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Abstract

Fractional calculus is the generalization of integer-order calculus to rational order. This

subject has at least three hundred years of history. However, it was traditionally regarded as a

pure mathematical field and lacked real world applications for a very long time.

In recent decades, fractional calculus has re-attracted the attention of scientists and engi-

neers. For example, many researchers have found that fractional calculus is a useful tool for

describing hereditary materials and processes. It has been used to model the properties of vis-

coelastic materials and anomalous diffusion. Other applications of fractional calculus include

signal processing, control of dynamic system, fractal theory, finance.

In this thesis, we have investigated several applications of fractional calculus and the use

of multi-core hardware architecture for solving fractional differential equations. Within heat

theory, we have studied fractional generalized Cattaneo equations and pointed out that the frac-

tional heat equations may give negative absolute temperatures. Related to elastography, we have

investigated the use of a fractional wave equation to describe the shear propagation induced by

radiation force. We have concluded that there is a possibility of biased estimation of shear mod-

ulus. Numerical simulation of fractional partial differential equations is a time-consuming task

due to the non-local property of fractional derivatives. We have shown that optimization tech-

niques and parallel computing can reduce the long simulation time. We have also developed

performance models which can give deep understanding of the optimization techniques and

predict the simulation time of both serial and parallel implementations. Last but not least, we

have demonstrated that parallel solvers of three-dimensional time-fractional diffusion problems

are well suited for cutting-edge parallel hardware.
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Chapter 1

Introduction

In this chapter, I first give a brief introduction to fractional calculus. Then the basic the-

ories of heat conduction and elastography are provided. Thereafter, I introduce software code

optimization techniques that are related to solving fractional differential equations. Finally, per-

formance models are presented to allow quantitative analysis and deeper understanding of these

optimization techniques.

1.1 An overview of fractional calculus

Fractional calculus has at least three hundred years of history and dates back to Leibniz’s let-

ter to L’Hospital in 1695, when L’Hospital asked Leibniz, the inventor of the notation dny/dxn,

"What if n is 1/2?". Leibniz replied: "This is an apparent paradox from which, one day, useful

consequences will be drawn.".

The rather non-systematic development of fractional calculus started in the 18th century.

Abel was the first researcher who used fractional calculus to solve the tautochrone problem in

1823 [5]. Liouville gave definitions of fractional derivative, and attempted to solve differential

equations with fractional operators [39]. Other scientists made contributions to the development

of fractional calculus including Fourier, Laplace, Riemann, Grünwald, Letnikov, Heaviside, and

more. Details about the development of fractional calculus in the 18th and 19th centuries can

be found in [39].

From 1900 to 1970, there was a modest development of fractional calculus. The pioneers

included H. Weyl, H. Hardy, M. Riesz, H. Kober, just to name a few.

The intensive development of fractional calculus began in 1974. The first book which gave a

systematic introduction to fractional calculus was written by Oldham and Spanier [42]. The first

conference on fractional calculus took place at University of New Haven in 1974. The second

and third international conferences were held in 1984 at University of Strathclyde and in 1989

at Nihon University [39]. Later, there have been several works done by Bagley and Torvik [54],

Samko et al. [48], Podlubny [43], Miller and Ross [39], Gorenflo and Mainardi [35], and so on.

Nowadays, there are many books and journals about the mathematical analysis and applica-

tions of fractional calculus. A specialized international journal for fractional calculus, named

Fractional Calculus and Applied Analysis, was established in 1998. An international confer-

ence series "Fractional Differentiation and its Applications" is held every second year.
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CHAPTER 1. INTRODUCTION

There are many successful examples of applying fractional calculus in science and engi-

neering. Viscoelasticity is one of the extensive application areas because fractional calculus is

an excellent instrument for modeling materials with hereditary properties. Zhang et al. [60]

used experiments on prostate to show that the stress relaxation results could be fitted by the

fractional Kelvin-Voigt model. Caputo [7] presented that the stress-strain relations based on the

fractional derivative is suitable for modeling wave attenuation in the anelastic media. Recently,

Bentil and Dupaix [6] used the fractional Zener constitutive model to describe the mechanical

behavior of swine neural tissue.

Another extensive application area of fractional calculus is anomalous diffusive and ther-

mal transport phenomena. Metzler and Klafter [38] demonstrated that fractional equation was a

complementary tool in the description of anomalous transport processes. Compte and Metzler

[11] showed that some fractional Cattaneo equations were able to reproduce features which

could be derived from the continuous time random walk (CTRW) model. Sun et al. [52]

used a variable-index fractional model to describe transient dispersion in heterogeneous me-

dia. Luchko and Punzi [33] modelled anomalous heat transport in geothermal reservoirs via

fractional diffusion equations. Ghazizadeh et al. [19] demonstrated that a fractional single

phase-lag model could predict the same temperature distribution as the linear dual-phase-lag

model in a non-homogeneous medium.

Fractional calculus has also attracted attention in signal processing, control of dynamic sys-

tem, finance and economy, fractal theory, and so on. More application examples of fractional

calculus can be found in [42, 43, 34, 5, 24, 48, 39].

There is also a systematic development in the mathematical theory of fractional calculus.

The existence and uniqueness of solutions to fractional differential equation were discussed in

[28, 43]. Analytical methods for solving fractional order equations, such as the Mellin trans-

form method, power series method, method of orthogonal polynomials, homotopy perturbation

method, Adomian decomposition method were discussed in [43, 55, 40]. Numerical approxi-

mation of fractional differential equations is an intensive topic currently. Finite difference [37],

finite element [18], and spectral finite element method [8] are used to solve various problems.

There are fruitful achievements in the theory of convergence rate, stability analysis, and error

estimation. A brief overview of the methods for solving fractional differential equations can be

found in this chapter later.

1.2 Challenges of fractional calculus

Although we have witnessed progress in both theory and application of fractional calculus,

there are still many challenges. Here, I list three important challenges.

The first challenge is the definition of fractional calculus. The fractional differentiation and

integration are nonlocal operators based on an integral with a singular kernel. There are several

definitions of the fractional derivative, such as Caputo, Riemann Liouville, Grünwald Letnikov,

Erdélyi-Kober, Hadamard, Riesz definitions. Some of these definitions are equivalent to each

other under some conditions [29].

The second challenge is the physical interpretation of fractional calculus. The integer order

derivatives have a clear physical and/or geometric interpretation, so their applications are easily

2



1.3. DEFINITION OF FRACTIONAL CALCULUS

understood. The fractional derivative is a generalization of integer order derivative and loses

some of the classical properties. It is difficult to give a convincing interpretation of fractional

models. For example, many fractional models are used to describe acoustic attenuation in bio-

logical media with power law characteristic. The fractional order characterizes the viscoelastic

property. However, the value of the fractional order is usually decided empirically. There are

discrepancies of data even for similar tissues. A similar difficulty is found in heat and diffusion

theories, where the fractional order characterizes the thermal propagation and diffusion speed.

The third challenge is the time-consuming numerical solution of fractional differential equa-

tions. Fractional derivative is a non-local operator. Compared with the approximation of an

integer order derivative, which only needs a few neighbouring values, the approximation of

fractional derivative needs substantially more computational effort. The reason is that we must

consider all values from the starting point. So numerical simulations of fractional differential

equations need a larger number of floating point operations and data flow in computer memory

systems. Podlubny [43] suggested the short memory principle to reduce the amount of computa-

tion at the expense of lower accuracy. Ford and Simpson [17] derived the nested mesh approach

to retain the order of convergence. Deng [12] adopted the short memory principle of fractional

calculus and applied an Adams-type predictor–corrector approach. Although these algorithms

can reduce the computational time to some extent, solving fractional differential equation is still

a challenging task. In this thesis, we discuss how to use code optimization and parallelization

on multi-core computers to ease this challenge.

1.3 Definition of fractional calculus

In this section, we recall some definitions of fractional derivative and integral. One should

notice that fractional calculus is the name of the theory about integrals and derivatives of arbi-

trary order [43]. In other words, the order can be an arbitrary real or even complex number.

There are several definitions of fractional derivative and integral, such as Grünwald-Letnikov,

Riemann-liouville, Caputuo, Marchaud, Hadamard, and more. We list only the first three defi-

nitions which are the most commonly used. Other definitions can be found in [48, 5]. Here we

use D and I to denote fractional derivative and integral, respectively.

• Grünwald-Letnikov definition

It is a generalization of the classical integer order derivative, which for a continuous

function u(t) is

u(n)(t) = lim
h→0

1

hn

n∑
r=0

(−1)r
(
n

r

)
u(t− rh), (1.1)

where

(
n

r

)
is the binomial coefficients. If n is replaced by α ∈ R, we get

GDα
a,tu(t) = lim

h→0+

1

hα

� t−a
h

�∑
r=0

(−1)r
(
α

r

)
u(t− rh), (1.2)

where �·� denotes the floor function. The subscript a denotes the starting point of interval.
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CHAPTER 1. INTRODUCTION

The Grünwald-Letnikov integral of arbitrary order is

GIαa,tu(t) = lim
h→0+

1

hα

� t−a
h

�∑
r=0

(−1)r
(−α

r

)
u(t− rh). (1.3)

• Riemann-Liouville definition

The αth order Riemann-Liouville derivative of function is

RLDα
a,tu(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

u(τ)dτ

(t− τ)α−n+1
, n− 1 < α < n, (1.4)

and the integral

RLIαa,tu(t) =
1

Γ(α)

∫ t

a

u(τ)dτ

(t− τ)1−α
. (1.5)

• Caputo definition

The definition of Riemann-Liouville is important in the development of fractional deriva-

tive. However, it is difficult to incorporate with physically interpretable initial conditions.

Caputo solved this problem by presenting a new definition

CDα
a,tu(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1d
nu(τ)

dτn
dτ, n− 1 < α < n. (1.6)

Li and Deng [29] showed that the three definitions are equivalent to each other under certain

conditions. They also showed that there is a strict requirement of u(t) in the Grünwald-Letnikov

definition. The Riemann–Liouville derivative has a good property of reasonable generalization

of the classical derivative. The Caputo fractional derivative has a good physical interpretation

of the initial value and is often used in modeling and analysis. In this thesis, we always use

the Caputo definition and denote it by Dα. We only consider time fractional derivatives in this

thesis.

1.4 Fractional calculus and anomalous phenomena

In this section, we present applications of fractional derivative in non-Fourier heat conduc-

tion and elastography.

1.4.1 Non-Fourier heat conduction

The classical Fourier’s law is widely used in many engineering applications. It is an empir-

ical law which gives the linear relationship between heat flux and temperature gradient

q = −k∇T (1.7)

where q is the heat flux vector, T is the temperature, and k is the thermal conductivity. Fourier’s

law leads to a parabolic heat equation (PHE). It should be noted that Eq. (1.7) is a unifying form

of Fourier’s law, Fick’s law and Darcy’s law but only with different physical parameters.

4



1.4. FRACTIONAL CALCULUS AND ANOMALOUS PHENOMENA

In recent decades, experiments show that the parabolic heat equation gives inaccurate re-

sults in situations like heat conduction in ultrashort duration, or at low temperatures. These

phenomena are called anomalous heat conduction. The reason is that Fourier’s law implies an

infinite heat propagation speed. To incorporate a finite speed, many researchers have formulated

modifications of Fourier’s law. For example, Cattaneo [9] modified Fourier’s law by adding a

relaxation term to Eq. (1.7)

q + τ
∂q
∂t

= −k∇T, (1.8)

and obtained the hyperbolic heat equation (HHE)

1

c2
∂2T

∂t2
+

1

a

∂T

∂t
= ∇2T, (1.9)

where a is the thermal diffusivity, c =
√
a/τ the thermal propagation speed.

In recent decades, some researchers have introduced non-local models to describe anoma-

lous phenomena. These models generalize classical laws. For example, Fourier’s law can be

generalized as [22]

q(t) = −k

∫ ∞

0

K(u)∇T (t− u)du. (1.10)

Letting t− u = τ and choosing 0 as a staring point, we have

q(t) = −k

∫ t

0

K(t− τ)∇T (τ)dτ. (1.11)

Fourier’s law is a special case of Eq. (1.11) if we choose the kernel K(t) as the Dirac delta

function. If we choose a "long-tail" power law kernel, such as

K(t− τ) =
α

Γ(1− α)
(t− τ)−α−1, 0 < α < 1, (1.12)

then the flux can be interpreted in terms of a fractional integral

q = −k · I1−α∇T, (1.13)

and one gets the time fractional heat equation (FHE) with order α

Dαu(t) = aΔT. (1.14)

There is a wide range of choice for α, and different values of the fractional order α in Eq.

(1.14) give different heat conduction property. In diffusion theory, it is called subdiffusion for

0 < α < 1, and superdiffusion for 1 < α < 2. As one of the aforementioned challenges,

the value of the fractional order is empirical and lacks clear physical interpretation. Figure.

1.1 shows the numerical solutions of FHE with different values of α. It is a one dimensional

problem with the initial temperature T = 1 and boundary T = 0.2. The orders α = 0.6, 1, and

1.6 are chosen for experiments. We can see that for α = 1.6, the equation is more like a wave

equation and there is a time delay for the heat to reach the center. For α = 0.6 and 1, there is

5
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Figure 1.1: The numerical solution of time fractional heat equation (FHE) varies with the fractional
order α=0.6, 1, 1.6. The thermal diffusivity a = 1.

no such delay which implies an infinite heat propagation speed.

Although the hyperbolic heat equation and fractional heat equation can give finite heat prop-

agation speed, they may introduce other problems. Rubin [47] proved that Cattaneo’s equation

may violate the second law of thermodynamics. Bai and Lavine [4] showed that HHE can give

negative temperatures, see Figure 1.2. For time equals to 0.6, the hyperbolic equation gives

negative temperature. The fractional heat equation also has the same problem, see Fig. 1.1.

Details about the problem are discussed in paper III.
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Figure 1.2: Temperature distribution for T = 0.2 and T = 0.6. The hyperbolic heat equation (1.9)
gives negative temperatures.

1.4.2 Modeling arbitrary power law attenuation

One extensive application area of fractional calculus is viscoelasticity. The relationship

between stress σ and strain ε for solids is

σ(t) = Eε(t), (1.15)
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1.4. FRACTIONAL CALCULUS AND ANOMALOUS PHENOMENA

and for Newtonian fluids

σ(t) = η
dε(t)

dt
. (1.16)

The mechanical representation of Hooke’s elastic element and Newton’s viscous element are

spring and dashpot, respectively [43], see Figure 1.3 (a) and (b). These two elements can be

combined in different ways to capture both elastic and viscous properties. For example, the

Maxwell model has the following relation

dε

dt
=

1

E

dσ

dt
+

σ

η
. (1.17)

Another example is the Voigt model

σ = Eε+ η
dε

dt
. (1.18)

Mechanical representation of the Maxwell and Voigt models are depicted in Figure 1.3 (c) and

(d).

E

η

E η

(d)

E η

(c)(b)(a)

Figure 1.3: Mechanical models of spring (a), dashpot (b), Maxwell’s model (c) and Voigt’s model (d).

There are some disadvantages of both Maxwell’s and Voigt’s models. It is well known that

wave attenuation in many materials, such as human tissue, polymers, obeys a power law

a(ω) = a0ω
y, (1.19)

where α0 is the absorption coefficient in Np(rad/s)−ym−1, ω the angular frequency in rad/s, and

y the power law exponent. In medical ultrasound, human tissue has y ranging from 1 to 1.7.

For fluid, such as distilled water and certain oils, we have 1 < y < 2 [53].

Sinkus et al. [49] have shown that the Voigt model is in contradiction with power law since

it predicts a constant dynamic modulus and linearly rising loss modulus. The same problem

also exists in the Maxwell model. Furthermore, partial differential wave equations based on

the classical stress-strain relationship lead to an integer-order equation which can only predict

attenuation with y = 0 and 2. Attenuation with y different from 0 and 2 is called anomalous

attenuation.

Fractional calculus is a powerful tool in describing anomalous attenuation with fewer pa-

rameters. From Eq. (1.15) and (1.16), we can see the stress is in proportion to the zeroth and

first derivatives of strain for solids and liquids. It is natural to say that viscoelastic materials are

7



CHAPTER 1. INTRODUCTION

Table 1.1: Asymptotic dispersion relation for the Caputo equation

ωτ � 1 ωτ � 1

a(ω) ∝ ωα+1 ω1−α/2

cp ∝ ωα ωα/2

"intermediate" ones which have the following stress-strain relation [43]

σ(t) = E0D
αε(t). (1.20)

The fractional Kelvin-Voigt stress and strain relation is the combination of such "intermediate"

materials and solids

σ(t) = E [ε(t) + τασD
αε(t)] . (1.21)

To derive a wave equation, we also need the strain-displacement relation

ε(t)− ∂u

∂x
= 0, (1.22)

and the principle of conservation of momentum

∂

∂x
σ(t)− ρ

∂2u(x, t)

∂t2
= 0. (1.23)

Combing Eq. (1.21), (1.22) and (1.23), we get the Captuo equation

∇2u− 1

c20

∂2u

∂t2
+ τασD

α(∇2u) = 0. (1.24)

Holm and Sinkus [27] analyzed the dispersion relation of Eq. (1.24) by assuming a plane

wave solution u(x, t) = exp{i(ωt− kx)}. The dispersion relation is divided into two regimes.

For low product ωτ , the exponent y and fractional order has the relation y = α + 1. It covers

most of compressional wave cases. For high product ωτ , y = 1 − α/2, it covers shear wave

cases. The asymptotes of frequency-dependent absorption and phase velocity can be found in

Table 1.1.

There are a set of wave equations with different fractional loss operators. The fractional

Zener model is another generalization of stress and strain relation [26]

σ(t) + τβε D
βσ(t) = E [ε(t) + τασD

αε(t)] , (1.25)

which leads to the fractional Zener wave equation

∇2u− 1

c20

∂2u

∂t2
+ τασD

α(∇2u)− τβε
c20

Dβ+2u = 0, (1.26)

where τσ is the creep time. Chen and Holm proposed in [10] an equation with the fractional

8



1.5. SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS

Laplacian operator
1

c0

∂2

∂t2
= ∇2p+ τ

∂

∂t
(−∇2)α/2p, (1.27)

where p is the pressure.

It should be noted there are other approaches which can model power law attenuation. Sz-

abo [53] presented a casual time domain wave equation which complies well with arbitrary

power law frequency. Wismer and Ludwig [58] proposed a frequency domain model via the

Laplace transform which is only applicable for linear cases. The multiple relaxation model [41]

has a physically based description of acoustic loss mechanism and is considered adequate for

relaxation-dominated attenuation. But it needs extensive computational effort and estimation of

many obscure parameters.

1.5 Solving fractional differential equations

In this section, we present a short overview of both analytical and numerical methods for

solving fractional differential equations.

1.5.1 Analytical methods

A lot of work has been done for analytically solving fractional differential equations . For

example, Gorenflo et al. [20] gave the scale-invariant solutions to the mixed problem of sig-

nalling type for the time-fractional diffusion-wave equation. The solutions are in terms of

the Wright function. Liu et al. [32] obtained the complete solution to a time-fractional ad-

vection dispersion equation by using variable transformation, Mellin and Laplace transforms,

and properties of H-functions. The fundamental solutions to the Cauchy problem and to the

source problem as well as the associated stresses were obtained by Povstenko [45]. Gupta

and Singh [21] presented the approximate analytical solutions to the time fractional nonlin-

ear Fornberg–Whitham equation, and the explicit solutions are obtained using the homotopy

perturbation method.

1.5.2 Numerical methods

When solving real-world problems, it is difficult to obtain the analytical solutions to frac-

tional differential equations. Even if the analytical solution is available, it may not be conve-

nient to use in practice. It is important to develop numerical algorithms which have sufficient

accuracy, stability, and convergence.

Numerical simulation of differential equations of integer order is not a new topic and has

been explored by many scientists and engineers. However, efficient and accurate numerical

methods for solving fractional differential equations and their theoretical analysis are far less

advanced.

Adolfsson et al. [2] developed an efficient numerical method which can integrate the con-

stitutive response of fractional-order viscoelasticity. The method can deal with variable time

steps, and the priori and posteriori error estimates of the method are proved. Diethelm et al.
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[16, 14] discussed an Adams-type predictor-corrector method for an ordinary fractional dif-

ferential equation. They also extended the method to multi-term equations. Lin and Liu [31]

proposed a high-order approximation scheme for solving a nonlinear fractional-order ordinary

differential equation. Meerschaert et al. [36] used the alternating directions implicit method to

solve two-dimensional initial-boundary-value fractional partial differential equations with vari-

able coefficients. They showed that when using the novel shifted version of finite difference

approximation of the Grünwald definition, the scheme has good numerical property regard-

ing consistency, stability, and convergence. Sousa [50] used upwind, central and Lax–Wendroff

schemes to solve fractional advection–diffusion problems. The convergence rate and stability of

these schemes are discussed. Podlubny et al. [44] proposed the matrix approach which unifies

the numerical solutions of both fractional and integer-order differential equations. Deng [13]

developed the finite element method for the numerical resolution of the space and time fractional

Fokker-Planck equation. Carella [8] developed the least-squares spectral element method and

demonstrated that the method is well-suited for dealing with the numerical difficulties inherent

to fractional differential operators.

Most numerical methods for solving fractional differential equations are based on approxi-

mations of the fractional differential operators using appropriate formulas[5]. From the Caputo

definition of fractional derivative, we can say what we are interested in is the approximation of

integral operators. Here, we use two examples to show the approximation of integral operators

when solving fractional ordinary and partial differential equations.

The first example is the fractional Adams-Moulton formula proposed by Diethelm et al.

[16]. It can be used for solving fractional ordinary differential equations. The target mathemat-

ical model is an initial-value problem involving fractional derivative

Dαy(x) = f(x, y(x)), y(k)(0) = y
(k)
0 , k = 0, 1, ...	α
 − 1, (1.28)

where α > 0, 	·
 is the ceiling function. Eq. (1.28) is equivalent to the Volterra integral equation

y(x) =

�α�−1∑
k=0

y
(k)
0

xk

k!
+

1

Γ(α)

∫ x

0

(x− t)α−1f(t, y(t))dt. (1.29)

An approximate solution can be found by using the product trapezoidal quadrature formula to

replace the integral. In other words, the following approximation is applied

∫ tn+1

0

(tn+1 − z)α−1g(z)dz ≈
∫ tn+1

0

(tn+1 − z)α−1g̃n+1(z)dz, (1.30)

where g̃n+1 is a piecewise linear interpolation of g with nodes chosen at the tj . Applying the

standard techniques from quadrature theory, the right-hand side of Eq. (1.30) can be written as

∫ tn+1

0

(tn+1 − z)α−1g̃n+1(z)dz =
hα

α(α + 1)

n+1∑
j=0

aj,n+1g(tj), (1.31)

10
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where

aj,n+1 =

⎧⎪⎪⎨
⎪⎪⎩
nα+1 − (n− α)(n+ 1)α, j = 0,

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α, 1 ≤ j ≤ n,

1, j = n+ 1.

(1.32)

Now we get the corrector formula. The same principle applies for the predictor formula. The

details can be found in [16]. To summarize, the formulae for both predictor and corrector are

1. Predictor

yPn+1 =

�α�−1∑
k=0

xk
n+1

k!
y
(k)
0 + hα

n∑
k=0

bn−kf(xk, yk), (1.33)

with weights

bμ =
(μ+ 1)α − μα

Γ(α + 1)
. (1.34)

2. Corrector

yn+1 =

�α�−1∑
k=0

xk
n+1

k!
y
(k)
0 + hα

(
cnf(x0, y0) +

n∑
k=1

an−kf(xk, yk) +
f(xn+1, y

p
n+1)

Γ(α + 2)

)
,

(1.35)

with weights aμ and cμ

aμ =
(μ+ 2)α+1 − 2(μ+ 1)α+1 + μα+1

Γ(α + 1)
, cμ

μα+1 − (μ− α)(μ+ 1)α

Γ(α + 2)
. (1.36)

When solving fractional partial differential equations, the finite difference method is often

used to approximate the fractional derivative. For example, the approximation to the Caputo

derivative is [30]

Dαu(x, tn+1) =
1

Γ(1− α)

n∑
j=0

∫ tj+1

tj

(tn+1 − η)−α∂u(x, η)

∂η
dη

=
1

Γ(1− α)

n∑
j=0

∫ tj+1

tj

(tn+1 − η)−αu(x, tj+1)− u(x, tj)

Δt
dη + rn+1

Δt

≈ (Δt)1−α

Γ(2− α)

n∑
j=0

[
(n− j + 1)1−α − (n− j)1−α

]
[
u(x, tj+1)− u(x, tj)

Δt
],

(1.37)

where 0 < α < 1. More details about these two approximations can be found in [16, 30].

From Eqs. (1.33), (1.35) and (1.37), we can see that to compute a new value at point

n + 1, we need all values from points 0 to n. This is typically implemented using loops and

provides chances for parallelization. The non-local property of the fractional derivative means

that numerical simulation of fractional differential equations is a time consuming task due to

large amounts of floating point operations and data traffic in the memory system.

11
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1.6 Optimization and parallelization

As mentioned in the previous sections, due to the non-locality of the fractional differential

operator, numerical simulation of fractional partial differential equations is a computationally

heavy task. A lot of floating point operations and data transfers in the memory systems are

needed if we want to have accurate results or solve large problems. For most numerical methods

for solving fractional differential equations, the fundamental non-local properties remain the

same. How to deal with the non-locality and reduce the simulation time is an important topic.

In this section, we show how to use optimizing strategies and parallelization to reduce the

simulation time.

In the last two decades, we have witnessed a rapid development of microprocessors. The

central processing unit (CPU) can provide 109 floating-point operations per second (GFLOPS).

For example, the Intel Xeon Processor E5-2670’s double-precision floating point theoretical

performance is 26.4 GFLOPS per core. However, such a strong floating-point capacity can

not be fully utilized due to the low bandwidth of memory. The maximum memory bandwidth

of Xeon E5-2670 is only 51.2 GB/s (4 memory channels for serving 8 cores). It means that

the achievable performance of floating-point operations, for example, dot product, can only be

3.2 GFLOPS. The unbalanced performance regarding the CPU peak performance and memory

bandwidth calls for data access optimization.

1.6.1 Locality and data reuse

The key aspect of optimizing memory access is the reuse of data in registers and caches. In

a modern CPU, registers and caches are used to reduce the instruction and data access latencies.

Registers and caches have a higher bandwidth than the main memory. The typical bandwidths

of different devices in computer systems are shown in Figure 1.4.

L1 cache
1011

L2/L3
cache
5x1010

Main
Memory
1010

Disk
5x107

Internet
2x107

Figure 1.4: Typical bandwidths in computer systems. The unit of the data in the boxes is bytes/sec. The
data is obtained from [23].

Since fetching data from a cache is much faster than from the main memory, we want to

reuse data in caches as much as possible. There are two important concepts: temporal and

spatial locality. Temporal locality means the data will be in cache within a short time of its

last use. Spatial locality means if a particular memory location is accessed, the neighbouring

locations will be referenced. These two concepts are important for optimizing codes. Here we

use loop fusion and loop unrolling as examples to demonstrate how to take advantage of data

locality.

Loop fusion means replacing multiple loops with a single one. Look at the following code

segment

for ( i = 0; i < N; i++)

sum1+=a[i]*c[i ];

for ( i = 0; i < N; i++)

12



1.6. OPTIMIZATION AND PARALLELIZATION

sum2+=b[i]*c[i ];

For each index i, the value c[i] needs to be reloaded. The loads of c[i] can be halved by combin-

ing the two loops into one

for ( i = 0; i < N; i++){

sum1+=a[i]*c[i ];

sum2+=b[i]*c[i ];

}

The performance will be enhanced greatly when the array size N is large and the c values are

out of cache before being reloaded. One application example of this technique can be found in

the implementation of fractional Adams-Bashforth-Moulton scheme. The effect of loop fusion

is discussed in papers I and II.

Loop tiling or loop blocking is another important technique to explore data locality. The

following code segment is used in the implementation of matrix-vector multiplication

for ( i = 0; i < N; i++) {

c[ i ] = 0;

for ( j = 0; j < N; j++) {

c[ i ] = c[ i ] + a[ i ][ j ] * b[ j ];

}

}

For large N , the accessed array elements in each i-indexed loop iteration, arrays a[i][j] and b[j]

may cross cache lines and cause performance degradation. Loop tiling can increase locality.

After loop tiling using 2× 2 blocks, the code becomes

for ( i = 0; i < N; i += 2) {

c[ i ] = 0;

c[ i + 1] = 0;

for ( j = 0; j < N; j += 2) {

for (x = i ; x < min(i + 2, N); x++) {

for (y = j ; y < min(j + 2, N); y++) {

c[x] = c[x] + a[x][y] * b[y ];

}

}

}

}

Now the j-indexed loop is divided into smaller blocks. For the small loops, the a[x][y] and b[y]

values can be reused.

1.6.2 Vectorization

Loop vectorization is an important technique which can lead to significant performance

improvement. It converts a scalar operation, which processes a single pair of operands at a

time, to a vector operation which can process multiple operands at once. It is supported by

Intel’s SSE, AVX and AMD’s 3D Now! instruction sets. For example, a CPU with the AVX

instruction set could perform 4 floating point operations of double precision at a time. The

following code compares a scalar operation with the vectorized counterpart

for ( i = 0; i < 100; i++)

c[ i ] = a[ i ]*b[ i ]; /* scalar operation */

for ( i = 0; i < 100; i+=4)
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c[ i : i+3] = a[ i : i+3]*b[i : i +3]; /* vectorization */

Loop vectorization can also fully utilize registers by reducing superfluous data loads from the

L1 cache.

We have discussed different techniques to optimize memory access. Although the perfor-

mance of a program is often determined by how quickly data is moved within the entire memory

system, we should also pay attention to the floating point operations in order to avoid CPU do-

ing ’heavy task’ and becoming the bottleneck. For a programmer, it is easy to implement a

numerical scheme by one to one translation without considering the code performance. How-

ever, the simulation time can be reduced by changing an ’expensive’ operation into a ’cheaper’

one. For instance, the expensive power function x2 and division a/2 should be substituted by

x ∗x and 0.5 ∗ a, respectively. It is recommended to achieve such substitutions manually before

optimizing memory accesses.

It should be noted that for modern compilers, there is a collection of optimization options.

Code optimizations can be achieved by compilers automatically. However, the programmer

should know the basic code optimization strategies and avoid stumbling blocks for compiler-

based optimization. In some cases, optimization should be done manually since the compiler

has a complex job of transforming high-level programming language into machine language,

there is no guarantee of obtaining high performance by only depending on the compiler.

1.6.3 Parallelization

The appearance of multi-core architecture has a great impact on scientific computing and

has been widely adopted by all major processor manufactures. It also provides an opportunity

to tackle the computational challenges of solving fractional differential equations.

Until now, there exists little work on the use of parallel computing for solving fractional

differential equations. Diethelm [15] developed a parallel version of the fractional Adams-

Bashforth-Moulton algorithm, and showed that the algorithm has good scalability on a shared-

memory platform.

Our parallelization method is straightforward. Specifically, we convert a serial loop into a

parallel one if there is no dependence between the loop iterations. For example, a for-loop is

executed in parallel by several threads or processes.

In an OpenMP implementation, we insert a compiler directive before a loop to fork addi-

tional threads to carry out the work. Let’s use dot product as example, the OpenMP implemen-

tation is

#pragma omp parallel for reduction (+: sum)

for ( i=0; i<N; i++) {

sum+=a[i]*b[i ];

}

In an MPI implementation, each process has its own ID and computes a section of the loop.

The code segment is listed below

int my_start = (my_rank*N)/num_procs+1;

int my_stop = ((my_rank+1)*N)/num_procs;

for ( i=my_start; i<=my_stop; i++) {

sum+=a[i]*b[i ];

}

14



1.6. OPTIMIZATION AND PARALLELIZATION

/*MPI_Reduce is used to reduce values on all processes */

As stated in Section 1.5.2, due to the non-locality of fractional operators, to compute the value

at point N + 1, the values from the starting point to N are all needed. Assuming the iteration is

implemented using a for loop, the for loop can be executed in parallel for each N .

Efficient parallel programming

Although multi-core systems have provided opportunities for numerical simulation of frac-

tional differential equations, there are still some challenges. Traditional programming and soft-

ware strategies must be updated in order to take advantage of the additional computing re-

sources. Programmers must concern about the diversity of parallel platforms, portability of the

program, management of independent threads or processes, concurrency and communication,

load balances. Here we list three issues worthy attention when developing efficient parallel

programs.

• UMA and NUMA

First, we should make optimal use of the memory system on shared-memory platforms.

At present, there are two kinds of shared-memory computers: uniform memory access

(UMA) and nonuniform memory access system (NUMA). Figure 1.5 demonstrates a

dual-socket quad-core UMA system. Two cores share 4MB L2 cache. All cores share

the physical memory uniformly. In other words, the latency and bandwidth of memory

accesses are the same for all cores. One drawback of the UMA architecture is the scalabil-

ity. After the number of processors increases, CPU-to-memory connection will become

the bottleneck. This leads to the appearance of the NUMA architecture. Figure 1.6 shows

a dual-socket hexa-core NUMA system. Each socket has its own local memory, and the

two memories are connected. NUMA systems are ubiquitous nowadays. However, data

Core

32KB L1D

Core

32KB L1D

4MB L2

Core

32KB L1D

Core

32KB L1D

4MB L2

socket

FSB

Core

32KB L1D

Core

32KB L1D

4MB L2

Core

32KB L1D

Core

32KB L1D

4MB L2

FSB

socket

Memory

Figure 1.5: A UMA system with dual-socket quad-core Clovertown X5355 CPU.

locality is an important issue on NUMA systems. There will be a great memory access

latency if the cores have remote memory accesses. Let’s use the OpenMP implementation

of dot-product as an example. The code segment is

double a[N];

double b[N];

for ( i=0; i<N; i++){

a[ i ] = 1.0*i ;

b[ i]= 1.0*i /N;

}
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Figure 1.6: A NUMA system with dual-socket hexa-core Westmere-EP L5640 CPU.

#pragma omp parallel for reduction (+: sum)

for ( i=0; i<N; i++){

sum+=a[i]*b[i ];

}

This code will suffer from performance degradation since the initialization of the arrays

is executed serially. All memory pages belonging to the arrays a and b will be mapped

into local domain. In the parallel region, some threads will suffer from remote memory

accesses. To avoid this problem, we can take advantage of the first touch policy. Specifi-

cally, initialization of the arrays is executed in parallel by all threads, so that each thread

touches a portion of arrays a and b. The two arrays are thus distributed evenly among all

threads. The implementation is

#pragma omp parallel for

for ( i=0; i<N; i++){

a[ i ] = 1.0*i ;

b[ i]= 1.0*i /N;

}

• False sharing

False sharing is another issue worthy attention. It happens when the same cache line is

modified by multiple threads. The above OpenMP code for initialization of array a and

b may cause false sharing if the array length N is small and there is a large number of

threads, or the chunk size is small.

We can avoid false sharing by using a technique called padding. It means inserting

suitable number of empty bytes in the array so that the data accessed by different threads

resides on different cache lines.

• Processor affinity

There is a potential performance enhancement of parallel program if we bind a process

or a thread to a designated core. Spreading all processes or threads across all sockets

evenly will result in a higher memory bandwidth than binding all of them to one socket.

Furthermore, processor affinity can also take advantage of data locality since the data

may stay in the local cache if a process or a thread is executed on the same core. Parallel

programs will benefit from processor affinity if there is synchronization between adjacent

processes or threads [23].
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The implementation of processor affinity varies on different platforms and programs. For

example, processor affinity in Open MPI v1.4.x can be achieved by adding command-line

--bind-to-core to mpirun. For the gcc compiler, we can bind threads to a specific

core using the GOMP_CPU_AFFINITY variable. All parallel programs in this thesis used

processor affinity.

1.7 Performance modeling

The multi-core processor brings great opportunities for scientific computing. Although the

microprocessors vary, they follows a similar architecture. We may care about the performance

if we run the same code on different platforms. An easy-to-understand performance model

can provide performance guidelines for scientific computing on different platforms. It should

not only describe the amount of floating point operations, how data is transferred, abstract the

characteristic of the computer system [46], but also pinpoint the bottleneck of the system and

evaluate the code implementation. More importantly, it can give us a deeper understanding of

our program.

There are many methods about performance modeling. Williams et al. [57] presented the

roofline model which provided valuable insight into factors affecting the performance and high-

lighted computer system bottleneck. Adhianto and Chapman [1] proposed a novel and cost effi-

cient approach which was based on both static analysis and feedback from a runtime benchmark.

Their model can evaluate OpenMP, MPI and hybrid MPI+ OpenMP program. Wu and Taylor

[59] showed a performance modeling framework which is based on memory bandwidth con-

tention time and a parameterized communication model. Aversa et al. [3] used HeSSE, along

with XML-based prototype language MetaPL to predict performance of hybrid MPI/OpenMP

code.

Our model is based on the assumption that for modern computers, floating point opera-

tions and data transfer in different levels of the memory system are executed simultaneously.

Compared with the roofline model in [57], which only focuses on floating point operations and

memory performance, our model also investigate possible bottleneck in different cache levels

and can be used for both serial and parallel programs. Specifically, assuming there are three

level caches, the simulation time is determined by the maximum time usage of the following

five events: floating point operations in CPU, data transferred from L1 cache to register, L2

cache to L1 cache, L3 cache to L2 cache, memory to L3 cache. More details will be listed in

the following part.

In our model, the L1 cache has the largest data traffic volume since we assume that there is

no data reuse in registers. In other words, all data in the registers have to be loaded from L1

cache. For the L2, L3 and main memory, data reuse is considered.

1.7.1 Serial performance model

Assuming there are three levels of caches in a system, the hardware can be abstracted to a

group of parameters [56]

1. the peak floating point performance of a single core, denoted by F ,
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2. the bandwidths of reading data from L1 cache to register, denoted by Br
L1, from L2 to L1

cache Br
L2, L3 to L2 cache Br

L3, and memory to L3 cache Br
M , where the superscript r

means read.

Since there are more read operations than write operations when solving fractional differential

equation, we neglect the write bandwidth. For a given problem size, we also have similar

parameters describing the problem

1. the total number of floating point operations, denoted by nflop,

2. the data volume needed to be read from L1 cache to registers, denoted by nr
L1, from L2

to L1 cache nr
L2, L3 to L2 cache nr

L3, and memory to L3 cache nr
M .

The time usage of a serial computation is

Tserial = max(
nflop

F
,
nr
L1

Br
L1

,
nr
L2

Br
L2

,
nr
L3

Br
L3

,
nr
M

Br
M

). (1.38)

The peak floating point performance can be found in hardware specifications. The bandwidth

Br
L1, B

r
L2, B

r
L3 and Br

M can be obtained from benchmark software, such as STREAM2 [51].

We use the fractional Adams-Bashforth-Moulton scheme again to demonstrate the serial

model. The following code segment is the baseline implementation

for ( j=0; j<N; j++) {

for (k=0; k<=j; k++)

sum_b += b[j−k]*f(y[k]) ;

for (k=1; k<=j; k++)

sum_a += a[j−k]*f(y[k]) ;

}

There are 4 data loads: b[j − k], a[j − k], and y[k] which is loaded twice. Assuming all data

is double precision and occupies 8 bytes, the total number of floating point operations and the

data transfer volume are

1. nflop = 4× 1

2
×N(N + 1) = 2N(N + 1),

2. nr
L1 = nr

L2 = nr
L3 = nr

M = 4× 1

2
N(N + 1)× 8 = 16N(N + 1).

Therefore, the time usage of the baseline implementation is

Tbaseline = N(N + 1)max(
2

F
,
16

Br
L1

,
16

Br
L2

,
16

Br
L3

,
16

Br
M

). (1.39)

1.7.2 Parallel performance model

The parallel model adopts the same philosophy as that of the serial model, but uses ag-

gregated hardware parameters. Supposing there are p cores, the hardware parameters for a

multi-core architecture can be abstracted as

1. the peak floating point performance of p cores, denoted by pF ,
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2. the aggregated bandwidths of reading data from L1 caches to registers, denoted by Br,p
L1 ,

from L2 to L1 caches Br,p
L2 , from L3 to L2 caches Br,p

L3 , and from memory to L3 caches

Br,p
M .

The parallel performance model is

Tparallel = max(
nflop

pF
,
nr
L1

Br,p
L1

,
nr
L2

Br,p
L2

,
nr
L3

Br,p
L3

,
nr
M

Br,p
M

). (1.40)

The bandwidths Br,p
L1 , Br,p

L2 , Br,p
L3 and Br,p

M can be obtained from the parallel version of STREAM2.

In summary, our model is easy to understand and contains a small number of parameters.

It can estimate simulation time and pinpoint the performance bottleneck. Detailed information

can be found in papers II and V.
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Chapter 2

Summary of Papers

This section summarizes my publications. The details can be found in the papers.

2.1 Paper I

Paper I considers efficient implementations for solving a system of fractional differential

equations. The Bagley-Torvik equation was chosen and rewritten as a system of four coupled

scalar fractional differential equations with the fractional order α = 1/2. We demonstrated

code optimization techniques like loop fusion, loop unrolling and alternating directions for loop

traversal. The ratio of floating point operation versus memory read is optimized gradually. The

vectorization was left to compilers.

In the MPI and OpenMP implementations, parallelization was explored by dividing the inner

for-loop by a number of processes or threads. Each loop segment was executed on different

processors. The implementation is similar to the example codes shown in Section 1.6.3. The

outer for-loop is still executed serially.

Two platforms, Intel X5355 and L5640 were used to test the effect of these optimization

techniques. The block diagrams of the two platforms are shown in Figures 1.5 and 1.6. Three

problem sizes were chosen: N = 2 × 105, 4 × 105, 106. On X5355, the simulation time was

reduced to 1/3 of the baseline’s time usage. On L5640, the simulation time was almost halved.

For OpenMP implementation, we should pay attention to the initialization of arrays on

L5640 since it is a NUMA system. The MPI speedup is listed in Figure 2.1. On X5355,

the speedup decreases dramatically for N = 106 since the performance is determined by the

memory bandwidth.

2.2 Paper II

Paper II is an extension of paper I. Different optimization techniques and their effect were

shown in paper I. Quantitative analysis of these techniques were presented in paper II. The

methodology can also be used for analyzing parallel implementations.

Different optimization techniques have the same floating point operations but different data

traffic volume. For a given problem size N , we dissect N into four stages: data in L1, L2,

L3 cache, and main memory. The total simulation time is the summation of time at different
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Figure 2.1: Speedup on Intel Xeon X5355 and L5640.

stages. Parallel implementation adopts the same philosophy but only has aggregated cache,

memory bandwidths.

We used the fractional Adams-Bashforth-Moulton method as the test bed to check the qual-

ity of our performance models. Three platforms were used: Intel Xeon E5504, E5-2670 and

AMD Opteron 6276. First, we used PAPI-v5.2.0 on AMD Opteron 6276 to verify our model.

All codes were compiled using Cray C, GCC, and ICC with -O2 optimization. We compare the

PAPI’s events FP_OPS, L1_DCA, and L2_DCAwith our predictions. The prediction of floating

point operations and L2 data cache accesses had good agreement with PAPI results. There was

nuance in the L1 accesses. We assumed that different compilers had different data reuse rate.

Second, we ran the codes with N = 2 × 105, 1 × 106, and 4 × 106. For N = 2 × 105, all data

were located in caches. Experiments showed that the models could estimate the time usage of

both serial and parallel implementations.

Our model only focused on the data traffic volume. Other factors determining the code

performance like the number of registers, cache misses, and communication cost were not con-

sidered. These factors affected the accuracy of the performance model. For instance, deeper

loop unrolling will lead to longer code and need more registers. Therefore, there will be more

L1 data cache accesses and performance degradation. The collective communication in MPI im-

plementation is expensive when there is a number of processes. The software Scalasca showed

that on Intel Xeon E5-2670, when using 16 cores, the time consumption of MPI_Allreduce
accounted for 20.8 % of the total time usage.

2.3 Paper III

In paper III, time fractional heat equations is considered. We used a model problem and

showed fractional heat equations could predict negative absolute temperatures.

The classical parabolic heat equation based on Fourier’ law assumes infinite heat propaga-

tion speed. This assumption is inaccurate for short time, extremely low temperatures. Under

these conditions, we should consider the finite heat propagation speed, which can be modelled
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by hyperbolic heat equations.

The fractional order equation is a generalization of the classical equation and a useful tool

for describing non-Fourier heat conduction. In paper III, we considered a one-dimensional

model problem where two cold waves collided in a layer. The fractional generalized Cattaneo

equations, parabolic and hyperbolic heat equations were chosen to describe the problem. For

the convenience of analysis, all equations were written in nondimensional forms. We solved the

equations using finite difference method. The fractional order α was divided into two ranges:

0 < α < 1 and 1 < α < 2. For 0 < α < 1, the approximation of fractional derivative is

described in Eq. (1.37). It has two values of the unknown u. For 1 < α < 2, the approximation

can be found in [30] and has three values of u. Therefore the simulation time for 1 < α < 2 is

longer than 0 < α < 1.

In the numerical experiments, we chose the nondimensional domain lengths L∗ = 1 and 5 in

order to consider two cases where the domain length was larger or smaller than phonon’s mean

free path. By comparing the results of different equations, we concluded that like hyperbolic

heat equation, fractional heat equations may also give negative absolute temperatures. For L∗ =
1, the generalized Cattaneo equations had the tendency of giving negative temperature. The

reason is the continuum hypothesis upon which the equations depend is probably invalid. The

values of fractional order also determine whether fractional heat equations could give negative

absolute temperatures. However, there is no clear physical explanation of the values. We also

pointed out that one solution to avoid unphysical solutions was introducing non-linear fractional

equations.

2.4 Paper IV

In paper IV, we considered the possible biased estimation of shear modulus in media with

power law characteristic.

A fractional wave equation is used to describe shear wave propagation in viscoelastic me-

dia. The equation can be derived from fractional Kelvin-Voigt model and has two frequency

regimes. The shear wave is generated by a cylindrically symmetric beam. All Parameters like

the fractional order, characteristic beam radius, pulse duration time, shear wave speed, viscosity,

were obtained from existing literatures. The equation was solved using finite difference scheme

in cylindrical coordinate. We used the fractional order α = 0.36, 1 and 1.7 in the experiments

and compared the displacement at the focal point. It was shown that the displacement at the

focal point varied with different fractional order. Specifically, for 0 < α < 1, the equation pre-

dicted higher displacement and smaller shear modulus than the classical model. The opposite

situation applied for 1 < α < 2. The relation between focal displacement and fractional order

between 0 and 2 is shown in Figure 2.2.

We also used two case to show that different combinations of fractional order and shear

wave propagation speed could give the same displacement even if the actual shear moduli were

different. We concluded that estimating shear modulus by the amplitude at the focal point might

not be reliable if different equations were used. The time-to-peak method was considered for the

fractional order equation. Experiments showed this method was valid only for small fractional

order.
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Figure 2.2: The displacement at the focal point changes with the fractional order α.

2.5 Paper V

In paper V, we considered the optimization and parallelization of solving time-fractional

diffusion equations using a finite difference method. The performance model and scalability

were also discussed.

At present, the finite difference method is frequently used for solving factional differential

equations numerically. Code optimization, parallelization, performance analysis and scalability

of finite difference schemes are important topics worthy investigation. The serial code opti-

mization was achieved using loop unrolling in time with depth 2 and 4. Further performance

enhancement was obtained using Advanced Vector Extensions (AVX) instructions. The paral-

lelization within a computing node were enabled via MPI or OpenMP. For 3D problems with

a large size, more computing nodes were needed for storing the large numbers of data. Hybrid

programming with OpenMP and MPI was used for parallelization. More specifically, MPI was

used for communication among the computing nodes while OpenMP managed the workload

within each node.

Scalability was an important topic in this paper. It reveals how the simulation time varies as

both the problem size and number of processors increase proportionally. For the 3D problem,

we increased both the problem size and the number of computing nodes simultaneously, the

simulation time almost remained the same. This demonstrated that when solving 3D fractional

differential equations, the finite difference method had a good property of scaling. Combing

the performance model and scaling property, we can estimate the simulation time of solving 3D

problems with a much larger size.
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Chapter 3

Future work

This chapter summarizes the main contributions of the thesis and shows possible future

research directions.

The main contributions of the thesis are

• Show that the simulation time for solving fractional differential equations can be reduced

by using optimization techniques like loop fusion, loop unrolling and alternating direction
of loop traversal.

• Introduce serial and parallel performance models. We give quantitative analysis of afore-

mentioned techniques and put up models which give deep understanding about the achiev-

able performance. The models can predict simulation time, evaluate code implementa-

tions, and pinpoint the bottleneck of computer systems. They can be extended to similar

numerical method for approximation of convolution.

• Show that fractional heat equations can give negative absolute temperatures.

• Simulate shear wave propagation in viscoelastic media and demonstrate that different

wave equations may lead to biased estimation of shear modulus.

• Develop parallel simulator for solving 3D fractional diffusion equation and show that the

finite difference method has good property of weak scaling when solving 3D fractional

differential equations.

There are still many interesting questions worthy investigating in the future.

• Developing nonlinear fractional heat equation
Paper III shows that fractional heat equations may give temperatures below absolute zero

for small domain length. An natural extension of our study is to modify fractional heat

equations to remedy this problem. In paper III, the thermal conductivity is a constant.

From physical point of view, when temperature approaches to zero, the heat capacity is

strongly temperature-dependent. Consequently, the heat equation will be nonlinear. The

future work should be deriving a nonlinear equation which has temperature-dependent

thermal conductivity and satisfies the second law of thermodynamics.
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CHAPTER 3. FUTURE WORK

• Using finite element method to solve fractional differential equation in irregular do-
mains
In this thesis, our application examples are only confined within spatial domain of a regu-

lar shape. However, real-world problems usually have complicated geometries or bound-

aries. For instance, it is difficult to model shear wave propagation in arterial using finite

difference method. Finite element method (FEM) is a powerful tool to deal with this diffi-

culty. A possible work is to use fractional wave equation to model shear wave propagation

in artery and use FEM to get numerical results.

• Parallelization of spatial fractional derivative solvers
All equations in this thesis only include time fractional derivative operator(s). Fractional

models in space or time-space are also widely used in diffusion theory and elastogra-

phy [25]. One particular topic is developing parallel solvers which can solve fractional

differential equations with spatial fractional derivatives.

• Developing a numerical software package
Developing numerical simulator for fractional differential equation is a complex and time

consuming task. An interesting work in the future is developing an easy-to-use and high

quality software. It contains a common set of generic numerical routines for solving

linear and nonlinear fractional differential equations. It also has parallel toolbox and

visualization support. Therefore, researchers can save their time and refine their results.
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Abstract: The second-order Adams-Bashforth-Moulton scheme is a predictor-corrector ap-
proach to solving initial-value problems that involve fractional derivatives. The number of
required floating-point operations grows as O(N2), where N is the number of time steps. This
potentially huge amount of computation, together with the large memory requirement of order
O(N), calls for efficient software implementations. In this context, we will demonstrate the
importance of code optimization techniques like loop fusion, loop unrolling and alternating
directions for loop traversal. On the basis of efficient serial implementations, high-performance
parallel implementations, via MPI and OpenMP programming, can be easily developed for
modern multi-core processors. The particular Bagley-Torvik equation, which can be formulated
as a system of four coupled fractional differential equations, is used as a test bed for studying
the obtainable computing speeds.

Keywords: System of fractional differential equations, Adams-Bashforth-Moulton method,
Bagley-Torvik equation, loop optimization, parallel computing, multi-core processor.

1. INTRODUCTION

Numerical methods for solving fractional differential equa-
tions often involve convolutions over the entire temporal
and/or spatial domains. Special care is needed when imple-
menting computer codes for such algorithms, because good
data reuse will decrease the volume of data traffic from the
main memory and increase data-hit ratios in the caches,
thus providing sustainable performance not far away from
a computer’s theoretical peak. In this paper, we choose
the Adams-Bashforth-Moulton method, see e.g. Diethelm
et al. (2002), as a representative numerical scheme. It
will be shown that techniques of loop optimization can
greatly improve the performance of a naively implemented
serial code, while also laying the foundation for high-
performance parallel implementations. Numerical exper-
iments in connection with the Bagley-Torvik equation,
when formulated as a system of four coupled fractional dif-
ferential equations, will demonstrate the computing speed
gains.

2. MATHEMATICAL MODEL

We consider in this paper the following system of m
coupled scalar fractional differential equations:⎧⎪⎪⎨

⎪⎪⎩
Dα

∗ y1(t) =
Dα

∗ y2(t) =
...

Dα
∗ ym(t) =

g1(y1(t), y2(t), . . . , ym(t), t),
g2(y1(t), y2(t), . . . , ym(t), t),

...
gm(y1(t), y2(t), . . . , ym(t), t),

(1)

where Dα
∗ denotes a fractional differential operator that is

defined in the sense of Caputo:

Dα
∗ y := J�α�−αD�α�y, (2)

where D�α� is the classical differential operator of integer
order 	α
, and Jμ denotes the Riemann-Liouville integral
operator of order μ > 0, defined by

Jμy(x) =
1

Γ(μ)

∫ x

0

y(t)

(x− t)1−μ
dt, (3)

where Γ denotes Euler’s Gamma function. For simplicity,
we assume 0 < α < 1, so each scalar fractional differential
equation in (1) is equipped with one initial condition.

For the convenience of presenting the numerical algorithm
in the next section, we will also adopt a compact repre-
sentation of system (1) as follows:

Dα
∗Y (t) = g(Y (t), t), (4)

where Y (t) = (y1(t), y2(t), . . . , ym(t))
T

is the solution

vector that we seek and g = (g1, g2, . . . , gm)
T
.

3. ADAMS-BASHFORTH-MOULTON SCHEME

By using a fixed time stepping size h, we can denote by

Y i =
(
yi1, y

i
2, . . . , y

i
m

)T
the numerical approximation of Y at a discrete time level
t = ih, i.e.,

(y1(ih), y2(ih), . . . , ym(ih))
T
.

The second-order Adams-Bashforth-Moulton scheme is an
iterative procedure, meaning that when Y 0,Y 1, . . . ,Y j

are known, the numerical solution for the next time
level, Y j+1, arises from a predictor-corrector step. More
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specifically, the so-called predictor Y P
j+1 is first computed

as

Y P
j+1 = Y 0 + hα

j∑
k=0

bj−kg(Y k, kh), (5)

where the weights bμ in (5) are given by

bμ =
(μ+ 1)α − μα

Γ(α+ 1)
. (6)

Then, Y j+1 is computed by a corrector step, namely,

Y j+1 = Y 0 + hα cjg(Y 0, 0)

+hα

(
j∑

k=1

aj−kg(Y k, kh) +
g(Y P

j+1, (j + 1)h)

Γ(α+ 2)

)
, (7)

where the weights aμ and cj in (7) are given by

aμ =
(μ+ 2)α+1 − 2(μ+ 1)α+1 + μα+1

Γ(α+ 2)
, (8)

cj =
jα+1 − (j − α)(j + 1)α

Γ(α+ 2)
. (9)

Observations. If N denotes the total number of time
steps used, the total number of floating-point operations
needed by the Adams-Bashforth-Moulton scheme grows as
O(N2). The majority of the floating-point operations are
multiplications and additions involved in the two summa-
tions in (5) and (7), one related to bμ and the other related
to aμ. In addition, the evaluations of g(Y k, kh) may also
involve a substantial number of floating-point operations.
Moreover, all the previously computed numerical solutions
Y 1,Y 2, . . . ,Y N−1 have to be stored for computing Y N .

4. THE BAGLEY-TORVIK EQUATION

As a concrete example of system (1), we will use the
Bagley-Torvik equation, see Torvik and Bagley (1984):

Ay′′(t) +BD
3/2
∗ y(t) + Cy(t) = f(t), (10)

where A, B, and C are scalar constants. Equation (10) can
be rewritten as a system of four coupled scalar fractional
differential equations with α = 1/2, see Diethelm and Ford
(2002). More specifically, we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
D

1/2
∗ y1(t) = y2(t),

D
1/2
∗ y2(t) = y3(t),

D
1/2
∗ y3(t) = y4(t),

D
1/2
∗ y4(t) = A−1(−Cy1(t)−By4(t) + f(t)),

(11)

with initial conditions

y1(0) = y0, y2(0) = 0, y3(0) = y′0, y4(0) = 0.

We also note that evaluating gi(y1(t), y2(t), y3(t), y4(t), t)
is straightforward (no floating-point operations needed) for
i = 1, 2, 3, whereas evaluating g4(y1(t), y2(t), y3(t), y4(t), t)
may require quite a few floating-point operations, depend-
ing on the particular form of f(t).

5. IMPLEMENTATIONS

We use the C programming language, see Kernighan
and Ritchie (1988), to implement the Adams-Bashforth-
Moulton scheme for solving (11). As the basic data struc-
ture, four arrays y1, y2, y3, and y4 are used to store the

numerical solutions of y1(t), y2(t), y3(t), and y4(t) at N
discrete time levels. In addition, one array with name a is
used to store the pre-calculated weights aμ needed in (7),
and another array with name b is for the pre-calculated
weights bμ needed in (5). Moreover, we have used an
additional array, named g4yt, to store the evaluated values
of

g4(y1[i],y2[i],y3[i],y4[i],i*h) 0 ≤ i < N.

The reason for adopting the g4yt array is to avoid repeated
evaluations of g4(y

i
1, y

i
2, y

i
3, y

i
4, ih), which may be costly.

5.1 Baseline: a Naive Implementation

The following implementation naively follows the mathe-
matical definition of the Adams-Bashforth-Moulton scheme
(5)-(9). An outer for-loop with index j is for the time
stepping. In each j iteration, one for-loop is used to
compute Y P

j+1 according to (5), and another for-loop is
used to compute Y j+1 following (7).

for (j=0; j<N; j++) {

sum_b1 = sum_b2 = sum_b3 = sum_b4 = 0.;

for (k=0; k<=j; k++) {

sum_b1 += b[j-k]*y2[k];

sum_b2 += b[j-k]*y3[k];

sum_b3 += b[j-k]*y4[k];

sum_b4 += b[j-k]*g4yt[k];

}

/* predictor values */

y1pred = y1[0]+h_alpha*sum_b1;

y2pred = y2[0]+h_alpha*sum_b2;

y3pred = y3[0]+h_alpha*sum_b3;

y4pred = y4[0]+h_alpha*sum_b4;

c_j = (pow(j,alpha+1)-(j-alpha)*pow(j+1,alpha))/gamma2;

sum_a1 = c_j*y2[0];

sum_a2 = c_j*y3[0];

sum_a3 = c_j*y4[0];

sum_a4 = c_j*g4yt[0];

for (k=1; k<=j; k++) {

sum_a1 += a[j-k]*y2[k];

sum_a2 += a[j-k]*y3[k];

sum_a3 += a[j-k]*y4[k];

sum_a4 += a[j-k]*g4yt[k];

}

y1[j+1] = y1[0]+h_alpha*(sum_a1+y2pred/gamma2);

y2[j+1] = y2[0]+h_alpha*(sum_a2+y3pred/gamma2);

y3[j+1] = y3[0]+h_alpha*(sum_a3+y4pred/gamma2);

t = (j+1)*h;

y4[j+1] = y4[0]+h_alpha*(sum_a4

+g4(y1pred,y2pred,y3pred,y4pred,t)/gamma2);

g4yt[j+1] = g4(y1[j+1],y2[j+1],y3[j+1],y4[j+1],t);

}

It should be noted that values of arrays a and b are com-
puted beforehand once and for all. The variable h alpha
contains the constant value hα.

The number of floating-point operations that can be
carried out per memory read (or write) is an important
metric for the efficiency of a computer code. For the above
baseline version of implementation, within the two for-
loops that both use index k, we can see that each k
iteration requires five memory reads:

(1) b[j-k] or a[j-k]
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(2) y2[k]
(3) y3[k]
(4) y4[k]
(5) g4yt[k]

Correspondingly, the number of floating-point operations
executed per k iteration is eight (four multiplications and
four additions). Therefore, this results in an average of 8/5
floating-point operations per memory read.

5.2 Improvement 1: Loop Fusion

In the baseline version of the implementation, the values of
y2[k], y3[k], y4[k], and g4yt[k] (0 ≤ k ≤ j) are loaded
twice per j iteration. This is because of the two separate
k-indexed for-loops. To improve the ratio of floating-point
operations versus memory reads, we can combine the two
loops into one. This is a standard optimization technique
called loop fusion, see e.g. Goedecker and Hoisie (2001),
which results in the following implementation:

for (j=0; j<N; j++) {

sum_b1 = b[j]*y2[0];

sum_b2 = b[j]*y3[0];

sum_b3 = b[j]*y4[0];

sum_b4 = b[j]*g4yt[0];

c_j = (pow(j,alpha+1)-(j-alpha)*pow(j+1,alpha))/gamma2;

sum_a1 = c_j*y2[0];

sum_a2 = c_j*y3[0];

sum_a3 = c_j*y4[0];

sum_a4 = c_j*g4yt[0];

for (k=1; k<=j; k++) {

sum_b1 += b[j-k]*y2[k];

sum_b2 += b[j-k]*y3[k];

sum_b3 += b[j-k]*y4[k];

sum_b4 += b[j-k]*g4yt[k];

sum_a1 += a[j-k]*y2[k];

sum_a2 += a[j-k]*y3[k];

sum_a3 += a[j-k]*y4[k];

sum_a4 += a[j-k]*g4yt[k];

}

/* remaining part same as the baseline implementation */

}

A new count shows that, for the above implementation
that is based on loop fusion, the ratio of floating-point
operations versus memory reads is now 16/6.

5.3 Improvement 2: Loop Unrolling

Each j iteration, in both the versions of baseline and
loopfusion, computes Y j+1 in form of y1[j+1], y2[j+1],
y3[j+1], and y4[j+1]. As another way of improving the
performance, we can adopt the technique of loop unrolling,
see e.g. Goedecker and Hoisie (2001). The result is that
the number of j iterations is halved, but each j iteration
instead computes both Y j+1 and Y j+2. Here, we skip the
lengthy code listing of this version and only mention that
the ratio of floating-point operations versus memory reads
is increased to 32/8.

5.4 Improvement 3: Alternating Loop Traversal

There is a third possibility for performance improvement
that can be applied to both the versions of loopfusion

and loopunrolling. More specifically, instead of running
one k-indexed for-loop in each j iteration, two k-indexed
for-loops can be executed one after another. (Of course,
the number of j iterations has to be halved accordingly.)
The first for-loop goes in the increasing order of the
k index, and the second for-loop goes in the opposite
direction with respect to k. Although the ratio of floating-
point operations versus memory reads is not affected,
such a trick is good with respect to the temporal data
locality in the caches, as we alternate between “forward”
and “backward” for-loops. This technique (let us call it
forward-backward) can have a positive performance impact
when the footprint of the data structure exceeds the
caches’ capacity.

5.5 Performance Comparison of Serial Implementations

We have tested four serial implementations for three
problem sizes, N = 2 × 105, 4 × 105, 106. Two hardware
platforms were used, one being Intel’s Clovertown 2.66
GHz X5355 quad-core CPU, the other Intel’s Westmere-
EP 2.26 GHz L5640 hexa-core CPU. On the X5355 CPU,
a pair of cores share 4MB of L2 cache, whereas four cores
on the L5640 CPU share 12MB of L3 cache. The serial C
compiler used on the Clovertown system is icc of version
11.1 with optimization flag -O2. On the Westmere-EP
system, the C compiler used is gcc of version 4.1 also with
optimization flag -O2. All the computations used for this
paper adopted double precision, i.e., each floating-point
value is of type double.

Table 1. Serial time usages (in seconds) mea-
sured on multi-core CPUs

Clovertown 2.66GHz X5355 CPU (using 1 core)

N 2× 105 4× 105 1× 106

Baseline 260.10 1545.08 10760.8
Loopfusion 167.75 911.34 6653.4

Loopunrolling 99.14 484.96 3445.7
Unroll+FwBw 86.02 423.12 3189.2

Westmere-EP 2.26GHz L5640 CPU (using 1 core)

N 2× 105 4× 105 1× 106

Baseline 136.6 584.6 4253.6
Loopfusion 91.1 388.6 2639.4

Loopunrolling 84.9 345.3 2202.2
Unroll+FwBw 93.4 375.8 2392.2

From Table 1, we can see that all the three performance
improvement strategies have positive effects, except for the
forward-backward technique on the Westmere-EP system.

The minimum total number of floating-point operations
needed is 8N2, i.e., when we only count those involved
in the k-indexed for-loops. The smaller the problem size,
the better the data-hit ratio in the caches. Therefore, the
best performance (in terms of floating-point operations
per second) was associated with N = 2 × 105. On one
core of the Clovertown X5355 CPU, the highest sustained
floating-point rate was 3.72×109 FLOP/s, calculated from
86.02 seconds being the total computing time. Similarly,
for the Westmere-EP L5640 CPU, the highest single-core
sustained floating-point rate was 3.77× 109 FLOP/s.
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5.6 Parallelization

The topic of parallelizing the Adams-Bashforth-Moulton
scheme has been discussed in Diethelm (2011), where the
author looked at the possibility of letting multiple CPU
cores/threads concurrently compute multiple discrete time
levels. We adopt, however, a more straightforward ap-
proach to parallelization in this paper. More specifically,
we use multiple CPU cores/threads to divide the work
involved in every k-indexed for-loop.

In our MPI-based parallelization, we compute for each
MPI process

my_k_start = (my_rank*j)/num_procs+1;

my_k_stop = ((my_rank+1)*j)/num_procs;

so that the MPI process only executes the k itera-
tions between my k start and my k stop. Then, the
MPI Allreduce function, see e.g. Gropp et al. (1994), is
invoked to sum up the contributions from all the MPI
processes.

In our OpenMP-enabled parallelization, we simply wrap
the outer j-indexed for-loop as an OpenMP parallel
region. Then, each k-indexed for-loop is preceded by, e.g.,
the following code annotation:

#pragma omp for reduction(+:sum_a1,sum_a2,sum_a3,sum_a4)

for (k=1; k<=j; k++) {

/* same code as before */

}

We refer the readers to e.g. Chapman et al. (2007) for the
details of OpenMP programming.

Table 2. Parallel time usages (in seconds) mea-
sured on dual-socket multi-core systems

Dual-socket Clovertown 2.66GHz X5355 quad-core CPUs

N 2× 105 4× 105 1× 106

2 MPI procs 36.67 233.69 1766.5
4 MPI procs 17.83 76.68 1070.3
8 MPI procs 9.43 49.11 1026.6

2 OMP threads 37.42 242.46 2068.3
4 OMP threads 18.15 81.67 1424.4
8 OMP threads 9.43 57.32 1423.7

Dual-socket Westmere-EP 2.26GHz L5640 hexa-core CPUs

N 2× 105 4× 105 1× 106

2 MPI procs 56.3 224.4 1415.1
4 MPI procs 29.3 115.4 726.1
8 MPI procs 15.8 61.3 391.5
12 MPI procs 12.1 45.8 300.2

In Table 2, the best MPI and OpenMP computing times
are reported for the Clovertown system, which has two
quad-core X5355 CPUs. Good parallel performance was
obtained on this system for N = 2× 105 and 4× 105. The
parallel performance associated with N = 106 was less sat-
isfactory, because for this large problem size the aggregate
main memory bandwidth became the dominating perfor-
mance bottleneck. For the Westmere-EP system, which
has two hexa-core L5640 CPUs, we have only listed the
best MPI computing times. Our OpenMP implementation
actually failed to achieve any decent speedups. We suspect
this to be due to the non-uniform memory access (NUMA)
architecture of the Westmere-EP system, but will need
thorough experiments and analyses in future to confirm

our suspicion. In comparison, the Clovertown system has
a UMA architecture.

6. CONCLUDING REMARKS

Detailed time measurements have shown that the com-
puting speed of different implementations of the Adams-
Bashforth-Moulton method is determined by the degree of
data reuse. Loop optimization techniques like loop fusion,
loop unrolling, and alternating direction of loop traversal
can dramatically improve a naively programmed baseline
serial implementation. The benefits of these performance
improving techniques can, in many cases, also be trans-
ferred to MPI and OpenMP parallel implementations. A
quantitative performance model needs to be developed in
future, so that we can be certain whether there is space
for further performance improvements.
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PERFORMANCE MODELING OF SERIAL AND

PARALLEL IMPLEMENTATIONS OF THE FRACTIONAL

ADAMS-BASHFORTH-MOULTON METHOD

Wei Zhang1, Wenjie Wei2, Xing Cai1,2

Abstract

Numerical schemes for solving fractional differential equations are com-
putationally heavy, due to the floating-point operations needed and, more
importantly, the data flow within the entire memory system of a computer.
We choose the fractional Adams-Bashforth-Moulton method as a represen-
tative numerical scheme, and review various code optimizations that can
be applied to its serial and parallel implementations. As the most im-
portant contribution of this paper, we propose a simple methodology to
analyze the achievable serial and parallel performance, based on quantify-
ing the amount of data flow through various stages of the entire memory
system, together with a small set of easily obtainable hardware parameter-
s. This quantitative approach to performance modeling can in most cases
pinpoint the real performance bottleneck, while also verifying the actual
performance improvements due to various code optimizations. Moreover,
the optimization techniques and performance modeling approach can both
be applied to other convolution-intensive numerical methods for solving
fractional differential equations.

MSC 2010 : Primary 65Y05; Secondary 65L05, 65R20

Key Words and Phrases: fractional differential equation, fractional
Adams-Bashforth-Moulton method, performance modeling, parallel com-
puting, multicore CPU

1. Introduction

The time usage of a numerical program on a modern computer is often
determined by how quickly data is moved within the entire memory system,
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rather than the speed of floating-point operations. This is no exception for
the numerical schemes that solve fractional differential equations. While
standard approaches to performance modeling concentrate on the amount
of data that is moved in and out of the main memory, a closer look at
the entire data flow can more precisely explain the actual performance
obtained. On a modern CPU, we should thus direct our attention to the
four connections of data flow: main memory↔L3 cache↔L2 cache↔L1
cache↔registers. While the bandwidth is increasing (or non-decreasing)
along the four connections, the volume of data flow is also non-decreasing.
Therefore, it is often impossible to say without analysis which connection
may be the actual performance bottleneck.

This paper will use the fractional Adams-Bashforth-Moulton method [6,
5], referred to as the fractional Adams method later, as a representative nu-
merical scheme that heavily relies on convolution calculations for solving
fractional differential equations. As an extension of our earlier work [16],
this paper reveals more details about code optimization in the context of a
scalar equation. More importantly, we aim to propose a novel performance
modeling approach, which can easily and accurately quantify the volumes of
data flow through the four connections, with regard to different implemen-
tations of the fractional Adams method. In this way, the effect of various
code optimizations, including parallelization, can be better understood.

2. Fractional Adams method

2.1. Target problem

Before showing the numerical algorithm of the fractional Adams method,
let us first present this paper’s target mathematical model, which is the fol-
lowing general initial-value problem with fractional differential order α > 0:

Dα
∗ y(t) = f(t, y(t)), y(k)(0) = y

(k)
0 for k = 0, 1, . . . , 	α
 − 1, (2.1)

where t denotes time, 	·
 denotes the ceiling function, and Dα∗ denotes a
fractional differential operator that is defined in the sense of Caputo [2]:

Dα
∗ y(t) := J�α�−αD�α�y(t). (2.2)

Here, D�α� is the classical differential operator of integer order 	α
, and Jμ

denotes the Riemann-Liouville integral operator of order μ > 0, i.e.,

Jμy(t) :=
1

Γ(μ)

∫ t

0

y(τ)

(t− τ)1−μ
dτ, (2.3)

where Γ denotes Euler’s Gamma function.
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PERFORMANCE MODELING OF ADAMS METHOD 3

2.2. Numerical algorithm

The following is a brief description of the fractional Adams method,
which finds the approximate solution of (2.1) on discrete time levels: tj =
jh, j = 1, 2, . . . , N , where h is the time step size. More details can be found
in [6, 5].

Let us denote by yj the numerical solution of y(tj). To find yj+1, all
the preceding values y0, y1, . . . , yj will be used, and the work consists of
two sub-steps per time step. More specifically, a predictor first computes
an intermediate approximation:

yPj+1 =

�α�−1∑
k=0

tkj+1

k!
y
(k)
0 + hα

j∑
k=0

bj−kf(tk, yk), (2.4)

where the weights bi are defined by

bi =
(i+ 1)α − iα

Γ(α+ 1)
. (2.5)

Then, a corrector uses the predicted value yPj+1 and computes yj+1 by

yj+1 =

�α�−1∑
k=0

tkj+1

k!
y
(k)
0 +hα

(
cjf(t0, y0) +

j∑
k=1

aj−kf(tk, yk) +
f(tj+1, y

P
j+1)

Γ(α+ 2)

)
,

(2.6)
where

ai =
(i+ 2)α+1 − 2(i+ 1)α+1 + iα+1

Γ(α+ 2)
, cj =

jα+1 − (j − α)(j + 1)α

Γ(α+ 2)
. (2.7)

Some quick comments are in order here. First, the computations of
time step j + 1 are essentially two discrete convolutions between values
of f(tk, yk) and, respectively, the aj−k and bj−k weights. Second, the ai
(0 ≤ i ≤ N − 1) and bi (0 ≤ i ≤ N) weights should be pre-computed once
and for all, to avoid repeatedly evaluating the costly power and Gamma
functions. Third, the computational complexity for finding y1, y2, . . . , yN is
O(N2) floating-point operations, 50% multiplications and 50% additions.
They are associated with the two increasingly longer convolutions per time
step. The number of all other operations is O(N), thus of negligible cost.

3. High-performance implementations

The computational complexity and associated data intensity, shown
above, call for high-performance computing. Our philosophy is that efficient
serial implementations of the fractional Adams method lay the foundation
of high-performance parallelizations. This section will therefore be divided

41



4 W. Zhang, W. Wei, X. Cai

into two parts, one about various serial implementations, the other about
a resulting parallel implementation that uses MPI [8] programming.

3.1. Serial implementations

We have already touched upon the topic of serial and parallel program-
ming in [16], which however addresses the different case of solving a system
of fractional differential equations. Therefore, we will show in the following
text the important details of coding serial implementations of the fractional
Adams method for our scalar model problem (2.1).

3.1.1. Common considerations. As pointed out in Section 2, the weights
of ai and bi should be pre-computed before the time loop. These values can
be stored in two one-dimensional arrays a and b. Another important ob-
servation is that the f(tk, yk) values are also repeatedly used, thus needing
another one-dimensional array, named fy. Note that the value of fy[j+1]
is computed at the end of time step j+1, after yj+1 is found by (2.4)-(2.7).
A fourth one-dimensional array, named y, is assumed to store the numerical
solutions of y(t) at the discrete time levels. This array, however, is not as
frequently used as a, b and fy.

3.1.2. Baseline implementation. Our first implementation naively follows
the definition of the fractional Adams method given by (2.4)-(2.7). Skipping
the data storage allocation and some initial calculations, we only show the
main time loop as follows:

for (j=0; j<N; j++) {

double prefix = y0+(j+1)*h*dy0+... /* initial condition(s) */

double sum_b = 0.0;

for (k=0; k<=j; k++)

sum_b += b[j-k]*fy[k];

double yp_jp1 = prefix + h_alpha*sum_b; /* predictor value */

double c_j = (pow(j,alpha+1)-(j-alpha)*pow(j+1,alpha))/gamma2;

double sum_a = c_j*fy[0];

for (k=1; k<=j; k++)

sum_a += a[j-k]*fy[k];

y[j+1] = prefix + h_alpha*(sum_a + f((j+1)*h, yp_jp1)/gamma2);

fy[j+1] = f((j+1)*h, y[j+1]);

}

In the above code segment, f is an implementation of the right-hand
function f(t, y(t)) of the model problem (2.1). Two constant variables have
been pre-calculated as h alpha = hα and gamma2 = Γ(α+ 2).
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PERFORMANCE MODELING OF ADAMS METHOD 5

3.1.3. Improvement by loop fusion. During each j-iteration of the above
baseline implementation, there are two for-loops both indexed with k. The
fy array is thus traversed twice. There are two consequences of this ap-
proach. First, two values (b[j-k] and fy[k] or a[j-k] and fy[k]) need
to be fed, per k-iteration, into the register file of a computer. Second, there
is a high possibility that the second k-indexed for-loop has to reload the
same fy values into certain levels of a computer’s data cache, before feeding
these values into the registers.

To counteract these two inefficiencies, the technique of loop fusion [7]
can be applied. That is, the two k-indexed for-loops are merged together:

for (j=0; j<N; j++) {

double prefix = y0+(j+1)*h*dy0+...

double sum_b = b[j]*fy[0];

double c_j = (pow(j,alpha+1)-(j-alpha)*pow(j+1,alpha))/gamma2;

double sum_a = c_j*fy[0];

for (k=1; k<=j; k++) {

sum_b += b[j-k]*fy[k];

sum_a += a[j-k]*fy[k];

}

double yp_jp1 = prefix + h_alpha*sum_b;

y[j+1] = prefix + h_alpha*(sum_a + f((j+1)*h, yp_jp1)/gamma2);

fy[j+1] = f((j+1)*h, y[j+1]);

}

It can be seen that this implementation avoids traversing the fy ar-
ray twice during each j-iteration. The number of data values fed into the
registers is thus reduced by 25%, in comparison with the baseline imple-
mentation. Moreover, we have halved the overhead that is associated with
starting and stopping all the k-indexed for-loops.

3.1.4. Improvement by loop unrolling. To further decrease the total num-
ber of data values fed into the registers, the outer j-indexed time loop of the
preceding loop-fusion version can be unrolled [7] with depth 2 as follows:

for (j=0; j<N; j+=2) {

double prefix = y0+(j+1)*h*dy0+...

double prefix1 = y0+(j+2)*h*dy0+...

double sum_b = b[j]*fy[0];

double c_j = (pow(j,alpha+1)-(j-alpha)*pow(j+1,alpha))/gamma2;

double sum_a = c_j*fy[0];
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double sum_b1 = b[j+1]*fy[0];

double c_jp1=(pow(j+1,alpha+1)-(j+1-alpha)*pow(j+2,alpha))/gamma2;

double sum_a1 = c_jp1*fy[0];

for (k=1; k<=j; k++) {

sum_b += b[j-k]*fy[k];

sum_a += a[j-k]*fy[k];

sum_b1 += b[j+1-k]*fy[k];

sum_a1 += a[j+1-k]*fy[k];

}

double yp_jp1 = prefix + h_alpha*sum_b;

y[j+1] = prefix + h_alpha*(sum_a + f((j+1)*h, yp_jp1)/gamma2);

fy[j+1] = f((j+1)*h, y[j+1]);

double yp_jp2 = prefix1 + h_alpha*(sum_b1 + b[0]*fy[j+1]);

y[j+2] = prefix1 + h_alpha*(sum_a1 + a[0]*fy[j+1]

+ f((j+2)*h, yp_jp2)/gamma2);

fy[j+2] = f((j+2)*h, y[j+2]);

}

Now, the k-indexed inner for-loop is shared between the calculations of
y[j+1] and y[j+2]. Consequently, fy[k] is used four times per k-iteration.
The total amount of data fed into the registers is 5

8 = 62.5% of that of the
baseline implementation.

3.1.5. Improvement by alternating loop traversal. In addition to feeding
fewer data values into the registers, consideration can also be given to
data reuse in the different cache levels, which typically use the LRU (least
recently used) policy. More specifically, to improve data reuse of the a,
b and fy arrays in the caches, we can alternate the traversal direction
of two consecutive k-indexed for-loops. This alternation can enhance the
performance of both the loop-fusion and loop-unroll versions. To save space,
we only show the enhanced loop-fusion version as follows:

for (j=0; j<N; ) {

double prefix = y0+(j+1)*h*dy0+...

double sum_b = b[j]*fy[0];

double c_j = (pow(j,alpha+1)-(j-alpha)*pow(j+1,alpha))/gamma2;

double sum_a = c_j*fy[0];

for (k=1; k<=j; k++) {

sum_b += b[j-k]*fy[k];

sum_a += a[j-k]*fy[k];

}
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double yp_jp1 = prefix + h_alpha*sum_b;

y[j+1] = prefix + h_alpha*(sum_a + f((j+1)*h, yp_jp1)/gamma2);

fy[j+1] = f((j+1)*h, y[j+1]);

j++;

prefix = y0+(j+1)*h*dy0+...

sum_b = sum_a = 0.;

for (k=j; k>=1; k--) {

sum_b += b[j-k]*fy[k];

sum_a += a[j-k]*fy[k];

}

sum_b += b[j]*fy[0];

c_j = (pow(j,alpha+1)-(j-alpha)*pow(j+1,alpha))/gamma2;

sum_a += c_j*fy[0];

yp_jp1 = prefix + h_alpha*sum_b;

y[j+1] = prefix + h_alpha*(sum_a + f((j+1)*h, yp_jp1)/gamma2);

fy[j+1] = f((j+1)*h, y[j+1]);

j++;

}

We can see that, in comparison with the loop-fusion version from Sec-
tion 3.1.3, the number of j-iterations is halved. Now, each j-iteration
contains two k-indexed for-loops, where the upper one iterates in the in-
creasing order of k, and the lower one iterates oppositely.

3.1.6. Some remarks about serial programming. The four serial implemen-
tations have exactly the same amount of floating-point operations, but differ
in how data are fed into a computer’s registers and how much data reuse
happens in the caches. These implementations are not meant to be conclu-
sive with respect to code efficiency. One possibility is to unroll the outer
j-indexed time loop deeper. However, caution must be exercised because
deeper unrolls will require more registers. On a CPU that has a smal-
l number of registers, excessive unrolling will have negative effects on the
performance due to register spilling [7]. Another possibility is to also unroll
the k-indexed inner for-loop, for the purpose of using the vector comput-
ing units on modern CPUs. In this paper, we leave code vectorization to
compilers, instead of hand-coding.
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3.2. MPI-enabled parallel implementation

In [5], which was a ground-breaking paper on parallel computing and
fractional calculus, parallelism was extracted from the j-indexed time loop.
Core 1 of a multicore CPU was assigned to compute y[j] value, core 2
was assigned to y[j+1], and so on. While most of the computation could
indeed be carried out concurrently among the CPU cores, there was a
small segment of computation that had to be serialized. For example, cores
2,3,. . . had to wait for core 1 to finish first. Then, cores 3,4,. . . had to wait
for core 2 to complete, and so on.

Our parallelization differs from [5] in that parallelism is now exploited
with the k-indexed inner for-loop. (The time loop is still executed serially.)
More specifically, each CPU core is assigned to compute one section of the
k-loop. Then, all the CPU cores collectively carry out a parallel reduction
operation that sums up the local results. In the context of MPI program-
ming [8], each CPU core runs an MPI process that has a unique ID as
my rank. Then, every MPI process can individually calculate the following
two integer variables:

int my_k_start = (my_rank*j)/num_procs+1;

int my_k_stop = ((my_rank+1)*j)/num_procs;

for (k=my_k_start; k<=my_k_stop; k++) {

/* same code as before */

}

These two integers mark a region of the k-loop that is to be traversed
only on the MPI process with my rank as its ID. Afterward, a collective
call to the MPI Allreduce function, among all the MPI processes, can add
up all the local sum b and sum a values. (The same work division is also
applicable when reversing the traversal direction of the k-loop.) For the
implementation based on loop fusion, one single call to MPI Allreduce,
which handles sum a and sum b together, is sufficient per time step (j-
iteration). For the implementation based on loop unrolling, one single call
to MPI Allreduce is also sufficient per j-iteration, because sum a, sum b,
sum a1 and sum b1 can be handled together.

3.3. OpenMP-enabled parallel implementation

Another simpler parallelization approach is to use OpenMP program-
ming [3]. It suffices to insert a compiler directive before the k-loop, which
also automatically carries out the needed parallel reduction operation:

#pragma omp parallel for reduction(+:sum_b,sum_a)

for (k=1; k<=j; k++) {

/* same code as before */

}
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For work division, the default static scheduler of OpenMP divides the k-
iterations into P chunks, where P denotes the number of OpenMP threads.
Thread 0 works on the first chunk (i.e., with the smallest k indices), thread
1 works on the second chunk, as so on. One potential problem, however,
may arise in connection with reversing the loop traversal, i.e.,

#pragma omp parallel for reduction(+:sum_b,sum_a)

for (k=j; k>=1; k--) {

/* ... */

}

Now, thread 0 is assigned to work with the largest k indices, and the other
threads are assigned with k indices in a decreasing order. Although load
balance is still perfect, the problem is that each thread has to switch be-
tween two regions of the k-iterations, possibly destroying temporal data
locality in the caches and the NUMA architecture of memory.

Therefore, to get the best performance, MPI parallelization should be
applied to the loop-unroll version with alternating loop traversal, whereas
OpenMP parallelization should be applied to the plain loop-unroll version.
The MPI-enabled parallel version thus runs faster than the OpenMP coun-
terpart. However, one disadvantage with MPI parallelization, in addition
to more programming effort, is that arrays a, b, y and fy are duplicated
on every MPI process.

4. Performance modeling

The actual performance benefits from the various improvements of the
baseline serial implementation depend on several factors. The main factor
is the relationship between a CPU core’s floating-point capability and its
ability of moving required data through its entire memory system, all the
way from the main memory to the registers. We will show in this section
that it is possible to carry out detailed performance modeling of the various
implementations of the fractional Adams method. This will pinpoint the
performance bottlenecks of both serial and parallel implementations, thus
providing a trustworthy understanding about the achievable performance.

In comparison with the famous roofline model [15], which focuses on
a CPU’s peak floating-point capability and its peak main memory band-
width, our approach has two extensions. First, instead of only checking
data movement between the main memory and the last-level cache, we al-
so investigate possible bottlenecks in other sections of the data channel.
Second, we adopt simple benchmark tests to obtain realistic bandwidth
limits along the entire data channel, instead of only relying on the peak
bandwidth of the main memory. Both extensions ensure a more accurate
model.
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4.1. Basic assumptions

For running the serial implementations, we assume a single CPU core
that has three levels of data cache (L1,L2,L3) in addition to the main
memory. The CPU core’s floating-point capability (Gflop/s) is denoted by
F . We use Br

L1 to denote the bandwidth (GB/s) of reading data from L1
into the registers. Similarly, Br

L2 ≥ Br
L3 ≥ Br

M denote the L2→L1, L3→L2
and memory→L3 bandwidths, respectively. The reason for focusing only
on the bandwidth of loading data is due to the infrequency of storing data
in all the implementations.

Our fundamental assumption is that, due to modern CPUs’ ability of
pipelining and data prefetching [7], different actions can happen simulta-
neously. For example, while the floating-point units are doing calculations,
the various data caches can be simultaneously busy with loading various
data items that will be needed by subsequent calculations. Therefore, the
lower bound of time usage of any serial implementation of the fractional
Adams method can be described by the following formula:

Time usage = max

(
C

F
,
Dr

L1

Br
L1

,
Dr

L2

Br
L2

,
Dr

L3

Br
L3

,
Dr

M

Br
M

)
, (4.8)

where C denotes the amount of floating-point operations needed, Dr
L1 de-

notes the amount of data to be loaded from L1 to the registers, and so on.
Here, we remark that (4.8) is based on the principle of bound and bottle-
neck [11], which was also adopted by the roofline model. The difference is
that we also investigate possible bottlenecks due to loading data from the
three levels of data cache. In the following text, our aim is to derive for each
implementation the actual sizes of C, Dr

L1, D
r
L2, D

r
L3 and Dr

M , as functions
of the problem size N (the number of discrete time levels). The focus will
be on the time usage due to operations associated with the k-indexed inner
for-loops, i.e., of order O(N2). Time usage of other operations, of order
O(N), will be ignored. The latter includes the pre-calculation of ai and
bi weights, and the associated initial cost of populating the different data
caches.

4.2. The versions of baseline, loop-fusion and loop-unrolling

Independent of a particular serial implementation, we can “dissect” the
entire problem size N into four segments: N1 < N2 < N3 < N , where

N1 =
size of L1

3× 8 bytes
, N2 =

size of L2

3× 8 bytes
, N3 =

size of L3

3× 8 bytes
. (4.9)

The N1, N2 and N3 values are three sub-problem sizes that can be com-
pletely contained, respectively, in the three levels of data cache. That is,
we have Dr

M = 0 for j ≤ N3, D
r
L3 = 0 for j ≤ N2, and Dr

L2 = 0 for j ≤ N1.
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The reason for having 3×8 bytes in the denominators of (4.9) is due to the
need of storing the required a[j-k], b[j-k] and fy[k] values in caches,
all in double precision (each value requires 8 bytes).

While the number of needed additions and multiplications for time step
j is C = 2j + 2j = 4j (independent of implementation), the per-time-step
values of Dr

L1, D
r
L2, D

r
L3 and Dr

M depend on the particular implementation.
More specifically, we have (assuming j > N3)

Baseline version: Dr
L1 = Dr

L2 = Dr
L3 = Dr

M = 4j × 8 bytes,

Loop-fusion version: Dr
L1 = Dr

L2 = Dr
L3 = Dr

M = 3j × 8 bytes,

Loop-unroll version: Dr
L1 =

5j

2
× 8, Dr

L2 = Dr
L3 = Dr

M =
3j

2
× 8 bytes.

Consequently, the total time usage of the loop-unroll version (depth 2,
see Section 3.1.4) for N time steps is

N1(N1 + 1)

2
max

(
4

F
,
20

Br
L1

)
+

(N2 −N1)(N2 +N1 + 1)

2
max

(
4

F
,
20

Br
L1

,
12

Br
L2

)

+
(N3 −N2)(N3 +N2 + 1)

2
max

(
4

F
,
20

Br
L1

,
12

Br
L3

)

+
(N −N3)(N +N3 + 1)

2
max

(
4

F
,
20

Br
L1

,
12

Br
M

)
.

We note that the above formula of time usage has considered the fact
of Br

L1 ≥ Br
L2 ≥ Br

L3 ≥ Br
M , which applies to all multicore CPUs. The

time usage formulas for the baseline and loop-fusion versions are simpler.

4.3. The effect of alternating loop traversal

One common shortcoming with the above three serial implementations
is that once the time step index j exceeds a threshold value Ni, the data
in the entire Li cache have to be reloaded from the Li+1 cache for the next
time step. This is due to the LRU caching policy. As we have already men-
tioned in Section 3.1.5, the strategy of alternating the traversal direction
of consecutive k-loops aims to improve data reuse in the caches.

More specifically, when j exceeds N1, alternating the k-loop traversal
direction allows reusing, per time step, exactly N1 values each of a,b,fy in
L1. A similar benefit applies to L2 or L3, when j exceeds N2 or N3. For
instance, the cost of doing time steps j = N3 + 1, N3 + 2, . . . , N by the
alternating-traversal enhanced loop-unroll implementation is
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max

(
(N −N3)(N +N3 + 1)

2

4

F
,
(N −N3)(N +N3 + 1)

2

20

Br
L1

,

(N −N3)(N +N3 − 2N1 + 1)

2

12

Br
L2

,
(N −N3)(N +N3 − 2N2 + 1)

2

12

Br
L3

,

(N −N3)(N −N3 + 1)

2

12

Br
M

)
.

4.4. Modeling the parallel implementation

To model the time usage by the parallelized implementations of Sec-
tions 3.2 and 3.3, we can still use the formulas derived above. However,
the definitions of N1, N2 and N3 have to be modified, more specifically,

Ni =
number of used Li caches× size of Li

3× 8 bytes
.

Here, we remark that the number of used L1 caches normally equals the
number of MPI processes or OpenMP threads, because each CPU core has
its own private L1 cache. The numbers of used L2 or L3 caches can be
smaller than the number of used CPU cores, because of different degrees
of L2/L3 cache sharing. Communication overhead, associated with the
MPI Allreduce function or OpenMP’s intrinsic operations, is not consid-
ered by our performance model.

One subtle advantage of parallelization is that the aggregate Br
L1, B

r
L2,

Br
L3, B

r
M bandwidths that are accessible by multiple CPU cores are higher

than those accessible by a single CPU core, although the ratio of increase
is typically not proportional to the number of CPU cores used. As will be
seen in the following section, we adopt a parallelized bandwidth benchmark
to measure the aggregate values of Br

L1,B
r
L2,B

r
L3,B

r
M in the parallel setting.

5. Numerical experiment and time measurements

We adopt the same numerical example as in [5], namely,

Dα
∗ y(t) = −y(t), t ∈ (0, 5],

where α = 1.3 and the two initial conditions are y(0) = 1, y′(0) = 0. All
the computations have been done using double precision, with numerical
solutions verified against the analytical solution, which is the Mittag-Leffler
function y(t) = Eα(−tα) [4].
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5.1. Hardware platforms

The following three hardware systems that are based on multicore CPUs
were used for our numerical experiment.

System 1: Two quad-core 2.0GHz Xeon E5504 Nehalem-EP CPUs [10].
Each core has its private L1 cache (32KB) and L2 cache (256KB).
Four cores share an L3 cache (4MB). The used GNU C compiler
has version 4.4.3 with optimization flag -O2.

System 2: Two 8-core 2.6GHz Xeon E5-2670 Sandy Bridge-EP C-
PUs [9]. Each core has its private L1 cache (32KB) and L2 cache
(256KB). Eight cores share an L3 cache (20MB). The used Intel C
compiler has version 12.1.4 with optimization flag -O2.

System 3: Two 16-core 2.3GHz AMD Opteron 6276 Interlagos C-
PUs. Each core has a private L1 cache (16KB). Two cores share an
L2 cache (2MB), and four cores share an L3 cache (8MB) of which
6MB is used for caching data [1]. The used Cray C compiler has
version 8.1.8 with optimization flag -O2.

5.2. Verification of performance model

The correctness of our overall performance model (4.8) depends on the
predicted volumes of the data loads: Dr

L1, D
r
L2, D

r
L3 and Dr

M , in addition
to the accuracy of the bandwidths. To verify the predicted values of Dr

L1
and Dr

L2, we have used the PAPI tool [12] to count two hardware events:
PAPI L1 DCA and PAPI L2 DCA. These correspond to the total numbers
of data accesses to the L1 and L2 caches.

In Table 1, the actual counts, which were associated with using three
different C compilers on an AMD Opteron 6276 Interlagos CPU, are com-
pared against our detailed performance models as described in Sections 4.2
and 4.3. As we can see from the table, the accuracy of our prediction-
s of Dr

L2 is confirmed. Measurements of PAPI L1 DCA differ somewhat
between the three compilers, where the GNU compiler matches with the
predictions very well. One possible explanation is that the native Cray
compiler may have achieved some level of register reuse, which is not con-
sidered by our prediction of Dr

L1. On the other hand, the Intel compiler
may incur some additional data traffic from L1 cache to registers. More-
over, we have used the PAPI FP OPS counter of PAPI to confirm that the
actual number of floating-point operations indeed remains as 2N2, for all
the different implementations and compilers.

We can also mention that the same experiments were repeated by ap-
plying the three C compilers without optimization, i.e., with compilation
option -O0. The measurements of PAPI L2 DCA and PAPI FP OPS from
this set of non-optimizing-compiler experiments are identical with those in

51



14 W. Zhang, W. Wei, X. Cai

Table 1. Measurements of three PAPI events in compari-
son with predictions, associated with N = 4× 105 and four
serial implementations. Three C compilers (Cray, GNU, In-
tel) were tested on an AMD Opteron 6276 Interlagos CPU
core.

Baseline serial implementation
PAPI event Cray cc -O2 GNU gcc -O2 Intel icc -O2 Prediction
L1 DCA 3.11× 1011 3.32× 1011 3.85× 1011 3.20× 1011

L2 DCA 4.14× 1010 4.01× 1010 4.03× 1010 4.00× 1010

FP OPS 3.20× 1011 3.20× 1011 3.20× 1011 3.20× 1011

Loop-fusion serial implementation
PAPI event Cray cc -O2 GNU gcc -O2 Intel icc -O2 Prediction
L1 DCA 2.54× 1011 2.74× 1011 3.53× 1011 2.40× 1011

L2 DCA 3.18× 1010 3.04× 1010 3.05× 1010 3.00× 1010

FP OPS 3.20× 1011 3.20× 1011 3.20× 1011 3.20× 1011

Loop-unroll serial implementation
PAPI event Cray cc -O2 GNU gcc -O2 Intel icc -O2 Prediction
L1 DCA 1.74× 1011 2.09× 1011 2.72× 1011 2.00× 1011

L2 DCA 1.56× 1010 1.51× 1010 1.52× 1010 1.50× 1010

FP OPS 3.20× 1011 3.20× 1011 3.20× 1011 3.20× 1011

Loop-unroll + alternating traversal serial implementation
PAPI event Cray cc -O2 GNU gcc -O2 Intel icc -O2 Prediction
L1 DCA 1.74× 1011 2.08× 1011 2.94× 1011 2.00× 1011

L2 DCA 1.57× 1010 1.51× 1010 1.52× 1010 1.50× 1010

FP OPS 3.20× 1011 3.20× 1011 3.20× 1011 3.20× 1011

Table 1, which were produced by optimizing compilers. The measurements
of PAPI L1 DCA from the non-optimizing-compiler experiments are con-
siderably higher, because of ineffective use of the registers and L1 cache
due to no compiler optimization. In other words, our predictions of Dr

L1
assume effective use of the registers and L1 cache, thus compatible with
compiler optimizations that are commonly used in practice.

5.3. Serial performance

Table 2 compares the actual time measurements (denoted by TA) with
the predicted time usages (denoted by TP ) that are produced by the per-
formance models from Sections 4.2-4.3. These are associated with running
the four serial implementations on a single core of the three chosen hard-
ware platforms. It can be seen that the three latter serial implementations
progressively improve the performance of the baseline version. The Br

L1,
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Br
L2, B

r
L3, B

r
M bandwidths are measured by the dot-product benchmark

(without manual loop unrolling) from STREAM2 [14]. The predicted time
usages have a similar trend as that of the actual time measurements on all
three platforms, as depicted in Figure 1.

Table 2. Actual time measurements (TA) and predicted
time usages (TP ) of four serial implementations.

One core of Nehalem-EP E5504 CPU
Br

L1 = 10.61GB/s, Br
L2 = 10.58GB/s, Br

L3 = 10.53GB/s, Br
M = 8.39GB/s

N = 2× 105 N = 106 N = 4× 106

TA TP TA TP TA TP

Baseline 69.08 64.44 2091.69 1895.19 33727.51 30500.68
Loop-fusion 50.96 48.33 1482.64 1421.39 23931.38 22875.51
Loop-unroll 37.48 37.70 987.27 942.51 15936.27 15080.11

Unroll+altern. 34.12 37.70 919.94 942.51 14917.16 15080.11

One core of Sandy Bridge-EP E5-2670 CPU
Br

L1 = 35.31GB/s, Br
L2 = 35.14GB/s, Br

L3 = 30.22GB/s, Br
M = 17.16GB/s

N = 2× 105 N = 106 N = 4× 106

TA TP TA TP TA TP

Baseline 25.23 21.16 669.22 624.72 15471.11 14610.73
Loop-fusion 18.67 15.87 513.74 468.54 11268.31 10958.05
Loop-unroll 13.62 11.32 355.31 298.91 6793.97 5543.67

Unroll+altern. 12.54 11.32 317.72 283.21 6072.72 4531.29

One core of Interlagos 6276 CPU
Br

L1 = 59.48GB/s, Br
L2 = 27.87GB/s, Br

L3 = 12.59GB/s, Br
M = 8.48GB/s

N = 2× 105 N = 106 N = 4× 106

TA TP TA TP TA TP

Baseline 51.23 45.51 2015.51 1839.14 34360.84 30141.03
Loop-fusion 44.38 34.13 1564.61 1379.35 25999.14 22605.77
Loop-unroll 25.43 17.06 806.91 689.68 13252.49 11302.88

Unroll+altern. 20.82 8.55 701.66 401.39 12587.08 9901.72

5.4. Parallel performance

Table 3 concerns the MPI-enabled parallelization of the loop-unroll ver-
sion enhanced with alternating loop traversal, as described in Section 3.2.
The Br

L1, B
r
L2, B

r
L3, B

r
M bandwidths, now as functions of the number of

MPI processes used, are measured by an MPI extension of the dot-product
benchmark. Again, the trend of the actual time measurements follows that
of the predicted time usages. The noticeable superlinear speedup results
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N = 106 N = 4× 106

Figure 1. Comparing predicted and actual time usages of
four serial implementations and two problem sizes.

from 1 core to 2 cores, obtained on the Interlagos system, are also justified
by the predictions. This is because the measured Br

L1, B
r
L2, B

r
L3, B

r
M band-

widths almost perfectly double from the case of 1 core to the case of 2 cores,
at the same time as the aggregate L1/L2/L3 cache sizes double. That is,
using 2 cores has an inherent advantage over using 1 core. On the other
hand, when the number of MPI processes gets closer to the maximum num-
ber of CPU cores, neither the aggregate Br

L1,B
r
L2,B

r
L3,B

r
M bandwidths nor

the aggregate L1/L2/L3 cache sizes increase linearly. Sublinear speedup is
thus the result, also predicted by the quantitative performance model.

One negative factor for speedup is the MPI overhead, which is not con-
sidered in our performance models. Actually, the calls to MPI Allreduce

can consume a considerable amount of time. For example, for the problem
size of N = 106, the Scalasca tool [13] reveals that the percentage of MPI
time usage on the Sandy-Bridge system arises from 1.6% for two cores to
20.8% for 16 cores.

We have measured the performance of an OpenMP-parallelization of
the serial implementation of plain loop-unroll, see Section 3.3. The trend
of the actual/predicted OpenMP time usage is similar to that of MPI, as
seen in Figure 2. As explained in Section 3.3, the MPI parallelization is
based on a better serial implementation, therefore the better parallel MPI
performance. Tests of an OpenMP-parallelization of loop-unroll + alternat-
ing traversal (not shown in Figure 2) also confirm its inferior performance
in comparison with the OpenMP-parallelization of plain loop-unroll.
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Table 3. Actual time measurements (TA) and predicted
time usages (TP ) of an MPI parallelization of loop unrol-
l+alternating traversal.

Two quad-core Nehalem-EP E5504 CPUs
N = 106 N = 4× 106

MPI Br
L1 Br

L2 Br
L3 Br

M TA TP TA TP

1 proc 10.61 10.58 10.53 8.39 919.94 942.51 14917.16 15080.11
2 procs 21.07 21.07 20.89 15.71 479.53 474.61 7920.81 7593.73
4 procs 42.21 42.21 42.03 21.31 276.75 236.91 5036.66 3790.57
8 procs 84.55 84.55 83.51 24.99 179.64 118.27 3672.05 3213.96

Two 8-core Sandy Bridge-EP E5-2670 CPUs
N = 106 N = 4× 106

MPI Br
L1 Br

L2 Br
L3 Br

M TA TP TA TP

1 proc 35.31 35.14 30.22 17.16 317.72 283.21 6072.72 4531.29
2 procs 70.47 70.26 60.44 36.25 161.64 141.91 2829.93 2270.47
4 procs 141.21 140.45 119.44 64.92 82.65 70.81 1493.09 1133.06
8 procs 272.86 270.75 229.89 88.86 43.78 36.64 857.77 586.38
16 procs 513.63 511.03 426.83 87.71 24.87 19.46 632.92 406.51

Two 16-core Interlagos 6276 CPUs
N = 106 N = 4× 106

MPI Br
L1 Br

L2 Br
L3 Br

M TA TP TA TP

1 proc 59.48 27.87 12.59 8.48 701.66 401.39 12587.08 9901.72
2 procs 118.89 54.62 23.74 16.75 310.35 175.42 6133.58 4361.55
4 procs 237.88 110.53 47.72 33.69 138.80 59.72 2862.12 1682.05
8 procs 475.78 221.07 84.43 55.08 62.81 26.84 1430.09 978.43
16 procs 875.64 427.36 134.22 66.72 33.92 13.73 755.04 635.81
32 procs 946.48 741.69 162.38 65.81 32.67 10.56 740.04 637.87

6. Extension to solving a system of fractional equations

To demonstrate that our performance modeling approach can be ex-
tended to other situations, let us revisit the specific case of using the frac-
tional Adams method for a system of four fractional equations, as discussed
in [16]. That is, the target mathematical model now becomes

D
1/2
∗ y1(t) = y2(t),

D
1/2
∗ y2(t) = y3(t),

D
1/2
∗ y3(t) = y4(t),

D
1/2
∗ y4(t) = A−1(−Cy1(t)−By4(t) + f(t)),

(6.10)

with appropriate initial conditions.
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N = 106 N = 4× 106

Figure 2. Comparing predicted and actual time usages of
an MPI-parallelization and an OpenMP-parallelization on
three parallel platforms, for two problem sizes.

In total, seven arrays are needed for implementing the fractional Adams
solver for this case. In addition to a and b, arrays y1, y2, y3 and y4 will
store the numerical solutions. Moreover, during the convolution calcula-
tions, to avoid unnecessary repetitions of computing the right-hand term
of A−1(−Cy1(t)−By4(t) + f(t)), we adopt another array named g4yt.

Due to space limit, we will only show the k-indexed inner for-loop that
belongs to the version of loop-fusion for this four-equation solver:

for (k=1; k<=j; k++) {

sum_b1 += b[j-k]*y2[k];

sum_b2 += b[j-k]*y3[k];

sum_b3 += b[j-k]*y4[k];

sum_b4 += b[j-k]*g4yt[k];

sum_a1 += a[j-k]*y2[k];

sum_a2 += a[j-k]*y3[k];

sum_a3 += a[j-k]*y4[k];

sum_a4 += a[j-k]*g4yt[k];

}

It should be noticed that six arrays (excluding y1) are repeatedly used in
the above convolution calculations. Consequently, we have Dr

L1 = Dr
L2 =

Dr
L3 = Dr

M = 6j × 8 bytes for time step j. In comparison, for a baseline
implementation, where there are two separate k-indexed for-loops per time
step, we haveDr

L1 = Dr
L2 = Dr

L3 = Dr
M = 10j×8 bytes. Without going into

the details, we can state that loop unrolling and alternating loop traversal
can help reducing the values of Dr

L1, D
r
L2, D

r
L3 and Dr

M . Another detail
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is that N1, N2 and N3 are calculated by the same formulas as (4.9), but
we need to replace the denominator with 6 × 8 bytes. This is because six
arrays (instead of three) are now repeatedly used in the convolution loops.

7. Concluding remarks

The performance models that have been proposed are conceptually very
simple. They are also easy to use, because the only required hardware-
specific parameters are the different data cache sizes, the peak floating-
point capability F , plus the realistic bandwidths that can be easily mea-
sured by running a (parallelized) dot-product benchmark. The accuracy of
the predicted time usages can be affected by several factors. For example,
a compiler may transform the code in a different way than expected. More-
over, the actual code may suffer from stalls that are not considered in the
performance models. Neither are the data caches exclusively used for stor-
ing a[j-k], b[j-k] and fy[k]. Inaccuracy may also arise from inaccurate
measurements of the bandwidths. Nevertheless, the proposed performance
models are able to identify the true bottlenecks in most cases, as well as
verifying the performance advantage of various code improvements.

We have also demonstrated, through actual time measurements, the
effect of various performance-enhancing strategies. Although the serial
and parallel implementations are specific for the fractional Adams method,
we believe that these are of value to similar numerical schemes, which are
based on convolution calculations for the temporal integration, for solving
fractional differential equations.
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