A Note on the Complexity of Some Quality of Information Optimisation Problems in Sensor Networks

Research Report 441
Ellen Munthe-Kaas
3rd October, 2014

ISBN 978-82-7368-406-6
ISSN 0806-3036
A Note on the Complexity of Some Quality of Information Optimisation Problems in Sensor Networks

Ellen Munthe-Kaas

Abstract

We prove that a selection of quality of information optimisation problems related to event detection in sensor networks are NP-hard.

1 Introduction

In event detection systems, where the aim is to utilize sensors in a network to detect events of interest, there is a need to balance the sensors’ energy usage against the frequency of data transfer in order to prolong the lifetime of the sensors. This leads to a number of optimisation problems, all of which tend to be NP-hard. In this note we review most of the optimisation problems in [1], [2], [3], [4] and prove that the corresponding decision problems are NP-complete.

2 Cost and Quality of Information Functions

Consider an event detection system with a set of sensors \(S \). The aim of the system is to use data from the sensors for detecting an event characterised by an expression \(E \). Each sensor \(i \) has a hop count \(h_i \in N \) (the number of communication links from the sensor to where the sensed data are collected and processed) and a sending rate \(r_i \), where \(N \) is the set of natural numbers (positive integers).

A sensor’s energy usage is proportional to the number of transmitted data tuples. The cost of employing a subset of the sensors \(\theta \subseteq S \) is therefore represented by \(\gamma \sum_{i \in \theta} h_i r_i \), where \(\gamma \) is a scaling constant. The sending rates can be changed dynamically, for instance to lower the cost. For each sensor \(i \), \(r_i \) reflects a percentage of its maximum sending rate. In practice the sensor might accomplish the requested sending rate by repeatedly sampling
and sending r_i data tuples out of a 100 possible, thus we assume that r_i is a non-negative integer in the range $[0..100]$. Since γ does not affect the computational complexity of any of the optimisation problems, we for simplicity assume that $\gamma = 1$ and consequently use the cost function

$$\text{Cost}_i(\theta) = \sum_{i \in \theta} h_i r_i \tag{1}$$

where \bar{r} are the sending rates. We write $\text{Cost}(\theta)$ when \bar{r} is obvious from the context.

Each sensor contributes to the system’s information extraction. The quality of this information is influenced by the sensor’s sending rate; the more data tuples provided, the more accurate the information gained from the sensed values. The contribution to the quality of information from a sensor that is actively producing and sending data, is represented by a function $q(\alpha, \beta, r)$, where $r > 0$ is the sending rate and $\alpha > 0$ and $\beta > 0$ are used for tuning the value of q to each individual sensor. The actual shape of q can be chosen in a number of different ways as long as $q(\alpha, \beta, r)$ is monotonically increasing in r and obeys $1/2 \leq q(\alpha, \beta, r) \leq 1$ (assuming reasonable values for α and β). The rationale behind $q(\alpha, \beta, r) \geq 1/2$ is related to Equation (4), which is introduced further down. When $r_i = 0$, i.e., sensor i does not provide any data, its contribution to the quality of information is 0. Let α_i and β_i be the values of α and β respectively for sensor i. We write q_i for $q(\alpha_i, \beta_i, r_i)$ when the value of r_i is obvious from the context.

We consider the following two possible definitions of q, both of which are monotonically increasing in each of α, β and r (slight variations of these definitions appear in the papers [1], [2], [3], [4]):

$$q(\alpha, \beta, r) = \alpha b^{-\frac{r}{\beta}} \tag{2}$$

$$q(\alpha, \beta, r) = 1 - \frac{1}{\alpha} b^{-\beta r} \tag{3}$$

where b is the base of the exponent (with $b = e$ or $b = 2$ as the most prominent candidates). The quality of information function for a set of mutually independent sensors θ and an event expression E, $QoI[E]_r(\theta)$, is defined recursively wrt. the structure of E [3]:

- E is an atomic event: For atomic events the quality of information function is a fusion of those for the individual sensors, and follows a Bayesian formulation.

$$QoI[E]_r(\theta) = \frac{\prod_{i \in \theta} q_i^{\alpha_i}}{\prod_{i \in \theta} q_i + \prod_{i \in \theta} (1-q_i)} \tag{4}$$

where $\prod_{i \in \theta} q_i$ should be monotonically increasing in the size of θ; the more sensors employed, the more accurately an atomic event can be detected. In order to ensure this, we require that $q_i \geq 1/2$.

- E is a conjunction of events $E_1 \land \cdots \land E_n$, consecutive events $E_1 \rightarrow \cdots \rightarrow E_n$, or concurrent events $E_1 \parallel \cdots \parallel E_n$ (assuming that for $i \neq j$ the atomic events occurring in E_i and E_j are independent):

$$QoI[E]_r(\theta) = \prod_{j=1}^n QoI[E_j]_r(\theta) \tag{5}$$
• \(E \) is a disjunction of events \(E_1 \lor \cdots \lor E_n \) (assuming that for \(i \neq j \) the atomic events occurring in \(E_i \) and \(E_j \) are independent):

\[
QoI[E]_{\vec{r}}(\theta) = 1 - \prod_{j=1}^{n}(1 - QoI[E_j]_{\vec{r}}(\theta)) \tag{6}
\]

We write \(QoI[E](\theta) \) when the sending rates \(\vec{r} \) are obvious from the context.

3 Optimisation Problems

The optimisation problems that we consider in this note, are the following:

Problem 1. MinCost – Find a subset of the sensors that minimises the cost while maintaining an acceptable quality of information:

Instance. A set of sensors \(S \) and an event expression \(E \). For each sensor \(i \), a sending rate \(r_i \in N \), a hop count \(h_i \in N \), and constants \(\alpha_i > 0 \) and \(\beta_i > 0 \) such that \(1/2 \leq q_i \leq 1 \). A minimum quality of information value \(Q > 0 \).

Problem. Find a subset \(\theta \subseteq S \) such that \(QoI[E](\theta) \geq Q \) and such that \(Cost(\theta) \) is minimised.

Problem 2. MaxQoI – Find a subset of the sensors that maximises the quality of information while maintaining an acceptable cost:

Instance. A set of sensors \(S \) and an event expression \(E \). For each sensor \(i \), a sending rate \(r_i \in N \), a hop count \(h_i \in N \), and constants \(\alpha_i > 0 \) and \(\beta_i > 0 \) such that \(1/2 \leq q_i \leq 1 \). A maximum cost \(C \in N \).

Problem. Find a subset \(\theta \subseteq S \) such that \(Cost(\theta) \leq C \) and such that \(QoI[E](\theta) \) is maximised.

Problem 3. MaxQoIBalancing – Given a partition of the sensors, find for each group in the partition a subset such that the overall quality of information is maximised while maintaining an acceptable cost for each subset as well as an acceptable overall cost:

Instance. A set of sensors \(S \) and an event expression \(E \). For each sensor \(i \), a sending rate \(r_i \in N \), a hop count \(h_i \in N \), and constants \(\alpha_i > 0 \) and \(\beta_i > 0 \) such that \(1/2 \leq q_i \leq 1 \). A partition \(S_1, \ldots, S_k \) of \(S \). A maximum cost \(C \in N \). For each \(S_j \), a local maximum cost \(C_j \in N \).

Problem. Find subsets \(\theta_j \subseteq S_j \) such that \(Cost(\theta_j) \leq C_j \) for all \(j \), \(Cost(\theta) \leq C \), and such that \(QoI[E](\theta) \) is maximised, where \(\theta = \bigcup_{j=1}^{k} \theta_j \).
Problem 4. MaxLifetime – Find an allocation of sensors into groups that maximises the number of groups while ensuring that each group provides an acceptable quality of information:

INSTANCE. A set of sensors S and an event expression E. For each sensor i, a sending rate $r_i \in \mathbb{N}$ and constants $\alpha_i > 0$ and $\beta_i > 0$ such that $1/2 \leq q_i \leq 1$. A minimum quality of information value $Q > 0$.

PROBLEM. Find a subset $S' \subseteq S$ and a partition $\theta_1, \ldots, \theta_k$ of S' such that $QoI[E](\theta_j) \geq Q$ for all j and such that k is maximised.

Problem 5. MaxMinQoI – Find an allocation of sensors into a given number of groups such that the quality of information for the group with the lowest such value, is maximised:

INSTANCE. A set of sensors S and an event expression E. For each sensor i, a sending rate $r_i \in \mathbb{N}$ and constants $\alpha_i > 0$ and $\beta_i > 0$ such that $1/2 \leq q_i \leq 1$. A constant $k \in \mathbb{N}$.

PROBLEM. Find a subset $S' \subseteq S$ and a partition $\theta_1, \ldots, \theta_k$ of S' such that

$$\min_{1 \leq j \leq k} \{QoI[E](\theta_j)\}$$

is maximised.

In MaxLifetime and MaxMinQoI, if a problem instance has more than one optimal solution, one might additionally consider optimising the subset S', for instance by choosing the solution with the smallest $\text{Cost}(S')$. If such a further optimisation of S' is not a concern, one may simplify the problems to finding a partition $\theta_1, \ldots, \theta_k$ of S rather than a partition of S'. We have however chosen to keep the original problem formulations.

4 Decision Problems

In order to provide complexity results for the problems in Section 3, we first state the corresponding decision problems.

The decision versions of Problems 1 and 2 are identical:

Problem 6. MinCostDec and MaxQoIDec

INSTANCE. A set of sensors S and an event expression E. For each sensor i, a sending rate $r_i \in \mathbb{N}$, a hop count $h_i \in \mathbb{N}$ and constants $\alpha_i > 0$ and $\beta_i > 0$ such that $1/2 \leq q_i \leq 1$. A minimum quality of information value $Q > 0$ and a maximum cost $C \in \mathbb{N}$.

QUESTION. Is there a subset $\theta \subseteq S$ such that $QoI[E](\theta) \geq Q$ and $\text{Cost}(\theta) \leq C$?

If we for each sensor i abstract the cost and quality of information to constants c_i and p_i respectively, and restrict our focus to atomic events, we get the following formulation of Problem 6, where $pf(\theta) = \frac{\Pi_{i \in \theta} p_i}{\Pi_{i \in \theta} c_i \Pi_{i \in \theta} (1 - p_i)}$ is the fusion of the p_i’s:
Problem 7. Bayesian Profit

INSTANCE. A set of items U. For each item i, a profit p_i where $1/2 \leq p_i \leq 1$, and a cost $c_i \in N$. A minimum profit $P > 0$ and a maximum cost $C \in N$.

QUESTION. Is there a subset $\theta \subseteq U$ such that $pf(\theta) \geq P$ and $\sum_{i \in \theta} c_i \leq C$?

We simplify the decision versions of Problems 3–5 similarly, noting that the decision versions of Problems 4 and 5 are identical:

Problem 8. MaxQoIBalancingDec

INSTANCE. A set of items U. For each item i, a profit p_i such that $1/2 \leq p_i \leq 1$, and a cost $c_i \in N$. A partition U_1, \ldots, U_k of U. A minimum profit $P > 0$ and a maximum cost $C \in N$. For each U_j, a local maximum cost $C_j \in N$.

QUESTION. Are there subsets $\theta_j \subseteq U_j$ such that $pf(\theta_j) \geq P$, $\sum_{i \in \theta_j} c_i \leq C_j$ for all j, and $\sum_{i \in \theta} c_i \leq C$, where $\theta = \bigcup_{j=1}^k \theta_j$?

Problem 9. MaxLifetimeDec and MaxMinQoIDec

INSTANCE. A set of items U. For each item i, a profit p_i such that $1/2 \leq p_i \leq 1$. A minimum profit $P > 0$. A constant $k \in N$.

QUESTION. Is there a subset $V \subseteq U$ and a partition $\theta_1, \ldots, \theta_k$ of V such that $pf(\theta_j) \geq P$ for $j = 1, \ldots, k$?

5 Complexity of the Problems

Our aim is to prove that all the decision problems in Section 4 are NP-complete. We base our proofs on the known NP-complete decision problems Knapsack [5] (often named 0-1 Knapsack) and Dual Bin Packing [6]:

Problem 10. Knapsack

INSTANCE. A set of items U. For each item i, a profit $p_i \in N$ and a weight $w_i \in N$. A minimum profit $P \in N$ and a maximum weight $W \in N$.

QUESTION. Is there a subset $V \subseteq U$ such that $\sum_{i \in V} w_i \leq W$ and $\sum_{i \in V} p_i \geq P$?

Problem 11. Dual Bin Packing

INSTANCE. A set of items U. For each item i, a profit $p_i \in N$. A minimum profit $P \in N$. A constant $k \in N$.

QUESTION. Is there a partition of U into k sets U_1, \ldots, U_k such that $\sum_{i \in U_j} p_i \geq P$ for $j = 1, \ldots, k$?
In the proofs below we use tilde (\tilde{X}) to emphasize that an entity X belongs to the transformed problem.

Lemma 1. Bayesian Profit is NP-complete.

Proof. Transformation from Knapsack: Let

$$
\tilde{U} = U
\tilde{p}_i = 1 - \frac{1}{1+2^{\theta_i}}
\tilde{c}_i = w_i
\tilde{P} = \frac{1}{1+2^{\theta_i}}
\tilde{C} = W
$$

Since $p_i \in N \Rightarrow 2^{p_i} \geq 1$, we have $0 \leq \frac{1}{1+2^{\theta_i}} \leq 1/2$, and consequently $1/2 \leq \tilde{p}_i \leq 1$. $\theta \subseteq U$ is a witness for Knapsack if and only if it is a witness for the transformed problem: $\sum_{i \in \theta} w_i = \sum_{i \in \theta} c_i$, so $\sum_{i \in \theta} w_i \leq W$ iff $\sum_{i \in \theta} \tilde{c}_i \leq \tilde{C}$. Further, $\tilde{p}_i = \frac{2^{p_i}}{1+2^{\theta_i}}$, so $\frac{1-\tilde{p}_i}{\tilde{p}_i} = 2^{-p_i}$. Thus,

$$
pf(\theta) = \frac{\prod_{i \in \theta} \tilde{p}_i}{\prod_{i \in \theta} \tilde{p}_i + \prod_{i \in \theta} (1-\tilde{p}_i)} = \frac{1}{1+\prod_{i \in \theta} \frac{1-\tilde{p}_i}{\tilde{p}_i}} = \frac{1}{1+\prod_{i \in \theta} 2^{-\theta_i}} = \frac{1}{1+2^{-\sum_{i \in \theta} \theta_i}}.
$$

Consequently,

$$
\sum_{i \in \theta} p_i \geq P \iff 2^{-\sum_{i \in \theta} p_i} \leq 2^{-P} \iff pf(\theta) \geq \frac{1}{1+2^{-\theta_i}} = \tilde{P}.
$$

□

Lemma 2. MinCostDec and MaxQoIDec are NP-complete.

Proof. Transformation from Bayesian Profit: Let

$$
\tilde{S} = U
\tilde{E} = \text{any atomic event}
\tilde{\alpha}_i = 1
\tilde{r}_i = c_i
\tilde{h}_i = 1
\tilde{Q} = P
\tilde{C} = C
$$

In addition we choose the value of $\tilde{\beta}_i$ so that $\tilde{q}_i = p_i$ (thus, $1/2 \leq \tilde{q}_i \leq 1$). The actual choice of $\tilde{\beta}_i$ depends on the definition of $q(\alpha, \beta, r)$:

$$
\tilde{\beta}_i = -1/(c_i \log_b p_i) \quad \text{if } q(\alpha, \beta, r) = \alpha b^{-\frac{1}{r}},
\tilde{\beta}_i = -\log_b(1-p_i)/c_i \quad \text{if } q(\alpha, \beta, r) = 1 - \frac{1}{\alpha} b^{-\beta r}.
$$

Let $\theta \subseteq U$. Then θ is a witness for Bayesian Profit if and only if it is a witness for the transformed problem: $\sum_{i \in \theta} \tilde{h}_i \tilde{r}_i = \sum_{i \in \theta} c_i$, so $\sum_{i \in \theta} c_i \leq C$ iff $\text{Cost}(\theta) \leq \tilde{C}$. Since $\tilde{q}_i = p_i$ and the event is atomic,

$$
QoI[\tilde{E}](\theta) = \prod_{i \in \theta} p_i / (\prod_{i \in \theta} p_i + \prod_{i \in \theta} (1-p_i)) = pf(\theta),
$$

and thus $pf(\theta) \geq P$ iff $QoI[\tilde{E}](\theta) \geq \tilde{Q}$. □
Lemma 3. MaxQoIBalancingDec is NP-complete.

Proof. The transformation from Bayesian Profit is straightforward: Let
\[
\begin{align*}
\tilde{U} &= U, \\
\tilde{p}_i &= p_i, \\
\tilde{c}_i &= c_i, \\
\tilde{k} &= 1, \\
\tilde{U}_1 &= U, \\
\tilde{P} &= P, \\
\tilde{C} &= C, \\
\tilde{C}_1 &= C
\end{align*}
\]
Then \(\theta \subseteq U \) is a witness for Bayesian Profit iff it is a witness for the transformed problem. \(\square \)

Lemma 4. MaxLifetimeDec and MaxMinQoIDec are NP-complete.

Proof. Transformation from Dual Bin Packing: Let
\[
\begin{align*}
\tilde{U} &= U, \\
\tilde{p}_i &= 1 - \frac{1}{1 + 2^{p_i}}, \\
\tilde{k} &= k, \\
\tilde{P} &= k \frac{1}{1 + 2 - p}
\end{align*}
\]
Since \(2^{p_i} \geq 1 \), \(1/2 \leq \tilde{p}_i \leq 1 \). Since \(\frac{1 - \tilde{p}_i}{p_i} = 2^{-p_i} \), we get that for all \(\theta \subseteq S \), \(pf(\theta) = \frac{1}{1 + 2 - \sum_{i \in \theta} p_i} \). Consequently, for all \(\theta \subseteq S \), \(\sum_{i \in \theta} p_i \geq P \) iff \(pf(\theta) \geq \frac{1}{1 + 2 - P} = \tilde{P} \).

Let \(\theta_1, \ldots, \theta_k \) be a witness for the transformed problem (with \(V = \bigcup_{j=1}^k \theta_j \)). Then for all \(j \), \(pf(\theta_j) \geq \tilde{P} \), and consequently \(\sum_{i \in \theta_j} p_i \geq P \) for all \(j \). Let \(\theta_0 = U \setminus \bigcup_{j=1}^k \theta_j \) and let
\[
\theta'_i = \begin{cases}
\theta_1 \cup \theta_0 & \text{if } i = 1, \\
\theta_i & \text{if } i > 1.
\end{cases}
\]
Then for all \(j > 1 \), \(\sum_{i \in \theta'_j} p_i = \sum_{i \in \theta_j} p_i \geq P \). Further, \(\sum_{i \in \theta'_j} p_i \geq \sum_{i \in \theta_i} p_i \geq P \), so \(\theta'_1, \ldots, \theta'_k \) is a witness for Dual Bin Packing.

Let \(\theta_1, \ldots, \theta_k \) be a witness for Dual Bin Packing. Then for all \(j \), \(\sum_{i \in \theta_j} p_i \geq P \), and consequently \(pf(\theta_j) \geq \tilde{P} \) for all \(j \), so \(\theta_1, \ldots, \theta_k \) is a witness for the transformed problem (with \(V = U = \bigcup_{j=1}^k \theta_j \)). \(\square \)
6 Conclusion

As the decision problems are provably NP-complete, the corresponding optimisation problems are NP-hard.

References

