
Efficient Calculation of
Derivatives using Automatic
Differentiation
With applications in optimization and reservoir simulation

Vegard Ove Endresen Kjelseth
Master’s Thesis Autumn 2014

Efficient Calculation of Derivatives using
Automatic Differentiation

Vegard Ove Endresen Kjelseth

July 31, 2014

ii

Abstract

There is a wide range of computational problems that require the knowl-
edge of derivatives of mathematical functions to be solved. In cases where
we know the functions we need the derivatives of, these can simply be
calculated by hand. For cases where we need to handle arbitrary math-
ematical expressions, methods such as finite differences are often used to
approximate the derivatives we need.

Both these methods bring with them certain disadvantages that are
desirable to avoid. Finite differences can be too expensive to perform when
the function we need derivatives of is expensive to evaluate. It also has
the downside of introducing errors. Calculating derivatives by hand is the
fastest option once the expressions for the derivatives have been calculated,
but it is very error-prone and the sheer amount of derivatives necessary to
calculate will often make this option too time-consuming to implement.

This thesis explores a different option, Automatic Differentiation. This
is a method of computation that calculates the derivatives of mathematical
functions to floating-point precision, without introducing any extra com-
plexity to the code that uses it. This thesis will go through the theory and
implementation behind this, before proceeding to show how this can be
used to help solve computational problems in optimization and reservoir
simulation using the Python programming language.

iii

iv

Contents

1 Introduction 1

I Automatic Differentiation 3

2 Introduction to Automatic Differentiation 5

3 Derivatives of multivariate functions to arbitrary order 9
3.1 Introduction . 9
3.2 Notation . 10
3.3 Derivation of formulas . 11

3.3.1 Multiplication . 12
3.3.2 Supporting Corollary 12
3.3.3 Natural Logarithm . 14
3.3.4 Remaining functions and operators 14

3.4 Example usage of formulas 16
3.5 The special case of first order derivatives 17
3.6 Alternate approaches . 18

3.6.1 Univariate Taylor Series 19
3.6.2 Reverse-mode . 19

4 Implementation of an AD framework in Python 21
4.1 Introduction . 21
4.2 A more efficient way of storing Taylor coefficients 24
4.3 Vectors of AD variables and expressions 25
4.4 Initialization and Usage . 26
4.5 Computing weighted sums of Taylor coefficient products . . 28
4.6 Overloaded operators . 30

4.6.1 Addition . 30
4.6.2 Multiplication . 31
4.6.3 Division . 32
4.6.4 Additional overloaded operators 34

4.7 Mathematical functions defined for the AD class 34
4.7.1 Exponential function 34
4.7.2 Natural logarithm . 36
4.7.3 Square Root . 36
4.7.4 Inverse Trigonometric Functions 36
4.7.5 Trigonometric Functions 37

v

vi CONTENTS

II Applications 39

5 Optimization 41
5.1 Introduction . 41
5.2 Single variable optimization 41

5.2.1 Newton’s method . 42
5.2.2 Finding maxima and minima 42
5.2.3 Implementation : Newton’s method 43
5.2.4 Implementation : Finding maxima and minima . . . 44
5.2.5 Analysis of results . 45

5.3 Multivariate optimization . 45
5.3.1 Method of Steepest Descent 45
5.3.2 Newton based method for finding extrema 46
5.3.3 Implementation : Method of Steepest Descent 47
5.3.4 Implementation : Newton’s method 48
5.3.5 Analysis of results . 50

5.4 Final Remarks . 52

6 Reservoir Simulation 55
6.1 Introduction . 55
6.2 Background theory on reservoir simulation 56

6.2.1 Oil Reservoir Characteristics 56
6.2.2 Mathematical Model 58
6.2.3 Discretizing the Mathematical Model 59
6.2.4 Production Process and Well Rates 61
6.2.5 Reservoir Model . 62
6.2.6 Newton’s method for PDE’s 62

6.3 Reservoir simulation in Python 65
6.3.1 Implementation of Solver 65
6.3.2 Performance Comparison to MATLAB Implementation 71
6.3.3 Analysis of results . 72

6.4 Final Remarks . 74

III Conclusion 75

7 Summary and Analysis of the Thesis 77
7.1 Summary and evaluation . 77
7.2 What could have been done differently? 79
7.3 Conclusion . 80

8 Further Work 81
8.1 AD framework performance improvements 81
8.2 Building a reservoir simulation library in Python 82
8.3 Using the AD framework for more advanced optimization

problems . 82
8.4 Building a more complete testing framework 82

CONTENTS vii

IV Appendix 83

A Automatic Differentiation 85
A.1 Proof of Formulas . 85

A.1.1 Division . 85
A.1.2 Exponential function 86
A.1.3 Square root . 86
A.1.4 Inverse trigonometric functions 86
A.1.5 Trigonometric functions 87

A.2 Code . 87
A.2.1 AD class . 87
A.2.2 Custom decorator . 101
A.2.3 Math Library . 102
A.2.4 initADI . 107

B Testing Framework 109

C Reservoir Simulation Code 115
C.1 MATLAB Implementation . 115
C.2 Reservoir Simulation Script 119
C.3 Reservoir Constants . 120
C.4 Reservoir Functions . 120

Bibliography 123

viii CONTENTS

List of Figures

5.1 Distance to minimum as a function of the number of
iterations. 51

5.2 Plot of f (x, y) = 4x2y2 + 8y2 + 3x2 + 27 51
5.3 Paths toward the minimum point test 52

6.1 10× 10× 10 Reservoir Grid 63
6.2 20× 20× 20 Reservoir Grid 63
6.3 30× 30× 30 Reservoir Grid 64
6.4 Plots surface volume rate per day over the course of a year . 73
6.5 Plots the cumulative extracted volume 73

ix

x LIST OF FIGURES

Preface

This thesis was written at the Department of Informatics at the University
of Oslo in cooperation with SINTEF’s Center of Applied Mathematics.
Stein Krogstad has been my main supervisor during the work on this
master’s thesis, and I would like to thank him for his guidance and advice
throughout this process.

I would also like to thank Halvor Møll Nilsen and Xing Cai for taking
on the role as supporting supervisors. Finally, I would like to thank my
parents, Bente and Ove, for their advice and moral support.

xi

xii LIST OF FIGURES

Chapter 1

Introduction

There are many computational problems that require knowledge of the
derivatives of mathematical expressions in order to be solved. Examples
are optimization problems where you might need to find the minimum
or maximum value of a function, as well as problems where partial
differential equations are solved using Newton’s method. Two common
ways of obtaining the necessary derivatives are calculating the derivatives
of the relevant mathematical expressions by hand and approximating the
derivatives with numerical differentiation.

Calculating the derivatives by hand obviously does not lend itself
well to creating general solvers that can handle arbitrary mathematical
expressions. However, it is a viable option for cases where we know all
the mathematical expressions we need the derivatives of. Performance-
wise this is the best option, but it can be very time consuming and it is easy
to introduce bugs by making mistakes in the calculation of the derivatives.

Unlike calculating the derivatives by hand, numerical differentiation al-
lows us to to calculate approximations to the derivative of any mathemati-
cal function. This makes it a possible solution for general solvers, but it has
the drawback of introducing errors and being too time consuming in cases
where we need a large amount of derivatives and the cost of evaluating the
mathematical function at hand is high.

Ideally we would like to have a solution that gives us the best of both
worlds, in other words simple access to exact derivatives of arbitrary
mathematical expressions without having to sacrifice performance. In
reality the best we can hope to accomplish is a compromise that supplies
us with the exact derivatives without too much of a performance hit. The
question that then arises is whether or not such a solution can be made?

The answer is Automatic Differentiation, which is a method of calculat-
ing the derivatives of any expression to floating point precision. This can be
programmed in a way that makes the derivatives immediately accessible in
any program that uses it, thus eliminating the need to write any extra code

1

2 CHAPTER 1. INTRODUCTION

to calculate the relevant derivatives and making it easier to avoid bugs.
In terms of performance it is naturally slower than if we calculated all the
derivative expressions beforehand, while compared to using numerical dif-
ferentiation it will sometimes be faster with the added benefit of no error
term.

These factors make the AD framework a good choice for two kinds of
applications. For general solvers where we need to find derivatives of
arbitrary expressions it can be used instead of numerical differentiation in
cases where this is too slow or where we require the exact derivatives. For
specialized solvers, where we know the relevant mathematical expressions,
the AD framework can be used instead of calculating the derivatives by
hand. This allows us to write a complete program faster and if it has to
be put to use in a production environment later on, and faster execution is
required, it can be rewritten to focus on performance.

The ideas behind Automatic Differentiation have been around for a long
time, with the concept being introduced by Wengert as early as 1964 [15].
Automatic Differentiation was further developed the following decades,
with Rall publishing a book about it in 1981 [10]. Towards the end of
the 1980s and early 1990s a large amount of articles were published on
the subject, including Neidinger’s article in 1992 [6], which has been used
as the starting point for the work on Automatic Differentiation in this
thesis. Since then several authors have written articles on ways to improve
performance, which includes Griewank in [3] and Neidinger in [7], among
others.

The focus of this thesis will be on creating a fully functional Automatic
Differentiation framework that can be used to help solve computational
tasks requiring derivatives of mathematical expressions. The underlying
theory and the implementation of such a framework in Python is the topic
of part I of the thesis. The second part of the thesis focuses on applications
where the AD framework is used. This includes solving the differential
equations related to an oil reservoir, as well as several examples of how
it can be used in optimization. The final part of the thesis consists of the
conclusion, where the results are discussed, what could have been done
differently and how to improve further on what has been made.

Part I

Automatic Differentiation

3

Chapter 2

Introduction to Automatic
Differentiation

Automatic Differentiation (AD) is a method of computation used to
calculate the derivatives of any mathematical expression. This can be done
for derivatives up to an arbitrary order, involving any number of variables,
and the error is bounded by the floating-point errors accumulated during
the calculations. To explain how this can be done we will look at how it
should work ideally for first order derivatives of expressions involving a
single variable, and then outline how that can be achieved.

Consider that we wish to calculate the value of the expression x sin (x)
for x = 3, and that we also want to access the first order derivative at this
point. The pseudo code below illustrates how this could be done:

1 # Ca l c u l a te express ion
2 x = 3
3 expr = x * s i n (x)
4

5 # P r i n t value and f i r s t order d e r i v a t i v e
6 p r i n t expr
7 p r i n t expr . der

In this example the derivative of the expression is somehow stored in the
expression variable in addition to the value. We can achieve this in Python
by creating a class that can hold both the value and derivative. Let us call
this class AD, in which case the pseudo code looks as follows:

1 # Ca l c u l a te express ion
2 x = AD(val =3 , der =1)
3 expr = x * s i n (x)
4

5 # P r i n t value and f i r s t order d e r i v a t i v e
6 p r i n t expr . val
7 p r i n t expr . der

Here we start off by creating an instance of the AD class where the value
equals 3 and the first order derivative equals 1, since the derivative of x
with respect to x is simply 1. The expression is calculated next and the

5

6 CHAPTER 2. INTRODUCTION TO AUTOMATIC DIFFERENTIATION

value and derivative are printed. Somehow the operation of calculating
the expression must result in a new AD instance with the correct value and
derivative. We can start off by creating our own sin function that takes an
AD instance g (x) as an argument and returns a new AD instance with the
value sin (g (x)) and the derivative equal to cos (g (x)) g′ (x).

1 def ADsin (g) :
2 # Ca l c u l a te value
3 val = s in (g . val)
4

5 # Ca l c u l a te d e r i v a t i v e
6 der = cos (g . val) * g . der
7

8 # Create AD i n s t a n c e
9 new = AD(val=val , der=der)

10

11 # Return o b j e c t
12 re turn new

Using this function our example code now looks as follows:

1 # Ca l c u l a te express ion
2 x = AD(3) # x . val = 3 , x . der = 1
3 expr = x * ADsin (x)
4

5 # P r i n t value and f i r s t order d e r i v a t i v e
6 p r i n t expr . val
7 p r i n t expr . der

The only change is that we now use our custom sin function to calculate
sin (x). Since this returns an AD object, we need to have a way of
multiplying two AD objects together. Python gives us the option of
defining special functions that are called when we multiply a variable with
an object of a custom class, a process called overloading. For this example
we need to define the __rmul__ function in the AD class, which could look
like this:

1 c l a s s AD:
2 def __rmul__ (s e l f , g) :
3 # Ca l c u l a te value
4 val = s e l f . val * g . val
5

6 # Ca l c u l a te d e r i v a t i v e
7 der = s e l f . val * g . der + s e l f . der * g . val
8

9 # Create AD o b j e c t
10 new = AD(val=val , der=der)
11

12 # Return AD o b j e c t
13 re turn new

In the code above, the product rule was used to calculate the derivative.
With this final function defined the example script would now work, with
the expression variable now including the correct value and derivative.

7

We could now proceed to create functions for not just sin, but other
mathematical functions as well. Additionally, Python makes it possible
to overload operators not just for multiplication like above, but for other
common mathematical operations as well. Implementing all this would
leave us with the ability to calculate most mathematical expressions and
always have the first order derivative readily available. However, we are
interested in creating an AD framework that can deal with more than one
variable and where we can access derivatives up to an arbitrary order.
To do that the mathematical formulas become more complicated, but the
general idea of overloading operators and creating functions for a wide
range of mathematical functions remain the same. In the next chapter we
will derive the necessary mathematical formulas to create a general AD
framework, before we proceed to discuss how this is implemented.

8 CHAPTER 2. INTRODUCTION TO AUTOMATIC DIFFERENTIATION

Chapter 3

Derivatives of multivariate
functions to arbitrary order

3.1 Introduction

In general we are interested in being able to find derivatives up to an
arbitrary order involving any number of variables. To get started it is
necessary to determine how to store the derivatives. Let n denote the
number of variables, max denote the maximum order of the derivatives
and ~x denote the values for the variables x1, . . . , xn. We can store all the
derivatives in a multidimensional array with n dimensions and a length of
max + 1 along each of the dimensions as presented in [6, p. 3].

If we access the array with the indices [i1, i2, . . . , in] the corresponding
value is the value of the expression differentiated i1 times with regard to
the first variable, i2 times with regard to the second, and in general ij times
with regard to the j’th variable. Additionally, all derivatives are evaluated
at the point ~x. For indices where the sum exceeds the maximum order of
the derivatives, the value will not be available.

Assume that n = 2 and that we want to find all derivatives up to the
order max = 2 for the general expression f (~x). We store the derivatives
and the value in the matrix F, with dimensionality equal to 2 with a length
of 3 along each dimension.

F =

 f (~x) fx2 (~x) fx2x2 (~x)
fx1 (~x) fx1x2 (~x)

fx1x1 (~x)

Assume that we want to add two expressions f (~x) and g (~x). Since
differentiation is distributive we simply need to add the corresponding
matrices. [6, p. 3]

9

10CHAPTER 3. DERIVATIVES OF MULTIVARIATE FUNCTIONS TO ARBITRARY ORDER

F+G =

 f (~x) fx2 (~x) fx2x2 (~x)
fx1 (~x) fx1x2 (~x)

fx1x1 (~x)

+

 g (~x) gx2 (~x) gx2x2 (~x)
gx1 (~x) gx1x2 (~x)

gx1x1 (~x)

The same thing holds for subtraction. If we want to subtract the

expression g (~x) from f (~x) we simply subtract the matrix G from F.

F−G =

 f (~x) fx2 (~x) fx2x2 (~x)
fx1 (~x) fx1x2 (~x)

fx1x1 (~x)

−
 g (~x) gx2 (~x) gx2x2 (~x)

gx1 (~x) gx1x2 (~x)
gx1x1 (~x)

A slightly different and indirect way of storing the values of derivatives

is to store the corresponding multivariate Taylor coefficients instead of the
actual derivatives. The matrix F corresponding to the expression f (~x) will
then take the following form.

F =

 f (~x) 1
1! fx2 (~x)

1
2! fx2x2 (~x)

1
1! fx1 (~x)

1
1!1! fx1x2 (~x)

1
2! fx1x1 (~x)

The formulas for adding and subtracting expressions stays the same

when storing the Taylor coefficients instead of the derivatives. In the
following sections we will use this as the underlying data representation
when deriving formulas for other operators and functions. The reasoning
behind this is that it makes many of the necessary calculations a lot faster,
which will be evident later on.

3.2 Notation

To denote the derivatives of expressions with an arbitrary number of
variables we will use multi-indices. A multi-index~k is defined as:

~k = (k1, k2, . . . , kn) ki ∈N0 ∀ i ∈ {1, 2, . . . , n}

Additionally any multi-indices~k and~j satisfy the following relations:

~k±~j = (k1 ± j1, k2 ± j2, . . . , kn ± jn)

~k ≤~j ⇔ ki ≤ ji ∀ i ∈ {1, 2, . . . , n}

|~k| = k1 + k2 + · · ·+ kn

~k! = k1!k2! . . . kn!(~k
~j

)
=

(
k1

j1

)(
k2

j2

)
. . .
(

kn

jn

)
=

~k!
~j!
(
~k−~j

)
!

3.3. DERIVATION OF FORMULAS 11

Additionally we will use the following notation for differential operators:

∂ki
i =

∂ki

∂xki
i

∂
~k = ∂k1

1 ∂k2
2 . . . ∂kn

n

∂
~k∂

~j = ∂
~k+~j

The space of all the Taylor coefficient multi-indices, including the 0 vector
corresponding to the expression’s value, is described as follows:

Ad =
{
~k | |~k| ≤ max

}
We will encounter many sums that involve multi-indices in this section.
These look as follows:

~k
∑
~j=~0

h
(
~j,~k
)

∑
~j>~0
~j≤~k

h
(
~j,~k
)

∑
~j<~k

h
(
~j,~k
)

What is meant by the left-most sum is that the we are summing the terms
h
(
~j,~k
)

for all~j ∈ Ad that satisfy~0 ≤~j ≤~k [6, p. 4]. The middle means that

we are performing the sum for all ~j ∈ Ad that satisfy~0 ≤ ~j ≤ ~k, with the
exception of~j = ~0. The right-most means that we are performing the sum
for all~j ∈ Ad that satisfy~0 ≤~j ≤~k, with the exception of~j =~k.

For simplicity we will sometimes drop the arguments to functions
and simply use f to describe f (~x). We will use Tf ,~k to denote the

Taylor coefficient for the expression f corresponding to the derivative ~k.
Additionally it is assumed that the Taylor expansion is done around the
point ~x that we’re considering, so all Taylor coefficients are evaluated in
this point.

3.3 Derivation of formulas

In this section we will look at the derivation of some of the formulas for
the Taylor coefficients resulting from different mathematical functions and
operators. We will derive the expressions for multiplication and the natural
logarithm, which will outline the general ideas that can be used to prove
the formulas for a range of other mathematical expressions as well. These
additional formulas will simply be listed in this section, while the full
proofs can be found in the appendix. We will also present a corollary that
is necessary to derive some of the formulas.

12CHAPTER 3. DERIVATIVES OF MULTIVARIATE FUNCTIONS TO ARBITRARY ORDER

3.3.1 Multiplication

To derive a formula for the derivatives of the product f g we will use the
generalized Leibniz’s Rule [6, p. 4], which states that if u and v are real-
valued functions on an open domain inRn the following equation holds:

∂
~k (f g) =

~k

∑
~j=~0

(~k
~j

)
∂
~j f ∂

~k−~jg (3.1)

This gives us the formula for finding the derivatives. Given the expression
above the Taylor coefficients,Tf g,~k, are given as:

Tf g,~k = 1
~k!

∂
~k (f g)

= 1
~k!

~k
∑
~j=~0

(
~k
~j) ∂

~j f ∂
~k−~jg

= 1
~k!

~k
∑
~j=~0

~k!
~j!(~k−~j)!

∂
~j f ∂

~k−~jg

=
~k
∑
~j=~0

1
~j!(~k−~j)!

∂
~j f ∂

~k−~jg

=
~k
∑
~j=~0

(
1
~j!

∂
~j f
)(

1
(~k−~j)!

∂
~k−~jg

)
=

~k
∑
~j=~0

Tf ,~jTg,~k−~j

This gives us the final formula which shows that we can calculate all the
desired Taylor coefficients as long as we know the Taylor coefficients of f
and g.

Tf g,~k =
~k

∑
~j=~0

Tf ,~jTg,~k−~j (3.2)

This formula also illustrates the computational advantage of storing
Taylor coefficients instead of the actual derivatives, since it eliminates the
need to calculate the binomials present in the generalized Leibniz’ Rule.

3.3.2 Supporting Corollary

To derive formulas for different functions and operators it is necessary
to introduce a corollary that we will use in later derivations. A similar
corollary was derived by Neidinger in [6, p. 5] for derivatives. We will
use the same idea as presented by Neidinger, but we will instead derive a
corollary that can be used to calculate Taylor coefficients.

Corollary. Let ~e be a one-order vector, meaning that |~e| = 1, and assume that
~e ≤~k for~k ∈ Ad and that i is the index where ei = 1. Let f ,g and h be real valued
smooth functions on an open domain inRn that satisfy the following relation:

∂~eh = f ∂~eg

3.3. DERIVATION OF FORMULAS 13

The Taylor coefficients, Th,~k, can then be calculated using the following formula.

Th,~k =
~k−~e
∑
~j=~0

ki − ji
ki

Tf ,~j Tg,~k−~j (3.3)

Proof. To prove this suppose that h, f and g are real-valued smooth
functions on an open domain in Rn such that ∂~eh = f ∂~eg for some ~e that
satisfies |~e| = 1 and ~e ≤ ~k for ~k ∈ Ad. Let h′ = ∂~eh and g′ = ∂~eg. By
using the Generalized Leibniz’s Rule (3.1) on h′ = f g′ we get the following
expression:

∂
~k−~eh′ =

~k−~e
∑
~j=~0

(~k−~e
~j

)
∂
~j f ∂

~k−~e−~jg′ (3.4)

We can rewrite two of the terms in the above equation as follows:

∂
~k−~eh′ = ∂

~k−~e∂~eh = ∂
~kh

∂
~k−~e−~jg′ = ∂

~k−~e−~j∂~eg = ∂
~k−~jg

Substituting this into the (3.4) yields the following expression:

∂
~kh =

~k−~e
∑
~j=~0

(~k−~e
~j

)
∂
~j f ∂

~k−~jg =
~k−~e
∑
~j=~0

(
~k−~e

)
!

~j!
(
~k−~j−~e

)
!

∂
~j f ∂

~k−~jg (3.5)

Since ~e is a one-order vector, we know that ei = 1 for a single i, while
the rest are equal to 0. Let i denote the index where ei = 1. Using this
knowledge we can rewrite the factorials as follows:(

~k−~e
)

! =
~k!
ki(

~k−~j−~e
)

! =
(~k−~j)!
ki−ji

Note that since ~e ≤ ~k we know that ki ≥ 1. Additionally, we know that
~j ≤ ~k−~e so ji ≤ ki − ei < ki. This shows that we’re not at risk of dividing
by zero in any of the expressions above. Substituting these expressions into
(3.5) yields:

∂
~kh =~k!

~k−~e
∑
~j=~0

ki − ji
ki

(
1
~j!

∂
~j f

) 1(
~k−~j

)
!
∂
~k−~jg

 (3.6)

Dividing by~k! in (3.6) yields the final expression:

Th,~k =
∂
~kh
~k

=
~k−~e
∑
~j=~0

ki − ji
ki

(
∂
~j f
~j!

) ∂
~k−~jg(

~k−~j
)

!

 =
~k−~e
∑
~j=~0

ki − ji
ki

Tf ,~j Tg,~k−~j

Note that we can not use equation (3.3) to calculate Th,~k for~k = ~0 since
~k ≥ ~e and~e is a one-order vector. This means that we can not find Th,~0 using
this formula. This is not a problem, however, since Th,~0 is just equal to the
function value h (~x).

14CHAPTER 3. DERIVATIVES OF MULTIVARIATE FUNCTIONS TO ARBITRARY ORDER

3.3.3 Natural Logarithm

Assume that ~h (~x) = ln (g (~x)). Then ∂~eh = ∂~eg
g for any one-order vector

~e, which can be written as ∂~eg = g ∂~eh. Using equation (3.3) yields the
following formula for any~k ≥ ~e:

Tg,~k =
~k−~e
∑
~j=~0

ki − ji
ki

Tg,~j Th,~k−~j

The first term in this summation for~j =~0 is Tg,~0 Th,~k. Pulling this out of the
sum yields:

Tg,~k = Tg,~0 Th,~k + ∑
~j>~0

~j≤~k−~e

ki − ji
ki

Tg,~j Th,~k−~j

Rearranging the expression and using the fact that Tg,~0 = g (~x) yields the
final formula:

Th,~k =

Tg,~k − ∑
~j>~0

~j≤~k−~e

ki − ji
ki

Tg,~j Th,~k−~j

 /g (~x) (3.7)

This expression requires us to know the Taylor coefficients of h, which
are not yet known prior to the calculation. However, for a given ~k it is
only necessary to know the values of the Taylor coefficients of a lower
order. This makes it possible to calculate Th,~k for all~k ∈ Ad as long as all
Taylor coefficients of a lower order have been calculated beforehand. Note
that dividing by 0 might cause a problem with this formula, but this only
happens if we were calculating the logarithm of 0 to begin with.

3.3.4 Remaining functions and operators

The proofs for the remaining functions and operators follow the same
methods as shown for multiplication and the natural logarithm. These can
all be found in the appendix. This section lists the remaining formulas.

Division

For the calculation h = f /g we get the following formula for any~k ∈ Ad

and one-order vector~e that satisfies~e ≤~k:

Th,~k =

Tf ,~k − ∑
~j<~k

Th,~jTg,~k−~j

g (~x)
(3.8)

3.3. DERIVATION OF FORMULAS 15

Exponential function

For the calculation h = eg we get the following formula for any~k ∈ Ad and
one-order vector~e that satisfies~e ≤~k:

Th,~k =
~k−~e
∑
~j=~0

ki − ji
ki

Th,~j Tg,~k−~j (3.9)

Square Root

For the calculation ~h (~x) =
√

g (~x) we get the following formula for any
~k ∈ Ad and one-order vector~e that satisfies~e ≤~k:

Th,~k =

Tg,~k − 2 ∑
~j>~0

~j≤~k−~e

ki − ji
ki

Th,~j Th,~k−~j

 /2h (~x) (3.10)

Inverse Trigonometric Functions

For the calculation ~h (~x) = arctan (g (~x)) we need to calculate the
expression f given as f = 1

1+g2 . We get the following formula for any
~k ∈ Ad and one-order vector~e that satisfies~e ≤~k:

Th,~k =
~k−~e
∑
~j=~0

ki − ji
ki

Tf ,~j Tg,~k−~j (3.11)

For arcsin and arccos the formula is the same as equation (3.11), but where
f = 1√

1−g2
for arcsin and f = −1√

1−g2
for arccos.

Trigonometric Functions

For the calculations h (~x) = sin (f (~x)) and g (~x) = cos (f (~x)) we get the
following formulas for any ~k ∈ Ad and one-order vector ~e that satisfies
~e ≤~k:

Th,~k =
~k−~e
∑
~j=~0

ki − ji
ki

Tg,~j Tf ,~k−~j (3.12)

Tg,~k = −
~k−~e
∑
~j=~0

ki − ji
ki

Th,~j Tf ,~k−~j (3.13)

This shows that to calculate one we need to know the other as well, so both
have to be calculated even if we are only interested in one of them.

16CHAPTER 3. DERIVATIVES OF MULTIVARIATE FUNCTIONS TO ARBITRARY ORDER

Additional functions and operators

A lot of other functions that have not been mentioned so far can be
calculated using the functions we have derived formulas for. Five examples
of these follow below.

h = g f ⇒ h = e f ∗ln(g)

h = sinh (g) ⇒ h = 0.5 ∗ (eg − e−g)
h = cosh (g) ⇒ h = 0.5 ∗ (eg + e−g)

h = tanh (g) ⇒ h = 1−e−2g

1+e−2g

h = tan (g) ⇒ h = sin(g)
cos(g)

3.4 Example usage of formulas

To show how these formulas are used in a programming environment we
will take a look at how they can be used to calculate the derivatives of two
mathematical expressions. We will consider examples with two variables,
the first being x and the second being y, and consider derivatives up to the
second order. The variable x will be set to 3 and y will be set to 2. The
Taylor coeffecient matrices for x and y, X and Y respectively, will look as
follows:

X =

 3 0 0
1 0
0

 Y =

 2 1 0
0 0
0

Now assume that we want to calculate the expression g (x, y) = xy.
Recall that the formula (3.2) for the Taylor coefficients of two expressions
multiplied together was given as follows:

Tf g,~k =
~k

∑
~j=~0

Tf ,~jTg,~k−~j (3.14)

Using this we get the following Taylor coefficents for g (x, y):

Txy,(0,0) = Tx,(0,0)Ty,(0,0)
= 3 ∗ 2 = 6

Txy,(0,1) = Tx,(0,0)Ty,(0,1) + Tx,(0,1)Ty,(0,0)
= 3 ∗ 1 + 0 ∗ 2 = 3

Txy,(0,2) = Tx,(0,0)Ty,(0,2) + Tx,(0,1)Ty,(0,1) + Tx,(0,2)Ty,(0,0)
= 3 ∗ 0 + 0 ∗ 1 + 0 ∗ 2 = 0

Txy,(1,0) = Tx,(0,0)Ty,(1,0) + Tx,(1,0)Ty,(0,0)
= 3 ∗ 0 + 1 ∗ 2 = 2

Txy,(1,1) = Tx,(0,0)Ty,(1,1) + Tx,(0,1)Ty,(1,0) + Tx,(1,0)Ty,(0,1) + Tx,(1,1)Ty,(0,0)
= 3 ∗ 0 + 0 ∗ 0 + 1 ∗ 1 + 0 ∗ 2 = 1

Txy,(2,0) = Tx,(0,0)Ty,(2,0) + Tx,(1,0)Ty,(1,0) + Tx,(2,0)Ty,(0,0)
= 3 ∗ 0 + 1 ∗ 0 + 0 ∗ 2 = 0

3.5. THE SPECIAL CASE OF FIRST ORDER DERIVATIVES 17

This gives us the following matrix of Taylor coefficients for g:

G =

 6 3 0
2 1
0

which is the result we expected. Using the same variables as before let
us assume that we want to calculate the expression h (x, y) = eg = exy.
Recall that the formula (3.9) for the Taylor coefficients of the exponent of an
expression was given as follows for any any~k ∈ Ad and one-order vector~e
that satisfies~e ≤~k:

Th,~k =
~k−~e
∑
~j=~0

ki − ji
ki

Th,~j Tg,~k−~j (3.15)

Also recall that this formula is not used for calculating Th,(0,0), which is
simply the value of the expression e6. The following notation will be used
to denote the one-order vector used in the calculation of a given Taylor
coefficient: [

Th,~k

]~e=(e0,e1)

Using the formula yields the following values for the different Taylor
coefficients:[

Th, ~(0,1)

]~e=(0,1)
= 1−0

1 Th,(0,0)Tg,(0,1)

= e6 ∗ 3 = 3e6[
Th, ~(0,2)

]~e=(0,1)
= 2−0

2 Th,(0,0)Tg,(0,2) +
2−1

2 Th,(0,1)Tg,(0,1)

= e6 ∗ 0 + 1
2 ∗ 3e6 ∗ 3 = 9

2 e6[
Th, ~(1,0)

]~e=(1,0)
= 1−0

1 Th,(0,0)Tg,(1,0)

= e6 ∗ 2 = 2e6[
Th, ~(1,1)

]~e=(1,0)
= 1−0

1 Th,(0,0)Tg,(1,1) +
1−0

1 Th,(0,1)Tg,(1,0)

= e6 ∗ 1 + 3e6 ∗ 2 = 7e6[
Th, ~(2,0)

]~e=(1,0)
= 2−0

2 Th,(0,0)Tg,(2,0) +
2−1

2 Th,(1,0)Tg,(1,0)

= e6 ∗ 0 + 1
2 ∗ 2e6 ∗ 2 = 2e6

This gives us the following matrix of Taylor coefficients for h:

H =

 e6 3e6 9
2 e6

2e6 7e6

2e6

which is the result we expected.

3.5 The special case of first order derivatives

Although the general formulas derived in the previous sections can be used
to calculate any order of derivatives, in the case of first order derivatives it

18CHAPTER 3. DERIVATIVES OF MULTIVARIATE FUNCTIONS TO ARBITRARY ORDER

is desirable to use a set of simpler formulas. The reasoning behind this is
that the simplicity of these formulas allows us to implement them much
more efficiently in a programming environment. The formulas for the first
order derivatives of the functions and operators described above follow
below:

• ∂
∂xi

(u + v) = ∂u
∂xi

+ ∂v
∂xi

• ∂
∂xi

(u− v) = ∂u
∂xi
− ∂v

∂xi

• ∂
∂xi

(uv) = ∂u
∂xi

v + u ∂v
∂xi

• ∂
∂xi

(
uv−1) = ∂u

∂xi
v−1 − u ∂v

∂xi
v−2

• ∂
∂xi

(eu) = eu ∂u
∂xi

• ∂
∂xi

(log (u)) = ∂u
∂xi

u−1

• ∂
∂xi

(√
u
)
= 1

2
∂u
∂xi

u−
1
2

• ∂
∂xi

(cos (u)) = − ∂u
∂xi

sin (u)

• ∂
∂xi

(sin (u)) = ∂u
∂xi

cos (u)

• ∂
∂xi

(arcsin (u)) = ∂u
∂xi

(
1− u2)− 1

2

• ∂
∂xi

(arccos (u)) = − ∂u
∂xi

(
1− u2)− 1

2

• ∂
∂xi

(arctan (u)) = ∂u
∂xi

(
1 + u2)−1

Since first order Taylor coefficients are simply equal to the first order
derivatives these formulas are really just simpler formulations of the
more general formulas derived in the previous sections. However,
working with these formulas instead of the general ones when finding
first order derivatives allows us to easily vectorize our calculations in the
implementation. Vectorization is the process of working on an entire vector
of values at once instead of each of the elements individually, something
that results in much faster calculations.

3.6 Alternate approaches

Automatic Differentiation was, as noted in the thesis introduction, first
introduced in 1964. For any field of research that has been around for 50
years there is bound to be a lot of different approaches, and Automatic
Differentiation is no different. Listing all of these alternative approaches
would clearly be next to impossible, so we will instead look briefly at a few
more recent ideas that could improve on what has been presented in this
chapter. We will first consider the use of univariate Taylor series, before
discussing the use of reverse-mode instead of forward-mode.

3.6. ALTERNATE APPROACHES 19

3.6.1 Univariate Taylor Series

In this chapter we have looked at how to calculate the multivariate Taylor
coefficients of different mathematical functions, which is achieved by
calculating all the multivariate Taylor coefficients for each mathematical
operation along the way. Consider calculating the expression f [g (~x)]. We
first calculate the Taylor coeffients for g (~x) before using these to calculate
the Taylor coefficients of the full expression f [g (~x)].

A different approach, which is presented in [3] is to instead calculate a
series of univariate Taylor series in different directions for all intermediate
calculations. By choosing an appropriate set of directions, these univariate
Taylor coefficients can be used to construct the multivariate Taylor
coefficents. Going back to the calculation of f [g (~x)], this would be
performed by first calculating the univariate Taylor coefficients of g (~x)
before moving on to using this to calculate the univariate Taylor coefficients
of the full expression f [g (~x)]. With this accomplished we could use
the univariate Taylor coefficients of the full expression to construct the
multivariate Taylor coefficients.

Compared to the approach we are using this results in approximately
the same complexity for calculating derivatives of order ≤ 5, but with
a large reduction in computational effort for larger orders of derivatives
[3, p. 5]. One drawback of this method is that although it can be faster,
the process of calculating the multivariate Taylor coefficients from the
univariate ones results in larger memory usage compared to the method
described in this chapter [7, p. 1]. Neidinger improved on the univariate
Taylor coefficient method in [7] by eliminating this extra memory usage.
We can therefore conclude by stating that although this method is more
difficult to implement, it is a definitely a more efficient option for cases
where we are dealing with derivatives of a high order.

3.6.2 Reverse-mode

Another alternative that can be implemented regardless of whether we
use multivariate or univariate Taylor series, is to use the so called reverse-
mode. This is an alternative to forward-mode, which is what is being used
for this thesis. The forward-mode has not been described explicity since
it is the most natural method to use in a programming environment, but
when describing the difference between forward and reverse-mode it is
convenient to first look at the forward-mode and explain how the reverse-
mode is different. Assume that we set the variables x,y and z to the values
a, b and c, respectively. Now assume that we want to calculate the function
h (x, y, z) = (x ∗ z) ∗ sin (x ∗ y), and consider the graph below, which was

20CHAPTER 3. DERIVATIVES OF MULTIVARIATE FUNCTIONS TO ARBITRARY ORDER

presented in [8, p. 14]:

h = u ∗ w
↖

↗ w = sin (v)
↑

u = x ∗ z v = x ∗ y
↗ ↖ ↗ ↖

z = c x = a y = b

When calculating h (x, y, z) using forward-mode we start at the lowest level
of the graph, and calculate the value and Taylor coefficients for each level
moving upwards, which culminates with the calculation of h (x, y, z). The
reverse-mode starts at at the bottom before moving upwards as well, but
instead of calculating all the Taylor coefficients it instead calculates the
Taylor coefficients with respect to the immediate arguments. This is called
the forward pass, and is followed by the reverse pass where all the Taylor
coefficients of h (x, y, z) are constructed using the values calculated in the
forward pass.

This means that for the evaluation of w, during the forward pass, we
calculate the Taylor series coefficients with regard to v, while for the
evaluation of h we calculate the Taylor series coefficients with regard to u
and w. The result of doing this is that we are calculating fewer coefficients
for each node in the graph compared to normal mode. Assuming that x,y
and z are only 3 out of a large amount of variables, the forward-mode
would result in the calculation of a lot of coefficients that would simply
equal 0, while the number of coefficients calculated in the forward pass
of the reverse-mode would stay the same. This explains why the reverse-
mode is a more efficient option than forward-mode for a large number of
variables [8, p. 15].

Chapter 4

Implementation of an AD
framework in Python

4.1 Introduction

To implement the ideas presented in the last chapter in a programming
environment we need to be able to store the value and Taylor coefficients
for an expression in a way that makes it easy to access and simple to
perform operations with. The best match for doing this is to use object-
oriented programming, and create a class for holding the necessary values
and methods. Each expression will then be represented by an instance of
this class. The properties of the class are listed below.

1 c l a s s AD:
2 " " "
3 P r o p e r t i e s :
4 val − Expression value
5 T − Array of t a y l o r c o e f f i c i e n t s of express ion
6 num_vars − Number of v a r i a b l e s
7 max_o − Maximum order of d e r i v a t i v e s
8 ADvector − True i f the AD c l a s s holds more than one v a r i a b l e
9 N − Number of v a r i a b l e s

10 dtype − Data type to s t o r e c o e f f i c i e n t s with .
11 (Defaul t=complex)
12 sparse − Whether or not to s t o r e Taylor c o e f f i c i e n t s in
13 a sparse array (Defaul t=Fa l se)
14 dims − The dimensions of a matrix with a length of
15 ’max_o+1 ’ along ’ num_vars ’ dimensions
16 sz − The s i z e of the above mentioned matrix
17 counter_map − Array mapping the index of T to the
18 corresponding d e r i v a t i v e
19 index_map − Dict ionary mapping a d e r i v a t i v e to
20 the corresponding index in T
21 " " "

The variables listed under properties represent the data that is stored
with each instance of the AD class. The variable ’val’ holds the value of the
expression, ’T’ holds an array with all the Taylor coefficients, ’num_vars’
holds the total number of variables that we are working with, while
’max_o’ is the maximum order of the derivatives.

21

22CHAPTER 4. IMPLEMENTATION OF AN AD FRAMEWORK IN PYTHON

The ’ADvector’ variable is set to true if the AD instance holds more
than one variable, with the number of variables being stored in ’N’. This
is explained more in-depth in section 4.3. The variable ’dtype’ holds the
data type being used to store the Taylor coefficients. By default this is set
to complex to cover all use-cases, but if a certain application only requires
real numbers this can be set to float to improve performance. The ’dims’
and ’sz’ variables hold the dimension and size of the matrix of Taylor
coefficients as described in the previous chapter. Finally, the index_map
and counter_map variables are used to keep track of where the derivatives
are stored, something that will be explained in more depth in section 4.2.

While it is important to store all the necessary values in the AD
class, something just as important is being able to perform mathematical
operations with instances of the AD class. This is done by defining specific
methods in the class definition that are called when the corresponding
mathematical operation is applied to an instance of the class. As an
example assume that v holds an instance of the AD class and we try to
calculate v + 3. This will result in the __add__ method in the v instance
being called to handle this operation. The process of defining the __add__
method, or the corresponding method for other mathematical operations, is
called operator overloading. A list of all these methods and what operation
they overload follows below.

1 # Overload negation (− s e l f)
2 def __neg__ (s e l f) :
3 pass
4

5 # Overload p o s i t i v e (+ s e l f)
6 def __pos__ (s e l f) :
7 pass
8

9 # Overload addi t ion (s e l f +v)
10 def __add__ (s e l f , v) :
11 pass
12

13 # Overload r ight−sided addi t ion (v+ s e l f)
14 def __radd__ (s e l f , v) :
15 pass
16

17 # Overload s u b t r a c t i o n (s e l f−v)
18 def __sub__ (s e l f , v) :
19 pass
20

21 # Overload r ight−sided s u b t r a c t i o n (v−s e l f) .
22 def __rsub__ (s e l f , v) :
23 pass
24

25 # Overload m u l t i p l i c a t i o n operator (s e l f *v)
26 def __mul__ (s e l f , v) :
27 pass
28

29 # Overload r ight−handed m u l t i p l i c a t i o n operator (v* s e l f)
30 def __rmul__ (s e l f , v) :
31 pass

4.1. INTRODUCTION 23

32

33 # Overload d i v i s i o n operator (s e l f /v)
34 def __div__ (s e l f , v) :
35 pass
36

37 # Overload r ight−sided d i v i s i o n (v/ s e l f)
38 def __rdiv__ (s e l f , v) :
39 pass
40

41 # Overload power operator (s e l f ^v)
42 def __pow__ (s e l f , v) :
43 pass
44

45 # Overload r ight−sided power operator (v^ s e l f)
46 def __rpow__ (s e l f , v) :
47 pass

The AD class includes several other methods, as well as the ones above, the
most important of which is the constructor. This is the method that is called
when we create a new AD object, and it ensures that all the properties of
the class are set correctly. The arguments passed to the constructor are all
listed below.

1 def _ _ i n i t _ _ (s e l f , val , var_num , num_vars , max_o ,\
2 model=None , T=None , dtype=complex , sparse=Fa l se) :
3 " " "
4 Arguments :
5 val − Expression value
6 var_num − Number of v a r i a b l e being i n i t i a l i z e d
7 num_vars − Maximum number of v a r i a b l e s
8 max_o − Maximum order of d e r i v a t i v e s
9 model − Another AD o b j e c t with the same ’ num_vars ’ and

10 ’max_o ’ . This i s used to avoid c r e a t i n g the mapping
11 array and d i c t i o n a r y more than once .
12 T − Array of Taylor c o e f f i c i e n t s .
13 By d e f a u l t t h i s i s generated .
14 dtype − Data type used to s t o r e Taylor c o e f f i c i e n t s .
15 By d e f a u l t complex to account f o r a l l ranges
16 of values . For max_o>1 i t i s necessary to use
17 the complex dtype to avoid e r r o r s .
18 sparse − I f true , s t o r e s the Taylor c o e f f i c i e n t s
19 as a sparse matrix .
20 " " "

In addition to the variables mentioned already the constructor requires
the argument ’var_num’. When creating a variable this represents the
number of the variable that we are initializing and is necessary to
differentiate between different variables. Calling the constructor will by
default simply initialize a variable of the form x, which means that the
Taylor coefficients will only be different from 0 for the Taylor coefficients
corresponding to ∂

∂x and the expression’s value. The number of the variable
can be any value in {1, . . . , num_vars}. If set to 0 only the Taylor coefficient
corresponding to the value will be set, meaning that it corresponds to
initializing a constant.

24CHAPTER 4. IMPLEMENTATION OF AN AD FRAMEWORK IN PYTHON

The mapping variables counter_map and index_map are the same for
AD instances with the same values for max_o and num_vars. Constructing
these mapping variables are time consuming tasks, so it is desirable to
avoid creating them many times over. Supplying an AD instance as the
model argument to the constructor allows the new instance to use the
mapping variables of the model instance. This is done for every calculation
ensuring the mapping variables are created only once. The reason why
these are necessary is explained in section 4.2.

It is also possible to include an optional argument T, which is used
when doing calculations where you calculate the new T array. Instead of
initializing a new array and then setting all the values, this simply sets the
T variable of the object equal to the argument when included. When the T
argument is included the value of the ’var_num’ argument is ignored.

Finally it should be noted that there is another optional argument, sparse,
which when set to true will store the T array as a sparse matrix. This can
give significant performance improvements if there is a large amount of
variables and the expressions only include a few of them. This is because
a large amount of the values in the T matrix will simply be equal to zero,
and using a sparse matrix avoids performing operations on these elements.
This is only implemented for when the maximum order of the Taylor
coefficients equals one.

4.2 A more efficient way of storing Taylor coefficients

Up until now we have assumed that the Taylor coefficients are stored in a
multidimensional array with a number of dimensions equal to the number
of variables, and a length of max + 1 for each dimension. As previously
mentioned this has the benefit of allowing us to access the Taylor coefficient
Tu,~k with the multi-index~k in the array. Although this is very convenient
it results in a lot of unused elements in the array. The amount of Taylor
coefficients, N, equal the amount of derivatives plus one, corresponding to
the value of the expression. Let the number of variables be denoted by n,
giving the following expression for N.

N = 1 +
max

∑
k=1

(
n + k− 1

k

)
The amount of values we are storing, however, equal (max + 1)n, which
is a far larger number. A different approach is to simply store the Taylor
coefficients in an array of length N. This introduces the problem of how
to access a given Taylor coefficient Tu,~k, and how to find out which Taylor
coefficient is stored at a given index of the array. To solve this we iterate
over all the Taylor coefficients and assign each of them a place in the
array. The location of each Taylor coefficient, and what Taylor coefficient
is located at a given place in the array are stored in two separate additional
arrays.

4.3. VECTORS OF AD VARIABLES AND EXPRESSIONS 25

For the special case where only the first order derivatives are being
calculated the Taylor coefficients are simply equal to the first order
derivatives and it is possible to store them in a more intuitive way than in
the general case. We can just store the derivatives according to the number
of the variable we are differentiating. We are in other words storing ∂ f

∂x1

first, ∂ f
∂x2

second and so on. This leaves no ambiguity as to what derivative
is located at a given index in the T array, or how to access a given derivative,
so additional arrays to keep track of the derivatives are not needed. This
saves computational cost both in terms of avoiding having to calculate the
arrays and not having to perform the look-up to find out where a derivative
is located.

4.3 Vectors of AD variables and expressions

Sometimes it is desirable to group a set of variables together in a single AD
instance if the variables are related in some way that means that they will
all be used to create similar expressions. This is illustrated in the following
pseudocode:

1 # Seperate v a r i a b l e s
2 x1 = AD(1)
3 x2 = AD(3)
4 x3 = AD(5)
5

6 # Ca l c u l a te funct ion values
7 fx1 = f (x1)
8 fx2 = f (x2)
9 fx3 = f (x3)

10

11 # Al terna te approach
12 # −−−−−−−−−−−−−−−−−−−−−−−−−
13 x = AD([1 , 2 , 3])
14 fx = f (x)

Clearly the latter approach is much simpler, since it enables us to perform
the necessary mathematical operation by writing far less code. One
reason for wanting to do this is simply because we want to calculate the
derivatives of an expression for different values of x, as demonstrated in
the pseudo-code below:

1 # I n i t i a l i z e v a r i a b l e s
2 y = AD(3)
3 x = AD([1 , 2 , 3])
4

5 # Ca l c u l a te express ions
6 f = lambda x , y : a * exp (pi * x * y)
7 f_xy = f (x , y)
8

9 # Get indiv idua l express ions
10 f_xy1 = f_xy [0] # Holds f (x , y) f o r x=1
11 f_xy2 = f_xy [1] # Holds f (x , y) f o r x=2
12 f_xy3 = f_xy [2] # Holds f (x , y) f o r x=3

26CHAPTER 4. IMPLEMENTATION OF AN AD FRAMEWORK IN PYTHON

In this example fxy1, fxy2 and fxy3 hold the value and derivatives of f (x, y)
for the three different x values. It is important to note that in this example
the total number of variables is 2, with the expression being evaluated at
different x values. This is different from the scenario where the AD object
instead of holding different values for the same variable, instead holds
several distinct variables. Assume that we want to calculate the following
three mathematical expressions, using the 4 variables x1,x2,x3 and y:

f (x1, y)
f (x2, y)− g (x1, y)
f (x3, y)

The pseudo code below shows how this could be accomplished.

1 # I n i t i a l i z e v a r i a b l e s
2 y = AD(3)
3 x = AD([1 , 2 , 3] , d i s t i n c t =True)
4

5 # Ca l c u l a te express ions
6 f_xy = f (x , y)
7

8 # Get indiv idua l express ions
9 expr1 = f_xy [0]

10 expr2 = f_xy [1] − g (x [0] , y)
11 expr3 = f_xy [2]

Where the distinct argument in this case indicates that the x AD instance
holds a vector of distinct variables instead of multiple values for the same
variable. The functionality above could be used if we are looking at
the pressure in an oil reservoir, in which case the pressure in different
areas is described by separate variables, but where they are all stored
together in the same AD instance. To use this functionality in the actual
implementation the val and var_num arguments have to be provided as
arrays of a length equal to the number of variables, where val holds the
values and var_num holds the numbers indicating the number of each
variable.

If we simply want to create several expressions for different values of a
variable, we will let each variable have the same value for var_num. This
indicates that the AD instance doesn’t hold several distinct variables, but
instead several different values for one variable. If on the other hand we are
dealing with distinct attributes such as pressure at different points, and we
need to create expressions where the variables interact with one another, it
is necessary to use a seperate var_num value for each variable.

4.4 Initialization and Usage

When initializing variables it is possible to either do this directly by
creating instances of the AD class or by using the function ’init_variables’.
In general using this function is more convenient than creating the

4.4. INITIALIZATION AND USAGE 27

instances directly. It takes the values of the variables being initialized as
arguments, in addition to four optional arguments.

• max_o : Maximum order of derivatives, defaults to 1

• dtype : Data type of values, defaults to complex

• sparse : Boolean determining whether to use sparse matrices, defaults
to False

• update_num : Boolean affecting the numbering av variables, defaults
to False

The optional arguments max_o, dtype and sparse are simply passed along
to the AD constructor when initializing the variables. The final optional
argument update_num determines whether or not we are using seperate
var_num values for any AD vectors we are initializing.

Example usage of this function and calculating an expression follows
below:

1 # I n i t i a l i z e v a r i a b l e s
2 x , y , z = i n i t _ v a r i a b l e s (0 , [1 , 2 , 3] , 8 , max_o=2)
3

4 # Ca l c u l a te mathematical express ion
5 g=exp(−x * y) * s i n (2 * pi * z)
6

7 # Get s i n g l e AD o b j e c t s
8 expr1 = g [0] # Holds AD o b j e c t of express ion f o r x =0 ,y=1 , z=8
9 expr2 = g [1] # Holds AD o b j e c t of express ion f o r x =0 ,y=2 , z=8

10 expr3 = g [2] # Holds AD o b j e c t of express ion f o r x =0 ,y=3 , z=8

This starts by initializing the variables where x = 0, y is being evaluated
for the three values 1, 2, 3 and z = 8. It also sets the maximum order
of the Taylor coefficients to 2 meaning that we will be able to extract
derivatives up to the second order. Next the code calculates the expression
e−xy sin (2πz) and stores it in the g variable. The result is that g holds
an AD vector object that includes the value and Taylor coefficients of the
expression for the three different values of y. To get a single AD object
corresponding to a given set of values, g can be indexed as is shown in
the code. The next piece of code shows how specific derivatives or Taylor
coefficients can be accessed.

1 # P r i n t d e r i v a t i v e s of express ion f o r x =0 ,y=1 , z=8
2 p r i n t expr1 . g e t _ d e r i v a t i v e ([0 , 2 , 0]) # Der iva t ive g_yy
3 p r i n t expr1 . ge t_der iva tve ([1 , 0 , 1]) # Der iva t ive g_xz
4

5 # P r i n t Taylor c o e f f i c i e n t s f o r x =0 ,y=3 , z=8
6 p r i n t expr3 . g e t _ t c o f ([1 , 0 , 0]) # Taylor cof . g_x
7 p r i n t expr3 . g e t _ t c o f ([0 , 0 , 2]) # Taylor cof . g_zz

This shows the usage of the functions get_derivative and get_tcof, which
returns a single derivative or Taylor coefficient value respectively. The
same can be achieved by working directly with the g object, and the code
below will give the same result as above.

28CHAPTER 4. IMPLEMENTATION OF AN AD FRAMEWORK IN PYTHON

1 # P r i n t d e r i v a t i v e s of express ion f o r x =0 ,y=1 , z=8
2 p r i n t g . g e t _ d e r i v a t i v e ([0 , 2 , 0] , var =0) # Der iva t ive g_yy
3 p r i n t g . ge t_der iva tve ([1 , 0 , 1] , var =0) # Der iva t ive g_xz
4

5 # P r i n t Taylor c o e f f i c i e n t s f o r x =0 ,y=3 , z=8
6 p r i n t g . g e t _ t c o f ([1 , 0 , 0] , var =2) # Taylor cof . g_x
7 p r i n t g . g e t _ t c o f ([0 , 0 , 2] , var =2) # Taylor cof . g_zz

Assuming that we need to deal with a large amount of derivatives it can be
desirable to have an easy way of retrieving derivatives stored in a certain
way. Assuming we have an AD vector object f , we can use the following
functions to get the Jacobian and Hessian matrices.

1 # P r i n t Jacobian
2 p r i n t f . g e t _ j a c o b i a n ()
3

4 # P r i n t Hessian
5 p r i n t f . ge t_hess ian ()

These functions are used in the application part of the thesis, where we
need the Jacobian and Hessian matrices to solve certain problems.

4.5 Computing weighted sums of Taylor coefficient
products

Many of the mathematical expressions derived for the Taylor coefficients of
the different functions and mathematical operators require the calculation
of sums of products of Taylor coefficients. It is therefore desirable to create a
function, bdot, that manages to calculate these sums in an efficient manner,
making it easier to implement the mathematical functions and operators
themselves. Neidinger presents such a function in [6, p. 5] for an AD
framework that uses derivatives, and briefly notes how this can be done
for Taylor coefficients later in the same article [6, p. 14]. In this section
we will go step-wise through the process of determining how to create
this function. As the first step we can make an initial guess by creating
a function that calculates the following sum:

~m

∑
~j=~0

TP,~jTQ,~k−~j

Setting ~m = ~k, P = f and Q = g would result in the calculation of
the Taylor coefficient Tf g,~k. This shows that the function could be used
to calculate the Taylor coefficients for multiplication, however for other
expressions such as exponentiation this would fall short since it requires a
weighting factor multiplied with the product of Taylor coefficients. We can
expand on our initial guess and add an optional weighting factor, yielding
the following expression:

~m

∑
~j=~0

c~k,~j,~eTP,~jTQ,~k−~j (4.1)

4.5. COMPUTING WEIGHTED SUMS OF TAYLOR COEFFICIENT PRODUCTS29

The c~k,~j,~e term above is denoted by the following expression:

c~k,~j,~e =

{
1, ~e =~0
ki−ji

ki
, |e| = 1

In the expression above the vector~e is a one-order vector and i is the index
where ei = 1. By setting~e = 0 this weighting factor is set to 1, meaning we
can still use this to calculate the Taylor coefficients for multiplication. If we
instead set ~m =~k−~e, P = h and Q = u for any one-order vector~e ≤~k into
equation 4.1 we get the following expression:

~k−~e
∑
~j=~0

ki − ji
ki

Th,~jTu,~k−~j

This is the calculation of the Taylor coefficient Th,~k, where h = eu, showing
that this can be used to calculate Taylor coefficients of both multiplication
and exponentiation. In the following sections we will look at how this can
be used to calculate the Taylor coefficients for other mathematical functions
and operators as well. In pseudo code an implementation of this, called
bdot, looks as follows:

1 def bdot (P ,m,Q, k , e) :
2 # Get o b j e c t with a l l multi−indeces l e s s than or equal to m
3 i t e r = g e t _ a l l _ l t e (k)
4

5 # I n i t i a l i z e Taylor c o e f f i c i e n t
6 T_coef = 0
7

8 # I t e r a t e over multi−i n d i c e s
9 f o r j in i t e r :

10 # Ca l c u l a te term under sum
11 term = c a l c u l a t e _ c (k , j , e) *\
12 P . get_Tcoef (j) *\
13 Q. get_Tcoef (k− j)
14

15 # Add to t o t a l
16 T_coef += term
17

18 # Return f i n a l Taylor c o e f f i c i e n t value
19 re turn T_coef

The actual implementation of bdot is implemented as a static function of
the AD class. It is a bit longer, but the general outline of the above code
shows how it works. However, one important difference is that if either
P or Q are ADvector objects, the result of any mathematical operation
involving them is an ADvector as well. In those cases the return value
is not a single Taylor coefficient, but a column vector describing the same
Taylor coefficient for different values. In the following sections we will look
at the implementation of mathematical operations on the AD object, some
of which require use of the bdot function.

30CHAPTER 4. IMPLEMENTATION OF AN AD FRAMEWORK IN PYTHON

4.6 Overloaded operators

This section will show and explain the implementation of some of the
overloaded operators in the AD class.

4.6.1 Addition

To overload the addition operator we need to define the __add__ method
in the AD class. Assume that we have an AD instance u and add another
Python object to it by calculating u+ v. The pseudo code below shows how
this is calculated when v is a numeric object:

1 # Ca l c u l a te value
2 val = u . val+v
3

4 # Ca l c u l a te Taylor c o e f f i c i e n t s
5 T = u . T
6

7 # Set T [0] or T [0 , :]
8 i f max_o != 1 :
9 i f u . ADvector :

10 T [0 , :] = val
11 e l s e :
12 T [0] = val
13

14 # Return AD o b j e c t
15 re turn AD(val , T)

The value will simply be the value of v added to u, while the Taylor
coefficients of order higher or equal to 1 remain unchanged. In the scenario
where we are considering derivatives of order higher than 1 we need to
set the elements in the T array corresponding to the values as well. For an
ADvector object this means setting a column of values, while for a single
variable AD object it only means setting one. If v is an instance of the AD
class as well the code will instead look like the pseudo code below:

1 # Ca l c u l a te value
2 val = u . val+v . val
3

4 # Ca l c u l a te Taylor c o e f f i c i e n t s
5 T = u . T+v . T
6

7 # Return AD o b j e c t
8 re turn AD(val , T)

The value equals the sum of the values of the AD instances, while the Taylor
coefficients are simply added together as well. If the maximum order is
larger than one the Taylor coefficients corresponding to the value need to be
updated as well, but this is done automatically since the Taylor coefficient
arrays are added together. To implement subtraction we can follow the
exact same outline as above.

4.6. OVERLOADED OPERATORS 31

4.6.2 Multiplication

To overload the multiplication operator we need to define the __mult__
method in the AD class. Assume that we have an AD instance u and
multiply another Python object with it by calculating u ∗ v. The pseudo
code below shows how this is calculated when v is a numeric object:

1 # Ca l c u l a te value
2 val = u . val *v
3

4 # Ca l c u l a te Taylor c o e f f i c i e n t s
5 T = u . T*v
6

7 # Return AD o b j e c t
8 re turn AD(val , T)

The value is just the value of u multiplied by v, while the Taylor coefficients
are all multiplied by v as well. The Taylor coefficients corresponding to the
value are set correctly by this operation as well, since all we need to do
is multiply by v. Now consider the case when v is an AD object, and the
maximum order of derivatives is set to 1. Instead of using the bdot function
we will in this case use the following expression:

∂

∂xi
(uv) =

∂u
∂xi

v + v
∂v
∂xi

The pseudo code below illustrates how this is implemented:

1 # Ca l c u l a te value
2 val = u . val *v . val
3

4 # Ca l c u l a te d e r i v a t i v e s
5 T = u . T*v . val + u . val *v . T
6

7 # Return AD o b j e c t
8 re turn AD(val , T)

When the maximum order is set to one the T array only stores the
derivatives, so in this case it is not necessary to set any of the elements
in T corresponding to the value of the expression. Finally let us consider
the case when u and v are both AD objects and the maximum order is set
to more than 1. In this case we need to use the bdot function. Recall that to
calculate Tuv,~k we need to set ~m = ~k, P = u, Q = v and e = 0. The pseudo
code for this follows below:

1 # Ca l c u l a te value
2 val = u . val *v . val
3

4 # Create AD o b j e c t with the value set , but with a l l Taylor
5 # c o e f f i c e n t s of order l a r g e r than 0 s e t to 0
6 h = create_empty_AD (val)
7

8 # Get a l l multi−i n d i c e s
9 i t e r = g e t _ a l l _ i n d i c e s ()

10

11 # Ca l c u l a te terms

32CHAPTER 4. IMPLEMENTATION OF AN AD FRAMEWORK IN PYTHON

12 f o r k in i t e r :
13 i f u . ADvector or v . ADvector :
14 # Return value i s a column
15 h . T [: , k] = bdot (u , k , v , k , 0)
16 e l s e :
17 # Return value i s a s c a l a r
18 h . T [k] = bdot (u , k , v , k , 0)
19

20 # Return AD o b j e c t
21 re turn h

It is important to note that if u or v is an ADvector, then so is h. In that case
the return value is a column vector that should set the column of Taylor
coefficients corresponding to ~k. This is handled by the if test in the loop
over the indices.

4.6.3 Division

To overload the division operator we need to define the __div__ method in
the AD class. Assume that we have an AD instance u and divide it with
another Python object by calculating u/v. The pseudo code below shows
how this is calculated when v is a numeric object:

1 # Ca l c u l a te value
2 val = u . val/v
3

4 # Ca l c u l a te Taylor c o e f f i c i e n t s
5 T = u . T/v
6

7 # Return AD o b j e c t
8 re turn AD(val , T)

Both the value and Taylor coefficients are divided by v. It is not necessary
to make any further changes to the coefficients corresponding to the value
in the T array, since they are divided by v as well. Now consider the case
when v is an AD object, and the maximum order of derivatives is set to 1.
Instead of using the bdot function we will in this case use the following
expression:

∂

∂xi

(
uv−1

)
=

∂u
∂xi

v−1 − uv−2 ∂v
∂xi

The pseudo code implementing this is shown below.:

1 # Ca l c u l a te value
2 val = u . val/v . val
3

4 # Ca l c u l a te d e r i v a t i v e s
5 T = u . T/v . val − u . val *v . T/v . val * * 2
6

7 # Return AD o b j e c t
8 re turn AD(val , T)

Since only the derivatives are stored in T when the maximum order is
set to one, no modification of the elements in the T array is necessary.
Finally let us consider the case when u and v are both AD objects and the

4.6. OVERLOADED OPERATORS 33

maximum order is set to more than 1. In this case we need to use the bdot
function. Recall that the mathematical formula (3.8) derived for division,
where h = u/v, was given as follows:

Th,~k =

Tu,~k − ∑
~j<~k

Th,~jTv,~k−~j

v (~x)

We could try to calculate this using the following expression:

Th,~k ≡
Tu,~k − bdot (h, k, v, k, 0)

v (~x)

The bdot function call would in this case calculate the following expression:

bdot (h, k, v, k, 0) =
~k

∑
~j=~0

Th,~jTv,~k−~j

This is different from the mathematical expression in that it allows the
value ~j = ~k, which leads to an extra term including the value Th,~k, which
we are calculating. Though the expressions are not equal, it still leads to
the correct value. This is because initially all the Taylor coefficients that are
yet to be calculated are set to 0, so this term simply vanishes. Using this the
pseudo code looks as follows:

1 # Ca l c u l a te value
2 val = u . val/v . val
3

4 # Create AD o b j e c t with the value set , but with a l l Taylor
5 # c o e f f i c e n t s of order l a r g e r than 0 s e t to 0
6 h = create_empty_AD (val)
7

8 # Get a l l multi−i n d i c e s
9 i t e r = g e t _ a l l _ i n d i c e s ()

10

11 # Ca l c u l a te terms
12 f o r k in i t e r :
13 i f u . ADvector or v . ADvector :
14 # Return value i s a column
15 i f u . ADvector :
16 h . T [: , k] = (u . T [: , k]−bdot (u , k , v , k , 0)) / v . val
17 e l s e :
18 h . T [k] = (u . T [k]−bdot (u , k , v , k , 0)) / v . val
19 e l s e :
20 # Return value i s a s c a l a r
21 h . T [k] = bdot (u , k , v , k , e)
22

23 # Return o b j e c t
24 re turn h

This follows the same outline as shown for multiplication, with the only
significant difference being the expressions for Th,~k being different. It is
also important to note that for this formula it is necessary to calculate the
derivatives in a certain order, since to calculate Th,~k we need to access all

34CHAPTER 4. IMPLEMENTATION OF AN AD FRAMEWORK IN PYTHON

~j ≤ ~k, except~k itself. In the actual implementation this is done by always
calculating all Taylor coefficients for~j ≤~k, except~k itself, before calculating
Th,~k. In the pseudo code above we can assume that the iter object ensures
this order is followed.

4.6.4 Additional overloaded operators

The remaining operators that have not been described follow the same
structure as the ones described in detail above. The exception is the power
function which uses the fact that xy = ey∗log(x). This is calculated by using
the exponential and log function implemented for the AD class, which are
covered in the next section. The code for all of these functions can be found
in the appendix.

4.7 Mathematical functions defined for the AD class

So far we have gone over the implementation of overloaded functions for
basic mathematical operations. To be able to apply mathematical functions
to instances of the AD class it is necessary to create Python functions
that accept these as arguments and calculate the mathematical expressions
derived previously. Pseudo code will be included and explained for the
exponential function, while the remainder will simply focus on how the
bdot function is used to calculate the mathematical expressions for the
Taylor coefficients when the maximum order of derivatives is larger than
one. The functions that will be explained are:

• Exponential function

• Natural logarithm

• Square Root

• Inverse trigonometric function

• Trigonometric functions

The functions are included in the separate library mathADI, and they can
all be found in the appendix. We will go through the implementation of
these functions in the next subsections.

4.7.1 Exponential function

The exponential function for the AD class is defined in the exp function in
the mathADi library. Assume that u holds an AD instance, and that we
make the function call exp (u). If the maximum order is set to 1, we use the
following expression to calculate the new AD instance:

∂

∂xi
eu = eu ∂u

∂xi

The pseudo code for doing this follows below:

4.7. MATHEMATICAL FUNCTIONS DEFINED FOR THE AD CLASS 35

1 # Ca l c u l a te value using regular exp funct ion
2 val = np . exp (u . val)
3

4 # Ca l c u l a te d e r i v a t i v e s
5 T = val *u . T
6

7 # Return new AD o b j e c t
8 re turn AD(val , T)

Since the maximum order is set to 1, the T array only holds the derivatives
so we do not need to set any coefficients corresponding to the value. Recall
that in section 4.5 we found that if we set ~m = ~k−~e, P = h and Q = u for
any one-order vector~e ≤~k into equation 4.1 we get the expression for Th,~k,
where h = eu. We can in other words calculate Th,~k using the function call
bdot (h, k− e, u, k, e). The pseudo code showing this follows below.

1 # Ca l c u l a te value with regular exp funct ion
2 val = np . exp (u . val)
3

4 # Create AD o b j e c t with the value set , but with a l l Taylor
5 # c o e f f i c e n t s of order l a r g e r than 0 s e t to 0
6 h = create_empty_AD (val)
7

8 # Get a l l multi−i n d i c e s
9 i t e r = g e t _ a l l _ i n d i c e s ()

10

11 # Ca l c u l a te terms
12 f o r k in i t e r :
13 # Get one−order vec tor <= k
14 e = get_one_order_ l te (k)
15

16 i f u . ADvector :
17 # Return value i s a column
18 h . T [: , k] = bdot (h , k−e , u , k , e)
19 e l s e :
20 # Return value i s a s c a l a r
21 h . T [k] = bdot (h , k−e , u , k , e)
22

23 # Return o b j e c t
24 re turn h

The only major change from the previous examples of using the bdot
function, is that we need to find a one-order vector~e ≤ ~k for every Taylor
coefficient Th,~k we calculate. And just like for division, we need to ensure
that all Taylor coefficients of a lower order have been calculated before
calculating Th,~k.

36CHAPTER 4. IMPLEMENTATION OF AN AD FRAMEWORK IN PYTHON

4.7.2 Natural logarithm

Recall that the formula (3.7) for the Taylor coefficients of h = ln (u) were
given as:

Th,~k =

Tu,~k − ∑
~j>~0

~j≤~k−~e

ki − ji
ki

Tu,~j Th,~k−~j

 /u (~x)

Using the bdot function this can be calculated as:

Th,~k =
(

Tu,~k − bdot (u, k− e, h, k, e)
)

/u (~x)

This allows~j = ~0 in the sum, which adds a term including Th,~k. Since this
is initially set to 0 in the programming environment it disappears and we
are left with the correct result.

4.7.3 Square Root

Recall that the formula (3.10) for the Taylor coefficients of h =
√

u were
given as:

Th,~k =

Tu,~k − 2 ∑
~j>~0

~j≤~k−~e

ki − ji
ki

Th,~j Th,~k−~j

 /2h ((~x)

Using the bdot function this can be written as:

Th,~k =

(
1
2

Tu,~k − bdot (h, k− e, h, k, e)
)

/h ((~x)

Like with the natural logarithm this allows~j =~0 in the sum, which adds a
term including Th,~k. This disappears and we get the correct result.

4.7.4 Inverse Trigonometric Functions

Recall that for inverse trigonometric functions the formula (3.11) for the
Taylor coefficients of h = inv (u), where inv can be either arccos, arcsin or
arctan, was given as:

Th,~k =
~k−~e
∑
~j=~0

ki − ji
ki

Tv,~j Tu,~k−~j

This can be calculated using the bdot function as:

Th,~k = bdot (v, k− e, u, k, e)

Where v is given as:

4.7. MATHEMATICAL FUNCTIONS DEFINED FOR THE AD CLASS 37

• arccos : v = − 1√
1−u2

• arcsin : v = 1√
1−u2

• arctan : v = 1
1+u2

4.7.5 Trigonometric Functions

Assume that h = sin (u) and g = cos (u), and recall that the formulas for
sin (3.12) and cos (3.13) were given as follows:

Th,~k =
~k−~e
∑
~j=~0

ki−ji
ki

Tg,~j Tu,~k−~j

Tg,~k = −
~k−~e
∑
~j=~0

ki−ji
ki

Th,~j Tu,~k−~j

Using the bdot function we can calculate these Taylor coefficients as:

Th,~k = bdot (g, k− e, u, k, e)
Tg,~k = −bdot (h, k− e, u, k, e)

Note that these functions must be calculated simultaneously since to
calculate the Taylor coefficient corresponding to ~k it is necessary to
know the values of all lower Taylor coefficients for both the sin and cos
expression.

All other trigonometric functions can be created by using sin and cos,
which is how the automatic differentiation framework calculates the Taylor
coefficients for these functions. To calculate tan (u) the framework simply
calculates h = sin (u) and g = cos (u) initially, and then calculates tan (u)
as h/g. The remaining trigonometric functions are calculated using this
process as well.

38CHAPTER 4. IMPLEMENTATION OF AN AD FRAMEWORK IN PYTHON

Part II

Applications

39

Chapter 5

Optimization

5.1 Introduction

Optimization Theory is an area of mathematics that was previously known
as Operations Research, which covers many different areas of minimization
and optimization [14]. The goal of Optimization Theory is, as the name
implies, optimization. What is meant by this is to find the best possible
way of doing something under certain conditions. In general it involves
expressing a certain quantity as a function that is either maximized or
minimized. The function can express things such as profit or product
quality in the case of maximization, or things like cost or loss in the case
of minimization. It is also common to consider different constraints during
the maximization or minimization [13]. For instance if we are trying to
maximize the future profits of a company by deciding what areas to invest
in, it would be necessary to include the available capital as a constraint on
the total amount to be invested.

In this chapter we will not use constraints, but rather focus on simpler
examples. The simplest possible example of optimization theory is to find
the maxima and minima of a given function. This is closely related to
finding zeros of a function, as will be shown in section 5.2. In this section
we will go through how zeros, minima and maxima can be found for
single variable functions using an approach based on Newton’s method. In
section 5.3 we will go through how maxima and minima can be found for
functions of multiple variables, using two different approaches. Common
to all of these examples is the necessity to calculate the derivatives of
mathematical expressions, which is what makes the AD framework a
useful tool for solving these problems.

5.2 Single variable optimization

For optimization problems involving only a single variable we can
generally find the exact solutions, without having to resort to numerical
approximations. However, it can still be useful to consider the single
variable cases since they show the general idea used in the multivariate

41

42 CHAPTER 5. OPTIMIZATION

cases. In this section we will look at how the AD framework can be used
together with Newton’s method to approximate roots, maxima and minima
of a given function.

5.2.1 Newton’s method

Assume that we want to find the zeros of a given expression g (x). Assume
that we make an initial guess x0, and then proceed to Taylor expand g
around x0 to the first order.

g (x) ≈ g (x0) + g′ (x0) (x− x0) = 0

If we solve for x, calling it x1, we get the following result.

x1 = x0 −
g (x0)

g′ (x0)

This process can be repeated, where we Taylor expand around x1 and solve
for x2 and so on. This is called Newton’s method, and the general formula
can be written as follows [12]:

xn+1 = xn −
g (xn)

g′ (xn)
(5.1)

The assumption here is that by repeatedly solving for xn+1, the value will
eventually converge to a root of g. In a programming environment we set a
tolerance level where for each iteration we check to see if the value g (xn+1)
is sufficiently close to zero according to the given tolerance. When this is
achieved the value of xn+1 is returned. If, on the other hand, the value
does not come sufficiently close in a certain amount of iterations an error is
thrown instead.

5.2.2 Finding maxima and minima

The maxima and minima of a function are characterized by points where
the derivative equals zero. This means that finding the maxima and
minima of a function f (x) is equivalent to finding the roots of g (x) =
f ′ (x). Putting this into equation (5.1) for Newton’s method yields the
following iterative formula:

xn+1 = xn −
f ′ (xn)

f ′′ (xn)
(5.2)

This shows that to find the maxima and minima of a function we can use
the same approach as for locating its roots, with the only difference being
that we use equation (5.2) instead of equation (5.1) to find xn+1.

5.2. SINGLE VARIABLE OPTIMIZATION 43

5.2.3 Implementation : Newton’s method

Let the function g (x) be described as follows:

g (x) = xex − x2

This function has a single root at x = 0. The initial code for finding the root
of g follows below:

1 # Define funct ion g
2 g = lambda x : x * exp (x) − x * * 2
3

4 # I n i t i a l guess f o r root
5 val = 7
6 x_r = i n i t _ v a r i a b l e s (val , max_o=1)
7

8 # Current value
9 current = g (x_r)

We start off by initializing the function g, as well as initializing the AD
variable xr, which holds the approximations of the root. Initially this is set
to x0 = 7. We then calculate the value of the expression for the current
value of xr. The next piece of code follows below:

1 # I t e r a t i o n v a r i a b l e s
2 n = 1 # I t e r a t i o n counter
3 N = 100 # Maximum number of i t e r a t i o n s
4 t o l = 1E−2 # Tolerance

Here we initialize variables necessary before starting the main loop where
we approximate the root of the function. The variable N sets the maximum
number of iterations we do before terminating the program, while the tol
variable determines how close we need to get to the root. This means that
the program terminates if we exceed N iterations, or if the absolute value of
the expression g (xn) falls below the tolerance value. The main loop follows
below:

1 # Find root
2 while n <= N and np . abs (current . val) > t o l :
3 # Get value and d e r i v a t i v e
4 val = current . val
5 der = current . T [0]
6

7 # Ca l c u l a te new x_r
8 x_r = x_r − (val/der)
9

10 # Ca l c u l a te new value
11 current = g (x_r)
12

13 # I n c r e a s e i t e r a t i o n counter
14 n += 1

For each iteration of the loop we store the value and derivative of g (xn)
in the variables val and der, respectively. We then use equation (5.1) to
calculate xn+1 before calculating g (xn+1). Once the loop finishes we know
that it succeeded as long as n is not larger than N.

44 CHAPTER 5. OPTIMIZATION

5.2.4 Implementation : Finding maxima and minima

Let f (x) be described as follows:

f (x) = 4x− x2

This has a maximum at x = 2. The initial code for finding the maximum of
f follows below:

1 # Define funct ion f
2 f = lambda x : 4* x−x * * 2
3

4 # I n i t i a l guess f o r root
5 val = 6 . 7
6 x_m = i n i t _ v a r i a b l e s (val , max_o=2)
7

8 # Current value and d e r i v a t i v e s
9 current = f (x_m)

10 f_x = current . T [1]
11 f_xx = 2* current . T [2]

We start off by initializing the function f , as well as initializing the AD
variable xm, which holds the approximations of the maximum. Initially
this is set to x0 = 6.7. Note that we need to set the maximum order to 2 in
this case, since we require both the first and second order derivative. We
then calculate the value of the expression for the current value of xm and
store the first and second order derivatives in the variables fx and fxx. The
next piece of code follows below:

1 # I t e r a t i o n v a r i a b l e s
2 n = 1 # I t e r a t i o n counter
3 N = 100 # Maximum number of i t e r a t i o n s
4 t o l = 1E−2 # Tolerance

Just like for finding the roots we initialize a set of necessary variables before
starting the main loop. Like before the value of N decides the maximum
number of iterations, but the tolerance variable is used slightly differently.
Since we are effectively using Newton’s method to find the roots of f ′ (x),
we will terminate the main loop once we exceed the maximum number
of iterations or when the absolute value of the first order derivative falls
below the tolerance value. The main loop follows below.

1 # Find maximum
2 while n <= N and np . abs (f_x) > t o l :
3 # Ca l c u l a te new x_m
4 x_m = x_m − (f_x/f_xx)
5

6 # Ca l c u l a te new value and d e r i v a t i v e s
7 current = f (x_m)
8 f_x = current . T [1]
9 f_xx = 2* current . T [2]

10

11 # I n c r e a s e i t e r a t i o n counter
12 n += 1

5.3. MULTIVARIATE OPTIMIZATION 45

This is very similar to the code for finding the root of a function, but
we now use equation (5.2) to find xn+1. Once this is done we calculate
the expression f (xn+1) and store the first and second order derivatives in
fx and fxx. Just like for finding the roots we know that the method has
succeeded as long as n is not larger than N after the loop has finished.

5.2.5 Analysis of results

Recall that the script for finding roots using Newton’s method did this for
the following function:

g (x) = xex − x2

Running the script results in a root being found after 11 iterations of the
method. Assume that we instead try to find the roots of the function
following below:

f (x) = 4x− 10

In this case the root is found after only a single iteration with no error.
Note that in deriving the iteration formula for Newton’s method we
approximated the function as a first order Taylor polynomial. Since f is
a first order function the Taylor approximation is exact. As a result of this
the root of f is found exactly in only one step. Now recall that the function
we created a script to find the minimum for was given as follows:

f (x) = 4x− x2

Running the script to find the minimum results in the exact point being
found after only one iteration. This has an explanation similar to that of
finding the root of a linear function. When we derived the iteration formula
for finding the minimum we simply used Newton’s method to find the root
of g (x) = f ′ (x). Since f is a second order polynomial we know that g is a
first order polynomial, in which case Newton’s method is exact. As a result
of this the minimum is found after only a single iteration.

5.3 Multivariate optimization

In this section we will go through how to find minima and maxima for
functions of several variables. We will start by going through the method of
steepest descent, which uses an intuitive idea to find maxima and minima.
We will then proceed to show how maxima and minima can be found using
a scheme based on Newton’s method for multi-dimensional functions.

5.3.1 Method of Steepest Descent

Assume that we have a function, f (~x), of more than one variable, and that
we wish to find its minimum. The method of steepest descent starts with
an initial guess ~x0 and and then repeatedly moves in a direction opposite
to the local gradient. This is done as many times as is necessary until a
minimum is found [11]. We are in other words finding the direction where

46 CHAPTER 5. OPTIMIZATION

the function decreases the most and following it. This is an iterative scheme
that can be written as follows:

xi+1 = xi − ε∇ f (~xi) (5.3)

This equation is used for some small ε > 0. The term ε must be set to
a small value less than 1 to prevent the method from overshooting and
moving away from the minimum. It can be set to either a small constant, or
it can change in value from each iteration to improve the convergence rate.

A similar method can be used to find the maximum points of a function.
Note that the maximum points of f (~x) are the minimum points of the
function g (~x) = − f (~x). To find the maximum points of f we can simply
find the minima of g. An alternative to this is to follow the direction where
the function increases most, instead of where it decreases. This yields the
following calculation to find xi+1:

xi+1 = xi + ε∇ f (~xi) (5.4)

This can be implemented in a similar way to finding the minimum of a
function, but with the terms for calculating the new spatial points replaced
with the expression above.

5.3.2 Newton based method for finding extrema

Assume that we have a k-dimensional function of n variables, F (~x),
and that we wish to find the points where it equals the k-dimensional
zero vector. Like in the one-dimensional case with one variable we can
approximate F with a first order Taylor approximation around a point ~x0.

F (~x) ≈ F (~x0) + JF (~x0) (~x−~x0) = 0 (5.5)

The term JF above is the Jacobian matrix of F. Assuming that ~x0 is a guess
to the zero-point, ~xr, of F, we can improve on our guess by solving for
~δ0 = ~x−~x0 and setting ~x1 as follows:

~x1 = ~x0 +~δ0

By doing this iteratively we get increasingly more accurate approximations
to ~xr. In general this can be written as follows:

~xi+1 = ~xi +~δi (5.6)

To solve for δ we need to solve equation (5.5). For this equation to have a
unique solution the Jacobian matrix must be square. For this to be the case
the number of dimensions, k, must equal the number of variables, n. When
this is true we can rewrite the equation as follows:

~δi = −JF
−1 (~xi) F (~xi) (5.7)

5.3. MULTIVARIATE OPTIMIZATION 47

Now assume that we want to find the maxima and minima of a function of
n variables, g (~x). This is the same as finding the point where all derivatives
equal zero. This can be written as follows:

∇g (~x) = 0

We can now define F (~x) as follows:

F (~x) = ∇g (~x) = 0

F is now an n-dimensional function of n variables, which means that we
can use the multidimensional Newton method to find where it equals zero.
Inserting the expression for F into equation (5.7) we get the following
expression for ~δi:

~δi = −JF
−1 (~xi) F (~xi)

= −JF
−1 (~xi)∇g (~xi)

= −Hg
−1 (~xi)∇g (~xi)

(5.8)

Where Hg is the Hessian matrix for the function g, which is defined as
follows:

Hg =

∂2g
∂x2

1

∂2g
∂x1 ∂x2

· · · ∂2g
∂x1 ∂xn

∂2g
∂x2 ∂x1

∂2g
∂x2

2
· · · ∂2g

∂x2 ∂xn

...
...

. . .
...

∂2g
∂xn ∂x1

∂2g
∂xn ∂x2

· · · ∂2g
∂x2

n

.

5.3.3 Implementation : Method of Steepest Descent

We will look at how we can create a general solver for finding the minimum
of a function of two variables using the method of steepest descent. The
code below shows the function definition and the required arguments:

1 def s o l v e r (f , x0 , y0 ,N=1000 , t o l =1E−2,eps = 0 . 0 1) :
2 " " "
3 f − Function to f ind minimum of
4 x0 − I n i t i a l guess f o r x
5 y0 − I n i t i a l guess f o r y
6 N − Maximum number of i t e r a t i o n s
7 t o l − Tolerance
8 eps − Gradient m u l t i p l i e r
9 " " "

This shows that we need to get a function f passed to the solver as an
argument as well as the coordinates for the initial guess (x0, y0). The rest
of the arguments are optional, with the tolerance in this case denoting how
close the norm of the derivative vector must be to zero before deciding that
a minimum has been found. The code that precedes the main loop follows
below:

48 CHAPTER 5. OPTIMIZATION

1 # I n i t i a l guess f o r minimum
2 x , y = i n i t _ v a r i a b l e s (x0 , y0 , max_o=1)
3

4 # Current value
5 current = f (x , y)
6

7 # Create l i s t of approximations
8 x_a = [x . val]
9 y_a = [y . val]

10

11 # Define norm
12 norm = lambda grad : np . s q r t (np . sum(np . abs (grad) * * 2))
13

14 # I n i t i a l i z e i t e r a t i o n counter
15 n = 1

We start off by creating AD variables set to the arguments x0, y0, and follow
this up by calculating the value of the function f for these points. We
then create lists for holding the approximations to the minimum. At last
we define a function for calculating the norm of the derivative vector, and
initialize the iteration counter. The main loop follows below:

1 # Find minimum
2 while n <= N and norm (current . T) > t o l :
3 # Ca l c u l a te new x , y , z
4 x = x − eps * current . T [0]
5 y = y − eps * current . T [1]
6

7 # Ca l c u l a te new value
8 current = f (x , y)
9

10 # Add new approximation to l i s t
11 x_a . append (x . val)
12 y_a . append (y . val)
13

14 # I n c r e a s e i t e r a t i o n counter
15 n += 1
16

17 # Return values
18 re turn x_a , y_a , n

This shows that for each iteration we start off by calculating the new
approximation to the minimum using equation (5.3). We then calculate
the value of f (xn+1, yn+1) before adding the new coordinates to the
lists of approximations. When the loop finishes we return the lists of
approximations as well as the total number of iterations.

5.3.4 Implementation : Newton’s method

We will now look at how we can create a general solver for finding the
minimum of a function of two variables using Newton’s method. The code
below shows the function definition and the required arguments:

1 def s o l v e r (f , x0 , y0 ,N=1000 , t o l =1E−2):
2 " " "

5.3. MULTIVARIATE OPTIMIZATION 49

3 f − Function to f ind minimum of
4 x0 − I n i t i a l guess f o r x
5 y0 − I n i t i a l guess f o r y
6 N − Maximum number of i t e r a t i o n s
7 t o l − Tolerance
8 " " "

This shows that we require the same arguments as for the implementation
of the solver for the method of steepest descent, with one exception. This is
that we do not include the gradient multiplier ε as an optional argument,
since this is not required for Newton’s method. The code that precedes the
main loop follows below:

1 # I n i t i a l guess f o r minimum
2 x , y = i n i t _ v a r i a b l e s (x0 , y0 , max_o=2)
3

4 # Current value and d e r i v a t i v e vec tor
5 current = f (x , y)
6 J = current . g e t _ j a c o b i a n ()
7 H = current . ge t_hess ian ()
8

9 # Create l i s t of approximations
10 x_a = [x . val]
11 y_a = [y . val]
12

13 # Define norm
14 norm = lambda grad : np . s q r t (np . sum(np . abs (grad) * * 2))
15

16 # I n i t i a l i z e i t e r a t i o n counter
17 n = 1

We start off by initializing the variables x and y using the arguments x0
and y0. Note that since we require the Hessian matrix we need to set to
maximum order to 2. We than calculate the function for the points (x0, y0),
before storing the first order derivatives and Hessian matrix in the variables
J and H. Like for the method of steepest descent we create lists for holding
the approximations to the minimum before initializing the iteration counter
and defining a function for calculating the norm of the derivative vector.
The main loop follows below:

1 # Find minimum
2 while n <= N and norm (J) > t o l :
3 # Ca l c u l a te d e l t a
4 d e l t a = −solve (H, J)
5

6 # Ca l c u l a te new x , y
7 x = x + d e l t a [0]
8 y = y + d e l t a [1]
9

10 # Ca l c u l a te new value
11 current = f (x , y)
12 J = current . g e t _ j a c o b i a n ()
13 H = current . ge t_hess ian ()
14

15 # Add new approximation to l i s t
16 x_a . append (x . val)
17 y_a . append (y . val)

50 CHAPTER 5. OPTIMIZATION

18

19 # I n c r e a s e i t e r a t i o n counter
20 n += 1
21

22 # Return values
23 re turn x_a , y_a , n

For each iteration we start off by calculating δ using equation (5.8). We then
calculate (xn+1, yn+1) using equation (5.6), followed by evaluating f at the
new points and storing the first order derivatives and the Hessian matrix
in J and H. The points (xn+1, yn+1) are then stored in the lists holding
the approximations, before the iteration counter is updated. Like with the
method of steepest descent the approximations and the total number of
iterations are returned once the loop finishes.

5.3.5 Analysis of results

To see how the Method of Steepest Descent and Newton’s method compare
to each other it is necessary to use the two solvers to find the minimum of
the same function. This function is given as follows:

f (x, y) = 4x2y2 + 8y2 + 3x2 + 27

This function has a minimum at (0, 0). We set the initial guess at
(3

2 , 1
)

and
for the method of steepest descent the gradient multiplier is set to 0.05. We
use the defaults for the rest of the arguments. The result of solving this is
that they both find the minimum, with the Method of Steepest Descent
requiring 15 iterations, while Newton’s method only needs 3 iterations.
Figure 5.1 on page 51 shows a plot of the vector norm of the distance from
the minimum for each iteration for the two methods.

This shows that the distance to the minimum decreases faster for the
Method of Steepest Descent initially. However, after a few iterations the
method starts to move slower towards the solution. Newton’s method,
on the other hand, does not slow down as much, which results in fewer
iterations. This can be explained by examining a plot of the function f .
Figure 5.2 on page 51 shows the plot of f for x, y ∈ [−2, 2].

This shows that the area around the minimum is very flat, which means
that the magnitude of the derivative vectors in this area is small. Recall
that the iteration formula for the Method of Steepest Descent was given as
follows in equation (5.3):

xi+1 = xi − ε∇ f (~xi)

This shows that the smaller the magnitude of the derivative vector,∇ f (~xi),
the smaller the steps taken for each iteration will be. This explains why the
Method of Steepest Descent starts moving slower towards the minimum
the closer it gets. Figure 5.3 on page 52 shows a contour plot of the
function f , together with the paths followed by the two methods towards
the minimum.

5.3. MULTIVARIATE OPTIMIZATION 51

0 2 4 6 8 10 12 14 16
of iterations

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

No
rm

 o
f d

is
ta

nc
e

fro
m

 m
in

im
um

Method of Steepest Descent
Newton's method

Figure 5.1: Distance to minimum as a function of the number of iterations.

x

2.0 1.5 1.0 0.50.0 0.5 1.0 1.5 2.0

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

f(x
,y

)

40

60

80

100

120

Figure 5.2: Plot of f (x, y) = 4x2y2 + 8y2 + 3x2 + 27

52 CHAPTER 5. OPTIMIZATION

Figure 5.3: Paths toward the minimum point

This shows how Newton’s method takes a more direct route towards
the minimum compared to the Method of Steepest Descent. It also shows
how the latter method takes increasingly smaller steps the closer it gets to
the minimum, something that is natural since the gradient of the function
decreases the closer we get. One way we could improve on this method
would be to use an adaptive value for ε, instead of just using a constant.
This would allow us to pick the best possible value for each iteration
instead of just choosing a constant value up front.

5.4 Final Remarks

The optimization examples that we have gone through in this chapter
shows the usefulness of the AD framework to get easy access to the
derivatives of different functions. However, although it is easy to
appreciate the convenience of using the AD framework, it is also important
to consider how much of a difference this makes in relation to alternate
ways of obtaining the derivatives. There are primarily two alternate ways
we could have done this.

• Using finite differences

• Calculating the derivative expressions by hand

Using finite differences to approximate derivatives is an option that would
work not only for the examples above, but for a generalized optimization
application as well, since we can use finite differences to approximate
the derivatives of arbitrary functions. The big weakness of using finite

5.4. FINAL REMARKS 53

differences is that errors are introduced into the value of the derivatives,
which in optimization applications may cause a method to converge slower
or fail altogether. The upside is that finite differences can be faster than
using the AD framework, however this depends on the cost of evaluating
the function we need the derivatives of.

Calculating the derivative expressions by hand is a tedious exercise, but
it does provide exact derivatives just like the AD framework, as well as
performing much better. The drawback to this is that it can only be done
for applications where we know the functions we will need derivatives for
beforehand. For generalized optimization applications it is necessary to
access the derivatives of arbritrary functions, thus ruling out this method
entirely. Even for applications where we do know the functions we are
working with, the AD framework might be a better solution. This could be
if there is a large amount of derivative expressions, making deriving them
time-consuming and error-prone, and a slight decrease in the speed of the
final program is acceptable.

In conclusion the AD framework is a useful tool for optimization
applications where derivatives are required, and where we are either
dealing with arbitrary functions or the simplicity of using it is preferred
to calculating derivatives by hand, despite a slight decrease in speed.

54 CHAPTER 5. OPTIMIZATION

Chapter 6

Reservoir Simulation

6.1 Introduction

Over a period of millions of years, a combination of the accumulation
of organic materials in layers of sediment and severe geological activity
caused the creation of number of different hydrocarbons beneath the ocean
floor. While some hydrocarbons managed to escape, in some places
the geological activity trapped the hydrocarbons beneath layers of low-
permeable or non-permeable rock. These hydrocarbons can now be found
between 1000 and 3000 meters below the sea bed, and make up today’s oil
and gas reservoirs [2, p. 3-4].

Due to the multiple uses of oil and gas, a lot of time and effort is spent
retrieving the hydrocarbons in these reservoirs. This process involves
drilling through the rock trapping the hydrocarbons, and extracting them
at the surface through wells reaching down into the reservoir. This is
obviously a time-consuming and costly exercise, which makes it desirable
to know as much as possible about the retrieval process. This is
where reservoir simulation, which can be described as the modelling of
subsurface flow in oil reservoirs, proves to be an invaluable tool.

Reservoir simulation is used for a wide range of different tasks, such
as visualizing flow patterns and providing estimates of the production
characteristics. However, the primary objective behind this is to provide
the necessary information to help oil companies make decisions that lead
to the maximization of the recovery of oil and gas [2, p. 1].

To describe the reservoir mathematically, in a way that allows us to
solve it using a computer, we require two types of models. We need a
mathematical model that describes the flow of fluids in a porous medium,
which is typically expressed as a set of partial differential equations based
on the conservation of mass, as well as a set of constitutive relations. We
also require a geological model that describes the oil reservoir. This is
accomplished by splitting the reservoir into cells, which make up a grid,
and storing the relevant physical properties for each cell [5, p. 2].

55

56 CHAPTER 6. RESERVOIR SIMULATION

In this chapter we will create a reservoir simulation solver using the
simplest type of mathematical model, which is the Single-Phase Flow
model. Geological models describing a reservoir may contain millions
of grid cells, which makes it unfeasible to perform simulations with. In
practice we use coarser grid-models that are created by upscaling the
geophysical parameters of the original geological model [5, p. 3]. We will
refer to the upscaled models as synthetic simulation models, which will
be passed to the reservoir simulation solver as input, allowing us to use
the solver to simulate different grid sizes. Creating a synthetic simulation
model of an oil reservoir in a programming environment is a large task
in its own right, and as such the solver will use models initially created
in MATLAB with the MATLAB Reservoir Simulation Toolbox (MRST),
developed by SINTEF Applied Mathematics [5]. This includes objects
describing the cells, the necessary spatial information and the relevant
physical properties for each cell. An object describing the oil well, created
using MRST, is imported as well.

This chapter includes two main parts. First, we discuss the necessary
theory behind the reservoir simulation, before moving on to the actual
implementation. It should be noted that since we only look at a simple oil
reservoir model, there are several issues that are relevant for a real world
oil reservoir simulation that we do not account for here. The theory part
of this chapter should therefore not be considered as a complete guide to
reservoir simulation, but rather as a short introduction that aims to provide
the necessary background information and understanding of the problem
at hand.

6.2 Background theory on reservoir simulation

6.2.1 Oil Reservoir Characteristics

In this subsection we will look at the physical properties that we need to
take into account in a reservoir simulation, and that are relevant for the
example at hand.

Porosity and Pore Volume

The rock porosity is the void volume fraction of a piece of rock, usually
denoted by φ. It is expressed as a number between 0 and 1, and will in most
cases depend on pressure. The rock compressibility is defined as follows
[2, p. 4]:

cr =
1
φ

dφ

dp
(6.1)

Solving this equation yields the following expression for φ:

φ (p) = φ0ecr(p−pr) (6.2)

6.2. BACKGROUND THEORY ON RESERVOIR SIMULATION 57

In the equation above φ0 is the porosity at the reference pressure pr, and
we have assumed that the rock compressibility, cr, is constant. The rock
compressibility can either be constant or a function dependent on pressure,
but will be set to a constant in this example. The pore volume is described
as the total void volume in a piece of rock, and as such is given as the
volume of the rock multiplied with the porosity. The expression for the
pore volume follows below:

pv = pvrecr(p−pr) (6.3)

The term pvr is the pore volume at the reference pressure pr and is given as
pvr = Vφ0.

Permeability

The permeability of a rock describes a rock’s ability to transmit a single
fluid, and is denoted by K. It is related to the porosity of the rock in
the sense that the amount of pores present will affect how well it can
transmit a fluid, but these quantities are not necessarily proportional since
the orientation and interconnection of the pores plays a role as well. K is in
general given as a tensor, in which case the permeability varies in different
directions [2, p. 4-5]. In this example, however, the permeability is assumed
to be the same in all directions and unaffected by each other, in which case
the permeability is given as follows:

K = kI

The term I is the three-dimensional identity matrix, while k is a scalar
describing the permeability in all directions.

Oil Density

In a real world reservoir there are several different phases present with
different compressibilities. In this example, however, we will consider a
reservoir that only includes oil. The oil compressibility is defined similarly
to that of rock compressibility, and is defined as follows [2, p. 6]:

co =
1
ρo

dρo

dp
(6.4)

Solving this yields an expression for the density of the oil, which is given
as follows:

ρo (p) = ρo,0eco(p−pr) (6.5)

The term ρo,0 is the oil density at the reference pressure pr, and the
oil compressibility, co, is assumed to be constant. Just like for rock
compressibility the oil compressibility can be either a constant or a function
dependent on pressure, but we will use a constant for this example.

58 CHAPTER 6. RESERVOIR SIMULATION

6.2.2 Mathematical Model

As previously mentioned, the mathematical model consists of a system
of partial differential equations that describe the relationship between the
physical parameters of the reservoir. The simplest way to describe the
displacements of fluids in a reservoir is by using a single-phase model,
which means that we will only consider the flow of a single fluid, which
in this example is oil. The basic differential equation we will be using to
model the reservoir follows below [2, p. 9]:

∂ (φρ)

∂t
+∇ · (ρv) = q (6.6)

This is called the continuity equation, which states that mass is conserved,
where φ describes the rock porosity, ρ describes the fluid density, v the
flow velocity and q models sources and sinks, in other words the inflow
and outflow of fluid at the well perforations. This equation holds true for
all the individual cells in the grid model. The flow velocity is described by
Darcy’s law as follows [2, p. 10]:

v = −K
µ
(∇p + ρg∇z) (6.7)

Inserting equation 6.7 into equation 6.6 and moving the q term to the other
side yields the final equation:

∂ (φρ)

∂t
−∇ ·

(
ρ

K
µ
(∇p + ρg∇z)

)
− q = 0 (6.8)

Next, we need to specify the boundary conditions to close this model. It
is common practice to use no-flow boundary conditions, which means that
no liquid can enter or exit the reservoir. This is specified as v ·~n = 0 on the
reservoir boundary ∂Ω, where~n denotes the normal vector pointing out of
the boundary [2, p. 10–11].

Next, we need to specify our constitutive relations. Let qS denote the flow
of liquid out of the oil well given as volume per second (m3s−1), and let q̂i
denote the flow at well perforation i given as weight per second (kgs−1).
Naturally the sum of the flow from individual well perforations should
equal qS, which gives rise to the following equation:

qS −∑
i

q̂i

ρS
= 0

Where ρS equals the liquid density of the oil at the surface, something it is
necessary to divide by to represent the flow as volume per second instead
of weight. The final thing we need to take into account is the bottom
hole pressure, pbh. This can be set to any pressure value, which yields the
following equation:

pbh − pbhp = 0

Where pbhp denotes the chosen bottom hole pressure value. If we let N
denote the number of cells this gives us a total of N + 2 equations that
make up the mathematical model.

6.2. BACKGROUND THEORY ON RESERVOIR SIMULATION 59

6.2.3 Discretizing the Mathematical Model

To be able to solve this set of PDEs it is necessary to find a discrete approxi-
mation to the differential operators that are present in the continuity equa-
tion (6.8), since these can not be applied in a programming environment.
To do this we will use a finite-volume method. The continuity equation
holds for all grid cells, Ωi, so we integrate the equation over each of these
grid cells. This yields the following expression:∫

Ωi

∂ (φρ)

∂t
dV +

∫
Ωi

∇ ·
(

ρ
K
µ
(∇p + ρg∇z)

)
dV −

∫
Ωi

qidV = 0 (6.9)

We will proceed by discretizing each of the individual integrals in equation
6.9 one at a time.

Discretizing the integral including a time derivative

We will start off by discretizing the following integral:∫
Ωi

∂ (φρ)

∂t
dV

We can use a finite difference to approximate the time derivative which
yields the following expression:

∂ (φ (tn) ρ (tn))

∂t
≈ Dt (φ (tn) ρ (tn)) =

φ (tn) ρ (tn)− φ (tn−1) ρ (tn−1)

4t
(6.10)

In the expression above Dt denotes the finite difference derivative operator,
while ∆t denotes the size of the time step. Since the integral is performed
over a single cell we know that φ and ρ are constant under the integral, and
as such we can pull them out. This leaves us with the final expression:∫

Ωi

∂(φ(tn)ρ(tn))
∂t dV ≈

∫
Ωi

Dt (φ (tn) ρ (tn)) dV

= Dt (φ (tn) ρ (tn))
∫
Ωi

dV

= ViDt (φ (tn) ρ (tn))

(6.11)

In the expression above the term Vi denotes the volume of cell i.

Discretizing the sources and sinks integral

The next integral to be discretized is the following:∫
Ωi

qidV

The sources and sinks term, qi, is considered a point source defined for
certain cells where the well perforations are located. Integrating this yields

60 CHAPTER 6. RESERVOIR SIMULATION

the following result: ∫
Ωi

qidV = q̂i (6.12)

Note that the difference between qi and q̂i is that while q̂i is given as weight
per second (kgs−1), qi is given as weight per second per volume (kgs−1m−3).

Discretizing the integral involving the divergence operator

Finally, we are discretizing the following integral:∫
Ωi

∇ ·
(

ρ
K
µ
(∇p + ρg∇z)

)
dV =

∫
Ωi

∇ · (ρv) dV

This can be rewritten using Green’s theorem, which yields the following
result: ∫

Ωi

∇ · (ρv) dV =
∫

∂Ωi

(ρv) ·~nds

∂Ωi is the boundary of Ωi, and ~n is the outward-pointing unit normal on
∂Ωi. Let Γi,j denote the interface between cell i and j. We can then rewrite
the above expression further to:∫

∂Ωi

(ρv) ·~n ds = ∑
j∈Ji

vi,j (6.13)

vi,j =
∫

Γi,j

(ρv) ·~nij ds (6.14)

In this expression Ji denotes the set of all the neighbors of grid cell i, while
~nij denotes the unit normal on the interface between cell i and j pointing
outwards from cell i. The faces Γi,j will be referred to as half-faces since
they are associated with a particular grid cell and normal vector, but where
each half face will have a twin half-face Γj,i that has an identical area and
opposite normal vector. Using the midpoint method we can approximate
vij as follows [4, p. 123]:

vi,j ≈ Aijρ
(
~xi,j
)
~v
(
~xi,j
)
·~nij

The term Ai,j is the area of the face between cell i and j and ~xi,j is the
centroid of the face. We will approximate the density at ~xi,j as an average
between the two cells:

ρ
(
~xi,j
)
≈

ρi + ρj

2
The Darcy velocity at ~xi,j is approximated as follows:

~v
(
~xi,j
)
=

[
K
µ
(∇p + ρg∇z)

] (
~xi,j
)
≈ Ki

µ
∇u

(
~xi,j
)

In this expression u is given as u = p + ρgz and we have approximated the
permeability as the permeability of cell i. Next we need to approximate the

6.2. BACKGROUND THEORY ON RESERVOIR SIMULATION 61

gradient of u at the half-face centroid. We only know the averaged value of
u, ui, inside the cell. Let’s assume that this is the value at the centre of the
cell, and that the value of u at the half-face centroid is πi,j. Let~ci,j denote the
vector pointing from the cell centroid to the half-face centroid, and assume
that u is a linear function. We can then estimate the gradient as follows [4,
p. 123]:

∇u
(
~xi,j
)
≈
(
ui − πi,j

)
~ci,j

|~ci,j|2

We can now write vi,j as follows:

vi,j ≈ Aijρi
Ki

µ

(
ui − πi,j

)
~ci,j

|~ci,j|2
·~nij =

ρi

µ
Ti,j
(
ui − πi,j

)
Where Ti,j denotes the one-sided transmissibility associated with a single
cell. These will be referred to as half-transmissibilities since they are
associated with a half-face [4, p. 123]. To eliminate πi,j we impose the
conditions vi,j = −vj,i and πi,j = πj,i [4, p. 124]. This gives us the following
two equations:

T−1
i,j vi,j =

ρ
(
~xi,j
)

µ

(
ui − πij

)
− T−1

j,i vi,j =
ρ
(
~xi,j
)

µ

(
uj − πij

)
Combining these equations allows us to eliminate πij and leaves us with
the following two-point flux-approximation scheme:

vi,j =
ρ
(
~xi,j
)

µ

(
T−1

i,j + T−1
j,i

)−1 (
ui − uj

)
=

ρ
(
~xi,j
)

µ
Tij
(
ui − uj

)
(6.15)

Tij =
(

T−1
i,j + T−1

j,i

)−1
, Ti,j = Aij

Ki

µ

~ci,j

|~ci,j|2
·~nij (6.16)

Tij in the above equation is the transmissibility associated with the
connection between the two cells [4, p. 124]. The calculations above assume
that we are dealing with an interface between two interior cells. For
exterior faces we know that vi,j = 0 because of the no-flow boundary
condition defined as ~v ·~n = 0 on the boundary.

6.2.4 Production Process and Well Rates

To retrieve oil from the reservoir it is necessary to drill holes down into the
reservoir where the oil wells are put. There are many different production
processes used to extract the oil to the surface, but in this case we will only
consider the bottom hole pressure method. This consists of manipulating
the pressure at the top of the well, known as the bottom hole pressure,
which results in the oil moving from the reservoir and to the surface
through the well. The formula for calculating the flow from a given well
perforation i in the reservoir is given as follows [4, p. 172] :

q̂i =
ρi

µ
WI (pc − pi) (6.17)

62 CHAPTER 6. RESERVOIR SIMULATION

The term WI is the well injectivity index (as first described by Peaceman
in [9]), which is calculated in MATLAB and simply loaded into the Python
program. The connection pressure pc is given as follows in [4, p. 171]:

pc = pbh + gρ (pbh)∆z

In this expression pbh denotes the bottom-hole pressure,∆z is the vertical
distance from the bottom-hole to the well perforation and ρ (pbh) is the
density of the oil at the bottom-hole pressure. In this example we will
use a similar, but slightly different expression for pc, where we replace
the density at the bottom-hole pressure with the density at the grid cell
pressure. The resulting expression follows below:

pc = pbh + gρ (pi)∆z = pbh + gρi∆z

6.2.5 Reservoir Model

Figure 6.1 on page 63, figure 6.2 on page 63 and figure 6.3 on page 64 shows
the models of the reservoirs for the 10 × 10 × 10, 20 × 20 × 20 and 30 ×
30× 30 grids respectively. These figures, which were created in MATLAB
using MRST, illustrate that we are performing reservoir simulations for
box-shaped reservoirs using grids consisting of grid cells that are all of the
same size. All the models have the same physical dimensions, as well using
the same values for all physical parameters.

Additionally, a single well is used, with the well perforations located at
approximately at the same location for all models. The reason why they are
not located at the exact same location is due to the fact that the locations of
the well perforations are described by the grid cells they are in. Assuming
that the well perforations are in the middle of their respective grid cells, this
means that changing the grid size will in some cases not make it possible
to choose the same locations for the well perforations. This is the case
when going from a 10 × 10 × 10 model to a 20 × 20 × 20 model. This is
equivalent to splitting each grid cell into two parts along each dimension,
placing the well perforations at the boundary between different grid cells.
Since this can not be set as a location, the result is that the well perforations
are displaced a little compared to the smaller model.

Despite these small differences in the location of the well perforations,
these models can be considered as modelling the same reservoir, but with
different grid sizes. As such, we expect the results from the reservoir
simulations with these models to return similar results.

6.2.6 Newton’s method for PDE’s

The mathematical models used in reservoir simulation are typically sets
of partial differential equations, which we have discussed in this chapter
already. This can be formulated in the following manner:

F (~x) = 0

6.2. BACKGROUND THEORY ON RESERVOIR SIMULATION 63

Figure 6.1: 10× 10× 10 Reservoir Grid

Figure 6.2: 20× 20× 20 Reservoir Grid

64 CHAPTER 6. RESERVOIR SIMULATION

Figure 6.3: 30× 30× 30 Reservoir Grid

In this equation each component of F, Fi, represents one of the partial
differential equations to be solved. Recall that we in section 5.3.2 derived
an iterative method for exactly the same type of equation, which was as
follows:

~xi+1 = ~xi +~δi ~δi = −J−1 (~xi) F (~xi)

This is Newton’s method as noted in section 5.3.2, where the Jacobi matrix
J is given as follows:

Jij (~x0) =
∂Fi (~x0)

∂xj

The only difference from the derivation in the optimization section is that
we are now considering a set of partial differential equations, instead
of a multi-dimensional function. Since we have discretized the partial
differential equations, we can simply use this exact formula for solving our
system of PDE’s as well. It is important to note that to find the inverse of the
Jacobian it is necessary for the number of equations to equal the number of
variables. We have N + 2 equations, where N denotes the number of cells,
while we have N pressure variables in addition to qS and pbh. We have,
in other words, the same amount of equations as variables, so we can use
Newton’s method. The pseudo code illustrating how this is done follows
below:

1 # I n i t i a l i z e v a r i a b l e s
2 x0 = val
3 n i t = 1
4 t o l = 1E−5
5 maxits = 10
6

6.3. RESERVOIR SIMULATION IN PYTHON 65

7 # Begin main loop
8 while (resNorm > t o l) and (n i t < maxits) :
9 F = c a l c u l a t e F (x0) # Find F (x0)

10 J = c a l c u l a t e J (x0) # Find J (x0)
11 upd = solve (− J , F) # Find −J (x0)^−1 F (x0)
12 x0 = x0 + upd # Update x0
13

14 # Update resNorm and n i t
15 resNorm = norm (F) # Find the vec tor norm of F
16 n i t += 1 # Update current i t e r a t i o n
17

18 i f n i t == maxits :
19 p r i n t " The Newton method did not converge . "
20 re turn x0

This shows that we set ~x0 to a certain value initially and calculate a new
value for ~x0 by finding ~δ, here denoted as ’upd’. For each iteration we
find the vector norm of F and update the current iteration ’nit’. The
method stops and returns ~x0 when the norm of F falls below a certain
threshold, which is usally set to a low number, e.g. 10−5, or when
we have performed the maximum number of iterations without finding
a satisfactory approximation to ~x. For each iteration it is necessary to
calculate the vector of values F (~x0) and the Jacobian matrix J (~x0). This
shows the usefulness of using the AD framework since it enables us
to calculate the vector F (~x0) and automatically be able to access the
derivatives that make up the Jacobian matrix.

6.3 Reservoir simulation in Python

In this section we will start off by going through the implementation
of the single-phase reservoir simulation solver. We will then look at a
comparison between the performance of the solver compared to a similar
solver implemented in MATLAB, before moving on to an analysis of the
results from running simulations with different grid sizes.

6.3.1 Implementation of Solver

In this section we will go through the file reservoir_sim_1p.py, which
includes a solver method that can be used to simulate a given synthetic
simulation model using a single-phase mathematical model. The solver is
based on a similar implementation in MRST, which can be found in the
appendix. The first lines of the file follow below:

1 " " "
2 Descr ipt ion :
3 Reservoir s imulator using a s ing le−phase model .
4

5 Parameters :
6 d a t a f i l e − MATLAB data f i l e with data s t r u c t u r e s f o r the
7 r e s e r v o i r geometry and well .
8 p r o f i l e − When s e t to t rue t h i s enables p r o f i l i n g of the
9 main body of the program .

66 CHAPTER 6. RESERVOIR SIMULATION

10 i t e r _ s o l v e − When s e t to t rue the s o l v e r uses an i t e r a t i v e
11 s o l v e r f o r so lv ing the matrix system J *upd = −F
12 " " "
13 def s o l v e r (d a t a f i l e , p r o f i l e =False , i t e r _ s o l v e =Fa l se) :
14 # I n i t i a l i z e p r o f i l i n g
15 # −−−
16 i f p r o f i l e :
17 pr = c P r o f i l e . P r o f i l e ()
18 pr . enable ()
19

20 # Read MATLAB data f i l e
21 # −−−
22 matlab_data = loadmat (d a t a f i l e , s t r u c t _ a s _ r e c o r d =True)
23

24 # Get geometry grid
25 # −−−
26 G = matlab_data [’G ’]
27 G = process_geometry (G)
28

29 # Get data f o r s i n g l e h o r i z o n t a l well
30 # −−−
31 W = matlab_data [’W’]
32 W = process_wel l (W)
33

34 # Get rock data (permeabi l i ty and poros i ty)
35 # −−−
36 rock = matlab_data [’ rock ’]
37 rock = process_rock (rock)

This shows that the solver method takes three arguments, datafile,
profile and iter_solve. The datafile contains the data structures for
the geometric grid, oil well and rock properties which are loaded and
processed in the code above. The processing involves making the data
easily accessible in Python, since the storage of the data is a bit cumbersome
by default. The argument profile can be set to true, in which case the main
body of the code is profiled and the results printed, while the iter_solve
argument can be set to true to use an iterative solver for the matrix equation
in Newton’s method. The next few lines of code follow below:

1 # Rock p r o p e r t i e s
2 # −−−
3 cr = 1e−6/barsa # Set rock c o m p r e s s i b i l i t y
4 pv_r = poreVolume (G, rock) # Reference pore volume
5 p_r = 200* barsa # Reference pressure
6

7 # Pressure dependent funct ion f o r pore volumes
8 def pv (p) :
9 re turn AD. vec_mult (pv_r , exp (cr * (p−p_r)))

This part defines a few physical properties and defines a function for
finding the pressure dependent pore volume of the grid cells, as given in
equation (6.3). The next section of code follows below:

1 # Fluid (o i l) p r o p e r t i e s
2 # −−−
3 mu = 5* c e n t i * poise # Assume constant v i s c o u s i t y
4 c = 1e−3/barsa # Constant o i l c o m p r e s s i b i l i t y

6.3. RESERVOIR SIMULATION IN PYTHON 67

5 rho_r = 850* kilogram/meter * * 3 # Reference o i l dens i ty
6 rhoS = 750* kilogram/meter * * 3 # Surface o i l dens i ty
7

8 # Pressure dependent funct ion f o r o i l dens i ty
9 def rho (p) :

10 re turn rho_r * exp (c * (p−p_r))

This defines another few physical properties and defines a function for
the pressure dependent oil density, as given in equation (6.5). The next
section of code follows below:

1 # I n i t i a l condi t ions
2 # −−−
3 z_0 = 0
4 z_max = np . max(G[’ c e l l s ’] [’ c e n t r o i d s ’] [: , 2])
5 zz = np . l i n s p a c e (z_0 , z_max , 1 0 0)
6 pp = [p_r]
7 func = lambda z , p : g * rho (p)
8 odesolver = ode (func)
9 odesolver . s e t _ i n i t i a l _ v a l u e (p_r , z_0)

10

11 f o r zval in zz [1 :] :
12 odesolver . i n t e g r a t e (zval)
13 pp . append (odesolver . y)
14

15 f = interp1d (zz , pp , kind= ’ cubic ’)
16 p _ i n i t = f (G[’ c e l l s ’] [’ c e n t r o i d s ’] [: , 2])

To find the initial pressure for the grid cells we assume that the reservoir
is at equilibrium initially, in which case the following differential equation
must be satisfied [4, p. 169]:

dp
dz

= gρ (p)

This ODE is solved in the piece of code above, using the initial condition
p (z0) = pr. The point, z0, is set to 0. Since the reservoir geometry is defined
relative to this height, this can be done without loss of generality [4, p. 169].
The next section of code follows below:

1 # Simulat ion components
2 # −−−
3 N = G[’ f a c e s ’] [’ neighbors ’]
4 i n t I n x = np . nonzero (np . prod (N, 1)) [0]
5 N = N[int Inx , :] −1
6 n = N. shape [0]
7

8 # Ca l c u l a te i n t e r i o r t r a n s m i s i b i l i t i e s
9 T = computeTrans (G, rock)

10

11 # Create divergence and gradient matrix
12 rows = np . array (range (n) , dtype= i n t)
13 i = np . hstack ((rows , rows))
14 j = np . hstack ((N[: , 0] ,N[: , 1]))
15 i j = np . vstack ((i , j))
16 data = np . hstack ((np . ones (n , dtype= i n t) ,−np . ones (n , dtype= i n t)))
17 C = ss . csr_matr ix ((data , i j) , shape =(n ,G[’ c e l l s ’] [’num ’]))

68 CHAPTER 6. RESERVOIR SIMULATION

18 C_T = C. transpose ()
19

20 # D i s c r e t e grad and div operators
21 def grad (x) :
22 re turn −AD. smat_mult (C, x)
23

24 def div (x) :
25 re turn AD. smat_mult (C_T , x)
26

27 # Averaging funct ion
28 nc = np . max(np . max(N)) + 1
29 data = 0 . 5 * np . ones (2 * n)
30 M = ss . csr_matr ix ((data , i j) , shape =(n , nc))
31

32 def avg (x) :
33 re turn AD. smat_mult (M, x)

The first part finds all the interior faces of the geometrical model. The
next part calculates all the transmissibilities for the interior faces as defined
in equation (6.16). Because of the boundary condition all the terms vi,j,
defined in equation (6.15), on the exterior boundary will equal zero, so it is
not necessary to calculate the transmissibilities for these surfaces.

Next a matrix C and its transpose are created and used in the functions
’grad’ and ’div’. These functions are used to calculate the vi,j terms in the
pressure equations. The ’grad’ function is used to help create all individual
contributions vi,j, while the ’div’ function is used to sum them together
properly. A third matrix is also created that is used to efficiently find the
averages of ρ

µ along all boundaries between grid cells. This is done in the
’avg’ function. The next section of code follows below:

1 # Pressure and well equat ions
2 # −−−
3 # Get z v a r i a b l e
4 z = G[’ c e l l s ’] [’ c e n t r o i d s ’] [: , 2]
5

6 # Well r a t e s
7 wc = W[’ c e l l s ’]−1 # P e r f o r a t i o n grid c e l l s
8 WI = W[’WI ’] # Well i n d i c e s
9 dz = W[’dZ ’] # P e r f o r a t i o n depth r e l a t i v e to well r e f depth

10

11 # Create funct ion f o r c a l c u l a t i n g well r a t e s
12 def wel lRates (p , bhp) :
13 p_wc = p [wc]
14 rho_pwc = rho (p_wc)
15 re turn AD. vec_mult (WI/mu, rho_pwc)*\
16 (bhp−p_wc+AD. vec_mult (g * dz , rho_pwc))
17

18 # Function f o r the pressure equation
19 def pressureEq (p , p0 , dt) :
20 rho_p = rho (p)
21 re turn (1/ dt) * (pv (p) * rho_p−pv (p0) * rho (p0)) − \
22 div (avg (rho_p/mu) *AD. vec_mult (T , \
23 grad (p−AD. vec_mult (g * z , rho_p))))

6.3. RESERVOIR SIMULATION IN PYTHON 69

Initially we find the z variable for all the different grid cells. Next we
find the grid cells the well is connected to, as well as some properties for
these grid cells. The function ’wellRates’ is defined and calculates the flow
rate q̂i for each perforation grid cell for a given pressure and bottom hole
pressure. This is calculated as given in equation (6.17). Next the function
pressureEq is defined. This calculates the discretized single-phase flow
equation, but with the exception of the q̂i term. The next section of code
follows below:

1 # I n i t i a l i z e AD v a r i a b l e s
2 # −−−
3 p_ad , bhp_ad , qS_ad = i n i t _ v a r i a b l e s (p _ i n i t , p _ i n i t [wc [0]] , 0 , \
4 max_o=1 ,update_num=True , dtype=np . f l o a t 6 4 , sparse=True)
5

6 # Create AD i n d i c e s
7 pIx = range (G[’ c e l l s ’] [’num ’])
8 bhpIx = G[’ c e l l s ’] [’num ’]
9 qSIx = G[’ c e l l s ’] [’num ’]+1

The AD variables are initialized first, where p_ad is an AD vector that
describes the pressure for all grid cells, while bhp_ad and qS_ad are AD
variables that describe the bottom hole pressure and the well rate at the
surface, respectively. The final three initializations create indices to be used
later. The next section of code follows below:

1 # Simulat ion parameters
2 # −−−
3 numSteps = 52
4 totTime = 365* day
5 dt = totTime / numSteps
6 t o l = 1e−5
7 maxits = 10
8

9 # Set up s t r u c t u r e f o r holding s o l u t i o n
10 s o l = { }
11 s o l [’ time ’] = []
12 s o l [’ pressure ’] = []
13 s o l [’bhp ’] = []
14 s o l [’ qS ’] = []
15

16 # Add i n i t i a l values to ’ s o l ’
17 s o l [’ time ’] . append (0)
18 s o l [’ pressure ’] . append (p_ad . val)
19 s o l [’bhp ’] . append (bhp_ad . val)
20 s o l [’ qS ’] . append (qS_ad . val)

Some basic simulation parameters are initialized here and the data
structure for holding the solution is created. The next section of code
follows below.

1 # Simulat ion
2 # −−−
3 t = 0
4 s tep = 0
5 while t < totTime :
6 t += dt
7 s tep += 1

70 CHAPTER 6. RESERVOIR SIMULATION

8 resNorm = 1 e99
9 p0 = p_ad . val

10 n i t = 0
11

12 # P r i n t progress
13 p r i n t s t r (s tep)+ ’/ ’+ s t r (numSteps)
14

15 while (resNorm > t o l) and (n i t < maxits) :
16 # Create equat ions
17 wr = wel lRates (p_ad , bhp_ad)
18 eq_1 = pressureEq (p_ad , p0 , dt)
19 eq_1 [wc] = eq_1 [wc] − wr
20 eq_2 = qS_ad − AD.ADsum(wr)/ rhoS
21 eq_3 = bhp_ad − 100* barsa
22

23 # Solve
24 eq = AD. ADappend(eq_1 , [eq_2 , eq_3])
25 J = eq . T # Get Jacobian
26 r es = eq . val # Get r e s i d u a l
27

28 # Newton Update
29 i f not i t e r _ s o l v e :
30 # Use regular s o l v e r
31 upd = spsolve(− J , r es)
32 e l s e :
33 # Use i t e r a t i v e s o l v e r
34 upd = s s l . lgmres(− J , res , t o l =1e−7)
35 upd = upd [0]
36

37 # Update v a r i a b l e s
38 p_ad . s e t v a l (p_ad . val+upd [pIx])
39 bhp_ad . s e t v a l (bhp_ad . val+upd [bhpIx])
40 qS_ad . s e t v a l (qS_ad . val+upd [qSIx])
41

42 # Update counter and r e s i d u a l
43 resNorm = norm (re s)
44

45 i f n i t == maxits :
46 p r i n t " The Newton method did not converge . "
47

48 # Update s o l u t i o n f o r current time l e v e l
49 s o l [’ time ’] . append (t)
50 s o l [’ pressure ’] . append (p_ad . val)
51 s o l [’bhp ’] . append (bhp_ad . val)
52 s o l [’ qS ’] . append (qS_ad . val)

This shows the main part of the simulation. For each time step the main
loop tries to approximate the point where the PDE system F (~x) = 0 using
the Newton iteration method. The Newton iterations stop when the vector
norm of F (~x) falls below the threshold value ’tol’ or when it has performed
’maxits’ iterations without falling below the threshold value.

1 # P r i n t p r o f i l i n g r e s u l t s
2 i f p r o f i l e :
3 pr . d i s a b l e ()
4 s = Str ingIO . Str ingIO ()
5 sortby = ’ cumulative ’
6 ps = p s t a t s . S t a t s (pr , stream=s) . s o r t _ s t a t s (sor tby)

6.3. RESERVOIR SIMULATION IN PYTHON 71

7 ps . p r i n t _ s t a t s ()
8 p r i n t s . getvalue ()
9

10 # Return s o l u t i o n
11 re turn s o l

These are the final lines of the solver function. If profiling is enabled it is
stopped and the results are printed. The last line simply returns the result
of the simulation.

6.3.2 Performance Comparison to MATLAB Implementation

To compare how the Python implementation holds up against a similar
implementation in MATLAB, that uses an AD framework as well, it is
necessary to solve the same problem using both implementations with the
same computing resources available. Both implementations were tested for
three models of different sizes. The problem was the same, but the reservoir
was split into different sized grids with 10,20 and 30 grid cells along each
spatial dimension. All simulations were run on the same computer, with
the following specifications:

MATLAB Python
OS Windows 7 Home Premium 64-bit Ubuntu 14.04 64-bit
Processor Intel Core i7-2670QM Intel Core i7-2670QM
Memory 8GB 8GB
Hard Drive Crucial M500 480GB SSD Seagate Laptop SSHD 1TB

The only difference in hardware is the fact that the simulations were
run on different hard drives, but since reading from disk only plays
a small part in the Python implementation it is reasonable to assume
that this provides a good comparison of the two implementations. The
MATLAB implementation was run using MATLAB R2013a, while the
Python implementation was run in Python 2.7.3. Additionally, the Python
implementation uses the numpy and scipy libraries extensively, with
the BLAS and LAPACK implementations being provided by the ATLAS
library. The simulations were run 10 times for each grid size. The average
run times are presented in the table below:

N Total Solve Rest
MATLAB 10 4.90 1.36 3.54

20 26.70 19.14 7.56
30 153.12 132.42 20.7

Python 10 4.44 0.97 3.47
20 22.32 17.11 5.21
30 209.42 197.49 11.93

This shows that the average run times are approximately the same for the
two smallest grid sizes, while for largest grid the MATLAB implementation
is somewhat faster. The table also shows the two columns ’Solve’ and

72 CHAPTER 6. RESERVOIR SIMULATION

’Rest’, splitting the total time spent into the time used to solve the matrix
equation J ∗ upd = −F and the time spent on the rest of the simulation. This
shows that everything except solving the matrix equation is performed
faster in Python than in MATLAB for all grid sizes. Some of this difference
in run times could be explained by the fact that the Python program only
reads some of the data structures instead of creating them, but it does show
that the Automatic Differentation part of the Python program performs just
as well or even better than a similar implementation in MATLAB.

The MATLAB implementation uses the built-in function mldivide to
solve the matrix equation J ∗ upd = −F, which uses the UMFPACK library.
This is used in the Python implementation as well, which means it should
be possible to get the run times for solving the matrix equation in Python
down to a level similar to that of the MATLAB implementation. The Python
implementation also includes the alternative of using an iterative solver,
which speeds up the program significantly, that can be used for even larger
grid sizes.

6.3.3 Analysis of results

Figure 6.4 on page 73 shows a plot of the calculated volume rate per day
for the three different grid sizes, while figure Figure 6.5 on page 73 shows
the cumulative extracted volume over the course of a year. The plots show
that the the volume rate is about the same for all three models, with the
same monotone decreasing behaviour. The fact that they all show about
the same volume rate is as expected, since the models are the same, but
with different grid sizes.

Increasing the grid size will, in general, increase the accuracy of the
calculation. However, the larger the grid gets, the smaller the possible
gain will be by increasing it further. This could explain why the graphs
for the two larger models are closer together than the 20× 20× 20 model
is to the 10× 10× 10 model, since the increase in accuracy is larger from
10× 10× 10 to 20× 20× 20 than from 20× 20× 20 to 30× 30× 30. Another
thing that could contribute to the difference in the results is the fact that
changing the grid size means changing, if only a little, the location of the
well perforations. This was discussed in section 6.2.5 and despite resulting
in very similar well models, this could have an effect on the differences
between the different grids.

In conclusion, the difference in the results can be attributed to the
difference in grid sizes, as well as a slight difference in the location of the
well perforations. Additionally, the differences are no larger than what we
would expect, which shows that the reservoir simulation solver works for
different grid sizes.

6.3. RESERVOIR SIMULATION IN PYTHON 73

0 50 100 150 200 250 300 350
Number of days

50

100

150

200

250

300

350

Vo
lu

m
e

Ra
te

 [m
^

3/
da

y]

10x10x10
20x20x20
30x30x30

Figure 6.4: Plots surface volume rate per day over the course of a year

0 50 100 150 200 250 300 350
Number of days

0

10000

20000

30000

40000

50000

60000

Ex
tr

ac
te

d
vo

lu
m

e
[m

^
3]

10x10x10
20x20x20
30x30x30

Figure 6.5: Plots the cumulative extracted volume

74 CHAPTER 6. RESERVOIR SIMULATION

6.4 Final Remarks

This chapter has shown that the Automatic Differentiation framework is a
useful tool for calculating the derivatives necessary to perform a reservoir
simulation using Newton’s method. The two alternatives to using the
AD framework are, just like for the optimization example, to either use
finite differences or to calculate all the derivatives by hand. Finding all the
derivatives by hand would clearly be a large task and very likely to cause
bugs in the program due to miscalculations. Although this might still be
a viable option, for even more complex models this would be an immense
amount of work. Clearly, this is not a very practical option.

Using finite differences, on the other hand, is a possible option for
calculating the necessary derivatives. However, it does have a few
disadvantages compared to using an AD framework, the first of which is
that it just approximates the derivatives as opposed to calculating them
exactly. In terms of performance it can be very costly as well. If we have a
grid with N cells then we have N + 2 equations and N + 2 variables. This
leaves us with (N + 2)2 first order derivatives that need to be calculated
for each Newton iteration. Many of these are simply equal to zero, which
allows us to reduce the total amount of finite difference calculations, but
the total amount will still be O

(
(N + 2)2

)
. Whether or not this is a

viable option depends on how costly it is to evaluate the function we are
finding the derivatives of. In this example, where evaluating the function
involves a lot of matrix mulitplication with large matrices, finite differences
is simply not a good option since the function evaluation cost is high.

The conclusion we can draw from this is that the AD framework is
the best tool for solving this problem. Additionally, as shown in the
performance analysis, Python is a viable alternative to MATLAB for
this type of scientific computing since Python outperformed MATLAB
on everything except solving the matrix equation J ∗ upd = −F. By
changing to an even faster solver, Python would equal or even outperform
MATLAB’s performance, making it a great and free option to using
MATLAB.

Part III

Conclusion

75

Chapter 7

Summary and Analysis of the
Thesis

7.1 Summary and evaluation

This thesis consists of two main parts, the first of which is the theory
behind and implementation of an Automatic Differentiation framework,
while the second is about applications that use the AD framework and
show its usefulness. Although the applications take up a large part of
the thesis, the underlying focus is to show how the AD framework can
be used to help solve different mathematical problems, and not on the
problems themselves. The main theme of thesis is therefore on Automatic
Differentiation.

When work on the thesis first began, however, the idea was not initially
to write a thesis where the main focus was Automatic Differentiation. In-
stead, the intention was to create a simple AD framework that could pro-
vide the necessary derivatives to help solve different reservoir simulation
problems using MATLAB. Automatic Differentiation was in other words
intended to have a secondary focus, while the main focus was supposed to
be on reservoir simulation. Since using an AD framework to solve reser-
voir simulation problems obviously required an AD framework I started
researching Automatic Differentiation. Since I had not delved very deep
into reservoir simulation at that point I was not aware that higher order
derivatives were not required, and eventually I started working on a gen-
eral AD framework.

Once I came to the realization that it was not necessary to calculate
derivatives higher than the first order for use in reservoir simulation,
my thought process was that I might as well complete the general AD
framework and use this for solving the reservoir simulation problems.
This was followed by the decision to switch from MATLAB to Python,
which made it necessary to rewrite the AD framework in Python. At this
point a first order derivative AD framework had been implemented as part
of MRST, so the reasoning behind the switch was that it would make it

77

78 CHAPTER 7. SUMMARY AND ANALYSIS OF THE THESIS

possible to compare the performance of reservoir simulations in Python to
that of MATLAB.

Once I finished the AD framework in Python and moved on to the
reservoir simulation, I discovered that the general formulas for calculating
Taylor coefficients of arbitrary order were too slow to calculate the amount
of first order derivatives necessary for the reservoir simulation. This
was solved by using simpler first-order derivative formulas when only
calculating first order derivatives. This allowed me to vectorize the
calculations, which combined with the use of sparse matrices to store
derivatives resulted in the AD framework being fast enough to efficiently
solve the reservoir simulation problem.

The end result is that the AD framework is able to handle arbitrary
derivatives as I intended, but it effectively contains two different AD
framework implementations. One for general order derivatives and
another optimized for the calculation of first order derivatives. This is
in itself certainly not a bad thing, since it makes it a very flexible tool
for different use-cases. However, the amount of time spent doing this
resulted in the main focus of the thesis shifting from reservoir simulation
to Automatic Differentiation.

This shift meant that it was not sufficient to include reservoir simulation
as the only application using the AD framework. This is due to the fact that
the reservoir simulation problem only requires first order derivatives, and
as such it was necessary to include an example that uses derivatives of a
higher order as well. This resulted in the inclusion of a chapter showing
how the AD framework can be used to help solve optimization problems,
since this illustrates how the AD framework can be used to supply higher
order derivatives.

My own evaluation of the thesis as a whole is that it does a reasonably
good job of explaining how to go about implementing an AD framework
and of showing the usefulness of it through the applications. I am also
pleased that I was able to get the performance of the reservoir simulation
in Python to a level similar to that of MATLAB, since this shows that Python
is a viable option to MATLAB for computational problems in reservoir
simulation. Despite these positives, I still feel that the thesis comes across
as a bit disjointed and with a lack of a focussed theme. What I mean by this
is that although Automatic Differentiation is the main theme of this thesis
in terms of the work put into it, it still comes across as something between a
thesis focussed on Automatic Differentiation and one focussed on reservoir
simulation. Additionally, there is no clear question that is being asked and
answered in the thesis, but rather a set of smaller ones such as whether or
not Python is a viable alternative to MATLAB for reservoir simulation.

7.2. WHAT COULD HAVE BEEN DONE DIFFERENTLY? 79

7.2 What could have been done differently?

There are many things that could have been done differently during
the work on this thesis, the most obvious being sticking to the original
intention of only creating a simple AD framework and keeping the main
focus on how this could be used in reservoir simulation problems. This
would have resulted in the main part of the thesis dealing with reservoir
simulation, with the AD part being secondary. In this scenario I would
have created solvers for more advanced models than the basic single-phase
flow model, with the purpose being to provide a more comprehensive
comparison of how Python compares to MATLAB for reservoir simulation.

Another possible approach would have been to focus even more on
Automatic Differentiation and how to get the best possible performance.
This would have resulted in the thesis consisting of even more material
on how to calculate derivatives, with the focus on applications being
somewhat less. In particular, this would probably have resulted in the
implementation of reverse-mode and the use of univariate Taylor series as
briefly discussed in section 3.6. It would likely include a discussion of more
alternate approaches as well, since taking this approach from the beginning
would have given me more time to just focus on Automatic Differentiation.

As for the applications, the optimization chapter would probably have
been left largely unchanged, since this provides some examples of how the
AD framework can be used to supply higher order derivatives. Reservoir
simulation, however, would have played a smaller part than what is the
case right now. This would be done out of necessity since there would not
have been time to spend as much time on it as I have. Additionally, the
part that shows the usefulness of AD in the reservoir simulation program
is solving the matrix equation J ∗ upd = −F. This is a good example since
finite differences are too time consuming for this problem, and it is a lot
of work to calculate the derivatives by hand. I would therefore have kept
this, but I would have focussed less on the theory behind it and imported
more data directly from MATLAB. I could for instance import all the data
from MATLAB, and only implement the initialization of the AD variables
and the main simulation loop, since this would still show how the AD
framework could be used for this problem.

Although my opinion is that both options outlined above would have
made for a better thesis overall, I think that the best course of action if I had
the chance to do the thesis over again would be to focus less on Automatic
Differentiation and more on reservoir simulation. Not only would this have
been in line with the original plan for the thesis, but it is also the area of
expertise of my advisor, making it a natural choice.

There are also things I would have done differently in terms of how I
approached the work on the master’s thesis. The first of these is that I

80 CHAPTER 7. SUMMARY AND ANALYSIS OF THE THESIS

would be careful not to narrow my focus too much, too soon. During the
early part of the thesis I did exactly this, by focussing too much purely on
Automatic Differentiation, when I instead should have tried to get a better
overview before delving deeper into any particular subject. Once I realized
that what I had spent a fair amount of time working on was not strictly
necessary, I was reluctant to simply let it all be for nothing. This eventually
resulted in a lot more work than I had intended, which made the shift in
focus of the thesis necessary. Additionally, I have focussed too much on
the actual programming as opposed to focussing on exploring a problem,
with the programming only being a means to that end. This has resulted
in a lot of time spent on programming, which might have been better spent
focussing on the writing. An example of this is that the AD framework
supports a large variety of functions, even though only a few of them are
used in this thesis.

7.3 Conclusion

My own evaluation of the thesis is that it lacks a clear and focussed theme,
partly because of the shift in focus during the work on the thesis. Despite
this, there are many positives that I take away from the work on this thesis.
I am pleased with the fact that I managed to implement a complete AD
framework that is reasonably efficient, as well as being pleased with the
fact that I managed to implement a reservoir simulation example in Python
that is able to rival MATLAB in terms of performance. I also feel that I have
learned a great many things about working on a large project over a longer
period, that I will take with me and benefit from in the future.

Chapter 8

Further Work

Although my evaluation in the previous chapter was that the thesis lacks a
bit of focus, it does touch on many different areas that could be interesting
to explore further, either on their own or as part of a thesis. This chapter
will go through these areas and discuss how they can be worked on in more
depth.

8.1 AD framework performance improvements

The AD framework as it stands has seen a series of programming
related performance improvements throughout the course of working
on the master’s thesis. These can be split into two parts, performance
improvements on first order derivatives and performance improvements
on arbitrary order Taylor coefficients. Of these two the latter has seen the
most improvement, since improving this part of the AD framework was
necessary for the reservoir simulation program to perform well.

In section 3.6 we went through two possible alternatives that could
increase the performance of the AD framework. It was noted that using
univariate Taylor coefficients improves the performance for the calculation
of large orders of Taylor coefficients, while resulting in similar performance
for lower Taylor coefficients. This could therefore be implemented to
improve the performance of the AD framework for arbitrary Taylor
coefficients.

Another possible improvement is to implement reverse-mode. This is in
general more efficient for a large number of variables, and would definitely
be an improvement for the calculation of Taylor coefficients of order larger
than one for scenarios with a lot of variables. For the calculation of first
order derivatives, however, it not quite clear whether or not this would be
an improvement. This is because the first order derivative calculations use
efficient vectorized calculations based on first order derivative expressions.
Additionally, it has the option of using sparse matrices, thus eliminating a
lot of calculations with derivatives that are simply equal to zero. This could

81

82 CHAPTER 8. FURTHER WORK

be researched further and implemented to test whether or not it would
result in an improvement in performance.

8.2 Building a reservoir simulation library in Python

The MRST library, implemented by SINTEF, was used to create the grid
and well models that was used in the reservoir simulation problem in this
thesis. Creating a library similar to MRST in Python would be an enormous
task, and certainly too large to do as part of thesis. What was shown in my
thesis, however, is that it is perfectly possible to import models created with
MRST in MATLAB and use these to perform a reservoir simulation.

This opens the possibility to create a reservoir simulation library in
Python that can solve different types of reservoir simulation models with
the help of the AD framework, but where certain data structures that
are difficult to create from scratch are created in MATLAB first and then
imported into Python.

8.3 Using the AD framework for more advanced
optimization problems

The optimization examples used to illustrate the usefulness of the AD
framework in this thesis were simple and not fully representative of real
world optimization problems. They did show how the AD framework
simplified the programming of solutions, but this could still be expanded
on to show how the AD framework can be used to help solve more
advanced optimization problems. This could be done with the focus being
on showing how the AD framework can be even more useful than what
was shown in this thesis, or the AD framework could simply be used as a
tool with the focus being primarily on optimization.

8.4 Building a more complete testing framework

During the process of building the AD framework a testing framework
was created using the Python module nose [1], which enabled the running
of several tests to check that the core functionality was still working
whenever changes were made to the code. This was a great help during the
development of the framework, but despite including tests covering a large
range of the functionality of the AD framework, there is still plenty that
it does not cover. Expanding and improving on the testing framework to
make it more complete would therefore be an interesting task on its own, as
well as being helpful if any major changes were to be made to the existing
AD framework.

Part IV

Appendix

83

Appendix A

Automatic Differentiation

This appendix includes proofs for Taylor coefficient formulas not shown in
the thesis, followed by all code related to the AD framework.

A.1 Proof of Formulas

A.1.1 Division

Assume that we want to know the derivatives resulting from the following
operation:

h (~x) =
f (~x)
g (~x)

This implies that f = hg. Using equation (3.2) for multiplication yields the
following result:

Tf ,~k = Thg,~k =
~k

∑
~j=~0

Th,~jTg,~k−~j

The term under the sum for~j = ~k is Th,~kTg,~0 = g (~x) Th,~k. Pulling this term
out of the sum yields the following:

Tf ,~k =

∑
~j<~k

Th,~jTg,~k−~j

+ g (~x) Th,~k

Rearranging the terms yields an expression for Th,~k:

Th,~k =

Tf ,~k − ∑
~j<~k

Th,~jTg,~k−~j

g (~x)
(A.1)

This expression requires us to know the Taylor coefficients of h, which are
not yet known prior to the calculation. However, for a given ~k it is only
necessary to know the values of the Taylor coefficients in

{
~j |~j ≤~k

}
, with

the exception of~k itself. This makes it possible to calculate Th,~k for all~k as
long as all derivatives of a lower order have been calculated beforehand.

85

86 APPENDIX A. AUTOMATIC DIFFERENTIATION

A.1.2 Exponential function

Suppose that ~h (~x) = eg(~x) then ∂~eh = h ∂~eg, for any one-order vector ~e.
Using equation (3.3) yields the following formula for any~k ≥ ~e:

Th,~k =
~k−~e
∑
~j=~0

ki − ji
ki

Th,~j Tg,~k−~j (A.2)

Additionally this formula uses the values of Taylor coefficients for
lower derivatives than~k. So just like with division it is necessary to iterate
over the derivatives such that all derivatives less than ~k are calculated
beforehand.

A.1.3 Square root

Assume that ~h (~x) =
√

g (~x). Then ∂~eh = ∂~eg
2h for any one-order vector ~e.

This can also be rewritten as ∂~eg = 2h ∂~eh. Using equation (3.3) yields the
following formula for any~k ≥ ~e:

Tg,~k = 2
~k−~e
∑
~j=~0

ki − ji
ki

Th,~j Th,~k−~j

For~j =~0 the expression under the sum equals Th,~0 Th,~k = h (~x) Th,~k. Pulling
this out of the sum yields:

Tg,~k = 2h (~x) Th,~k + 2 ∑
~j>~0

~j≤~k−~e

ki − ji
ki

Th,~j Th,~k−~j

Rearranging this expression yields:

Th,~k =

Tg,~k − 2 ∑
~j>~0

~j≤~k−~e

ki − ji
ki

Th,~j Th,~k−~j

 /2h (~x) (A.3)

A.1.4 Inverse trigonometric functions

Assume that ~h (~x) = arctan (g (~x)). Then ∂~eh = f ∂~eg for any one-order
vector~e where f = 1

1+g2 . Using equation (3.3) yields the following formula

for any~k ≥ ~e:

Th,~k =
~k−~e
∑
~j=~0

ki − ji
ki

Tf ,~j Tg,~k−~j (A.4)

In this case f is not known initially, but since we know g and that
f = 1

1+g2 , this can be calculated before calculating the Taylor coefficients
of h.

A.2. CODE 87

The same formula can be used for arccos and arcsin, but with different
expressions for f . For arcsin the expression is f = 1√

1−g2
, while for arccos

it is f = −1√
1−g2

. The derivation of formulas for the Taylor coeffecients of

the other inverse trigonometric functions follow a similar argument.

A.1.5 Trigonometric functions

Assume that h (~x) = sin (f (~x)) and g (~x) = cos (f (~x)). Then ∂~eh = g ∂~e f
and ∂~eg = −h ∂~e f for any one-order vector ~e. Using equation (3.3) yields
the following two formulas for any~k ≥ ~e:

Th,~k =
~k−~e
∑
~j=~0

ki − ji
ki

Tg,~j Tf ,~k−~j (A.5)

Tg,~k = −
~k−~e
∑
~j=~0

ki − ji
ki

Th,~j Tf ,~k−~j (A.6)

This shows that to calculate one we need to know the other, but only
for derivatives lower than~k. This means that we can find both the sine and
cosine of f by calculating both simultaneously.

The rest of the trigonometric functions can all be calculated by finding
the sine and cosine first. Assume that h (~x) = tan (f (~x)), then we can find
sin (f (~x)) and cos (f (~x)) and then calculate h as h (~x) = sin(f (~x))

cos(f (~x)) . A similar
method can be used for the rest of the trigonometric functions.

A.2 Code

A.2.1 AD class

The code for the file adipy.py with the entire AD class follows below.
Note that the function csr_add_sparse_vec, which adds a sparse vector to
every row of a sparse matrix, was found on stackoverflow at the following
address : http://stackoverflow.com/questions/15239491/adding-a-very-
repetitive-matrix-to-a-sparse-one-in-numpy-scipy. This is pointed out in
the code as well.

1 import numpy as np
2 import math
3 import mathADI
4 from scipy . misc import f a c t o r i a l
5 from scipy . sparse import csr_matr ix as smat
6 import sc ipy . sparse as ss
7 import sys
8 import i t e r t o o l s
9 from numpy import ravel_mult i_ index as rmi

10 from numpy import unravel_index as ui
11

88 APPENDIX A. AUTOMATIC DIFFERENTIATION

12 c l a s s AD:
13 " " "
14 P r o p e r t i e s :
15 val − Expression value
16 T − Array of t a y l o r c o e f f i c i e n t s of express ion
17 num_vars − Number of v a r i a b l e s
18 max_o − Maximum order of d e r i v a t i v e s
19 ADvector − True i f the AD c l a s s holds more than one v a r i a b l e
20 N − Number of v a r i a b l e s
21 dtype − Data type to s t o r e c o e f f i c i e n t s with .
22 (Defaul t=complex)
23 sparse − Whether or not to s t o r e Taylor c o e f f i c i e n t s in
24 a sparse array (Defaul t=Fa l se)
25 dims − The dimensions of a matrix with a length of
26 ’max_o+1 ’ along ’ num_vars ’ dimensions
27 sz − The s i z e of the above mentioned matrix
28 counter_map − Array mapping the index of T to the
29 corresponding d e r i v a t i v e
30 index_map − Dict ionary mapping a d e r i v a t i v e to the
31 corresponding index in T
32 " " "
33

34 def _ _ i n i t _ _ (s e l f , val , var_num , num_vars , max_o ,\
35 model=None , T=None , dtype=complex , sparse=Fa l se) :
36 " " "
37 Arguments :
38 val − Expression value
39 var_num − Number of v a r i a b l e being i n i t i a l i z e d
40 num_vars − Maximum number of v a r i a b l e s
41 max_o − Maximum order of d e r i v a t i v e s
42 model − Another AD o b j e c t with the same ’ num_vars ’
43 and ’max_o ’ . This i s used to avoid c r e a t i n g
44 the mapping array and d i c t i o n a r y more than once .
45 T − Array of Taylor c o e f f i c i e n t s . By d e f a u l t
46 t h i s i s generated .
47 dtype − Data type used to s t o r e Taylor c o e f f i c i e n t s .
48 By d e f a u l t complex to account f o r a l l ranges
49 of values . For max_o>1 i t i s necessary
50 to use the complex dtype to avoid e r r o r s .
51 sparse − I f true , s t o r e s the Taylor c o e f f i c i e n t s
52 as a sparse matrix .
53 " " "
54

55 # I n i t i a l i z e v a r i a b l e s
56 s e l f . ADvector = True
57 i f val . _ _ c l a s s _ _ . __name__ == ’ l i s t ’ :
58 s e l f . val = np . array (val , dtype=dtype)
59 e l i f val . _ _ c l a s s _ _ . __name__ == ’ ndarray ’ :
60 s e l f . val = val . astype (dtype)
61 e l s e :
62 s e l f . val = dtype (val)
63 s e l f . ADvector = Fa l se
64

65 s e l f . num_vars = num_vars
66 s e l f . max_o = max_o
67 s e l f .N = 1 i f not s e l f . ADvector e l s e len (val)
68 s e l f . dtype = dtype
69 s e l f . sparse = sparse
70

A.2. CODE 89

71 # I n i t i a l i z e T
72 i f T != None :
73 s e l f . T = T
74 e l i f s e l f . ADvector :
75 N = s e l f .N
76 rowlen = AD. num_derivatives (num_vars , max_o)
77 rowlen = rowlen + 1 i f (s e l f . max_o != 1) e l s e rowlen
78 s e l f . T = ss . l i l _ m a t r i x ((N, rowlen) , dtype=dtype)
79 e l s e :
80 rowlen = AD. num_derivatives (num_vars , max_o)
81 rowlen = rowlen + 1 i f (s e l f . max_o != 1) e l s e rowlen
82 s e l f . T = ss . l i l _ m a t r i x ((1 , rowlen) , dtype=dtype)
83

84 # Create mapping f u n c t i o n s i f max_o > 1
85 i f s e l f . max_o != 1 :
86 # Dimensions and s i z e of o r i g i n a l matrix
87 # (only necessary f o r max_o>1)
88 s e l f . dims = tuple ((max_o+1)*np . ones (num_vars , dtype= i n t))
89 s e l f . sz = (max_o + 1) * * num_vars
90

91 i f model != None :
92 s e l f . counter_map = model . counter_map
93 s e l f . index_map = model . index_map
94 e l s e :
95 # Maps T index (counter) to d e r i v a t i v e index
96 c s i z e = s e l f . T . shape [0] * s e l f . T . shape [1]
97 s e l f . counter_map = np . zeros (cs ize , dtype= i n t)
98 # Maps d e r i v a t i v e index to T index
99 s e l f . index_map = { }

100 counter = 0
101 f o r i in xrange (0 , s e l f . sz) :
102 k = np . sum(ui (i , s e l f . dims))
103 i f k <= s e l f . max_o :
104 s e l f . index_map [i] = counter
105 s e l f . counter_map [counter] = i
106 counter += 1
107

108 # Set T [0] value equal to val
109 i f max_o != 1 :
110 i f s e l f . ADvector and T==None :
111 # s e l f . T [: , 0] = val
112 f o r i in xrange (len (val)) :
113 s e l f . T [i , 0] = val [i]
114 e l i f T==None :
115 s e l f . T [0 , 0] = val
116

117 # Set T values
118 i s V a r I n i t = np . prod (var_num != 0) and (T==None)
119 i f s e l f . max_o == 1 and i s V a r I n i t :
120 i f s e l f . ADvector :
121 # s e l f . T [range (0 , len (val)) , var_num−1] = 1
122 f o r i in xrange (len (val)) :
123 s e l f . T [i , var_num [i]−1] = 1
124 e l s e :
125 s e l f . T [0 , var_num−1] = 1
126 e l i f i s V a r I n i t :
127 i f s e l f . ADvector :
128 i = 0
129 f o r num in var_num :

90 APPENDIX A. AUTOMATIC DIFFERENTIATION

130 index = np . zeros (num_vars , dtype=np . i n t)
131 index [num−1] = 1
132 index = rmi (index , s e l f . dims)
133 index = s e l f . index_map [index]
134 s e l f . T [i , index] = 1
135 i += 1
136 e l s e :
137 index = np . zeros (num_vars , dtype=np . i n t)
138 index [var_num−1] = 1
139 index = rmi (index , s e l f . dims)
140 index = s e l f . index_map [index]
141 s e l f . T [0 , index] = 1
142

143 # Convert to sparse matrix (only supported f o r max_o=1)
144 i f s e l f . sparse and s e l f . max_o == 1 :
145 i f T == None :
146 s e l f . T = smat (s e l f . T)
147 e l s e :
148 s e l f . sparse = Fa l se
149 i f s e l f . ADvector and T==None :
150 s e l f . T = s e l f . T . toarray ()
151 e l i f T==None :
152 s e l f . T = s e l f . T . toarray () [0]
153

154

155 # Getitem − used f o r g e t t i n g c e r t a i n v a r i a b l e s i f ADvector=True
156 def __geti tem__ (s e l f , index) :
157 i f s e l f . sparse :
158 T = s e l f . T [index , :]
159 e l s e :
160 T = s e l f . T [index , :]
161 val = s e l f . val [index]
162 re turn AD(val , 0 , s e l f . num_vars , s e l f . max_o , model= s e l f ,\
163 T=T , dtype= s e l f . dtype , sparse= s e l f . sparse)
164

165 # Set i tem − used f o r s e t t i n g c e r t a i n v a r i a b l e s i f ADvector=True
166 def __set i tem__ (s e l f , keys , value) :
167 s e l f . val [keys] = value . val
168 i f s e l f . sparse :
169 # Necessary f o r the keys in key to be sor ted
170 blocks = []
171 prev = −1
172 counter = 0
173 f o r key in keys :
174 i f key == (prev + 1) :
175 blocks . append (value . T [counter , :])
176 e l s e :
177 blocks . append (s e l f . T [(prev + 1) : key , :])
178 blocks . append (value . T [counter , :])
179 prev = key
180 counter += 1
181

182 # Add f i n a l e n t r i e s
183 i f prev != (s e l f .N−1):
184 blocks . append (s e l f . T [prev + 1 : , :])
185

186 # Set T to new sparse matrix
187 s e l f . T = ss . vstack (blocks , format= ’ c s r ’)
188

A.2. CODE 91

189 e l s e :
190 s e l f . T [keys , :] = value . T
191

192 # Overload negation (− s e l f)
193 def __neg__ (s e l f) :
194 u = s e l f
195 T = −u . T
196 h = AD(−u . val , 0 , u . num_vars , u . max_o , model=u,\
197 T=T , dtype=u . dtype , sparse= s e l f . sparse)
198 re turn h
199

200 # Overload p o s i t i v e (+ s e l f)
201 def __pos__ (s e l f) :
202 u = s e l f
203 T = u . T . copy () i f u . sparse e l s e np . copy (u . T)
204 h = AD(u . val , 0 , u . num_vars , u . max_o , model=u,\
205 T=T , dtype=u . dtype , sparse= s e l f . sparse)
206 re turn h
207

208 # Overload addi t ion (s e l f +v)
209 def __add__ (s e l f , v) :
210 u = s e l f
211 i f v . _ _ c l a s s _ _ . __name__ != ’AD’ :
212 T = u . T . copy () i f u . sparse e l s e np . copy (u . T)
213 val = v+u . val
214 i f s e l f . max_o != 1 :
215 i f s e l f . ADvector :
216 T [: , 0] = val
217 e l s e :
218 T [0] = val
219 h = AD(val , 0 , u . num_vars , u . max_o , model=u,\
220 T=T , dtype=u . dtype , sparse= s e l f . sparse)
221 e l s e :
222 i f s e l f . sparse :
223 i f u .N == v .N:
224 T = u . T+v . T
225 e l i f u .N == 1 :
226 T = AD. csr_add_sparse_vec (v . T , u . T)
227 e l s e :
228 T = AD. csr_add_sparse_vec (u . T , v . T)
229 e l s e :
230 T = u . T+v . T
231 h = AD(u . val+v . val , 0 , u . num_vars , u . max_o ,\
232 model=u , T=T , dtype=u . dtype , sparse= s e l f . sparse)
233 re turn h
234

235 # Overload r ight−sided addi t ion
236 __radd__ = __add__
237

238 # Overload s u b t r a c t i o n (s e l f−v)
239 def __sub__ (s e l f , v) :
240 u = s e l f
241 i f v . _ _ c l a s s _ _ . __name__ != ’AD’ :
242 T = smat (u . T , copy=True) i f u . sparse e l s e np . copy (u . T)
243 val = u . val−v
244 i f s e l f . max_o != 1 :
245 i f u . ADvector :
246 T [: , 0] = val
247 e l s e :

92 APPENDIX A. AUTOMATIC DIFFERENTIATION

248 T [0] = val
249 h = AD(val , 0 , u . num_vars , u . max_o , model=u,\
250 T=T , dtype=u . dtype , sparse= s e l f . sparse)
251 e l s e :
252 i f s e l f . sparse :
253 i f u .N == v .N:
254 T = u . T−v . T
255 e l i f u .N == 1 :
256 T = AD. csr_add_sparse_vec(−v . T , u . T)
257 e l s e :
258 T = AD. csr_add_sparse_vec (u . T,−v . T)
259 e l s e :
260 T = u . T−v . T
261 h = AD(u . val−v . val , 0 , u . num_vars , u . max_o , model=u,\
262 T=T , dtype=u . dtype , sparse= s e l f . sparse)
263 re turn h
264

265 # Overload r ight−sided s u b t r a c t i o n (v−s e l f) . This i s only
266 # c a l l e d when v i s not an i n s t a n c e of AD
267 def __rsub__ (s e l f , v) :
268 u = s e l f
269 T = −u . T
270 val = v−u . val
271 i f s e l f . max_o != 1 :
272 i f u . ADvector :
273 T [: , 0] = val
274 e l s e :
275 T [0] = val
276 h = AD(val , 0 , u . num_vars , u . max_o , model=u,\
277 T=T , dtype=u . dtype , sparse= s e l f . sparse)
278

279 re turn h
280

281 # Overload m u l t i p l i c a t i o n operator (s e l f *v)
282 def __mul__ (s e l f , v) :
283 u = s e l f
284 i f v . _ _ c l a s s _ _ . __name__ != ’AD’ :
285 T = v*u . T
286 h = AD(u . val *v , 0 , u . num_vars , u . max_o , model=u,\
287 T=T , dtype=u . dtype , sparse= s e l f . sparse)
288 e l s e :
289 # −−−
290 i f u . max_o == 1 :
291 i f u . sparse and (u . ADvector or v . ADvector) :
292 uval = ss . spdiags (u . val , 0 , u .N, u .N, \
293 format= ’ c s r ’) i f u . ADvector e l s e u . val
294 vval = ss . spdiags (v . val , 0 , v .N, v .N,\
295 format= ’ c s r ’) i f v . ADvector e l s e v . val
296 val = u . val *v . val
297 i f u . ADvector and v . ADvector :
298 T = uval *v . T + vval *u . T
299 e l i f u . ADvector :
300 tmp = (smat (u . val) . t ranspose ()) * v . T
301 T = tmp + vval *u . T
302 e l s e :
303 tmp = (smat (v . val) . t ranspose ()) * u . T
304 T = uval *v . T + tmp
305

306 h = AD(val , 0 , u . num_vars , u . max_o , model=u,\

A.2. CODE 93

307 T=T , dtype=u . dtype , sparse= s e l f . sparse)
308 e l i f u . ADvector or v . ADvector :
309 uval = u . val [: , None] i f u . ADvector e l s e u . val
310 vval = v . val [: , None] i f v . ADvector e l s e v . val
311 T = uval *v . T + u . T* vval
312 val = u . val *v . val
313 h = AD(val , 0 , u . num_vars , u . max_o , model=u,\
314 T=T , dtype=u . dtype , sparse= s e l f . sparse)
315 e l s e :
316 T = u . val *v . T + u . T*v . val
317 val = u . val *v . val
318 h = AD(val , 0 , u . num_vars , u . max_o , model=u,\
319 T=T , dtype=u . dtype , sparse= s e l f . sparse)
320 re turn h
321 # −−−
322 h = AD(u . val *v . val , 0 , u . num_vars , u . max_o ,\
323 model=u , dtype=u . dtype , sparse= s e l f . sparse)
324 N = u . T . shape [1] i f u . ADvector e l s e np . s i z e (u . T)
325 f o r i in xrange (1 ,N) :
326 # Get index corresponding to Taylor index i
327 index = ui (s e l f . counter_map [i] , s e l f . dims)
328 k = np . array (index)
329 i f u . ADvector or v . ADvector :
330 h . T [: , i] = AD. bdot (u , k , v , k , 0)
331 e l s e :
332 h . T [i] = AD. bdot (u , k , v , k , 0)
333 re turn h
334

335 # Overload r ight−handed m u l t i p l i c a t i o n operator
336 __rmul__ = __mul__
337

338 # Overload d i v i s i o n operator (s e l f /v)
339 def __div__ (s e l f , v) :
340 u = s e l f
341 i f v . _ _ c l a s s _ _ . __name__ != ’AD’ :
342 T = u . T/v
343 h = AD(u . val/v , 0 , u . num_vars , u . max_o ,\
344 model=u , T=T , dtype=u . dtype , sparse= s e l f . sparse)
345 e l s e :
346 # −−−
347 i f u . max_o == 1 :
348 i f u . sparse and (u . ADvector or v . ADvector) :
349 val = u . val/v . val
350 i f u . ADvector and v . ADvector :
351 M1 = ss . spdiags (1 . 0 / v . val , 0 , v .N,\
352 v .N, format= ’ c s r ’)
353 M2 = ss . spdiags (u . val /(v . val * * 2) , 0 , v .N,\
354 v .N, format= ’ c s r ’)
355 T = (M1*u . T) − (M2*v . T)
356 e l i f u . Advector :
357 M = ss . spdiags (u . val /(v . val * * 2 , 0) , v .N,\
358 v .N, format= ’ c s r ’)
359 T = u . T/v . val − M* ss . vstack (u .N* [v . T] ,\
360 format= ’ c s r ’)
361 e l s e :
362 M1 = ss . spdiags (1 . 0 / v . val , 0 , v .N, v .N,\
363 format= ’ c s r ’)
364 M2 = ss . spdiags (u . val /(v . val * * 2) , 0 , \
365 v .N, v .N, format= ’ c s r ’)

94 APPENDIX A. AUTOMATIC DIFFERENTIATION

366 T = (M1* ss . vstack (v .N* [u . T] , format= ’ c s r ’)) \
367 − (M2*v . T)
368

369 h = AD(val , 0 , u . num_vars , u . max_o ,\
370 model=u , T=T , dtype=u . dtype , sparse= s e l f . sparse)
371 e l i f u . ADvector or v . ADvector :
372 uval = u . val [: , None] i f u . ADvector e l s e u . val
373 vval = v . val [: , None] i f v . ADvector e l s e v . val
374 T = (u . T/vval)−(v . T* uval /(vval * * 2))
375 h = AD(u . val/v . val , 0 , v . num_vars , u . max_o ,\
376 model=u , T=T , dtype=u . dtype , sparse= s e l f . sparse)
377 e l s e :
378 T = (u . T/v . val)−(v . T*u . val /(v . val * * 2))
379 h = AD(u . val/v . val , 0 , v . num_vars , u . max_o ,\
380 model=u , T=T , dtype=u . dtype , sparse= s e l f . sparse)
381

382 re turn h
383 # −−−
384 h = AD(u . val/v . val , 0 , v . num_vars , u . max_o ,\
385 model=u , dtype=u . dtype , sparse= s e l f . sparse)
386 N = u . T . shape [1] i f u . ADvector e l s e np . s i z e (u . T)
387 f o r i in xrange (1 ,N) :
388 index = ui (s e l f . counter_map [i] , s e l f . dims)
389 k = np . array (index)
390 i f u . ADvector :
391 h . T [: , i] = (u . T [: , i]−AD. bdot (h , k , v , k , 0)) / v . val
392 e l i f v . ADvector :
393 h . T [: , i] = (u . T [i]−AD. bdot (h , k , v , k , 0)) / v . val
394 e l s e :
395 h . T [i] = (u . T [i]−AD. bdot (h , k , v , k , 0)) / v . val
396

397 re turn h
398

399 # Overload r ight−sided d i v i s i o n (Called f o r v/ s e l f) with v ! = ’AD’
400 def __rdiv__ (s e l f , v) :
401 u = s e l f
402

403 # −−−
404 i f u . max_o == 1 :
405 i f u . ADvector and u . sparse :
406 M = ss . spdiags(−v/u . val * * 2 , 0 , u .N, u .N,\
407 format= ’ c s r ’)
408 T = M*u . T
409 e l i f u . ADvector :
410 T = −v*u . T/(u . val * * 2)
411 e l s e :
412 T = −v*u . T/(u . val * * 2)
413

414 h = AD(v/u . val , 0 , u . num_vars , u . max_o , model=u,\
415 T=T , dtype=u . dtype , sparse= s e l f . sparse)
416 re turn h
417 # −−−
418

419 # Create h
420 h = AD(v/u . val , 0 , u . num_vars , u . max_o ,\
421 model=u , dtype=u . dtype , sparse= s e l f . sparse)
422

423 # Create Taylor c o e f f i c i e n t matrix f o r v
424 v = AD(v , 0 , u . num_vars , u . max_o ,\

A.2. CODE 95

425 model=u , dtype=u . dtype , sparse= s e l f . sparse)
426

427 N = u . T . shape [1] i f u . ADvector e l s e np . s i z e (u . T)
428 f o r i in xrange (1 ,N) :
429 index = ui (s e l f . counter_map [i] , s e l f . dims)
430 k = np . array (index)
431 i f u . ADvector :
432 h . T [: , i] = (v . T [i]−AD. bdot (h , k , u , k , 0)) / u . val
433 e l s e :
434 h . T [i] = (v . T [i]−AD. bdot (h , k , u , k , 0)) / u . val
435

436 re turn h
437

438 # Overload power operator (Called f o r s e l f ^v)
439 def __pow__ (s e l f , v) :
440 u = s e l f
441 h = mathADI . exp (v*mathADI . log (u))
442 re turn h
443

444 # Overload r ight−sided power operator (Called f o r v^ s e l f)
445 def __rpow__ (s e l f , v) :
446 u = s e l f
447 h = mathADI . exp (u*mathADI . log (v))
448 re turn h
449

450

451 " " "
452 Begin helper methods :
453 −−−
454 " " "
455 # Returns the Taylor c o e f f i c i e n t s as a matrix
456 def get_T_matrix (s e l f) :
457 h = np . zeros (s e l f . dims , dtype= s e l f . dtype)
458

459 i f s e l f . max_o == 1 :
460 f o r i in xrange (1 , s e l f . T . s i z e) :
461 current = np . zeros (s e l f . num_vars , dtype= i n t)
462 current [i −1] = 1
463 h [tuple (current)] = T [i]
464 re turn h
465

466 f o r i in xrange (1 , np . s i z e (s e l f . T)) :
467 h . r a v e l () [s e l f . counter_map [i]] = s e l f . T [i]
468 h . r a v e l () [0] = s e l f . val
469 re turn h
470

471 # Returns the d e r i v a t i v e s as a matrix
472 def g e t _ d e r i v a t i v e s (s e l f) :
473 u = s e l f
474 h = u . get_T_matrix ()
475 i f s e l f . max_o == 1 :
476 re turn h
477

478 dims = h . shape
479 f o r i in xrange (np . s i z e (h)) :
480 # Get s u b s c r i p t
481 index = ui (i , dims)
482

483 f o r k in xrange (np . s i z e (index)) :

96 APPENDIX A. AUTOMATIC DIFFERENTIATION

484 h [index] = h [index] * math . f a c t o r i a l (index [k])
485

486 re turn h
487

488 # Helper method f o r g e t t i n g the Jacobian matrix/vec tor
489 def g e t _ j a c o b i a n (s e l f) :
490 i f s e l f . max_o == 1 :
491 re turn s e l f . T
492

493 # I n i t i a l i z e v a r i a b l e s
494 num_vars = s e l f . num_vars
495 N = s e l f .N
496 h = np . zeros (N* num_vars , dtype=complex)
497 h . shape = (N, num_vars)
498

499 f o r i in xrange (N) :
500 f o r j in xrange (num_vars) :
501 # Get d e r i v a t i v e vec tor
502 der = np . zeros (num_vars , dtype= i n t)
503 der [j] = 1
504

505 # Set d e r i v a t i v e element
506 h [i , j] = s e l f . g e t _ t c o f (der , var= i)
507

508 # Return Jacobian
509 re turn h [0] i f s e l f .N==1 e l s e h
510

511 # Helper method f o r g e t t i n g the Hessian matrix
512 def get_hess ian (s e l f) :
513 i f s e l f .N > 1 :
514 # Not supported f o r more than 1 v a r i a b l e
515 re turn None
516

517 # I n i t i a l i z e matrix
518 num_vars = s e l f . num_vars
519 h = np . zeros (num_vars * num_vars , dtype=complex)
520 h . shape = (num_vars , num_vars)
521

522 # Get d e r i v a t i v e s
523 f o r i in xrange (num_vars) :
524 tmp = np . zeros (num_vars , dtype= i n t)
525 tmp [i] += 1
526 f o r j in xrange (num_vars) :
527 der = tmp . copy ()
528 der [j] += 1
529 h [i , j] = 2* s e l f . g e t _ t c o f (der) i f i == j \
530 e l s e s e l f . g e t _ t c o f (der)
531

532 # Return Hessian
533 re turn h
534

535 # Helper method f o r g e t t i n g a s i n g l e Taylor c o e f f i c i e n t
536 def g e t _ t c o f (s e l f , der , var = 0) :
537 l i n = rmi (tuple (der) , s e l f . dims)
538 index = s e l f . index_map [l i n]
539 i f s e l f . ADvector :
540 re turn s e l f . T [var , index]
541 re turn s e l f . T [index]
542

A.2. CODE 97

543 # Helper method f o r g e t t i n g a s i n g l e d e r i v a t i v e
544 def g e t _ d e r i v a t i v e (s e l f , der , var = 0) :
545 der = s e l f . ge t_s ing le_T (der , var)
546 f o r i in der :
547 der *= math . f a c t o r i a l (i)
548 re turn der
549

550 # Method f o r s e t t i n g the ’ val ’ a t t r i b u t e of an AD i n s t a n c e
551 def s e t v a l (s e l f , val) :
552 s e l f . val = val
553 i f s e l f . max_o != 1 :
554 i f s e l f . ADvector :
555 s e l f . T [: , 0] = val
556 e l s e :
557 s e l f . T [0] = val
558

559 " " "
560 Begin S t a t i c helper methods :
561 −−−
562 " " "
563

564 " " "
565 O r i g i n a l l y from :
566 http :// stackoverf low . com/quest ions /15239491/
567 adding−a−very−r e p e t i t i v e−matrix−to−a−sparse−one−in−numpy−sc ipy
568 −−−
569 Adds a sparse vec tor to every row of a sparse matrix
570 " " "
571 @staticmethod
572 def csr_add_sparse_vec (M, v) :
573 rows , c o l s = M. shape
574

575 new_data = M. data
576 new_pointer = M. indptr . copy ()
577 new_cols = M. i n d i c e s
578

579 aux_idx = np . arange (rows + 1)
580

581 f o r value , c o l in i t e r t o o l s . i z i p (v . data , v . i n d i c e s) :
582 new_data = np . i n s e r t (new_data , new_pointer [1 :] , \
583 [value] * rows)
584 new_cols = np . i n s e r t (new_cols , new_pointer [1 :] , \
585 [c o l] * rows)
586 new_pointer += aux_idx
587

588 re turn ss . cs r_matr ix ((new_data , new_cols , new_pointer) ,
589 shape=M. shape)
590

591

592 " " "
593 Method f o r mult iplying ADvector with a vector of numbers , where
594 vec [i] i s mul t ip l ied by the v a r i a b l e corresponding to T [i , :]
595 " " "
596 @staticmethod
597 def vec_mult (vec , u) :
598 i f u . _ _ c l a s s _ _ . __name__ == ’ ndarray ’ :
599 re turn vec *u
600 i f u . sparse :
601 M = ss . spdiags (vec , 0 , u .N, u .N, format= ’ c s r ’)

98 APPENDIX A. AUTOMATIC DIFFERENTIATION

602 T = M*u . T
603 val = vec *u . val
604 e l s e :
605 T = u . T* vec [: , None]
606 val = vec *u . val
607 re turn AD(val , 0 , u . num_vars , u . max_o , model=u,\
608 T=T , dtype=u . dtype , sparse=u . sparse)
609

610 " " "
611 Method f o r r ight−side−mult iplying ADvector with a sparse matrix
612 of numbers , where the AD v a r i a b l e s are d i s t r i b u t e d along the
613 matrix l i k e a vec tor of s i n g l e AD i n s t a n c e s .
614 " " "
615 @staticmethod
616 def smat_mult (M, u) :
617 i f u . sparse :
618 T = M*u . T
619 val = M. dot (u . val)
620 e l s e :
621 Tsparse = smat (u . T)
622 T = np . asarray ((M* Tsparse) . todense () , dtype=u . dtype)
623 val = M. dot (u . val)
624

625 re turn AD(val , 0 , u . num_vars , u . max_o , model=u,\
626 T=T , dtype=u . dtype , sparse=u . sparse)
627

628 " " "
629 Method f o r summing a l l v a r i a b l e s in an ADvector toge ther
630 " " "
631 @staticmethod
632 def ADsum(u) :
633 val = np . sum(u . val)
634 i f u . sparse :
635 T = np . sum(u . T . todense () , a x i s =0)
636 T = smat (T)
637 e l s e :
638 T = np . sum(u . T , a x i s =0)
639 re turn AD(val , 0 , u . num_vars , u . max_o , model=u,\
640 T=T , dtype=u . dtype , sparse=u . sparse)
641

642 " " "
643 Method f o r combining AD o b j e c t s
644 " " "
645 @staticmethod
646 def ADappend(u , AD_vars) :
647 # I f matrix i s sparse
648 i f u . sparse :
649 blocks = [var . T f o r var in AD_vars]
650 blocks . i n s e r t (0 , u . T)
651 T = ss . vstack (blocks , format= ’ c s r ’)
652 val = u . val
653 f o r var in AD_vars :
654 val = np . hstack ((val , var . val))
655

656 re turn AD(val , 0 , u . num_vars , u . max_o , model=u,\
657 T=T , dtype=u . dtype , sparse=u . sparse)
658

659 N = u .N+np . sum ([entry .N f o r entry in AD_vars])
660 val = np . zeros (N, dtype=u . dtype)

A.2. CODE 99

661 T = np . zeros (N*u . T . shape [1] , dtype=u . dtype)
662 T . shape = (N, u . T . shape [1])
663

664 # Set u values
665 val [: u .N] = u . val
666 T [: u .N, :] = u . T . todense () i f u . sparse e l s e u . T
667

668 # Add e n t r i e s from AD_vars
669 counter = u .N
670 f o r entry in AD_vars :
671 i f entry .N == 1 :
672 val [counter] = entry . val
673 T [counter , :] = entry . T . todense () \
674 i f entry . sparse e l s e entry . T
675 e l s e :
676 val [counter : counter+entry .N] = entry . val
677 T [counter : counter+entry .N, :] = entry . T . todense () \
678 i f entry . sparse e l s e entry . T
679 counter += entry .N
680

681 # Return new AD o b j e c t
682 T = smat (T) i f u . sparse e l s e T
683 re turn AD(val , 0 , u . num_vars , u . max_o , model=u,\
684 T=T , dtype=u . dtype , sparse=u . sparse)
685

686 @staticmethod
687 def num_derivatives (n , max_o) :
688 " " "
689 Parameters :
690 n − Number of v a r i a b l e s
691 max_o − Maximum order of d e r i v a t i v e s
692

693 Return :
694 d − Tota l number of d e r i v a t i v e s up to order max_o
695 − Calculated as sum of ’n+k−1 choose k ’ with k=1
696 − up to max_o .
697 " " "
698 k = np . array (range (1 , max_o +1))
699 d = 0
700 f o r entry in k :
701 d += np . prod (range (n , n+entry)) / f a c t o r i a l (entry)
702 re turn i n t (d)
703

704

705 @staticmethod
706 def get_one_order_vec (k) :
707 " " "
708 Returns a one order vector , sum(e) = 1 , t h a t
709 i s l e s s than or equal to k .
710 " " "
711 i f np . sum(k)==1 :
712 re turn k
713 e l s e :
714 e = np . zeros (len (k))
715 i = 0
716 while np . sum(e)==0 and i <len (k) :
717 e [i] = k [i] >0
718 i += 1
719 re turn e

100 APPENDIX A. AUTOMATIC DIFFERENTIATION

720

721 @staticmethod
722 def vec_ le (u , v) :
723 tmp = u <= v
724 re turn np . prod (tmp)
725

726 @staticmethod
727 def coef (k , current , e) :
728 c = 1
729 i f np . sum(e)==1 :
730 i = np . nonzero (e) [0] [0]
731 c = (k [i]− current [i]) / f l o a t (k [i])
732

733 re turn c
734

735 @staticmethod
736 def bdot (P ,m,Q, k , e) :
737 # Get number of elements and (t h e o r e t i c a l)
738 # dimensions of Taylor arrays
739 N = P . T . shape [1] i f P . ADvector e l s e np . s i z e (P . T)
740 dims = P . dims
741

742 # Value of c a l c u l a t i o n
743 i f P . ADvector :
744 h = np . zeros (len (P . val) , dtype=P . dtype)
745 e l i f Q. ADvector :
746 h = np . zeros (len (Q. val) , dtype=P . dtype)
747 e l s e :
748 h = 0
749

750 # Ca l c u l a te value
751 f o r j in xrange (0 ,N) :
752 # Get current vec tor
753 current = np . array (ui (P . counter_map [j] , dims))
754

755 # I f current i s l t e m
756 i f AD. vec_ le (current ,m) :
757 P_index = P . index_map [rmi (current , dims)]
758 Q_index = P . index_map [rmi (k−current , dims)]
759

760 i f P . ADvector and Q. ADvector :
761 # P and Q are both AD v e c t o r s
762 term = P . T [: , P_index] *Q. T [: , Q_index]\
763 *AD. coef (k , current , e)
764 e l i f P . ADvector :
765 # Only P i s an AD vector
766 term = P . T [: , P_index] *Q. T [Q_index]\
767 *AD. coef (k , current , e)
768 e l i f Q. ADvector :
769 # Only Q i s an AD vector
770 term = P . T [P_index] *Q. T [: , Q_index]\
771 *AD. coef (k , current , e)
772 e l s e :
773 # Neither P or Q are AD v e c t o r s
774 term = P . T [P_index] *Q. T [Q_index]\
775 *AD. coef (k , current , e)
776

777 # Add to sum
778 h += term

A.2. CODE 101

779

780 re turn h

A.2.2 Custom decorator

When a decorator is applied to a function the result is that whenever the
function is called we instead call the decorator. Once there it is possible
to call the original function, though it’s not necessary, and any other
calculations or function calls can be made instead. The decorator ’adec’
is applied to all the mathematical functions in the mathADI library and
includes a series of tests that are common to all the functions. The Python
code follows below.

1 import numpy as np
2 import adipy
3

4 " " "
5 Decorator used f o r the a d d i t i o n a l f u n c t i o n s in adipy .
6 " " "
7 c l a s s adec :
8 def _ _ i n i t _ _ (s e l f , f) :
9 # Save funct ion

10 s e l f . f = f
11

12 # Save pointer to f a l l b a c k funct ion
13 i f f . __name__ == ’ exp ’ :
14 s e l f . f a l l b a c k = np . exp
15 e l i f f . __name__ == ’ log ’ :
16 s e l f . f a l l b a c k = np . log
17 e l i f f . __name__ == ’ s q r t ’ :
18 s e l f . f a l l b a c k = np . s q r t
19 e l i f f . __name__ == ’ arc tan ’ :
20 s e l f . f a l l b a c k = np . arc tan
21 e l i f f . __name__ == ’ a r c s i n ’ :
22 s e l f . f a l l b a c k = np . a r c s i n
23 e l i f f . __name__ == ’ arccos ’ :
24 s e l f . f a l l b a c k = np . arccos
25 e l i f f . __name__ == ’ cos ’ :
26 s e l f . f a l l b a c k = np . cos
27 e l i f f . __name__ == ’ s i n ’ :
28 s e l f . f a l l b a c k = np . s i n
29 e l i f f . __name__ == ’ tan ’ :
30 s e l f . f a l l b a c k = np . tan
31 e l i f f . __name__ == ’ cot ’ :
32 # s e l f . f a l l b a c k = np . cot
33 s e l f . f a l l b a c k = lambda u : 1 .0/np . tan (u)
34 e l i f f . __name__ == ’ sec ’ :
35 # s e l f . f a l l b a c k = np . sec
36 s e l f . f a l l b a c k = lambda u : 1 .0/np . cos (u)
37 e l i f f . __name__ == ’ csc ’ :
38 # s e l f . f a l l b a c k = np . csc
39 s e l f . f a l l b a c k = lambda u : 1 .0/np . s i n (u)
40 e l i f f . __name__ == ’ sinh ’ :
41 s e l f . f a l l b a c k = np . sinh
42 e l i f f . __name__ == ’ cosh ’ :
43 s e l f . f a l l b a c k = np . cosh

102 APPENDIX A. AUTOMATIC DIFFERENTIATION

44

45 def _ _ c a l l _ _ (s e l f , u) :
46 i f u . _ _ c l a s s _ _ . __name__ == ’AD’ :
47 re turn s e l f . f (u)
48 e l s e :
49 # u i s not an AD i n s t a n c e − c a l l f a l l b a c k funct ion
50 re turn s e l f . f a l l b a c k (u)

When any of the functions are called we enter the __call__ method of
the decorator. This shows that if the input is an AD instance, the original
function is called right away. If it’s not it is assumed that it’s a number and
the corresponding numpy function is called instead. This makes it possible
to simply import the mathADI functions and use them for calculations on
both the AD instances and regular numbers.

Using a decorator on the functions instead of writing out the same
tests for all of them makes them shorter and more concise. Additionally
this means that we can assume that all input being sent to functions are
instances of the AD class.

A.2.3 Math Library

The code for the file mathADI.py with the implemenations of all functions
for the AD class follows below.

1 import numpy as np
2 import adipy
3 from adec import adec
4 import sc ipy . sparse as ss
5 from scipy . sparse import csr_matr ix as smat
6

7 " " "
8 Mathematical f u n c t i o n s f o r operat ing on AD i n s t a n c e s
9 −−−

10 " " "
11 @adec
12 def exp (u) :
13 # −−−
14 i f u . max_o == 1 :
15 val = np . exp (u . val)
16 i f u . ADvector and u . sparse :
17 M = ss . spdiags (val , 0 , u .N, u .N, format= ’ c s r ’)
18 T = M*u . T
19 e l i f u . ADvector :
20 T = val [: , None] * u . T
21 e l s e :
22 T = val *u . T
23 h = adipy .AD(val , 0 , u . num_vars , u . max_o ,\
24 T=T , model=u , dtype=u . dtype , sparse=u . sparse)
25

26 re turn h
27 # −−−
28

29 h = adipy .AD(np . exp (u . val) , 0 , u . num_vars , u . max_o ,\
30 model=u , dtype=u . dtype , sparse=u . sparse)

A.2. CODE 103

31 N = u . T . shape [1] i f u . ADvector e l s e np . s i z e (u . T)
32 f o r i in xrange (1 ,N) :
33 index = np . unravel_index (u . counter_map [i] , u . dims)
34 k = np . array (index)
35 e = adipy .AD. get_one_order_vec (k)
36 i f u . ADvector :
37 h . T [: , i] = adipy .AD. bdot (h , k−e , u , k , e)
38 e l s e :
39 h . T [i] = adipy .AD. bdot (h , k−e , u , k , e)
40

41 re turn h
42

43 @adec
44 def log (u) :
45 # −−−
46 i f u . max_o == 1 :
47 i f u . ADvector and u . sparse :
48 M = ss . spdiags (1 . 0 / u . val , u .N, u .N, format= ’ c s r ’)
49 T = M*u . T
50 e l i f u . ADvector :
51 T = u . T/u . val [: , None]
52 e l s e :
53 T = u . T/u . val
54

55 h = adipy .AD(np . log (u . val) , 0 , u . num_vars , u . max_o ,\
56 T=T , model=u , dtype=u . dtype , sparse=u . sparse)
57 re turn h
58 # −−−
59

60 h = adipy .AD(np . log (u . val) , 0 , u . num_vars , u . max_o ,\
61 model=u , dtype=u . dtype , sparse=u . sparse)
62 N = u . T . shape [1] i f u . ADvector e l s e np . s i z e (u . T)
63 f o r i in xrange (1 ,N) :
64 index = np . unravel_index (u . counter_map [i] , u . dims)
65 k = np . array (index)
66 e = adipy .AD. get_one_order_vec (k)
67 i f u . ADvector :
68 h . T [: , i] = (u . T [: , i]−adipy .AD. bdot (u , k−e , h , k , e)) / u . val
69 e l s e :
70 h . T [i] = (u . T [i]−adipy .AD. bdot (u , k−e , h , k , e)) / u . val
71

72 re turn h
73

74 @adec
75 def s q r t (u) :
76 # −−−
77 i f u . max_o == 1 :
78 val = np . s q r t (u . val)
79 i f u . ADvector and u . sparse :
80 M = ss . spdiags (1 . 0 / (2 * val) , u .N, u .N, format= ’ c s r ’)
81 T = M*u . T
82 e l i f u . ADvector :
83 h . T = u . T/(2* val [: , None])
84 e l s e :
85 T = u . T/(2* val)
86

87 h = adipy .AD(val , 0 , u . num_vars , u . max_o ,\
88 T=T , model=u , dtype=u . dtype , sparse=u . sparse)
89 re turn h

104 APPENDIX A. AUTOMATIC DIFFERENTIATION

90 # −−−
91 h = adipy .AD(np . s q r t (u . val) , 0 , u . num_vars , u . max_o ,\
92 model=u , dtype=u . dtype , sparse=u . sparse)
93 N = u . T . shape [1] i f u . ADvector e l s e np . s i z e (u . T)
94 f o r i in xrange (1 ,N) :
95 index = np . unravel_index (u . counter_map [i] , u . dims)
96 k = np . array (index)
97 e = adipy .AD. get_one_order_vec (k)
98 i f u . ADvector :
99 h . T [: , i] = (0 . 5 * u . T [: , i]−adipy .AD. bdot (h , k−e , h , k , e)) / h . val

100 e l s e :
101 h . T [i] = (0 . 5 * u . T [i]−adipy .AD. bdot (h , k−e , h , k , e)) / h . val
102

103 re turn h
104

105 @adec
106 def arc tan (u) :
107 # −−−
108 i f u . max_o == 1 :
109 i f u . ADvector and u . sparse :
110 M = ss . spdiags (1 . 0 / (1 . 0 + u . val * * 2) , \
111 u .N, u .N, format= ’ c s r ’)
112 T = M*u . T
113 e l i f u . ADvector :
114 T = u . T/(1+u . val [: , None] * * 2)
115 e l s e :
116 T = u . T/(1+u . val * * 2)
117

118 h = adipy .AD(np . arc tan (u . val) , 0 , u . num_vars , u . max_o ,\
119 T=T , model=u , dtype=u . dtype , sparse=u . sparse)
120 re turn h
121 # −−−
122 v = 1 . 0 / (1 . 0 + u*u) # Helper v a r i a b l e
123 h = adipy .AD(np . arc tan (u . val) , 0 , u . num_vars , u . max_o ,\
124 model=u , dtype=u . dtype , sparse=u . sparse)
125 N = u . T . shape [1] i f u . ADvector e l s e np . s i z e (u . T)
126 f o r i in xrange (1 ,N) :
127 index = np . unravel_index (u . counter_map [i] , u . dims)
128 k = np . array (index)
129 e = adipy .AD. get_one_order_vec (k)
130 i f u . ADvector :
131 h . T [: , i] = adipy .AD. bdot (v , k−e , u , k , e)
132 e l s e :
133 h . T [i] = adipy .AD. bdot (v , k−e , u , k , e)
134

135 re turn h
136

137 @adec
138 def a r c s i n (u) :
139 # −−−
140 i f u . max_o == 1 :
141 i f u . ADvector and u . sparse :
142 M = ss . spdiags (1 . 0 / np . s q r t (1.0−u . val * * 2) , \
143 u .N, u .N, format= ’ c s r ’)
144 T = M*u . T
145 e l i f u . ADvector :
146 T = u . T/np . s q r t (1−u . val [: , None] * * 2)
147 e l s e :
148 T = u . T/np . s q r t (1−u . val * * 2)

A.2. CODE 105

149

150 h = adipy .AD(np . a r c s i n (u . val) , 0 , u . num_vars , u . max_o ,\
151 T=T , model=u , dtype=u . dtype , sparse=u . sparse)
152 re turn h
153 # −−−
154 v = 1.0/ s q r t (1.0−u*u) # Helper v a r i a b l e
155 h = adipy .AD(np . a r c s i n (u . val) , 0 , u . num_vars , u . max_o ,\
156 model=u , dtype=u . dtype , sparse=u . sparse)
157 N = u . T . shape [1] i f u . ADvector e l s e np . s i z e (u . T)
158 f o r i in xrange (1 ,N) :
159 index = np . unravel_index (u . counter_map [i] , u . dims)
160 k = np . array (index)
161 e = adipy .AD. get_one_order_vec (k)
162 i f u . ADvector :
163 h . T [: , i] = adipy .AD. bdot (v , k−e , u , k , e)
164 e l s e :
165 h . T [i] = adipy .AD. bdot (v , k−e , u , k , e)
166

167 re turn h
168

169 @adec
170 def arccos (u) :
171 # −−−
172 i f u . max_o == 1 :
173 i f u . ADvector and u . sparse :
174 M = ss . spdiags (−1.0/np . s q r t (1−u . val * * 2) , \
175 u .N, u .N, format= ’ c s r ’)
176 T = M*u . T
177 e l i f u . ADvector :
178 T = −u . T/np . s q r t (1−u . val [: , None] * * 2)
179 e l s e :
180 T = −u . T/np . s q r t (1−u . val * * 2)
181

182 h = adipy .AD(np . arccos (u . val) , 0 , u . num_vars , u . max_o ,\
183 T=T , model=u , dtype=u . dtype , sparse=u . sparse)
184 re turn h
185 # −−−
186 v = −1.0/adipy .AD. s q r t (1.0−u*u) # Helper v a r i a b l e
187 h = adipy .AD(np . arccos (u . val) , 0 , u . num_vars , u . max_o ,\
188 model=u , dtype=u . dtype , sparse=u . sparse)
189 N = u . T . shape [1] i f u . ADvector e l s e np . s i z e (u . T)
190 f o r i in xrange (1 ,N) :
191 index = np . unravel_index (u . counter_map [i] , u . dims)
192 k = np . array (index)
193 e = adipy .AD. get_one_order_vec (k)
194 i f u . ADvector :
195 h . T [: , i] = adipy .AD. bdot (v , k−e , u , k , e)
196 e l s e :
197 h . T [i] = adipy .AD. bdot (v , k−e , u , k , e)
198 re turn h
199

200 # P r i v a t e method used f o r c a l c u l a t i n g s in and cos
201 def __s incos (u) :
202 # −−−
203 i f u . max_o == 1 :
204 i f u . ADvector and u . sparse :
205 Msin = ss . spdiags (np . cos (u . val) , u .N, u .N, format= ’ c s r ’)
206 Mcos = ss . spdiags(−np . s i n (u . val) , u .N, u .N, format= ’ c s r ’)
207 sinuT = Msin *u . T

106 APPENDIX A. AUTOMATIC DIFFERENTIATION

208 cosuT = Mcos*u . T
209 e l i f u . ADvector :
210 sinuT = u . T*np . cos (u . val [: , None])
211 cosuT = −u . T*np . s i n (u . val [: , None])
212 e l s e :
213 sinuT = u . T*np . cos (u . val)
214 cosuT = −u . T*np . s i n (u . val)
215

216 sinu = adipy .AD(np . s in (u . val) , 0 , u . num_vars , u . max_o ,\
217 T=sinuT , model=u , dtype=u . dtype , sparse=u . sparse)
218 cosu = adipy .AD(np . cos (u . val) , 0 , u . num_vars , u . max_o ,\
219 T=cosuT , model=u , dtype=u . dtype , sparse=u . sparse)
220 re turn sinu , cosu
221 # −−−
222 sinu = adipy .AD(np . s in (u . val) , 0 , u . num_vars , u . max_o ,\
223 model=u , dtype=u . dtype , sparse=u . sparse)
224 cosu = adipy .AD(np . cos (u . val) , 0 , u . num_vars , u . max_o ,\
225 model=u , dtype=u . dtype , sparse=u . sparse)
226 N = u . T . shape [1] i f u . ADvector e l s e np . s i z e (u . T)
227 f o r i in xrange (1 ,N) :
228 index = np . unravel_index (u . counter_map [i] , u . dims)
229 k = np . array (index)
230 e = adipy .AD. get_one_order_vec (k)
231 i f u . ADvector :
232 sinu . T [: , i] = adipy .AD. bdot (cosu , k−e , u , k , e)
233 cosu . T [: , i] = −adipy .AD. bdot (sinu , k−e , u , k , e)
234 e l s e :
235 sinu . T [i] = adipy .AD. bdot (cosu , k−e , u , k , e)
236 cosu . T [i] = −adipy .AD. bdot (sinu , k−e , u , k , e)
237

238 re turn sinu , cosu
239

240 @adec
241 def s i n (u) :
242 h = __s incos (u) [0]
243 re turn h
244

245 @adec
246 def cos (u) :
247 h = __s incos (u) [1]
248 re turn h
249

250 @adec
251 def tan (u) :
252 sinu , cosu = __s incos (u)
253 h = sinu / cosu
254 re turn h
255

256 @adec
257 def cot (u) :
258 sinu , cosu = __s incos (u)
259 h = cosu / sinu
260 re turn h
261

262 @adec
263 def sec (u) :
264 cosu=__s incos (u) [1]
265 h = 1 . 0 / cosu
266 re turn h

A.2. CODE 107

267

268 @adec
269 def csc (u) :
270 sinu=__s incos (u) [0]
271 h = 1 . 0 / sinu
272 re turn h
273

274 @adec
275 def sinh (u) :
276 h = 0 . 5 * (exp (u)−exp(−u))
277 re turn h
278

279 @adec
280 def cosh (u) :
281 h = 0 . 5 (exp (u)+ exp(−u))
282 re turn h

A.2.4 initADI

The file initADI with the function init_variables follows below.

1 from adipy import AD
2 import numpy as np
3

4 " " "
5 Method f o r i n i t i a l i z i n g v a r i a b l e s
6 − * args holds the values of the v a r i a b l e s
7 − * kwargs holds the keyword arguments :
8 max_o , update_num , dtype , sparse
9 " " "

10 def i n i t _ v a r i a b l e s (* args , * * kwargs) :
11 # Get keyword arguments
12 max_o = 1
13 update_num = False
14 dtype = complex
15 sparse = Fa l se
16 f o r k , v in kwargs . i t e r i t e m s () :
17 i f k== ’max_o ’ :
18 max_o = v
19 i f k== ’ update_num ’ :
20 update_num = v
21 i f k== ’ dtype ’ :
22 dtype = v
23 i f k== ’ sparse ’ :
24 sparse = v
25

26 # I n i t i a l i z e v a r i a b l e s
27 adVars = []
28 var_num = 1
29 num_vars = len (args) i f not update_num \
30 e l s e np . sum ([np . s i z e (arg) f o r arg in args])
31

32 # Create AD i n s t a n c e s
33 f o r (counter , val) in enumerate (args) :
34 isNumber = i s i n s t a n c e (val , (in t , long , f l o a t , complex))
35 model = None i f counter == 0 e l s e adVars [−1]
36 # Set the var_nums v a r i a b l e and update var counter

108 APPENDIX A. AUTOMATIC DIFFERENTIATION

37 i f update_num and (not isNumber) :
38 var_nums = np . array (range (var_num , var_num+len (val)) , \
39 dtype= i n t)
40 var_num = var_nums[−1]+1
41 e l i f not isNumber :
42 var_nums = var_num *np . ones (len (val) , dtype= i n t)
43 var_num += 1
44 e l s e :
45 var_nums = var_num
46 var_num += 1
47

48 # Create the AD o b j e c t
49 var = AD(val , var_nums , num_vars , max_o , model=model ,\
50 dtype=dtype , sparse=sparse)
51

52 # Add l a t e s t v a r i a b l e
53 adVars . append (var)
54

55

56 i f len (adVars) == 1 :
57 re turn adVars [0]
58 re turn adVars

Appendix B

Testing Framework

During the development of the AD framework a series of tests were created
to ensure that the framework worked as expected. This was particularly
useful when making changes to the code to improve efficiency, since the
tests could be run quickly to ensure no functionality was broken. Each test
is just a simple function that calculates a set of derivatives and proceeds to
check that these are equal to the exact ones. This appendix will list all the
files that inlude these tests.

The file test_log.py follows below.

1 import sys
2 sys . path . append (’ . . ’) # Add above f o l d e r to path to import f u n c t i o n s
3

4 from adipy import AD
5 from mathADI import log , exp
6 from numpy import pi
7 import nose . t o o l s as nt
8 import numpy as np
9

10 def t e s t _ l o g _ 1 () :
11 x = AD(3 , 1 , 3 , 3)
12 y = AD(2 , 2 , 3 , 3)
13 z = AD(1 , 3 , 3 , 3)
14 g = log (1 3 * y) * exp (log (2 * x * z))
15 a c t S o l u t i o n = g . g e t _ d e r i v a t i v e s ()
16

17 # Ca l c u l a te r e a l s o l u t i o n
18 expSolut ion = np . zeros ((4 , 4 , 4))
19

20 # expSolut ion (: , : , 0)
21 tmp1 = np . array (
22 [log (1 3 * 2) * 2 * 3 , (2 * 3) / 2 . 0 , − (2 * 3) / (2 . 0 * * 2) , (4 * 3) / (2 . 0 * * 3) , \
23 log (1 3 * 2) * 2 , 1 , −0.5 , 0 , \
24 0 , 0 , 0 , 0 , \
25 0 , 0 , 0 , 0] \
26)
27 tmp1 . shape = (4 , 4)
28 expSolut ion [: , : , 0] = tmp1
29

30 # expSolut ion (: , : , 1)
31 tmp2 = np . array (

109

110 APPENDIX B. TESTING FRAMEWORK

32 [log (1 3 * 2) * 2 * 3 , (2 * 3) / 2 . 0 , − (2 * 3) / (2 . 0 * * 2) , 0 , \
33 log (1 3 * 2) * 2 , 1 , 0 , 0 , \
34 0 , 0 , 0 , 0 , \
35 0 , 0 , 0 , 0] \
36)
37 tmp2 . shape = (4 , 4)
38 expSolut ion [: , : , 1] = tmp2
39

40 # Check a c t u a l s o l u t i o n
41 d i f f = np . max(np . abs (expSolution−a c t S o l u t i o n))
42 nt . asser t_a lmost_equal (d i f f , 0 , d e l t a =1E−10)

The file test_polynomials.py follows below.

1 import sys
2 sys . path . append (’ . . ’) # Add above f o l d e r to path to import f u n c t i o n s
3

4 from adipy import AD
5 from numpy import pi
6 import nose . t o o l s as nt
7 import numpy as np
8

9

10 def tes t_polynomial_1 () :
11 x = AD(3 , 1 , 2 , 2)
12 y = AD(pi , 2 , 2 , 2)
13 z = (x * * 2) * (y**3)−x * y**2−x * y+y
14 a c t S o l u t i o n = z . g e t _ d e r i v a t i v e s ()
15

16 # Ca l c u l a te r e a l s o l u t i o n
17 expSolut ion = np . array (\
18 [(3 * * 2) * (pi **3)−3* pi **2−3* pi+pi , \
19 3 * (3 * * 2) * pi **2−2*3* pi−3+1, \
20 6 * (3 * * 2) * pi−2*3 , \
21 2 * 3 * (pi **3)− pi **2−pi ,\
22 3 * 2 * 3 * pi **2−2* pi−1,\
23 0 , \
24 2 * (pi * * 3) , \
25 0 , \
26 0])
27 expSolut ion . shape = (3 , 3)
28

29 # Check a c t u a l s o l u t i o n
30 d i f f = np . max(np . abs (ac tSo lu t ion−expSolut ion))
31 nt . asser t_a lmost_equal (d i f f , 0 , d e l t a =1E−10)
32

33 def tes t_polynomial_2 () :
34 x = AD(3 , 1 , 2 , 4)
35 y = AD(7 , 2 , 2 , 4)
36 z = (x * * 2) * (y * * 3)
37 a c t S o l u t i o n = z . g e t _ d e r i v a t i v e s ()
38

39 # Ca l c u l a te r e a l s o l u t i o n
40 expSolut ion = np . array (\
41 [(3 * * 2) * (7 * * 3) , \
42 3 * (3 * * 2) * (7 * * 2) , \
43 6 * (3 * * 2) * 7 , 6 * (3 * * 2) , \
44 0 , \
45 2 * 3 * (7 * * 3) , \

111

46 6 * 3 * (7 * * 2) , \
47 1 2 * 3 * 7 , \
48 12*3 , \
49 0 , \
50 2 * (7 * * 3) , \
51 6 * (7 * * 2) , \
52 12*7 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] \
53)
54 expSolut ion . shape = (5 , 5)
55

56 # Check a c t u a l s o l u t i o n
57 d i f f = np . max(np . abs (ac tSo lu t ion−expSolut ion))
58 nt . asser t_a lmost_equal (d i f f , 0 , d e l t a =1E−10)
59

60 def tes t_polynomial_3 () :
61 x = AD(5 , 1 , 3 , 4)
62 y = AD(3 , 2 , 3 , 4)
63 z = AD(7 , 3 , 3 , 4)
64 g = ((x + 3) * * 2) * ((z +2)**3)*(−1+ y * * 2) / (((z + 2) * * 3) * (y−1))
65

66 # Get a c t u a l s o l u t i o n
67 a c t S o l u t i o n = g . g e t _ d e r i v a t i v e s ()
68

69 # Ca l c u l a te r e a l s o l u t i o n
70 expSolut ion = np . zeros ([5 , 5 , 5])
71 tmp = np . array (\
72 [(8 * * 2) * 4 , 8 * * 2 , 0 , 0 , 0 , \
73 2 * 8 * 4 , 2 * 8 , 0 , 0 , 0 , \
74 2 * 4 , 2 , 0 , 0 , 0 , \
75 0 , 0 , 0 , 0 , 0 , \
76 0 , 0 , 0 , 0 , 0]
77)
78 tmp . shape = (5 , 5)
79 expSolut ion [: , : , 0] = tmp
80

81 # Check a c t u a l s o l u t i o n
82 d i f f = np . max(np . max(ac tSo lu t ion−expSolut ion))
83 nt . asser t_a lmost_equal (d i f f , 0 , d e l t a =1E−10)

The file test_trig.py follows below.

1 import sys
2 sys . path . append (’ . . ’) # Add above f o l d e r to path to import f u n c t i o n s
3

4 from adipy import AD
5 from mathADI import cos , s i n
6 from numpy import pi
7 import nose . t o o l s as nt
8 import numpy as np
9

10 def t e s t _ t r i g _ 1 () :
11 # Find a c t u a l s o l u t i o n
12 x = AD(pi , 1 , 3 , 3)
13 y = AD(pi / 2 , 2 , 3 , 3)
14 z = AD(pi / 4 , 3 , 3 , 3)
15 g = cos (2 * x) * s i n (y) * cos (z)
16 a c t S o l u t i o n = g . g e t _ d e r i v a t i v e s ()
17

18 # Ca l c u l a te r e a l s o l u t i o n

112 APPENDIX B. TESTING FRAMEWORK

19 expSolut ion = np . zeros ((4 , 4 , 4))
20

21 # expSolut ion [: , : , 0]
22 tmp1 = np . array (
23 [cos (pi /4) , 0 , −cos (pi /4) , 0 , \
24 0 , 0 , 0 , 0 , \
25 −4*cos (pi /4) , 0 , 0 , 0 , \
26 0 , 0 , 0 , 0] \
27)
28 tmp1 . shape = (4 , 4)
29 expSolut ion [: , : , 0] = tmp1
30

31 # expSolut ion [: , : , 1]
32 tmp2 = np . array (
33 [− s i n (pi /4) , 0 , cos (pi /4) , 0 , \
34 0 , 0 , 0 , 0 , \
35 4* s i n (pi /4) , 0 , 0 , 0 , \
36 0 , 0 , 0 , 0] \
37)
38 tmp2 . shape = (4 , 4)
39 expSolut ion [: , : , 1] = tmp2
40

41 # expSolut ion [: , : , 2]
42 expSolut ion [0 , 0 , 2] = −cos (pi /4)
43

44 # expSolut ion [: , : , 3]
45 expSolut ion [0 , 0 , 3] = s i n (pi /4)
46

47 # Check a c t u a l s o l u t i o n
48 d i f f = np . max(np . abs (expSolution−a c t S o l u t i o n))
49 nt . asser t_a lmost_equal (d i f f , 0 , d e l t a =1E−10)

The file test_vec_func.py follows below.

1 import sys
2 sys . path . append (’ . . ’) # Add above f o l d e r to path to import f u n c t i o n s
3

4 from adipy import AD
5 from mathADI import cos , sin , exp , log , s q r t
6 from initADI import i n i t _ v a r i a b l e s
7 from numpy import pi
8 import nose . t o o l s as nt
9 import numpy as np

10

11 # Test vec tor f u n c t i o n a l i t y
12 def tes t_vec_ func_1 () :
13 x = i n i t _ v a r i a b l e s ([pi , pi /2,−pi] , max_o=2)
14 z1 = cos (x)
15 z2 = s i n (x)
16 z3 = exp (x)
17

18 # Find a c t u a l and expected s o l u t i o n
19 a c t S o l u t i o n = np . array (\
20 [[z . g e t _ d e r i v a t i v e s () f o r z in z1] , \
21 [z . g e t _ d e r i v a t i v e s () f o r z in z2] , \
22 [z . g e t _ d e r i v a t i v e s () f o r z in z3]])
23 expSolut ion = np . array ([\
24 [[cos (pi) , 0 , −cos (pi)] , \
25 [0 , −s i n (pi /2) , 0] ,\

113

26 [cos(−pi) , 0 , −cos(−pi)]] , \
27 [[0 , cos (pi) , 0] , \
28 [s i n (pi /2) ,0 ,− s i n (pi / 2)] , \
29 [0 , cos(−pi) , 0]] , \
30 [[exp (pi) , exp (pi) , exp (pi)] , \
31 [exp (pi /2) , exp (pi /2) , exp (pi / 2)] , \
32 [exp(−pi) , exp(−pi) , exp(−pi)]] \
33])
34

35 # Test a c t u a l s o l u t i o n with expected s o l u t i o n
36 d i f f = np . max(np . abs (expSolution−a c t S o l u t i o n))
37 nt . asser t_a lmost_equal (d i f f , 0 , d e l t a =1E−10)
38

39 # Test vec tor f u n c t i o n a l i t y
40 def tes t_vec_ func_2 () :
41 x , y = i n i t _ v a r i a b l e s ([pi , pi / 2] , 3 , max_o=2)
42 z1 = cos (y) + 3 * (x * * 2) * y
43

44 # Find a c t u a l and expected s o l u t i o n
45 a c t S o l u t i o n = np . array ([z . g e t _ d e r i v a t i v e s () f o r z in z1])
46 expSolut ion = np . array ([\
47 [[cos (3) + 3 * (pi **2)*3 ,− s i n (3) + 3 * (pi **2) ,− cos (3)] , \
48 [6 * pi * 3 , 6* pi , 0] , \
49 [6 * 3 , 0 , 0]] , \
50 [[cos (3) + 3 * ((0 . 5 * pi) * *2) *3 , − s in (3) + 3 * ((0 . 5 * pi) * *2) , − cos (3)] , \
51 [6 * 0 . 5 * pi * 3 , 3* pi , 0] , \
52 [6 * 3 , 0 , 0]]])
53

54 # Test a c t u a l s o l u t i o n with expected s o l u t i o n
55 d i f f = np . max(np . abs (expSolution−a c t S o l u t i o n))
56 nt . asser t_a lmost_equal (d i f f , 0 , d e l t a =1E−10)
57

58 # Test vec tor f u n c t i o n a l i t y
59 def tes t_vec_ func_3 () :
60 x , y = i n i t _ v a r i a b l e s ([pi , pi /2] , [−1 ,2] , max_o=2)
61 z1 = cos (x) * s i n (y) + (x * * 2) * (y * * 2)
62

63 # Find a c t u a l and expted s o l u t i o n
64 a c t S o l u t i o n = np . array ([z . g e t _ d e r i v a t i v e s () f o r z in z1])
65 expSolut ion = np . array ([\
66 [[cos (pi) * s in (−1)+(pi * * 2) * ((− 1) * * 2) , \
67 cos (pi) * cos (−1)+(pi * * 2) * 2 * (−1) , \
68 cos (pi)*− s in (−1)+(pi * * 2) * 2] , \
69 [− s in (pi) * s in (−1)+2* pi * ((−1) * * 2) , \
70 −s in (pi) * cos (−1)+4* pi * (−1) , 0] , \
71 [−cos (pi) * s in (−1) + 2 * ((−1) * * 2) , 0 , 0]] , \
72 [[cos (pi /2)* s i n (2) + ((pi / 2) * * 2) * (2 * * 2) , \
73 cos ((pi / 2)) * cos (2) + ((pi / 2) * * 2) * 2 * 2 , \
74 cos ((pi /2))*− s i n (2) + ((pi / 2) * * 2) * 2] , \
75 [− s in ((pi / 2)) * s i n (2) + 2 * (pi / 2) * (2 * * 2) , \
76 −s in ((pi / 2)) * cos (2) + 4 * (pi / 2) * 2 , 0] , \
77 [−cos ((pi / 2)) * s i n (2) + 2 * (2 * * 2) , 0 , 0]]])
78

79 # Test a c t u a l s o l u t i o n with expected s o l u t i o n
80 d i f f = np . max(np . abs (expSolution−a c t S o l u t i o n))
81 nt . asser t_a lmost_equal (d i f f , 0 , d e l t a =1E−10)
82

83 # Test vec tor f u n c t i o n a l i t y
84 def tes t_vec_ func_4 () :

114 APPENDIX B. TESTING FRAMEWORK

85 x , y = i n i t _ v a r i a b l e s ([2 , 4] , [3 , 1] , max_o=2)
86 z1 = 3−1/(3*x * y)
87

88 # Find a c t u a l and expted s o l u t i o n
89 a c t S o l u t i o n = np . array ([z . g e t _ d e r i v a t i v e s () f o r z in z1])
90 expSolut ion = np . array ([\
91 [[3 − (1 . 0 / (3 * 2 * 3)) , 1 . 0 / (3 * 2 * 3 * * 2) , − 2 . 0 / (3 * 2 * 3 * * 3)] , \
92 [1 . 0 / (3 * 3 * 2 * * 2) , − 1 . 0 / (3 * (2 * * 2) * (3 * * 2)) , 0] , \
93 [− 2 . 0 / (3 * 3 * 2 * * 3) , 0 , 0]] , \
94 [[3 − (1 . 0 / (3 * 4 * 1)) , 1 . 0 / (3 * 4 * 1 * * 2) , − 2 . 0 / (3 * 4 * 1 * * 3)] , \
95 [1 . 0 / (3 * 1 * 4 * * 2) , − 1 . 0 / (3 * (4 * * 2) * (1 * * 2)) , 0] , \
96 [− 2 . 0 / (3 * 1 * 4 * * 3) , 0 , 0]]])
97

98 # Test a c t u a l s o l u t i o n with expected s o l u t i o n
99 d i f f = np . max(np . abs (expSolution−a c t S o l u t i o n))

100 nt . asser t_a lmost_equal (d i f f , 0 , d e l t a =1E−10)
101

102 # Test vec tor f u n c t i o n a l i t y
103 def tes t_vec_ func_5 () :
104 x , y = i n i t _ v a r i a b l e s ([2 , 4] , [3 , 1] , max_o=2)
105 z1 = s q r t (y * * 2 / (x * y * * 2))
106

107 # Find a c t u a l and expted s o l u t i o n
108 a c t S o l u t i o n = np . array ([z . g e t _ d e r i v a t i v e s () f o r z in z1])
109 expSolut ion = np . array ([\
110 [[2 . 0 * * (− 0 . 5) , 0 , 0] , \
111 [− 0 . 5 * 2 . 0 * * (− 1 . 5) , 0 , 0] , \
112 [0 . 7 5 * 2 . 0 * * (− 2 . 5) , 0 , 0]] , \
113 [[4 . 0 * * (− 0 . 5) , 0 , 0] , \
114 [− 0 . 5 * 4 . 0 * * (− 1 . 5) , 0 , 0] , \
115 [0 . 7 5 * 4 . 0 * * (− 2 . 5) , 0 , 0]]])
116

117 # Test a c t u a l s o l u t i o n with expected s o l u t i o n
118 d i f f = np . max(np . abs (expSolution−a c t S o l u t i o n))
119 nt . asser t_a lmost_equal (d i f f , 0 , d e l t a =1E−10)

Appendix C

Reservoir Simulation Code

The complete program including the reservoir simulation solver was
included in the main part of the thesis, and is for that reason not included
here as well. This section includes relevant files that were not included in
the main part of the thesis.

C.1 MATLAB Implementation

The MATLAB implementation is a part of MRST and was used to to
compare the performance between the two implementations. Some minor
changes were made to this script to perform a reservoir simulation for
larger grid models. Additionally, it is important to note that the plotting
parts of the script were removed for all performance testing. The initial
script that was used follows below:

1 %% Sin gle phase flow simulat ion using AD
2 % This example goes through the s teps of s e t t i n g up a s ing le−phase
3 % simulat ion with a s i n g l e h o r i z o n t a l well using the automatic
4 % d i f f e r e n t i a t i o n framework .
5

6 mrstModule add ad−f i
7

8 % Setup 10 x10x10 grid of 200 x200x50 m model .
9 nx = 1 0 ; ny =10; nz = 1 0 ;

10 Dx = 2 0 0 ; Dy = 2 0 0 ; Dz = 5 0 ;
11 G = car tGr id ([nx , ny , nz] , [Dx , Dy, Dz]) ;
12 G = computeGeometry (G) ;
13

14 % Assume homogeneous/ i s o t r o p i c rock .
15 permX = 30* m i l l i * darcy ;
16 poro = 0 . 3 ;
17 rock . perm = ones (G. c e l l s .num, 1) * permX ;
18 rock . poro = ones (G. c e l l s .num, 1) * poro ;
19 % s e t rock c o m p r e s s i b i l i t y :
20 cr = 1e−6/barsa ;
21

22 %% Rock p r o p e r t i e s
23 % In the case of non−zero rock−compress ib l i ty , the input rock poros i ty i s
24 % taken as r e f e r e n c e a t a given r e f e r e n c e pressure p_r . The grid pore volumes
25 % (pv) becomes a funct ion of pressure given by the d i f f e r e n t i a l equation

115

116 APPENDIX C. RESERVOIR SIMULATION CODE

26 % cr = (d pv/d p)/pv
27 % which r e s u l t s in
28 % pv (p) = pv_r e ^(cr (p−p_r))
29 % where pv_r i s the r e f e r e n c e pore volume (rock . poro x volume) and p_r i s
30 % the r e f e r e n c e pressure . We assume the r e f e r e n c e pressure i s 2 0 0 :
31 pv_r = poreVolume (G, rock) ;
32 p_r = 200* barsa ;
33 % F i n a l l y , the pressure−dependent funct ion f o r pore−volumes becomes :
34 pv = @(p) pv_r . * exp (cr * (p−p_r)) ;
35

36 %% Fluid (o i l) p r o p e r t i e s
37 % Assume constant v i s c o s i t y :
38 mu = 5* c e n t i * poise ;
39 % and t h a t the o i l c o m p r e s s i b i l i t y can be approximated as constant in the
40 % r e s e r v o i r :
41 c = 1e−3/barsa ;
42 % With constant c o m p r e s s i b i l i t y , dens i ty becomes a funct ion of pressure
43 % given the d i f f e r e n t i a l equation
44 % c = (d rho/d p)/ rho
45 % which r e s u l t s in
46 % rho (p) = rho_r e ^(c (p−p_r))
47 % where rho_r i s the r e f e r e n c e densi ty a t the r e f e r e n c e pressure p_r . We
48 % t h a t rho_r = 800 at p_r = 2 0 0 :
49 p_r = 200* barsa ;
50 rho_r = 850* kilogram/meter ^3;
51 % f i n a l l y def ine the pressure dependent funct ion f o r rho :
52 rho = @(p) rho_r * exp (c * (p−p_r)) ;
53

54 % to compute the s u r f a c e volume ra tes , we need a l s o need the s u r f a c e
55 % densi ty which we assume i s 7 5 0 :
56 rhoS = 750* kilogram/meter ^3;
57

58 %% Sin gle h o r i z o n t a l well :
59 W = [] ;
60 nperf = 8 ;
61 I = ones (nperf , 1) * 2 ;
62 J = (1 : nperf) ’ + 1 ;
63 K = ones (nperf , 1) * 5 ;
64 % Convert IJK−i n d i c e s to l i n e a r index (as used in G)
65 c e l l I n x = sub2ind (G. cartDims , I , J , K) ;
66

67 W = addWell (W, G, rock , c e l l I n x , ’Name ’ , ’ producer ’) ;
68

69 % p l o t t i n g s
70 f i g u r e (1) ; c l f
71 plotGrid (G, ’ FaceColor ’ , ’ g ’ , ’ FaceAlpha ’ , . 3 , ’ EdgeColor ’ , ’w’) ;
72 plotWell (G, W) ;
73 a x i s of f , s e t (gcf , ’ Color ’ , ’w’) , camproj perspect ive , view (3)
74

75 %% I n i t i a l condi t ions
76 % We assume t h a t the r e s e r v o i r i s i n i t i a l l y a t equi l ibr ium . This means t h a t
77 % the fol lowing condi t ion must be s a t i s f i e d :
78 % dp/dz = g rho ,
79 % where g i s the g a v i t a t i o n a l a c c e l l e r a t i o n . This r e l a t i o n can be solved
80 % a n a l y t i c a l l y f o r p , but a l t e r n a t i v e l y one can solve the above ODE with
81 % ’ i n i t i a l condt i t ion ’ p (z_0) = p_r :
82 g r a v i t y on ;
83 g = norm (g r a v i t y) ;
84

C.1. MATLAB IMPLEMENTATION 117

85 z_0 = 0 ; z_max = 20* meter ;
86 [zz , pp] = ode23 (@(z , p) g * rho (p) , [z_0 z_max] , p_r) ;
87 % we then i n t e r p o l a t e onto the grid using c e l l c e n t e r s :
88 p _ i n i t = i n t e r p 1 (zz , pp , G. c e l l s . c e n t r o i d s (: , 3) , ’ s p l i n e ’) ;
89

90 %% S e t t i n g up components needed f o r the s imulat ion
91 % Since we have no−flow boundary in t h i s example , we r e s t r i c t to i n t e r i o r
92 % f a c e s
93 N = double (G. f a c e s . neighbors) ;
94 i n t I n x = (prod (N, 2) ~ = 0) ;
95 N = N(int Inx , :) ;
96 % We w i l l be using the 2−point f l u x approximation . F i r s t the one−sided
97 % t r a n s m i s s i b i l i t i e s are computed , then the harmonic average i s taken to
98 % obtain the 2−sided t r a n s m i s s i b i l i t e s .
99 hT = computeTrans (G, rock) ;

100 c f = G. c e l l s . f a c e s (: , 1) ;
101 nf = G. f a c e s .num;
102 T = 1 ./ accumarray (cf , 1 ./hT , [nf , 1]) ;
103 T = T (i n t I n x) ;
104 % In s e t t i n g up the equations , we need d e s c r e t e forms of the div and grad
105 % operators , and we represent these as m u l t i p l i c a t i o n by sparse matr ices .
106 % In p a r t i c u l a r , we c o n s t r u c t the ’ gradient matrix ’ C as folows :
107 n = s i z e (N, 1) ;
108 C = sparse ([(1 : n) ’ ; (1 : n) ’] , N, ones (n , 1) * [1 −1] , n , G. c e l l s .num) ;
109 % The d e s c r e t e grad and div operators are now given by
110 grad = @(x)−C* x ;
111 div = @(x)C’ * x ;
112 % In addi t ion we w i l l need to take the average of neighboring c e l l s , and
113 % def ine the fol lowing funct ion
114 avg = @(x) 0 . 5 * (x (N(: , 1)) + x (N(: , 2))) ;
115

116 %% Pressure and well equat ions :
117 % The pressure equation (without well c o n t r i b u t i o n s) i s given by :
118 %%
119 % $\ f r a c { d } { dt } (\ phi\rho)+\ nabla\cdot (\ rho v)=0 , \quad v = −\f r a c {K} { \mu}\ nabla (p−g\rho z) $
120 %In d i s c r e t i z e d form , t h i s leads to
121 z = G. c e l l s . c e n t r o i d s (: , 3) ; % z−c co r d i na t e of gr id c e l l s
122 pressureEq = @(p , p0 , dt) (1/ dt) . * (pv (p) . * rho (p)−pv (p0) . * rho (p0)) . . .
123 − div (avg (rho (p) . /mu) . * T . * grad (p−g * rho (p) . * z)) ;
124 % Wel l ra tes are given as Peaceman well−index times pressure drop
125 wc = W(1) . c e l l s ; % p e r f o r a t i o n grid c e l l s
126 WI = W(1) . WI ; % well i n d i c e s
127 dz = W(1) . dZ ; % p e r f o r a t i o n depth r e l a t i v e to well r e f e r e n c e depth
128 wellRates = @(p , bhp) WI . * (rho (p (wc)) . /mu) . * (bhp −p (wc) + g * dz . * rho (p (wc))) ;
129 %% def ine ADI v a r i a b l e s
130 % We l e t our primary v a r i a b l e s be grid−c e l l pressures , well bhp and s u r f a c e
131 % r a t e :
132 [p_ad , bhp_ad , qS_ad] = in i tVar iab lesADI (p _ i n i t , p _ i n i t (wc (1)) , 0) ;
133 % f o r convenience , make i n d i c e s to v a r i a b l e s when stacked :
134 pIx = 1 :G. c e l l s .num; bhpIx = G. c e l l s .num +1; qSIx = G. c e l l s .num +2;
135

136 %% Set up simulat ion parameters
137 numSteps = 5 2 ;
138 totTime = 365* day ;
139 dt = totTime/numSteps ;
140 t o l = 1e−5;
141 maxits = 1 0 ;
142 % save output in array ’ sol ’
143 s o l = repmat (s t r u c t (’ time ’ , [] , ’ pressure ’ , [] , ’bhp ’ , [] , ’ qS ’ , []) , [numSteps +1 , 1]) ;

118 APPENDIX C. RESERVOIR SIMULATION CODE

144 s o l (1) . time = 0 ;
145 s o l (1) . pressure = double (p_ad) ;
146 s o l (1) . bhp = double (bhp_ad) ;
147 s o l (1) . qS = double (qS_ad) ;
148 %setup p l o t
149 f i g u r e (2) ; c l f ; s e t (gcf , ’ Color ’ , ’w’)
150 subplot (2 , 1 , 1) ; p lo tCel lData (G, p _ i n i t /barsa) ;
151 t i t l e (’ pressure [bar] ’ , ’ EdgeColor ’ , ’w’) ;
152 colorbar , view (3) , camproj p e r s p e c t i v e
153 subplot (2 , 1 , 2) ;
154 a x i s ([0 convertTo (totTime , day) 0 3 0 0]) ;
155 t i t l e (’ Surface volume r a t e [m^3/day] ’) ; hold on
156

157 %% Main simulat ion
158 t =0 ; s tep =0;
159 while t < totTime
160 t = t +dt ;
161 s tep=step +1;
162 f p r i n t f (’\nTime step %i time \ t %f days\n ’ , step , t /day) ;
163 % newton loop
164 resNorm = 1 e99 ;
165 p0 = double (p_ad) ; % previous step pressure
166 n i t = 0 ;
167 while (resNorm > t o l) && (n i t < maxits)
168 % c r e a t e equatoins :
169 eqs { 1 } = pressureEq (p_ad , p0 , dt) ;
170 % add well c o n t r i b u t i o n s in per fora ted c e l l s :
171 eqs { 1 } (wc) = eqs { 1 } (wc) − wellRates (p_ad , bhp_ad) ;
172 % sum of w e l l r a t e s should equal t o t a l r a t e :
173 eqs { 2 } = qS_ad − sum(wel lRates (p_ad , bhp_ad)) / rhoS ;
174 % f i n a l equation i s prescr ibed bhp
175 eqs { 3 } = bhp_ad − 100* barsa ;
176

177 % concatenate equat ions and solve :
178 eq = c a t (eqs { : }) ;
179 J = eq . j a c { 1 } ; % Jacobian
180 re s = eq . val ; % r e s i d u a l
181 upd = −J \re s ; % Newton update
182 %update v a r i a b l e s
183 p_ad . val = p_ad . val + upd (pIx) ;
184 bhp_ad . val = bhp_ad . val + upd (bhpIx) ;
185 qS_ad . val = qS_ad . val + upd (qSIx) ;
186

187 resNorm = norm (re s) ;
188 n i t = n i t +1;
189 f p r i n t f (’ I t e r a t i o n %i \ t %e\n ’ , n i t , resNorm) ;
190 end
191

192 i f (n i t > maxits)
193 e r r o r (’Newton so lves did not converge ’)
194 e l s e
195 s o l (s tep + 1) . time = t ;
196 s o l (s tep + 1) . pressure = double (p_ad) ;
197 s o l (s tep + 1) . bhp = double (bhp_ad) ;
198 s o l (s tep + 1) . qS = double (qS_ad) ;
199 % p l o t evolut ion
200 f i g u r e (2) ;
201 subplot (2 , 1 , 1) ; c l a ; c a x i s ([1 2 0 2 0 5])
202 plotCel lData (G, convertTo (s o l (s tep + 1) . pressure , barsa) , ’ EdgeColor ’ , ’w’) ;

C.2. RESERVOIR SIMULATION SCRIPT 119

203 subplot (2 , 1 , 2) ;
204 p l o t (convertTo (s o l (s tep + 1) . time , day) , convertTo(− s o l (s tep + 1) . qS , meter^3/day) , ’ * ’) ;
205 drawnow
206 end
207 end

C.2 Reservoir Simulation Script

The file reservoir_sim.py simply runs a given grid model and checks the
relative errors compared to the same problem solved in MATLAB. This was
used to test that everything was correctly implemented. The file follows
below:

1 from reservoir_s im_1p import s o l v e r
2 from scipy . io import loadmat
3 import numpy as np
4

5 # Filename with data
6 f i lename = ’ data10 . mat ’
7

8 # Solve system
9 numSteps = 52

10 s o l = s o l v e r (fi lename , p r o f i l e =True)
11

12 # Get exac t s o l u t i o n
13 matlab_data = loadmat (fi lename , s t r u c t _ a s _ r e c o r d =True)
14 msol = matlab_data [’ s o l ’]
15

16 # Compare to exac t s o l u t i o n
17 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 # L i s t f o r holding e r r o r s
19 p _ e r r _ l i s t = []
20 b h p _ e r r _ l i s t = []
21 q S _ e r r _ l i s t = []
22

23 # Ca l c u l a te e r r o r s
24 f o r i in xrange (numSteps) :
25 # Get exac t values
26 p_exact = np . array ([entry [0] f o r entry in msol [i] [’ pressure ’] [0]])
27 bhp_exact = msol [i] [’bhp ’] [0] [0] [0]
28 qS_exact = msol [i] [’ qS ’] [0] [0] [0]
29

30 # Ca l c u l a te e r r o r s
31 p_err = (s o l [’ pressure ’] [i]−p_exact)/ p_exact
32 p_err_max = np . max(np . abs (p_err))
33 bhp_err = (s o l [’bhp ’] [i]−bhp_exact)/ bhp_exact
34 qS_err = (s o l [’ qS ’] [i]−qS_exact)/ qS_exact
35

36 # Append e r r o r s
37 p _ e r r _ l i s t . append (p_err_max)
38 b h p _ e r r _ l i s t . append (bhp_err)
39 q S _ e r r _ l i s t . append (qS_err)
40

41 # P r i n t e r r o r s
42 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−"
43 p r i n t " Pressure Errors : "

120 APPENDIX C. RESERVOIR SIMULATION CODE

44 p r i n t p _ e r r _ l i s t
45 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−"
46 p r i n t " bhp Errors : "
47 p r i n t b h p _ e r r _ l i s t
48 p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−"
49 p r i n t " qS Errors : "
50 p r i n t q S _ e r r _ l i s t

C.3 Reservoir Constants

The file reservoir_constants.py includes a series of constants used in the
reservoir simulation. The file follows below:

1 # Declare cons tants
2 m i l l i = 0 .001
3 c e n t i = 0 . 0 1
4 darcy = 9 .8692E−13
5 barsa = 1 . 0 E5
6 poise = 0 . 1
7 kilogram = 1 . 0
8 meter = 1 . 0
9 g = 9 .8066

10 day = 86400 .0

C.4 Reservoir Functions

The file reservoir_functions includes a series of functions used in the
reservoir simulation. The file follows below:

1 import numpy as np
2 import sys
3

4 # Create funct ion f o r matrix m u l t i p l i c a t i o n
5 def ADI_mat_mult (M, v) :
6 N = M. shape [0]
7 A = [0] *N
8

9 f o r i , j , val in zip (M. row ,M. col ,M. data) :
10 A[i] += v [j] * val
11 re turn np . array (A)
12

13 # Create funct ion f o r g e t t i n g vec tor of values from AD vector
14 def ge t_vec tor_va lues (ad_vec) :
15 va ls = []
16 f o r var in ad_vec :
17 va ls . append (var . val)
18 re turn np . array (va l s)
19

20 # Function f o r c a l c u l a t i n g the norm
21 def norm (a) :
22 re turn np . s q r t (np . sum(a * a))
23

24 # Function f o r c a l c u l a t i n g the poreVolume
25 def poreVolume (G, rock) :

C.4. RESERVOIR FUNCTIONS 121

26 re turn rock [’ poro ’] *G[’ c e l l s ’] [’ volumes ’]
27

28 # Function f o r c a l c u l a t i n g i n t e r i o r t r a n s m i s s i b i l i t i e s
29 def computeTrans (G, rock) :
30 # Get i n t e r i o r f a c e s
31 N = G[’ f a c e s ’] [’ neighbors ’]
32 i n t I n x = np . nonzero (np . prod (N, 1)) [0]
33 N = N[int Inx , :] −1
34

35 # Get c e l l c e n t r o i d s
36 Cc1 = G[’ c e l l s ’] [’ c e n t r o i d s ’] [N[: , 0] , :]
37 Cc2 = G[’ c e l l s ’] [’ c e n t r o i d s ’] [N[: , 1] , :]
38

39 # Get f a c e c e n t r o i d s
40 Fc = G[’ f a c e s ’] [’ c e n t r o i d s ’] [in t Inx , :]
41

42 # Ca l c u l a te v e c t o r s point ing from c e l l to f a c e c e n t r o i d s
43 c1 = Fc−Cc1
44 c2 = Fc−Cc2
45 cnorm1 = np . s q r t (np . sum(c1 * c1 , a x i s =1))
46 cnorm1 . shape = (N. shape [0])
47 cnorm2 = np . s q r t (np . sum(c2 * c2 , a x i s =1))
48 cnorm2 . shape = (N. shape [0])
49

50 # Get normal v e c t o r s
51 n = np . array (G[’ f a c e s ’] [’ normals ’] [in t Inx , :] , dtype= f l o a t)
52 nnorm = np . s q r t (np . sum(n*n , a x i s =1))
53 nnorm . shape = (N. shape [0] , 1)
54 n = n / nnorm
55

56 # Get c e l l p e r m e a b i l i t i e s
57 perm1 = rock [’perm ’] [N[: , 0]]
58 perm2 = rock [’perm ’] [N[: , 1]]
59

60 # Get f a c e areas
61 A = G[’ f a c e s ’] [’ areas ’] [i n t I n x]
62

63 # Ca l c u l a te hal f−f a c e t r a n s m i s s i b i l i t i e s
64 cn1 = np . sum(c1 *n , a x i s =1)
65 cn1 . shape = (N. shape [0])
66 cn2 = np . sum(−c2 *n , a x i s =1)
67 cn2 . shape = (N. shape [0])
68 Th1 = A* perm1 * cn1 /(cnorm1 * * 2)
69 Th2 = A* perm2 * cn2 /(cnorm2 * * 2)
70

71 # Take harmonic average to get 2−sided t r a n s m i s s i b i l i t i e s
72 T = 1 . 0 / ((1 . 0 / Th1) + (1 . 0 / Th2))
73 re turn T

122 APPENDIX C. RESERVOIR SIMULATION CODE

Bibliography

[1] Nose : Python testing framework. http://nose.readthedocs.org.
Accessed: 29-07-2014.

[2] Jørg E. Aarnes, Tore Gimse, and Knut-Andreas Lie. An introduction
to the numerics of flow in porous media using matlab. In Geir Hasle,
Knut-Andreas Lie, and Ewald Quak, editors, Geometric Modelling,
Numerical Simulation, and Optimization, pages 265–306. Springer Berlin
Heidelberg, 2007.

[3] Andreas Griewank, Jean Utke, and Andrea Walther. Evaluating higher
derivative tensors by forward propagation of univariate taylor series.
Math. Comput., 69(231):1117–1130, July 2000.

[4] Knut-Andreas Lie. An Introduction to Reservoir Simulation Using
MATLAB. SINTEF ICT, 2014.

[5] Knut–Andreas Lie, Stein Krogstad, Ingeborg Skjelkvåle Ligaarden,
Jostein Roald Natvig, Halvor Møll Nilsen, and Bård Skaflestad.
Open-source matlab implementation of consistent discretisations on
complex grids. Computational Geosciences, 16(2):297–322, 2012.

[6] Richard D. Neidinger. An efficient method for the numerical
evaluation of partial derivatives of arbitrary order. ACM Transactions
on Mathematical Software, 18(2):159–173, June 1992.

[7] Richard D. Neidinger. Directions for Computing Truncated Multivari-
ate Taylor Series. Mathematics of Computation, 74(249):321–340, May
2004.

[8] Richard D. Neidinger. Introduction to automatic differentiation and
matlab object-oriented programming. SIAM Review, 52(3):545–563,
August 2010.

[9] D.W. Peaceman. Interpretation of well-block pressures in numerical
reservoir simulation. Soc. Petrol. Eng. J., 18(3):183–194, 1978.

[10] Louis B. Rall. Automatic Differentiation : Techniques and Applications.
Springer Berlin Heidelberg, 1981.

[11] Eric W. Weisstein. Method of steepest descent. http://mathworld.
wolfram.com/MethodofSteepestDescent.html. Accessed: 03-05-2014.

123

124 BIBLIOGRAPHY

[12] Eric W. Weisstein. Newton’s method. http://mathworld.wolfram.
com/NewtonsMethod.html. Accessed: 23-05-2013.

[13] Eric W. Weisstein. Operations research. http://mathworld.wolfram.
com/OperationsResearch.html. Accessed: 29-04-2014.

[14] Eric W. Weisstein. Optimization theory. http://mathworld.wolfram.
com/OptimizationTheory.html. Accessed: 29-04-2014.

[15] R. E. Wengert. A simple automatic derivative evaluation program.
Commun. ACM, 7(8):463–464, August 1964.

