
Load Generation for
Investigating Game System
Scalability
from Demands to Tools

Stig Magnus Halvorsen
Master’s Thesis Autumn 2014

Load Generation for Investigating Game
System Scalability

Stig Magnus Halvorsen

June 26, 2014

“This book is dedicated to anyone and everyone who under-
stands that hacking and learning is a way to live your life, not
a day job or a semi-ordered list of instructions found in a thick
book.”

— Chris Anley, John Heasman, Felix “FX” Linder,
and Gerardo Richarte [2, p. v]

ii

Abstract

Video games have proven to be an interesting platform for computer
scientists, as many games demand the latest technology, fast response
times and effective utilization of hardware. Video games have been used
both as a topic of and a tool for computer science (CS). Finding the right
games to perform experiments on is however difficult. An important
reason is the lack of suitable games for research. Open source games
are attractive candidates as their availability and openness is crucial to
provide reproducible research. Because researchers lack access to source
code of commercial games, some create their own smaller prototype games
to test their ideas without performing tests in large-scale productions. This
decreases the practical applicability of their conclusion.

The first major contribution of the thesis is a comparative study of
available open source games. A survey shows a list of demands that can be
used to evaluate if a game is applicable for academic use. The study unveils
that no open source game projects of commercial quality are available. Still,
some open source games seem useful for research. These can be used for
the implementation, testing, and verification of scientific concepts. The
comparative study suggests that Doom 3, OpenArena (Quake III Arena), and
PlaneShift are some of the best candidates available as of today.

None of the suggested games are ideal for testing server or network
specific concepts, as none provides tools for simulating user-generated
load. This is needed to perform a load test on a server, to evaluate the
effect of the implemented concepts. Network traffic and system load can
be generated through the implementation of clients controlled by artificial
intelligence (AI) that simulates real players. They should produce real
network traffic and server load that is similar to traffic produced by a real
human player. These specialized clients are often referred to as virtual
clients.

The second major contribution of this thesis describes the process
of converting the open source video game Quake III Arena, into a user-
friendly load generation tool for investigating game system scalability. This
has been done through the implementation of virtual clients, providing
researches with an automated procedure to evaluate network and server
performance under various loads. The tool proves to both generate
authentic traffic and server load.

iii

iv

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Project Statement . 4
1.3 Outline . 4

II Background 7

2 Background 9
2.1 Defining Video Games . 9
2.2 Video Game Internals . 11

2.2.1 The Game Loop & Frames 13
2.2.2 Game Engines . 14

3 Games in Computer Science 19
3.1 The Early Ages of Video Games 19
3.2 Modern Research . 20

3.2.1 Educational Games . 21
3.2.2 Psychology . 21
3.2.3 Game Case Studies . 22
3.2.4 Algorithmic Development & Optimizations 22
3.2.5 Artificial Intelligence 23
3.2.6 Visual Interactive Simulations 26
3.2.7 Hardware Utilization 28
3.2.8 Networking . 29

3.3 The Need for an Open Load Generation Tool 32
3.3.1 Project Statement . 33

III Implementation 35

4 Finding an Appropriate Game 37
4.1 Establishing a Foothold . 37

4.1.1 Identifying Potential Games 37
4.1.2 The Evaluation Process 38
4.1.3 Evaluating Potential Games 40
4.1.4 Selecting a Game . 44

v

4.2 Architecture of Quake III Arena 46
4.2.1 ioquake3 Components 46
4.2.2 Client/Server Communications 47

5 Implementating Virtual Clients 49
5.1 Implementing Virtual Clients 49

5.1.1 Configuration Through Cvars 50
5.1.2 Shadow Server & Bot Initialization 51
5.1.3 Synchronization & Proxy Communication 54

5.2 Summary . 58

6 Installation & Usage 61
6.1 Installation . 61

6.1.1 Installing the Binary Data Files 61
6.1.2 Building ioquake3 with Virtual Clients 61

6.2 Usage . 62
6.2.1 Running ioquake3 with Virtual Clients 63
6.2.2 Shell Scripts for Easy Usage 63

IV Results 67

7 Results and Evaluation 69
7.1 Server Load Generation . 69
7.2 Virtual Client Resource Usage 71
7.3 Traffic Authenticity . 72
7.4 Discussion . 73

7.4.1 Survey on Video Game Features & Qualities 73
7.4.2 Open Source Game Evaluation 74
7.4.3 Virtual Client Implementation 74
7.4.4 Areas of Use . 76

V Conclusion 77

8 Conclusion 79
8.1 Contributions . 79
8.2 Games for Research . 80
8.3 Virtual Client Based Load Generation Tool 80
8.4 Further Work . 80

8.4.1 Game Research . 80
8.4.2 Improving the Virtual Clients 81

vi

List of Figures

2.1 UML activity diagram of an uncoupled single-threaded
game loop . 13

5.1 UML Sequence Diagram of the entire Virtual Client Procedure 59

7.1 Network Load on Server with 0-48 Connected Virtual Clients 70
7.2 Server CPU & Memory Utilization with 0-48 Connected

Virtual Clients . 71
7.3 Screenshots of the q3dm17 Map and Virtual Client Gameplay 72

vii

viii

List of Tables

3.1 Latency thresholds for various games. Copied from Clay-
pool & Claypool (2006) [11]. 22

4.1 Top Evaluated Game Features & Qualities 38
4.2 Evaluated Open Source Games 40
4.3 Game Components of the ioquake3 Engine 46

6.1 Description of implemented cvars to control the virtual clients. 63

7.1 Various Client Types and their System Load 71

ix

x

Preface

I will like to thank my supervisors, Kjetil Raaen & Carsten “Griff” Griwodz,
for their supervision. This work could not have been done without
their invaluable will for sharing their knowledge, their strict demands for
academic perfection, and their interest in my work and me. It has been a
true honor to work with you both!

Special thanks goes to all my colleagues at the NITH, soon to be the
technology department of Westerdals Oslo ACT. You considered me a talent
and I was requited for your Master’s candidate internship. You provided
me the currently best job I have had with my own desk, equipment, tons
of coffee, all I need for my degree, and friends for life. My colleagues are
some of the most talented and friendly people I have ever met, who have
together with my position probably taught me more than all the classes I
had during the degree. I wish you all the best, and urge you to continue
with your Master’s candidate internships.

Thanks to Simula Research Laboratory for allowing me to steal the time of
their legendary Griff, and for providing me with my own desk, free lunch,
and even more tons of coffee. The researchers at Simula are some of the
most knowledgeable computer scientists I have ever met, and I am grateful
for the ones who involved with my degree.

I am also grateful for the interesting classes and opportunities at the
University of Oslo. Special thanks goes to my co-students that improved
my learning outcome and kept me motivated; Khiem-Kim Ho Xuan,
Georgios Patounas, Eva Andritsopoulou, Thiseas Mengos, Jan Anders
Bremer, Kristian Skarseth, Peder Thorup, Erik Thune Lund, Endri Hysenaj
and Kristian Hiorth.

Thanks to my family and friends who is always there for me. To my
mother, Sølvi Halvorsen, you taught me how to prioritize and focus. To my
father, Sverre M. Halvorsen, you taught me to never give up when facing
demanding challenges. To my sister, Silje E. Arlund, and her family, who
reminds me that life is more than work. To my girlfriend, Maria N. Baugstø,
you remind me to stay human. To Martin Nordal, for all the laughs and the
introduction to computer science. I would also like to thank Oslo Sipalki
Klubb and my dog, Nemi, for spicing up life.

I would also like to thank the OpenArena community who helped me
understand the ioquaake3 engine and OpenArena’s project structure. For
those that have not been mentioned but that are a part of my life, I am
truly grateful for your contributions as well. I would never have made it
this far without you. We are all individuals, but it is the ones next to you
that mold you.

xi

xii

Part I

Introduction

1

Chapter 1

Introduction

This thesis describes the modification of an existing open source game
into a server and network load generation tool, which can be utilized
by scientists to test their concepts in a large-scale system. This chapter
explains the motivation behind the thesis, presents the project statement,
and provides an overview of the thesis’ various topics.

1.1 Motivation

Decades have passed by since the first commercially produced and
published video game was released, giving birth to the video game
industry. Since then, both the popularity and demand for video games has
exploded with an insatiable audience demanding more content and more
technically advanced features for every major release. This has resulted
in one of the world’s toughest industries with high development costs and
high risks for failure. The industry is thus a technology promoter that keeps
pushing hardware and software to the limit in order to satisfy the ever-
demanding market. It is the demanding nature of video games that makes
them interesting for scientists, both as tool for research (such as Petlund et
al. [48], Raaen et al. [50]), as well a topic of research (such as Claypool &
Claypool [12], Eisert [46], Waveren [73]).

In Halvorsen and Raaen (2014)[29] we describe how computer scientists
with interest in video games need a freely available and open source video
game of similar quality to a modern, commercial game. Unfortunately,
there are currently no such open source games available. However,
some older open source games exist that may fulfill the needs of many
researchers, and these will often be better alternatives than small project
specific prototypes. Identifying these games is however difficult as it
requires a set of defined requirements and qualities to evaluate if a game is
applicable for academic research.

Finding a potential game for research is usually not enough. Research
such as Raaen et al (2012)[50] and Petlund et al (2008)[48] requires support
for virtual clients; AI controlled clients that produce network traffic in
the same manner as a real player. This is needed to automatically
generate network and server load, enabling the researchers to test their

3

implementations without real players. An open source game with
implemented support for virtual clients is thus an ideal tool for such
research.

1.2 Project Statement

This thesis aims at identifying modern open source games that are
representative of commercial games. Open source games will be evaluated
against a specific list of features and qualities that are considered common
requirements by computer scientists. The list is developed by evaluating
data from a quantitative survey aimed at computer scientists.

Open source games shall be evaluated against the feature list to identify
an ideal candidate for implementing support for virtual clients. This
converts the selected game into a user-friendly load-generating tool.

1.3 Outline

The thesis is divided into the following chapters, each briefly described
below.

You are currently reading the first chapter, which introduces the thesis.
The chapter explains the motivation, presents the project statement, and
provides an overview of the various topics discussed within the thesis.

The second chapter is located in section 2 on page 9, and provides
thorough background information on the concept of video games and how
they work. Game engines are presented, and guidelines are given for
developing and maintaining high quality game engines.

Chapter three in section 3 on page 19 starts by giving a brief history
of video games and its earlier use in computer science. It moves on
to discuss the usage of video games in modern computer science, and
provides research-based examples for the most common topics. The
chapter concludes by evaluating how the existing research would benefit
from an open source load generation tool, which narrows down to a
thorough explanation of the project statement.

The fourth chapter aims at identifying suitable games for computer
science, and is found in section 4 on page 37. An online survey was
distributed among computer scientists and evaluated in order to produce a
list of requirements and qualities to identify games applicable for research.
Examples on how to use this list is provided and three games are identified
as potential games for academic work. Quake III Arena is presented as
an acceptable candidate for the virtual client implementation, and a brief
technical overview of its engine is provided.

All technical details of the actual virtual client implementation in Quake
III Arena are covered in chapter five, section 5 on page 49. It explains how a
proxy-like solution solved problems of high complexity, and provides code
samples with explanations for the most critical parts of the implementation.

Chapter six in section 6 on page 61 explains how to install and use the
virtual client feature of Quake III Arena as a tool for network and server

4

load generation. It presents technical documentation on how to retrieve
and build the source code, and run the compiled game. Several provided
shell script files are also presented and examples illustrate how to use them
for load generation.

The seventh chapter presents and discusses the measurements of
gathered data from the virtual client implementation in Quake III Arena,
located in section 7 on page 69. It evaluates both the developed load
generation tool and the identification procedure of games for research.
Both positive and negative aspects are considered in the evaluation.

Chapter eight in section 8 on page 79 concludes the entire thesis by
summarizing its contributions and evaluation results. Opportunities for
future works are presented, and may be used in further research on games
and load generation tools for research.

5

6

Part II

Background

7

Chapter 2

Background

This chapter aims at providing a detailed explanation on the need for
virtual clients in an open source game such as Quake III Arena. It provides
an in-depth description of video games, explains their use in computer
science, and gives an overview of modern challenges of video game
research. The content is built upon existing research and literature to ensure
correct definitions and credible arguments in its discussions.

2.1 Defining Video Games

game1 /geim/ n 1 [C] (a) form of play or sport with rules:
popular children’s games ◦ a game of chance/skill. (b) instance of
this: to play a game of chess, football, hide-and-seek, etc ◦ Let’s have a
game of snooker.

— A S Hornby [31, p. 507]

Oxford Advanced Learner’s Dictionary of Current English (1989)[31] defines
the term game as a form of rule-defined sport or play. More specific
examples are provided, where most describe a rule-defined activity or
process with human participants. You will probably find similar definitions
in other dictionaries and most literature, but very few mention the
requirement of fun [36].

Looking up “game” in the dictionary isn’t that helpful. Once
you leave out the definitions of referring to hunting, they
wander all over the place. Pastimes or amusements are lumped
in with contests. Interestingly, none of the definitions tend to
assume that fun is a requirement: amusement or entertainment
at best is required.

— Raph Koster [36, p. 12]

Raph Koster developed a definition of games in his well-recognized
book entitled A Theory of Fun for Game Design (2005)[36]. He states that

9

games are perceived as fun because they educate the player through
practical challenges, which is an approach that applies to all humans. Most
games can be considered interactive experiences consisting of sequence
patterns with continuously increasing difficulty. It means that games
provide a continuous series of challenges that the player learns to master.
The player learns the patterns, and is hence educated by the game. Games
can therefore be considered interactive educators [36].

Games are puzzles to solve, just like everything else we
encounter in life. They are on the same order as learning
to drive a car, or picking up the mandolin, or learning your
multiplication tables. We learn the underlying patterns, grok
them fully, and file them away so that they can be rerun as
needed. The only real difference between games and reality is
that the stakes are lower with games.

— Raph Koster [36, p. 34]

Games could hence be defined as fun interactive rule-defined educa-
tional experiences that involve human actors (players). This is also true for
most video games, adding electronic processing as a requirement. Finding
a generalizable definition of the term is not much easier, but one may con-
sider looking it up in a dictionary. The old Oxford dictionary does not list
video games as a superset of games but provides a brief separate entry for
video game that describes a them as PC powered games generating player
controlled images on a TV [31]. This is a quite restrictive definition, as it
demands the use of a PC, TV, and images as output. A better description
can be found in Jason Gregory’s book entitled Game Engine Architecture:

In academia we sometimes speak of “game theory,” in which
multiple agents select strategies and tactics in order to maxi-
mize their gains within the framework of a well-defined set of
game rules. When used in the context of console or computer-
based entertainment, the word “game” usually conjures images
of a three-dimensional virtual world featuring a humanoid, an-
imal, or vehicle as the main character under control.

— Jason Gregory (2009)[25, p. 8]

J. Gregory also states that most computer scientists will not use the
video game term, but rather soft real-time interactive agent-based computer
simulations [25]. This terminology is discussed further in the next section.
However, looking at modern research reveals that the terms computer
game [46], online games [48], and even just game [44, 50] have become
accepted terms in the computer scientific academia.

For simplicity, all uses of the terms video game, computer game, game,
and the more complex previously discussed term are in thesis considered a
reference to interactive software, with two- or three-dimensional graphical

10

environment as primary output. Also, this work concerns software, and
assumes that the necessary hardware, drivers, and external resources such
as network all are in place and properly working for the various features to
be fully functional. Video game internals and components are therefore
considered terms describing the various software systems that define a
video game.

2.2 Video Game Internals

The previous section discussed the formal definition and the generic
description of a video game. This section aims at describing the more
technical aspects. Video games are as mentioned, interactive software,
but what separates them from other software? Gregory’s [25] academic
definition provides an answer, and a detailed explanation can be found by
reverse-dissecting it:

Most two- and three-dimensional video games are examples
of what computer scientists would call soft real-time interactive
agent-based computer simulations.

— Jason Gregory [25, p. 9]

Every video game that presents the player with a two- or three-
dimensional graphical display is considered a simulation, as it attempts
to simulate either a real or fictional scenario. The simulation can be as
simple as a text based cave (e.g.: Colossal Cave Adventure, Dungeon Crawl,
or Rouge), a 2D simulation of a card game (e.g.: Windows Solitaire), or as
complex as a close to real-life simulation of a city (e.g.: Battlefield 4 or Unreal
Engine 4). Pure audio-only games may also be simulations as they can use
audio-based techniques to simulate an environment. In general, a video
game needs an internal mechanism to perform simulations, whether it’s
three-dimensional sound, three-dimensional graphics, or another creative
media of expression. This work considers mainly visual output. Video
games use calculations to generate and project a two-dimensional image
consisting of pixel data onto the monitor. This process is known as
rendering, and modern video games utilize third-party code libraries for
rendering. Two popular libraries are OpenGL and DirectX [69] that utilize
dedicated graphics processing unit (GPU) to concurrently perform the
heavy graphical computations.

Video games are naturally computer based, as they are made to run on
digital computer architectures. It may be your custom PC, a dedicated
game console (PlayStation, XBox, etc.), a server in a cloud-cluster, or
other forms of dedicated gaming hardware. These games are in other
words completely dependent of digital processing. Some video games are
available in executable form for multiple operating systems (OS) and CPU
architectures.

Agent-based refer to the academic term agent, which is used to describe
an individual participant in artificial intelligence (AI). A game needs

11

participants, or players, to be a game. Every participant, including both
human controlled and computer AI controlled entities are considered
agents. An agent is thus an intelligent in-game entity that exists within
the simulated world.

Games are interactive software allowing the agent to dynamically
alter the software’s state (game state) by implementing mechanisms for
interaction. This includes capturing user input (e.g.: player keyboard
input), and the agents’ abilities to interact with each other and the world
they reside in. An AI controlled agent may decide to trigger an in-game
button that opens a door, hence affecting the game’s state.

A requirement of interactivity is real-time processing. An in-game
interaction occurs, the software processes the interaction and outputs an
audio-visual result. In terms of a game, the result is often considered
the final simulation output. You press the fire button and the result is
a shooting animation, audio playback, and the creation of a new visual
entity; a projectile. All needs to occur close to real-time. The alternative is
pre-calculated simulations, where interaction is more or less impossible. It
would in other words be more like a video, where the output is the same
every time you run it.

The real-time requirement introduces deadlines in terms of human
perception. Most games and interactive software attempts to be perceived
as running in real-time while they are actually not. Every update in
a game requires some time-consuming processing, which is usually too
fast for humans to notice. The real-time illusion is reduced or destroyed
when humans notice the processing delay, indicating that the real-time
deadlines are not met. Missed deadlines are usually caused by hardware
or network. Complex games running on hardware with insufficient
processing capability will cause missed deadlines. Multiple missed
deadlines will reduce the real-time experience because output is generated
at a too low rate.

High network latency is another cause of missed deadlines. Latency is
the delay between an action and a response, and is often in the context of
online games considered the time it takes for an action to be transmitted,
processed, and acknowledged by the recipient. Game sessions with high
latency will lead to missed deadlines in terms of lost or delayed network
packets. This makes the game unable to project remotely controlled actions
within the real-time requirement, potentially leading to unexpected game-
dependent artifacts that reduce the player’s experience.

The two types of missed deadlines are completely different, but both
produce situations that players often refer as lag. Lagging gameplay
does not necessarily ruin the experience because they may be of little
significance, compensated by the engine, or only affect few clients of an
online game session. This implies that video games have soft deadlines, as
there are no catastrophic results if a deadline is not met [25].

In summary from an academic perspective: Video games are computer
processed interactive simulation software with soft deadlines, which are
dynamic through the integrated support for intelligent agent interactions.

12

2.2.1 The Game Loop & Frames

There is unfortunately very little scientific literature available covering the
core mechanics and theory behind video games. Fortunately, Gregory’s
academic definition implicitly reveals the core technical requirements. A
video game will need to process agent interactions according to the game’s
rules, which update the game’s state and requires it to re-generate its
resulting simulation. This needs to be done over and over in order to
give a realistic real-time experience, and it continues until the software is
terminated. This loop has come to be known as the game loop, and every
single game implements it in one way or another.

Initialize

[game over]

[else]

Calculate
elapsed time = t

Read player
input

Update(t)

Render

<<loop>>
Game loop

Figure 2.1: UML activity dia-
gram of an uncoupled single-
threaded game loop

A single iteration of the game loop,
from the first instruction to a complete ren-
dered image, is known as a game frame. A
game loop’s performance can be measured
in the unit frames per second (FPS), where
the higher is better. It is a term used to
describe the performance of a game and
can be used as a benchmarking unit. Good
games should have aim at a frame-rate of
50-60 FPS, giving one iteration 1/60 of a
second to complete. Even the simplest user
actions require a couple of frames, so a
high frame-rate is needed to preserve the
real-time illusion with high responsiveness
and smooth rendering. Hovering an in-
game button will for instance need to ren-
der multiple cursor transitions and a fi-
nal hovering effect. Not all games are fast
enough for 60 FPS, so they often adjust
their frame-rate to 30 FPS as a solution [1].

Valente, Conci, and Feijó’s (2005)[72]
research on real-time game loops for single
player games states that there is difficult
to find good literature on the topic. Most
commercial developers do not reveal their
implementations, and there is very little
academic work available. They provide an
evaluation of known game loop models,
and present a framework that accounts
for real-time requirement issues. The models will not be presented in
detail, but they all consist of the same tasks defining a game loop; read
player input, update the game’s state and entities, update the output
(render a new frame). The better models also include some sort of
synchronization step to make the game run at the same frame-rate on
different hardware [72]. Figure 2.1 illustrates a simple game loop, which is
an UML adaption of Valente et al’s uncoupled single-threaded model[72].

One of the heaviest tasks of a modern game is the graphics processing.

13

Most, if not all, modern computers are built with dedicated hardware made
for processing graphics. They are known as graphical processing units (GPU),
and are meant as a parallel co-processor to the central processing unit
(CPU). It allows the CPU to perform heavy game logic computations while
the GPU processes graphics. Graphics processing and generation of visual
output in games is known as rendering, and the specialized code responsible
for the output is often referred to as the renderer.

The real-time frame-rate requirement makes video games demanding
pieces of software, especially the newest state-of-the-art games that attempt
to fully utilize all available modern hardware. Games may generate
heavy load on a system where simple modifications can yield significant
performance differences. They are hence good testing platforms where
researchers can measure the effects of algorithmic changes and conceptual
implementations in both software and hardware.

2.2.2 Game Engines

The term Game engine is widely used, yet lacks any official or generally
agreed definition [25, 69]. It may be because it should be considered an idea
rather than a well-defined term [69], even though the game industry [62]
and academia [21, 44, 50] both have embraced it. The term is usually used
to describe a software system for video game development that handles
most, if not all, of the complex sub-systems behind a functional game. A
complete engine can be considered a large software framework providing
an abstraction layer of complex or system dependent tasks, which allow
developers to focus entirely on gameplay and content development. This
section aims at describing the background of game engines, why they are
useful, and to identify common features of high quality engines.

The term originates from the middle of the 1990s, and came to life
together with the release of id Software’s first-person shooter game; Doom
[25]. It was a reference to the game’s well-designed software architecture,
a highly modular implementation that made a clear separation of the
software’s different components. id Software used this to their advantage
and made the gameplay components of the software publicly available
(open source), allowing anyone to create custom modifications (mods) of
their game without revealing the engine’s inner mechanics. It became the
birth of the modding community [25]. id Software continued this trend
for all their following releases, and they have publicly released the entire
codebase of most of their major games.

Doom’s architecture clearly separates the game’s individual compo-
nents and its core mechanics (kernel). It allows developers to implement
gameplay specific functionality (game rules) as an independent component
rather than a hard-coded part of the kernel. This makes the engine signif-
icantly more dynamic, allowing one to modify the game or create novel
gameplay without the need to access the core functionalities. The engine
has hence a data-driven architecture where the gameplay component uti-
lizes the game’s kernel mechanics to independently control the software’s
output [25].

14

The kernel is the foundation that binds all the components together
and provides them with a cross-component communication channel. It
is often the kernel that is referred to when talking about a specific
game’s engine. The kernel alone does not make a game, but works
more like a framework or an application programming interface (API) for its
components. Gameplay is typically implemented in a separate component,
which utilizes the kernel to create functionality that defines the game’s
rules. Most games also require dynamic game content (3D models, audio
files, scripts, etc.) to combine and produce the final audio-visual output.
These are often binary files or text files that are difficult to interpret
with the naked eye. This implies the need for specialized game content
development tools, which often are provided with an engine. Therefore,
a complete game engine often refers to a larger software suite consisting
of the kernel, engine compliant game development tools, and examples of
gameplay components that utilize the kernel and game content. Content
development tools, such as level editors, scripting tools, etc., are used to
produce game content. The tools usually provide user-friendly interfaces
for creating and editing game content, enabling people with limited
technical capabilities to work on content creation [69].

There are however no rules defining what separates a game’s engine
from its content, this combined with the vague term allows potentially
even the simplest video games to be considered a game engine. Both
Gregory [25] and Thorn [69] propose the same solution by adding the
requirement of re-usability. A hard-coded game that typically consists of
special-case code is not a game engine as it is difficult, or even impossible
to re-use for the creation of new games. True game engines are on
the other hand highly re-usable software development kits which allows
the developers create almost any game possible and to focus on content
production [25]. Thorn presents a simple test to evaluate game software as
an engine or not:

Presented with any library or software, such as DirectX or
OpenGL, the developer can proceed to ask, “Can I make a game
with this and only this?”; if the answer to that question is in the
affirmative, then it either is or can be used as a game engine. It is
not enough to show that only in combination with other tools
could it make games. The software as it is must be capable of
producing games on its own merits to be considered a game
engine.

— Alan Thorn [69, pp. 16-17]

Thorn also identifies the qualities and expected features of the common
well-designed game engines. A good engine separates its functionality into
different components, all responsible for a sub-system of the engine. Thorn
suggests that the following components are common requirements for most
games and should thus be present in a re-usable engine:

• Resource manager (file system)

15

• Render manager (graphics out)
• Input manager (user input)
• Audio manager (audio playback)
• Error manager (crash catcher)
• Scene manager (coordinate system)
• Physics manager
• Script manager

Each component is responsible for one specific task and nothing more.
This makes the entire engine a layered architecture, where the engine is
at top delegating tasks through the managers, which again might utilize
third party libraries [69]. The architecture provides opportunities for good
software design through high cohesion and low coupling.

The kernel defines the remaining functionality of the engine. It is
required to initialize the various components, run the game loop, and to
provide an interface for the game content, binding the various engine
components together. Components should know as little about each
other as possible, following the design principle of loose coupling. This
enables the components to be modular, ideally allowing a component
to be modified, added, replaced, or even removed without affecting
other components or the kernel. Modularity can be achieved through
the implementation of an abstract communication model between the
components. The abstract approach enables the components to indirectly
utilize each-other. An example is to provide the various components with
an abstract interface for performing render calls, allowing the developers
to replace the entire render manager without touching any other part of
the engine. Adding an indirect communication route through the kernel
can ensure this, where the kernel maps component specific functionality to
specific kernel calls. A component may then perform a kernel call to trigger
functionality residing within another component. This gives additional
overhead compared to having components that directly address each other,
but is more dynamic.

To ensure the proposed qualities and an efficient engine, Thorn
suggests designing and implementing game engines by following the
principles of Recyclability, Abstractness, Modularity, and Simplicity (RAMS).
It should provide Recyclability in the terms of reusing available resources.
An example is that multiple instances of an entity in the game can
share the same memory for the same properties, instead of having
duplicates in memory. This can potentially enhance performance without
utilizing additional resources. An engine should provide Abstractness and
Modularity as explained with the engine components. And finally, provide
Simplicity through keeping things as simple as possible, also in the terms of
components: as few as possible [69].

All of Thorn’s principles support Gregory’s game engine definition, and
they both share the same vision of a well implemented game engine: A
modular and dynamic piece of software which can be used to develop
a vast variety of different games. An abstract engine architecture that
is designed as a framework or API can be utilized to achieve such

16

modularity [25, 69]. In the end, good game engine design is all about good
system design.

17

18

Chapter 3

Games in Computer Science

3.1 The Early Ages of Video Games

There is no known documentation proving the very first interactive digital
game created, but it was probably developed some time between 1940
and 1951 as it was the first decades of digital computers. The reason is
the vague definition of the term, and because available technology could
allow undocumented electronic games to be developed as hobby projects
and outside of academia. One may claim that a specific game is the first,
but it can’t be proved, as it is impossible to know if someone developed
something earlier that may be categorized as a video game.

The earliest know and well-documented electronic game is believed
to be Thomas T. Goldsmith Jr. and Estle Ray Mann’s game, patented as
“Cathode-ray tube amusement device” - US patent US2455992A [24]. A
purely hardware (electronics) game, made for fun and science. It allowed
the player to control a missile on a World War 2 inspired radar display. The
goal was to shoot down simulated planes within a specific amount of time
[24].

The very first proper digital video games appeared in the early
nineteen-fifties and were developed by some of the first computer scientist
as tools for topics within computer science, such as artificial intelligence
(AI). Alexander Shafto "Sandy" Douglas was a professor in computer
science whom created the earliest known digital video game that displayed
graphics on a monitor. It was called “OXO”, a tic-tac-toe game developed as
a part of his PhD thesis [76]. Inspired by known games of play, the digital
video game was born as a child of CS.

Video game development remained within the field of computer
science and as university hobby projects and experiments until the
commercialization and birth of the video game industry in the 1970s. It
marked the birth of the first arcade game, Pong, and the first successful home
console. The games were not that complex at the time, and were usually
developed by a single person. Games were still developed by scientists
during these years, but it marked the beginning of the important separation
of games for science and business.

University hobby projects blossomed during the decade and university

19

mainframe computers were often used for video game development. The
1980s was the golden age of arcade games while the console market almost
died, but it was saved by Nintendo’s NES in 1985. The 1990s was a decade
of innovation within the industry that led to the huge multi-million dollar
game industry we have today. It made 3D graphics the standard and
released home consoles so powerful that the arcade industry eventually
died [43].

Since then, both the popularity and demand for video games has
exploded with an insatiable audience demanding more content and more
technically advanced features for every major video game release. It has
resulted in one of the world’s toughest industries with high development
costs and high risks for failure. The industry is thus a technology promoter
that keeps pushing hardware and software to the limit in order to satisfy
the ever-demanding market. Something that is still true today, and will
probably continue to grow together with future advances in CS. It is
likely that the development time and costs of a single modern video game
bypassed the resource capabilities of most CS projects already in the early
1990s.

There has always been a difference with the primary purpose of game
development in the commercial industry and academia. The game industry
is all about making money by publishing games that keeps satisfying the
ever-demanding market. Modern scientists use video games as a tool in
their research (such as Petlund et al. [48], Raaen et al. [50]), as well a topic
of research (such as Claypool & Claypool [12], Eisert [46], Waveren [73]).

Game developers prioritize rapid creation of content and the imple-
mentation of a large system, while the computer scientists prioritize in-
vestigating and researching individual components of the larger system.
Scientists do not have the resources to develop a complete video game of
commercial quality, while game developers rarely publish any results of
their development and research. This indicates that cooperation between
the industry and the researchers is beneficial. The industry can provide
scientists with the source of state-of-the-art commercial games, which they
can use in their research. The research will likely provide beneficial solu-
tions for the games, which can be shared with the industry to improve their
future releases.

3.2 Modern Research

The history of video games reveals that the primary goal of the very first
scientifically developed games was the development of the game itself.
It was to prove that they were capable of utilizing modern technology
to create an interactive entertaining experience that illustrated concepts
of human-computer interaction [76]. Looking at more modern research
illustrates that games have become a topic and tool for research, rather than
the goal.

Games have proven to be useful tools for a range of various sub-topics
within CS, as well as educational research, and even human psychology.

20

Other game-utilizing scientific topics are; game case studies, algorithm
efficiency, 3D data simulations, artificial intelligence, hardware utilization,
and computer networks. Little research is available on the use of games in
CS [29], which probably makes it impossible to cover all specific usages of
video games in research. However, this section aims at covering the most
common and relevant uses for this thesis, all by looking at existing research.

3.2.1 Educational Games

In educational research, games are studied as potential learning platforms
and educators. A game is scientifically either modified or developed to
exploit its element of fun to convey a specific curriculum. Something
that goes hand in hand with Koster’s theory of games as entertaining
educators [36] A recent example of this is a game called CodeSpells,
developed at the university of California, San Diego. The game simulates a
world with gnomes that have lost their magic abilities where the player, a
wizard, shall help them regaining their powers by writing spells in the Java
programming language. User tests of the game shows that several children
managed to learn many of the fundamental concepts of Java only within an
hour of play [45].

Another example is Kahoot!, a digital social classroom game which
works like a game show. A user-friendly backend is used by the lecturer
or teacher to assemble a collection of questions. The questions can then
be presented in class through the Kahoot! framework. Participants reply
to the questions through their own digital device, and the final results are
displayed for the class. This combination of competitive gameplay and
student interaction is believed to increase the students’ overall learning
outcome. Kahoot! is created and maintained by professor Alf Inge Wang
at the Norwegian university of science and technology (NTNU) [63].

3.2.2 Psychology

As explained in section 2.2, video games are illusions of real-time
worlds making them interesting platforms for interdisciplinary research
of psychology and CS. This primary concerns the human perception of
quality, where psychology may be used to find requirements or upper
boundaries in order for a game’s components to be credible. This research
covers topics as frame rate and latency sensitivity, game AI credibility,
and the quality of experience (QoE). An example is the previously
discussed requirement of a 60 FPS game loop, which ensures the real-time
requirement of a game system.

Mark Claypool and Kajal Claypool are two computer scientist that have
made several publications within this topic, investigating network latency
in various types of games [11, 12]. They have built latency test-beds
with real human players where they use middleware to adjust the latency
of a game and study the effect player’s performance. Several of their
findings are summarized in their publication entitled Latency and player
actions in online games (2006)[11]. Their results show that games with a

21

Model Perspective Example
Genres

Sensitivity Treshold

Avatar First-person FPS, Racing High 100ms
Third-person Sports, RPG Medium 500ms

Omnipresent Varies RTS, Sim Low 1000ms

Table 3.1: Latency thresholds for various games. Copied from Claypool &
Claypool (2006) [11].

single user controlled avatar (entity) are the most sensitive with a latency
threshold of 100-500ms, while games with multiple controllable avatars
have a threshold of 1s. High-paced action games, such as first-person
shooter and racing games, are the most latency-intolerant. This is not
a surprise as they are games requiring a high update frequency to be
perceived as running in real-time. Details of their findings are available
in table 3.1 [11].

3.2.3 Game Case Studies

A game case study is the investigation of an existing game in an attempt
to learn and document some specific functionality. It may reveal smart
solutions to how features have been implemented which the researchers
can use to their advantage. They may find smart and efficient solutions
that can be used to solve problems in their own research. Alternatively
it can be for the sole purpose of documentation in order to learn how to
work with the game. An example is Quake III Arena game structures by D.
Stefyn, A.L. Cricenti, and P.A. Branch (2011)[21] where they analyzed the
source code of Q3A to document its network communication system and
data structures.

Fabien Sanglard has published many technical reviews of various video
games, including Q3A. They are all available for free on his personal
website and all highlights creative and excellent solutions in the various
games [56]. The reviews are not academically presented, but are good game
case studies.

A larger part of this thesis may also be categorized as a game case study,
as I had to gain deep knowledge of the ioquake3 (idTech 3) engine in order
to be able to perform the implementation of virtual clients.

3.2.4 Algorithmic Development & Optimizations

As discussed in 2.2.1, video games are software that continuously performs
heavy calculations that need to be performed fast to reach their real-time
deadlines. This makes games a well-suited target for optimization and
algorithmic development. Modifications to a time consuming function
in a game can yield significant performance differences. Algorithmic
optimization was formerly a hot topic within graph traversal for pathfinding
(see section 3.2.5) in artificial intelligence (AI). Several topics of AI apply

22

to both games and robotics [34], but games are usually the cheapest, thus
being good development and testing tools.

An example is Peter K. K. Loh’s and Edmond C. Prakash’s (2009)[39]
publication on Performance Simulation of Moving Target Search Algorithms
where they utilize a small prototype maze game to compare existing
moving target search (MTS) algorithms with a newly developed abstraction
MTS algorithm. It turns out that abstraction MTS is performance-vise
competitive and scales better than the other algorithms [39].

3.2.5 Artificial Intelligence

AI is a cross-disciplinary field that applies to games and academic research.
The concept is however the same, which is to make computers capable of
thinking and to make their own intelligent decisions based on available
data [42]. This section will only scratch the surface of game AI, as it is
not the primary topic. AI research can be specifically aimed at games, but
games can also, as previously mentioned, be a cheap substitute for robots.
The primary difference of game AI compared to the other disciplines
is the ability to fake intelligence, as it only needs to be perceived as
intelligent. Adding more AI to a game than needed can actually have
negative effects [42]. Other AI disciplines require the AI to be as good as it
can be, because one can’t fake intelligence in true AI.

Terms of AI

Games simulate worlds of virtual objects such as rooms, walls, characters,
weapons, projectiles, etc. These objects are often referred to as entities,
a term used to describe every virtual object that intelligent entities can
interact with, including themself. The proper AI term for these intelligent
entities is agent and includes both human and AI controlled entities. AI
controlled entities can also be separated from the human entities with
the terms bot (AI) and player (human). A bot is an abbreviation of robot,
which makes sense, as they are computer-controlled entities just as real-life
robots. Some of the most common topics within game AI are decision-
making (finite state machines & decision trees), movement (steering &
pathfinding), and machine learning.

Decision-making

Also known as agent reasoning, is all about making the agents understand
the rules of the game in order to make decisions which is best for them in
their given situation. A bot in Q3A should for instance know that it is wise
to locate a gun and ammunition before it decides to fight an opponent. The
bot retrieves some information as input, and outputs a game action. The
input should provide the same information as a real human player would
get, including the state of the game, possible actions and their outcome,
visible entities, team mates, health, map triggers (e.g.: jump pads, door
switches), etc [42]. It is thus important that engines should provide an

23

easy interface for adding bot information in the level editor and other game
tools.

As for the output, the bot will need a decision-making system to find
the best action based on the available data. Most common in games are
the implementation of state machines and decision trees. Neural networks may
also be used for decision-making, but they are usually avoided due to their
high complexity that makes them hard to get right.

State machines are good for situation dependent dynamic agent
behavior. A typical implementation allows each bot to only have one
active state at a time, which can be changed through transitions. Each state
performs its state-specific action and evaluates the current state of the agent
and its surroundings. The result decides whether it should transit to a new
state or not. This specific type of state machine is known as a Finite State
Machine (FSM), as there are a finite number of states available [42]. The
following is a simplified example of a bot in Q3A. The bot’s initial state can
typically be hoarding, where it needs to gather weapons, ammunition, and
body armor. If the hoarding state notices that the bot is combat ready it
will transit into seek state, where it navigates through the world looking for
enemies. The FSM will ensure that the bot continues to perform rational
decisions until the game session ends.

A decision tree is an attempt to organize knowledge (the input) to create
proper corresponding actions. It is a binary tree implementation with a
root node that checks whether a given condition from the input is met.
The binary result moves on to the corresponding child node that evaluates
another condition, and continues to traverse the tree until it reaches a leaf
node. Each leaf node decides a final action [42].

Decision making in Q3A is implemented through a network based
FSM which utilizes fuzzy logic to make transitions. Fuzzy logic uses a
weight, a numeric interval (e.g.: 0-100), where fuzzy values are evaluated in
comparison to each other and the heaviest weighted value is selected. The
actions within each state are handled in a decision tree like manner [73].

An example of decision-making in research is A. Braun’s, B. E. J.
Bodmann’s, and S. R. Musse’s publication Simulating virtual crowds in
emergency situations (2008)[7]. They developed a game-influenced data
driven system to simulate the behavior of crowds in emergency situation,
utilizing FSM with psychological factors to trigger transitions.

Movement & Pathfinding

Movement & pathfinding is about the AI required to navigate and steer
through an (virtual) environment. It requires that the bot has geometrical
information about itself and the environment, which enables it to move
naturally through the environment. Pathfinding, also known as path
planning, is a term closely associated with movement. It is the use and
development of algorithms that evaluate and finds available paths in
a graph-defined environment, which has several advantages compared
to fixed routes. The primary one is the support for dynamic routes,
which adds support for re-routing around obstacles and broken paths.

24

It also provides automatic movement support in new engine-compliant
maps. Secondly the bots become more realistic because they adapt to their
surroundings and won’t necessarily always pick the same routes.

There are several known pathfinding algorithms, but the most common
are A* (pronounced a star) and Dijkstra’s algorithms. They are both
graph traversing algorithms and are thus not compliant with geometric
data of a simulated three-dimensional world. The solution is to build a
simplified graph version of every map which the bots can traverse with the
algorithms. Engine tools like map editors will need to include support for
path specification and auto-generation of graphs. Weighted graphs can be
used to specify the cost (time-wise) of each path, allowing the bots to find
the fastest route to a location.

Traversing graphs to find the fastest routes are quite computationally
heavy tasks, and it needs to be efficiently implemented for the games to
remain within the real-time deadline. These algorithms do however not
scale very well in huge environments, such as the worlds in massively
multi-player online games (MMOGs). A known solution is to split the
graph into a hierarchy and to utilize a step-based approach to traverse the
graph. This is known as hierarchical pathfinding [42].

As explained, pathfinding requires efficient graph traversal that makes
research on network routing and graphs apply to game AI as well. An
example is X. Liu’s and D. Gong’s publication on A Comparative Study of A-
star Algorithms for Search and rescue in Perfect Maze (2011)[38] where they
evaluate three variants of hierarchical A* algorithms against each other
and the simpler depth-first algorithm. This is done by making a video
game like simulation of a perfect maze1 that is solved by a bot utilizing
the different algorithms. The results show that A* outperforms depth-first
in most situations, and that the three individual A* star algorithms have
different advantages in the various mazes [38]. This can be useful for game
developers as they can find the best A* variant for their maps by comparing
them with the different maze characteristics.

Other examples are A. Sud’s, E. Andersen’s, S. Curtis’, M. Lin’s, and
D. Manocha’s publication on Real-time path planning for virtual agents in
dynamic environments (2008)[66], and previously discussed Braun et al.
(2005)[7]. Both contribute to AI agents’ movement in crowd simulations.

Q3A has implemented pathfinding and movement as a part of the Area
Awareness System (AAS). It is a component of the bot system that contains
all information about the world’s current state, including entities, paths
and routing. The AAS data is a special 3D representation of the world
that is formatted and preprocessed for efficiency. Maps provide AAS
system with navigational waypoints that are organized into areas. Areas are
clusters of waypoints that are generated by locating connected waypoints
with minimal navigational complexity. Navigation opportunities between
areas are calculated through so called reachabilities. These are only added
if a bot can easily travel between two areas. This navigational data is pre-
calculated and stored in a routing cache for each map. The cache sorts

1A maze without loops.

25

connected areas into clusters that are separated by special areas known as
cluster portals [73].

Waveren (2001)[73] decided to pre-calculate routing information in a
cache because it is common that maps consist of 5000 areas or more, making
the Dijkstra and A* algorithms too slow for real-time traversal. This is
good for efficiency but requires more memory. The cached routing data is
traversed in real-time using a simple breadth first algorithm [73]. A more
efficient real-time solution could probably be to exploit his hierarchical
cluster separation, utilizing a step-based A* algorithm for hierarchical
pathfinding.

Machine Learning

Also know as learning AI, is a term describing AI that dynamically adapts
its behavior based on virtual experience. It is an attempt to make AI
more like humans, as we use our knowledge and experience when making
decisions. A bot can for instance analyze and store data on an opponent’s
various patterns, such as movement and fighting tactics. It can then
use on this data to anticipate the opponent’s actions, making the bot a
greater challenge and its intelligence more credible. This is known as online
learning, where the bot adapts in real-time. Offline learning allows the bots
to see the greater picture, where it can learn from data on previous games
to develop better strategies and get better at making decisions [42].

Learning is currently not commonly implemented in games as it is
difficult to implement properly, and because AI without learning is in most
cases perceived as sufficient. The complexity of implementation depends
on the required level of intelligence. It may be as simple as tweaking
numbers, and as complex as the utilization of neural networks [42]. Artificial
Neural Networks (ANNs) are modeled after the human brain, with the goal
of simulating true AI; that is AI capable of making decent decisions based
on its experience. Research on ANNs have proven that they are good for
artificial learning, but no one have so far been able to create true AI with
them [52]. In fact, a recently published article by P. Maguire, P. Moser, R.
Maguire, and V. Griffith (2014)[40] claims to have mathematically proven
that we will never be able to create true AI, as it would require functions
that are non-computable.

3.2.6 Visual Interactive Simulations

Simulation is a vague term that applies to multiple cross-disciplinary
fields of research and industry. This section will only focus on the fields
relevant to games. Section 2.2 discussed that most video games can be
considered interactive simulations with visual output. Visual interactive
simulation (VIS) is a term first mentioned in R.D. Hurrion’s PhD from the
University of Warwick in 1976 on scheduling problems in manufacturing
systems. His work on developing manufacturing system simulations
unveiled that most manufacturing systems had a real human actor with
some control of the entire process. This is difficult to reproduce in a

26

simulation because the human actor’s decision patterns. The solution
became interactivity that allows a real human to control the simulation’s
output in real-time. Research on VIS continued at the University of Warwick
in the following years with much industrial cooperation, including Imperial
Chemical Industries (ICI) and Rolls-Royce [4]. The primary difference
between VIS and video games seems to be the software’s objective. Video
games aim at entertainment that allows unrealism, while VIS should be as
accurate as possible to ensure realistic output and proper education.

VIS is widely used in research and industry as of today, used as
educational tools for staff training and simulation of various processes.
This includes, but is not limited to medical research, and military, space
& maritime training simulators. Roger D. Smith published a tutorial on
military simulations in 1998[61] stating that governmental investments in
military simulations are increasing. This seems still to be true as Kongsberg
Defence Systems recently signed 49 MNOK contract on upgrading the Royal
Norwegian navy’s PROTEUS simulator infrastructure [67]. Smith [61] also
presents the history of military simulations, which shows that the need for
war simulation origins in war games. Military simulations are often real-
time as they aim at training personnel through realistic combat scenarios.

The research and work on VIC lead to a IEEE standard for Distributed
Interactive Simulation (DIS), first released in 1998. It is a standard that
applies to simulation of warfare, logistics, management, environments,
radio communications, environments, and more [32].

Distributed Interactive Simulation (DIS) is a government/in-
dustry initiative to define an infrastructure for linking simula-
tions of various types at multiple locations to create realistic,
complex, virtual worlds for the simulation of highly interac-
tive activities. This infrastructure brings together systems built
for separate purposes, technologies from different eras, prod-
ucts from various vendors, and platforms from various services
and permits them to interoperate. DIS exercises are intended to
support a mixture of virtual entities with computer-controlled
behavior (computer-generated forces), virtual entities with live
operators (human-in- the-loop simulators), live entities (opera-
tional platforms and test and evaluation systems), and construc-
tive entities (wargames and other automated simulations).

— IEEE Std 1278.1a-1998 [32, p. iii]

There are also other types of non-interactive simulations that utilize
technologies relevant to video games. The lack of interaction prevents
them from being dynamically altered during run-time, but it is common
to make them configurable through configuration files or scripts. Such
simulations have been used for research on environmental disasters &
human crisis situations to anticipate the outcome of various scenarios. An
example is Braun et al’s (2005)[7] configurable simulation tool of crowds
in emergency situations. A XML script can be configured to simulate

27

different crisis scenarios. This is used to simulate and learn how crowds
behave in different emergency situations. Another example is Brodtkorb,
Sætra and Altinakar’s configurable GPU based shallow water simulation
(2012)[8] which can be used to create a flood simulator that predicts affected
areas [51].

3.2.7 Hardware Utilization

Games have been used to prove that better utilization of modern hard-
ware can dramatically enhance a system’s performance. Common are the
utilization of Single Instruction Multiple Data (SIMD) processing and het-
erogeneous multicore architectures. Brodtkorb et al’s (2012)[8] publication
provides a brief historical overview on the use of general purpose GPU
(GPGPU) programming in CS. It started over a decade ago as simple tests
to prove that the GPU could be used for general purpose programming,
and developed into standard equipment of modern super-computers [8].
This is possible due to the unique parallel GPU architecture that provides
hundreds of small processing cores and an advanced memory hierarchy. It
makes GPUs ideal for mass calculations such as graphics processing and
video encoding [18]. Brodtkorb et al’s (2012)[8] flood simulator uses GPU
to perform its heavy calculations, making it capable of accurately simulate
the first 66 minutes of the 1959 Malpasset dam break, which is 400 times
faster than some of the existing computing approaches [51]. A more game
related example is Sud et al’s (2008)[66] study on crowd pathfinding, where
they utilize the GPU to perform real-time pathfinding of multiple agents in
a virtual 3D environment.

GPUs are probably the most common hardware utilized to accelerate
high-performance computing as of today, but research has been done on
the utilization of other hardware as well. Multi-core CPUs were embraced
by scientists when they emerged at the beginning of this century, leading
to research such as Tulip, Bekkema, and Nesbitt’s (2006)[70] publication
on Multi-threaded Game Engine Design. It states that most games where
single threaded at the time, and that next generation game engines must
embrace concurrency to benefit from new multi-core hardware. The
publication documents game engine concurrency issues, and analyzes
parallel opportunities. They propose that the issues can be solved by
hierarchically structuring a game engine’s tasks into a task tree, which is
to be processed by a thread-pool [70]. A more detailed example is Raaen et
al’s (2012)[50] research on LEARS: A Lockless, Relaxed-Atomicity State Model
for Parallel Execution of a Game Server Partition. They utilize concurrency on
a game server, by designing and implementing an almost lock-free, thread-
pool based architecture (LEARS) that support hundreds of clients in one
scene [50].

More uncommon architectures have been used as well, such as the
STI Cell Broadband Engine (Cell), which is the unique asymmetric multi-
core processor used in PlayStation 3 (PS3). It is a nine-core architecture
consisting of one Power Processing Element (PPE), and eight Synergistic
Processing Elements (SPEs) [64]. The primary purpose of the PPE

28

is to manage the SPEs, indicating that modern high-scale PS3 games
need to utilize the multiple cores in order to run smoothly. Stensland,
Espeland, Griwodz and Halvorsen (2010)[64] analyzed 14 different Motion-
JPEG video encoder implementations and performed related experiments
on both Cell and GPUs to identify optimization opportunities on both
platforms. Video encoding is of high relevance to games in terms of cloud
gaming, see section 3.2.8 for full details.

3.2.8 Networking

In terms of networking, online video games are considered interactive thin-
stream applications. They are thin stream as they usually transmit streams of
small data packets with high intervals, compared to greedy streams which
goal is to transmit larger amounts of data as fast as possible [47]. It is
given that only network based online games with some sort of distributed
processing (e.g. a central server) is relevant for network research. Game
servers are usually considered more interesting than clients, as servers are
the heaviest loaded component of online games.

Latency and QoS

The previously discussed latency requirements of Claypool & Claypool
(2006)[11], listed in table 3.1, proves high-paced action games and role-
playing games (RPGs) as interesting network applications because they
completely rely on high packet throughput in the unreliable best-effort
Internet. An example is Petlund’s PhD thesis (2009)[47] where he analyzed
packet data of three different games to verify a thin-stream TCP issue and
to prove that his proposed solution resolves the problem.

Quality of service (QoS) is a hot topic within networking that attempts
to improve the Internet with specific promises of reliability and speed. It
proposes a new revenue model for Internet service providers (ISPs) where
they can sell subscriptions of differentiated qualities. They may for instance
provide a premium subscription with the highest reliability to their most
demanding customers, such as heavy online gamers. Games are due to
their real-time demands of high relevance to QoS research. An example
is Armitage & Zander (2004)[3] empirical study on online network games’
QoS requirements. Their contribution is a proposed list of requirements
that needs to be met in order to satisfy the gamers.

Cloud Gaming

More recent research indicates that increasing popularity of cloud computing
and cloud services have made the requirements on QoS even greater, as a
new trend has emerged in both the industry and in academia; cloud gaming.
The idea is to provide externally processed game services, eliminating
the end user’s need for expensive and specialized gaming hardware.
A client forwards the player’s input to the server, which processes it
and continuously transmits the game’s video output to the client. The

29

downside is the requirement of a stable and continuous HD video stream
that currently faces great challenges in terms of latency. It completely alters
the QoS requirements in comparison of traditional gaming. An advantage
is that games become platform independent lightweight client software,
potentially allowing the user to play any game on any device. It will also
require every client to have a valid subscription to the specific service,
eliminating the possibility of video game piracy [33].

Cloud gaming’s primary bottleneck is the bandwidth consuming video
stream, and the development and use of video encoders is the primary
concern. HD video encoding is a computational heavy task that is added
on top of the already heavy game engine processing, making it even
more cumbersome to meet the real-time demands. It poses several new
challenges that have yet to be solved, but we might get there gradually.
Valve Software just released a cloud gaming-like solution within their
Steam platform, allowing one to remotely play games from another local
computer in the network [41]. It indicates that the current fast local network
technology is sufficient.

Network Load Generation Tools

Yet another topic within networking is network load generation tools, also
known as traffic generators. Modern online software systems are targeted
at the simultaneous use by thousands, and even millions connected users.
This poses a testing challenge as neither academia or the industry will
usually be capable of performing system load testing of such scale with live
sessions involving real people. Automated load testing of AI controlled
traffic generating virtual users, or virtual clients, is required to test their
systems under various loads [60]. These are tools that allow you to specify
a number of virtual clients to perform a specific procedure. This type of
testing is sometimes referred to as stress-testing.

Load generation has been an active research area for specific types of
servers, and several industry standard tools have been developed to stress-
test file servers, web servers, and similar. Common for these is that they
are customizable and scalable tools that generate user-authentic traffic.
Modern games would also benefit from good load-generating tools and
the industry develops such custom tools for their games. [60]. The primary
challenge of developing general load generation tools for games is that
every game is different. In order to generate representative traffic, a load-
generating tool needs to be aware of essential game information such as
map data, game logic (rules), movement, and network protocols.

Very little scientific research is available on the topic, but the little that
exists seem to have adapted the concepts of other server software’s load
generation tools in an attempt to develop an industry standard all-purpose
game load-generating tool. First is Jung, Lim, Sim, Lee, Park, Chung,
and Lee’s (2005)[35] Virtual Environment Network User Simulator (VENUS)
system. A software suite developed with the goal of becoming the standard
model for online game testing. The publication shows that their system can
be configured to stress-test an online game’s authentication server (login

30

procedure) and make virtual clients move to specific positions afterwards.
They state the components of their suite can be easily configured to support
any game, but provide no instructions or examples on how they do it [35].
However, their next publication revealed that the game’s client logic had to
be incorporated into the VENUS system for it to work [10].

Five years later some of the same authors published documentation
on an improved version of the tool; VENUS II. Cho, Sohn, Park, and
Kang (2010)[10] presents an updated software suite that seems much more
configurable and easy to use. The suite consists of a packet capturing tool,
a packet analyzing tool, and a virtual user control tool. All tools provide a
user friendly GUI. In order to use VENUS II, you must first use the packet
capturing tool to capture network traffic from a live game session with real
players. This is stored into packet database that is utilized by the packet
analyzing tool. It interprets the packet data and generates data on the game
map and the game grammar (rules). The packet analyzing tool is configurable
and should be configured for each game for best results. The virtual user
control tool utilizes the generated game map and grammar to create and
control both single and groups of virtual clients. The virtual clients are
capable of logging in, navigating the world, and attacking [10]. Downsides
of the solution are that packet capture and analysis needs to be done for
every single map and that the clients lack AI for gameplay. The produced
network traffic is thus not representative for a real player. Other issues are
that most of the tools are in Korean, and that there are no traces of the actual
VENUS tools online.

Some other Korean researchers were inspired to propose a similar tool,
but with a slightly different concept. Shin, Kim, Sohn, Park, and Choi’s
(2010)[60] uses their previous research on game traffic packet analysis to
propose a system that analyses player behavior and patterns (learning AI)
to generate reliable packages simulating a proper working virtual player.
They evaluate their system by manually ordering and comparing the data
from the packet analyzer and claims the results indicates that they are
capable of creating traffic similar to real players [60]. Their theoretical
proposal may seem promising, but it is impossible to tell how well it will
work before they develop a working prototype. No evidence of further
progress on this system has been discovered. This is however difficult to
find since they did not name their proposed system.

All the proposed network traffic generating systems have proposed
interesting concepts on the development of a general online game load-
generating tool, but none are completed or working. I am especially
concerned about how these systems handle compressed and encrypted
game traffic since most modern games, including Q3A, both compresses
and encrypts their network data. None of the publications mention
anything about it. Also, all online games are unique pieces of software
with huge differences. So the entire idea of creating such a system is
vague. It is as complex as creating a load generation system that is capable
of generating user-authentic traffic for all server software. This is also
reflected in the complexity of the two VENUS systems. It is likely that
it will take less time to create a custom virtual client implementation in

31

a specific game, than it will to configure any of the VENUS systems to
produce representative data.

3.3 The Need for an Open Load Generation Tool

This thesis has so far discussed the definition of video games, their inner
workings, and scientific uses. It shows that video games have always
been, and currently are, highly relevant within various topics of CS, both
as topics and tools. The reason is the demanding nature of video games
with high requirements to hardware, software and network. Commercial
video game development advances with technology. Research should thus
ideally work with modern state-of-the-art video games, so that scientists
can work on software pushing the available technology to its boundaries.
The problem is to find such a game.

Section 3.1 showed that commercial actors most likely bypassed the
game development capabilities of CS projects two decades ago, due to the
different priorities in academia and industry as discussed in section 3.1.
It means that researchers will need to gain access to commercial games
or find open source game projects in order to find games of commercial
quality. Open source games are however not ideal candidates. My research,
documented in section 4.1.3, unveils that known open source games lag
behind the commercial due to the voluntary nature of open source projects.
In fact, several open source projects utilize engines of old commercial
games that have been open sourced years after their initial release [29].

It is possible to use commercial games in research, but this is problem-
atic. They are rarely available in source code form. New, the code is con-
sidered a company secret while releasing older code is either ignored or
can be too costly. Developers are sometimes willing to co-operate with
researchers, but will often limit how much of the inner workings can be
disclosed. This makes the research cumbersome as well as difficult to re-
produce, potentially decreasing the quality of the research material.

A third alternative for the researchers is to develop their own prototype
games to use in their experiments. Examples include Liu et al [38] and
Raaen et al [50], which both try different concepts in simplified prototype
environments. Raaen et al [50] states that their specialized prototype is
a weakness in itself, as it lowers the research’s credibility compared to a
commercial quality implementation. One can assume that it is the same for
Liu & Gong [38], Valente et al [72], and other similar cases. This research
should ideally be implemented and tested in complete games in order to
achieve more realistic results. Ideas need to be embedded in a full-scale
production in order to get fully realistic results. There is thus a need for
a universally available commercial quality video game that can be freely
used for scientific purposes.

Even though they are behind the industry, stable released open source
video game projects are potential candidates for implementing scientific
concepts in a large-scale system. They need to be evaluated and most
likely adapted in order to serve as a test bed for scientists. The evaluation

32

is required to determine if a game is stable, if it is representative for the
industry, and whether it is computationally heavy enough to measure the
effects of implementation changes.

Identifying potential games is just the first step. A game will most
likely need modifications in order to measure high-scale utilization of the
game. How depends entirely on the type of research, but the focus of this
thesis in networked games. Network and server load can be generated
through the use of live sessions with real people as test candidates, such as
Claypool & Claypool [11]. It can alternatively be done through automated
AI controlled virtual clients, such as Raaen et al [50]. The latter is beneficial
as it allows experiments to be done by a single scientist requiring little
time and hardware. A live session will typically require a lot of planning,
multiple hardware resources, facilities, real test subjects, and several people
to assist.

An online game with automated AI-controlled virtual clients is an ideal
tool for network traffic and server load generation, as it is purely automatic
and generates realistic traffic. This does not automatically include online
games with bot support, because a bot is not necessarily considered a
virtual client. A virtual client must run on a client machine, perform similar
actions as a regular human player, and transmit authentic network traffic
to a server. A game implementing this functionality is not only a game, but
also a load-generating tool that can be used to measure game and network
performance. It is a good test-bed for research on networks, servers, AI,
and probably also other topics within CS.

3.3.1 Project Statement

The evaluation of modern computer science indicates a need for open
source game projects of commercial quality. This is required to achieve
high utilization of the latest technologies. Finding such games is however
difficult because most open source projects lacks the resources to build
games of commercial quality. In fact, many open source projects are built
on older commercial game engines. They are in other words far behind the
industry, and will most likely never be able to keep up. Researches could
settle with commercial games instead, but it is difficult due to corporate
publication restrictions that may significantly reduce the credibility. The
best solution is thus probably finding a recent open source project that is
close to commercial quality.

This thesis aims at identifying modern open source games that are
representative of commercial quality games. Open source games will be
evaluated against a specific list of features and qualities that are considered
common requirements by computer scientists. The list will be developed
by evaluating data from a quantitative survey aimed at computer scientists.
This research may benefit all relevant fields of computer science. The
results enable researchers to easily select one of the proposed games, or
use the evaluation criteria to find open source projects on their own.

Selecting a game is the first step to a useful tool. Implementing support
for virtual clients allows scientist to efficiently perform authentic large-

33

scale testing without significant amounts of resources. This thesis converts
an open source video game, Quake III Arena, in to a user-friendly load-
generating tool with virtual clients. Q3A is a relatively well-designed game
engine, and implementation has been done according to Thorn [69] and
Gregory’s [25] guidelines for good engine design.

34

Part III

Implementation

35

Chapter 4

Finding an Appropriate Game

4.1 Establishing a Foothold

The decision to use Quake III Arena for the implementation is not arbitrary.
This thesis’ foundation is built on research identifying the need for a freely
available video game of similar or close to commercial quality, which can
be used as a tool for research. The first part of the thesis was to find
such a game, and there was previously no known research on the topic.
Commercial games are not used due to their restrictions, making open
source games the only candidates [29].

4.1.1 Identifying Potential Games

Finding open source games online is easy and requires no more than
a simple web search, or a peek at the dedicated Wikipedia page on the
topic [75]. Identifying games that satisfy the common needs of computer
scientists is however difficult, as they need to be evaluated against a list of
features and qualities of a game. The problem is that no such list exists, and
there is no available research on the topic [29]. It is impossible to evaluate
any game without clear requirements, so I decided to identify a list on my
own by gathering data from reliable sources; computer scientists.

The first step was to interview one of my supervisors with industry
experience, Kjetil Raaen. It provided the foundation to develop a list
consisting of 60 different features and qualities that may be implemented
in video games. It covered most of the currently known technical features
that are considered realistic to implement in games. Both the basics, such
as user input through well known devices, and less common features,
such as voice control was covered. The survey concerned software,
and assumed that all necessary hardware and drivers were in place and
working properly for the various features to be fully functional. The list
was built into an online survey, where the participants were to categorize
each feature or quality as either unimportant, a research requirement, an
engaging requirement, or both. An engaging requirement is a feature that is
needed for a game to be engaging for potential test subjects.

The survey was active for approximately a month, and invitations

37

Feature Requirement % Unimportant %

Performance 91 5
Logging System 77 18
Latency Intolerant 68 18
Simple Physics 68 23
3D Support 68 14
Technical Documentation 68 5
Simple AI 64 27
2D Support 63 14
Adaptability 59 23
Scripted AI 59 23
Good Code Quality 59 18
Computational Heavy AI 55 32
Reliability 54 27
Player vs Environment (PvE) 54 23
Large networked (13-64) 54 36
TCP Support 50 32
Single Player Mode 50 45
Player vs Player (PvP) 50 27
Massive Networked (65+) 50 41

Table 4.1: Top Evaluated Game Features & Qualities

to participate were sent to computer scientists that previously had or
currently were interested in using video games for their research. Most
of these researchers were based in Norway, among them some scientists
from Simula Research Laboratory, SINTEF, and The University of Oslo. It
was also sent to various researchers abroad. The survey had a total of 22
participants, which reflects that few computer scientists replied that they
felt their experience and work was relevant to the survey. Participants
from the game industry were not invited, because the problem discussed is
unique to academic research. The resulting list of features and qualities are
presented in table 4.1.

Survey results were used to find good candidates by using them
in comparison with open source games from Wikipedia’s vast list [75],
games used in previous research, and open games known to me and my
supervisors. Games from Wikipedia’s list with most recent update prior
to 2012 were considered inactive and therefore excluded. The games
examined more thoroughly were Doom 3, OpenArena, Vega Strike, and
PlaneShift. Each game was evaluated with the following steps.

4.1.2 The Evaluation Process

The first phase of the data gathering process involved installing and
playing the respective games. It is a quick and an effective approach to
get an overview of each game, indirectly providing information on various
game mechanics, its quality and whether or not it is a stable product.

38

Graphics quality is evaluated visually while playing the game. This gives
an immediate indication on the quality of the graphics, and whether more
advanced graphical features, such as shaders, are supported or not. The
approach also reveals implemented user interface mechanisms, such as
game menus, buttons, in-game chat and similar.

Some information on embedded physics was retrieved by interacting
with the games in ways that might not have been considered by developers.
This involves jumping off various ledges, firing weapons at objects
not usually considered targets, and experimenting with various game
mechanics. Such gameplay reveals much about interaction between objects
in the game. Looking at the contents of various menus and game settings
can also retrieve other important information. Setting up a local server will
for instance let you know how many interacting concurrent players the
server supports.

The second phase was retrieving information by collecting data from
official websites and documentation available for the games and engines.
Primarily to find technical specifications revealing features either imple-
mented in the games, or hidden engine features not used by the games.
This can reveal a significant amount of features and qualities not visible
by simply playing the game. It is also more efficient than attempting to
interpret features hidden within the source code. The amount and qual-
ity of the documentation is highly variable. Because open source games
require extensive cooperation between geographically distributed devel-
opers, more documentation is usually available than for commercially de-
veloped games [29].

The final phase is to investigate the undocumented features by studying
parts of the source code. This requires obtaining a copy of the source
code from the official version control repository or file server, and opening
the files in the intended development environment, if any. Some will
immediately compile, link and run successfully, while others require
the retrieval of game data or additional resources. For games with
commercially licensed data, researchers need to purchase or otherwise
legally obtain these files. These are not needed to analyze the source code,
but can make it easier by allowing you to navigate the code through testing
and debugging.

A good start is to obtain an overview of the source code structure in
order to find out where to look for various potential features. Analyzing
the code reveals code standards, features, and the code quality. It can be
a time consuming task, we were only interested in examining the code for
specific functionality and overall quality, which does not require examining
every line of code manually. Once done, final in-depth searches for the
unknown features are done, involving basic file search and reading. Some
features are easier to determine than others, due to their complexity and
nature. Features are marked as they are found or declared missing.

39

Feature Doom 3 OpenArena Vega Strike PlaneShift

Performance
Logging System 3 ~ 3 3

Latency Intolerant 3 3 7 3

Simple Physics 3 3 3 3

3D Support 3 3 3 3

Technical Docs.
Simple AI 3 3 3 3

2D Support 3 3 3 3

Adaptability
Scripted AI 3 3 3 3

Good Code 3 3 7 3

Comp. Heavy AI 3 3 3 3

Reliability 3 3 7 7

PvE 3 3 3 3

Large Networked 7 3 7 3

TCP 7 7 7 7

Single Player 3 3 3 7

PvP 3 3 ~ 3

Massive Networked 7 7 7 3

3 implemented ~ partially 7 absent

Table 4.2: Evaluated Open Source Games

4.1.3 Evaluating Potential Games

This section contains an in-depth analysis of the games selected for
evaluation. A visual summary of the evaluated game’s qualities is
presented in table 4.2. It compares the top results from the online survey
with the available features of the four selected games. Qualitative features
such as performance are not evaluated in the table, but described further in
the section for the individual game. The reason is that qualities cannot be
represented as binary values.

Doom 3 (idTech 4)

I consider Doom 3: BFG Edition and it’s upgraded idTech 4 engine the most
complex and technically advanced open source game currently available.
Most of the original game’s development was done prior to its commercial
release in 2004 [23], but some modifications were needed in order to release
it as open source under the GNU General Purpose License version 3 (GPLv3)
by Timothee Besset (user TTimo) on GitHub in November 2011 [6]. The
game was re-mastered and re-released as Doom 3: BFG Edition in 2012
with multiple enhancements, some from the idTech 5 game engine. These
additions were also released as open source only a month later [54].

However, only the source code is freely available, and not the binary
data files (game assets). The data files can be obtained by purchasing a copy

40

of the game. A custom compiled engine needs to be configured to read
these. However, you will not be able to publish new content or updates
with the original game data, as this is only available under commercial
license [5]. This can be used for research, but the complete experimental
setup cannot be shared.

The engine is mainly written in C++, using OpenGL for 3D graphics,
and contains 601032 lines of code [55]. The source code defines various
shared libraries as well as an executable.

The source code is of high quality with good naming conventions, some
good comments and it is relatively easy to read. It contains clear traces
of optimization, which is expected, as it is a major production that sold
more than 3.5 million copies [58]. This is also an indication of stability,
as it has been tested by commercial actors and been played by millions.
The developers of Id Software have also implemented their own memory
manager, or garbage collector, for faster dynamic memory allocation.

The code contains some less common hacks, where the most notable
one overrides all protected and private keywords setting them to public. This
is required by their custom run-time type information (RTTI) functionality.

Doom 3 is primarily a single player first-person shooter (FPS) game,
with an online multiplayer mode supporting up to 81 players in four
different Deathmatch modes, allowing free for all fights. However, one of
the programmers, John Carmack, has stated that the engine can support
more than 4 players but that they decided to restrict it for game design
reasons [22]. This can be modified, as the source code is freely available.
The game is an intense action FPS experience, implying the need for low
response times as suggested by Claypool & Claypool (2010)[12]. This is
reflected in the code with built in latency-hiding mechanisms. The latency
sensitive section of the network code uses the UDP protocol with reliability
mechanisms implemented in the engine.

A natural part of the single player functionality is the need for
savegames, which is fully supported by the engine. The game was released
before the concept of Cloud storage went public, so it is not a part of the
engine itself but can be obtained by purchasing and running the game
through Steam, although not as open source.

The original project found on GitHub does currently only build on
Windows using Microsoft Visual Studio 2010 or later, and on OSX using
Xcode 3.2 or later. It is using operating system (OS) specific libraries, such
as the Win32 API for various low level operations including threading and
network. This makes it somewhat cumbersome to port to other platforms,
but some ports are already available as independent Git repositories (Besset
(2011)[5] and Sanglard (2012)[55]). Threads have been utilized for time-
critical functions that should not be limited to the frame rate of the game,
including sound mixing.

Adapting the engine or game itself to be used for other game types than
FPS is possible as it is open source. The engine has, however, primarily

1Original 4 players, the support for 8 players were added in the Resurrection of Evil
expansion.

41

been used by FPS games [74], so it is likely that it will require a significant
amount of work to modify it into other genres.

There is unfortunately little or no official technical documentation of
the engine apart from the source code. An idTech developer published
an engine modification guide that is useful, though not complete. There
is also a very good code review available by Fabien Sanglard [54, 55]
but it also lacks some information, including networking. The only thing
available close to design documentation is the game manual, but no official
documents have been published.

Other available and high quality engine features are logging, physics,
support for scripting, artificial intelligence (AI) and a library for graphical
user interface (GUI) components. See table 4.2 on page 40 for an overview
of the most important implemented features.

OpenArena (ioquake3)

OpenArena is a pure first-person shooter developed using ioquake3, an
open source community-developed enhancement of the idTech 3 engine.
idTech 3’s source code was released as open source together with the game
Quake III Arena’s source under the GNU General Public License (GPLv2) in
2005 [59]. The binary data files generating the content of the game are
as with Doom 3 still closed and copyrighted. OpenArena’s intention is to
provide a free and enhanced alternative to Quake III Arena. Quake III Arena
is, as Doom 3 a commercial computer game, implying a polished and stable
game. The ioquake3 project claims to have fixed many known bugs in the
original engine, patched some security issues and that they have enhanced
the overall stability of the entire engine and gameplay.

The engine and the game is primarily developed using C, using
OpenGL for rendering 3D graphics. The original idTech 3 engine consists
of 367815 lines of source code [55], which is almost half the size of idTech
4. idTech and OpenArena are both well recognized and previously used
in computer science (such as [73], [46], and Parry (2007)[44]). idTech 3
does not use multithreading although this might enhance performance
on modern CPU architectures. ioquake3 utilizes threads through the
Simple DirectMedia Library (SDL) 1.2 (SDL_thread), and the platform
independent OpenAL library for sound. The engine also supports some
video playback, but this is also true for the unmodified version.

OpenArena’s gameplay is as its predecessor, Quake III Arena, primarily
focused on the online multiplayer experience. It also supports a simple
single player game mode, which behaves as a multiplayer game where the
opponents are artificial intelligence controlled clients that simulate players,
and the local machine runs the server. The bots are programmed in C, using
a well-structured collection of functions for in-game artificial intelligence.
OpenArena natively supports up to 12 simultaneous players in one match.
Single player progress, achievements and settings are saved on the local
hard drive. Multiplayer saves primarily the settings, such as user name
and character. None are backed up through a cloud solution.

The code quality is in general well-structured and documented,

42

through naming conventions, comments and file directory structure. There
is a log system available, and an in-game command window with various
options. Technical documentation is found on OpenArena’s and ioquake3’s
official websites and Wikimedia based community sites.

The game compiles and runs on Windows, OSX and most Linux based
platforms and it thus qualifies as portable. It is one of the enhancements
made by the ioquake3 project, replacing platform specific libraries with
cross-platform libraries. Both the idTech 3 and ioquake3 engines are
primarily first-person shooter (FPS) engines, which somewhat limits the
engines’ adaptability. It is possible to modify it to support other game
genres, but probably not without changing engine specific features.

PlaneShift (Crystal Space)

PlaneShift is an open source community developed multiplayer online
role-playing game (RPG) using the open source Crystal Space engine. All
code and the engine is released under the GNU General Public License
(GPL), while the data content files are copyrighted to Atomic Blue Non
Profit Corporation and distributed under the PlaneShift Content License. The
license details can be found on their official website [17]. There is only
one game mode, multiplayer, where you are able to interact and fight with
other players or non-player characters (NPC). Some NPCs are controlled
by artificial intelligence and can be considered bots, but none possess the
AI needed by a virtual player. None of the NPCs are capable of playing the
game as a real player. Role-playing is encouraged by the developers, and
is described as a highly important aspect of the game. They have created
several game rules to encourage roleplaying. Such as the rule stating that
you are not allowed to give your character a name associating elements
from the modern day real world. All of these rules can however be avoided
by setting up your own private server. Each player needs an individual
game account, stored in the game’s database, together with character
progress and other game data. This gives a “cloud like” storage solution
with a globally available database, where you can access your game data
from any computer. The official database is however currently only one
server. Your data may be erased at any given time, because the game is still
currently under development with most of the key functionality in place
[16].

The game can therefore not be categorized as completely stable, or
optimized. Unexpected behavior and bugs do exist as we experienced
while testing it, but it never crashed. It is of surprisingly high quality, and
will be an interesting candidate when finally released as stable.

Crystal Space, the game’s engine, is a highly portable open source
software development kit (SDK) for developing 3D applications. It is
released under the GNU Lesser General Public License and is developed
using C++. Various games have been created with the SDK, and it can be
classified as highly adaptable. The SDK includes all functionality required
by a game, including physics, collision detection, graphics, user input, GUI,
and more. It is also possible to find or develop plugins for special needs

43

[68].
The game itself is a more specialized piece of software, serving

its purpose as a multiplayer RPG. It is probably easier to adapt than
the previously evaluated games, due to the nature of the engine and
the development tools included to make content development easier.
PlaneShift has a menu system, a 2D GUI system, some physics, and
supports joystick as an alternate input device.

Other Games

The other games were rejected for various reasons. Most because they are
too old, including graphical rendering techniques which are obsolete for
the project to represent a modern, near state-of-the-art video game.

Vega Strike, an Action Spaceship Simulator, was evaluated but rejected
as it turned out to be an incomplete game without any official support
for online multiplayer gameplay. The game’s graphics is also primarily
2D textures with few 3D models, and is thus not considered a game
representative of commercial standards. Other considered, but unfinished
open source games are 0 A.D., Ancient Beast, Chaotic Rage, Dungeon Crawl
Soup, Flare, FreeCol, FreeOrion, Hedgewars, Minetest, SpaceZero, Teeworlds, X-
moto, SuperTuxKart, Sintel The Game, Rigs of Rods, Unknown Horizons, and
Unvanquished.

Other quite popular games such as BZFlag ([48]) a Tank FPS, and
QuakeWorld (Cordeiro et al. (2007)[15]) have been rejected even though they
have been previously used for computer science. This is primarily because
the games date back to the late 90ies [75] and are not good enough, even
though they are recently updated.

This also includes games as The Battle for Wesnoth, Battle City, Flight
Gear, FreeCiv, Open Hexagram, PokerTH, StepMania, Chocolate Doom, Tales
of Maj’eyal, Advanced Strategic Command, Angband, Biniax, OpenRA, Zero-K,
Crossfire, M.A.X.R., TripleA, UFO: Alien Invasion, Widelands, C-Dogs, Katana
Shoujo, Mari0, CorsixTH, Exult, Freesynd, Gigolomania and NX Engine.

Other games were also rejected, as they were too similar, if not on the
same engine, as earlier selected and evaluated games. This includes games
as Oolite, Red Eclipse, Doom 3 BFG Edition, Xonotic, Cube 2: Sauerbraten,
Smokin’ Guns and Warsow.

4.1.4 Selecting a Game

The evaluation indicates that the best video game candidates for research
are Doom 3, OpenArena, and PlaneShift. This research was published and
presented in Aachen 2013 at the first workshop on Large Scale Distributed
Virtual Environments on Clouds and P2P (LSDVE), in conjunction with Euro-
Par 2013 [29].

Raaen et al’s [50] publication describes an ideal game for implementa-
tion of their LEARS architecture as a latency in-tolerant high pace action
game. Claypool & Claypool (2006)[11] have measured players’ latency
threshold in various games, and concludes that role-playing games, such

44

as PlaneShift have a latency threshold that is 5 times larger than first per-
son shooter games (FPS). It narrows the potential candidates down to the
FPS games: Doom 3 and OpenArena. Doom 3 thus seems like the best choice
as it the closest candidate to a modern industry standard game, especially
with the recently re-mastered version; the BFG edition [19]. Unfortunately,
it does not have support for AI controlled bots for the online multiplayer
section of the game. A solution might be to port the single player bots into
multiplayer, but the bots won’t probably work very well as they aren’t na-
tively aware of the multiplayer game rules. OpenArena is therefore the only
remaining candidate for implementation of virtual clients.

OpenArena

OA has a quite active community and it took some weeks to get
acquainted with the source code and the development community. OA
is primarily a content focused development project and most of their
updated documentation revolves around content and not programming.
The developers have hence primarily worked on developing game content
and logic, which is partly defined in the Quake Virtual Machine (QVM) files
that are utilized by the engine. Especially confusing is the fact that they
have chosen to separate the development of the QMVs and the engine,
which are no longer fully compatible with each other. It required significant
amounts of time and some forum posts to understand fully. I made
multiple unsuccessful attempts of merging the engine source with the
QVM source, something my task required as I needed to have a codebase
with direct support for communication between the components of the
game. It turned out that there are so many undocumented differences that
even the veteran OA developers discouraged the merge [71].

My efforts did however inspire the coders of the community, so the
OA engine was shortly after merged together with the latest version of the
official codebase of ioquake3 [26], and their QVM remake (OAX) codebase
was for the first time added to git version control system on GitHub [53].
I contributed with testing, primarily on the engine, and several bugs were
discovered in ioquake3 [65], MinGW [27], and even in Simple DirectMedia
Layer (SDL) 1.2.15 [28]. Some of the proposed resolutions were patched
into the engine. OA’s codebase is nevertheless too cluttered for a smooth
implementation process of virtual clients.

Quake III Arena (ioquake3)

The ioquake3 project has in contrast to OA always utilized version control
and kept the game logic (QVMs) and the engine within the same
codebase. This makes engine and QVM development an easier and cleaner
procedure, which is the reason I chose to develop the implementation in
Q3A rather than OA. The source code is open source, but the Q3A data
files needs to be legally obtained through purchase. I chose ioquake3 over
the original idTech 3 codebase as I consider ioquake3’s modifications positive
enhancements.

45

Project Type Description
ioquake3 Executeable Full Game (GUI)
ioq3ded Executeable Dedicated Server (Ter-

minal)
cgame Dynamic Library/QVM Game Client Logic
game Dynamic Library/QVM Game Server Logic
ui Dynamic Library/QVM Graphical User Interface
renderer_opengl1 Dynamic Library OpenGL 1 Renderer
renderer_opengl2 Dynamic Library OpenGL 2 Renderer

Table 4.3: Game Components of the ioquake3 Engine

4.2 Architecture of Quake III Arena

My previous research on open source games useable for computer science
concluded that the video game and open source project OpenArena is one
of the best available candidates as of today. It is a game with custom
community developed game data2 and a slightly modified version of the
ioquake3 engine. It is a currently maintained and enhanced version of id
Software’s id Tech 3 engine - the original game engine behind Quake III Arena,
released as open source in 2005. Quake III Arena is thus just as applicable as
OpenArena, but it requires you to purchase a copy of the game in order to
retrieve the game data. Both are first person shooter games with support
for both single- and multiplayer game modes.

Both the original Q3A and the modified ioquake3 game engine are
highly modular pieces of software. John D. Carmack, the programmer of
the original engine, explained that he decided to create a custom virtual
machine (VM) and VM language for portability and better security than
traditional dynamic libraries [9]. The game consists of a base executable,
Quake Virtual Machine objects (QVMs), and third-party libraries. The
base executable is a framework utilized by the QVMs for handling I/O
operations, including user input, rendering, network, file management,
audio playback, and cross-QVM communications. The QVMs themselves
define the program flow and game logic. The engine’s QVM system also
supports loading and running DLLs instead of their own .qvm format, for
easier debugging and development [30].

4.2.1 ioquake3 Components

The primary components of the ioquake3 engine consist of the components
listed in table 4.3. Section 6.1 explains how you can obtain, build and run
the game and the virtual clients.

2Game data as in game assets including binary files such as textures, models, sounds,
etc., and other text based assets.

46

4.2.2 Client/Server Communications

Network communications in Q3A have been implemented in a quite
elegant manner, using a logical OR based snapshot system that compensates
for lost snapshots (UDP), and ensures that only the necessary data is
transmitted through the network. The engine uses a module called netchan
for low-level packet operations, including encryption and compression.
Encryption is done using a pre-shared key that is established between the
client and server on client connection. Compression is done using a static
Huffman table [21].

The client to server communication is quite straightforward; the client
sends a user command every time the player performs an action, changing
the player state. The server is more complex and sends snapshots to each of
the connected client at a fixed rate. The transmitted snapshot is unique for
each client and contains the delta state of each entity in the game that has
changed since the last transmitted snapshot, including the client’s player
state. The snapshots are limited to transmit only the game entities within
the view area of the player. Both the client and server have implemented
latency compensation through extrapolation and interpolation, but the
client knows that the server is the master and adjusts its entities from the
snapshots [30].

47

48

Chapter 5

Implementating Virtual Clients

This chapter documents the technical implementation of virtual clients in
Quake III Arena. The first section introduces the initial concepts of the
implementation, and specific implementation details are presented in the
following sub-sections. Code examples are provided together with detailed
explanations that discuss the various design decisions.

5.1 Implementing Virtual Clients

The Q3A bot library was developed by J.M.P. van Waveren as his Master’s
thesis in 2001 at the Delft University of Technology [73]. The bots use a
4-layered architecture where the two last layers are implemented in the
server logic’s VM while the two former are implemented as a standalone
bot library included in the engine. He decided to hard-code the two of the
layers into the server’s game logic for simplicity as the bots depend heavily
on game logic. This makes the entire bot library more static, thus harder to
reuse and port.

Virtual clients do need AI, so our initial plan was to port the bot library
from the server’s game logic to the client logic. The hard-coded layers of
the bot library make this a complex and time-demanding task. It requires
migrating both the bot library and server-specific dependencies into the
client code. Alternatives are modifying the server logic to behave as a
client, or to implement a proxy. We implemented the latter solution as the
former has similar drawbacks as the original plan.

We were inspired by Q3A’s implementation of single player and local
machine game modes. The design solves a similar problem to ours because
it requires some server-side logic within the client in order to function
properly. This has been solved without implementing any server code
within the client. Single-player mode is launched in two steps. It starts
by launching a local and “hidden” server with a specified map. Once done,
it launches the client logic, which connects to the hidden local server. The
virtual client implementation is more or less an extension of this procedure.
It connects to a real server and retrieves its game specific data (map,
entities, etc.). This is used to create a hidden local server with the same
game data as the real server; a shadow copy. A bot is added to the shadow

49

server, and the engine bridges the communication between the bot and the
real server, working like a proxy. The entire implementation is defined by
the following procedures:

1. Configuration through cvars
2. Shadow server & bot initialization
3. Synchronization & proxy communication

5.1.1 Configuration Through Cvars

The virtual client implementation is designed to run through the console,
and not the in-game GUI. It is both faster and easier to implement
than a graphical menu, and enables virtual clients to be launched from
shell scripts. I decided to use the engine’s built-in console variable (cvar)
configuration system to trigger the virtual client functionality from the
console. The engine is built to accept commands through program
parameters on launch, enabling cvars to be set through parameters on
program initialization. A virtual client can be hence be enabled by setting
the proper cvars as program arguments, followed by connecting to a
dedicated server. Cvars may also be set through engine configuration
files. The following example illustrates how to launch the engine with the
virtualClient cvar set to 1:

1 ./ ioquake3 . x86 + s e t v i r t u a l C l i e n t 1

Other implemented cvars are virtualClientSkill, virtualClientBot, and virtual-
ClientName which are described in section 6.1. Every cvar affects the virtual
client differently and comes with a default value if not set as a parameter
or in a configuration file. They are stored in the engine as cvar_t structures,
which are linked with the cvar system on initialization. The following ex-
ample is fetched the cvar declarations in ./code/qcommon/common.c. It links
virtualClientSkill with the cvar system, provides a default value if not al-
ready set, and validates its value:

1 // Retr ieve bot s k i l l (worst 1−5 bes t)
2 c o m _ v i r t u a l C l i e n t S k i l l =
3 Cvar_Get (" v i r t u a l C l i e n t S k i l l " , " 4 " , CVAR_LATCH) ;
4 Cvar_CheckRange (c o m _ v i r t u a l C l i e n t S k i l l , 1 , 5 , qtrue) ;

The cvar system stores each cvar as integer, float, and string (char
array) in their representative cvar_t structures. It enables support for
all the three datatypes and prevents the need for computationally heavy
conversions. The following example illustrates how the engine can use the
com_virtualClient cvar to detect the support for virtual clients.

1 i f (com_vir tualCl ient−>i n t e g e r) {
2 // V i r t u a l c l i e n t s p e c i f i c code here
3
4 i f (com_vir tualCl ient−>i n t e g e r < 2) {
5 // GUI s p e c i f i c v i r t u a l c l i e n t code here
6 }
7 }

50

5.1.2 Shadow Server & Bot Initialization

Some conditions need to be met in order to launch the shadow server: The
virtualClient cvar has to be set, the client must be connected to a real game
server, and the client related data structures must contain valid data. It
could have been done by implementing multiple special-case conditional
checks in the engine’s primary game loop, but it would break with the
engine’s high-cohesion architecture and require that the conditionals are
processed every single frame.

A better approach is to implement it in a rarely called function that also
requires some of the same conditions to be met. It was thus decided to
place it in the client’s game-state parser function, CL_ParseGamestate() in
./code/client/cl_parse.c, which is called every time the real server transmits
a game-state update to the client. Game-state update does only concern
major modifications to the active game on the server, such as a map-
switch or a new game mode. It is thus only transmitted to a client at
its initial connect and when the server needs to reload the game. This
implies that the CL_ParseGamestate() is a rarely utilized function that is only
called if the client is connected to a server. The original functionality in
the function also ensures that the required client data structures contain
valid data, providing ideal conditions for launching the shadow server. A
stripped down version of the function containing the shadow server launch
procedure is provided below.

1 void CL_ParseGamestate (msg_t *msg) {
2 /* Game s t a t e parsing */
3
4 // Launch the shadow−copy of the r e a l server i f required
5 i f (com_vir tualCl ient−>i n t e g e r && ! com_sv_running−>i n t e g e r) {
6 char * s e r v e r I n f o ;
7
8 // Retr ieve server i n f o on the r e a l server
9 s e r v e r I n f o = c l . gameState . s t r ingData

10 + c l . gameState . s t r i n g O f f s e t s [CS_SERVERINFO] ;
11
12 // Set up l o c a l server params with data from the r e a l
13 // server to mirror i t l o c a l l y
14 Cvar_Set (" f r a g l i m i t " ,
15 Info_ValueForKey (server Info , " f r a g l i m i t ")) ;
16 Cvar_Set (" t i m e l i m i t " ,
17 Info_ValueForKey (server Info , " t i m e l i m i t ")) ;
18 Cvar_Set (" g_gametype " ,
19 Info_ValueForKey (server Info , " g_gametype ")) ;
20 Cvar_Set (" sv_maxcl ients " ,
21 Info_ValueForKey (server Info , " sv_maxcl ients ")) ;
22 Cvar_Set (" g_maxGameClients " ,
23 Info_ValueForKey (server Info , " g_maxGameClients ")) ;
24 Cvar_Set (" c a p t u r e l i m i t " ,
25 Info_ValueForKey (server Info , " c a p t u r e l i m i t ")) ;
26
27 // S t a r t the l o c a l v i r t u a l server , u t i l i z i n g
28 // the engine ’ s command system
29 Cbuf_ExecuteText (EXEC_NOW,
30 va ("devmap %s\n" ,

51

31 Info_ValueForKey (server Info , "mapname"))) ;
32 }
33 }

The function verifies that the virtualClient cvar is set and that the local
shadow-server is not already running. It then retrieves the real server’s
gamestate data from the client’s cl structure, and extracts its values to
create the proper configuration for the shadow server through cvars. The
remaining code executes a devmap command through the engine’s own
command system, with the real server’s map name as parameter. This
triggers the engine to call the same procedure that is called when launching
a hidden single player game server, which has been slightly modified with
virtual client conditionals.

The next step is to add the bot to the shadow server, something
that should only be done on the first received snapshot from the real
server. It has been done by using the same approach as with the
shadow server, modifying an existing function, CL_ParseSnapshot(), in
./code/client/cl_parse.c. The function guarantees that the client is connected
and that the shadow server is running, as a game state is always handled
before the first snapshot arrives. Its existing functionality already contains
a procedure of identifying the very first snapshot. It is utilized to perform a
call to a new function, SV_CreateVirtualPlayer(), with various data from the
initial snapshot as parameters. The snapshot data contains the real server’s
game time, the state of the game’s entities, player data, and an index into
the entity array. It is used to create the bot in the local shadow server, and
to synchronize the shadow server with the real server. This procedure is
provided below.

1 void SV_CreateVir tualPlayer (i n t serverTime ,
2 i n t parseEntitiesNum , i n t numEntities ,
3 e n t i t y S t a t e _ t * e n t i t i e s , p l a y e r S t a t e _ t * ps)
4 {
5 i n t i ;
6 c l i e n t _ t * c l ;
7
8 i f (! com_sv_running−>i n t e g e r || ! com_vir tualCl ient−>i n t e g e r
9 || v i r t u a l C l i e n t I n i t i a l i z e d) {

10 return ;
11 }
12
13 // Store the time of v i r t u a l c l i e n t c r e a t i o n
14 v i r t u a l C l i e n t I n i t i a l i z e d = ps−>commandTime ;
15
16 // To ensure t h a t the add command s e l e c t s the proper c l i e n t

s l o t
17 f o r (i = 0 , c l = svs . c l i e n t s ; i < ps−>clientNum ; i ++ , c l ++) {
18 i f (c l−>s t a t e == CS_FREE) {
19 c l−>s t a t e = CS_VC_OCCUPIED ;
20 }
21 }
22
23 // Concatenate the arguments f o r the QVM s y s c a l l
24 Cmd_TokenizeString (va ("%s %d %s %s %p" , com_vir tualCl ientBot

−>s t r i n g ,

52

25 c o m _ v i r t u a l C l i e n t S k i l l −>integer , " 0 " , com_virtualClientName
−>s t r i n g , ps)) ;

26 Cmd_Args_Sanitize () ;
27
28 // Synchronize time with the r e a l server
29 Sys_Sleep (svs . time) ;
30
31 // Add the bot to the l o c a l shadow server
32 VM_Call (gvm, GAME_ADD_VIRTUALCLIENT, ps) ;
33
34 // Concatenate new arguments f o r the next QVM s y s c a l l
35 Cmd_TokenizeString (va ("%p %p" , e n t i t i e s , ps)) ;
36 Cmd_Args_Sanitize () ;
37
38 // Update the shadow server ’ s e n t i t i e s with r e a l server data
39 VM_Call (gvm, GAME_UPDATE_VIRTUALCLIENT, parseEntitiesNum ,

numEntit ies) ;
40
41 // Re−enable the c l i e n t s l o t s
42 f o r (i = 0 , c l = svs . c l i e n t s ; i < ps−>clientNum ; i ++ , c l ++) {
43 i f (c l−>s t a t e == CS_VC_OCCUPIED) {
44 c l−>s t a t e = CS_FREE ;
45 }
46 }
47 }

The function starts by ensuring that the shadow server is running, that
virtual client support is enabled, and that the function has not been called
previously. The latter uses a variable that is immediately set afterwards
with the time of the bot’s creation. The following loop iterates through the
pre-allocated server array of client slots and sets every client slot before
the provided player’s ID number to occupied. It is required to ensure
that the following system call to the server QVM selects the same client
slot for the player as on the real server. Entity updates would become
difficult otherwise. The function then concatenates the parameters to the
server QVM call as a string, and adds it to the engine command system’s
argument stack. It is required as the QVM call procedure, VM_Call(),
only support integer parameters. Pointers could theoretically have been
casted to integers and used directly, but it would not work in 64-bit
builds of the game because integer and pointer size differs on the 64-bit
architecture. It then sleeps some milliseconds to synchronize the shadow
server’s game time with the real server. Development tests demonstrated
that this was necessary to prevent the bot from performing pre-mature in-
game actions. It then calls the server QVM system call to add the bot,
which leads to a QVM function call in ./code/game/ that is shown below. The
remaining functionality of the procedure performs a new server QVM call
to synchronize the entities, and re-enables the occupied slots. The entity
update QVM call is documented in 5.1.3 on the following page.

1 s t a t i c void addVir tua lCl ient () {
2 char botName [2 1] ;
3 char s k i l l S t r [4] ;
4 f l o a t s k i l l ;
5 char team [5] ;

53

6 char vcName [2 1] ;
7 char ps [1 5] ;
8 p l a y e r S t a t e _ t * psp = NULL;
9

10 // Retr ieve botname and s k i l l from argument s tack
11 trap_Argv (0 , botName , s i z e o f (botName)) ;
12 trap_Argv (1 , s k i l l S t r , s i z e o f (f l o a t)) ;
13
14 // Ver i fy and c a s t the s k i l l
15 i f (! s k i l l S t r [0]) {
16 s k i l l = 4 . f ;
17 } e l s e {
18 s k i l l = (f l o a t) a t o i (s k i l l S t r) ;
19 }
20
21 // Retr ieve team , c l i e n t name , and player s t a t e pointer
22 // from argument s tack
23 trap_Argv (2 , team , s i z e o f (team)) ;
24 trap_Argv (3 , vcName , s i z e o f (vcName)) ;
25 trap_Argv (4 , ps , s i z e o f (ps)) ;
26
27 // Cast the pointer s t r i n g to a r e a l po in ter
28 s s c a n f (ps , "%p" , &psp) ;
29
30 // Add the bot using a s l i g h t l y modified vers ion of the QVM’ s
31 // nat ive G_AddBot funct ion
32 G_AddBot (botName , s k i l l , team , 0 , vcName , psp) ;
33 }

The function retrieves necessary data from the engine command system’s
arguments stack, which all are stored as strings. It casts and verifies the
arguments to proper values and performs a call to the slightly modified
version of the QVM’s function for adding bots. The modifications primary
concerns the support for providing a pre-defined player state. It makes the
function position the bot at the exact same location as on the real server
and synchronizes the player state data. The local running engine has now
a complete copy of the real server with all entities synchronized with the
latest snapshot of the real server.

Other smaller modifications have also been made in various files to
ensure proper virtual client functionality. Common for them all is that they
all check the virtualClient cvar to ensure that the modifications do not apply
if it is not enabled.

5.1.3 Synchronization & Proxy Communication

A local shadow server with a bot initially positioned at the same location
as the client on the real server, does not do much good. The bot library
immediately starts processing the bot’s AI, leading to player actions that
only occur on the shadow server. These actions need to be captured
and transmitted to the real server. This is implemented by exploiting the
engine’s event queue system. All engine input, including bot actions, are
placed in an event queue. The various components pulls and processes
events from this queue that are within their individual responsibilities [57].
Bot action forwarding can thus be implemented by copying the bot’s

54

commands (actions) to a client command and place it in the event queue.
The client system will then automatically capture the client command and
transmit it to the real server, just as if it was the client’s direct command.
This is implemented with the three first lines of code in the server function
presented below, located in ./code/server/sv_client.c:

1 void SV_ClientThink (c l i e n t _ t * c l , usercmd_t *cmd) {
2 i f (com_vir tualCl ient−>i n t e g e r) {
3 CL_AddUserCommand(cmd) ;
4 }
5
6 c l−>lastUsercmd = *cmd ;
7
8 i f (c l−>s t a t e != CS_ACTIVE) {
9 re turn ; // may have been kicked during the l a s t usercmd

10 }
11
12 VM_Call (gvm, GAME_CLIENT_THINK, c l − svs . c l i e n t s) ;
13 }

The server function is modified to add the received user command to
the client’s command queue if it is running as a shadow server (virtual
client enabled). It uses the CL_AddUserCommand() function to enqueue
the command into the client’s queue, which is implemented in the client
code. Calling a client function from the server code is not good in terms of
engine architecture, because it makes the server component dependent of
a specific client implementation. A better solution would be to utilize an
abstract inter-communication procedure between the engine components,
as discussed in section 2.2.2. The engine does however not provide this,
and it is notable that several other server functions utilize client calls in
the unmodified engine source. It was thus decided to keep the presented
solution for simplicity.

Another client function is altered to block keyboard and mouse actions
that normally produce client commands. Other input is still allowed,
enabling the user to access the in-game console and game menu. This
applies only when running a virtual client with a GUI, as it is completely
ignored when running from the console.

This functionality is alone enough to have a virtual client that interacts
relatively well with its surrounding environment, but it is not a realistic
client. It will fail to interact with other players and never generate combat
traffic. Updates from the real server need to be transmitted to the shadow
server in order to synchronize all entities, including other players and the
bot itself. The latter takes account for the latency between the shadow
and the real servers, and makes the bot adjust itself accordingly. Updates
are transmitted from the server at a given interval, with all data stored in
snapshots.

Forwarding snapshots from the real dedicated server to the local virtual
server is a bit more cumbersome than forwarding bot commands, and
introduces the more unstable part of the implementation. The real server
transmits updates to the client once every frame, but the updates are
limited to only include the modified entities within the client’s view

55

area [21]. Also, the actual game times on the two servers are never the
same. This is solved by copying the player and entity states from each
snapshot received from the real server into the bot and entity structures of
the virtual local server. This happens in the end of the client frame function,
CL_Frame in ./code/client/cl_main.c, which ensures that all snapshot entities
have been processed before transmitting them to the shadow server. A
server function, SV_UpdateVirtualServer, is called if the shadow server is
running and is provided with extracted snapshot data as parameters. The
server function is implemented in ./code/server/sv_main.c and contains the
following:

1 void SV_UpdateVirtualServer (i n t serverTime ,
2 i n t parseEntitiesNum , i n t numEntities ,
3 e n t i t y S t a t e _ t * e n t i t i e s , p l a y e r S t a t e _ t * ps)
4 {
5 i f (! com_sv_running−>i n t e g e r || ! com_vir tualCl ient−>i n t e g e r
6 || ! v i r t u a l C l i e n t I n i t i a l i z e d
7 || ps−>commandTime == v i r t u a l C l i e n t I n i t i a l i z e d)
8 {
9 re turn ;

10 }
11
12 // Add the arguments f o r the QVM s y s c a l l
13 Cmd_TokenizeString (va ("%p %p" , e n t i t i e s , ps)) ;
14 Cmd_Args_Sanitize () ;
15
16 VM_Call (gvm, GAME_UPDATE_VIRTUALCLIENT, parseEntitiesNum ,

numEntit ies) ;
17 }

The function starts by ensuring that all demands are met in order for it
to continue, before it pushes the player state and entity pointers to the
engine command component’s argument stack. It completes by performing
a QVM system call to the server QVM that performs the updates on its
entities. The QVM function that performs the actual updates is located in
./code/game/ai_main.c and contains the following:

1 void BotUpdateVir tualCl ient (i n t parseEntitiesNum ,
2 i n t numEntit ies)
3 {
4 i n t i ;
5 char psBuff [1 5] ;
6 char entsBuf f [1 5] ;
7
8 // Retr ieve e n t i t y and player s t a t e p o i n t e r s from arg . s tack
9 g c l i e n t _ t * c l = NULL;

10 p l a y e r S t a t e _ t * ps = NULL;
11 e n t i t y S t a t e _ t * ents = NULL;
12
13 trap_Argv (0 , entsBuff , s i z e o f (entsBuf f)) ;
14 trap_Argv (1 , psBuff , s i z e o f (psBuff)) ;
15
16 // Convert the s t r i n g s to a c t u a l p o i n t e r s
17 s s c a n f (entsBuff , "%p" , &ents) ;
18 s s c a n f (psBuff , "%p" , &ps) ;

56

19
20 // Ensure t h a t we have va l id e n t i t i e s
21 i f (! ents) {
22 return ;
23 }
24
25 // Loop through a l l provided e n t i t i e s
26 f o r (i = 0 ; i < numEntit ies ; ++ i) {
27 // Fetch e n t i t y data . 8192−1 == MAX_PARSE_ENTITIES .
28 e n t i t y S t a t e _ t * ent =
29 &ents [(parseEntitiesNum + i) & (8192 − 1)] ;
30 g e n t i t y _ t * gent = &g _ e n t i t i e s [ent−>number] ;
31
32 // Copy in the new e n t i t y s t a t e
33 Com_Memcpy(&gent−>s , ent , s i z e o f (e n t i t y S t a t e _ t)) ;
34
35 // S p e c i a l case handling f o r players
36 i f (ent−>eType == ET_PLAYER) {
37 // I f not previously i n i t i a l i z e d on l o c a l shadow server
38 i f (! Q_stricmp (gent−>classname , " c l i e n t s l o t ")) {
39 // Need to c r e a t e a l o c a l p l a y e r s t a t e as Cl ientBegin
40 // zeroes out the c l i e n t −>ps
41 p l a y e r S t a t e _ t p l a y e r S t a t e ;
42
43 // Set i n i t a l s t a t e , w i l l be updated next frame .
44 Com_Memset(& playerS ta te , 0 , s i z e o f (p l a y e r S t a t e _ t)) ;
45 VectorCopy (ent−>pos . trBase , p l a y e r S t a t e . o r i g i n) ;
46 VectorCopy (ent−>apos . trBase , p l a y e r S t a t e . viewangles) ;
47 p l a y e r S t a t e . s t a t s [STAT_HEALTH] = 1 2 5 ;
48
49 // Spawn the e n t i t y on the server
50 Cl ientBegin (ent−>clientNum , &p l a y e r S t a t e) ;
51 } e l s e {
52 // Player already r e g i s t e r e d . Check i f dead .
53 i f (ent−>eFlags & EF_DEAD) {
54 i f (gent−>c l i e n t)
55 gent−>c l i e n t −>ps . pm_type = PM_DEAD;
56 } e l s e {
57 // Needed to r e s e t dead f l a g
58 gent−>c l i e n t −>ps . pm_type = PM_NORMAL;
59
60 // Update the player ’ s p o s i t i o n
61 gent−>r . currentOr ig in [0] = ent−>pos . t rBase [0] ;
62 gent−>r . currentOr ig in [1] = ent−>pos . t rBase [1] ;
63 gent−>r . currentOr ig in [2] = ent−>pos . t rBase [2] ;
64
65 // Update the player ’ s angles
66 gent−>r . currentAngles [0] = ent−>apos . t rBase [0] ;
67 gent−>r . currentAngles [1] = ent−>apos . t rBase [1] ;
68 gent−>r . currentAngles [2] = ent−>apos . t rBase [2] ;
69 }
70 }
71 }
72 }
73
74 // Ensure we have a proper player s t a t e
75 i f (! ps) {
76 return ;
77 }

57

78
79 // Retr ieve the v i r t u a l c l i e n t
80 c l = g _ e n t i t i e s [ps−>clientNum] . c l i e n t ;
81
82 // Update i t s player s t a t e
83 i f (c l) {
84 Com_Memcpy(&cl−>ps , ps , s i z e o f (p l a y e r S t a t e _ t)) ;
85 }
86 }

The function loops through all the provided entities from the snapshot
and updates their entity state data structures. Some special handling is
required for client entities (players) as the bot needs to know whether they
are enemies, alive or on the map at all (spectators). It also updates the bot’s
player state that ensures a complete synchronization with the real server.
It works well and the virtual client is completely able to interact properly
with other clients in the game. The same goes for static entities, as it now
knows whether another player has claimed an item on the map.

5.2 Summary

Virtual client functionality has been implemented by running a bot on a
local replica of the real server, where client commands and server updates
are communicated through the kernel by exploiting engine features. The
kernel works like a proxy that transfers data between the real and shadow
server that does not know about each other. A visual representation of the
entire procedure is illustrated through an UML sequence diagram in figure
5.1. The following paragraph explains the figure in detail.

It all starts with a handshake where the client requests a connection
to the server by providing a randomly generated challenge. The server
verifies that the client’s IP addressed is not blocked and that no other
connected client has the same challenge. An accept message is returned
to the client if everything is good. The challenge is now used to encrypt
the data transmitted between the client and server. The client transmits a
connect message containing player data. The server accepts the message,
spawns the client, and returns a baseline to the client, which is a clean
snapshot containing all data on all entities. This triggers the function that
launches the local shadow server based on the received game data. Some
milliseconds pass by before the client receives its first snapshot that triggers
the creation of the bot. The client sleeps to synchronize its game time with
the real server and performs the first entity synchronization. Everything is
now properly initialized and the game loop ensures that bot commands
and server updates are continuously transmitted between the real and
shadow server.

58

Local Client Dedicated Server

Challenge request

Challenge accepted

Connect w/bot data

Accept + baseline

Snapshot #1

Stores server data

CreateLocal Shadow
Server

Sleep

Loop

(true) Bot command(s)
Bot command(s)

Snapshot #nUpdate bot and local
entities from snap #n

{~750ms}

Add bot

Update local
entities from snap #1

Figure 5.1: UML Sequence Diagram of the entire Virtual Client Procedure

59

60

Chapter 6

Installation & Usage

This chapter provides instructions for installation and usage of virtual
clients in Quake III Arena. The first section describes how to install and
build the game on your local system, while the second explains how to use
the virtual clients. Some shell scripts have been developed for easier usage
and are provided together with the source. These are documented with
examples of usage. The installation and usage instructions may also apply
to both OpenArena and the unmodified original game, and can be useful for
anyone interested in those games.

6.1 Installation

This section explains how to install and build the virtual client-enabled
game. Instructions are provided on how to obtain the game content files
and build alternatives are presented.

6.1.1 Installing the Binary Data Files

Only the source code of Q3A is released as open source under the GNU
General Public License version 2. The binary data files, including 3D
models, textures, audio files, etc. are not open and needs to be obtained
from a original CD or by purchasing the game online [20]. Use an installer
or manually extract the binary files to an appropriate location on your
system. The ioquake3 project’s official website provides installers that
includes the latest patches and creates the proper directories and files. All
you have to do is to extract the primary binary data file baseq3/pak0.pk3
and the product key file baseq3/q3key from the purchased product and place
them in the baseq3 sub-directory of the installed ioquake3 directory [49]. Test
your install by running the ioquake3 executable.

6.1.2 Building ioquake3 with Virtual Clients

The source code of the ioquake3 virtual client implementation can be
obtained from my GitHub git repository [13]. The master branch is nothing
more than a copy of the original ioquake3 project’s official Git branch [14].

61

My implementation is found in the ProxyClient branch. The engine and
QVMs can be built using Make (*nix) or the Visual Studio 2013 project
located in ./misc/msvc12/ioq3.sln (Windows). Detailed install instructions
and documented build alternatives can be found by investigating the
Makefile or in the official README [14].

Retrieving and building the engine using Make:

1 g i t c lone git@github . com : stigmh/ioq3 . g i t
2 cd ioq3
3 g i t checkout ProxyClient
4 make

The first instruction above clones the source code of the external git
repository into subdirectory named ioq3 on your local drive. The next
navigates into the subdirectory, which is now a local git repository. The
remaining instructions jump into the proper git branch and start the
automated build process using Make. Resulting build binaries can be found
in a sub-directory of the ./build directory on successful compilation. Which
exact sub-directory depends on your platform and build preferences. Test
the build by running the executable with the +set fs_basepath argument,
which tells the executable where to locate the data files. Note that it requires
Simple DirectMedia Layer (SDL) 1.2.15 to be installed on your system. SDL
resources and guides can be found at their official website [37].

Example of running compiled executable on OSX:

1 ./ ioquake3 . x86 + s e t fs_basepath /Appl ica t ions/ioquake3/

Be aware that this approach will only use the compiled ioquake3 executable,
and not the compiled QVMs. You will have to do some file copy operations
and provide some additional arguments in order to use the compiled
(development) QVMs. First, you need to either copy the compiled dynamic
libraries (*.dll/*.so) into the baseq3 directory of the Q3A install directory.
Alternatively, create two directories (e.g.: virtualclient/vm) in the Q3A
install directory and copy the compiled *.qvm files there. Second, run
the executable with arguments instructing it to use your compiled QVMs
rather than the ones located in the pk3 data files.

Example of running the executable with custom built dynamic library QVMs:

1 ./ ioquake3 . x86 + s e t fs_basepath /Appl ica t ions/ioquake3/ + s e t
sv_pure 0 + s e t vm_ui 0 + s e t vm_game 0 + s e t vm_cgame 0

6.2 Usage

This section explains how to manually enable virtual client support in the
engine, and how to use it for server and network load generation. Several
shell scripts are described that can be used for an automated and easier
procedure.

62

Cvar name Description
virtualClient Integer, 1-2. Whether to launch as a virtual client.

0: no. 1: yes with GUI. 2: yes with terminal.
virtualClientSkill Integer, 1-5. 1 is worst, while 5 is best.
virtualClientBot String. Which bot script file to utilize, also used for

model.
virtualClientName String. Name of client on server, can be anything.

Table 6.1: Description of implemented cvars to control the virtual clients.

6.2.1 Running ioquake3 with Virtual Clients

Four configurable cvar variables have been added to the engine, which
are used to dynamically control the virtual clients. The engine’s cvar
system enables them to be set and modified through program arguments,
the in-game console, or through an engine configuration file. Table 6.1
lists the implemented cvars with descriptions. The most essential cvar is
virtualClient that defines whether or not to enable virtual client support.
It defaults to zero, which makes it ignore all modifications and run like
the original game. Setting it to 1 launches the game with the rendering
system enabled and a virtual client that you can spectate from its point of
view, which can be handy for development. The user gets full access to the
engine’s graphical user interface (GUI). Setting it to 2 launches the game in
console mode with a virtual client. Launching it as console requires much
less resources than with GUI. Running in console does not need to perform
graphics processing, nor load the menu QVM and graphical elements. It is
useful when multiple virtual clients are to run on the same machine. Note
that it is advised to always connect to a server on the launch of a virtual
client, through the +connect parameter.

Running a virtual client with GUI enabled and a custom name:

1 ./ ioquake3 . x86 + s e t fs_basepath /Appl ica t ions/ioquake3/ + s e t
sv_pure 0 + s e t vm_ui 0 + s e t vm_game 0 + s e t vm_cgame 0 + s e t
v i r t u a l C l i e n t 1 + s e t virtualClientName Stigmha +connect
1 2 7 . 0 . 0 . 1

6.2.2 Shell Scripts for Easy Usage

The git codebase [13] provides some shell script files to make development
and launching virtual clients easier. They are located in two subdirectories
of ./misc/virtual_client/, one directory for Windows (*.bat) and one for Unix
based systems (*.sh). All depends on a local file that you need to create,
called baseq3path.local.(sh/bat), which you can find and example of in the
README files. Script documentation and examples are available within
two README files and the comments of the script files. They also require
that you have installed the game and built the virtual client binaries as
described in 6.1 on page 61. This section documents the scripts and their

63

usage. All are configured to run with the development QVMs as described
in the previous section.

install_(so/dll)

This script should be run after building the engine or any of the QVMs.
It copies all the dynamic libraries (*.so/.dll) to the proper location of the
install directory, ensuring that you are working on your compiled version
of the QVMs instead of the natives located in the pk3 files. The script
takes no arguments, but requires that your local baseq3path.local.(bat/sh) is
configured properly.

launch_virtualclient

Launches a single virtual client. It has five optional arguments in the
following order: server, virtual client mode, user name, skill, and bot.
The server argument should either be the IP or domain name of the game
server; default is 127.0.0.1 (localhost). Virtual client mode specifies the
virtualClient cvar that you can modify to run it in either GUI or console
mode, default is GUI (1). The user name specifies the in-game name of the
connected client; default is VirtualClient. Skill defines the virtual client’s
(bot) skill level and should be between 1 and 5, default is 4. Bot specifies
which model and bot script to use, default is sarge. Example of use:

1 ./ l a u n c h _ v i r t u a l c l i e n t . sh nagios . n i th . no 1 Stigmha 3 orbb

launch_multiple_vcs

Launches multiple virtual clients with random properties in console mode,
all launched as background processes with output redirected to null.
Accepts two arguments: number of clients and server. Server is the same
as in launch_virtualclient. Number of clients specifies how many virtual
client processes to launch, default is 8. Note that the original engine has
hard coded support for maximum 64 clients on one server. This can easily
altered by changing two C macros in the engine’s source. Example of use:

1 ./ launch__mult iple_vcs . sh 32 nagios . n i th . no

launch_dedicated

Launches a dedicated ioquake3 server with the configuration available in
./misc/virtual_client/dedicated_server.cfg, which is a server configuration file
made especially for the use of virtual clients. It has a huge time and frag
limit, ensuring that map switches do not occur. No arguments are available.

64

connect_localhost

Launches the game and connects to a server on the local machine. Sets the
client name to Stigmha and the model to sarge/krusade. No arguments are
available.

benchmark.sh & manual_benchmark.sh

These files are only available in the Unix directory. They are scripts to
benchmark a Unix based game server utilizing SSH. Primarily used to
measure how the virtual clients affect server performance. Collected data is
used for evaluation and to generate some of the figures in this thesis. Both
can be configured through parameters and by modifying the variables at
the beginning of the files.

65

66

Part IV

Results

67

Chapter 7

Results and Evaluation

7.1 Server Load Generation

A stress-test with 0-48 virtual clients was performed and monitored to
evaluate how the implementation loads server hardware and networks. It
measured CPU load, memory usage, and network bandwidth consumption
on the server. The test could potentially have been done with up to 64
clients, but the server became overloaded with 48 clients and were unable
to process any additional connections. It resulted in connection timeout
failures for both Quake III Arena and SSH connection attempts.

The benchmark was performed on an older Debian 6.0 Linux server
running an unmodified 32-bit version of ioquake3, with a single core Intel(R)
Xeon(R) X5650 64-bit 2.67GHz CPU and 250MB RAM. The virtual clients
and the benchmarking procedure were launched from a more powerful
multi-core machine running Kali Linux. Everything was automated
through the use of shell scripts which use static time intervals for precision,
these are documented in section 6.2.2 on page 63. All measured values are
calculated from the average of 10 readings.

Network Traffic Load

Figure 7.1 shows how the virtual clients affect the server’s network
bandwidth, with values measured in kilobytes per second (Kb/s). The Data
in graph is close to linear because each client is responsible for transmitting
its own updates to the server [21], the bandwidth increases proportionally
with the amount of clients. Data out’s graph is closer to quadratic as
each client needs to receive updates from all the other clients within its
respective view area [21].

Both graphs show that the virtual clients successfully generate network
traffic that affects the server’s overall bandwidth load. Each client
continuously transmit their player actions to the server, which is processed
and leads to snapshot updates that needs to be transmitted to all the
connected clients. The more players, the larger the snapshots, and the more
snapshots are transmitted every frame.

69

0 2 4 6 8 11 14 17 20 23 26 29 32 35 38 41 44 47

0

100

200

300

400

500

600

700

800

900

Number of Virtual Clients

U
til

iz
at

io
n

−
 K

b/
s

Data in (kb/s)
Data out (kb/s)

Figure 7.1: Network Load on Server with 0-48 Connected Virtual Clients

CPU & Memory Utilization

Figure 7.2 illustrates the server’s CPU and memory utilization and is
measured in percentage (%). CPU utilization increases until it stagnates
at approximately 71% utilization with 21 connected virtual clients. The
server starts to struggle as it becomes overloaded, so the operating system
needs to share the available processing capabilities among other processes.
A more powerful multi-core server will likely manage to serve more clients
before it stagnates. An entire core can be dedicated to the game server and
a higher clock frequency will enhance the processing speed. A multi-core
machine may also run multiple instances of the server software, allowing
an even greater amount of simultaneous connected players.

Memory usage remains constant as the game engine always pre-
allocates enough memory for the max number of supported clients (64) on
start-up. This allows the server to dynamically manage its clients without
performing any expensive dynamic memory operations. The server also
pre-allocates memory for dynamic entity management for the same reason.
This allows it to create and delete new entities, such as projectiles, without
much overhead. Disadvantages are that the engine must be altered and
recompiled to support more than 64 players, and that it will always
reserves enough memory for its maximums supported clients and entities.
Larger portions of the reserved memory may never be utilized. Memory is
however considered cheap, so it is worth it in terms of performance. The
maximum number of players may be increased by modifying two macros
in the source code following by re-building the engine.

70

0 2 4 6 8 11 14 17 20 23 26 29 32 35 38 41 44 47

0

10

20

30

40

50

60

70

80

90

Number of Virtual Clients

U
til

iz
at

io
n

−
 P

er
ce

nt
ag

e
(%

)
CPU (%)
Memory (%)

Figure 7.2: Server CPU & Memory Utilization with 0-48 Connected Virtual
Clients

Mode CPU Memory Bandwidth in Bandwidth
out

Regular player 252.42% 79 MB 1.64 Kb/s 5.80 Kb/s
VC Graphical 234.26% 94 MB 2.00 Kb/s 5.14 Kb/s
VC Console 6.94% 29 MB 1.41 Kb/s 6.00 Kb/s

Table 7.1: Various Client Types and their System Load

7.2 Virtual Client Resource Usage

Our implementation is capable of running in two different modes; graph-
ical and console. Graphical mode allows the user to observe the virtual
client from the bot’s point of view, and all the visual components of the
game are present. Console mode is based on the dedicated server modifi-
cations to the game, and presents the user with nothing but a console that
prints the engine’s output. All virtual clients where launched in console
mode for the server benchmarking.

Table 7.1 shows an average of the various client types’ resource usage,
all measured with a single client. The data is retrieved from a host with a
quad core 2.6Ghz CPU (max 400%) and 4GB memory. The console version
is executed in one thread, while the two others utilize six. It shows that
the console client requires significant less processing power and memory
than the others, while the network differences are minimal. The reason is
that the console client does not load and process the audio-visual assets

71

of the game, including the entire UI QVM. Running a GUI enabled virtual
client utilizes more resources than a regular player, as it requires additional
memory and processing for the local shadow server.

The results in table 7.1 show that this specific host is theoretically
capable of running up to 57 virtual client instances simultaneously without
getting overloaded. A more powerful host is likely to handle more, but
multiple host machines is probably required to perform large-scale testing
with hundreds of virtual clients.

7.3 Traffic Authenticity

(a) q3dm17 Map Overview (b) Gameplay

Figure 7.3: Screenshots of the q3dm17 Map and Virtual Client Gameplay

Section 3.2.8 on page 30 discussed network generation tools and stated
a need for authentic network traffic generation. It means that a tool’s
generated traffic must have the same transmission patterns as a real human
to provide credible test results. A load-generating virtual client needs to
produce packets of similar transmission rate and content as a real player.
It will otherwise affect the server differently than real players, making the
stress-test results not representative of a real-life scenario.

Shin et al [35] performed network traffic analysis to compare the
patterns of generated data with the patterns of a real player. This
should ideally also have been done for the evaluation of the virtual client
implementation, but was left out to limit the scope of this thesis. The reason
is that network analysis requires significant amounts of time, and because
it is the bot library that primarily defines the traffic patterns through its AI-
generated actions. The bot library was however developed to be as close to
a real player as possible, making it likely that the produced pattern is close
to authentic.

Testing the implementation and playing against the virtual clients show
that they behave as real players typically would do. They navigate properly
through the map and makes adequate decisions based on their current
state. Most tests have been run on the map named q3dm17 with bot skill
(virtualClientSkill cvar) set to 4. The map was chosen because it consists
of multiple airborne platforms with many jump pads and portals, requiring
a high degree of coordination to not fall off the edges. This is illustrated

72

in figure 7.3a, which is an overview of the map. The virtual clients both
navigate and fight in a natural manner on this demanding map, with low
rates of failure. Failure usually occurs when attempting to jump using a
jump pad or when entering a portal. The virtual client is never completely
synchronized with the real server, which makes it sometimes collide with
a portal wall or partly miss a jump pad. The implemented synchronization
mechanism corrects this in most cases, but it can make virtual clients fall off
the map in rare occasions. Figure 7.3b shows a GUI enabled virtual client
in action, fighting against 13 other console based virtual clients on q3dm17.

7.4 Discussion

This section reflects upon the work and procedures of this thesis. The
technical implementation and the entire process of selecting a game are
evaluated with suggestions for improvements. An overview of thesis’
contributions is provided with suggested areas of use.

7.4.1 Survey on Video Game Features & Qualities

The results of the survey presented in section 4.1.1 on page 37 established
the foundation for identifying open source games. Computer scientists
from abroad and several Norwegian research and educational institutions
were invited to participate, but only 22 felt eligible to respond. It may
reduce the credibility of the survey results, as it might not be enough
participants to have a representative selection. The top results presented in
table 4.1 are however of high relevance with the usage of games in research,
discussed in section 3.2 on page 20. This indicates that the results are
realistic with demanding requirements, graphics, and good documentation
dominating the list. The findings in table 4.2 are hence considered sufficient
requirements.

Some survey participants provided various valuable and interesting
feedback on both the contents of the online survey and the research topic
itself. The most important was regarding the content of the quantitative
survey, which was by some perceived as too restricting, and that a large-
scale process of qualitative interviews would have yielded better results.
This may be due to the specialized research area of the individual scientists
that makes it difficult to use a general list for their research. They may
however be considered special cases, but it is likely that a separate list for
each of the video game utilizing scientific topics would be more useful.
This will require work beyond the scope of this thesis.

Further research should include a similar survey of larger scale,
contacting computer scientists at research institutions all over the world.
Qualitative work such as interviews with scientists experienced in using
games in their research could give more detailed results, and lead to
multiple lists for the various specialized topics. One can then compare the
various lists to identify common properties that may be migrated into a
general list.

73

7.4.2 Open Source Game Evaluation

The proposed list of features and qualities presented in table 4.1 was
used to evaluate and identify games eligible for scientific use. Several
games were evaluated in section 4.1.3, but only three met the requirements
and were proposed as ideal for science. All of these games are far from
commercial quality, implying that there currently are no state-of-the-art
open source games available. The proposed games are however considered
the best alternatives, and should be sufficient for most researchers as they
meet most of the requirements in the feature list.

I would ideally like to see more game studios releasing their games as
open source. Researchers and industry could achieve mutual benefit from
more cooperation on new technologies. Releasing games as open source
will require some time and effort from the companies, and is thus usually
not perceived as a good investment. Tighter cooperation could alleviate
this situation. Researchers could also cooperate with open source projects
to achieve a similar goal, but it will likely require more work on the part of
the researchers.

Quake III Arena (ioquake3) was eventually selected for the implementa-
tion of virtual clients due to its engine features and low latency threshold.
Other scientists can compare the proposed games with the feature list to
find a game for their research. Their research is then likely to be repro-
ducible and of interest to other scientists because the selected game is open
and meets the requirements of other researchers.

The procedure for evaluating and identifying proposed games creates
a risk that some potential games may have been missed. The reason is the
vast amount of information and code in every open source game project,
which makes the procedure require significant amounts of time for every
evaluated game. Games were hence evaluated within the time restriction
of the project, and evaluation mistakes may have occurred despite the
thorough research.

There are other open source games available, and more should be
evaluated to obtain a greater list of suitable games. Future re-evaluations
are also required as games of the current generation games will become
outdated and new options will arrive.

7.4.3 Virtual Client Implementation

Quake III Arena has been converted into a load generation tool by
implementing virtual clients. These have been implemented like a local
proxy server, by exploiting various features of the engine. A proxy solution
was selected because parts of the engine’s native bot library was hard
coded directly into the server components of the game. This makes it
significantly more complex and time consuming to convert the library
into a native client feature, which is the alternative. It would also break
with Thorn’s (2011)[69] engine design principles, discussed in section
2.2.2. The proxy-based solution utilizes recyclability and simplicity through
a lightweight implementation exploiting existing functionality. It allows

74

it co-exist with the native functionality of the original engine, making it
easy to merge with updates from the original ioquake3 project. The simple
implementation allows virtual client functionality to be easily triggered, by
simply altering a cvar configuration value.

Stability is the primary drawback of the proxy implementation. The
local shadow server is never 100% synchronized with the real server, and
the current implementation doesn’t handle all special cases in the engine.
Both are due to time constraints of the thesis, as core functionality was
prioritized. Most synchronization issues are properly handled by the
implemented synchronization routine, discussed in section 5.1.3, but the
non-supported special cases lead to undefined behavior.

The implementation currently lacks the support for server messages
such as client disconnects and map switches. The latter happens when a
round is completed and a new map is loaded on the server. The challenge
here is that the local virtual server needs to load the same map as the real
dedicated server on a map switch, something the current implementation
doesn’t account for. It is thus recommended to configure the dedicated
server with a huge time and frag limit to prevent map switches at run-time.
It is not difficult to fix, but will probably require some days of investigation
and implementation to make it work properly.

Another issue is the support for multiple game modes. The develop-
ment was focused on the Free For All (FFA) deathmatch game mode, which
works well. Other game modes are not supported because the virtual client
running on the local virtual server only receives entity updates from the
real server snapshots, and won’t necessarily receive and interpret the team
related commands. Significant time with engine investigation and devel-
opment is expected to resolve this issue.

The largest drawback of the implementation may however be its
support for multiple virtual clients. It currently only supports one virtual
client per running instance of the software. This requires that multiple
instances of the engine and server specific resources are loaded and
running simultaneously on a single machine, which both could, and ideally
should, be shared among all the virtual clients. Implementing support for
multiple virtual clients in one instance of the game will require a significant
amount of modifications to both the engine and the client QVM code. The
original codebase is hard-coded to support only one client, which makes
is not an issue specifically related to the proxy-based implementation.
Alternative solutions would also suffer the same restriction. It is however
not a huge problem, as section 7.2 proved that a virtual client running in
console mode does not consume critical amounts of resources.

A potential better alternative to the suggested two native and proxy-
based approaches discussed in this section, would be to develop a virtual
client tool that can easily be used with any game. One approach is the
learning network generating tools discussed in section 3.2.8 on page 30,
which turned out to be a bad idea due to the diversity of video game
software. What I however liked was Cho et al’s (2010)[10] concept of a
configurable packet analyzing tool in VENUS II, which allows the user to
map specific player actions to specific network packets. A similar mapping

75

approach can potentially be used to develop a highly customizable virtual
client framework or library that can easily be implemented into any game
for full virtual client support. The framework could for instance provide
an application programming interface (API) for developers and scientists
to map specific actions and behavior to functionality in the engine.

7.4.4 Areas of Use

The three primary findings of this thesis may be used for multiple
purposes, both by resources and commercial developers. First is the
proposed list of features and qualities, which can be used to identify and
evaluate any video game as general-purpose tool for scientific use. All
steps of evaluating a game in comparison with the list are documented in
section 4.1.2 on page 38.

Evaluating games is however a quite time demanding task, so the thesis
proposed three games that are currently eligible for scientific use: Doom
3, Open Arena/Quake III Arena (ioquake3), and PlaneShift. Table 4.2 can
be used in correlation with the individual evaluations of each game in
section 4.1.3 to select a game that suits your specific purposes. You are
then certain to have a game that meets most researchers’ requirements,
and that allows you to freely publish your research results. It makes the
research reproducible, which enhances the credibility of the results. Be
aware that the proposed games will eventually become outdated, and new
games needs to be evaluated.

The resulting load generation tool of the Quake III Arena virtual client
implementation should be used to verify previous research where concepts
only have been implemented in smaller prototypes. Raaen et al (2012)[50]
could for instance implement their unique LEARS architecture into Quake
III Arena and use the virtual client feature to generate load and monitor
server performance. They can use the provided shell script files, discussed
in section 6.2.2, to make the load-generation and server benchmarking an
easy process.

Another area of use is the proxy-based concept itself. Other developers
and researchers may use a similar approach if they encounter an engine
with the same bot library challenges as Quake III Arena. It can be a simple
and time sparing approach that gives a lot of functionality with small
modifications to the original engine.

76

Part V

Conclusion

77

Chapter 8

Conclusion

This thesis provides multiple contributions to academic research on video
games. Video games and their use in computer science are thoroughly
discussed in chapter 2, indicating a need for an overview of open
source games of close-to commercial quality, and a freely available load-
generating tool. Chapter 4 identifies a list of researcher’s required features
and qualities that is used to identify three games eligible for academic
use. It validates the selection of Quake III Arena for implementing virtual
clients, converting it into a freely available load generation tool. The
implementation process and instructions of use is documented in chapter 6,
and everything is evaluated in chapter 7. This chapter concludes the thesis
by providing an overview of contributions and findings, and proposes
future works.

8.1 Contributions

This section briefly lists all contributions of the thesis, and provides a
summary of the milestones in the following subsections.

The first contribution is an overview of video games and their use in
research. Computer scientists were invited to participate in a survey, which
resulted in the list of qualities & features to evaluate games for scientific
use. The list was used to identify three open source games that are eligible
for research. A paper on Games for Research was published and presented
at LSDVE 2013 covering the findings.

Quake III Arena has been converted into a user-friendly load-generating
tool that is freely available. Several software bugs were discovered and
reported in ioquake3, SDL, and MinGW during the implementation, some
with proposed solutions that have been fixed. The implementation utilizes
a proxy-based solution to implement virtual clients, an approach that may
be adapted for similar work. This work has been assembled into a small
paper, which is submitted to ICEC 2014 and is pending review.

79

8.2 Games for Research

This thesis has gathered a list of features and qualities that must be met
for a video game to be considered suitable for use in computer scientific
research. The list has been used to evaluate the suitability of games
released with open source code. Our results shows that there are no open
source game of commercial quality available, but some are still demanding
enough to be interesting for research. A list has been developed of features
and qualities that are worth considering when looking for attractive games.
The list has been used to identify three potential computer games for
research, where one lead to the selection of Quake III Arena for the further
thesis works.

8.3 Virtual Client Based Load Generation Tool

I have successfully managed to convert Quake III Arena into a tool for
research on computer games by implementing virtual clients that produce
real network traffic and loads the game servers. Migrating the bot library
from the server logic into the client logic turns out to be a complex task, so a
workaround has been found by implementing a proxy-like solution. It runs
a shadow copy of a real server with a bot on the local client that transmits
messages between the real server and the bot. I consider it a simple, yet
quite elegant solution to a complex problem. There are currently some
special case issues with the implementation and room for improvements,
but it may still be usable in research like Petlund et. al [48] and Raaen et.
al [50] to verify their findings in a large-scale system.

The entire concept of a proxy-based implementation of virtual clients
may also be used in future research as a simple way of implementing
complex functionality in a large system.

8.4 Further Work

This section summarizes improvement opportunities for the work pre-
sented in this thesis, and suggests priorities for further work.

8.4.1 Game Research

Chapter 7 discussed the credibility and criticism of the research that defines
the list of required features, leading to the proposed video games for
computer science. It may be considered too weak due to the few survey
participants and the lack of qualitative research. Comparing the results
with the uses of video games in research reveals however that the results
reflect the documented use. The findings can hence be considered worth
evaluating when a game is to be used for research.

Better and more useful results may however be found by performing
similar research of a larger global scale, that includes several more
participants and performs qualitative interviews. A list of features and

80

qualities should be identified for each sub-topic discussed in section 3.2,
which eventually can be compared to create a list of features common for
all research on games. It is also inevitable that this research will become
obsolete in time, and new research will need to be done on the topic.

8.4.2 Improving the Virtual Clients

The virtual client implementation in Quake III Arena has several improve-
ment opportunities. The most critical is that it is currently only capable of
running one virtual client per instance of the software, leading to wasted
resources when launching multiple from one host. It requires multiple en-
gine modifications to resolve, and may break the opportunity to retrieve
updates for all files from the original ioquake3 project.

Other improvements revolve around the compatibility of transmitting
missing engine features between the local shadow server and the real
server. This includes server messages for critical game state changes,
such as map switching and team based actions. Details can be found in
section 7.4.3 on page 74.

The solution should work well for most scientific uses, but limits the
researchers to work with Quake III Arena. A highly configurable virtual
client software framework or library could potentially be developed for
easy implementation of virtual client support in any video game. It is
a massive project with a potentially high value for both scientists and
commercial developers.

81

82

Bibliography

[1] Dmitry Andreev. “Real-time Frame Rate Up-conversion for Video
Games: Or How to Get from 30 to 60 Fps for "Free".” In: ACM
SIGGRAPH 2010 Talks. SIGGRAPH ’10. Los Angeles, California:
ACM, 2010, 16:1–16:1. ISBN: 978-1-4503-0394-1. DOI: 10.1145/1837026.
1837047. URL: http://doi.acm.org/10.1145/1837026.1837047.

[2] Chris Anley et al. The Shellcoder’s Handbook, Second Edition: Discov-
ering and Exploting Security Holes. Second edition. Wiley Publishing,
Inc., 2007. ISBN: 978-0-470-08023-8.

[3] Grenville J. Armitage and Sebastian Zander. “Empirically measuring
the QoS sensitivity of interactive online game players.” In: Australian
Telecommunications Networks and Applications Conference. 2004.

[4] Peter C. Bell and Robert M. O’Keefe. “Visual Interactive Simulation
- History, recent developments, and major issues.” In: SIMULATION
49.3 (1987), pp. 109–116. DOI: 10.1177/003754978704900304. eprint:
http://sim.sagepub.com/content/49/3/109.full.pdf+html. URL: http:
//sim.sagepub.com/content/49/3/109.abstract.

[5] Timothee Besset. Doom 3 repository on GitHub. Nov. 2011. URL: https:
//github.com/TTimo/doom3.gpl.

[6] Timothee Besset. TTimo / doom3.gpl / Commit history. Nov. 2011. URL:
https://github.com/TTimo/doom3.gpl/commits/master?page=2.

[7] Adriana Braun, Bardo E. J. Bodmann, and Soraia R. Musse. “Simu-
lating Virtual Crowds in Emergency Situations.” In: Proceedings of the
ACM Symposium on Virtual Reality Software and Technology. VRST ’05.
Monterey, CA, USA: ACM, 2005, pp. 244–252. ISBN: 1-59593-098-1.
DOI: 10.1145/1101616.1101666. URL: http://doi .acm.org/10.1145/
1101616.1101666.

[8] André R. Brodtkorb, Martin L. Sætra, and Mustafa Altinakar.
“Efficient shallow water simulations on GPUs: Implementation,
visualization, verification, and validation.” In: Computers & Fluids 55
(2012), pp. 1–12. ISSN: 0045-7930. DOI: http://dx.doi.org/10.1016/j.
compfluid.2011.10.012. URL: http://www.sciencedirect.com/science/
article/pii/S0045793011003185.

[9] John Carmack. John Carmack Archive - .plan 1999. Mar. 2007. URL: http:
//fd.fabiensanglard.net/doom3/pdfs/johnc-plan_1999.pdf.

83

http://dx.doi.org/10.1145/1837026.1837047
http://dx.doi.org/10.1145/1837026.1837047
http://doi.acm.org/10.1145/1837026.1837047
http://dx.doi.org/10.1177/003754978704900304
http://sim.sagepub.com/content/49/3/109.full.pdf+html
http://sim.sagepub.com/content/49/3/109.abstract
http://sim.sagepub.com/content/49/3/109.abstract
https://github.com/TTimo/doom3.gpl
https://github.com/TTimo/doom3.gpl
https://github.com/TTimo/doom3.gpl/commits/master?page=2
http://dx.doi.org/10.1145/1101616.1101666
http://doi.acm.org/10.1145/1101616.1101666
http://doi.acm.org/10.1145/1101616.1101666
http://dx.doi.org/http://dx.doi.org/10.1016/j.compfluid.2011.10.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.compfluid.2011.10.012
http://www.sciencedirect.com/science/article/pii/S0045793011003185
http://www.sciencedirect.com/science/article/pii/S0045793011003185
http://fd.fabiensanglard.net/doom3/pdfs/johnc-plan_1999.pdf
http://fd.fabiensanglard.net/doom3/pdfs/johnc-plan_1999.pdf

[10] Chang-Sik Cho et al. “Online game testing using scenario-based con-
trol of massive virtual users.” In: Advanced Communication Technology
(ICACT), 2010 The 12th International Conference on. Vol. 2. Feb. 2010,
pp. 1676–1680.

[11] Mark Claypool and Kajal Claypool. “Latency and Player Actions in
Online Games.” In: Commun. ACM 49.11 (Nov. 2006), pp. 40–45. ISSN:
0001-0782. DOI: 10.1145/1167838.1167860. URL: http://doi.acm.org/
10.1145/1167838.1167860.

[12] Mark Claypool and Kajal Claypool. “Latency Can Kill : Precision and
Deadline in Online Games.” In: The First ACM Multimedia Systems
Conference (2010).

[13] Misc. contributors. GitHub ioquake3 Virtual Client Repository. 2014.
URL: https://github.com/stigmh/ioq3/tree/ProxyClient.

[14] Misc. contributors. Github Official ioquake3 Repository. May 2014. URL:
https://github.com/ioquake/ioq3/.

[15] Daniel Cordeiro, Alfredo Goldman, and Dilma Silva. “Load Balanc-
ing on an Interactive Multiplayer Game Server.” In: Euro-Par 2007
Parallel Processing. Ed. by Anne-Marie Kermarrec, Luc Bougé, and
Thierry Priol. Vol. 4641. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2007, pp. 184–194. ISBN: 978-3-540-74465-8. DOI:
10.1007/978-3-540-74466-5_21. URL: http://dx.doi.org/10.1007/978-
3-540-74466-5_21.

[16] Atomic Blue Corporation. About PlaneShift. Apr. 2013. URL: http://
www.planeshift.it/about.html.

[17] Atomic Blue Corporation. PlaneShift License. Apr. 2013. URL: http://
www.planeshift.it/license.html.

[18] NVIDIA Corporation. Cuda Toolkit Documentation v5.5. July 19, 2013.

[19] Valve Corporation. Doom 3: BFG edition on Steam. May 2014. URL: http:
//store.steampowered.com/app/208200/.

[20] Valve Corporation. Quake III Arena on Steam. May 2014. URL: http :
//store.steampowered.com/app/2200/.

[21] P.A. Branch D. Stefyn A.L. Cricenti. “Quake III Arena game struc-
tures.” In: Feb. 2011.

[22] GameFront. Game info: Doom 3 | Multi player | Overview. May 2013.
URL: http://doom3.filefront.com/info/Multiplayer.

[23] GameSpot. Doom 3 Tech Info. May 2013. URL: http://www.gamespot.
com/doom-3/techinfo/platform/pc/.

[24] J.T.T. Goldsmith and M.E. Ray. Cathode-ray tube amusement device.
https ://www.google .com/patents/US2455992. US Patent 2,455,992.
Dec. 1948. URL: https://www.google.com/patents/US2455992.

[25] Jason Gregory. Game engine architecture. A K Peters, Ltd, 2009. ISBN:
978-1-56881-413-1.

84

http://dx.doi.org/10.1145/1167838.1167860
http://doi.acm.org/10.1145/1167838.1167860
http://doi.acm.org/10.1145/1167838.1167860
https://github.com/stigmh/ioq3/tree/ProxyClient
https://github.com/ioquake/ioq3/
http://dx.doi.org/10.1007/978-3-540-74466-5_21
http://dx.doi.org/10.1007/978-3-540-74466-5_21
http://dx.doi.org/10.1007/978-3-540-74466-5_21
http://www.planeshift.it/about.html
http://www.planeshift.it/about.html
http://www.planeshift.it/license.html
http://www.planeshift.it/license.html
http://store.steampowered.com/app/208200/
http://store.steampowered.com/app/208200/
http://store.steampowered.com/app/2200/
http://store.steampowered.com/app/2200/
http://doom3.filefront.com/info/Multiplayer
http://www.gamespot.com/doom-3/techinfo/platform/pc/
http://www.gamespot.com/doom-3/techinfo/platform/pc/
https://www.google.com/patents/US2455992
https://www.google.com/patents/US2455992

[26] Forum user Hairball. OpenArena/engine.git on github. Feb. 2014. URL:
http://openarena.ws/board/index.php?topic=4925.0.

[27] Stig M. Halvorsen. #2183 GCC: command line globbing may affect macro
name case sensitivity. Feb. 2014. URL: https://sourceforge.net/p/mingw/
bugs/2183/.

[28] Stig M. Halvorsen. Bug 6091 - Windows 7/8 - SDL_VIDEODRIVER=directx
freezes the OS on breakpoint. Feb. 2014. URL: https://bugzilla.icculus.org/
show_bug.cgi?id=6091.

[29] Stig Magnus Halvorsen and Kjetil Raaen. “Games for Research: A
Comparative Study of Open Source Game Projects.” In: Euro-Par
2013: Parallel Processing Workshops. Ed. by Dieter Mey et al. Vol. 8374.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2014, pp. 353–362. ISBN: 978-3-642-54419-4. DOI: 10.1007/978-3-642-
54420-0_35. URL: http://dx.doi.org/10.1007/978-3-642-54420-0_35.

[30] Shawn Holmes. Focus on Mod Programming in Quake III Arena. Ed.
by André LaMothe. The Premier Press Game Development Series.
Premier Press, Inc., 2002. ISBN: 1-931841-56-X.

[31] A S Hornby. Oxford Advanced Learner’s Dictionary of Current English.
Ed. by A P Cowie. 4th edition. Oxford University Press, 1989. ISBN:
0-19-431110-4.

[32] “IEEE Standard for Distributed Interactive Simulation - Application
Protocols.” In: IEEE Std 1278.1a-1998 (1998). DOI: 10.1109/IEEESTD.
1998.88572.

[33] Michael Jarschel et al. “An Evaluation of QoE in Cloud Gaming
Based on Subjective Tests.” In: Innovative Mobile and Internet Services
in Ubiquitous Computing, International Conference on (2011), pp. 330–
335. DOI: http://doi.ieeecomputersociety.org/10.1109/IMIS.2011.92.

[34] Tng C. H. John, Edmond C. Prakash, and Narendra S. Chaudhari.
“Strategic Team AI Path Plans: Probabilistic Pathfinding.” In: Int. J.
Comput. Games Technol. 2008 (Jan. 2008), 13:1–13:6. ISSN: 1687-7047.
DOI: 10.1155/2008/834616. URL: http://dx.doi.org/10.1155/2008/
834616.

[35] Yung Woo Jung et al. “VENUS: The Online Game Simulator Using
Massively Virtual Clients.” In: Systems Modeling and Simulation: The-
ory and Applications. Ed. by Doo-Kwon Baik. Vol. 3398. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2005, pp. 589–596.
ISBN: 978-3-540-24477-6. DOI: 10.1007/978-3-540-30585-9_66. URL:
http://dx.doi.org/10.1007/978-3-540-30585-9_66.

[36] Raph Koster. A Theory of Fun for Game Design. Ed. by Jeff Duntemann.
Paraglyph Press, Inc., 2005. ISBN: 1-932111-97-2.

[37] Sam Lantinga. SDL version 1.2.15 (Historic) downloads. May 2014. URL:
http://libsdl.org/download-1.2.php.

85

http://openarena.ws/board/index.php?topic=4925.0
https://sourceforge.net/p/mingw/bugs/2183/
https://sourceforge.net/p/mingw/bugs/2183/
https://bugzilla.icculus.org/show_bug.cgi?id=6091
https://bugzilla.icculus.org/show_bug.cgi?id=6091
http://dx.doi.org/10.1007/978-3-642-54420-0_35
http://dx.doi.org/10.1007/978-3-642-54420-0_35
http://dx.doi.org/10.1007/978-3-642-54420-0_35
http://dx.doi.org/10.1109/IEEESTD.1998.88572
http://dx.doi.org/10.1109/IEEESTD.1998.88572
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IMIS.2011.92
http://dx.doi.org/10.1155/2008/834616
http://dx.doi.org/10.1155/2008/834616
http://dx.doi.org/10.1155/2008/834616
http://dx.doi.org/10.1007/978-3-540-30585-9_66
http://dx.doi.org/10.1007/978-3-540-30585-9_66
http://libsdl.org/download-1.2.php

[38] Xiang Liu and Daoxiong Gong. “A comparative study of A-star al-
gorithms for search and rescue in perfect maze.” In: Electric Informa-
tion and Control Engineering (ICEICE), 2011 International Conference on.
Apr. 2011, pp. 24–27. DOI: 10.1109/ICEICE.2011.5777723.

[39] Peter K. K. Loh and Edmond C. Prakash. “Performance Simulations
of Moving Target Search Algorithms.” In: Int. J. Comput. Games
Technol. 2009 (Jan. 2009), 3:1–3:6. ISSN: 1687-7047. DOI: 10.1155/2009/
745219. URL: http://dx.doi.org/10.1155/2009/745219.

[40] Phil Maguire et al. “Is Consciousness Computable? Quantifying
Integrated Information Using Algorithmic Information Theory.” In:
(May 2014). URL: http://arxiv.org/abs/1405.0126.

[41] Eddie Makuch. Valve introduces a new way for you to play PC games in
your home. May 2014. URL: http://www.gamespot.com/articles/valve-
introduces-a-new-way-for-you-to-play-pc-games- in-your-home/1100-
6419789/.

[42] Ian Millington and John Funge. Artificial Intelligence for Games, 2nd
edition. CRC Press, 2009. ISBN: 978-0-12-374731-0.

[43] Brice Nzeukou et al. “Personal Gaming.” In: URL: http://www.pickar.
caltech.edu/news/Personal%20Gaming.pdf.

[44] Lucas Parry. “L3DGEWorld 2.1 Input & Output Specifications.” In:
CAIA Technical Report 070808A (Aug. 2007).

[45] Ioana Patringenaru. UC San Diego Computer Scientists Develop First-
person Player Video Game that Teaches How to Program. Apr. 2013. URL:
http ://ucsdnews .ucsd .edu/pressrelease/uc_san_diego_computer_
scientists_develop_first_person_player_video_game_tha.

[46] Philipp Fechteler Peter Eisert. “Remote rendering of computer
games.” In: International Conference on SIGMAP) (2007).

[47] Andreas Petlund. “Improving latency for interactive, thin-stream ap-
plications over reliable transport.” PhD thesis. Unipub, Kristian Ot-
tosens hus, Pb. 33 Blindern, 0313 Oslo: Simula Research Laboratory
/ University of Oslo, Dec. 2009. ISBN: ISSN 1501-7710.

[48] Andreas Petlund et al. “TCP enhancements for interactive thin-
stream applications.” In: 18th International NOSSDAV Workshop.
NOSSDAV ’08. Braunschweig, Germany: ACM, 2008, pp. 127–128.
ISBN: 978-1-60558-157-6. DOI: 10 .1145/1496046 .1496081. URL: http :
//doi.acm.org/10.1145/1496046.1496081.

[49] ioquake3 project. Download ioquake3. May 2014. URL: http://ioquake3.
org/get-it/.

[50] Kjetil Raaen et al. “LEARS: A Lockless, Relaxed-Atomicity State
Model for Parallel Execution of a Game Server Partition.” In: 41st
International Conference on Parallel Processing Workshops. ICPPW ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 382–389.
ISBN: 978-0-7695-4795-4. DOI: 10 . 1109/ ICPPW.2012 . 55. URL: http :
//dx.doi.org/10.1109/ICPPW.2012.55.

86

http://dx.doi.org/10.1109/ICEICE.2011.5777723
http://dx.doi.org/10.1155/2009/745219
http://dx.doi.org/10.1155/2009/745219
http://dx.doi.org/10.1155/2009/745219
http://arxiv.org/abs/1405.0126
http://www.gamespot.com/articles/valve-introduces-a-new-way-for-you-to-play-pc-games-in-your-home/1100-6419789/
http://www.gamespot.com/articles/valve-introduces-a-new-way-for-you-to-play-pc-games-in-your-home/1100-6419789/
http://www.gamespot.com/articles/valve-introduces-a-new-way-for-you-to-play-pc-games-in-your-home/1100-6419789/
http://www.pickar.caltech.edu/news/Personal%20Gaming.pdf
http://www.pickar.caltech.edu/news/Personal%20Gaming.pdf
http://ucsdnews.ucsd.edu/pressrelease/uc_san_diego_computer_scientists_develop_first_person_player_video_game_tha
http://ucsdnews.ucsd.edu/pressrelease/uc_san_diego_computer_scientists_develop_first_person_player_video_game_tha
http://dx.doi.org/10.1145/1496046.1496081
http://doi.acm.org/10.1145/1496046.1496081
http://doi.acm.org/10.1145/1496046.1496081
http://ioquake3.org/get-it/
http://ioquake3.org/get-it/
http://dx.doi.org/10.1109/ICPPW.2012.55
http://dx.doi.org/10.1109/ICPPW.2012.55
http://dx.doi.org/10.1109/ICPPW.2012.55

[51] Eoin Redahan. Flooding the system - improved flood simulation technol-
ogy. Mar. 2012. URL: http ://www. iom3 .org/news/flooding - system-
improved-flood-simulation-technology.

[52] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach, 3rd edition. Pearson Education Limited, 2010.

[53] Forum user sago007. Gitorious. Feb. 2014. URL: http://openarena.ws/
board/index.php?topic=4309.50.

[54] Fabien Sanglard. Doom3 BFG Source Code Review. May 2013. URL: http:
//fabiensanglard.net/doom3_bfg/.

[55] Fabien Sanglard. Doom3 source code review. June 2012. URL: http ://
fabiensanglard.net/doom3/.

[56] Fabien Sanglard. Fabien Sanglard’s Website. May 2014. URL: http : //
fabiensanglard.net/.

[57] Fabien Sanglard. Quake 3 Source Code Review: Architecture. June 2012.
URL: http://fabiensanglard.net/quake3/.

[58] Shacknews. John Carmack and id Software’s pioneering development work
in 3D game engines recognized with two technology Emmy awards. July
2008. URL: http://web.archive.org/web/20080705061409/http://www.
shacknews.com/docs/press/010710_id_carmack_emmys.x.

[59] Shacknews. Quake 3 Source Code Released. Aug. 2005. URL: http : / /
www.shacknews.com/article/38305/quake-3-source-code-released.

[60] Kwangsik Shin et al. “Online Gaming Traffic Generator for Repro-
ducing Gamer Behavior.” In: Entertainment Computing - ICEC 2010.
Ed. by Hyun Seung Yang et al. Vol. 6243. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2010, pp. 160–170. ISBN:
978-3-642-15398-3. DOI: 10.1007/978-3-642-15399-0_15. URL: http:
//dx.doi.org/10.1007/978-3-642-15399-0_15.

[61] Roger D. Smith. “Essential Techniques for Military Modeling and
Simulation.” In: Proceedings of the 30th Conference on Winter Simulation.
WSC ’98. Washington, D.C., USA: IEEE Computer Society Press,
1998, pp. 805–812. ISBN: 0-7803-5134-7. URL: http : / / dl . acm . org /
citation.cfm?id=293172.293309.

[62] id Software. id History. Mar. 2013. URL: http://www.idsoftware.com/
business/history/.

[63] Erlend Lånke Solbu. Gameshow i forelesningssalen. Feb. 2014. URL: http:
//www.nrk.no/viten/gameshow-i-forelesningssalen-1.11516268.

[64] Håkon Kvale Stensland et al. “Tips, Tricks and Troubles: Optimizing
for Cell and GPU.” In: The 20th International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV
2010). Ed. by Dick C. A. Bulterman. ACM, June 2010, pp. 75–80. ISBN:
978-1-4503-0043-8.

[65] Forum user Stigmha. OpenArena Forum: Re: OpenArena/engine.git on
github update #2. Feb. 2014. URL: http://openarena.ws/board/index.
php?topic=4925.0%5C#msg50278.

87

http://www.iom3.org/news/flooding-system-improved-flood-simulation-technology
http://www.iom3.org/news/flooding-system-improved-flood-simulation-technology
http://openarena.ws/board/index.php?topic=4309.50
http://openarena.ws/board/index.php?topic=4309.50
http://fabiensanglard.net/doom3_bfg/
http://fabiensanglard.net/doom3_bfg/
http://fabiensanglard.net/doom3/
http://fabiensanglard.net/doom3/
http://fabiensanglard.net/
http://fabiensanglard.net/
http://fabiensanglard.net/quake3/
http://web.archive.org/web/20080705061409/http://www.shacknews.com/docs/press/010710_id_carmack_emmys.x
http://web.archive.org/web/20080705061409/http://www.shacknews.com/docs/press/010710_id_carmack_emmys.x
http://www.shacknews.com/article/38305/quake-3-source-code-released
http://www.shacknews.com/article/38305/quake-3-source-code-released
http://dx.doi.org/10.1007/978-3-642-15399-0_15
http://dx.doi.org/10.1007/978-3-642-15399-0_15
http://dx.doi.org/10.1007/978-3-642-15399-0_15
http://dl.acm.org/citation.cfm?id=293172.293309
http://dl.acm.org/citation.cfm?id=293172.293309
http://www.idsoftware.com/business/history/
http://www.idsoftware.com/business/history/
http://www.nrk.no/viten/gameshow-i-forelesningssalen-1.11516268
http://www.nrk.no/viten/gameshow-i-forelesningssalen-1.11516268
http://openarena.ws/board/index.php?topic=4925.0%5C#msg50278
http://openarena.ws/board/index.php?topic=4925.0%5C#msg50278

[66] Avneesh Sud et al. “Real-time Path Planning for Virtual Agents
in Dynamic Environments.” In: ACM SIGGRAPH 2008 Classes.
SIGGRAPH ’08. Los Angeles, California: ACM, 2008, 55:1–55:9. DOI:
10.1145/1401132.1401206. URL: http://doi.acm.org/10.1145/1401132.
1401206.

[67] Kongsberg Defence Systems. KONGSBERG has signed a contract for
upgrade of the Royal Norwegian Navy’s (RNoN) PROTEUS simulator
infrastructure. Mar. 2014. URL: http://www.kongsberg.com/en/kds/
news/2014/march/proteus-contract-with-royal-norwegian-army/.

[68] Crystal Space Team. Crystal Space official site. Apr. 2013. URL: http :
//www.crystalspace3d.org/main/Main_Page.

[69] Alan Thorn. Game Engine Design and Implementation. Foundations of
Game Development. Jones & Bartlett Learning, LLC, 2011. ISBN: 978-
0-7637-8451-5.

[70] James Tulip, James Bekkema, and Keith Nesbitt. “Multi-threaded
Game Engine Design.” In: Proceedings of the 3rd Australasian Confer-
ence on Interactive Entertainment. IE ’06. Perth, Australia: Murdoch
University, 2006, pp. 9–14. ISBN: 86905-902-5. URL: http : / /dl . acm .
org/citation.cfm?id=1231894.1231896.

[71] Various forum users. The Official OpenArena Forums: Does the engine
even build any more? May 2014. URL: http://openarena.ws/board/index.
php?topic=4900.0.

[72] Luis Valente, Aura Conci, and Bruno Feijó. “Real Time Game Loop
Models for Single-Player Computer Games.” In: (2005). URL: https :
//www.ssugames.org/pluginfile.php/1026/mod_resource/content/1/
2005_sbgames.pdf.

[73] Jean Paul van Waveren. “The Quake III Arena Bot.” MA thesis. the
Netherlands: Delft University of Technology, June 2001. URL: http :
//www.kbs.twi.tudelft.nl/docs/MSc/2001/Waveren_Jean-Paul_van/
thesis.pdf.

[74] Wikipedia. Id Tech 4 — Wikipedia, The Free Encyclopedia. [Online;
accessed 9-April-2013]. 2013. URL: http://en.wikipedia.org/w/index.
php?title=Id_Tech_4&oldid=548680739.

[75] Wikipedia. List of open-source video games — Wikipedia, The Free
Encyclopedia. [Online; accessed 2-April-2013]. 2013. URL: http://en.
wikipedia.org/w/index.php?title=List_of_open-source_video_games&
oldid=548300619.

[76] David Winter. PONG-Story: The site of the first video game. Feb. 2014.
URL: http://www.pong-story.com/intro.htm.

88

http://dx.doi.org/10.1145/1401132.1401206
http://doi.acm.org/10.1145/1401132.1401206
http://doi.acm.org/10.1145/1401132.1401206
http://www.kongsberg.com/en/kds/news/2014/march/proteus-contract-with-royal-norwegian-army/
http://www.kongsberg.com/en/kds/news/2014/march/proteus-contract-with-royal-norwegian-army/
http://www.crystalspace3d.org/main/Main_Page
http://www.crystalspace3d.org/main/Main_Page
http://dl.acm.org/citation.cfm?id=1231894.1231896
http://dl.acm.org/citation.cfm?id=1231894.1231896
http://openarena.ws/board/index.php?topic=4900.0
http://openarena.ws/board/index.php?topic=4900.0
https://www.ssugames.org/pluginfile.php/1026/mod_resource/content/1/2005_sbgames.pdf
https://www.ssugames.org/pluginfile.php/1026/mod_resource/content/1/2005_sbgames.pdf
https://www.ssugames.org/pluginfile.php/1026/mod_resource/content/1/2005_sbgames.pdf
http://www.kbs.twi.tudelft.nl/docs/MSc/2001/Waveren_Jean-Paul_van/thesis.pdf
http://www.kbs.twi.tudelft.nl/docs/MSc/2001/Waveren_Jean-Paul_van/thesis.pdf
http://www.kbs.twi.tudelft.nl/docs/MSc/2001/Waveren_Jean-Paul_van/thesis.pdf
http://en.wikipedia.org/w/index.php?title=Id_Tech_4&oldid=548680739
http://en.wikipedia.org/w/index.php?title=Id_Tech_4&oldid=548680739
http://en.wikipedia.org/w/index.php?title=List_of_open-source_video_games&oldid=548300619
http://en.wikipedia.org/w/index.php?title=List_of_open-source_video_games&oldid=548300619
http://en.wikipedia.org/w/index.php?title=List_of_open-source_video_games&oldid=548300619
http://www.pong-story.com/intro.htm

	I Introduction
	Introduction
	Motivation
	Project Statement
	Outline

	II Background
	Background
	Defining Video Games
	Video Game Internals
	The Game Loop & Frames
	Game Engines

	Games in Computer Science
	The Early Ages of Video Games
	Modern Research
	Educational Games
	Psychology
	Game Case Studies
	Algorithmic Development & Optimizations
	Artificial Intelligence
	Visual Interactive Simulations
	Hardware Utilization
	Networking

	The Need for an Open Load Generation Tool
	Project Statement

	III Implementation
	Finding an Appropriate Game
	Establishing a Foothold
	Identifying Potential Games
	The Evaluation Process
	Evaluating Potential Games
	Selecting a Game

	Architecture of Quake III Arena
	ioquake3 Components
	Client/Server Communications

	Implementating Virtual Clients
	Implementing Virtual Clients
	Configuration Through Cvars
	Shadow Server & Bot Initialization
	Synchronization & Proxy Communication

	Summary

	Installation & Usage
	Installation
	Installing the Binary Data Files
	Building ioquake3 with Virtual Clients

	Usage
	Running ioquake3 with Virtual Clients
	Shell Scripts for Easy Usage

	IV Results
	Results and Evaluation
	Server Load Generation
	Virtual Client Resource Usage
	Traffic Authenticity
	Discussion
	Survey on Video Game Features & Qualities
	Open Source Game Evaluation
	Virtual Client Implementation
	Areas of Use

	V Conclusion
	Conclusion
	Contributions
	Games for Research
	Virtual Client Based Load Generation Tool
	Further Work
	Game Research
	Improving the Virtual Clients

