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Abstract 

51CrV4-steel was pulsed plasma nitrided (PPN) with four sets of parameters. The resulting 

compound layers and diffusion zones were investigated using visible light microscopy, 

scanning electron microscopy, hardness measurements and x-ray diffraction. 

The results showed that the four different PPN treatments resulted in four compound layers 

and diffusion zones with different thickness. The compound layers ranged from 0.2 µm to 2.3 

µm, while the diffusion zones ranged from 62 µm to 138 µm. 

The PPN treatment that was supposed to result in a sample with no compound layer exhibited 

a very thin surface layer of about 0.2 µm. To achieve the goal of a PPN process that result in 

no compound layer, the parameters have to be adjusted with either dilution of the plasma, or 

reduction of the nitriding time. 

XRD analysis revealed that all the samples consisted of the three phases α-iron, Fe3N and 

Fe4N, and the intensities indicated different ratios.  

One sample, which was PPN with a low temperature process, was investigated with 

transmission electron microscopy (TEM). 

TEM imaging revealed grains in the size order of a few 100 nm at the compound layer 

surface. Electron diffraction showed extra diffraction spots corresponding to a primitive cubic 

lattice with a cell parameter of 6.58 Å. Further investigation is needed to decide what causes 

the external ordering and to create a model of the expanded unit cell. 
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1 Introduction 

1.1 Background and motivation 

Steel and low alloy steel is one of the most common construction materials in use today. It is 

important in the manufacturing of everything from buildings, to cars, to computers and energy 

instalments. The petroleum industry is no exception to this. A lot of the world petroleum 

resources are located subsea, and low alloyed steel is the main construction material for 

subsea equipment.  

Failures in the subsea equipment can lead to catastrophic incidents, like the 2010 Deepwater 

Horizon oil spill. The spill area in the Gulf of Mexico hosted 8332 different species, and the 

threat to the biodiversity of the region was immense [1]. Among others the spill caused major 

devastations to the Gulf area coral reefs. In addition to the environmental impact, failures in 

the equipment can cause severe risk to human life and health; and significant economic losses 

[2]. 

To achieve a comfortable living standard for everyone, the world is dependent on energy. 

Right now petroleum-based energy is a very important source. It is vital that the retrieval of 

petroleum resources is done in a safe and effective manner, to prevent damage to the 

environment and ensure workers’ safety. 

Over the recent years the development in the petroleum industry has yielded a demand for 

materials that can withstand crude conditions. This has led to an increased use of high 

strength steel alloys [3]. However, several failures have demonstrated how these alloys may 

be susceptible to hydrogen embrittlement (HE), and hydrogen induced stress cracking, where 

stress and hydrogen occlusion leads to brittle fractures at stress well below the materials yield 

strength. The question is; how does this happen and how can it be prevented?  

The mechanisms behind HE are not completely understood, but several methods has been 

developed to assists engineers in handling the problem. Great care is taken during 

manufacturing of steel to keep hydrogen out of the materials, and strict guidelines limits the 

load on equipment to keep them from failure. There is still a need to find a solution that 
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allows the materials to be utilized at the full capacity. A reliable method to prevent HE will 

remove the problem entirely and thereby greatly reducing the risk of failure.  

One proposed solution is to develop a barrier to prevent hydrogen from entering the 

susceptible material. Nitriding of the steel surface might be a method to block hydrogen and 

some background and earlier work on this topic is presented in 1.7. 

1.2 Scope and methods 

The goal of this master project is to get increased knowledge of the result of the nitriding 

process by investigating the compound layer and diffusion zone . The nitriding process, which 

is described in chapter 1.6, creates an iron nitride compound layer on the surface (typically 2-

20 µm thick), whit a diffusion zone with nitrogen in solid solution with iron below it, 

illustrated in  Figure 1-1. The diffusion zone can be up to 700µm thick and below the 

diffusion zone the base material is unchanged. 

 

Figure 1-1: Result of the nitriding process. The compound layer in this project is less than 3 μm 

thick, and the diffusion zone is between 50µm and 150µm thick. Modified from [4]. 

Three different sets of nitriding conditions were selected, and the result of the three treatments 

should be three different compound layer thickness and three different sets of diffusion zone 

thickness. The samples and the nitriding conditions are more thoroughly explained in chapter 

3.1, but a quick description is given below. 

The first sample was nitrided with a process that creates a fairly thin nitride compound layer, 

and at the end of the process oxygen is mixed into the plasma to create a protective oxide 

layer on the outside. Another sample was polished smooth and nitride with the same process, 

but without the oxidizing step at the end. 

Compound layer 

Diffusion zone 

Base material 
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The second nitriding condition was a new low temperature procedure. To get the required 

properties in steel, the material goes through a set of heating and cooling procedures until the 

desired properties are achieved.  Any post-manufacturing treatment can alter the steels 

properties, and a low temperature nitriding method can therefore be utilized for materials very 

sensitive to post manufacturing heat treatments. 

The last nitriding condition was chosen with the goal of creating a diffusion zone with no 

compound layer. This was done because previous work, described in 1.7, has suggested that 

the diffusion zone is the largest contributor to the hydrogen barrier effect in nitrided steels. 

The absence of a hard compound layer could also be beneficial for certain applications. This 

process was also a low temperature treatment. 

These four samples will be imaged with light microscopy and scanning electron microscopy 

(SEM) to determine the compound layer thickness and uniformity. The diffusion zone will be 

measured using Vickers hardness indentations, and heat treatment to get the nitride in solid 

solution to precipitate into nitride needles will be performed. 

There will also be developed a procedure for making transmission electron microscopy 

(TEM) samples and some preliminary electron diffraction and imaging will be conducted. 

Structural information about the samples will be examined using x-ray diffraction. 

This master thesis will start with a theoretical introduction to hydrogen embrittlement, with a 

summary and discussion of the two main proposed mechanisms in chapters 1.3 to 1.5. Then 

the nitriding process will be described in chapter 1.6 with a description of earlier work on 

nitriding as a hydrogen barrier presented in chapter 1.7. 

Chapter 2 contains the theory necessary to understand this project work and chapter 3 will 

describe the experimental methods and the procedures used for sample preparation. The 

results of the project are presented in chapter 4 while the findings are discussed in chapter 5. 

1.3 Hydrogen embrittlement 

Hydrogen embrittlement (HE) is defined as the hydrogen caused reduction of the load-bearing 

or the mechanical energy absorption ability of a metallic alloy [5]. The phenomenon was 

originally found in iron and steels and was first published in 1875 by William H. Johnson in 
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an article titled: “On some remarkable change in iron and steel by the action of hydrogen and 

acids” [6]. He writes:  

“For a long time it has been well known […for…] manufacturers, who free the iron or steel 

[…] from rust by cleaning it with sulphuric acid, that after this process the metal becomes 

much more brittle than before. Further, if a piece of iron wire that has been cleaned in 

sulphuric acid be bent rapidly to and fro till it is broken, and the fracture then moistened with 

the tongue, bubbles of gas arise from it, causing it to froth.” 

Johnson was also a man of foresight. In the article he published in Nature in the same year he 

writes: “(…) in fact, it seems probable that every property of iron or steel undergoes a 

change after the occlusion of hydrogen, and the extent of this change becomes a matter of 

great interest to the engineer now that iron and steel are so largely used.” [7]. Now, over a 

hundred years later, steel is still the material of choice for most constructions and the effect of 

hydrogen on iron and steel is still a subject that receives great interest.  

One of the identifying characteristics of hydrogen embrittlement of steels is that the material 

will fracture at a lower total stress in the presence of hydrogen than it would in the absence of 

hydrogen[8]. This will limit the loads on the material and can pose as a challenge for 

engineers.  

1.3.1 Stress and strain 

When a piece of material is subjected to a load there is force working on the piece. Stress is 

defined as the average force per area of material. When a material is subjected to stress it will 

begin to deform. Deformation along the axis of the applied force is called strain and is 

measured in the change in the length divided by the original length [9].  To quantify these 

properties a test is performed on a sample and the stress, σ, is plotted against the strain, ε, to 

produce a stress-strain curve, seen in Figure 1-2.  

If the material is somewhat ductile and the stress is low the deformation will be elastic and the 

material will revert back to normal when the stress is removed. When the applied stress is 

higher the deformation will become permanent, and this is called plastic deformation. If even 

more stress is applied the material will eventually fracture [9].  
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In the elastic region of the stress-strain curve the relationship between stress and strain is 

linear, and the slope is called the elastic modulus of the material. After the elastic region the 

plastic region follows and the curve stops where fracture happens. The point where plastic 

deformation begins denotes the yield point, and this is an important value for engineers when 

designing equipment. Some materials do not have a yield point, so then an offset value is used 

instead. Typically this offset value denotes 0.2% permanent deformation. Engineers use a 

different type of stress-strain curve where apparent stress is plotted against strain. Apparent 

stress uses the original cross section of the test piece as a reference throughout the 

measurement. When deformation occur the actual cross section of the test piece decreases and 

since stress is force per area the true stress keeps increasing, even though the apparent stress 

decreases. Figure 1-2 is an illustration of a typical stress-strain curve, illustrating the 

difference between a real plot and the engineering plot. The elastic modulus and offset yield 

point is marked. 

 

 

Figure 1-2: Illustration of a typical stress-strain curve for a metal. The engineering curve is 

apparent stress against strain, while the true curve is actual stress. The offset yield point is 

marked with σ.2%, The slope of the straight line is Young’s modulus, E. Modified from [10] 

When hydrogen is introduced to the system these curves can look very different. Fracture can 

happen at a much lower stress and the regions of plasticity and elasticity can be very changed.  
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1.3.2 Ductile and brittle fracture 

Hydrogen embrittlement is also often accompanied by a change in the fracture mode from 

ductile to brittle fracture, which means that fracture takes place in the elastic region, with no 

prior deformation at all.  

Figure 1-3 gives an illustration of this. The ductile fracture shows evidence of necking and 

deformation, while the brittle fracture does not [11]. 

   

Figure 1-3: The fracture surface of a ductile fracture surface to the left  and  a brittle fracture 

surface to the right [11].  

When a material gets brittle it is difficult to see damage before fracture occurs, and therefore 

there will be no time to repair the equipment. This can be very serious because failure can 

happen suddenly and the results can be catastrophic. 

1.3.3 Plastic deformation and dislocations 

To understand the embrittlement process that hydrogen has on a metal it is also important to 

understand plasticity itself and the microscopic mechanisms behind. 

When a ductile material is subjected to stress there is a relative low probability of the material 

breaking in two due to atom planes being separated. The force needed to separate the planes 

in this manner is often quite high. Planes not perpendicular to the stress, however, will be 

subject to a shear stress that will attempt to make the planes glide relative to each other, see 

Figure 1-4 [9]. 
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Figure 1-4: Planes gliding relative to each other [12]. 

The planes in the structure that starts gliding easiest are called slip planes. There are several 

slip systems in most structures and knowing these will give an idea of which directions (x, y, 

z) the materials are strongest. Figure 1-5 is an illustration of the slip mechanism of plastic 

deformation. 

 

Figure 1-5: The slip mechanism of plastic deformation [13]. 

The cause of slip is often the movement of dislocations in the structure of the material[9]. A 

dislocation is a crystallographic lattice defect, and some types can be visualized as a plane of 

atoms terminating in the middle of a structure, see Figure 1-6. They are not 

thermodynamically stable and are generated by stress, precipitation, phase transformations, 

mechanical work or fast cooling.  

The formation of dislocations often leads to the formation of more dislocations in the same or 

nearby planes. This leaves a large part of the structure intact and it is therefore possible to see 

dislocations in the microscope. 
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Figure 1-6: An edge dislocation defect in a lattice. Dislocations decide the direction of slip and 

are responsible for plastic deformation [9]. 

When a material is hardened the goal is to decrease dislocation movement. This can be done 

by introducing many dislocations so they get stuck in each other. Impurities, secondary 

phases or grain boundaries also trap dislocations, and will therefore make a material harder. 

Since hydrogen embrittlement is an effect of material hardening these processes are important 

in understanding the mechanisms behind hydrogen embrittlement and will eventually be a 

basis for developing ways to prevent it. 

1.4 Mechanisms of hydrogen embrittlement 

There are several suggested mechanisms for hydrogen embrittlement [8, 14-16]. However, 

one single mechanism can most likely not explain all cases of hydrogen embrittlement, and 

the general opinion is that more than one of the mechanisms contributes in each case [17]. 

One proposed mechanism is the internal pressure mechanism, where hydrogen in voids in the 

structure induces sufficient pressure and stress to nucleate and propagate a crack. Another 

mechanism is the adsorption of hydrogen at crack tips which leads to lowering of surface 

energy. Hydrogen can also accumulate at precipitates and in second phases, which can result 

in dislocation formation or crack nucleation and propagation. Hydrogen may also stabilize 

and increase strain induced vacancies, which can lead to the formation of micro voids [14]. 

In situations where establishment of a high internal hydrogen pressure is improbable there are 

only two mechanisms considered viable [14, 16]; hydrogen enhanced local plasticity and 

hydrogen induced decohesion; these two options will be outlined below. 
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1.4.1 Hydrogen enhanced local plasticity  

When the metals involved do not form stable hydrides other mechanisms are needed to 

explain hydrogen embrittlement. One of these mechanisms is the hydrogen enhanced local 

plasticity (HELP) mechanism. This mechanism is based on the observation that hydrogen 

enhances the mobility of dislocations [14, 15, 18].  

The idea of a ductile process being responsible for a brittle fracture can seem a bit counter 

intuitive, but local ductile effects can indeed lead to a brittle fracture and there has been 

evidence of ductile processes on the surfaces of hydrogen embrittled fractures. The general 

opinion was, however, that this was not a result of the hydrogen itself, but rather a 

consequence of the effects of hydrogen on other properties. 

Beachem [19] was the first to propose that the effect of hydrogen was to unlock rather than 

lock dislocations, he wrote: “it [hydrogen] allows them [dislocations] to multiply or move at 

reduced stresses”. Later Lynch[20] found evidence of dislocation activity at fracture surfaces 

of materials exposed to hydrogen and he proposed that the crack growth occurred by localized 

plastic flow. 

Today the HELP mechanism is accepted as a valid mechanism of hydrogen embrittlement in 

some cases. Extensive studies on different materials in-situ shows dislocation movement, as 

the pictures in Figure 1-6 are a good example of. The figure shows transmission electron 

microscope pictures taken in situ from a videotape of a gathering of dislocations under 

varying hydrogen pressure. The separation distances between the dislocations are decreasing 

with increasing hydrogen pressure. 

Numerous materials have been deformed in-situ in an environmental cell in a transmission 

electron microscope (TEM). A surprising feature of these studies is that the effect of 

hydrogen on the mobility of dislocations is independent of the crystal structure and is the 

same for edge, screw, mixed and partial dislocations [15].   

Exactly how the hydrogen enhances dislocation mobility is still unknown, but one promising 

model is that the hydrogen induces an elastic shielding effect which enhances dislocation 

mobility [15]. The hydrogen forms an atmosphere around dislocations and other elastic stress 

centres and the atmosphere will be redistributed as the stress-fields merge. This effectively 

shields the dislocations from the elastic centres and reduces the interaction energy between 
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the dislocation and the obstacles. This allows the dislocations to move at lower levels of 

applied stress.  

 

Figure 1-7: Transmission electron microscope images showing the reduction of the separation 

distance between dislocations in a pile-up due to solute hydrogen [18]. The material investigated 

is 310s stainless steel.  Picture f is a superimposition of picture a and a negative image of picture 

e. 

The HELP mechanism is debated because of some weaknesses in the supporting evidence. 

Most of the studies are done by TEM, which requires thin foils of materials, with thickness 

less than 200 nm [15, 17, 18].  At best this will give a two-dimensional stress state and there 

is a possibility that surface effects can influence the dislocation movement. There is also a 

lack of extensive studies for materials with complex microstructures with multiple obstacles 

and short slip distances, which are typical for high strength alloys.   
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1.4.2 Hydrogen induced decohesion 

Another possible mechanism for metals that do not produce stable hydrides is the hydrogen 

induced decohesion model. In this model the mechanism of hydrogen embrittlement is 

assumed to be that the hydrogen within the lattice reduces the cohesive bonding strength of 

the solid [16, 17].  

The model is based on the premise that stress will cause hydrogen to accumulate in higher 

concentrations than the stress-free solubility of hydrogen in the metal [21]. The accumulation 

of hydrogen is a result of the thermodynamics of stressed bodies, where the concentration of 

hydrogen will increase in areas of the material where the stress is high to keep the chemical 

potential of hydrogen constant.  

This increased concentration of hydrogen will lower the atomic attraction between the metal 

atoms, and thereby the maximum cohesive force, Fm, between the two atoms, as illustrated in 

Figure 1-8. The cohesive force is the force needed to separate two identical molecules and to 

break a bond the local stress have to be greater than or equal to the cohesive force [8].  When 

hydrogen reduces the cohesive force, bond breaking will happen at lower local stresses and 

subsequent cracking will occur at lower stresses than in a hydrogen free environment. This 

happens along crystallographic planes, grain boundaries and particle/matrix interfaces and 

leads to decreased fracture toughness of the material.  

   

Figure 1-8: The cohesive force is the force needed to separate two identical molecules. When 

hydrogen accumulates in the lattice the cohesive force between two iron atoms will be lowered. 
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The decohesion model provides the basic notion that hydrogen damage occurs in the zone in 

front of the crack tip [17]. The tensile stress of the crack tip will be high and therefor there 

will be a lot of hydrogen accumulating in this zone. Damage sites in front of the crack tip 

could therefore suggest hydrogen embrittlement after the decohesion model. 

Evidence for which mechanism that dominates can also be found from examining the crack 

tip opening-angle of cracks propagating in both a hydrogen atmosphere and in vacuum. 

Certain crystal structures have certain slip systems and when the angle between these systems 

is known it can be used to evaluate if the crack propagates by slip mechanisms or another 

mechanism.  

Vehoff and Rothe [22] strained single crystals of FeSi in both vacuum and hydrogen and 

investigated the crack tip openings, see Figure 1-9. In vacuum, the crack tip opening angle 

was 70°, which corresponds to the angle between slip systems, suggesting crack propagation 

by slip.  The angle decreased after straining in hydrogen, suggesting that another mechanism 

dominates crack propagation in a hydrogen atmosphere. 

            

Figure 1-9: Crack tip opening angles of FeSi. Picture a) shows the angle after straining in 

vacuum and b) after hydrogen exposure [22]. The decrease in angle suggests a change from 

crack propagation by slip to another mechanism in hydrogen.  

There is still a need for the decohesion model to describe the local stress in the structure with 

macroscopic parameters and it is also important to derive an expression for how the maximum 

cohesive force, Fm, varies with hydrogen concentration, chemical potential, alloy structure 

and interfaces structure [8].  
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The decohesion model is also debated because of weaknesses in the supporting evidence [8, 

17]. One of the problems is that the amount of hydrogen that can be dissolved in a specimen 

for measurements of bulk properties is much lower than the assumed concentration of 

hydrogen in the fracture zone ahead of the crack tip. There is also no direct experimental 

demonstration that hydrogen dissolved in metals lowers the interatomic bonding strength, but 

DFT simulations have suggested that this could be the case [5]. 

1.5 Diffusion theory 

In order to obtain hydrogen embrittlement the atomic hydrogen needs to come in contact with 

the susceptible materials surface. The entry and transport of foreign elements in a solid is 

called diffusion. In crystalline solids the diffusion takes place because of the presence of 

defects, such as vacancies and interstitial atoms [23]. Diffusion also takes place along 1- and 

2- dimensional defects such as grain boundaries, surfaces and dislocations, and hence the 

microstructure of the solid is important. 

The rate at which an element diffuses into a solid is determined by the diffusivity of the 

element in that solid. Under steady-state conditions the diffusivity, or the diffusion 

coefficient, is obtained by using Fick’s first law [24] 

 
      

   
  

 
(1-1) 

where Ji is the flux, Di is the diffusion coefficient, ci is the concentration of atoms type i, and 

x is the position in the solid. In iron the permeation rate,   
 , of hydrogen through a uniform 

membrane of thickness L can be described by Fick’s first law as follows[25] 

 
  
  

         

 
 

(1-2) 

Where Co,Fe is the hydrogen concentration at the entry surface, DFe is the diffusivity of 

hydrogen in iron and F is Faraday’s constant. 

To prevent hydrogen embrittlement the steel can be modified to reduce the permeation rate 

either by reducing the concentration of hydrogen in at the surface or by lowering the 

diffusivity of hydrogen in iron. 
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1.6 Pulsed plasma nitriding 

Nitriding is a surface treatment that diffuses nitrogen into the steel, creating a case hardened 

surface [26]. This will increase the surface hardness and improve the protection of the steel 

from wear and tear and in many cases corrosion properties will also improve. Nitriding can 

also be used as a barrier to prevent hydrogen from entering the metal and thus prevent 

hydrogen embrittlement [25-29]. 

During the nitriding process the nitrogen diffuses into the steel surface and reacts with iron, 

forming a compound layer consisting of iron nitrides and then a diffusion zone of nitride 

precipitates and/or nitrogen in solid solution with the base steel. Figure 1-1 is an illustration of 

the layered result of the nitriding process.  

The compound layer consists of γ’ iron nitride (Fe4N) and ε-iron nitride (Fe2-3N), the structure 

of these nitrides will be described in 1.8 [30, 31]. The ratio between the two nitride phases is 

decided by the carbon content of the steel, or the amount of nitrogen present during the 

nitriding process. The compound layer can be called a “nitride ceramic” and is also called the 

“white layer”, because it stays white when the steel is etched with Nital (HNO3 in alcohol). 

The compound layer is very hard and the hardness depends on the alloying elements in the 

steel. The hardness increases with nitride-forming alloying elements such as aluminium, 

molybdenum, chromium and tungsten, but these alloying elements also decrease the case 

hardening depth [30].  Nitrided alloyed steels typically have surface hardness ranging from 

700 HV to more than 1000 HV. 

Below the compound layer there is the diffusion zone containing nitrogen in solid solution 

with the base steel, see Figure 1-10 for an illustration of possible nitrogen positions in the a 

BCC-steel lattice. In addition, the diffusion zone has stable metal nitrides formed by the 

various alloying elements of the steel. Because of these metal nitrides, the diffusion zone is 

harder than the base metal and therefore hardness measurements can be used to determine the 

diffusion zone depth, called the case depth.  
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Figure 1-10: Illustration of possible Nitrogen positions in a BCC-iron lattice [4]. 

The pulsed plasma nitriding technique is conducted in a vacuum furnace, as depicted in 

Figure 1-11.  The process uses the direct current (DC) glow discharge phenomenon to 

introduce elemental nitrogen into the surface of metallic pieces [26, 28, 32]. In the normal 

state gas is nonconductive. This is changed by low pressure or high voltage, which causes 

lightning or glow discharge to appear [33]. The gas is then changed into ionized plasma that 

conducts electricity. 

 

Figure 1-11: Schematic drawing of the vacuum furnace used in the pulsed plasma nitriding 

process [4]. 

The sample to be nitrated is placed in a vacuum chamber with an atmosphere of different 

gases at a pressure of 1-10 mbar. The metal sample will work as a cathode in relation to the 

vacuum chamber, which acts as an earthed anode.  The high potential between the chamber 

walls and the sample ionizes the gas and the positive ions are accelerated and hit the sample 

surface with kinetic energy, Figure 1-12 is an illustration of this process. About 90% of this 
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energy is transformed to heath and warms the surface up to the nitriding temperature [33].  

This temperature can be controlled by electric power. 

 

Figure 1-12: Illustration of the plasma nitriding process where the positive nitrogen ions are 

accelerated towards the negatively charged iron surface [4]. 

The nitrogen ions in the plasma are highly reactive and are attracted to the negative surface of 

the sample [33]. Nitrides start to form on the surface and because of the low temperature 

lower nitrides are produced. The nitrides create a case hardened compound layer. As FeN 

molecules decompose into Fe2N, Fe3N and Fe4N, nitrogen is released. This nitrogen either 

diffuses into the sample or returns to the plasma. The nitrogen that diffuses into the sample f 

is in solid solution with the iron, possible nitrogen positions are illustrated in Figure 1-10. 

If the sample contains nitride-forming alloying elements, nitride complexes with these 

elements are also formed at the surface. Chromium nitride is very hard and contributes greatly 

to the increased toughness and hardness of the nitrided surface [34]. 

By changing the temperature, plasma and length of the process the thickness of both the 

compound layer and diffusion zone can be controlled. 

1.7 Nitriding as a method to prevent HE 

While diffusion through an iron membrane can be described by equation (1-2), a nitrided 

membrane can be roughly treated as a three-layer membrane. This three layer membrane 

consists of the compound layer, diffusion layer and base steel with thickness denoted as Lc, Ld 

and LFe respectively [25]. The layers have different diffusion coefficients, which can be 

denoted as Dc, Dd and DFe. The compound layer and diffusion layer are not homogenous, so 

the diffusion coefficients may vary with the distance from the surface. However, to get a 
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simplistic model the diffusion coefficients can be viewed as the as the average mobility of 

hydrogen in the compound and diffusion layers, respectively. The permeation rate,   
 , of 

hydrogen through a nitraded membrane of thickness L=Lc+Ld+LFe can be described as 

follows 

 
  
  

         

 
 

(1-3) 

Where C0, c is the concentration of hydrogen at the compound layer surface, F is Faraday’s 

constant and Deff is the effective diffusivity across the whole membrane. PPN of the steel 

surface affects both the entry and transport of hydrogen in the steel. This corresponds to the 

surface concentration and diffusivity in equation (1-3). Studies have shown reduced 

permeation of hydrogen through a nitrided iron membrane [25-29]. 

The reduction of hydrogen entering the steel is called the surface effect and is caused by the 

nitride compound layer [25, 28, 29]. This effect can be related to the relatively small number 

of sites engaged in the hydrogen entry process in the compound layer. 

The reduced diffusivity of hydrogen in the compound and diffusion layer is called the barrier 

effect. The reduced diffusivity can be attributed to a lower solubility of hydrogen in the 

compound layer and to its slower transport due to trapping at nitride precipitates [25, 28]. 

Nitrogen is also occupying possible interstitial positions for hydrogen, and thus hydrogen 

mobility is reduced. Since the compound layer is relatively thin, the thicker diffusion zone has 

a much stronger effect on the hydrogen trapping [28]. 

Nitriding can also reduce HE by changing the mechanical properties of the material. 

Nanomechanical evaluation has showed that electrochemical H-charging of PPN austenite 

results in a softening of the compound layer [35-37]. In an untreated sample the hydrogen 

charging increased the hardness and reduced the stress required for dislocation nucleation. . 

The softening or hardening effect of hydrogen was dependent on nitrogen concentration and 

dislocation density and this effect can be used to control HE by designing an appropriate PPN 

process for the material in question. 
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1.8 Iron nitride structure 

Iron exists in different allotropes and at atmospheric pressure three forms exists: α-iron, γ-iron 

and δ-iron [24]. These allotropes are all cubic. At high pressures a forth, hexagonal allotrope, 

ε-iron, exists. 

At room temperature pure iron exists as α-iron, which has a body-centric cubic lattice. 

Different alloying elements can be dissolved in different amounts in the iron allotropes and 

can cause steel to adopt a γ-iron configuration. 

The structures of the iron nitrides resembles the different iron allotropes, with nitrogen filling 

up voids in the structure, and are named after the allotrope of iron the structure resembles. 

The compound layer of PPN steel consists of γ’ iron nitride (Fe4N) and ε-iron nitride (Fe2-3N) 

and the structures of these compound will be described below. 

The structure of γ’ iron nitride can be visualized as γ-iron with an extra nitrogen in the centre 

[38].   The correct description, however , is a primitive cubic cell,  with space group number 

221 -    ̅  [39].  The cell parameter a=3.97 Å and the density of the compound is 7.24 

g/cm
3
.The nitrogen is placed at         and the iron atoms at  

 

 
 
 

 
 
 

 
  and (

 

 
    )  as 

illustrated in Figure 1-13 

 

Figure 1-13: Illustration of the Fe4N unit cell. The lattice is primitive and space group is number 

221 -    ̅  . Nitrogen is marked with blue spheres. 
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The unit cell of ε-iron is hexagonal  and the space group is number 182 -  P6322 [39], as 

illustrated in Figure 1-14 The lattice parameters are a = 4.71, b = 0.4.71 and c = 0.4.39. The 

density of the compound is 7.16 g/cm
3
. 

 

 

Figure 1-14: Illustration of the Fe3N unit cell. The lattice is hexagonal and the space group is 

number 182 - P6322 (182). Nitrogen is marked with blue spheres and in the image to the right 

bonds between atoms are indicated. 

a 

b 
a 

b 
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2 Theory  

2.1 Crystallography 

The way atoms or molecules in a material are organised gives important insight in the 

materials properties. A material can be amorphous, where there is only short range order, or 

crystalline, with long range ordering of the atoms.  

The smallest repeating unit in a crystal is called a basis. When the basis in a crystal structure 

is replaced by a mathematical lattice point we get what is known as a Bravais lattice. There 

are a total of 14 Bravais lattices, which are presented in Figure 2-1. 

The position of an atom in the unit cell can be described by a vector r  

            (2-1) 

Where a, b and c is the lattice vectors. 

2.1.1 Reciprocal space 

The reciprocal lattice is a mathematical representation of the crystal in the reciprocal space. 

This is important for understanding and extracting information from diffraction techniques. 

Each point in reciprocal space represents a plane in real space. The relationship between the 

reciprocal lattice vectors, a*, b* and c*, and the real space lattice vectors, a, b and c, is given 

by 

 
   

   

 
    

   

 
    

   

 
   

(2-2) 

where V is the volume of the unit cell.  
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Figure 2-1: The 14 different Bravais lattices [40]. 

2.1.2 Lattice planes and Miller indices 

A plane in a unit cell is described by Miller indices. The indices are given as (hkl) and 

indicate where the plane intersects the lattice vectors. The values are inverted so the plane 

(hkl) intersects the lattice vectors a, b and c at 1/h, 1/k and 1/l, respectively. If the plane is not 

intersecting a vector it has the index 0. Negative indices are written with a bar over the 

number, for example   ̅   . Planes that are equivalent are represented with {hkl} 

Directions in a crystal can be represented with a vector, r, given by 

             (2-3) 

Where a, b and c are the unit vectors. The direction is denoted as [uvw]. If [uvw] is parallel to 

the intersection of two lattice planes it is a zone axis.  
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Every plane (hkl) can be represented with a reciprocal vector, ghkl. This vector is normal to the 

plane and is defines as 

                  (2-4) 

Where a*, b* and c* are the reciprocal lattice vectors. The distance between two planes can 

then be given as 

      
 

      
  (2-5) 

For cubic crystals the distance between two planes have the following relation to the lattice 

constant, a: 

      
 

√        
 

(2-6) 

When indexing a diffraction pattern the notation hkl is used and corresponds to the point in 

reciprocal space representing the plane (hkl).  

2.2 Diffraction 

Diffraction is the physical phenomenon of waves scattering of a periodic lattice. At a set 

wavelength there will be a certain incident beam angle and lattice spacing that will give 

constructive interference and a diffraction pattern can be produced. 

If the beam angle and the wavelength are known, the lattice spacing can be deduced from the 

diffraction pattern. 

2.2.1 Electron and x-ray diffraction 

When diffraction are used in material science to determine crystal structures the periodic 

lattice consists of atoms, and the waves that scatter are commonly x-rays and electrons.  

Atoms interact in different ways with x-rays, electrons and neutrons, so different techniques 

will give different information.  

X-rays have an electromagnetic field that interacts that causes the electrons of an atom to 

oscillate with the same period as the x-rays. This oscillation will send out a field with the 
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same wavelength and phase as the incident x-ray beam, and this field is the scattered wave 

[41]. 

There are no lenses for x-rays so x-rays cannot be used to image the sample at the same time 

as giving diffraction information.  

If electrons are used in diffraction they will interact much stronger with the sample. There are 

strong columbic forces between the negative electrons in the electron beam and the negative 

electrons and positive cores of the atoms. The electrons are scattered from both the core of the 

atoms and the electrons surrounding them. 

2.2.2 Laue equations 

The idea of using diffraction to probe the atomic structure of materials was credited to the 

German von Laue in 1913 [41]. Von Laues idea was that electromagnetic rays with a shorter 

wave length than visible light would cause diffraction or interference phenomena in a crystal, 

and he was right. 

Von Laue argued that the diffracted waves are in phase if the path difference between waves 

scattered by adjacent scattering centres is a whole number of wavelengths. This path 

difference is denoted hλ, where h is an integer.  

If there is two scattering centres at a distance a from each other, and an incident plane wave 

with wavelength λ hits the line between the two scattering centres with an angle of θi, the 

wave will be scattered. If the diffracted plane waves angle is θd, the path difference will be 

a(cosθi-cosθd). This is illustrated in Figure 2-2. 
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 Figure 2-2: Illustration of the Laue scattering event [42]. 

To create constructive interference this path difference has to be equal to hλ, and the equation 

becomes: 

                  (2-7) 

In three dimensions two more Laue equations can be written, to account for two more 

distances, b and c, and two more sets of angles 

                  (2-8) 

                  (2-9) 

These are known as the Laue conditions and when all three of them are satisfied 

simultaneously a diffracted beam will be produced from a three dimensional crystal structure. 

2.2.3 Bragg diffraction 

At the same time as von Laue published his conditions, father and son Bragg published a 

simpler view on diffraction [41]. They proposed that waves behaved as if they were reflected 

of atomic planes. 
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Figure 2-3: Illustration of Bragg’s law[43].  To get constructive interference the waves have to be 

in phase after the scattering event. The difference in path length for the two waves is 2dsin(θ) 

and this distance must be equal to an integer number of wavelength. 

When an incident plane wave hits an atomic layer the waves will be scattered. It is assumed 

that the layer of atoms acts as a mirror and that the refracted wave will have the same angle as 

the incident wave. To get constructive interference between a beam reflected of an underlying 

atomic layer and the beam reflected of the top layer, the two waves must be in phase. The 

difference in path length must then be equal to a whole number of wavelengths. This is 

illustrated in Figure 2-3. If the spacing between the two atomic layers is denoted d, and the 

incident angle and scattering angle is denoted θ, the path difference equals 2d sinθ. This leads 

to Bragg’s equation: 

             (2-10) 

2.2.4 Kinematic and dynamic scattering 

Kinematic scattering is when the incident electron beam is scattered only once. This can be 

compared to dynamic scattering when multiple scattering events can take place. With 

kinematic scattering the diffracted intensities reflects the crystal structure of the scattering 

material, but if a strongly scattered wave meet the Bragg-conditions of another set of planes 

this wave can be diffracted back into the direct beam and therefore give different intensities to 

the observed diffraction spots. This can happen for diffraction with electrons since they 

interact strongly with matter [41]. The probability for dynamical scattering increases with 

sample thickness. 
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2.2.5 Conditions for reflections 

The kinematic scattering from an atom depends on the form factor, fi, the atom number Z and 

the scattering angle. In a crystalline compound the intensities of the diffraction spots will be 

determined by the structure factor F(hkl), presented in equation (2-11).  

 

           |∑   
                

 

 

|

 

 

(2-11) 

Where xi, yi and zi are the positions of atoms and hkl is a plane in the crystal. The equation 

summarizes the scattering from all the atoms in the unit cell. This expression can become 0 

for certain hkl-values, depending on the position of the atoms. These diffraction spots will not 

be visible under kinematic scattering conditions. 
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3 Experimental methods 

3.1 Description of samples 

The samples used in this project are 51CrV4 steel with four different pulsed plasma nitriding 

(PPN) treatments. Aker Solutions provided the sample components and MOTecH Plasma did 

the PPN. The chemical composition of the sample steel is presented in Table 3-1.The samples 

are cut from two large steel components into 2 cm thick strips. Figure 3-1 is an image of this 

strip. Table 3-2 gives an overview of all the samples used in this project. 

Table 3-1: Chemical composition of 51CrV4-steel. 

Material 

desigantion 

DIN 

material 

number 

Chemical composition in percent by mass  

(reference values) 

C Si Mn P ≤ S ≤ Cr Mo V Al 

50/51CrV 4 1.8159 0.51 0.28 0.90 0.035 0.035 1.05 0.15 

One set of samples are cut from a sand blown component which had been PPN. The process 

used is a medium temperature process, taking place between 440°C and 500°C. The 

parameters for this PPN treatment create a thin compound layer, and at the end of the process 

some oxygen was mixed into the plasma to create an oxide layer for extra corrosion 

protection and reduced friction. This sample is called the rough surface sample, and its 

nitriding treatment is condition 1. 

The sand blown surface proved to be too rough for TEM sample preparation. When thinning 

the rough surface would create big holes before electron transparency was achieved. The 

surface of the component was not completely flat and preparation of cross section samples 

where impossible because the surfaces could not be glued together. A new set of samples had 

to be prepared, ground flat and polished to make TEM-sample-preparation possible. Another 

sand blown component was cut into strips and then the surface was wet ground with SiC 

papers with EFPA-grain numbers from 180-2400 to make the surface flat, even and smooth. 

The polished samples where then PPN with three different sets of parameters. One sample 

was PPN with the same parameters as the sand blown sample, but without an oxidation step at 

the end of the process. This sample is the smooth surface sample, nitride under condition 1. 
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The two last samples were nitrided with a low temperature process, taking place at a 

temperature below 440°C. To compensate for the lower temperature the nitriding time was 

increased by a factor of 3 compared to PPN condition 1. One of the two samples was PPN 

with the same plasma as the samples PPN with condition one and this sample is called the low 

temperature sample and the PPN is condition 2. 

The last sample was PPN with the goal of creating a sample with no compound layer, so this 

sample was PPN with diluted plasma. The nitrogen was diluted by a factor of 12 compared to 

the other samples. The plasma was diluted by mixing in hydrogen. This sample is called the 

no-compound layer sample and the PPN is condition 3. 

Table 3-2: Overview of the four different samples used in this master project and the differences 

in the nitriding parameters. 

Sample  Reference 

number 

Temperature Time Plasma 

composition 

Surface 

roughness 

1 - Rough 11915 440-500°C t N + O Sand blown 

1 - Smooth 32128 440-500°C t N SiC #2400 

2 – Low T 32129 TEXEL <440 °C 3t N SiC #2400 

3 – No CL 32130 <440 °C 3t Diluted: N/12 SiC #2400 

 

After PPN the sample pieces were cut into smaller pieces, taken from the bottom of the strip, 

which corresponds to the inside of the steel component, see Figure 3-1. The bottom parts 

where used for hardness-measurements, SEM-imaging and light microscope imaging. The 

middle parts were used for diffraction measurements and TEM-imaging. 

   

Figure 3-1: The sample material was cut into approximately 2 cm thick strips, which was then 

polished.  The polished and nitrided samples where then cut into pieces, taken from the inside of 

the larger component. The picture is of the piece cut for diffraction measurements and TEM-

imaging. 



3.2 Visible light microscopy 

29 

 

In an effort to image the diffusion zone, a piece from each of the polished and PPN samples 

where heated at 400° C for 25 minutes. This should cause the nitrogen in solid solution in the 

diffusion zone precipitate into γ’- iron nitride needles which might make the diffusion zone 

visible in the visible light microscope or the SEM [30].  

3.2 Visible light microscopy 

The visible light microscope (VLM) uses visible light and a collection of lenses to magnify an 

object. When the object is not transparent to light, a microscope type where the image is 

created by reflected light from the objects surface is used. 

The VLM was used to determine the thickness and evenness of the compound layer, since the 

compound layer is of a size order that can be imaged with visible light.  

To image the nitride compound an etchant named Nital is used. This etchant reveals grain 

boundaries in austenite (not applicable in this project) and highlights different phases. The 

nitride compound layer will appear white in the microscope after etching. Oxide layers will 

appear dark [30]. 

3.2.1 VLM instrument 

A Reichert-Jung MeF3 microscope was used and the images where captured using a Jenoptik 

ProgResC5 CCD camera. The images where edited and enhanced using Adobe Photoshop or 

Microsoft Office. The edition consisted of changing the brightness and contrast of the images 

to enhance the nitride compound layer. The layer thickness was measured using the program 

ProgResCapture, which is also the program that the images are taken with. 

3.2.2 Sample preparation for VLM 

To get a good image of the sample it needs to be polished to a mirror-like finish. The surface 

should be scratch-free, free from smear, drag, or pull-outs and with minimal deformation 

remaining from the preparation process. If this surface is viewed in the light microscope the 

sample will look like a plane white surface. To highlight features of the metal microstructure 

an etchant is used. The etchant will corrode away certain parts of the sample, revealing grain 

boundaries, highlight different phases or inclusions in the metal. 
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The samples where cut into pieces of about 1 x 2 cm and were then mounted with DuroCit 

powder and DuroCit liquid cold mounting material. The samples were taken from the inside 

of the large sample piece, see Figure 3-1. The samples where mounted to give a cross section 

view of the nitride compound layer and diffusion zone. This makes it possible to image the 

compound layer, do compositional analysis across the cross section and investigate hardness 

differences across the diffusion zone. Since the nitride layer is very hard sample preparation 

can damage the compound layer. A hard mounting material was chosen to limit damage and 

improve edge retention.  

The samples were prepared using Struers procedure for preparation of nitrited steels which is 

described below [30]. First the deformation from cutting of the samples was removed using a 

Pedemax-2 wheel grinder with SiC-paper of EFPA #220 grain number. The force applied was 

150 N and the grinding speed was 300 rpm. 

The samples were then grinded with a 9 µm colloidal diamond suspension and a hard surface. 

Then the samples where polished in two steps with colloidal diamond suspensions containing 

particles 3 and 1 µm and appropriate soft polishing cloths. The samples where rinsed with 

water and dried with pressured air between each step.  The force applied was 150N and the 

grinding speed 150 rpm. 

Before examining the samples in the VLM they were etched with 4% Nital (HNO3 in ethanol) 

to expose the microstructure and nitride compound layer. 

3.3 Scanning electron microscopy 

Scanning electron microscopy (SEM) is a technique where an electron beam is scanned over a 

given area of a sample and where electrons and x-rays generated by the interaction are used to 

make an image or analysed to give chemical information. 

There are three main types of signals that are collected and analysed when using a SEM, see 

Figure 3-2 for an illustration of their origin. Secondary electrons are low energy electrons 

created by electrons colliding with the outer shell of an atom. Back scattered electrons are 

scattered from the electric field surrounding the core of the atom and can therefore give some 

information about different phases as heavy core will scatter more electrons than a lighter 

core. X-rays are generated when the electron beam removes an inner shell electron and an 
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outer shell electron fills that hole while sending out energy in the form of a photon. These 

energies are characteristic for the different elements and can be used to decide the chemical 

composition of a sample. 

                  

Figure 3-2: To the left the creation of a secondary electron, in the middle a backscattered 

electron and to the right the generation of a characteristic x-ray is illustrated. Modified from 

[44]. 

The different signals have different energies and therefore they originate from different depths 

of the sample, see Figure 3-3. Secondary electrons from about 10 nm into the sample can be 

detected; the backscattered electrons have a bit higher energy and can originate from depths 

up to 2 μ, while the electron-excited characteristic x-rays can come from volumes that are 

located up to 5 μm into the sample. 

 

Figure 3-3: The interaction volume of the different signals used in scanning electron microscopy 

[45]. 
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The energy of the beam and the samples composition determine the size of the interaction 

volume. A higher energy beam will enlarge the overall interaction volume and will enable 

information from deeper into the sample to be collected. A lower energy beam will give 

information from the surface, but the resolution is lower and the count frequency for x-ray 

collection is lower. The electron range, R, can be used to calculate the interaction volume and 

can be calculated using [46]: 

 
  

           
    

      
     

(3-1) 

Where A is the atomic weight, Z the atomic number, ρ the density and E0 the energy of the 

electron beam. For iron (A=55.85, Z=26, r=7.87) the electron range at 15 kV is 0.99 µm.  

The different interaction volumes are important for determining what you actually see. For 

example, it is difficult to only get the chemical composition of a surface layer, since the 

interaction volume of the x-rays is so large. Secondary electrons are good for examining 

sample morphology and topology since only the surface generated secondary electrons can be 

detected. 

Because electrons are used for the imaging the sample needs to be electrically conductive. If it 

is not the surface can become charged and the image will be distorted or can drift during 

analysis. If the sample is mounted in large amounts of non-conductive material electrical 

charging of the surface can also be a problem. This effect can be reduced by applying a thin 

layer of gold or carbon to conduct the electrons away, or by masking most of the surface with 

conductive copper or carbon tape. 

Some SEM-instruments also has the possibility of running in low vacuum mode, where water 

vapour is let into the specimen chamber. The water will reduce the surface charging, but will 

result in lower resolution. 

3.3.1 SEM instrument 

Two different microscopes were used. The first microscope was a HITACHI TM3000 table 

top microscope, which is fitted with an energy-dispersive detector to detect characteristic x-

rays and a backscattering electron detector. This is the microscope used for most of the 

imaging and for the EDS analysis. 
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The other microscope was a FEI Quanta 200F, which is fitted with a Everhart-Thornley 

detector (ETD) which collects secondary electrons, a low field detector (LFD) which collects 

secondary electrons in low vacuum, a solid state detector (SSD) which collects backscattered 

electrons and an energy dispersive spectrometer (EDS). This microscope has a higher 

resolution than the TM3000, and also has the possibility of running in low vacuum mode. It 

was used in an effort to reduce the drift in the EDS measurements, but the EDS detector of 

this microscope did not detect any nitrogen from the samples. 

3.3.2 SEM sample preparation 

The cross section samples were prepared following the procedure for optical microscopy, as 

described in 3.2.2. The samples where either analysed before the etching step, or the polishing 

steps where performed again if the sample was already etched. 

Since the mounting material is an insulator electrical charging of the surface was a problem. 

To ensure electrical contact between the samples and sample holder the samples were grinded 

down from the backside to expose the steel and copper and carbon tape was used to  mask 

part of the surface. 

3.4 Transmission electron microscopy 

A transmission electron microscope (TEM) can be compared to a visible light microscope, but 

it uses electrons instead of visible light. As the name indicates, it is the electrons that pass 

through the sample that is used. This requires electron transparent samples, which requires 

samples to be very thin ( 100 nm). A TEM has a much higher resolution than a VLM, but is 

significantly more complex and in the case of steel requires a great amount of sample 

preparation. 

The electron beam generates several signals as it interacts with the sample in a similar manner 

as in a SEM. However, the most used signals in a TEM are the transmitted electrons and 

characteristic x-rays. The electrons are commonly used for imaging and diffraction, but the 

can also give chemical data if they are analysed with an electron energy loss spectrometer 

(EELS). The characteristic x-rays are used to determine chemical composition with an 

energy-dispersive detector as described in 3.3. 
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The microscope consists of an electron source, electromagnetic lenses, apertures, detectors 

and a phosphorescent screen. Photographic film or a CCD-camera is commonly used to 

record the images. The electron source is either a filament made of a LaB6 crystal or a hair-pin 

shaped thread of tungsten (W) or a field emission gun.  The emitted electrons are accelerated 

by an anode with a high electrical potential usually in the range of 100-400keV. Lenses and 

apertures above the specimen focus the beam and control the illumination of the specimen, 

while the lenses below the specimen focuses and magnify the image or diffraction pattern. 

Apertures are used to select which electrons pass and have different uses depending on their 

position.  Figure 3-4 is a schematic overview of the microscope. 

 

Figure 3-4: Schematic view of a TEM [47]. The intermediate aperture is also called the selected 

area aperture. 

The simplified ray diagram in Figure 3-5 illustrates the electron beams path after it has been 

scattered in the specimen. Bragg-scattered electrons meet at the same point in the back focal 
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plane and are forming the diffraction pattern, while electrons scattered from the same point in 

the sample meet in the image plane and contribute to the image of the specimen.  

 

Figure 3-5: Simplified ray diagram in a transmission electron microscope. The objective 

aperture is placed in the diffraction plane and the selected area aperture is placed in the image 

plane.  

One of the strengths with transmission electron microscopy and electron diffraction is that 

you can get an image, diffraction pattern and spectroscopy from the same area and this area is 

typically 1-10 µm, but areas as small as 0.4 µm can be selected. The system of lenses below 

the image plane in Figure 3-5 can be adjusted to magnify and project either the image or the 

diffraction pattern illustrated in Figure 3-5.  This can be used to analyse the crystal structure 

of different phases when the grains are in the order of 0.5 µm. 

3.4.1 Apertures and imaging techniques 

The objective aperture is inserted into the back focal plane to enhance the contrast of the 

image. If it only let non-scattered electrons (central beam in Figure 3-5) through one get what 

is called bright field imaging. The beam can also be tilted to only let some of the scattered 

electrons through the aperture (one of the diffracted beams in Figure 3-5). This is called dark 

field imaging. Dark field imaging is used to image grains and determine grain size since if the 

grains are oriented differently they will not scatter at the same angle and this gives contrast in 

the image. 

Sample 

Objective lens 

Image plane 

 Back focal plane 
(Diffraction plane) 
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The selected area aperture is placed in the image plane to limit the area (typically 1-10 µm 

[41]) contributing to the diffraction pattern. This diffraction data can be used to determine the 

crystal structure of small grains and thin films as small as 0.4 µm. 

If the specimen is illuminated by a parallel electron beam and the area selected with the SAD 

aperture consists of a single crystalline grain, the diffraction pattern produced will consist of a 

single diffraction pattern with clear spots, called diffraction spots. 

The spots in the diffraction pattern represent planes in the crystal and by measuring the 

distance between the central beam and the diffracted spots the lattice spacing, d, can be 

calculated. The relationship between the Bragg angle, θB and the distance, R, between the 

central beam and a spot in the diffraction pattern is given by 

  

 
                       

(3-2) 

where L is the camera length, which is the effective distance between the specimen and 

viewing screen. This is illustrated in Figure 3-6. 

Combining the Bragg equation (2-10) and equation (2-11) gives the relationship 

  

 
 

 

 
    

  

 
 

(3-3) 

where λL is called the camera constant, K. The camera constant must be calibrated 

experimentally. 
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Figure 3-6: Illustration of the relationship between the Bragg-angle, camera length and the 

distance between the central beam and a diffraction spot [42]. 

3.4.2 TEM instrument 

In the present project a JEOL JEM 2000FX microscope was used. The filament is a LaB6 

crystal and the microscope was operated with an acceleration voltage of 200 kV, 

corresponding to a wavelength of 0.00251 nm. The EDS detector in the instrument did not 

work during the experiments. 

3.4.3 TEM sample preparation 

A good TEM sample can be time consuming to make and needs to fulfil two criteria. It needs 

large areas that are electron transparent (<100 nm thick) and the sample preparations should 

not alter the structure or the chemical composition of the sample. There are several different 

methods to achieve this and in this project ion milling was used. Two different types of 

samples were aimed to be made: cross section samples to image the compound layer and the 

diffusion zone of the samples and top view samples. 

Ion milling often results in good samples, but is time consuming and the ion milling can 

change the chemistry of the sample. It is therefore important that the sample is already very 

thin when ion milling starts. Optimal thickness is below 50 µm and this is achieved by 

mechanical grinding and polishing. 
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Top view sample preparation 

A piece of the sand blown sample surface were grinded down to about 100 µm using SiC-

papers with EFPA grain numbers from 220 to 4000.A disc with 3 mm in diameter was cut out 

and this disc was further thinned using a Gatan model 656 Dimple Grinder.  The specimen is 

placed on a rotary table, with a rotating grinding wheel conducting the dimpling. The 

specimen will be thinned more in the middle and less towards the edges. Diamond paste with 

grain sizes ranging 6 µm to 0.25 µm was used and the thickness of the sample was calculated 

by measuring the radius, r, of the dimple using the formula 

        (3-4) 

where d is the depth of the dimple and D the diameter of the grinding wheel. 

The surface roughness of the sample was a problem during dimpling. Large holes would 

appear before calculated thickness was achieved. This happened because accurately 

measuring the starting thickness of the rough surfaced disc was problematic. The thickness 

was measured with a micrometre and this would measure the maximum thickness of the 

rough surface. The surface roughness was greater than the wanted specimen thickness and 

therefore several holes formed before optimum thickness was reached. 

None of the samples with a polished surface were used to prepare a top view sample because 

of time constraints. 

Cross section sample preparation 

The procedure for making a cross section TEM-sample is time consuming and at each step 

there is a possibility for the sample to get damaged and if that happens the whole process 

needs to be repeated.  

The sample steel is magnetic and can therefore affect the electrons used for imaging. To limit 

this effect the goal was to make TEM-samples with as small amount of steel as possible. 

Figure 3-7 illustrates this goal. 
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Figure 3-7: To the left a piece of the PPN sample surface after cutting and to the right an 

illustration of the goal of the thinning process.  

About 1 mm of the PPN sample surface was cut off and grinded down to about 100 µm using 

SiC-papers with EFPA grain numbers from 220 to 4000. Even thickness was difficult to 

achieve, since the sample bends when thinned which causes the edges to thin more rapidly 

than the centre. This bending caused the edges to fall off while grinding.  

The ~100µ thick foils were cut into 2.5 mm thick strips using a micro diamond saw and strips 

of glass were glued on to support the sample. The strips were glued together with the surface 

of interest (PPN) facing each other and supported by glass on each side to obtain a stack of ~3 

mm. 

The glue first used was Gatan G1, which, in theory, can be hardened in a few minutes using a 

hot plate. This was not the case, and it often took more than 30 minutes on the hot plate for 

the glue to harden. The same type of glue from another producer was also used, Allied epoxy 

bond 110. This glue was also unreliable when considering hardening. 

Several samples were lost due to bad glue, and it is important to check the expiry date on the 

glue, and it is also useful to mix the glue and test its hardening capabilities to ensure the glue 

is working as intended before gluing together the sample pieces. 

The supported sample pieces were then cut into pieces of  ~3 mm length. This was done 

because the TEM sample holder requires samples of 3 mm in diameter. Excess steel is very 

difficult to remove without a micro saw, and the first group of samples were not cut into 3.1 

mm pieces before thinning. This lead to pieces of glass and steel sticking out from the copper 

ring support, which was glued on before ion milling, and this must be removed to make the 

sample fit the TEM sample-holder. The glass is very hard and fragile and could easily be 

 

  
Steel to be 
removed 

Compound 
layer 
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removed by a diamond pen. When trying to remove the excess steel with a diamond pen the 

whole sample could break, or the steel piece could be ripped off from the copper ring, 

destroying the sample. The excess steel had to be ground down by keeping the sample 

between two pieces of glass and carefully removing steel with SiC-paper. This proved very 

difficult because sthe samples would still break and be destroyed. Cutting the sample stack 

into pieces of ~3 mm, made the removal of eventual excess steel easier. 

The ~3 mm sample stack was thinned again by grinding it down by hand to 50 µm using SiC-

papers up to # 4000. A 3mm copper ring with a slot size of 2 mm x 1 mm was glued on for 

support, and the excess glass and steel was removed. Getting the sample thin enough by hand 

was not easy, because an unsteady hand would break the sample by thinning it unevenly. 

It was found that the safest way to thin the sample to less than 50µm before ion milling was to 

use the Allied multiprep. This grinding machine uses diamond papers and water to thin the 

samples while also measuring the thickness for optimal control. This made it possible to aim 

for a sample thickness of ~20µm. The samples where ground down to 100-150 μm by hand on 

the SiC-papers before the copper ring was glued on. Then the sample was mounted on the 

multiprep sample holder and ground down to ~20 μm thickness with diamond papers from 

15μm to 1μ grain size. The thickness of the sample was controlled by the micrometer on the 

multiprep and by visually checking the sample in the light microscope. 

The samples are mounted on the multiprep-holder by Crystal bond adhesive, and if more 

adhesive is used under one part of the sample it can be thinned unevenly. This happened to a 

few samples. It is also important to check the sample thickness often using the light 

microscope during the thinning process to ensure the sample is thinned evenly and is not 

thinned too much and therefore destroyed.  

The few samples that survived all the steps in the mechanical thinning process were attempted 

thinned to electron transparency using an ion mill. 

Ion milling 

Two ion mills were used. A Gatan Model 691 Precision ion polishing system (PIPS) and 

Fischione low angle milling and polishing system, model 1010 (Fischione). 
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For the PIPS Ar
+
 ions with energy 5.1 keV were used until a hole in the sample was seen. The 

angle of the ion-beam was 8° (top) and 6° (bottom). The higher angle on top is to limit 

sputtering of the copper ring onto the sample. The sample stage was rotating 360°. One 

sample was ion milled to electron transparency. The process created three holes, one in the 

middle of the cross-section and to between the glass supports and sample on each side. 

For the Fischione Ar
+ 

ions with energy 5 keV and a current of 5mA was used. The milling 

angle was 6° and the stage was set to 360° rotation. The sample milled with Fischione was 

milled for 50 hours without obtaining a hole and because of time constraints the milling of 

this sample did not finish. 

3.5 X-ray diffraction 

X-ray diffraction (XRD) gives an average crystal structure and phase composition for a 

sample. XRD is based on Bragg diffraction and is used to calculate cell-parameters. 

X-rays are generated when a filament is heated to produce electrons which are then 

accelerated in vacuum by a high electric field towards a metal target [48]. The metal is 

positive and is called the anode. The electron beam will excite the electrons of the metal 

atoms and x-rays are generated in the relaxation process. The energy levels of the atoms 

decide the wavelength of the resulting x-rays.  

The samples where mounted with the nitride side up, and to know how deep into the sample 

the x-rays give information from, an estimation of the x-ray penetration depth was calculated 

for the different angles and wavelengths. 

The calculation used Beers-Lambert’s law, which relates the absorption of light with the 

material it travels through [49, 50] . 

 
     

  
 
 
   

 
(3-5) 

where I is the transmitted intensity, I0, the original beam intensity, µ the linear absorption 

coefficient, ρ the density of the material and χ the thickness of the material. The absorption 

coefficient for the different nitrides was found by multiplying the nitrogen and iron absorption 

coefficients with the ratio between the elements in the unit cell. The absorption coefficients 

wer found in the international tables for crystallography [50].  
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To find the maximum penetration depth the transmitted intensity was set to 1% and the 

thickness, χ, was calculated, using a variation of (3-5): 

 

  
   

 
  
  

  
 
   

 

(3-6) 

The penetration depth is then given as: 

                           
 

 
 

(3-7) 

Figure 3-8 illustrates the geometry used in the calculation. 

 

Figure 3-8: Illustration of penetration depth geometry. 

Table 3-3 gives the approximate penetration depths for both Moα and Cuα radiation in Fe, 

Fe3N and Fe4N. 

Table 3-3: Approximate penetration depth for different angles and wavelengths in Fe, Fe3N and 

Fe4N. 

Angle  

(2θ) 

Fe Moα  

Depth 

(µm) 

Fe3N Moα 

Depth 

(µm) 

Fe4N Moα 

Depth 

(µm) 

Fe Cuα 

Depth 

(µm) 

Fe3N Cuα 

Depth 

(µm) 

Fe4N Cuα 

Depth 

(µm) 

10 0,288 0,383 0,359 0,036 0,048 0,045 

30 0,854 1,136 1,066 0,106 0,142 0,133 

50 1,394 1,855 1,740 0,174 0,231 0,217 

70 1,892 2,518 2,362 0,236 0,314 0,294 

90 2,333 3,104 2,912 0,291 0,387 0,363 

 

A normal source of x-rays is copper. When the sample contains iron and the x-rays are 

generated from a copper source an effect called fluorescence can be observed. The copper-

generated x-rays are strong enough to excite the iron atoms and the atoms will then emit x-

rays themselves. These x-rays will be detected by the instrument and will become background 

 θ 

θ 

χ/2 

Penetration 
depth  
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noise in the measurement. This effect can cause the reduced penetration depth displayed in 

Table 3-3. 

Fluorescence can be minimized by using x-rays from a different source, like molybdenum, or 

by applying a filter to the detector. The background can also be subtracted from the resulting 

diffractogram, but low intensity peaks can be lost. 

3.5.1 XRD instrument 

Two different instruments were used; an instrument, with monochromatic Cu-Kα1-radiation, 

and an instrument with Moα. 

 The resulting diffractograms were analysed using the program EVA and Rietveld refinement 

with GSAS was performed by Andrey Kosinskiy. 

3.5.2 Sample preparation and experimental procedure for XRD 

A ~ 1 mm thick slice was cut from the top surface of the PPN samples with the polished 

surface, PPN with condition 1, 2 and 3. The sample dimensions was 20 x10 x1 mm, and the 

corners where rounded by grinding with SiC-papers. 

The Cu-Kα1- radiation measurements where performed from 2° to 90°, with 1 second per 

collecting point.  

The Mo-Kα1-radiation measurements where performed from 15° to 85°, with 0.5 seconds per 

collecting point. 

3.6 Hardness measurements 

Hardness is a measure of how resistant solid matter is to various kinds of permanent shape 

change when a force is applied [51]. Hardness can be evaluated in three different ways: 

scratch hardness, indentation hardness and rebound hardness. In this project indentation 

hardness has been measured. 

Indentation hardness measures the materials resistance to an object pressed against it with a 

known force. The indenter can have different shapes and gives rise to the different scales of 

hardness such as Vickers, Brinell, Knoop and Rockwell [52]. 
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The Vickers indenter is diamond shaped and is applied to the material with a set load, 

measured in kilograms. When the indentation is made, the depth of the indentation can be 

measured by measuring the diagonals of the diamond shaped mark with a microscope. The 

length of the diagonals corresponds to a hardness value found in a table. The unit of Vickers 

hardness measurements is HVX where X is the load in kilograms. 

When a material is composed of different grains Vickers measurements can vary. If the 

diamond shaped indenter hits a very hard particle in the material the resulting indentation will 

give a smaller diagonal and correspondingly a higher HV value. The larger the indenter is, the 

more average the result will be for the material.  

Hardness measurements with a low applied load are called micro hardness measurements. 

The indenter of these measurements is in the micrometre range and therefore some variation 

in the measurements can be expected if the material is made of different phases or grains.  

Several indentations are needed to give an average picture of the material. 

Hardness can be used to evaluate changes in properties in the material, for example hardening 

depth, and in this project work it is used to measure the diffusion zone depth by finding the 

depth where the hardness equals 50HV0.2 more than the core hardness of the material [53].  

 

Figure 3-9: Illustration of a series of hardness measurements. The measurements are taken in a 

series of five indentations, with depth in the sample varying from 50-150 µm. 

When measuring the hardness of a cross-section sample in different depths, a hardness profile 

can be produced. The measurements are taken in a series of five indentations, which are at 

depths ranging from 50-150 µm, as illustrated in Figure 3-9. The results can then be fitted 

with a Boltzmann-function and the point where the fitted curve has a hardness that equals 50 
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HV0.2 more than the core hardness is called the case depth and corresponds to the diffusion 

zone depth. 

3.6.1 Indentation hardness instrument 

A Zwick materialprüfung Vickers indenter was used. It is fitted with a VLM to measure the 

diagonals of the indentation. The uncertainty of the scale for measuring the indentation 

diagonal is 0.25 µm, but to get a correct reading the sample needs to be in correct focus.  

A standard test piece was measured regularly to calibrate the reading of the indentations, but 

only a test piece for the HV1 scale was available. 

3.6.2 Sample preparation for hardness testing 

The procedure for VLM-sample preparation was followed, as described in 3.2.2. The samples 

where either analysed before the etching step, or the polishing steps where performed again if 

the sample was already etched.  
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4 Results 

4.1 Compound layer and diffusion zone thickness 
and composition 

The compound layer thickness was measured using the VLM and confirmed using SEM. The 

composition was examined using EDS in the SEM. The compositional analysis by the EDS 

only gives percentage of elements, so the distribution could not be determined. 

4.1.1 Rough surface sample, PPN condition 1  

1-Rough (PPN under condition 1) has an uneven white surface region, which is missing in 

some parts, as can be seen in the images in Figure 4-1. The white region is the compound 

layer, and it measures between 1.2 and 2.3 µm, as can be seen in Figure 4-2. The steel is 

etched, which reveals a martensitic microstructure and the white compound layer.  

   

Figure 4-1: VLM overview images of 1-rough.  The sample is at the top of the images. The 

nitride layer is fairly uneven, as can be seen to the left, and in some regions completely gone, as 

can be seen to the right. 
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Figure 4-2: VLM image of 1- rough. The sample is at the top of the image. An uneven, white 

surface region can be seen, which measures between 1.2 μm and 2.3 μm. 

Analysis in SEM shows a slightly darker surface region of about 2 µm, Figure 4-3. The 

thickness and uniformity correlates to the VLM images in Figure 4-1 and Figure 4-2. The 

sample is not etched and is to the right in the images. While the contrast in the VLM comes 

from light reflected of an etched surface, the contrast in the SEM image is made by the 

different elements interacting with the electron beam. The steel consists of about 97% iron 

and the heavy iron cores creates more BS-electrons than the lighter aluminium, silicone and 

oxygen atoms in the mounting material. This makes the sample appear white and the 

mounting material dark. 

 

Figure 4-3: SEM image of 1-rough. The sample is to the right in the images. A thin surface 

region can be seen, of about 2 µm thickness.  

Compound layer 
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Compositional analysis with EDS shows a higher concentration of nitrogen in the darker 

surface region, as can be seen in Figure 4-4, which is consistent with a compound layer on the 

surface. 

 

Figure 4-4: Element map of nitrogen of 1-rough.  The sample is at the bottom of the images.  

4.1.2 Smooth surface sample, PPN condition 1 

Figure 4-5 shows a VLM overview image sample 1-smooth. This sample is nitrided with the 

same parameters as 1-rough, but without the oxidizing step at the end. The thin bright region 

on the steel surface is consistent with the nitride compound layer, while the steel shows a 

martensitic structure. The sample is at the top side of the images. As can be seen from Figure 

4-5 the compound layer has an even thickness with t= 2.3 and 2.4 µm. Some occasional 

cracks as can also be seen 

The cracks in the surface layer are most probably caused by the sample preparation.  The 

thickness of the compound layer is similar to the compound layer thickness of the rough 

surface sample, but the layer in the smooth sample is much more uniform. 

    

Figure 4-5: VLM image of 1-smooth. The sample is at the top side of the images. The bright 

region on the steel surface is the compound layer. The measured thickness is 2.3 µm and 2.4 µm. 
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Figure 4-6 shows a surface region from 1-smooth imaged with SEM. The thickness of the 

compound layer is found to be about 2 µm and in agreement with the observations made by 

VLM. The sample is to the right in the images. The surface shows some evidence of cracks 

and pieces of the surface region is chipped off.  

    

Figure 4-6: SEM 1-smooth.  A 2 µm thick surface region can be seen. The sample is the grey 

region to the right in the images. 

EDS analysis of the sample show a slightly higher concentration of nitrogen at the edge of the 

sample. An element map of nitrogen, which can be seen in Figure 4-7, shows a surface region 

with more nitrogen, while the element map of oxygen does not show this higher surface 

concentration. 

    

Figure 4-7: Element map showing nitrogen and oxygen in smooth- 1.  Green represents nitrogen 

and a higher concentration can be seen at the surface,  while red represents oxygen where no 

increased concentration can be seen on the surface. 

Compound layer Compound layer 
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EDS analysis also shows a gradually lower amount of nitrogen further away from the surface, 

as can be seen in Error! Reference source not found. and Table 4-1.The results are 

normalized to only include iron, nitrogen, oxygen and chromium. The measuring points closer 

to the surface gives a higher concentration of nitrogen than the measuring points further away 

from the surface, consistent with the assumption of a diffusion zone with decreasing nitrogen 

after the compound layer. As can be seen in Error! Reference source not found. the sample 

image drifts during signal collection. 

 

Figure 4-8: Analysis area for chemical composition.  The image drifts during collection. 
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Table 4-1: Element analysis using EDS. The percentages are normalized to include only iron, 

oxygen, nitrogen and chromium. 

 
Distance from 

surface (µm) 

Norm. at% 

Iron 

Norm. at% 

Nitrogen 

Norm. at% 

Oxygen 

Norm. at% 

Chromium 
Total 

1 0-2  70.8 11.2 17 1 100 

2 0-2 78.9 6.7 13.4 1 100 

3 7-9  96.3 2.3 0.7 0.7 100 

4 8-10 95.7 3.1 0 1.1 100 

5 16-18 95.9 0.8 2.1 1.2 100 

6 15-17 95.6 0.2 3.1 1.1 100 

4.1.3 PPN condition 2, the low temperature treatment 

Figure 4-9 shows a VLM overview image of 2- Low T. This sample is PPN with the low 

temperature process and normal plasma. The sample is on the bottom side of the images. As 

can be seen from Figure 4-9 the compound layer is uneven and thickness ranges from t= 1.0 

to t=1.9 µm. Some places the nitride compound layer has expanded into the steel, indicating 

surface impurities or contamination. 

    

Figure 4-9: VLM images of 2-Low T.  The sample is on the bottom left of the images. The bright 

region on the steel surface is the compound layer. The measured thickness is 1.0 µm, 1.8 µm and 

1.9 µm. 

Figure 4-10 shows a surface region from 2- low T imaged with SEM. The thickness of the 

compound layer is found to be less than 2 µm and is in agreement with the observations made 

by VLM. The sample is to the left in the image. One of the images is taken in low-vacuum 
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mode to decrease surface charging and to obtain greater resolution. The sample imaged in 

low-vacuum has been etched with Nital. 

    

Figure 4-10:  SEM-image of 2-low T. A surface region of less than 2 µm can be seen. The right 

image is taken in low- vacuum mode and is of a heat treated and etched 2-low T sample, so the 

microstructure of the steel is visible. 

EDS analysis of 2-low T show a slightly higher concentration of nitrogen at the surface. An 

element map of nitrogen, which can be seen in Figure 4-11, shows a surface region with more 

nitrogen, while the element map of oxygen does not show this higher surface concentration 

 

 

Figure 4-11: Element map of 2-Low T. A slightly higher concentration of nitrogen (green) can be 

seen on the surface, while there is no increased oxygen (prurple) concentration. The orange is 

iron. 
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4.1.4 PPN condition 3, the no compound layer sample 

Figure 4-12  shows a VLM image of sample 3 – No CL. This sample is PPN with the low 

temperature process and diluted plasma. The goal of the PPN was to make a sample with no 

compound layer, but with a diffusion zone. As can be seen in Figure 4-12 a thin white surface 

region with a thickness of t=0.2 and t=0.3 µm is present. The compound layer is uniform and 

even. 

    

Figure 4-12: VLM image of 3 – No CL. The bottom part of the image is the sample. The bright 

region on the steel surface is the compound layer. The measured thickness is 0.2 µm and 0.3 µm 

 Figure 4-13 is a SEM-image of 3 - No CL and shows a slightly darker surface region with a 

thickness of less than 1 µm thick, consistent with the VLM image in Figure 4-12. 

    

Figure 4-13: SEM image of the sample PPN under condition 3. A slightly darker surface region 

of less than 1 µm can be seen. The sample is at the bottom of the image. 
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An element map of iron, nitrogen and oxygen is presented in Figure 4-14. This shows a 

slightly higher concentration of nitrogen at the surface of the sample, but no higher 

concentration of oxygen. This is consistent with a thin compound layer at the surface. 

 

Figure 4-14: Element map of 3 - No CL. A higher concentration of nitrogen (green) can be seen 

on the surface, while no higher surface concentration of oxygen (pink) is observed. Red is iron. 

The concentration of nitrogen was measured by EDS spot analysis at 6 different positions as 

indicated in Figure 4-15. The results in Table 4-2 are normalized to make oxygen, nitrogen, 

chromium and iron total at 100%.  The results show gradually lowering of the concentration 

of nitrogen deeper into the sample, consistent with a diffusion zone with decreasing amount 

of nitrogen. The sample image drifted during the measurement. 
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Figure 4-15: Analysis area for chemical composition of 3- No CL. The sample image drifted 

druing the collection. 

Table 4-2: Element analysis using EDS for sample nitride under condition 3. The percentages 

are normalized to include only iron, oxygen, nitrogen and chromium. 

 Distance from 

surface (µm) 

Norm. at% 

Iron 

Norm. at% 

Nitrogen 

Norm. at% 

Oxygen 

Norm at% 

Chromium 

Total 

1 0-3 79.2 7.9 12.3 0.6 100 

2 0-3 83.4 7.1 8.8 0.7 100 

3 10-13 94.5 1.1 3.4 1.1 100 

4 12-15 94.1 3.6 1.4 1.0 100 

5 22-25 98.2 0.9 0.00 0.9 100 

6 24-27 97.0 1.8 0.00 1.2 100 

4.2 Diffusion zone thickness and composition 

The diffusion zone thickness was calculated with hardness measurements, as described in 3.6. 

One set of samples were also heat treated to get the nitrogen to precipitate out of the solid 

solution, but the martensitic structure of the steel made the growth of nitride needles 

impossible to see when etching with Nital. 

4.2.1 Rough surface sample, PPN condition 1 

Figure 4-16 shows the hardness measurements done on 1-rough. Four series of measurements 

where done, on four different parts of the sample. It can be seen that some of the series are 
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lower in hardness overall, but the shape of the curve remains similar between all the series. 

This discrepancy indicates a large uncertainty in the measurements. The diffusion zone was 

measured to be between 125 µm and 140µm, with an average of 138 µm when all the data 

points were used in the Boltzmann-fit of the curve.  

The hardness of the sample before nitriding was measured to be 388 HV0.2, and the measured 

core hardness of 1- rough was 396 HV0.2. This indicates that the nitriding process has not 

changed the core hardness significantly. The surface hardness was measured to 781 HV1, 

since the rough surface is difficult to measure using HV0.2.  

 

Figure 4-16: Hardness measurements for 1-rough. Four series of measurements where done and 

the average case depth is 138 µm. 

4.2.2 Smooth surface sample, PPN condition 1 

Figure 4-17 shows the hardness measurements done on 1-smooth. Five series of 

measurements where done, on five different parts of the sample. Again it can be seen that 

some of the series are lower in hardness overall, but the shape of the curve remains similar 

between all the series. This indicates a large uncertainty in the measurements. The diffusion 

zone was measured to be between 100 µm and 175µm, with an average of 131 µm when all 

the data points were used in the Boltzmann-fit of the hardness profile.  

The average case depth corresponds to the case depth found for 1-rough, although a lower 

core hardness of 345 HV0.2 was found. This lower hardness could be due to uncertainty of 

the measurements. The surface hardness was measured to be 733 HV0.2.  

138 µm 
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Figure 4-17: Hardness measurements for 1-smooth. Five series of measurements were done and 

the case depth is approximately 131 µm.  

 Some of the series had more deformation at the measuring points, maiking it harder to 

acurately measure the size of the indentation, as is illustrated in Figure 4-18. This deformation 

difference can explain some of the irregularities of the hardness profile measurements. 

   

Figure 4-18: Hardness measurement indentations in 1-smooth. The image to the left shows 

evidence of deformations in the indentations, the image to the right have much less deformation. 

4.2.3 PPN condition 2, Low temperature treatment 

Figure 4-19 shows the hardness measurements done on 2-Low T. Eight series of 

measurements where done, on eight different parts of the sample. The diffusion zone was 

131 µm 
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measured to be between 45 µm and 100µm, with an average of 62 µm when all the data 

points were used in the Boltzmann-fit of the hardness profile. One of the measurement series 

yielded a result with significantly higher hardness values than the other measurements series, 

but the rest of the measurements were fairly consistent. 

The core hardness was measured to 365 HV0.2, but the hardness measurements yielded 

several indentations lower than the core hardness. Based on those measuring points the core 

hardness was recalculated to 350 HV0.2, which is the hardness used in the plot below. The 

surface hardness was found to be 788 HV0.2.  

 

Figure 4-19: Hardness measurements for 2 - Low T. Eight series of measurements were done 

and the case depth is approximately 62 µm. 

Some of the measurements had very deformed indentations, which made it very difficult to 

accurately measure the indentation size. These results are not included in the above plot, and a 

typical deformed indentation is presented in Figure 4-20. 

62 µm 
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Figure 4-20: A deformed measuring point in 2 – low T. The size of the indentation is difficult to 

measure. 

4.2.4 PPN condition 3, the no compound layer sample 

Figure 4-19 shows the hardness measurements done on 3 - no CL. 13 series of measurements 

where done on 13 different parts of the sample. The sample was uneven so a larger number of 

series were measured to confirm the results. The diffusion zone was measured to be 106 µm. 

The core hardness of the sample was measured to be 329 HV0.2 and the surface hardness was 

707 HV02. 

 

Figure 4-21: Hardness profiles for 3 – No CL. 13 series of measurements were done and the case 

depth was found to be 106 µm. 

81 µm 

106 µm 
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4.3 General structure of the compound layers and 
diffusion zones 

XRD was performed on the three samples with polished surface, 1-smooth, 2-low T and 3- 

No CL. XRD gives an average view of the crystal structure and the calculations in Table 3-3 

gives the approximate penetration depths for the x-rays. In most of the cases it can be 

assumed that the x-rays penetrate past the compound layer of the sample. Both Cuα- and Moα-

radiation was used, but because the XRD data is used to give general indication of which 

phases are present in the sample, only the Moα-results are presented. 

4.3.1 PPN condition 1, smooth surface 

Figure 4-22 shows a diffractogram of 1-smooth. The peaks can be assigned to Fe3N, Fe4N and 

α-iron. 

 

Figure 4-22: Diffractogram obtained from 1-smooth. The different peaks are labelled with the 

corresponding phase. Both Fe3N and Fe4N are present in the sample. 

Rietveld refinement of the XRD-result was performed by Andrey Kosinskiy using GSAS to 

determine the lattice parameter for the iron. Figure 4-23 shows the resulting refinement. The 

blue line represents the difference between the refined result and the collected data. The 
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refinement is generally a good fit, but around the two strongest iron peaks the refinement is 

not a perfect fit. The lattice parameter of the iron was found to be 2.868 Å. 

 

Figure 4-23: Rietveld refinement of the XRD-data for the 1-smooth. Performed by Andrey 

Kosinskiy with GSAS. 

4.3.2 PPN condition 2, Low T 

Figure 4-26 shows a diffractogram of 2-Low T. The peaks can be assigned to Fe3N, Fe4N and 

α-iron. This diffractogram has lower intensities of the iron nitride peaks than the 1- smooth 

diffractogram. 
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Figure 4-24: Diffractogram obtained from 2-low T. The different peaks are labelled with the 

corresponding phase. Both Fe3N and Fe4N are present in this sample. 

The Rietveld refinement of the XRD results, presented in Figure 4-25, gave a lattice 

parameter for the iron of 2.864 Å. The iron peak at 28° 2θ displays a significant difference 

between the refined result and the collected data and the Fe4N peak at 22° 2 θ shows signs of 

preferential orientation. 
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Figure 4-25: Rietveld refinement of the XRD-data for the 1-smooth. Performed by Andrey 

Kosinskiy with GSAS. 

4.3.3 PPN condition 3, no CL 

Figure 4-26 shows a diffractogram of 3 – No Cl.The peaks can be assigned to Fe3N, Fe4N and 

α-iron. This diffractogram has lower intensities of the iron nitride peaks than the 1- smooth 

diffractogram. Rietveld refinement yielded an iron lattice parameter of 2.854 Å. 
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Figure 4-26: Diffractogram obtained from 3-No CL. The different peaks are labelled with the 

corresponding phase. Both Fe3N and Fe4N are present in this sample. 

4.3.4 TEM-imaging and electron diffraction 

Because of problems with sample preparation and time constraints only 2- low T was 

analysed with TEM, and only preliminary studies where done. Elemental analysis could not 

be performed because the instruments EDS-detector was not working at the time of ana 

 Figure 4-27 is a collection of dark field images from the compound layer of the sample. The 

images show a varying grain size. Two large grains have been measured to about 200 and 400 

nm, but smaller grains appear to be present.  
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Figure 4-27: TEM images of 2 – Low T taken at 200 kV. In these mages the grain size varies 

from ~200 nm to ~ 400 nm. 

Diffraction with a SAD-aperture from the compound layer was also performed and Figure 

4-28 shows one of the obtained diffraction patterns. The smallest aperture was used so the 

area contributing to the diffraction pattern was about 0.5 μm. 

 

200 nm 200 nm 

200 nm 

200 nm 



4 Results 

66 

 

 

Figure 4-28: Inverted diffraction pattern from 2 – low T. The red arrows indicate the distances 

measured to calculate d-spacings. The camera length was 66 cm. 

Figure 4-28 illustrates the different distances measured on the diffraction pattern, while Table 

4-3 gives the distances measured and the calculated d-values. The d-values corresponding to 

the weaker spots, R1 and R4 in the figure, did not match any literature data for BCC-iron, 

Fe4N or Fe3N. The stronger spots, R2 and R3, had d-values that corresponded to 110 and 211 

of Fe4N. 

Table 4-3: Calculated d-values from the diffraction pattern in Figure 4-28. 

 Measured 

distance [cm] 

Calculated 

d-value [nm] 

Literature 

d-value [nm] 

hkl Calibrated L 

[cm] 

R1 0.341 0,485806 ?   

R2 0.6 0.2761 0.26885 110 64,2 

R3 1.025 0,16162 0,1550 211 63,3 

R4 0.925 0,179092 ?   

 

The diffraction pattern was indexed according to a primitive cubic structure along the [111]-

zone axis of a Fe4N-grain, with the lower intensity diffraction spots appearing as extra spots. 

Figure 4-29 is a partly indexed diffraction pattern with the extra spots marked with arrows. 

R1 R2 

R3 

R4 
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Figure 4-29: Inverted diffraction pattern from the [111] zone-axis of a Fe4N grain at the PPN 

surface of 2 – low T. The pattern is indexed according to a primitive cubic unit cell along the 

[111]-zone axis. Some of the extra spots marked with arrows.  

 

 

   ̅ 

 ̅   

 ̅   ̅ 
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5 Discussion 

5.1 Compound layer and diffusion zone 

The four different PPN conditions, described in 3.1, were supposed to result in one sample 

with a thin compound layer with an oxide layer on top (1–rough), two samples with a thin 

compound layer (1-smooth and 2-low T) and one sample with no compound layer (3-no CL). 

The results are presented in Table 5-1. 

Table 5-1: Overview of the compound layer and diffusion zone thickness and core and surface 

hardness values for all the samples investgated in this project. 

Sample Surface 

hardness 

Core hardness CL thickness 

(µm) 

DZ thickess 

(µm) 

1 - rough 781 HV1 396 HV0.2 1.2 - 2.3 138 

1 - smooth 733 HV0.2 345 HV0.2 ~ 2.3 131 

2 - low T 788 HV0.2 350 HV0.2 1 - 1.9 62 

3 - no CL 707 HV0.2 329 HV0.2 ~ 0.2 106 

 

5.1.1 Rough surface sample, PPN condition 1 

The oxide layer on 1-rough was not visible in the VLM, as can be seen in Figure 4-2. Nital 

should etch oxide layers dark, but since the mounting material also appears dark and the oxide 

layer would be very thin it would be difficult to discriminate between the two. To get a better 

image of an eventual oxide layer the sample could have been wrapped in copper foil to 

improve the contrast, but this was not done. 

SEM analysis showed charging of the surface and this caused the image to drift. EDS analysis 

would not be accurate enough to determine the presence of an oxide layer under these 

conditions, since it would collect oxygen signals from the mounting material. Since the 

mounting material consists of oxides, EDS analysis taken when the sample drifts would not 

be accurate enough to determine the presence of an oxide layer. An example of this drift can 

be seen in Figure 4-4 
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A SEM with good resolution could be able to image the oxide layer and discriminate it from 

the nitride compound layer of the steel, since density of the two compounds is different. Iron 

oxide has a density of between 5.17 and 5.74 g/cm
3
 while Fe3N and Fe4N has a density of 

7.16 and 7.24 g/cm
3 

respectively [54-56]. Iron oxide should appear darker than the iron 

nitrides in a BSE-SEM-image because of the lower density. No such observations were done 

in this project.  

The compound layer and the steel itself has a very weak contrast difference in the BSE-

images from SEM. Iron is a heavier element than nitrogen and should scatter more electrons. 

When nitrogen enters the iron lattice it expands the lattice and the resulting density of the 

compounds is slightly lower than pure iron (7.87 g/cm
3 

[57]), which causes the nitride 

compound layer to appear slightly darker. 

Figure 4-1 and Figure 4-2 shows an uneven compound layer. This could be caused by 

contamination of small sand particles from the sand blowing of the sample surface before 

PPN. The growth of the nitride layer is a nucleation process and growth happens at nucleation 

centres. Imperfections at the surface and contaminant grains will act as nucleation centres and 

growth will happen more rapidly in these areas.  

It is also possible that the oxidizing treatment at the end of the PPN could cause the layer to 

be uneven. The oxide layer could grow at the expense of the nitride layer, but since no 

evidence of an oxide layer could be found this is pure speculation. 

5.1.2 Smooth surface sample, PPN condition 1 

The smooth surface sample shows a much more uniform compound layer, as can be seen in 

Figure 4-5. This indicates that the polished surface had fewer impurities and this lead to an 

even growth. This compound layer is about 0.5 µm thicker than the compound layer of 1-

rough. A possible explanation for this is the absence of the oxidizing step and therefore no 

oxide layer growing at the expense of the nitride layer. The diffusion zone depths of the two 

samples are similar (Figure 4-16 and Figure 4-17) and this supports the assumption of the 

oxide layer growing at the expense of the nitride layer at the end of the nitriding process of 

the rough surface sample. 
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5.1.3 PPN condition 2, low temperature treatment 

The low temperature treatment resulted in a thin, uneven compound layer, as can be seen in 

Figure 4-9. This could indicate that the surface had several impurities or cracks, but could 

also be a result of the low temperature treatment. Lower temperature slows the growth rate of 

the nitride compound layer and it is possible that this resulted in an increased growth rate at 

favourable nucleation centres and a decreased growth in unfavourable areas. 

The diffusion zone of this sample is the shortest one of the set and the surface hardness is the 

highest, and this may provide less protection against HE. The parameters of the PPN-process 

should be adjusted to increase the diffusion zones depth for maximum protection.  

5.1.4 PPN condition 3, no compound layer 

PPN condition 3 gave a very thin compound layer, as seen in Figure 4-12. This shows that the 

PPN treatment did not result in a sample without a compound layer.  To achieve this goal the 

PPN parameters needs to be adjusted. The plasma could be diluted more or the PPN time 

decreased. The surface is the softest of the four samples, which could indicate that the 

compound layer was formed at the end of the process and that a decrease in nitriding time 

could give the desirable result. 

The compound layer itself is even and uniform, indicating a clean surface before PPN. This 

could also be an observation error due to the compound layer size, because the VLM could 

not magnify the compound layer to an order where the uniformity could be thoroughly 

examined. 

The diffusion zone is larger than in the 2- Low T sample, which can be a result of the diluted 

plasma. The diluted plasma can make it difficult for the compound layer to grow and more 

nitrogen diffuses into the iron as a result. 

5.2 Compound layer structure 

5.2.1 XRD results 

The results form XRD shows the presence of α-iron, Fe3N and Fe4N in all three samples, 

although the intensities suggest different distribution. As calculated in Table 3-3, the Moα x-
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rays penetrate from ~ 1-3 μm into the sample, so it is expected that the upper parts of the 

diffusion zone are contributing to the results. This explains the presence of iron peaks in all 

the diffractograms. 

The XRD results from the three samples are presented in Figure 5-1 with the main areas of 

difference highlighted. The differences are related to the intensities of the different iron 

nitride peaks. 

 

Figure 5-1: XRD data from the three smooth surface samples obtained with Moα-radiation. The 

grey areas indicate peaks that differ between the three samples.  The iron nitride peaks of 

interest are marked. 

The sample with the thicker compound layer, 1-smooth, have higher intensity on all the 

nitride peaks, which is as expected, since the sample contains more iron nitride, as can be 

seen in Figure 4-22. This can also be an effect of the x-rays not penetrating deep enough into 

the sample to detect a lot of iron.  
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The Reitveld refinement gives different lattice constants for the iron in the samples. The 

largest cell parameter belongs to 1-smooth, and is shown to be 2.868 Å. This is the sample 

with both the largest compound layer and the longest diffusion zone.  

The larger lattice constant could be an indication that nitrogen stretches the unit cell, since the 

sample containing the largest amount of nitrogen shows the largest cell-parameter. The 

different lattice paramteres could also be an effect of the martensitic structure of the steel. 

Martensite is a strained form of α-iron and could explain the differences in the cell 

parameters. The difference could also stem from deformation resulting from the cutting of the 

samples. 

The sample with the smallest compound layer, 3 – no CL, exhibits the smallest lattice 

constant, 2.854 Å.  The diluted plasma and lower temperature of this PPN treatment relates 

well to an assumption of less nitrogen in the sample, if this is the reason for the smaller 

lattice. The XRD-result also has the lowest intensities for the nitride peaks. 

3 – no CL also has a lower surface hardness than the two other samples, and this could 

indicate a lower nitrogen content, as discussed in 5.1.4. This in turn could cause less 

stretching of the unit cell due to nitrogen and therefore lead to a lower cell parameter. 

5.2.2 Extra diffraction spots in 2 - Low T 

The diffraction pattern from the compound layer of 2 – Low T had several diffraction spots 

that could not be assigned to the any of the d-values in the reported structures for α-iron, Fe3N 

or Fe4N. A simulated diffraction pattern for the [111] - zone axis of Fe4N is presented to the 

left in Figure 5-2, with an image of the obtained diffraction pattern with the extra spots circled 

to right. 
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Figure 5-2: Simulated diffraction pattern for Fe4N. Simulation done with WebEmaps [58]. The 

diffraction pattern obtained from 2-low T has extra spots, some of which are circled. 

The diffraction patterns are similar; the only difference is the measured distances of the 

circled spots do not correspond to values given in literature. It can therefore be assumed that 

that these spots represent an external ordering of elements that can be represented with a 

larger unit cell. 

If the obtained diffraction pattern is indexed according to a primitive cubic unit cell, with the 

extra spots being labelled 110, the lattice parameter of the larger unit cell can be calculated 

with equation (2-7). With this indexing, as shown in Figure 5-3, the lattice constant of the 

larger unit cell is found to be 6.58 Å, compared to the literature lattice constant of 3.79 Å. The 

literature d-value is used in this calculation since the camera length of the microscope is not 

calibrated. 
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Figure 5-3: Diffraction pattern indexed according to a primitive cubic cell along the [111]- zone 

axis.  

The larger unit cell can be caused by ordering of impurities like oxygen, or be a long range 

ordering of the nitrogen atoms. Superstructural ordering of N atoms has been reported for 

both Fe3N and Fe4N [59-61] so it is possible that this could be the reason for the enlarged unit 

cell observed in this project. 

5.3 Suggestions for further work 

The XRD data obtained in this project contains a lot of information that could be extracted 

with further refinement of the results. XRD should also be obtained from an untreated sample 

to examine the original lattice constant of the iron. This could lead to a better evaluation of 

the lattice constant changes and give a better foundation for evaluating the micro strain shown 

in the Rietveld-refinement. 

TEM-investigation of all the PPN conditions is needed to get a better understanding of the 

compound layers formed after these treatments. In this project it was found that the samples 

were ion milled to electron transparency at three different places on the sample at the same 

time.  This makes it possible to prepare a sample that gives a good look at the compound layer 

and the diffusion zone at different depths.  

 ̅      ̅ 

    

 ̅   ̅ 
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 One way to examine the diffusion zone and compound layer at different depths is to prepare 

several different samples of the same PPN condition and ion mill them at different times to 

create different sized hole. Another way is to prepare one sample for each PPN condition, and 

ion mill it to a small hole can be observed; investigate this sample in the TEM; and ion mill 

the sample again before re-examining it. The advantage with the last method is that 

information from the same areas of the sample surface can be investigated at different depths 

and the disadvantage is that the areas examined are destroyed with further ion milling to 

reveal areas deeper into the sample. 

The possible observation of superstructure in Fe4N in 2- Low T needs to be investigated 

further to determine what causes the extra diffraction spots. Diffraction from other zone-axes 

and more simulation can lead to a suggested expanded unit cell and TEM investigation of 

other grains and areas of the sample can give an indication of how common this external 

ordering is. It is also interesting to investigate the other PPN-conditions to see if the same 

phenomenon can be seen there. 
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6 Conclusions 
This project has shown that the four different PPN treatments resulted in four compound 

layers and diffusion zones with different thickness, as expected.  

The PPN treatment that was supposed to result in a sample with no compound layer exhibited 

a very thin surface layer of about 0.2 µm. To achieve the goal of a PPN process that results in 

no compound layer, the parameters have to be adjusted with either a dilution of the plasma, or 

a reduction of the nitriding time. 

XRD analysis revealed that all the samples consisted of the three phases; α-iron, Fe3N and 

Fe4N, but the intensities indicated different ratios. Closer examination of the XRD-results 

could give more information about the cell parameters of the compounds and their relative 

ratios. 

TEM of 2- Low T revealed grains in the size order of a few 100 nm at the compound layer 

surface. 

Electron diffraction showed extra diffraction spots corresponding to a primitive cubic lattice 

with a cell parameter of 6.58 Å. Further investigation is needed to decide what causes the 

external ordering and to create a model of the expanded unit cell. 
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