sample framework, see (5.1) above. The

use of nonparametric estimation is a well studied and a common practice in time

series modelling and the restriction to only nested parametric models may not always

be appropriate, however. The aim of the present section is to motivate an extension

that will justify comparison and selection among nonparametric and parametric

candidate models. The derivation follows a similar reasoning as in Jullum & Hjort

(2014), which discusses focused inference and model selection among parametric and

nonparametric models for i.i.d. observations.

By including a nonparametric candidate among the parametric models, we will

be able to detect if our parametric models are completely off-target. In this sense,

the parametric vs nonparametric selection can behave as an insurance against poorly

specified parametric candidates. Furthermore, we usually achieve higher precision

with the parametric models when these are sufficient.

Let y1, . . . , yn be realisations from a stationary Gaussian time series model with

zero mean and true spectral density F . Note that we do not work in a local large-

sample framework. Let μ = μ(F ) be a focus function, i.e. a functional mapping

of the spectral measure F to a scalar value. Suppose that we have a collection of

parametric candidate models, represented by Fθ, which do not have to be nested or

include the true F . The question is then which model should we use – parametric

or nonparametric – for estimating the focus μ.

Let μ̂np = μ(F̂n) be the nonparametric estimate for the focus function and

suppose

√
n(μ̂np − μtrue) →d N(0, vnp),

where μtrue = μ(F ) is the focus function for the true model F . In addition, assume

that our fitted parametric candidates μ̂pm = μ(F
̂θn
) possess a similar large-sample
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property, i.e.
√
n(μ̂np − μ0) →d N(0, vpm),

where μ0 = μ(Fθ0) is the focus function evaluated under the least false model Fθ0 ; all

of this will be discussed in more details below. Then, still without going into details,

the large-sample results above motivate the following first-order approximations for

the mean squared error for the estimated focus parameters:

msenp = 02 + vnp/n = vnp/n and msepm = b2 + vpm/n (5.11)

where b = μ0 − μtrue = μ(Fθ0)− μ(F ). The remainder of the section will be used to

motivate and obtain good estimators for the mean squared errors in (5.11).

To make the general derivation more transparent and also to arrive at more

precise answers, we simplify the general framework above and will only study focus

functions of the type

μ = μ(F, h) =

∫ π

−π

h(ω)f(ω) dω,

where h is a continuous and bounded function on [−π, π], with potentially a finite

number of jump discontinuities. This is a quite general class that includes the

covariance/correlation function and also certain smooth functions these. Moreover,

we may also use this construction to study specific parts of the spectral density by

using indicator functions, see also Gray (2006) for some additional applications.

In the derivation below, the parametric candidates Fθ will be fitted using the

Whittle estimator θ̃n as defined in (1.7) and we will also use the periodogram In as a

basis for estimating F by F̃n as defined in (1.10); see Brillinger (1975) for alternative

and smoothed versions. The Whittle estimates and the nonparametric spectral

measure estimator based on the periodogram gives a convenient symmetry which

will simplify the derivations below; the use of full maximum likelihood estimation

or smoothed periodograms should become a straightforward extension.

The nonparametric and parametric estimator are now given by

μ̃np =

∫ π

−π

h(ω)In(ω) dω =
1

n
yt
n
Σn(h)yn = Xn and μ̃pm =

∫ π

−π

h(ω)f
˜θn
(ω) dω.

The following lemma establish the joint limit distribution for estimators above (suit-

able normalised), which in turn will be used to obtain good approximations for their

respective mean squared error estimates.

Lemma 2. Let y1, . . . , yn be realisations from a stationary Gaussian time series

model with spectral density g that is uniformly bounded away from both zero and

infinity. If fθ is two times differentiable with respect to θ and if fθ, ∇fθ and ∇2fθ
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are continuous and uniformly bounded in both ω and θ in a neighbourhood of the

least false parameter value θ0 = argminR(θ), where R is as defined in (1.6). Then(√
n(μ̃np − μtrue)√
n(μ̃pm − μ0)

)
→d

(
X

ctJ(g, fθ0)
−1U

)
∼ N2

(
0,

(
vnp vc

vc vpm

))
, (5.12)

where

vnp = (2π)3
∫ π

−π

{h(ω)g(ω)}2 dω and vpm = ctJ(g, fθ0)
−1K(g, fθ0)J(g, fθ0)

−1c,

with J and K as defined in Theorem 2, and vc = ctJ(g, fθ0)
−1d, where c = ∇μ(fθ0)

and

d = Cov(X,U) = (2π)3
∫ π

−π

∇fθ0(ω)h(ω)g(ω)
2

f(ω)2
dω.

Proof. It follows from the results in Dzhaparidze (1986) that

θ̃n − θ0 = J(g, θ0)
−1Un + oP (1/

√
n)

where

Un = ∇�̃n(fθ0) = −n

2

{
1

2π

∫ π

−π

∇Ψθ0(ω) dω − 1

2π

∫ π

−π

∇Ψθ0(ω)
In(ω)

fθ0(ω)
dω

}
= −1

2
{tr(Σn(∇Ψθ0))− yt

n
Σn(∇Ψθ0/fθ)yn}

and Ψθ0 = log fθ0 and ∇Ψθ0 is the vector of parietal derivatives. This means that the

marginal distribution and the respective mean and variance are easily obtainable by

the application of the standard delta method. Since Xn = yt
n
Σn(h)yn/n, the joint

distribution is readily obtainable by a Cramér–Wold type of argument; we will not

go into details on this here. The final piece needed to complete the argument is the

limiting covariance

Cov(Xn, Un) =
2

n
tr{Σn(h)Σn(g)Σn(∇Ψθ/fθ)Σn(g)}

→ (2π)3
∫ π

−π

∇fθ0(ω)h(ω)g(ω)
2

f(ω)2
dω,

which can be seen to follow from results in Dzhaparidze (1986) or from Dahlhaus &

Wefelmeyer (1996, Lemma A.5). �

The nonparametric estimator is by construction unbiased in the limit, however,

to obtain estimates for the mean squared error, we need to derive the squared bias of

the parametric model. Following Jullum & Hjort (2014) we start with b = μ0−μtrue,

which is estimated with b̃ = μ̃pm − μ̃np and by (5.12) above, we have that

√
n(̃b− b) →d c

tJ−1U −X ∼ N(0, κ),
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where κ = vpm + vnp − 2vc. It can further be shown that E b̃2 ≈ b2 + κ/n+ o(1/n),

which leads to the estimators

FICnp = m̃senp = ṽnp/n and

FICpm = m̃sepm = b̃sq + ṽpm/n = max(0, b̃2 − κ̃/n) + ṽpm/n.

Remark 6. In the discussion above we have only considered one parametric

alternative, the extension to several parametric candidates is straightforward, see

Jullum & Hjort (2014) for additional comments.

Remark 7. Another class of focus functions that should also be fairly straight-

forward to work with is given by

μ(H) =

∫ π

−π

H(f(ω)) dω,

where H is continuous on the range of f say [mf ,Mf ] and where f is the true under-

lying spectral density; see Grenander & Szegő (1958), Gray (2006) and Taniguchi

(1980) and von Sachs (1994) for estimation.

In general, the goal is to extend the above to essentially all reasonable and well

behaved functionals of the spectral measure F . For a general functional T (·), let
μ = T (F ) and again F̃ be the spectral measure estimated from the periodogram and

θ0 = argminθ R(θ), where R(θ) is the model specific part of (1.6). Similarly, define

θ̃n = θ0(F̃n) = argmaxθ R̃n(θ), where R̃n(θ) is the R above with the periodogram

In estimating the unknown spectral density. Then under fairly general model as-

sumptions it follows by similar techniques as used in van der Vaart (1998, Ch. 20)

that

√
n(μ̃np − μtrue) =

√
n{T (F̃n)− T (F )} = Ṫ (Xn) + oP (1)

√
n(θ̃n − θ0) =

√
n(θ0(F̃n)− θ0) =

√
nJ(g, θ0)

−1Un + oP (1)
(5.13)

for a suitable functional derivative Ṫ , where Xn(ω) =
√
n{F̃n(ω)−F (ω)} →d X(ω)

and X(ω) is the Wiener process with variance as in (1.12). Then, with the above

construction and large-sample results in (5.13), it should be possible to establish

a general version of Lemma 2 above. That in turn can be used for derivation and

justification of FICnp and FICpm formulas for more general classes of foci.

As a last remark, we note that similar an additional layer of complexity is in-

troduced by studying time series models, since several interesting foci are naturally

related to predictions, or formulated conditional on past observations. The depen-

dency on previous data requires a new and extended modelling framework, which

in Hermansen & Hjort (2014b, Sections 5 & 6) lead to generalisations and also
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motivated the conditional focused information criterion (cFIC). These considera-

tions need to be taken properly into account in a complete extension of the FIC

methodology for time series in the framework of selecting among parametric and

nonparametric models.

Remark 8. An alternative approach is to retain the local large-sample frame-

work from the parametric FIC construction and work with spectral densities of the

type fr(ω) = fθ0(ω) + r(ω)/
√
n, where fθ0 is a standard type of parametric model.

Such structures have already been worked with in Davis (1973) and Dzhaparidze

(1986), making the extension potentially less cumbersome, but this will not be dealt

with here, however.

6. Estimation, inference and model selection for jump regression models

The project was initially based on a short technical report by N. L. Hjort on

estimation in regression models with jump discontinuities, or change points; see

among others Frick et al. (2014) for a comprehensive discussion and review of the

literature. On this basis, we intended to derive an AIC-like ‘jump information

criterion’, for selecting the appropriate number of break points, motivated along

the same line of rational arguments used to justify the AIC in Section 3.2. The

motivation for doing this is again the common temptation to use AIC = 2(�n,max−p)

as a general model selector, without having the appropriate rational justification.

In this sense, the project is in the same explanatory spirit as Grønneberg & Hjort

(2014) and Hermansen & Hjort (2014d) which study the rational for using AIC-

like criteria for copulas and time series models respectively. The project started

out as an investigation of large-sample properties of regression models with jumps,

which because of discontinuities at the jump locations, is not possible to solve using

standard techniques. The first half of the project, which was included in the PhD

thesis of S. Grønneberg, was mainly concerned with establishing the large-sample

properties of the model estimators in a potentially misspecified modelling framework.

The jump information criterion (AJIC) alluded to above was developed later and is

now included in the current version of Grønneberg et al. (2014). There still remain

some technical details to complete the project, but we believe this is within reach,

however.

6.1. Introduction and summary. Consider pairs of observations (xi, yi), for

i ≤ n, from the regression model

yi = m(xi, θ) + εi for i = 1, . . . , n, (6.1)



6. AJIC FOR JUMP REGRESSION MODELS 45

where εi are zero-mean i.i.d. errors with standard deviation level σ. For convenience

and without essential loss of generality we take the x range to be the unit interval,

and study the model where

m(x, θ) = aj for γj−1 ≤ x < γj, (6.2)

for windows [γj−1, γj], with j = 1, . . . , d and γ0 = 0, γd = 1. The unknown parame-

ters to estimate from data are the d−1 break point positions and the d levels, along

with the spread parameter σ.

The case where m is a smooth function is discussed in Grønneberg et al. (2014,

Section 2), where proper large-sample motivation is discussed for the model robust

AIC formal, along with a justification of the BIC. As already commented on above,

the goal is to obtain a jump information criterion derived along the same large-

sample arguments that motivates the general AIC formula for i.i.d. observations

as in Section 3.2. In order to do this properly, the large-sample properties of the

model above are needed outside the model, i.e. in a so-called misspecified modelling

framework. To do this requires a fair amount of technical work and extensions of the

sargmax principle (cf. Seijo et al. (2011) and Kosorok (2008)) and we do not intend

to go into the details on this here, however; see Grønneberg et al. (2014, Section 3).

From this, a well motivated bias correction of �n,max an estimator for the at-

tained expected model specific part of the Kullback–Leibler divergence emerges.

The expected bias is

b = 1 + d
σ2
true

σ2
0

+
1

σ2
0

d−1∑
j=1

κj,

for large n, where σtrue is related to the variance in the true underlying model and

κj = σtrue|a0,j+1 − a0,j|EW ∗
j (λ, ŝj),

and ŝj = argmax(Mj), Mj and W ∗ are related to certain two-sided compound Pois-

son processes, see Grønneberg et al. (2014, Sections 3–6) for the complete derivation

and additional discussion. This now results in an AIC type of model selection scheme

by preferring the model that attains the largest value of

AJIC∗ = 2�n,max − 2b̂ = 2(−n log σ̂0 − 1
2
n)− 2

(
1 + d

σ̂2

σ̂2
0

+
1

σ̂2
0

d−1∑
j=1

κ̂j

)
.

6.2. Applications and related ideas. In this section we discuss some possible

applications with extensions and some related ideas. In general, there are several

real life phenomena where the change point model above is reasonable, i.e. where

the underlying model has actual discontinuities; examples can be found in biology,

geology, medicine, marine biology and oceanography, some of which are discussed in
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Frick et al. (2014). In what follows we will discuss an application related to geology.
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Figure 6.1. The gamma ray log (top panel) and the porosity log (bottom panel)

from one well from the Sleipner field in the North Sea. The hori-

zontal line (dashed line) is of particular importance, since it is com-

monly interpreted as the boundary between shale (above) and sand

(below).

Figure 6.1 shows well-log observations from one well at the Sleipner field in the

North Sea. This shows the observed gamma ray log (top panel), which measures the

radioactivity in the well and is commonly used as an indicator for facies changes,

i.e. the transition between distinctive rock units/types. Detecting such underlying

change points is important in reservoir modelling and flow simulations, since e.g. thin

layers of shale can completely block the flow of oil and gas in the reservoir; see

e.g. Caers (2005) and references therein. A similar example is discussed in Fearnhead

(2006) as an application for a BIC criterion developed; the general approach is quite

different with essentially no overlap to the work in Grønneberg et al. (2014), however.

This well-log illustration motivates some potential extensions of the work in

Grønneberg et al. (2014). First of all, note that the gamma ray log in Figure 6.1

(top panel) indicates that the variance is not constant across facies. Extending the

original work to include one σd-parameter for each window should be a straight-

forward extension. In addition, in Figure 6.1 (bottom panel) we have included the

porosity log for the same well. The porosity is strongly associated with flow rates

and for obvious reasons this also carries information about the underlying rock type,

i.e. facies. Note that several other types measurements are usually also collected from

the wells, e.g. permeability, electrical resistivity and density, to name a few. This
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suggests that an extension of AJIC to multivariate series of data, to increase the

statistical strength, will in some situations be of great interest.

7. A new approach to Akaike’s information criterion and

model selection issues in stationary time series

This project turned out to be a remarkably hard paper to write. The main

reason for this is that it is difficult to give one precise and unified motivation. In

the paper we explore the rational for using Akaike’s information criterion (AIC) and

other related criteria for time series processes. In addition, we try to answer various

model selection related questions in time series modelling. The project was moti-

vated from a growing interest in statistical model selection and a general feeling that

some information criteria, like the AIC and FPE, do not have the required rational

motivation in general classes of time series processes. This was also supported by a

remark in Dahlhaus (1996a, p. 184), claiming that the AIC and the model robust

version alternative AIC∗ were not satisfactorily solved for time series models. In

order to provide the proper motivation for the AIC as a rational extension of the

maximum likelihood principle, for estimation across families of parametric models,

the large-sample properties of the maximum likelihood estimator outside the model

are needed. The original motivation for the project was to develop the methodology

needed and derive the related large-sample properties for the maximum likelihood in

a misspecified time series framework. The idea was to extend methodology in Dzha-

paridze (1986) and Davis (1973) to obtain the large-sample results needed. After

approximately six months of work, however, I discovered Dahlhaus & Wefelmeyer

(1996) who had already solved this. As a result, we began developing the framework

needed to obtain a proper rational motivation for using the AIC to select among time

series models, which eventually resulted in Hermansen & Hjort (2014d); a technical

report that still requires some extra work.

7.1. Introduction and summary. The Akaike’s information criterion (AIC)

is one of the more important and probably also the most widely used model infor-

mation criterion in statistics and related fields of scientific research. For convenience

we repeat its general definition

AIC(M) = 2 log-likelihoodmax(M)− 2 dim(M),

for each candidate model M in a collection of competing models. In practice, the

AIC strategy is to prefer the model that attains the largest value of the formula

above; for a more complete introduction and comments see Section 3.2 above or

Claeskens & Hjort (2008, Ch. 2).
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The two main goals of Hermansen & Hjort (2014d) are to investigate the underly-

ing rational motivation for using the AIC and similarly structured model information

criteria, like Akaike’s final prediction error (FPE), but we will also argue for more

use of the model robust version AIC∗, which will be introduced in equation (7.4)

below. The reason is that there is a common criticism of the AIC, which claims that

the criterion has a tendency to prefer unnecessarily complex models when used with

classical time series models, see e.g. McQuarrie & Tsai (1998). For this reason, sev-

eral modifications and adjustments have been suggested to enhance its performance

and applicability, e.g. in Hurvich & Tsai (1989) where the original AIC formula

is corrected to improve its performance in small samples. In Hermansen & Hjort

(2014d) we argue that the failure of the AIC in such cases is more related to the

method of estimation than the general structure of the criterion. Moreover, we also

demonstrate that this bias towards large models can be further avoided by using the

model robust AIC∗.

The general AIC formula above has a natural motivation and justification in

most classical models for i.i.d. observations and can be justified as a canonical ex-

tension of the maximum likelihood principle, for estimation across families of para-

metric models. There is essentially no reason to expect this relationship to be true

in general. In Hermansen & Hjort (2014d) we show that such a connection and

motivation exist for time series processes and we will now give a short review that

will work as a stepping stone towards the discussion in Section 7.2 below.

Let {Yt} be a stationary Gaussian time series with true spectral density g and

let fθ represent a parametric candidate from a suitable set of candidate models that

do not necessarily include or span the true model g. Then, observe that there is a

potential ambiguity, or non-uniqueness, in the definition of the Kullback–Leibler for

non-i.i.d. data, in that we may define

KLn(g, fθ) = dn(g, fθ) =
1

n
Eg {�n(g)− �n(fθ)}, (7.1)

where �n is the Gaussian log-likelihood function, with limit

KL∞(g, fθ) = lim
n→∞

KLn(g, fθ) = − 1

4π

∫ π

−π

(log g(ω) + 1) dω −R(θ), (7.2)

and where we refer to

R(θ) = − 1

4π

∫ π

−π

(
log fθ(ω) +

g(ω)

fθ(ω)

)
dω

as the model specific part of the asymptotic Kullback–Leibler divergence (7.2). From

Section 1.1 above it now follows that θ̂n →Pg θ0 = argminθ d(g, fθ), which in turn

(by similar arguments as used in Section 3.3) can be shown to motivate an AIC-like
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model information criterion

AIC∗
∞ = 2(�̃n,max − p̃ ∗ − q̃ ∗), (7.3)

where p̃ ∗ = tr(J̃−1K̃) and and where J̃ = J(In, f˜θn) and K̃ = K(In/
√
2, f

˜θn
) are

as defined in Theorem 2 of Section 1.1 and q̃ ∗ is an additional bias correction term

introduced by the first order bias of the periodogram as an estimator for the un-

derlying spectral density g, see Hermansen & Hjort (2014d, Section 3.2) for details.

Finally, it is easily checked that if fθ0 is equal to g (a.e.) then J = K and p∗ = p.

Let {θ0,n}n≥1, where θ0,n = argminθ dn(g, fθ) and dn as defined in (7.1), be a

sequence of least false parameter values. This sequence can now be interpreted as

the target for the maximum likelihood estimator in the sense that ‖θ̂n−θ0,n‖ →Pg 0.

This enables a motivate for a more classical AIC type of criterion by

AIC∗
n = 2(�n,max − p̂ ∗) (7.4)

where p̂ ∗ = tr(Ĵ−1K̂), where Ĵ = J(In, f̂θn) and K̂ = K(In/
√
2, f

̂θn
) are as defined

below in (7.3).

The second criterion AIC∗
∞, which is related to KL∞(g, fθ) above, is also nat-

urally connected to the Whittle approximation in (1.7). It is important to note,

however, that AIC∗
∞ is not an approximation of AIC∗

n; each criterion has its own

internal and independent rational justification. Moreover, in Hermansen & Hjort

(2014d) we show that it will not make sense to use ÃIC ∗ = 2(�̃n(f˜θ)− p̃ ∗) as an ap-

proximation to AICn unless all candidate models span the true model model, which

would be a rather strange and unnatural assumption.

As a final remark, we point out that the two discrepancy measures KLn vs KL∞
are perhaps best viewed as discrepancy measures concerned with different parts of

the model. The KLn measures a type of average performance in a new sample, of the

same size, while the limit Kullback–Leibler divergence KL∞ is concerned with the

performance of the entire process. From this perspective, the two AIC formulations

AIC∞ and AICn are simply two different criteria based on different discrepancy

measures aiming at answer different questions.

The main concern of Hermansen & Hjort (2014d) is to motivate and redevelop

the AIC for stationary time series. In addition, we use the developed methodol-

ogy to improve on a generalisation of Akaike’s final prediction error (FPE; Akaike

(1969)) introduced in Linhart & Göttingen (1985), where we derive a more correct

bias correction. Moreover, we use the general methodology to motivate a class of

model information criteria built for the frequency domain representation of time

series models, see Hermansen & Hjort (2014d, Section 6) for details and additional

discussion.



50 1. INTRODUCTION TO THE THESIS

7.2. The AIC for stationary time series processes with smooth trend.

A natural extension of the work in Hermansen & Hjort (2014d) is to develop similar

methodology and rational large-sample justification for using the AIC in stationary

time series models that also includes a smooth or regression type of trend. A sketch

of the derivation needed for this extension is now presented. The derivation is not

complete, in the sense that this requires consistent nonparametric estimates of both

trend function and spectral density, which is hard to do in practice.

Consider the model

Yt = Yn,t = μ(t/n) + εt, for t = 1, . . . , n, (7.5)

where μ is a smooth trend function on the unit interval and {εt} is a stationary

Gaussian time series model with zero mean and true spectral density g. The con-

struction with triangular array may seem artificial, which it is, however, it is an

abstract construction needed to make sure that we will have a meaningful asymp-

totic theory, e.g. it guarantees that more observations will provide more information

about this underlying signal, see Dahlhaus (1997, Section 2) for additional comments

and discussion.

For a particular parametric candidate, represented by the trend m(·, β) and

spectral density fθ, for (β, θ) ∈ Rp+q, the full Gaussian log-likelihood is given by

�n(β, θ) = −n

2

{
log(2π) + log |Σn(fθ)|+ 1

n
(y

n
−mβ)

tΣn(fθ)
−1(y

n
−mβ)

}
, (7.6)

where mβ = (m(1/n, β), . . . ,m(1, β))t and where we do not necessarily assume that

our set of candidate models span the true model. Then, under the conditions of

Proposition 3 it now follows from Dahlhaus (1996b) that the corresponding maxi-

mum likelihood estimators (β̂n, θ̂n) = argmax(β,θ) �n(β, θ) converges in probability

to value (β0, θ0) = argmin(β,θ) d(β, θ), where

d(β, θ) = lim
n→∞

1

n
E {�n(μ, g)− �n(β, θ)} = − 1

4π

∫ π

−π

(log g(ω)+1) dω−R(β, θ), (7.7)

and where

R(β, θ) = lim
n→∞

Rn(β, θ)

= lim
n→∞

1

n
E �n(β, θ)

=− 1

4π

∫ π

−π

[
log fθ(ω) +

g(ω)

fθ(ω)

]
dω

− 1

2πfθ(0)

∫ 1

0

(μ(u)−m(u, β))2 du− log(2π),
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will be referred to as the model specific part of (7.7). The following proposition

summarises the main large-sample properties of the maximum likelihood estimator

above.

Proposition 3. (Dahlhaus, 1996a, Theorem 2.4) Suppose the spectral density

fθ and g are continuous and bounded away from zero and infinity. In addition, sup-

pose fθ and g and all components of ∇fθ and ∇2fθ are differentiable in ω with uni-

formly continuous derivatives. Then if the components of μ(u), m(u, β), ∇m(u, β)

and ∇2m(u, β) are differentiable in u with uniformly continuous derivatives, it fol-

lows that(√
n(β̂n − β0)√
n(θ̂n − θ0)

)
→d J(β0, θ0)

−1U, with U ∼ Np+q(0, K(β0, θ0))

where J(β0, θ0) and K(β0, θ0) are block diagonal

J(β0, θ0) =

[
J01(β0, θ0) 0

0 J11(β0, θ0)

]
and

K(β0, θ0) =

[
K01(β0, θ0) 0

0 K11(β0, θ0)

] (7.8)

and the corresponding block matrices are given by

J01(β0, θ0) = J(θ0) +
∇2Ψθ0(0)−∇Ψθ0(0)∇Ψθ0(0)

t

2πfθ0(0)

∫ 1

0

[μ(u)−m(u, β0)]
2 du,

J11(β0, θ0) =
1

2πfθ0(0)

∫ 1

0

{∇m(u, β0)∇m(u, β0)
t −∇2m(u, β0)[μ(u)−m(u, β0)]} du,

and

K01(β0, θ0) =
g(0)

2πfθ0(0)
2

∫ 1

0

∇m(u, β0)∇m(u, β0)
t du,

K11(β0, θ0) = K(θ0) +
∇Ψθ0(0)∇Ψθ0(0)

t

2πfθ0(0)
2

g(0)

∫ 1

0

[μ(u)−m(u, β0)]
2 du,

with J(θ) = J(g, fθ) and K(θ) = K(g, fθ) as defined in Theorem 2 in Section 1.1.

Proof. The result is essentially a special case of Dahlhaus (1996a, Theorem

2.4) and can therefore be seen to follow automatically as a corollary. �

Next, we define Q = ER(β̂n, θ̂n). By following the by now familiar recipe of

Section 3.2 (and Section 7.1 above), a model selection strategy is easily motivated

by aiming at the candidate model that maximises Q, for which we need a suitable

estimator. Previously, the canonical starting point is to work with a nonparamet-

ric version of R(β̂n, θ̂n), however, this becomes unpractical since this requires joint

nonparametric estimation of both trend and spectral density, which are not readily
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available. For this reason, we decide to change our focus here and will instead aim

at deriving an unbiased estimator for Qn = ERn(β̂n, θ̂n) given by

Rn(β, θ) =
1

n
{log |Σn(fθ)|+tr{Σn(g)Σn(fθ)

−1}+(μ−mβ)
tΣn(fθ)

−1(μ−mβ)} (7.9)

where μt = (μ(1/n), . . . , μ(1)) and mt
β = (m(1/n, β), . . . ,m(1, β)). This change in-

directly introduces a new and alternative framework for interpretation, which either

requires the extended likelihood principle of Akaike (1973) or the construction of

a sequence of least false parameter values {(β0,n, θ0,n)}n≥1, defined by (β0,n, θ0,n) =

argmin(β,θ) dn(β, θ) with

dn(β, θ) = KLn(β, θ) =
1

n
E �n(μ, g)−Rn(β, θ), (7.10)

see Section 3.2 above or Hermansen & Hjort (2014d, Sections 3 & 4) for a more

complete discussion and comments. Now, observe that

R̂n(θ̂n, β̂n)−Rn(θ̂n, β̂n) = (Δn − δn) + εn, (7.11)

where Δn = R̂n(β̂n, θ̂n) − R̂n(β0,n, θ0,n), δn = Rn(β̂n, θ̂n) − Rn(β0,n, θ0,n) and εn =

R̂n(θ0)−Rn(θ0), where by similar arguments as used in Hermansen & Hjort (2014d,

Section 4.1) it is easily seen that E εn = 0. The following lemma is the final argument

needed to obtain a proper rational motivation and the model robust version of the

AIC in the current framework.

Lemma 3. Under the conditions of Proposition 3 we have

Δn − δn =
1

n
{Wn + op(1)},

where Wn →d W , as n → ∞, with EW = tr{J(β0, θ0)
−1K(β0, θ0)} and where J

and K are as defined in (7.8).

Proof. The proof is left as an exercise to the reader. �

Summarising the chain of large-sample arguments motivate

AIC∗ = 2{�n,max − (p̂ ∗ + q̂ ∗)}, where p̂ ∗
1 = tr(Ĵ−1

01 K̂01) and q̂ ∗ = tr(Ĵ−1
11 K̂11),

as a rational model selection strategy. In order to use the above formula in practice,

we need consistent estimates for the block elements of J and K, which presumably

does not have a simple solution, since we will be needing consistent estimates for

the true g and μ. Some alternatives are: to use the widest model (if the models

are nested), bootstrap or work under the assumption that J = K, which can be

seen to imply that p ∗ = dim(β) and q ∗ = dim(θ) with the result that AIC =

2{�n,max − (p+ q)}. As a final comment, note that there is a nice symmetry in that

if mβ0 = μ, then the AIC∗ formula above is easily seen to reduce to the the formula

obtained in Section 7.1 for the standard stationary models with zero mean.
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A NEW APPROACH TO AKAIKE’S INFORMATION CRITERION AND

MODEL SELECTION ISSUES IN STATIONARY TIME SERIES

GUDMUND HORN HERMANSEN1,2 AND NILS LID HJORT2

Abstract. For various classical models, the Akaike’s information criterion (AIC) is best motivated as

a coherent extension of the maximum likelihood principle, for estimation across families of parametric

models. In a framework involving potentially misspecified candidate models the AIC or close relatives

may be justified from a precise and well motivated chain of large-sample approximations. This rational

line of reasoning does not necessarily hold up in general, however. The main purpose of this paper is to

revisit the underlying justification for using the general AIC formula as a model selection strategy for

stationary time series processes. The Kullback–Leibler divergence from the true model to its parametric

approximation is an important component of this argument. For non-i.i.d. observations, there is a

potential non-uniqueness in the definition and interpretation of the Kullback–Leibler divergence. This

is often unproblematic, depending on the underlying purpose. For time series processes this ambiguity

does matter, however, which motivates two natural variations of the AIC formula. Thus the general

AIC line of strategy is not as seemingly uniquely and simply defined as it is often presented as being. In

addition, we derive certain model robust versions of the AIC. Finally, using the developed methodology,

we are able to improve on a generalisation of Akaike’s final prediction error criterion (FPE), and also

derive a general class of model information criteria built for the frequency domain representation of

time series models.

1. Introduction and summary

The task of selecting an appropriate model is an important part of any statistical analysis. This

is especially true for the classical time series models like the autoregressive (AR), moving average

(MA) and the mixture (ARMA), where an appropriate model order is required before the models

can be put into real use. This makes both model selection and assessment an integrated part of the

model building. The so-called model information criteria have therefore a considerable appeal, since

these are typically simple in both structure and use, resulting in scores which can be used to rank

candidate models from best to worst, in accordance with some predefined measure of discrepancy.

Moreover, the time series models referred to above are also very adaptable and all can be shown to

approximate essentially any type of stationary process, to any degree of accuracy, by increasing the

model complexity, see Brockwell & Davis (1991, Ch. 4.4). Therefore, if coupled with an appropriate

Key words and phrases. AIC, autoregressive processes, FPE, Kullback–Leibler divergence, model selection, model

misspecification, stationary time series.
1Norwegian Computing Centre.

2Department of Mathematics, University of Oslo.
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model information criterion, we essentially have a mechanised method for both model fitting and

assessment. This indicates the potential role of model selection procedures and also underlines the

importance and need for proper understanding and rational justification.

There is a substantial literature on model selection for time series processes, each method derived

and justified from different points of departure. Among the more popular are Akaike’s information

criterion (AIC; Akaike (1973)), Bayesian information criterion, (BIC; Schwarz (1978)), Hannan-Quinn

information criterion (HQ; Hannan & Quinn (1979)), Akaike’s final prediction error (FPE; Akaike

(1969)) and the focused information criterion (FIC; Hermansen & Hjort (2014)); see also Akaeěl

(1982) and the final chapters of Linhart & Zucchini (1986) for a general overview. A comprehensive

survey focusing on consistency in autoregressive processes, i.e. the ability to discover the correct,

or underlying true, model order, can be found in McQuarrie & Tsai (1998). Finally, for a broad

introduction to model selection in statistics, see among others Claeskens & Hjort (2008).

In this paper we focus on the underlying motivation for using the AIC for stationary time series

processes. This criterion is one of the more important and probably also the most widely used. In its

general form the AIC is defined by

AIC(Mθ) = 2 log-likelihoodmax(Mθ)− 2 dim(θ) (1.1)

for each candidate model Mθ in a collection of competing models, where dim(θ) is the length of its

parameter vector. The AIC strategy is then to prefer the model that attains the largest AIC-score,

i.e. the model that has the largest value of (1.1).

In several classical models, like parametric models for i.i.d. observations and standard regression

with independent errors, the AIC is a well motivated model selection strategy. In short, the AIC

can be seen as a rational extension of the maximum likelihood principle to estimation across families

of parametric models in a potentially misspecified modelling framework, i.e. where the true model is

not necessarily included, or spanned, by any of the candidates, see Claeskens & Hjort (2008, Ch. 2).

This provides a more sophisticated interpretation of the penalty term p = dim(θ) in (1.1), which is

actually a bias correction term needed to make the AIC an unbiased estimate for a specific large-sample

quantity; this will be discussed in more detail in Sections 2–4 below.

The main purpose of this paper is to obtain good answers to whether a similar – or any – rational

justification exist for using the AIC machinery for selecting among time series models. In particular,

we are interested in seeing how much of the rational motivation alluded to above that carries over

from classical models. This turns out to be quite complicated, however. To indicate what becomes

problematic, let X1, . . . , Xn be i.i.d. variables from a model with density function h◦ and let hθ be a

parametric model from a set of candidates. The Kullback–Leibler divergence (cf. Kullback & Leibler
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(1951)), an asymmetric measure between probability distributions, is defined as

KLn(h
◦, hθ) =

1

n
Eh◦

{ n∑
i=1

log
h◦(Xi)

hθ(Xi)

}
=

∫
R

log
h◦(x)
hθ(x)

h◦(x) dx = KL1(h
◦, hθ) (1.2)

where the subscript h◦ indicates that the expectation is with respect to the true model. From the

internal structure it is clear that for i.i.d. observations the Kullback–Leibler divergence, as defined

above, is independent of the size of the observed sample. This property does not necessary hold for

non-i.i.d. observations and this is partly why the AIC argument becomes more ambiguous for the time

series processes.

Let Yt, for t ≥ 1, be a stationary Gaussian time series with true spectral density g and let fθ, with

θ ∈ Rp and p finite, be a parametric candidate from a set of competing models that do not necessarily

include the true g. Moreover, let 	n(g) and 	n(fθ) be the corresponding Gaussian log-likelihood

functions, then the Kullback–Leibler divergence (1.2) can now be written as

KLn(g, fθ) =
1

n
Eg {	n(g)− 	n(fθ)}, with limit KL∞(g, fθ) = lim

n→∞KLn(g, fθ) (1.3)

provided that it exists.

In Sections 3 and 4 we show that both KLn and KL∞ will emerge naturally from different attempts

to extend the maximum likelihood principle to estimation across families of parametric models, re-

sulting in two versions of the AIC formula with different underlying motivations. The derived criteria

will not always give the same answers and are given by

AICn = 2(	n,max − p) and AIC∞ = 2(	̃n,max − p− q̃ ), (1.4)

where 	̃n is the Whittle log-likelihood, an approximation to the full Gaussian log-likelihood introduced

in Whittle (1953), and q̃ is an additional correction term that has to be estimated from data. It is

important to note that AIC∞ is not an approximation to AICn, however, since each criterion has its

own internal and independent rational justification.

The typical behaviour of the formulae in (1.4) is illustrated in the simulated example in Figure

1.1 and Table 1.

k 0 1 2 3 4 5 6 7 8 9

AICn -89.2 -91.2 -90.9 -89.8 -72.6 -69.4 -68.7∗ -70.7 -72.6 -70.1

AICw -89.2 -91.2 -90.3 -87.6 -67.6∗∗ -67.6∗ -69.1 -71.1 -71.7 -69.3

p 1 2 3 4 5 6 7 8 9 10

q̃ 0.0 0.0 -0.3 -0.9 -6.00 -6.1 -6.2 -6.2 -6.7 -8.3

Table 1. The AIC scores from Figure 1.1, note the jump in q as the estimated models begin to provide

a reasonable fit of the data.
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Figure 1.1. Left: Simulated sample of size n = 20 from an autoregressive models with parameters

σ = 1 and ρ = (1, 0.4,−0.6, 0.4,−0.6). Middle: The spectral density of the autoregressive

model (solid) and estimated periodogram (dotted). Right: AIC scores, see also Table 1.

From a practical point of view, obtaining maximum likelihood estimates is sometimes challenging

in time series models and can also be computationally time consuming and numerically unstable.

The Whittle approximation alluded to above solves most of these problems. In Dahlhaus & We-

felmeyer (1996) the maximum likelihood estimator and the analogously defined Whittle estimator

θ̃n = argmaxθ 	̃n(θ) are shown to have the same large-sample properties in terms of limit distributions

and efficiency, see also Dzhaparidze (1986). This suggests that the Whittle estimator can be used

as an alternative to full maximum likelihood estimation. Moreover, under mild regularity conditions

it follows from Coursol & Dacunha-Castelle (1982) that 	n(f) = 	̃n(f) + OPg(1), uniformly in f , it

is therefore tempting, since the AIC is essentially motivated by large-sample arguments, to question

whether ÃICn = 2(	̃n,max− p) can be used as an approximation for the general AICn formula without

changing the underlying interpretation. In Section 3 we show that this is usually not the case, and

that it only works under certain strong and quite restrictive modelling assumptions. The conclusion

is that the approximation ÃICn is generally only meaningful if we include q̃, making it equal to AIC∞

and therefore also changing the underlying interpretation.

In Section 2 we will discuss the case of parametric density estimation for i.i.d. observations and

show how to motivate the AIC as a rational extension of the maximum likelihood principle. This

motivate the derivations in Section 3 where we aim at a similar line of reasoning for the stationary time

series processes; this results in the AIC∞ and an independent motivation for the Whittle approximation

and related estimates. In addition, proper model robust versions of the AIC will also be derived, these

are commonly referred to as the Takeuchi’s information criterion (TIC; Takeuchi (1976)). In Section 4

we show how to motivate and obtain the more classical AIC formula (1.1) for the time series processes.

This is in a sense more in line with the original work in Akaike (1973, 1974), however, we generally

see the motivation in Section 3 as more coherent. Two additional approaches for motivating AIC-like

criteria are explored in Section 5. In Section 6 we use the developed methodology to revisit and give a

proper correction of a criterion derived in Linhart & Göttingen (1985) as a generalisation of the final

prediction error (FPE); a criterion that approximates the mean squared error of the one-step-ahead



AIC FOR TIME SERIES 5

predictions originally suggested in Akaike (1969, 1970). In Section 7 we review a common criticism of

the AIC that claims that the criterion has a tendency to prefer too complex models in small samples,

see e.g. Hurvich & Tsai (1989) or McQuarrie & Tsai (1998). We will argue that this is more related

to the method of estimation, which is typically based on simplifications of full maximum likelihood

estimation, see e.g. McQuarrie & Tsai (1998, Ch. 3) for illustrations. Finally, some concluding remarks

are offered in Section 8.

2. The AIC for parametric models for i.i.d. data.

The aim of this section is to introduce the standard derivation that motivates the general AIC

formula (1.1) as an extension of the maximum likelihood principle to estimation across families of

parametric models. This will be discussed in the framework of parametric density estimation for

i.i.d. observations.

The following derivation of the AIC relies heavily on the large-sample properties of the maximum

likelihood estimator in a potentially misspecified modelling framework. In order to see how, let the

true model be represented by the density function h◦ and let hθ be a parametric candidate from a set

of candidate models, where θ ∈ Θ ⊂ Rp and p is finite and h◦ is not equal to hθ almost everywhere for

any θ. Let X1, . . . , Xn be i.i.d. observations from the true model h◦ and let 	n be the corresponding

log-likelihood function. Then the maximum likelihood estimator θ̂n = argmaxθ 	n(θ) converges, under

mild regularity conditions, almost surely to the point

θ0 = argmin
θ∈Θ

KL1(h
◦, hθ) = argmax

θ∈Θ
R(θ), (2.1)

where

KL1(h
◦, hθ) =

∫
log

h◦(x)
hθ(x)

h◦(x) dx =

∫
h◦(x) log h◦(x) dx− Eh◦ log hθ(X) (2.2)

is the Kullback–Leibler divergence and where we refer to

R(θ) = Eh◦ log hθ(X) =

∫
h◦(x) log hθ(x) dx

as the model specific part, see Claeskens & Hjort (2008) for additional comments. The subscript

h◦ above is there to indicate that the expectation is with respect to the true model. Note that the

limit point θ0 in (2.1) does not have the interpretation as the true parameter value, as this does not

necessarily exist in a misspecified modelling framework. Instead, the maximum likelihood estimator

is said to converge to the least false parameter value.

The maximum likelihood estimator for a particular model hθ aims at minimising the Kullback–

Leibler divergence above. Therefore, in order to evaluate its performance and compare it with the

competing candidates, we will study the actually attained Kullback–Leibler divergence

KL1(h
◦, h

̂θn
) =

∫
h◦(x) log h◦(x) dx−R(θ̂n), (2.3)
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which is a random variable. The first term is the same across all models, meaning that it is sufficient

to study R(θ̂n), which suggests that

Qn = Eh◦ R(θ̂n) = Eh◦

∫
h◦(x) log h

̂θn
(x) dx

is a reasonable measure for the success of each candidate. In turn, this motivates a model selection

strategy by preferring the model that attains the largest value of Qn. This model will also be expected

to minimise (2.3) and can therefore be interpreted as best at what the maximum likelihood estimator

is trying to achieve, i.e. to be close to the true density h◦ with respect to the expected Kullback–Leibler

discrepancy.

In order to implement this in practice we need to calculate Qn for each candidate, these depend on

the true underlying density h◦, which is unknown, meaning that Qn must to be estimated from data.

Since we expect 	n(θ)/n to be close to R(θ) by the law of large numbers, a natural start estimator for

Qn is

Q̂n =
1

n
	n(θ̂n). (2.4)

This simple log-likelihood based estimator has a tendency to overshoot its target Qn and a correction

is therefore needed. In short, the bias correction of Q̂n can be shown to justify AIC(θ) = 2n{Q̂n −
1
n dim(θ)} = 2(	n(θ̂n)−p) as an (approximative and asymptotic) first order bias corrected estimator for

Q; see also Claeskens & Hjort (2008, Ch. 2) for a more complete derivation and additional comments.

As an additional remark we note that the second term in the AIC formula, which is often referred

to as a penalty term that penalises models for unnecessary high model complexity. Actually has a

much deeper and more profound meaning as a bias correction with connection to the Kullback–Leibler

divergence and maximum likelihood estimation. Without this interpretation, the precise structure of

the penalty term becomes essentially arbitrary, since there is no real reason we should prefer the

current form above any other similar constructions, e.g. 1
2p, 4p or even (log n)p.

3. The AIC∞ for stationary time series models

The aim of this section is to explore the justification for using AIC-like criteria for time series

processes and the main question is whether a similar – or any – rational justification for using the

AIC can be carried over from the i.i.d. case to the time series framework. The AIC is already well

established as a model selection strategy for time series processes, see among others Akaike (1976),

Ogata (1980) and Hurvich & Tsai (1989). The general structure and underlying motivation of the

present paper is quite different and we believe that our detailed derivation will provide new and

valuable insights.

3.1. Maximum likelihood estimation in misspecification in time series models. Let Yt, t ≥ 1

be a stationary Gaussian time series process with zero mean. The dependency structure, which
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determines the entire model, is completely specified by the covariance function C(h) for all lags

h = 0, 1, 2, . . . and since we will only work with real-valued series, we have

Cf (h) = Cov(Yt+h, Yt) =

∫ π

−π
cos(ωh)f(ω) dω, for h ≥ 0, (3.1)

where f is the so-called spectral density; for detailed introductions to time series modelling in the

frequency domain see among others Brillinger (1975), Priestley (1981) or Dzhaparidze (1986). The

‘true’ spectral density, i.e. the spectral density of the underlying observed process, will be denoted by

g, and fθ, with θ ∈ Θ ⊂ Rp for finite p and a compact subspace Θ, represents a parametric model

from a collection of candidates that do not necessarily include g.

Assumption 3.1. The spectral density g(ω) is Lipschitz-continuous and bounded away from zero

and infinity. The spectral densities fθ(ω) are all bounded away from zero and infinity and are two

times differentiable with respect to θ, with bounded derivatives that are continuous in both θ and ω.

Remark 3.2. The conditions listed in Assumption 3.1 are more or less equivalent to Assumptions

1.1, 1.2 and 1.3 in Dahlhaus & Wefelmeyer (1996). There is a difference in that in Assumption 1.2 it is

assumed that the derivative of the spectral density of the candidate models is also bounded away from

zero. This is presumably a clerical error since it is not needed in the proofs, making it an unnecessarily

restrictive assumption, since it would only allow strictly monotonic spectral densities.

If the conditions of Assumption 3.1 are all satisfied it follows from Dahlhaus & Wefelmeyer (1996)

that the maximum likelihood estimator converges,

θ̂n = argmax
θ∈Θ

	n(fθ) →Pg θ0 = argmin
θ∈Θ

d(g, fθ) = argmax
θ∈Θ

R(θ), (3.2)

provided the least false parameter value θ0 exists uniquely inside the compact Θ, where

d(g, fθ) = KL∞(g, fθ) = − 1

4π

∫ π

−π
(log g(ω) + 1) dω −R(θ) (3.3)

is referred to as the asymptotic Kullback–Leibler divergence and where

R(θ) = − 1

4π

∫ π

−π

(
log fθ(ω) +

g(ω)

fθ(ω)

)
dω (3.4)

is the corresponding model specific part. The discrepancy measure (3.3) is easily motivated as the

limit of the (scaled) Kullback–Leibler divergence

dn(g, fθ) =
1

n
KLn(g, fθ) =

1

n
Eg {	n(g)− 	n(fθ)}

= − 1

2n

(
log |Σn(g)|+ n− log |Σn(fθ)| − tr{Σn(g)Σn(fθ)

−1}
)
,

(3.5)

where Σn(g)i,j = Cg(|i− j|), as n approaches infinity; see e.g. Gray (2006) for details.

Following the above motivation, the general strategy is to prefer the model that maximises

Eg R(θ̂n). This is equivalent to searching for the model that minimises the attained value of Eg d(g, f̂θn),
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i.e. the model that is best at what the maximum likelihood estimator is trying to achieve in the limit;

to be closest to the truth with respect to the expected asymptotic Kullback–Leibler divergence.

Since the expected model specific part Eg R(θ̂n) depends on the true spectral density, which is

unknown, it must be estimated from data. To see how, we introduce the periodogram

In(ω) =
1

2πn

∣∣∣∣∑
t≤n

yt exp(−iωt)

∣∣∣∣2,
which is a common nonparametric estimator for the spectral density. This now leads up to a canonical

estimator for R by

R̃n(θ) = − 1

4π

∫ π

−π

(
log fθ(ω) +

In(ω)

fθ(ω)

)
dω, (3.6)

since |R̃n(θ)−R(θ)| →Pg 0, uniformly in θ; see the comments in Section 3.3. A natural starting point

is therefore to use R̃n(θ̂n) as an estimator for Eg R(θ̂n).

Furthermore, R̃n is in close relation to the Whittle approximation introduced in Whittle (1953),

which is defined by

	̃n(fθ) = −n

2

{
log 2π +

1

2π

∫ π

−π
log 2πfθ(ω) dω +

1

2π

∫ π

−π

In(ω)

fθ(ω)
dω

}
, (3.7)

where In is the periodogram as defined above; for a general introduction and related large-sample

properties, see Coursol & Dacunha-Castelle (1982) and Dzhaparidze (1986). Moreover, since we

know from Dahlhaus & Wefelmeyer (1996) that the θ̂n and the analogue Whittle estimator θ̃n =

argmaxθ 	̃n(θ) have the same large-sample behaviour, even in a misspecified modelling framework, it

suggests that we will not commit a substantial error if we instead try to estimate Eg R(θ̂n) by

Q̃n = R̃n(θ̃n) =
1

n
	̃n(θ̃n)− 1

2
log 2π. (3.8)

In addition to changing the estimator, we will also view Q̃n as an estimator for Q = Eg R(θ̃n), which

is convenient and will make the mathematics more straightforward and the necessary arguments more

elegant. With this last change we have seemingly deviated form the original plan, since we have

removed the maximum likelihood estimator – the original motivation and starting point – out of the

discussion. By the asymptotic equivalence of the estimators these structural changes will not alter

the validity of the original argument or claimed objective, however; see the Appendix in Section 9 for

details.

3.2. Derivation of an unbiased estimator from the Whittle approximation. As in the simple

case with i.i.d. observations, the Whittle based estimator Q̃n in (3.8) has a tendency to overshoot its

target Q = Eg R(θ̃n) and a bias correction is therefore needed. In order to determine by how much,

observe that the expected bias is given by b = Eg [Q̃n − Q] = Eg [R̃n(θ̃n) − R(θ̃n)] and that we may

further write

R̃n(θ̃n)−R(θ̃n) = (R̃n(θ̃n)− R̃n(θ0)− [R(θ̃n)−R(θ0)]) + R̃n(θ0)−R(θ0) = (Δn − δn) + εn, (3.9)
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where Δn = R̃n(θ̃n) − R̃n(θ0), δn = R(θ̃n) − R(θ0) and εn = R̃n(θ0) − R(θ0). In order to obtain a

proper correction, we will study the large-sample properties of Δn − δn and εn, where the following

two lemmas establishes the necessary results.

Lemma 3.3. Let Δn and δn be as defined in (3.9). Then if the spectral densities g and fθ satisfy the

conditions of Assumption 3.1,

Δn − δn =
1

n
{Wn + op(1)},

where Wn →d W = U tJ(g, fθ0)
−1U , for U ∼ N(0,K(g, fθ0)). Here

J(g, fθ) =
1

4π

∫ π

−π

[
∇Ψθ(ω)∇Ψθ(ω)

tg(ω) +∇2Ψθ(ω)(fθ(ω)− g(ω))

]
1

fθ(ω)
dω (3.10)

and

K(g, fθ) =
1

4π

∫ π

−π
∇Ψθ(ω)∇Ψθ(ω)

t

[
g(ω)

fθ(ω)

]2
dω, (3.11)

with Ψθ(ω) = log fθ(ω) and ∇Ψθ(ω) and ∇2Ψθ(ω) being the vector and matrix of partial derivatives

with respect to θ, respectively.

Proof. For any candidate model fθ define

Ũn(θ) =
1√
n
∇	̃n(θ) =

√
n∇R̃n(θ) and J̃n(θ) = − 1

n
∇2	̃n(θ) = −∇2R̃n(θ),

where ∇ R̃n(θ)i = ∂/∂θi R̃n(θ) and ∇2 R̃n(θ)i,j = ∂2/∂θi∂θj R̃n(θ) for all i, j = 1, . . . , p. Then by a

standard two-term Taylor expansion of R̃n around θ0 it follows that

R̃n(θ̃n)− R̃n(θ0) = Ũn(θ0)
t(θ̃ − θ0)− 1

2
(θ̃n − θ0)

tJ̃n(θ̄
(1)
n )(θ̃n − θ0)

=
1

n
V t
n J̃n(θ̄

(2)
n )Vn − 1

2n
V t
n J̃n(θ̄

(1)
n )Vn,

(3.12)

since 0 = ∇	̃n(θ̃)/n = ∇R̃n(θ0)+∇2R̃n(θ̄
(2)
n )(θ̃−θ0), where Vn =

√
n(θ̃n−θ0) and |θ̄(j)n −θ0| ≤ |θ̃n−θ0|

for j = 1, 2. Next, let J(θ) = J(g, fθ) = −∇2R(θ), then by a similar Taylor expansion of R we obtain

R(θ̃n)−R(θ0) = ∇R(θ0)
t(θ̃n − θ0)− 1

2
(θ̃n − θ0)

tJ(θ̄(3)n )(θ̃n − θ0) =
1

2n
V t
nJ(θ̄

(3)
n )Vn, (3.13)

since ∇R(θ0) = 0 from the definition of θ0 and where |θ̄(3)n − θ0| ≤ |θ̃n− θ0|. Now, by combining (3.12)

and (3.13) we may express the difference as

Δn − δn = R̃n(θ̃n)− R̃n(θ0)− [R(θ̃n)−R(θ0)] =
1

n
V t
n J̃n(θ̄

(2)
n )Vn − 1

2n
[V t

n J̃n(θ̄
(1)
n )Vn − V t

nJ(θ̄
(3)
n )Vn].

It follows from Dahlhaus & Wefelmeyer (1996) that Vn =
√
n(θ̃n − θ0) →d J(g, fθ0)

−1U , where

U ∼ Np(0,K(g, fθ0)). Then by arguments similar to those used in Section 3.3 below, it follows that

J̃n(fθ̄n) →Pg J(fθ0), provided θ̄n →Pg θ0, and we now have the claimed results since

Δn − δn =
1

n
{Wn + oPg(1)}

where Wn = V t
n J̃n(θ̄

(2)
n )Vn →d U tJ(g, fθ0)

−1U = W . Note also that Eg W = tr{J(g, fθ0)−1K(g, fθ0)}.
�
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Lemma 3.4. Let the spectral density g be continuous and bounded away from zero and infinity. Then

for any positive, bounded and continuous function h that is symmetric on [−π, π],

Eg

∫ π

−π
h(ω)In(ω) dω −

∫ π

−π
h(ω)g(ω) dω = − 1

n

[
1

8π2
〈g, h〉1/2 + o(1)

]
,

where 〈f1, f2〉1/2 is a type of inner product defined for pairs of all spectral densities f1, f2 given by the

formula

〈f1, f2〉1/2 =
∞∑

j=−∞
|j|f̂1 j f̂2 j , where f̂i j =

∫ π

−π
exp{−ijω}fi(ω) dω, for i = 1, 2. (3.14)

Proof. The proof follows more or less directly from the results in Coursol & Dacunha-Castelle (1982).

In order to see this, we observe that

Eg

∫ π

−π
h(ω)In(ω) dω −

∫ π

−π
h(ω)g(ω) dω =

1

n

[
Eg y

tΣn(h)y − tr{Σn(hg)}
]

=
1

n

[
tr{Σn(h)Σn(g)} − tr{Σn(hg)}

]
= − 1

n

[
1

8π2
〈g, h〉1/2 + o(1)

]
,

where the last equality is from Coursol & Dacunha-Castelle (1982, Proposition 2). �

Remark 3.5. In the definition of (3.14) used in Coursol & Dacunha-Castelle (1982) there is a small

clerical error, where in the sum defining the inner product they use j instead of |j|.

By application of Lemma 3.3

R̃n(θ̃n)−R(θ̃n) = Δn − δn + εn =
1

n
Wn + op(1/n) + εn, (3.15)

where Wn →d W and Eg W = tr{J(g, fθ0)−1K(g, fθ0)}, with J and K are as defined in (3.10). This

is so far quite similar to the classical setup with i.i.d. observations, however, it follows from Lemma

3.4 that Eg εn = O(1/n) for the time series processes and not the desired o(1/n), or εn = oPg(1/n),

which would have justified neglecting this term at the claimed level of precision. Fortunately, Lemma

3.4 provides the result needed to obtain an estimator at the right level of precision, since

Eg εn =
1

4π

∫ π

−π

g(ω)

fθ0(ω)
dω − Eg

1

4π

∫ π

−π

In(ω)

fθ0(ω)
dω =

1

n

[
1

8π2
〈g, 1/fθ0〉1/2 + o(1)

]
, (3.16)

where 〈·, ·〉1/2 is the inner product defined in (3.14). Then

Eg [Q̃n −Q] ≈ p∗ + q∗

n
, where q∗ =

1

8π2
〈g, 1/fθ0〉1/2 and p ∗ = tr{J(g, fθ0)−1K(g, fθ0)},

which means that Q̃n − (p∗ + q∗)/n is an approximative asymptotic first order unbiased estimator for

the target Q. The reason it is only ‘approximately’ unbiased, is that the expectation of a oPg(1/n)

term is not necessarily of the desired o(1/n) order. It is common practice to ignore the oPg(1/n) terms

and this is also the best we can do without introducing more advanced tools or additional conditions.

This establishes the necessary connection and justifies the criterion

AIC∗
∞ = 2{	̃n(f˜θn)− p̃ ∗ − q̃ ∗}, (3.17)
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where

p̃ ∗ = tr{J(In, f˜θn)
−1K(In/

√
2, f

˜θn
)} and q̃ ∗ =

1

8π2
〈In, 1/f˜θn〉1/2, (3.18)

see also Section 3.3 for comments regarding estimation. This is the model robust version where p∗

and q∗ are estimated from data, the analogue model robust version of the AIC for i.i.d. observations

is commonly known as Takeuchi’s Information Criterion (TIC) from Takeuchi (1976).

If a particular candidate model fθ happens to span the true model, it is easy to verify that

J(g, fθ0) = K(g, fθ0), meaning that p∗ = tr(Ip) = p. This also implies q∗ = q = (2
√
2π2)−2〈fθ, 1/fθ0〉1/2,

which gives the alternative formulation

AIC∞(fθ) = 2{	̃n(f˜θn)− p− q̃ }, (3.19)

where q̃ = (2
√
2π)−2〈f

˜θn
, 1/f

˜θn
〉1/2. Taking a more extreme standpoint, where we assume that all

candidate models span, or include, the true model, results in (2
√
2π)2q∗(θ) = 〈g, 1/fθ0〉1/2 = 〈g, 1/g〉1/2

making it constant across models and motivating AIC∞(fθ) = 2{	̃n(f˜θn) − p} = ÃICn(fθ), i.e. the

Whittle approximation to the general AIC formula alluded to in Section 1.

The need for the additional correction term obtained in (3.17) and (3.19) was already observed in

Findley (1985) for ARMA models, see also Hurvich & Tsai (1991) for some additional comments. The

underlying derivation and justification are quite different, however, and in the end the idea of using the

Whittle approximation was rejected as generally unmotivated. In our view, the derivation presented

here gives the necessary justification needed to motivate the Whittle based AIC∞ as a rational and

coherent model selection strategy. We also note that similar observations are made in Ioannidis (2011)

regarding the bias of the general AIC formula. This is in the framework of autoregressive processes

and least squares estimation, and there is essentially no overlap with the work present here.

3.3. Estimation. The estimation of the correction terms needed for the model robust AIC in (3.17),

depends on the ability to consistently estimate integrals involving the true underlying spectral density

g. These are easiest estimated following Taniguchi (1980), where it is shown that for a continuous and

symmetric function h on [−π, π] it follows that∫ π

−π
h(ω)In(ω) dω

Pg−→
∫ π

−π
h(ω)g(ω) dω and

1

2

∫ π

−π
h(ω)In(ω)

2 dω
Pg−→
∫ π

−π
h(ω)g(ω)2 dω

provided the following short memory assumption
∑

t |t||Cg(t)| < ∞ is satisfied. As an independent

remark, we note that this short memory condition will follow if the spectral density g is continuous

and bounded below infinity, see Carslaw (1921, p. 249).

The results are easily strengthened to include functions hγ̂n that depend on a sequence of estima-

tors γ̂n, provided the sequence converges. This follows since the integrals involving In are bounded in

Pg-probability, meaning that it is sufficient to observe that∣∣∣∣ ∫ π

−π
hγ̂n(ω)In(ω) dω −

∫ π

−π
hγ0(ω)In(ω) dω

∣∣∣∣ ≤ sup
0≤ω≤π

|hγ̂n(ω)− hγ0(ω)|
∣∣∣∣ ∫ π

−π
In(ω) dω

∣∣∣∣, (3.20)
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which will become small provided hγ is continuous in a neighbourhood of γ0 and γ̂n converges in true

Pg-probability to γ0. Also, according to Taniguchi (1979, p. 580) and Taniguchi (1980, p. 74) no other

nonparametric estimators can beat the periodogram in terms of variance.

Next, in order to calculate q̃ we have to estimate the inner products defined in (3.14). To simplify,

we observe that for symmetric functions

〈f1, f2〉1/2 =
∞∑

j=−∞
|j|f̂1 j f̂2 j ,= 2

∞∑
h=1

|h|Cf1(h)Cf2(h),

which further implies that

〈f, In〉1/2 = 2

n−1∑
h=1

|h|Cf (h)Ĉ(h),

where Ĉ(·) is the classical nonparametric estimate for the covariance function; see e.g. Brillinger

(1975). In addition, if f has bounded derivatives up to order k and continuous derivatives up to a

order of k − 1, it follows under additional mild regularity conditions that the j-th Fourier coefficients

f̂j of the function f will be smaller in absolute value than c/jk+1, where c is a constant independent of

j, see Carslaw (1921, Chapter VIII). This means that the value of the inner product are in most cases

more or less completely determined by the first few terms in the sum, which provides an strategy for

making consistent estimates. In addition,

〈f1, f2〉1/2 ≤ 2

∣∣∣∣ ∞∑
h=1

|h|Cf1(h)Cf2(h)

∣∣∣∣ ≤ 2

∣∣∣∣ ∞∑
h=1

|h|Cf1(h)
2

∣∣∣∣1/2∣∣∣∣ ∞∑
h=1

|h|Cf2(h)
2

∣∣∣∣1/2 < ∞,

provided the required short memory assumption is satisfied.

This is an important observation, since it shows that the correction term q∗ can become large, but

will never explode and will therefore in most cases be straightforward to estimate; see Grønneberg &

Hjort (2014) for a case where a similar problem is present and is seen to require further exploration.

Finally, in order to apply AIC∗
∞ in practice we need to estimate p∗ for each candidate model, the

canonical estimator is

p̃ ∗ = tr{J(In, f˜θn)
−1K(In/

√
2, f

˜θn
)},

which is consistent by the properties of In(ω) and In(ω)
2/2. Unfortunately, there is a tendency

to underestimate integrals in small samples with In(ω)
2/2 as an estimator for g(ω)2. This is most

likely related to an artifact of fitting flexible models, such as the autoregressive, since the estimated

parametric spectral density can become very close to the nonparametric periodogram estimate (if the

sample size is low compared to the order of the autoregressive process), which means that J(In, f˜θn) ≈
2K(In/

√
2, f

˜θn
) and p̃ ∗ ≈ tr(Ip)/2 = p/2, and the result is that complex models will be preferred more

often that they should.

This should be taken seriously and a finite-sample bias correction may be obtainable from the

work in Brillinger (1975, Ch. 4 & 5); a proper solution will require additional work which do not intend

to solve here. We will instead briefly present some alternatives. If the models are nested, we may use
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Figure 3.1. Estimated p∗ in 10 different realizations for size n = 32, the candidate models are au-

toregressive up to an order of 16 and the true model is of order 4 with parameters

(1, 0.4,−0.5, 0.4,−0.5). The black solid line indicates the true (average) p∗, note that

since the models are nested p∗ = p for p ≥ 5, the two broken lines are p and p/2. From

left to right we have used In(ω)
2, In,smooth(ω)

2 and In(ω)
2/2 to estimate the unknown

g(ω)2.

the largest model to estimate g(ω). Moreover, we may take a more semiparametric approach where

we combine a nonparametric and parametric estimator with ĝ(ω) = In(ω) and ĝ(ω)2 = In(ω)f̂θn(ω).

Another idea that seems to work reasonable well in practice, is to use a smooth or tapered periodogram

estimator for the true spectral density, i.e. let ĝ(ω)2 = f̂smoothed(ω)
2; see for example Brillinger (1975)

for suggestions.
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Figure 3.2. The same setup as in Figure 3.1, but with n = 256.

4. The AICn for stationary time series models

The main reason we ended up with the Whittle approximation based AIC∞ formula (3.17) was

the focus on maximum likelihood estimation in a misspecified modelling framework, which in turn

resulted in the introduction of the asymptotic Kullback–Leibler divergence (3.3) as a natural measure

of discrepancy. In this section we show how to motivate the more standard AICn = 2(	n,max − p)

formulation and we will again take inspiration from the simpler case of parametric model fitting for

i.i.d. observations.
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LetX1, . . . , Xn be i.i.d. random variables from the model with density h◦ and let again hθ represent

a potential candidate. By following the so-called extended likelihood principle of Akaike (1973) we

should, in set of competing models, prefer the one that maximises

Eh◦ log h
̂θn
(X) = Eh◦

∫
h◦(x) log h

̂θn
(x) dx, (4.1)

where θ̂n is the maximum likelihood estimator. Note that the expectation is with respect to both the

new random variable X and the estimator θ̂n. In order to implement the extended likelihood principle,

the scores defined by (4.1) must be estimated from data. The canonical starting point is to use the

maximised log-likelihood function, which results in an unbiased estimator, however, the AIC formula

then emerges from the derivations of an appropriate bias correction.

Note that (4.1) is actually the expected model specific part of the attained Kullback–Leibler

divergence of Section 2. In the original papers by Akaike, the connection to estimation in a misspecified

modelling framework is not made explicitly. The principle is instead commonly interpreted in relation

to a type of predictive performance and justified via the connection to Kullback–Leibler divergence,

which is further connected to information theory and entropy, see Akaike (1973, 1974) for more details.

The reasoning is unfortunately somewhat vague, making the general idea harder to grasp. A more

intuitive, but heuristic, account is given in Akaike (1976), where the autoregressive models are also

briefly discussed.

4.1. Derivation of an unbiased estimator from the full log-likelihood. In order to apply this

extended likelihood principle in time series and for dependent observations, we need to interpret (4.1)

in a multivariate framework, where (4.1) now becomes

Eg 	n(f̂θn) = −1
2(n log(2π) + log |Σn(fθ)|+ tr{Σn(g)Σn(fθ)

−1}), (4.2)

where Σn(fθ)i,j = Cfθ(|i − j|) and θ̂n = argmaxθ 	n(fθ). It is easily seen that the model that max-

imises Eg 	n(f̂θn) is the same that maximises Qn = Eg Rn(θ̂n), where nRn(fθ) = −1
2(log |Σn(fθ)| +

tr{Σn(g)Σn(fθ)
−1}) is the model specific part of

dn(g, fθ) = KLn(g, fθ) =
1

n
Eg [	n(g)− 	n(fθ)] =

1

n
Eg 	n(g)− 1

2
log 2π −Rn(fθ). (4.3)

This means that applying the extended likelihood principle is equivalent to finding the model that

minimises the expected attained Kullback–Leibler divergence Eg KLn(g, f̂θn), where the expectation

is with respect to the maximum likelihood estimator θ̂n.

Remark 4.1. From nearness of the Whittle approximation to the full Gaussian log-likelihood, it

follows that both dn(g, fθ) and Rn(fθ) converge uniformly in θ to the asymptotic Kullback–Leibler

divergence d and its model specific part R of Section 3.2, see e.g. Dahlhaus & Wefelmeyer (1996).
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A canonical starting point for estimating Qn is given by the scaled log-likelihood function

Q̂n = R̂n(θ̂n) =
1

n
	n(f̂θn)−

1

2
log 2π, (4.4)

since by Lemma A.5 in Dahlhaus (1996) it follows that |R̂n(θ)− Rn(θ)| →Pg 0 uniformly in θ, which

means that we expect Q̂n = R̂n(θ̂n) ≈ Qn. This simple likelihood based estimator turns out to be a

little too naive and has a tendency to overshoot its target Qn. To determine by how much and to give

a proper bias correction, we will use a standard two-term Taylor expansion to derive a asymptotic first

order unbiased estimator. To simplify this argument we note that Eg [Q̂n−Qn] = Eg [R̂n(θ̂n)−Rn(θn)]

and that

R̂n(θ̂n)−Rn(θ̂n) = (Δn − δn) + εn, (4.5)

where Δn = R̂n(θ̂n)− R̂n(θ0), δn = Rn(θ̂n)−Rn(θ0) and εn = R̂n(θ0)−Rn(θ0), where it is easily seen

from the above that Eg εn = 0.

Lemma 4.2. Let Δn and δn be as defined in (4.5), then if the spectral densities g and fθ satisfy the

conditions of Assumption 3.1

Δn − δn =
1

n
{Wn + oPg(1)},

where Wn →d W = U tJ(g, fθ0)
−1U , for U ∼ N(0,K(g, fθ0)), with J and K are as defined in (3.10).

Proof. For any candidate model fθ let

Ûn(θ) =
√
n∇R̂n(θ) =

1√
n
∇	n(fθ) and Ĵn(θ) = −∇2R̂n(θ) = − 1

n
∇2	n(fθ),

where ∇ R̂n(θ)i = ∂/∂θi R̂n(θ) and ∇2 R̂n(θ)i,j = ∂2/∂θi∂θj R̂n(θ) for all i, j = 1, . . . , p. Then by a

two-term Taylor expansion (used twice) we have that

Δn = R̂n(θ̂n)− R̂n(θ0) = (θ̂n − θ0)
t∇R̂n(θ0) +

1

2
(θ̂n − θ0)

t[∇2R̂n(θ̄
(1)
n )](θ̂n − θ0)

=
1

n
V t
nUn(θ0)− 1

2n
V t
n Ĵn(θ̄

(1)
n )Vn

=
1

n
V t
n Ĵn(θ̄

(2)
n )Vn − 1

2n
V t
n Ĵn(θ̄

(1)
n )Vn,

where Vn =
√
n(θ̂n − θ0) and |θ̄(i)n − θ0| ≤ |θ̂n − θ0| for i = 1, 2.

Define Un(θ) = ∇Rn(θ)/
√
n and Jn(θ) = −∇2Rn(θ), then by a second two-term Taylor expansion,

we obtain

δn = Rn(θ̂n)−Rn(θ0) =
1√
n
V t
nUn(θ0)− 1

2n
V t
nJn(θ̄

(3)
n )Vn, (4.6)

where |θ̄(3)n − θ0| ≤ |θ̂n − θ0|. Summarising the above, it follows that

Δn − δn =
1

n
V t
n Ĵn(θ̄

(2)
n )Vn − 1√

n
V t
nUn(θ0)− 1

2n
[V t

n Ĵn(θ̄
(1)
n )Vn + V t

nJn(θ̄
(3)
n )Vn]. (4.7)

Since θ0 is not the minimiser of Rn we have that Un(θ0) 
= 0. Fortunately, it follows from Lemma

A.6 in Dahlhaus & Wefelmeyer (1996) that Un(θ0) = oPg(n
−1/2), which is exactly the order needed to

neglect (at the claimed level of precision) the second term in (4.7).
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Furthermore, it follows from Theorem 3.3 in Dahlhaus & Wefelmeyer (1996) that Vn →d V =

J(g, fθ0)
−1U , where U ∼ N(0,K(g, fθ0)), and that Ĵn(θ̄

(i)
n ) = −∇2R̂n(θ̄

(i)
n ) →Pg J(g, fθ0), for i =

1, 2, 3, where J(g, fθ0) and K(g, fθ0) are as defined in (3.10). This provides the tools needed to

establish the claimed result

Δn − δn =
1

n
{Wn + oPg(1)}, (4.8)

where Wn = V t
n Ĵn(θ̄

(3)
n )Vn →d U tJ(g, fθ0)U = W and Eg W = tr{J(g, fθ0)−1K(g, fθ0)}. �

Remark 4.3. There is a small error in the second part of the Lemma A.6 in Dahlhaus & Wefelmeyer

(1996), the big O notation used needs to be a small o for the Lemma to work as they intended.

By application of Lemma 4.2 it now follows that

Eg [Q̂n −Qn] = Eg[Δn − δn + εn] ≈ 1

n
EgW =

p∗

n
, where p ∗ = tr{J(g, fθ0)−1K(g, fθ0)}. (4.9)

which furthermore establishes Q̂n − p ∗/n as an approximative asymptotic first order unbiased esti-

mator for Q. This provides the rational motivation needed to establish

AIC∗
n = 2(	n(θ̂n)− p̂ ∗), where p̂ ∗ = tr{J(In, f̂θn)

−1K(In/
√
2, f

̂θn
)}, (4.10)

see Section 3.3 for discussion regarding estimation. Note that if the model is correctly specified, it

follows that p∗ = p and the above formula simplifies to AICn = 2(	n(θ̂n)− p).

Remark 4.4. It is possible to construct consistent estimates for J and K that are based more directly

on the full Gaussian log-likelihood. In order to see this, let [∇Σn(fθ)
−1]i, for i = 1, . . . , p, be the i-th

component of the derivative of the inverse covariance matrix, then elements ofKn(θ) = nVarPg ∇Rn(θ)

is then given by

Kn(g, fθ)i,j =
2

n
tr{[∇Σn(fθ)

−1]iΣn(g)[∇Σn(fθ)
−1]jΣn(g)}, for i, j = 1, . . . , p,

and by Lemma A.5 in Dahlhaus (1996) and Taniguchi (1980) it is easily seen that Kn(In/
√
2, f

̂θn
) →Pg

K(g, fθ0), see also the discussion in Section 3.3. Note that a similar argument can be used to show

that an estimate for J(g, fθ0) can be obtained from the second derivative of the log-likelihood function

evaluated in the maximum likelihood estimator.

4.2. Motivating AICn from maximum likelihood estimation. The justification for using the

AICn as a model selection strategy depends largely on how rational the Kullback–Leibler divergence

is as a measure of discrepancy. In order to establish a coherent argument, the Kullback–Leibler

divergence is, as already commented on, often justified by connecting it to entropy and information

theory with references to Shannon (1948) and Kullback (1959), however, we believe the most direct

and elegant motivation follows from the more direct connection to maximum likelihood estimation in

a misspecified modelling framework.
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In Section 3, the maximum likelihood estimator θ̂n was shown to converge to the least false pa-

rameter value θ0 = argminθ d(g, fθ), i.e. the minimiser of the asymptotic Kullback–Leibler divergence

(3.3). Note that we can by similar arguments claim that θ̂n aims at θ0,n = argminθ dn(g, fθ), in the

sense that ‖θ̂n − θ0,n‖ →Pg 0, which means that the maximum likelihood estimator is instead close to

the minimiser of the Kullback–Leibler divergence (4.3). Moreover, under the additional assumption

that the sequence {θ0,n}n≥1 exists, a corresponding modified version of Lemma 4.2 can be shown to

hold, which in turn motivates the criterion AIC∗
n in (4.10). As a final remark, the limit distribution

of
√
n(θ̂n − θ0,n) is the same as

√
n(θ̂n − θ0), which can be seen to follow from

√
n∇	n(fθ0,n) =

√
n∇	n(fθ0) +

√
n(∇	n(fθ0,n)−∇	n(fθ0)),

since θ0,n → θ0 implies that
√
n(∇	n(fθ0,n) −∇	n(fθ0)) →Pg 0 by the results of Lemma A.5 and A.6

in Dahlhaus & Wefelmeyer (1996).

5. Two additional variations of the AIC for the time series processes

In the discussions above we have presented what we see as the most natural strategies for deriving

AIC-like criteria for the stationary time series processes. In this section we will investigate two

additional cases. Here we will use the maximised log-likelihood 	n,max as an estimator for the expected

attained asymptotic Kullback–Leibler divergence (3.3). We will also see what happens if the Whittle

log-likelihood is used as an approximation for the expected model specific part of (4.3). This results

in additional AIC-like criteria with even more correction terms, which emphasises the idea that some

strategies may be seen as more natural than others.

Consider the case where the scaled log-likelihood is used to estimate the expected model spe-

cific part of the asymptotic Kullback–Leibler divergence (3.3), i.e. we wish to use Q̂n = R̂n(θ̂n) =

	n(f̂θn)/n − (log 2π)/2 to estimate Q = Eg R(θ̂n), where R(θ) = limn→∞ Eg 	̃n(fθ)/n − (log 2π)/2.

This seems reasonable, since the asymptotic Kullback–Leibler divergence is a natural choice of dis-

crepancy from the connection with the least false parameter value, as the target for the maximum

likelihood estimator. In addition, there may also be good reasons to prefer the full log-likelihood and

maximum likelihood estimation. Not surprisingly, Q̂n is also a biased estimator for Q. In order to

give a proper correction we have to make some small changes to the arguments used to prove Lemma

3.3 and 4.2.

Let Ûn(θ0) =
√
n∇R̂n(θ0) = ∇	n(θ0)/

√
n and Ĵn(θ0) = −∇2R̂n(θ0) = −∇2	n(θ0)/n. Then by

arguments similar to those already presented, a two-term Taylor expansion reveals that

R̂n(θ̂n)− R̂n(θ0) =̇
1√
n
Ûn(θ0)

t(θ̂n − θ0)− 1

2
(θ̂n − θ0)

tĴn(θ0)(θ̂n − θ0) and

R(θ̂n)−R(θ0) =̇ U(θ0)
t(θ̂n − θ0)− 1

2
(θ̂n − θ0)

tJ(θ0)(θ̂n − θ0),
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where U(θ0) = ∇R(θ0) = 0 and J(θ0) = −∇2R(θ0). The only part that really differs and will therefore

need extra care, is the calculation of the expectation Eg εn, which by Lemma 3.4 is easily seen to satisfy

nEg εn = nEg [R̂n(θ0)−R(θ0)]

= Eg [	n(fθ0)− 	̃n(fθ0)] + nEg [R̃n(θ0)−R(θ0)]

= − 1

8π2

[
1

2
〈log fθ0 , log fθ0〉1/2 + 〈log fθ0 , g/fθ0〉1/2 + 〈g, 1/fθ0〉1/2

]
+ q∗ + o(1)

= − 1

8π2

[
1

2
〈log fθ0 , log fθ0〉1/2 + 〈log fθ0 , g/fθ0〉1/2

]
+ o(1)

= −r∗ + o(1),

(5.1)

where the brackets indicate the inner product defined in (3.14) and q∗ is as define in (3.17). The result

is a new criterion

ÂIC
∗
∞ = 2(	n(θ̂n)− p̂ ∗ + r̂ ∗) and ÂIC∞ = 2(	n(θ̂n)− p+ r̂ ), (5.2)

where p∗ is as defined in (3.17) and the values of p∗ and r∗ are estimated in accordance with the

previous discussion.

The second approach is to use the Whittle approximation as it was ‘intended’, as an approximation

for the full Gaussian log-likelihood, where Q̃n = R̃n(θ̃n), as defined in (3.6), is used to estimate

Qn = Eg Rn(θ̂n). It is essentially easy to motivate this case, since there might be situations where the

standard Kullback–Leibler divergence is preferred, but it is impractical, or not even possible, to do

the calculations required.

Again, a few changes are needed to the original arguments (the proofs of Lemma 3.3 and 4.2) and

if Ũn(θ0) =
√
n∇R̃n(θ0) = ∇	n(θ0)/

√
n and J̃n(θ0) = −∇2R̃n(θ0) = −∇2	n(θ0)/n, a two-term Taylor

expansion shows that

R̃n(θ̃n)− R̃n(θ0) =̇
1√
n
Ũn(θ0)

t(θ̃n − θ0)− 1

2
(θ̃n − θ0)

tJ̃n(θ0)(θ̃n − θ0) and

Rn(θ̂n)−Rn(θ0) =̇ Un(θ0)
t(θ̂n − θ0)− 1

2
(θ̂n − θ0)

tJn(θ0)(θ̂n − θ0).

Then, since we already know that Un(θ0) = oPg(1/
√
n), the only part that needs additional care is the

calculation of the expectation

nEg εn = nEg[Q̃n − Q̂n] + nEg[R̂n(θ0)−Rn(θ0)]

= Eg[	̃n(fθ0n)− 	n(fθ0n)]

=
1

8π2

[
1

2
〈log fθ0 , log fθ0〉1/2 + 〈g, 1/fθ0〉1/2 + 〈log fθ0 , g/fθ0〉1/2 + o(1)

]
,

see Lemma 3.4. The new corrected unbiased estimator needs all the previous correction terms and

the result is a Whittle approximated AIC∗
n formula given by

ÃIC
∗
n = 2(	̃n(θ̃n)− p̃ ∗ − q̃ ∗ − r̃ ∗) and ÃICn = 2(	̃n(θ̃n)− p− q̃ − r̃ ) (5.3)
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where q∗ and r∗ are as defined above and estimates are obtained in accordance with the discussion of

Section 3.3.

6. Generalising and correcting the FPE and related discrepancy measures

In this section use the methodology developed to explore some additional strategies. In particular,

we will discuss a generalisation of the final prediction error (FPE; Akaike (1969, 1970)) introduced

in Linhart & Göttingen (1985). This extends the FPE to a broader class of time series models (the

criterion was originally developed for autoregressive models). In the derivations they overlooked the

bias introduced by the periodogram as an estimator for the unknown spectral density, however. The

error is observed by the authors and there is a short comment in Linhart & Zucchini (1986, Section

A.2.6), but it is incorrectly attributed to be completely caused by the use of the discrete approximation

of the integral. This is a remark of interest, but simple simulation studies indicate that the scaled

expected difference is zero; a complete discussion will require additional work.

6.1. Correcting the FPE for a general class of time series models. In order to easily extend

the FPE argument, the goal of minimising the one-step-ahead predictions in a finite sample, is changed

to minimising the mean square error of the one-step-ahead prediction in the limit experiment. To make

the paper more self-contained, we will provide a brief overview of the main results and show how we

can obtain a discrepancy measure from this general idea; see also Linhart & Zucchini (1986, Ch. 12).

To simplify, we reorganise the observed series such that the task is now to predict y0 given the

observations y−n, . . . , y−1, for n ≥ 1, where ŷ0 = ŷ0(y−1, . . . , y−n) is the predictor for the unobserved

y0. Under the conditions of Assumption 3.1, it follows from Azencott & Dacunha-Castelle (1986,

Section 4.2) that if the model is correctly specified, then

lim
n→∞Eg |ŷ0 − y0|2 = 2π exp

{
1

2π

∫ π

−π
log g(ω) dω

}
= σ2

0(g). (6.1)

The limit is shown by a neat trick using the determinant of the covariance matrix and the first Szegő

theorem. If the model is not correctly specified, however, it follows from Grenander & Rosenblatt

(1957, Section 8.1) that

lim
n→∞Eg|ŷ0 − y0|2 = σ2

0(fθ)

2π

∫ π

−π

g(w)

fθ(ω)
dω > 0, (6.2)

where σ2
0(fθ) is as defined in (6.1). Since

σ2
0(fθ)

2π

∫ π

−π

g(w)

fθ(ω)
dω = σ2

0(g) exp

{
1

2π

∫ π

−π
log

fθ(ω)

g(ω)
dω

}
1

2π

∫ π

−π

g(w)

fθ(ω)
dω

= σ2
0(g) + σ2

0(g)

[
exp

{
1

2π

∫ π

−π
log

fθ(ω)

g(ω)
dω

}
1

2π

∫ π

−π

g(w)

fθ(ω)
dω − 1

]
the limit (6.2) motivates

d0(g, fθ) = exp

{
1

2π

∫ π

−π
log

fθ(ω)

g(ω)
dω

}
1

2π

∫ π

−π

g(w)

fθ(ω)
dω − 1 (6.3)
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as a discrepancy measure. It is fairly easy to show that this is a valid discrepancy, since by Jensen’s

inequality the first half of (6.3) is greater or equal to one, with equality if and only if fθ is equal to g

almost everywhere, see Grenander & Rosenblatt (1957, p. 261).

The least false parameter value is (with a slight misuse of notation) θ0 = argminθ d0(g, fθ) =

argminθ R0(θ), where

R0(θ) = exp

{
1

2π

∫ π

−π
log fθ(ω) dω

}
1

2π

∫ π

−π

g(w)

fθ(ω)
dω =

σ2
0(fθ)

2π

∫ π

−π

g(w)

fθ(ω)
dω (6.4)

takes the role of the model specific part of (6.3). Note that, in accordance with the related literature,

we will now aim at minimising the model specific part instead of maximising it, but we could just as

well have been working with −R0 to retain the more familiar framework.

An estimator for (6.4) is obtained by replacing the unknown true spectral density with a non-

parametric estimate. The natural choice is to use the periodogram, which leads to

R̃0(θ) =
σ2
0(fθ)

2π

∫ π

−π

In(w)

fθ(ω)
dω,

and also introduces the estimator θn = argminθ d0(In, fθ) = argminθ R̃0(θ) for the unknown θ0.

Following the general theme of the paper, this also give rise to a model selection strategy by preferring

the model that, in a set of competing models, attains the smallest value of Eg R0(θ0). As usual, the

initial starting point R̃0(θn) is biased and a model information criterion emerges from the derivation

of a suitable first order bias correction.

Corollary 6.1. Under the conditions of Assumption 3.1 the model robust version of the FPE is given

by

FPE∗(fθ) =
σ2
0(fθn)

2π
[1 + tr{J0(In, fθn)−1K0(In/

√
2, fθn)}+ 〈In, 1/fθn〉], (6.5)

where J0(g, fθ) = 2π[∇2R0(θ)]/σ
2
0(fθ) and

K0(g, fθ) = 4π

∫ π

−π

{[
1

2π

∫ π

−π
∇Ψθ(ω) dω

][
1

2π

∫ π

−π
∇Ψθ(ω) dω

]t
−∇Ψθ(ω)∇Ψθ(ω)

t

}[
g(ω)

fθ(ω)

]2
dω.

If the model is correctly specified, meaning that fθ0 spans the true g, it follows that K0 = 2σ2
0(fθ)J0

and the FPE∗ formula simplifies accordingly.

Proof. From Linhart & Göttingen (1985) we know that

√
n(θn − θ0)

d−→ J0(g, fθ0)
−1U, where U ∼ Np

(
0,

{
σ2
0(fθ)

2π

}2

K0(g, fθ0)

)
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with J0 and K0 as defined above. Let Q̃0 = R̃0(θn) be an estimate for the unknown Q0 = Eg R0(θn),

then by a two-term Taylor expansion we obtain that

R̃0(θn)− R̃0(θ0) = (θn − θ0)
t∇R̃0(θ0) +

1

2
(θn − θ0)

t∇2R̂0(θ̄
(1)
n )(θn − θ0)

=
1

n
V t
n [∇2R̃0(θ̄

(2)
n )−1]Vn +

1

2n
V t
n [∇2R̃0(θ̄

(1)
n )]Vn

=
1

n
Wn +

1

2n
V t
n [∇2R̃0(θ̄

(1)
n )]Vn

since 0 = ∇R̃0(θn) = ∇R̃0(θ0)+(θn−θ0)
t∇2R̃0(θ̄

(2)
n ), where Vn =

√
n(θn−θ0) and |θ̄(i)n −θ0| ≤ |θn−θ0|

for i = 1, 2. In addition, since by definition ∇R0(θ0) = 0 we may also write

R(θn)−R(θ0) =
1

2n
V t
n [∇2R0(θ

(3)
n )]Vn,

where |θ̄(3)n − θ0| ≤ |θn − θ0|. By combining the above results, we may express the expected bias of Q̃0

as

Eg {Q̃0 −Q0} = Eg {R̃0(θn)−R0(θ0)} =
1

n
Eg {εn −Wn + oPg(1)}, (6.6)

where Wn →d W = U t[∇2R0(θ0)]U , and Eg W = σ2
0(fθ) tr{J0(g, fθ0)−1K0(g, fθ0)}/2π, see also Lin-

hart & Göttingen (1985). Furthermore, in order to stay true to the claimed level of precision, we have

to correct for the bias introduced by the periodogram, i.e. since

Eg εn = Eg n(R̃0(θ0)−R0(θ0)) =
σ2
0(fθ)

2π
nEg

∫ π

−π

In(ω)− g(ω)

fθ(ω)
dω = −σ2

0(fθ)

16π3
〈g, 1/fθ0〉+ o(1),

see also the derivation of q∗ in Section 3.2. Summarising the results we now have that

nEg {Q̃1n −Q1} ≈ −σ2
1(fθ)

2π

[
tr{J ′

0(g, θ0)
−1K ′

0(g, θ0)}+
1

8π2
〈g, 1/fθ0〉

]
,

which is what we intended to show.

Finally, in order to obtain expressions for the two matrixes J0 and K0, it is sufficient to work with

the first and second derivative of R0. From

∇R0(θ) =
σ2
0(fθ)

2π

∫ π

−π

{[
1

2π

∫ π

−π
∇Ψθ(ω) dω

]
−∇Ψθ(ω)

}
g(ω)

fθ(ω)
dω,

we are able to obtain K0, see Taniguchi (1980) for details. Secondly, J0(g, fθ) = 2π[∇2R0(θ)]/σ
2
0(fθ),

where

∇2R0(θ) =
σ2
0(fθ)

2π

{[
1

2π

∫ π

−π
∇Ψθ(ω) dω

] ∫ π

−π

([
1

2π

∫ π

−π
∇Ψθ(ω) dω

]
− 2∇Ψθ(ω)

)
g(ω)

fθ(ω)
dω

−
∫ π

−π

([
1

2π

∫ π

−π

g(ω)

fθ(ω)
dω

]
− g(ω)

fθ(ω)

)
∇2Ψθ(ω) dω −

∫ π

−π
∇Ψθ(ω)∇Ψθ(ω)

t g(ω)

fθ(ω)
dω

}
.

Note that in order to obtain consistent estimates, we simply replace the unknown true spectral density

by its periodogram; see also Taniguchi (1980) for additional comments and discussion. �
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6.2. A general model selection strategy for the frequency domain. The generalisation of the

FPE in (6.5) and the derivation of AIC∞ in Section 3 can be seen as members of a common family

of model information criteria. To see this, let g and fθ be spectral densities that again represent the

true model and a parametric candidate from the set of competing models. Furthermore, suppose

D(g, fθ) = D(g) +R(g, fθ), where R(g, fθ) = R(fθ) +

∫ π

−π
hθ(ω)g(ω) dω, (6.7)

is a valid discrepancy measure, i.e. D(g, fθ) ≥ 0 with equality if and only if fθ is equal to g almost

everywhere, with R(g, fθ) taking on the role as the model specific part and where D(g) does not

depend on the candidate model. This class is easily generalised to other types of measures, e.g. in

Dahlhaus & Wefelmeyer (1996) the authors suggest working with functions of the form

D(g, fθ) =

∫ π

−π
T (fθ, g(ω), ω) dω,

for a suitable smooth and interesting functional T . We will not go into details, however; see also

Taniguchi (1979) for similar ideas.

With a little abuse of notation, assume that there exists a unique minimiser θ0 = argminθ D(g, fθ)

and a nonparametric estimator ĝn such that θ̂n = argminθ D(ĝn, fθ) is consistent for this least false

parameter value θ0. This motivates an alternative estimation procedure which has the potential to

focus the estimation to optimise certain important features, which may be quite different to those

obtained by maximum likelihood, e.g. minimising one-step-ahead predictions errors. Moreover, this

also introduces a general family of model selection strategies by preferring the model that minimises

the expected attained discrepancy D(g, f
̂θn
). The corresponding criterion is then derived following

the familiar recipe of bias correcting the initial estimator D̂n = D(ĝn, f̂θn) for the unobtainable

Eg D(g, f
̂θn
); see also Linhart & Zucchini (1986) and in Taniguchi & Kakizawa (2000, Ch. 3.2.5) for

some similar ideas.

A natural estimator for Q = Eg D(g, f
̂θn
) is

Q̂n = R(In, f̂θn) = R(f
̂θn
) +

∫ π

−π
h
̂θn
(ω)In(ω) dω.

Moreover, suppose the expansions

R(In, f̂θn)−R(In, fθ0) =̇ ∇R(In, fθ0)
t(θ̂n − θ0)− 1

2
(θ̂n − θ0)

t[−∇2R(In, fθ0)](θ̂n − θ0) and

R(g, f
̂θn
)−R(g, fθ0) =̇ R(g, fθ0)−

1

2
(θ̂n − θ0)

t[−∇2R(g, fθ0)](θ̂n − θ0),

hold, with∇2R(In, fθ0) →Pg ∇2R(g, fθ0) = −J and∇R(In, fθ0)
t(θ̂n−θ0) →d J−1U , for U ∼ Np(0,K),

for corresponding matrices J and K. Then the arguments of Section 3.3 now justifies

Eg [Q̂n −Q] ≈ 1

n

[
tr(J−1K)− 1

8π2
〈g, hθ0〉

]
,
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which in turn motivates a family of properly corrected model robust ‘spectral information criteria’ by

the formula

SIC∗(fθ) = nD(θ̂n, In)− tr(Ĵ−1
n K̂n) +

1

8π2
〈In, ĥθn

〉, (6.8)

where Ĵn and K̂n are consistent estimates for the matrices J and K above.

7. Illustrations

The general AIC formula is rarely used for selecting among time series models. The reason

is that the AIC is commonly believed to have a tendency to prefer unnecessarily complex models.

The effect is often shown for autoregressive models in small or moderate samples, as discussed in

Hurvich & Tsai (1989). This artifact is also observed to become even worse if the models are fitted

using conditional maximum likelihood, i.e. a trick used to simplify the likelihood function for the

autoregressive models. The idea is to condition on the first kmax observations, where kmax is equal to

the model order of the largest autoregressive model, which can be shown to simplify the likelihood

and making it computational equivalent to a standard regression model, see McQuarrie & Tsai (1998,

Ch. 3) for details.

The preference for large models is illustrated in the simulated example in Figure 7.1 (right), where

the AIC scores based on conditional maximum likelihood are computed for autoregressive models of

increasing order (dotted line). The true order is low, k0 = 3, but it is easily seen that the higher order

models are preferred and according to the AIC the best model is of order k = 7.

There are some attempts to correct for this and the best known adjustment is perhaps the corrected

AIC formula (AICc) suggested in Hurvich & Tsai (1989). The difference between the corrected and

uncorrected AIC is shown in Figure 7.1 (left), where the standard AIC (dotted line) is outperformed

by AICc (dashed line) and AICu (solid line), the latter is a further refinement of AICc suggested in

McQuarrie et al. (1997).

If we instead use standard maximum likelihood estimation and the full Gaussian model to calculate

the scores, the performance of the AIC improves considerable, which is clearly illustrated in Figure 7.1

(middle). Note that the scores attained by the models of order k ∈ {3, 5, 8} are almost identical making

the evidence for the ‘best’ model of order k = 3 a little less convincing. A further improvement is

obtained, however, from implementing the model robust AIC∗
n as shown in Figure 7.1 (middle, dashed

black line). The reason is illustrated in Figure 7.1 (right, dashed black line) where the classical

correction with p is compared with the model robust estimate p̂ ∗ from Section 4. Here we will expect

(on average) that p̂ ∗ is close to p for all models with k ≥ 3, since the models are nested, but for this

particular realisations the larger models are given a slightly larger correction. Note the small dip in

p̂ ∗ for the correct model, i.e. where p = k + 1 = 4.

The higher order models, estimated by conditional maximum likelihood, are often seen to provide

a quite poor fit in comparison with the estimated periodogram, or the raw non-parametric covariance
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Figure 7.1. A simulated sample of size n = 32 of an autoregressive model with true order k0 = 3,

specified by the parameters σ = 1 and ρ = (0.8,−0.5, 0.2), see Brockwell & Davis (1991)

for conditions.

estimates. This is not always reflected by the AIC scores or the log-likelihood values. A more direct

examination of these models would often reject them, however. This is actually the case for the

illustration in Figure 7.1 (left), where the lack of proper fit is revealed by the corresponding estimated

p∗. The reason is that the estimated J and K become very different and the value of p̂ ∗ is therefore

much larger than p, as seen in Figure 7.1 (right, dotted black line).

Moreover, if the fitted model is close to the true model, we would expect that p̂ ∗ is close to p. This

suggests that p̂ ∗ may be used as a model selection procedure on its own, where we prefer the model

that minimises | dim(M)− p̂ ∗(M)|. Finally, we have observed in simulations that if the estimated p∗

explodes for some of the fitted models, it is often an indication that something has gone wrong in the

estimation procedure, with the fitted model quite different from the non-parametric estimate. The

problem often occurs when fitting high-dimensional models in small samples and is also sometimes

caused by numerical instability in the optimisation procedure, which provides an additional argument

for the model robust construction as a quick model check.

8. Concluding remarks

A. AICn vs AIC∞. The two discrepancy measures KLn vs KL∞ defined in (1.3) are perhaps best

interpreted as measures concerned with different parts of the underlying model. The KLn measures

a type of average performance in a new sample of the same size, while the limiting Kullback–Leibler

divergence KL∞ is concerned with the performance of the entire process. This last observation can

be seen from the general structure, since it aims at measuring a type of discrepancy between spectral

densities, which specifies the entire model. In this perspective, the two AIC formulations AIC∞ and

AICn are based on different underlying discrepancy measures and therefore aims at answering different

problems.

B. Smoothed periodograms and tapers. The additional correction q emerged in AIC∞ as a result

of the first order bias introduced with the periodogram as an estimator for the unknown spectral
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density. According to Taniguchi (1979, p. 580) and Taniguchi (1980, p. 74) no other nonparametric

estimators can beat the periodogram at this in terms of variance. Our problem is with the bias,

however, which suggests that smoothed and taper periodogram estimators should also be studied to

see how this affect the overall bias of the estimate for Q = Eg R(θ̃n).

C. Cross-validation. There is a connection between leave-one-out cross-validation, the AIC and

the model robust AIC∗, see e.g. Claeskens & Hjort (2008, Ch. 2.9). In the simple framework with

i.i.d. observations this follows from the attempt to motivate a model selection strategy by preferring

the model that maximises

xvn =
1

n

∑
i≤n

log f(Yi, θ̂(i)),

where θ̂(i) is the maximum likelihood estimator based on the reduced dataset omitting observation Yi.

From this alternative large-sample approximation approach, it follows that xvn =̇ 	n(θ̂n)− p̂ ∗, where

p∗ = tr(J−1K) for the corresponding matrices J and K, and where p̂ ∗ is obtained using suitable

consistent estimates for both J and K. For the time series processes, it is now interesting to see

whether such types of cross-validation approaches to model selection relate to either AICn or AIC∞;

this will require additional work and we will not go into details, however.

D. Detrending. The series worked with so far are all assumed to be stationary and with zero mean.

In real life applications this is usually not the case and a common strategy is to detrend the observed

series before analysing the dependency. This complicates the overall AIC argument considerably, as

we now intend to show.

To easily see how, we consider the simplest non-trivial case where y1, . . . , yn are observations from

the model Yt = β0 + εt, where εt are elements from a stationary Gaussian time series with mean zero.

In order to remove the effect of β0, which is unknown, it is common to mean correct the observed

series and work with ŷt = yt − ȳn = εt − ε̄n as if this is actually stationary with mean zero. This

seemingly innocent correction turns out to have a profound effect on the AIC argument.

Let În(ω) = (2πn)−1|∑t ŷt exp{−iωt}|2 and In be the periodogram based on εt and observe that

∫ π

−π
h(ω)În(ω) dω =

1

2πn
(ε− ε̄n)

tΣn(h)(ε− ε̄n)

=

∫ π

−π
h(ω)In(ω) dω − 1

πn
ε̄n(ε− ε̄n)

tΣn(h)1− 1

2πn
ε̄2n1

tΣn(h)1.

The expectation of the analogue integral in the truly mean zero case is what introduces the correction

term q and is a crucial component in the derivation of AIC∞. To see how the detrended series affect

this part of the bias, we observe that from Lemma A.5 in Dahlhaus (1996) it follows (under slightly

stronger model conditions) that 1tΣn(h)1/(2πn) = h(0) + O(n−2/3 log2k+2 n) provided h is sufficient
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smooth. Furthermore,

1

πn
Eg[ε

tΣn(h)1ε̄n] =
1

πn2
Eg[ε

tΣn(h)1ε
t]

=
1

πn2
tr{Σn(h)1Σn(g)} =

1

πn2
1tΣn(h)Σn(g)1 =

4πh(0)g(0) +O(n−2/3 log2k+2 n)

n
,

which in summary results in

Eg

∫ π

−π
h(ω)În(ω) dω = Eg

∫ π

−π
h(ω)In(ω) dω +

h(0)

n
{Cg(0) + 4πg(0)}+ o(1/n).

indicating that even a modest mean correction actually introduces additional correction terms and

more complexity.

E. Alternative motivation for the Whittle log-likelihood. The connection with the asymptotic

Kullback–Leibler divergence (3.3) establishes an independent motivation for the Whittle estimator,

since it can be viewed as a direct attempt at estimating the least false parameter value θ0 from the limit

discrepancy measure, i.e. θ̃n = argminθ d(In, fθ), see Taniguchi (1979) and Dahlhaus & Wefelmeyer

(1996) for related ideas and comments.

9. Appendix

The following is an argument for why we are allowed to make the change from full Gaussian log-

likelihood and maximum likelihood estimation to the Whittle approximation and related estimates in

Section 3. Remember the original setup where we viewed Q̃n as an estimator for Eg R(θ̂n). Then the

Taylor expansion in (3.13) results in

R(θ̂n) = R(θ0) +∇R(θ0)
t(θ̂n − θ0)− 1

2
(θ̂n − θ0)

tJ(θ̄(3)n )(θ̂n − θ0) =̇ R(θ0)− 1

2n
V t
nJ(θ0)Vn,

which does not alter the result in the final derivation in any way. In addition, if we use R̃n(θ̂n) as

an estimator for Q we still have the same version of the AIC formula. This is seen from the Taylor

expansion in (3.12), which in the current framework gives

R̃n(θ̂n) =̇ R̃n(θ0) +∇R̃n(θ0)
t(θ̂n − θ0) +

1

2
(θ̂n − θ0)

t∇2R̃n(θ0)(θ̂n − θ0).

The first and the third term to the right do not cause any real problems to the general derivation.

In order to obtain full control on the second term we apply a result form the proof of Theorem 3.3

in Dahlhaus & Wefelmeyer (1996) that (essentially) states that
√
n(∇	n(θ0)−∇	̃n(θ0)) →Pg 0. This

means that

∇R̃n(θ0)
t(θ̂n − θ0) =̇ ∇R̂n(θ0)

t(θ̂n − θ0) =̇ (θ̂n − θ0)
tJ(θ0)(θ̂n − θ0),

where R̂n(θ) = 	n(fθ)/n+
1
2 log 2π and we get the same limit and expectation since the two estimators

converges to the same distribution.
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