Transactional Data Management for
Multi-Site Systems

New Approaches and Formal Analysis

Doctoral Dissertation by

Jon Grov

Submitted to the
Faculty of Mathematics and Natural Sciences
at the University of Oslo in partial
fulfillment of the requirements for
the degree ph.d. in Computer Science

January 31, 2014






Abstract

High-impact systems, notably systems used in health care, public infrastructure,
traffic control, and finance, depend on a data management facility that can tol-
erate many types of failure. In addition, the prevalent adoption of cloud systems
increase the demand for commodity services to provide consistent and efficient
data storage services. For commodity services, strong fault tolerance and scala-
bility are necessary.

However, achieving the desired level of fault tolerance requires multi-site repli-
cation: multiple copies of data are stored at geographically distant sites. Combin-
ing such data replication with the transactional consistency guarantees provided
by a traditional database system is challenging, and users are usually required to
choose between consistency, performance, and fault tolerance.

Google’s Megastore is among the most mature multi-site data stores provid-
ing transactions. However, one challenge with Megastore is that it requires data
to be grouped into a set of relatively fine-grained partitions, and transactional
consistency is only provided within one partition. In some usage scenarios, this
represents a significant disadvantage.

The main contributions of this thesis are: 1) three new approaches for trans-
actional multi-site data management, including an extension of Megastore to
provide cross-partition consistency; 2) a formal-methods-based analysis strategy
using Real-Time Maude to assess both performance and correctness; and 3) a
formal model of Megastore that provides the first reasonably detailed publicly
available description of the Megastore approach to data management in multi-
site data stores.






Acknowledgments

First and foremost: Thanks to Peter, who adopted this fading project. He has
supported me tirelessly through days, weekends, nights, and holidays, and allowed
me to share both his sense of humor and unmatched combination of competence,
experience, and attention to detail. And thanks to Elin, who, besides making life
fun, has been a single parent for weeks before deadlines. And to Ada and Herman,
first of all for being you, but also for reminding me that creativity is impossible
without trial and error. To all of you: We made it!

In addition to these four, this work is the result of contributions from a large
group of people. First of all Mamma, who has donated several vacation days to
research. Thanks also to my father, the rest of my family (including in-laws) and
friends for their spiritual and practical support.

Thanks to Ellen and Stein for their kind advice and assistance, and to all my
colleagues and friends in Braga. In particular, Luis, Alfranio, Rui and Orlando:
You made an impressively energetic and friendly environment for us, and I am
forever grateful, both for your hospitality and for what I learned. To my former
colleagues at Ifi: I enjoyed your company.

Finally, my warmest thanks to the late Ragnar Normann. With his combination
of discipline and positive attitude, he will forever stay with me as a role model.






Contents

Part I Overview

1 Introduction........ .. ... . . . . 11
2 Background on Replicated Data Management................. 15
2.1 Replicated Data and Transactions............................. 15
2.1.1 Managing Replicated Data .......... ... ... ... ... .. ... 16
2.1.2 Concurrency Control on Replicated Data.................. 18
2.1.3 Ensuring Atomicity ........ .. .. 19
2.2 Trade-offs for Multi-Site Replication .. ......................... 20
2.3 Existing Solutions for Multi-Site Replication.................... 22
3 Background on Real-Time Maude ............................ 25
3.1 Real-Time Maude Modeling ............ .. .. ... ... ... .. ..... 26
3.2 Formal Analysis ......... ... . 31
3.2.1 Simulation ....... ... ... .. . 32
3.2.2 Model Checking . ......... .. . i 32
4 Our Contributions. .. ..... .. ... .. ... ... . ... .. 35
4.1 Paper 1: A Pragmatic Protocol for Database Replication in
Interconnected Clusters . .......... ... ... ... 37
4.2 Paper 2: Scalable and Fully Consistent Transactions in the Cloud
through Hierarchical Validation .............. ... ... ... ... ... 40
4.3 Paper 3: Formal Modeling and Analysis of Google’s Megastore in
Real-Time Maude . . .. .. .. 42
4.4 Paper 4: Increasing Consistency in Multi-Site Data Stores:
Megastore-CGC and its Formal Analysis ....................... 43

5 DISCUSSION . . . oo oo 47



8 Contents

Part II Research Papers

Paper 1: A Pragmatic Protocol for Database Replication in
Interconnected Clusters .............. ... .. ... ... .. ... ....... 59

Paper 2: Scalable and Fully Consistent Transactions in the Cloud
through Hierarchical Validation............................ ... 69

Paper 3: Formal Modeling and Analysis of Google’s Megastore
in Real-Time Maude ....... .. ... ... ... . ... .. . .. . ... 85

Paper 4: Increasing Consistency in Multi-Site Data Stores:
Megastore-CGC and its Formal Analysis...................... 113

Part III Appendices
A Real-Time Maude Example ................ .. .. ... ... ........ 129

B Real-Time Maude Model of Megastore ....................... 133

C Real-Time Maude Model of Megastore-CGC.................. 169



Part 1
Overview






Chapter 1
Introduction

The U.S. National Institute of Standards and Technology defines high-impact sys-
tems to be those systems where “the disruption of access to [...| an information
system could be expected to have a severe or catastrophic adverse effect on or-
ganizational operations, organizational assets, or individuals” [45]. Such systems
exist in most organizations, and in particular those involved in energy production,
health care, defense, supply chain, transportation, and finance.

For high-impact systems, robust and reliable data management facilities are a
crucial requirement. High-impact systems normally require replication: multiple
copies of the same data must be maintained at independent servers, to reduce the
probability of disruption of access, e.g., due to hardware failure or manual errors.
Furthermore, since high-impact systems usually require disaster tolerance, some
of these copies should be held at physically separate sites.

High-impact systems requiring fault tolerance are not the only systems bene-
fiting from multi-site data replication: for services requiring scalability, multi-site
replication allows the load to be distributed among multiple sites. Another in-
creasingly important factor is location: users expect modern cloud services to be
accessible with the same performance from Paris and from Tokyo, and cloud-
based data management facilities are expected to support this.

For most non-trivial data management purposes, database systems have been
the dominating approach, partly because of a standardized interface to store,
retrieve, update, and search data, but also because transaction support allows
robust and consistent execution of groups of operations. Databases are usually
multi-user, and a transactional database system provides safe and uniform access
for concurrent operations, where uncontrolled access may lead to severe inconsis-
tency errors.

However, database products that combine multi-site replication with transac-
tions are uncommon in practice. The main reason is that the network communica-
tion between distant data centers introduce multiple challenges, among the most
important are performance and fault tolerance. Performance is reduced since the

11



12 1 Introduction

coordination required for transaction commit must occur across slow wide area
network links. Fault tolerance is complicated, since the failure scenarios in this
environment are much more complex to deal with. Message delay is variable, re-
quiring longer timeouts; there is a chance of network partitions, where several
sites are available but unable to communicate with each other; and automatic
failure detection consequently becomes nearly impossible [19] (since a site cannot
know whether a remote site is down, or only unreachable). These challenges are
popularly summarized in the CAP Theorem [5], which states that consistency,
availability, and (network) partition tolerance cannot be combined; any solution
must choose two among the three.

Despite these challenges, high availability combined with large scale is a re-
quirement for many systems. This drives system developers to implement multi-
site replication with reduced consistency, effectively moving the responsibility
for consistency to application developers and system operators [79, 63]. Notable
examples include online retail and commerce services such as Amazon [1] and
eBay [17], collaborative services such as Facebook [18] and Twitter [77], and me-
dia services such as Netflix [46] and Spotify [72], but it is also increasingly relevant
for other critical areas, e.g., system involved in manufacturing, traffic monitoring,
and health care [44, 66].

While this strategy works in some cases, it increases complexity and requires
careful analysis and testing both during design, development and operation. As
stated by Michael Stonebraker [73]:

It is possible to build your own ACID semantics [...], given enough additional code.
However, the task is so difficult, we wouldn’t wish it on our worst enemy. If you
need ACID semantics, you want to use a DBMS that provides them; it is much
easier to deal with this at the DBMS level than at the application level.

The challenges of providing consistency at the application level not only in-
crease cost. Another, equally important, challenge is trust: data consistency errors
can go undetected for a long time, possibly forever. Therefore, system consistency
(also in the presence of failures) must be as transparent and well documented as
possible. For some systems (such as trading systems, financial applications, pay-
roll systems, or government registries), trust in consistency is essential, and given
a trade-off between consistency, performance and availability, they always choose
consistency first.

The topic of this thesis is strategies to improve transactional consistency in
the presence of multi-site replication. Such strategies require fault-tolerant data
management protocols for replicated data. These are highly complex artifacts,
and still it is crucial to establish their performance and correctness. We advocate
that to achieve this, formal methods should be used to analyze and improve such
protocols.



1 Introduction 13

Complex protocols are typically described using a combination of English prose
and pseudo-code. A prototype of the protocol is then usually implemented in
a programming language like Java. Finally, the correctness of the protocol is
“proved by hand.” This methodology has a number of disadvantages, including:

1. The prose + pseudo-code description is ambiguous and imprecise, and does not
make explicit critical assumptions (or lack thereof).

2. A Java prototype is an additional artifact beyond the specification of the pro-
tocol, and we must somehow ensure that this Java prototype is consistent with
the specification.

3. Proofs “by hand” tend to be error-prone. Indeed, absent a precise and unam-
biguous definition of the protocol, there is in principle nothing that can be
formally proved. Furthermore, the size and complexity of the systems that are
the topic of this thesis make the possibility of a serious “hand proof” quite
futile anyways.

The remaining chapters of Part I of this thesis are organized as follows. Chap-
ter 2 gives some background on replicated data management, and in particular
the challenges related to multi-site replication. It also presents an overview over
existing approaches. Chapter 3 presents Real-Time Maude, the formal modeling
language and analysis tool which has been fundamental for most of our work.
Chapter 4 presents the contributions of the thesis, and Chapter 5 contains a
discussion of advantages and disadvantages of our different approaches.

Part IT of the thesis contains four research papers, each presenting and ana-
lyzing one approach to multi-site replication management, and Part III contains
appendices with executable specifications for two of these approaches.






Chapter 2
Background on Replicated Data Management

This chapter first gives an overview over the requirements for managing replicated
data. Section 2.2 discusses the most common trade-offs between availability, con-
sistency, and performance in multi-site replication. Finally, Section 2.3 comments
on these trade-offs in relation to currently available solutions for multi-site repli-
cation.

2.1 Replicated Data and Transactions

A database is a set of individual items used by one or more applications. Database
systems provide application developers and users with operations to store, re-
trieve, and search data through a standardized interface. Databases are expected
to provide transactions, i.e., groups of read and write operations which are exe-
cuted equivalently to an atomic execution, which means that either all operations
are completed successfully, or none are completed (in which case any previous
operations are “rolled back”). The expected transactional features of a database
system are usually summarized in the acronym ACID: atomic, consistent, iso-
lated, and durable. In addition to atomic execution, databases are expected to
support a number of consistency features, such as integrity checking according to
a given schema; provide isolation for multiple users, e.g., by ensuring that concur-
rent transactions do not see each other’s updates; and finally, durability: once the
updates are successfully applied, they should be protected against loss, e.g., due
to power outages. Databases are usually accessed through standard interfaces,
notably SQL.

Replication means that data items are stored at multiple locations. The purpose
of data replication in a database is scalability and fault tolerance. Replication
increases scalability since it allows horizontal scalability, where more than one
single computer (server) is able to process requests. Maintaining copies of the
same data at multiple servers is necessary to allow horizontal scalability. Since

15



16 2 Background on Replicated Data Management

horizontal scalability with replicated data only affects reads (write operations
must still be applied at all copies), the increase in scalability from replication
depends on the ratio between read and write requests.

Replication increases fault tolerance in two ways: (1) in the case of failure,
time-to-recovery is decreased/eliminated since it enables failover, where requests
in case of failure of one server can be processed by another server replicating the
same data; and (2) the chance of data loss due to disasters (such as fire or flood)
is reduced considerably if updated copies are available elsewhere.

However, replication increases complexity and introduces several new perfor-
mance challenges and failure scenarios that must be resolved.

2.1.1 Managing Replicated Data

This section outlines the main architectures used for replicating data. We focus on
architectures for systems requiring high availability, typically high-impact systems
(which, as noted initially, include many systems involved in energy production
systems, health care, supply chain, etc.) These systems benefit from replication
across a wide area network, and we discuss the particular challenges protocols
for managing replicated data (commonly denoted replica management protocols)
face in this environment.

Architectures for replicating data among multiple processes can be classified
as follows [56]:

o (Distributed) Shared-memory [75], where multiple processing units share the
same memory. This is typically implemented in large servers, where hardware
supports replicating main memory among independent processing units, e.g.,
to minimize time of retrieval.

e Shared-disk [2], where multiple processes share disk, typically a disk array.
Compared to shared memory, this architecture allows increased horizontal scal-
ability, but the servers must be physically co-located, which reduces fault tol-
erance. The commercial product Oracle RAC is an example of this architec-
ture [54].

e Shared-nothing [9], where processes can only communicate across network links.

We only consider replication in shared-nothing architectures, and, more pre-
cisely, replication in shared-nothing architectures distributed across a wide area
network — i.e., with high network latency. This is the most flexible architecture
since it allows both “true” horizontal scalability across multiple data centers, and
disaster recovery. However, this setting is the most complex, since it introduces
challenges related to both coordination and fault-tolerance. In a wide area set-
ting, coordination is always a performance challenge. Furthermore, as stated by



2.1 Replicated Data and Transactions 17

the CAP Theorem [5], full transactional consistency combined with high avail-
ability and tolerance for network partitions is impossible.

Replication in a shared-nothing, wide area environment requires a replica man-
agement protocol, and designers of such protocols face a number of significant
challenges:

e Concurrency control is more difficult, especially combined with performance

and scalability. In a replicated database, sites must exchange messages to pre-
vent concurrent transactions from interfering before a transaction commits. In
a wide area setting, such messages have a delay several magnitudes higher than
local method calls [81]. This increases transaction latency, i.e., the time from
a transaction request arrives until it is successfully completed.
Aside from reduced user experience, increased latency also increases conges-
tion among concurrent transactions: it is well known to application develop-
ers that various system resources, such as memory and processes, are held
during a transaction’s lifetime both in the database system and in connected
application servers [28]. This reduces scalability. In addition, higher transac-
tion latency affects the probability of conflict among concurrent transactions:
two transactions conflict if they perform operations on the same data item,
and at least one of the transactions issue a write operation. As we discuss in
Section 2.1.2, conflicts among concurrent transactions require coordination to
avoid inconsistency. Since the probability of conflicts among concurrent trans-
actions increases with higher transaction latency, this represents a significant
challenge in multi-site replication [21].

e Atomicity is more complex, error-prone, and with potential performance im-
pact, especially in the presence of failures [5]. Atomic commit means that for
update transactions, the updates are either applied at all replicas, or not applied
at all. To achieve this, a coordination protocol is required [57]. In a non-faulty
environment this is relatively simple, but combining atomicity and fault toler-
ance is complex, especially since wide area networks introduce a number of new
challenges: reliable failure detection in a network is challenging [20], and there
is potential for network partitions, where servers replicating the same data see
each other as unavailable due to network errors.

Because of the challenges above, database systems combining wide area replica-
tion and consistent transaction execution are uncommon in production. Although
multiple academic prototypes [71, 65, 39] and some commercial products [55, 11]
aim to support wide area replication and transactional consistency, many systems
requiring multi-site replication use products which reduce consistency guarantees
(e.g., to the level of eventual consistency [79]) in order to maximize scalabil-
ity and availability [7, 73]. Such products are sometimes denoted data stores
to avoid the connotations of “traditional” database systems. Examples of data



18 2 Background on Replicated Data Management

store products are Amazon’s Dynamo [16], Cassandra [34], MongoDB [40], and
Google BigTable [8]. Note that the distinction between data store products and
database products is blurry, and some products, e.g., Google’s Megastore [3] (see
Section 4.3), provide limited transactional features without the full feature set of
a traditional database. In the following, and unless the distinction is significant,
we use the term “database” also to describe a set of data managed by a data
store.

2.1.2 Concurrency Control on Replicated Data

Although the application interface is usually more high level, the atomic opera-
tions of a database are read or write operations on data. Transactions are used to
group these read and write operations. Often, a write operation depends on the
value of a preceding read, and it is therefore important that simultaneous trans-
actions are protected against each other. Otherwise, the result may be intolerable
inconsistencies, as illustrated by the following example.

Ezxample 2.1. Let t; and t5 be two transactions where both read and write bank
account x to deposit $20. Without concurrency control, the following executions
are both possible:

1.ty :read(x) = 10; ty:read(x) = 10; ty:x := 104+ 20; to: 2z := 10+ 20; ¢;:
write(x,30); to:write(x,30). In this situation, t;’s deposit is lost.

2. ty:read(x) = 10; ty:x:= 10+ 20; t;:write(z,30); ty:read(x) = 30; ty:x =
30 4 20; ty:write(x,50); abort(t;). Here, ty was allowed to read ¢;’s update,
which was later aborted (e.g., canceled by the user).

Methods to protect against such inconsistencies are denoted concurrency con-
trol, and such methods are often classified as pessimistic or optimistic [80]. These
two classes are described briefly below.

Pessimistic concurrency control

With pessimistic concurrency control, inconsistency is prevented during transac-
tion execution. The most well known pessimistic approach is two-phase locking,
where 1) transactions must acquire read-locks or write-locks before executing
operations, and 2) all necessary locks must be acquired before any locks are re-
leased [80]. Locks are managed by a lock manager, which allows read-locks to
be shared while write-locks are exclusive. In a non-distributed setting, two-phase
locking is a well known and efficient approach to ensure transaction isolation.



2.1 Replicated Data and Transactions 19

In a replicated database, two-phase locking is challenging: unless all read and
write operations of a transaction are pre-declared, lock acquisition requires at least
one network round-trip before every operation. In addition, locking is vulnerable
to deadlocks, which are especially hard to detect in a distributed setting [21].

Another pessimistic approach to concurrency control is active replication [67],
where transaction requests containing updates are ordered and distributed to all
sites before execution. Each site then executes the transaction according to the
decided order. This ensures consistency across sites. Active replication is used in
some multi-site replica management protocols [74].

Optimistic concurrency control

In the optimistic approach, transactions initially execute all operations unre-
stricted, and before commit, a walidation step is required to check the execu-
tion for consistency. If committing the transaction could cause inconsistency, the
transaction is instead aborted (but may be restarted). The validation procedure
is normally based on (logical) timestamps [33]: each transaction t is assigned a
unique timestamp ts(t), and commit is only allowed if we, for every pair of con-
flicting operations op, and op,,, where op, precedes op,, have ts(t;) < ts(t;).
Recall that a pair of operations are conflicting if they access the same data item
and at least one of them is a write. In a non-distributed, non-replicated database,
timestamps are assigned in the order transactions arrive. In a replicated (and
hence, distributed) database, optimistic validation requires transactions to be or-
dered. Ordering strategies are further discussed in Section 2.3. All four replica
management approaches presented in Part II of this thesis use optimistic concur-
rency control.

2.1.3 Ensuring Atomicity

Atomic commit in a replicated database requires agreement among the participat-
ing sites, i.e., the sites replicating items updated by the committing transaction.
The most well known method for atomic commitment in distributed databases
is two-phase commit (2PC) [38]. As the name implies, 2PC contains two phases
when committing a transaction t:

1. The wvoting phase where one of the participating sites, the coordinator (usually
the site which initially received t), sends a can-commit? request to all other
sites storing data updated by ¢ .

2. The next phase depends on the outcome of the vote:



20 2 Background on Replicated Data Management

o If all sites reply “Yes” in the voting phase, ¢ enters the commit phase, and
the coordinator sends the commit(t) message to all sites.

e If one or more sites reply “No” (or does not respond within a given time
limit) during the voting phase, the coordinator sends an abort(t) message to
all sites.

Although simple and straightforward, two-phase commit is blocking if the co-
ordinator fails after the voting phase — there is no correct way to determine if the
coordinator itself allowed the transaction to commit.

Various variations of the two-phase commit protocol exists (see, e.g., [37]).
There is also three-phase commit [68], in a which pre-commit phase is injected
between the voting phase and the commit phase of two-phase commit. This ap-
proach is not prone to blocking, but requires three network round trips to com-
plete a transaction.

Recently, the Pazos [36] family of agreement protocols have gained popularity.
Paxos is non-blocking, it is characterized by very strong fault tolerance, and it has
the same message delay as two-phase commit in a non-faulty environment [22].
In outline, Paxos passes through the following phases to obtain consensus for a
proposed value (in our case, “value” equals commit of transaction t):

1. Agree on a leader.

2. The leader then proposes a value to the participating sites.

3. Once the proposed value is acknowledged by at least a majority of sites, the
leader informs all participants about the decision.

In the presence of failures, this may be insufficient to reach consensus, in which
case a new round is initiated where another site becomes the leader. Several
optimizations to Paxos exists, e.g., Fast-Paxos [35]. Of particular interest in our
setting is the optimization to Paxos used by Google in Megastore [3], where the
leader-election-step is included in the agreement of the previous transaction (see
also Section 4.3).

2.2 Trade-offs for Multi-Site Replication

As the presentation so far illustrates, multi-site data management systems must
balance consistency, availability, and partition tolerance. Furthermore, coordina-
tion messages in wide area networks increase transactions latency, which affects
both performance and scalability (see Section 2.1.1). Therefore, many systems
reduce consistency also to minimize coordination delay. Below, we discuss some
common trade-offs seen in multi-site data management solutions:



2.2 Trade-offs for Multi-Site Replication 21

e Update restrictions. Concurrency control is greatly simplified if all updates are
executed at one site only. Master-slave replication means that all updates are
executed at one master site, and the changes are then propagated in commit or-
der to the other participating sites. Non-master sites, often denoted slave sites,
may serve all (predeclared) read-only transactions. Master-slave replication is
a common setup in many commercial and free database products, notably Mi-
crosoft SQL Server [43], Oracle DB [53], MySQL [52], and PostgreSQL [62].
A major advantage of this approach is simplified concurrency control, since this
can be handled locally at the master site. The main disadvantages are related
to performance, since all read operations of update transactions must also be
executed by the master site, and scalability, since all data must be replicated
not only by the master site, but also to any slave which may become new
master.

e Partial replication. For multi-site databases, maintaining a copy of all data
items at all sites may be overly expensive, both in terms of in terms of storage
space, and in terms of performance. Consequently, data are replicated at some
sites only. Often, different types of data have different replication setup: data
requiring very high availability may be replicated at all sites, while data used
by one site only may not be replicated at all.

e Reduced consistency for all transactions. Given the cost of concurrency control

and atomic commit, some applications accept reduced consistency, e.g., reads
of stale data or temporary (non-committed) results.
This approach works well for social media services such as Facebook [34] and
news services such as The Guardian, which typically adopt so-called “NoSQL”
data stores [7]. However, for applications requiring higher consistency, this ap-
proach incurs higher risk, both in terms of development cost, since more work
is required to ensure consistency in applications, and in terms of data integrity,
since responsibility for decisions related to consistency requirements is dele-
gated to application developers (and in many cases, system administrators).

o (Consistency only within partitions. In multi-site data management protocols
targeting large-scale cloud systems, consistency is commonly provided only
within partitions of the data [64, 3, 15]. This increases throughput, since con-
current transactions in different partitions can execute in parallel without coor-
dination. Furthermore, since large-scale databases nearly always apply partial
replication [27], it also reduces the number of sites involved in transaction co-
ordination.

e Reduced fault tolerance. Even if the probability of site failures is low, replication
still adds value by improving scalability for read transactions. Then, consistency
and availability can be combined. One common approach for this is “lazy”
master-slave replication, where update transactions are allowed to commit at
the master site while replicas are updated in the background.



22 2 Background on Replicated Data Management

2.3 Existing Solutions for Multi-Site Replication

Several replica management protocols have been proposed based on group com-
munication middleware [30]. In such protocols, transaction execution and com-
mit is coordinated among sites using black-box communication primitives such
as atomic broadcast [14]. An atomic broadcast primitive ensures both that a mes-
sage is delivered to all available replicas, and that all messages sent with this
primitive are delivered in a total order. This can be used to ensure concurrency
control and atomic commitment, as exemplified by the DataBase State Machine
(DBSM) protocol [58], which works as follows!:

1. Any site may receive transaction requests, and transactions are first optimisti-
cally executed at their origination site.

2. Once the operations of a transaction ¢ are completed, the origination site pre-
pares a message commitReq(f) containing the read set and read versions for t,
i.e., the globally unique id of all data items read by t together with the id of
the transaction creating the given version; and the write set and write values
of ¢, which contains the id of all data items written by ¢ together with the new
value.

3. The message commitReq(¢) is then distributed to all sites using atomic broad-
cast. This ensures both that all available sites receive the message, and that
they receive concurrent messages in the same order, i.e., if commitReq(t;)
arrives before commitReq(t3) at some site s, then commitReq(#;) precedes
commitReq(t2) at all sites.

4. Upon receiving the message commitReq(t), each site then performs the same
optimistic validation procedure: if ¢ according to the read versions have seen
the most recent value, according to the site’s local transaction log, t’s updates
are applied. Otherwise, t is aborted.

In this protocol, the challenges of concurrency control and atomic commitment
in replicated databases are handled by the atomic broadcast primitive. This has
some benefits, since it allows a real system to choose an implementation fit for its
purpose, where typical factors influencing the decision depends on the availabil-
ity of true IP-multicast features, fault detection, strategy for group membership
management, etc. Postgres-R [31] was the first research prototype to implement
this strategy; notable adoptions are Galera [55] (an extension of MySQL) and
Tungsten [11] (an add-on component which is provided both for MySQL and
Oracle). Both Galera and Tungsten are open source products with commercial
backing. However, although some authors present promising results [29, 39], there

1 This version of DBSM assumes full replication where each site maintains a full copy
of the database. Partial replication with DBSM is discussed in [71]



2.3 Existing Solutions for Multi-Site Replication 23

is doubt regarding whether group communication in a wide area setting is feasible
in practice [61].

The majority of recent research on multi-site replication targets cloud systems,
where scalability and support for partial replication are crucial requirements due
to the high “elasticity” required by such systems, i.e., the ability to manage chang-
ing and unpredictable load. Among the first research prototypes to address the
requirement for elasticity was ElasTraS [15]. ElasTras is a transactional overlay
designed to run on top of a non-transactional data store such as Bigtable [8]. Con-
currency control in ElasTras is handled by partitioning the data and assign one
master site to each partition. Transactions are restricted to access one partition
only, and concurrency control is handled by the master site. ElasTras provides
a valuable collection of methods for fault-tolerant transaction management and
dynamic partitioning, but the restriction that transaction are only allowed to
access one partition is significant.

Recently, multiple systems based on Paxos have been proposed, both produc-
tion systems and prototypes [64, 74, 3]. We briefly present each of these below.

Spinnaker [64] is a prototype transactional key-value stored developed by IBM,
where the data is partitioned according to key ranges, and a replicated transaction
log is maintained for each partition. Each partition has an elected leader which
executes all update operations, and the log is synchronized by the leader using
Paxos. Spinnaker does not support transactions per se, but includes a conditional
write operation which takes a version number vn as argument, and allows the
update only if the current version timestamp of the item written equals vn. This
allows protection against the “lost updates” [4] problem illustrated in Example 2.1
(in Section 2.1.2).

Calvin [74] is another Paxos-based approach to replica management. In Calvin,
data are partitioned and transactions are pre-declared, i.e., the entire set of items
read and written must be known before the transaction is executed. This is a
significant restriction, but it allows Calvin to apply active replication, where the
same updates are executed in the same order at all sites (using Paxos to ensure
agreement). This allows pessimistic concurrency control, where validation aborts
are avoided.

Megastore [3] is an internal system at Google, and is used by services such
as GMail, Android, Google+, and Google App Engine [3, 12]. Megastore works
by partitioning the set of data items, denoted entities, into a set of relatively
small units denoted entity groups. For each entity group, Megastore maintains
a replicated transaction log. Given the size of Megastore, partial replication is a
requirement, and an entity group may be replicated at any number of sites within
the system. To ensure agreement on the state of the replicated log among the sites
replicating a given entity group, Megastore uses a custom coordination protocol



24 2 Background on Replicated Data Management

built on Paxos [36]. We have used Megastore as basis for some of our work on
multi-site replica management, and present Megastore further in Section 4.3.

There are other approaches, such as Microsoft’s Azure [6] and Google’s Span-
ner [12], which provide multi-site transaction processing. Although Azure is
known to give good performance [32], publicly available details are scarce.
Google’s Spanner is another multi-site transactional data store developed by
Google, using Paxos for synchronization. Spanner provides desirable features such
as full consistency also across partitions. However, to achieve this, Spanner syn-
chronizes time in each data center through a combination of GPS hardware and
atomic clocks, which makes this approach less generic

From the presentation above, it is clear that there is no dominating method to
provide transactional consistency for data replicated across multiple sites. Given
the requirements of high-impact systems, as noted initially, combined with the
prevalent adoption of cloud systems and commodity services where availability
and scalability is assumed to be “given”, more work in this field is needed.



Chapter 3
Background on Real-Time Maude

Real-Time Maude [51] is a formal modeling language and high-performance anal-
ysis tool for distributed real-time systems. Real-Time Maude is an extension of
Maude [10], and is based on a simple, expressive, and intuitive logic called rewrit-
ing logic [41]. Real-Time Maude specifications consist of definitions of a set of
data types, a set of (instantaneous) rewrite rules specifying the system’s instan-
taneous local transitions, and a set of tick rewrite rules that model time elapse.
Real-Time Maude provides a simple and intuitive language to model and analyze
distributed real-time systems in an object-oriented style. Furthermore, Real-Time
Maude specifications are executable, which enables a variety of powerful formal
analysis methods to be run directly on the formal specification.

My decision to formally describe and analyze multi-site replica management
systems in Real-Time Maude were motivated by multiple reasons, including:

e The size and complexity of such systems require using an expressive language.

e Due to my lack of experience with formal methods, the modeling language
should be simple, intuitive, and easy to quickly learn without any formal meth-
ods background.

e The high number of possible system behaviors, especially related to failure
handling, requires automatic tools for fast prototyping and short feedback loops
both to monitor performance and correctness.

e Strong in-house expertise was available.

In Real-Time Maude, a specification is a set of modules, where each module
formally specifies a real-time rewrite theory (X, EU A, IR, TR), where

e ) is an algebraic signature; that is, a set of declarations of sorts, subsorts, and
function symbols.

e [JUA is a set of (possibly conditional) equations. A a set of equational axioms
such as associativity, commutativity and identity, so deduction is performed

25



26 3 Background on Real-Time Maude

modulo! the axioms A. (X, EU A) is a membership equational logic theory [42]
which specifies the system’s state space.

e /R is a set of labeled, and possibly conditional, rewrite rules | : t —
t" if cond specifying possible instantaneous (i.e., zero-time) local state tran-
sitions.

e TR is a set of tick rules advancing time. Tick rules have the form
[: {t} = {t'} if cond, where 7 denotes the duration of the rewrite and {_}
is an operator that encloses the entire state.

The Real-Time Maude tool provides automated formal analysis methods such
as stmulation and model checking. This allows direct analysis of the formal spec-
ification, in contrast to other approaches requiring a reference implementation in
some programming language.

Section 3.1 explains modeling in Real-Time Maude using a simple example,
and Section 3.2 shows how a Real-Time Maude model can be formally analyzed.

3.1 Real-Time Maude Modeling

This section uses a simple example representing data items, transactions, and sites
to show how distributed real-time systems can be specified in an object-oriented
style using Real-Time Maude. A listing of the example model is included in
Appendix A. We refer to [10, 49] for more details about the syntax of Real-Time
Maude.

Types are defined as sorts, and subtypes are declared using the keyword
subsort. We declare below sorts representing items, operations (read or write)
and operation lists. We use a special type NoOp to represent “dummy” operations.

sorts Item ItemVal Read Write OpList Op NoOp .
subsorts Read Write < Op < NoOp < OpList .

Operators (or function symbols) are introduced with the op keyword: op f
: 81...8, —> s. Operators can have user-definable syntax, with underbars ¢_’
marking the argument positions.

Some operators can have equational attributes, such as assoc, comm, and id,
stating, for example, that the operator is associative and commutative and has a
certain identity element. Such attributes are used by the Maude engine to match
terms modulo the declared axioms. An operator can also be declared to be a
constructor (ctor) that defines the elements of a sort:

op read : Item -> Read [ctor]
op write : Item ItemVal -> Write [ctor] .

I Informally, the term modulo means “taking into account”.



3.1 Real-Time Maude Modeling 27

op noOp : -> NoOp [ctor]
op _::_ : OpList OpList -> OpList [ctor assoc id: no0Op]

read (i) denotes an operation reading an item ¢, write(z, v) denotes an oper-
ation assigning the value v to item ¢, and the operator noOp denotes a dummy
operation. The operator _: :_ allows operations to be concatenated into a list of
sort OpList. For example, read(x) :: read(y) :: write(x, v) defines an OpList
containing three operations.

Equations are introduced with keyword eq, or ceq for conditional equations.
The mathematical variables in such statements are declared with the keywords
var and vars, or can be introduced on the fly in a statement without being
declared previously, in which case they have the form var:sort. An equation
f(t1,...,t,) = t with the owise (for “otherwise”) attribute can be applied to a
subterm f(...) only if no other equation with left-hand side f(u4,...,u,) can be
applied. For example, the following function isReadOnly? checks whether a given
operation list only contains read operations:

vars PRED SUCC OPLIST : OpList .

op isReadOnly? : OpList -> Bool .
eq isReadOnly?(PRED :: write(I:Item,IV:ItemVal) :: SUCC) = false .
eq isReadOnly?(0OPLIST) = true [owise]

A group of Maude declarations can be declared as a named module using the
keyword mod:

(mod SETUP is
sorts Item ItemVal .

sorts OpList NoOp Op Read Write .
subsorts Read Write < Op < NoOp < OpList .

op read : Item -> Read [ctor]

op write : Item ItemVal -> Write [ctor]

op no0p : -> NoOp [ctor]

op _::_ : OpList OpList -> OpList [ctor assoc id: noOp]

vars PRED SUCC OPLIST : OpList .

op isReadOnly? : OpList -> Bool .

eq isReadOnly?(PRED :: write(I:Item,IV:ItemVal) :: SUCC) = false .
eq isReadOnly?(OPLIST) = true [owise]

endm)

An object-oriented Real-Time Maude module is declared with the keyword
omod. Such modules may contain class declarations of the form

class C' | atty : sy, ... , att, : s,



28 3 Background on Real-Time Maude

which declares a class C' with attributes att; to att, of sorts s; to s,. An object of
class C'in a given state is represented as a term <O : C' | atty : valy, ..., att, : val,>
of the (built-in) sort Object, where O, of sort 0id, is the object’s identifier, and
where val; to val,, are the current values of the attributes att; to att,,. A subclass
inherits all the attributes and rules of its superclasses.

A module includes types defined in another module using the syntax inc
<MODULENAME>. The following module TRANSACTIONS declares a class Trans, de-
noting general transactions, with one attribute ops of sort OpList, denoting the
list of operations in the transaction. Some transactions are update transactions,
that update one or more data items. Such transactions are object instances of
the class UpdateTrans, that is a subclass of Trans. UpdateTrans adds the attribute
bufferedUpdates, representing locally buffered updates.

(omod TRANSACTION is
inc SETUP .
class Trans | ops : OpList .
class UpdateTrans | bufferedUpdates : OpList .
subclass UpdateTrans < Trans .
endom)

Maude also contains built-in support for modeling messages through the sort
Msg, where the declaration msg m : s; ... s, —> Msg defines the syntax of the
message (m) and the sorts (s; ... s,) of its parameters.

The state of a concurrent object-oriented system is a term of the sort Configuration,
and has the structure of a multiset made up of objects and messages. Multi-
set union for configurations is denoted by a juxtaposition operator (empty syn-
tax) that is declared associative and commutative, so that rewriting is multiset
rewriting supported directly in Maude. Since a class attribute may have sort
Configuration, we can have hierarchical objects which contain a subconfigura-
tion of other (possibly hierarchical) objects and messages.

The dynamic behavior of concurrent object systems is axiomatized by specify-
ing each of its transition patterns by a rewrite rule.

The following module includes the TRANSACTION module defined above, and
declares a class Site whose attribute transactions is a subconfiguration repre-
senting the currently active transactions, and numCompl which is a natural number
counting the set of completed transactions. The message newTrans is used to in-
ject a new transaction request with id TID and operations OPLIST. Notice that
we have specified a hierarchical object-oriented system where Site objects con-
tain subsystems, representing multisets of Trans-objects. Finally, the rewrite rule
labeled receiveUpdateTrans specifies the case where a message newTrans(TID,
OPLIST) is received by a site SID. The newTrans message is consumed, and as a
result, site SID adds a new UpdateTrans object to its set of active transactions.

(omod SITE is



3.1 Real-Time Maude Modeling 29

inc TRANSACTION .
inc NAT .

var OPLIST : OpList .
vars SID TID : 0id .
var TRANS : Configuration .

class Site |
transactions : Configuration,
available : Bool,
numCompl : Nat .

msg newlrans : 0id OperationList -> Msg .

crl [receiveUpdateTrans]
newTrans (TID, OPLIST)
< SID : Site | tramsactions : TRANS, available : true >
=>
< SID : Site |
transactions : TRANS
< TID: UpdateTrans | ops : OPLIST, bufferedWrites : noOp > >
if not isReadOnly?(OPLIST)
endom)

By convention, attributes whose values do not change and do not affect the next
state of other attributes or messages, such as numCompl, need not be mentioned in a
rule. Similarly, attributes whose values influence the next state of other attributes
or the values in messages, but are themselves unchanged, such as available, can
be omitted from right-hand sides of rules.

Real-Time Maude introduces timed modules, where a tick rule is used to ad-
vance time in the system. Tick rules are declared on the form

crl U1 : {t} => {¢'} in time u if cond

where {_} is a constructor of a new sort GlobalSystem and w is a term of sort
Time denoting the duration of the rewrite.

Tick rules in object-oriented Real-Time Maude modules are typically defined
as follows:

(tomod TIMED-BEHAVIOR is
pr TIME-DOMAIN .

var C : Configuration .
vars NEC NEC’ : NEConfiguration .
var T : Time .

crl [tick]
{C} => {delta(C, mte(C))} in time mte(C)



30 3 Background on Real-Time Maude
if mte(C) > 0 /\ mte(C) =/= INF .

op mte : Configuration -> TimelInf [frozen (1)]
eq mte(none) = INF .
eq mte(NEC NEC’) = min(mte(NEC), mte(NEC’))

op delta : Configuration Time -> Configuration [frozen (1)]

eq delta(none, T) = none .

eq delta(NEC NEC’, T) = delta(NEC, T) delta(NEC’, T)
endtom)

For each class in a Real-Time Maude specification, the equations for the mte and
delta operations must then be declared as follows: mte returns the remaining time
before some instantaneous transition must take place, and delta defines how the
elapse of time changes the state of the object.

To account for timed behavior, we redefine the TRANSACTION module as follows,
where the tomod keyword declares it as a timed module. The attribute nextop
is used to specify the delay before a Trans object is ready to execute the next
operation.

(tomod TRANSACTION is
inc SETUP .
var OPLIST : OpList .
var OP : Op .
vars T1 T2 : Time .
var TID : 0id .

class Trans | ops : OpList, nextop : Time .
class UpdateTrans | bufferedWrites : OpList .
subclass UpdateTrans < Trans .

eq mte(< TID:TransId : Trans | nextop : T1 >) = T1
eq delta(< TID : Trans | nextop : Tl >, T2) =
< TID : Trans | nextop : T1 monus T2 > .
endtom)

Assuming the newTrans rule has been updated accordingly and a fixed delay of
10 time units per operation, we can now advance transaction execution as follows
(the rule itself is assumed to take zero time):

rl [nextOperation]

< SID: Site | transactions : < TID : Trans | ops : OPLIST :: OP, nextop:0 >
=>

< SID: Site | transactions : < TID: Trans | ops : OPLIST, nextop: 10 > .



3.2 Formal Analysis 31

3.2 Formal Analysis

With a specification of the form above and some initial state consisting of objects
with specific values, Real-Time Maude provides a number of powerful formal
analysis methods, including:

1.

System simulation up to a certain time by rewriting a given initial system
configuration. This is very useful for quick feedback during development.
Real-Time Maude rewriting can easily be extended to Monte-Carlo simulations
for quality-of-service purposes by using Maude’s built-in random function. For
example, it is shown in [50] that Real-Time Maude simulations of wireless sensor
networks give performance estimates on par with those provided by dedicated
simulation tools.

While very useful, system simulation only analyzes one out of many possible

behaviors from a given initial system configuration. Real-Time Maude also pro-
vides a number of methods to analyze all possible nondeterministic behaviors
from a given initial state, including:

3.

Search for (un)desired states. By specifying patterns representing states of
interest, Real-Time Maude’s search command can be used to search for states
that can be reached within a given time interval from the initial state.

Finally, LTL model checking can be used to verify that all behaviors from
the initial state satisfy a given temporal logic formula ¢. Given that ¢ can
test for important properties such as liveness and safety, this is a very powerful
method to validate the specification, e.g., in a scenario where one or more faults
are injected after a certain time. For most systems, the number of reachable
states quickly becomes very large, and Real-Time Maude provides time-bounded
model-checking to analyze all behaviors only up to a certain duration.

An initial state in our example can then be defined as follows

(tomod INIT is
inc SITE .

ops t s : ->0id . opsxy : -> Item . op v : —-> ItemVal .

op initState : -> GlobalSystem .

eq initState = {
< s : Site | transactions : none, available : true, numCompl : 0 >
newTrans(t, read(x) :: read(y) :: write(x, v))

.

endtom)

This defines an initial state initState containing one Site object s and a
newTrans message denoting an incoming transaction t with three operations.



32 3 Background on Real-Time Maude

3.2.1 Stmulation

The state initState can be simulated up to time 20 using the command

(tfrew initState in time <= 20 .)

resulting in the state

Result ClockedSystem :
{< s : Site | available : true,
numCompl : O,
transactions :
<t : Trans | nextop : O, ops : noOp > >} in time 20

where the operation list of trans t has now been reduced to noOp.

3.2.2 Model Checking

Real-Time Maude’s linear temporal logic model checker analyzes whether each
behavior satisfies a temporal logic formula. State propositions are operators of
sort Prop, and their semantics is defined by equations of the form

ceq statePattern |= prop = b if cond

for b a term of sort Bool, which defines prop to hold in all states ¢ where ¢t |=
prop evaluates to true. A temporal logic formula is constructed by state propo-
sitions and temporal logic operators such as True, False, ~ (negation), /\, \/, ->
(implication), [1 (“always”), <> (“eventually”), and U (“until”). The unbounded
model checking command

(mc t |=u formula .)

checks whether the temporal logic formula formula holds in all behaviors starting
from the initial state t. If the reachable state space is infinite, time-bounded LTL
model checking, in which each behavior is only analyzed up to a given time bound,
can be used to ensure termination of the analysis.

In our example, we can perform model checking to verify that all operations
in a transaction are eventually executed in all possible behaviors. We first define
the proposition isComplete to hold in all states where the transaction object has
been created, and where its remaining operations are noOp.

op isComplete : -> Prop [ctor] .
eq {< SID:Site | transactions:< TID:0id: Trans | ops:noOp > > SYSTEM}
|= isComplete = true .



3.2 Formal Analysis 33

We can confirm that in all possible behaviors from the initial state initState, we
will reach a state where all operations have been executed, using:

(mc initState |=u <> isComplete .)

Result Bool :
true

For more complex models, model-checking is a very powerful tool, both since it
allows inspection of a large number of possible states in short time, and since
Real-Time Maude outputs a behavior that does not satisfy the desired property
if the property does not hold. This significantly reduces development time even of
fairly complex models of distributed systems, both since it simplifies debugging,
and since it allows quick “regression testing” to check for bugs each time the
specification is changed.

Real-Time Maude has been used to formally specify and analyze a large num-
ber of real-world systems and protocols. In our setting, relevant examples in-
clude two-phase commit [48], multi-cast protocols [60], wireless sensor network
algorithms [50], and scheduling protocols [59]. The paper [48] presents a formal
specification and analysis of the two-phase commit protocol (see Section 2.1.3),
and by this provides a simple and easy-to-follow example of Real-Time Maude
modeling for readers familiar with distributed database systems.






Chapter 4
Our Contributions

The papers presented in this thesis focus on methods to provide consistency,
fault-tolerance and performance in transactional multi-site data stores. The main
contributions of this thesis are:

e New approaches for consistency and scalability in multi-site data
stores. We present three new approaches to transaction management in multi-
site data stores. Our first approach, WICE [23], targets the performance chal-
lenges resulting from the high message latency in wide area networks. WICE
addresses the challenge that replica management protocols based on group com-
munication middleware, which show good performance in systems replicated
across servers on the same location, do not perform equally well in multi-
site replication where coordination occurs across a wide area network. WICE
proposes to replace group communication middleware with an optimized, cus-
tom synchronization protocol for wide area coordination. We show through
simulation studies that this indeed represents a significant improvement. The
second approach, FLACS [26], is based on a new method for optimistic con-
currency control based on incremental ordering. For systems with relatively
predictable transaction access patterns, this can significantly improve perfor-
mance by reducing the need for coordination among distant sites. Our third
and final approach, Megastore-CGC [25], is an extension of Google’s Megas-
tore. Megastore only supports consistency within partitions of the data set,
and Megastore-CGC extends Megastore to provide consistent transactions also
for transactions reading items from different partitions. An important feature
of Megastore-CGC is that Megastore’s strong fault tolerance is preserved, and
no additional messages are required during normal operation.

e New modeling techniques and analysis methods to formally analyze
and verify replica management protocols. Three of our proposed ap-
proaches are formally specified in Real-Time Maude. We also provide new mod-
eling techniques for Real-Time Maude, e.g., for network infrastructure and fault
handling in distributed data stores, together with new methods for formally

35



36 4 Our Contributions

analyzing serializability. This enables rigorous testing of important properties
such as how the system deals with failures during fault recovery, and whether
serializable execution is ensured. We are not aware of previous work using for-
mal methods to model and analyze transaction processing systems of this size
and complexity.

e A formalization of Google’s Megastore approach. Google’s Megastore
is among the largest real-world deployments of a transactional multi-site data
store. However, it is an internal system at Google, with only a short, infor-
mal description of its design publicly available [3]. Given its success internally
at Google, we believe that the Megastore approach can also be successfully
applied to other data management systems. To facilitate further research and
development of the Megastore approach, we provide a formal specification of
a replica management system based on the description in [3]. Furthermore, we
provide an in-depth analysis of its performance and correctness, using Real-
Time Maude’s simulation and model checking capabilities.

List of papers

1. J. Grov, L. Soares, A. Correia Jr, J. Pereira, R. Oliveira, F. Pedone.

“A Pragmatic Protocol for Database Replication in Interconnected Clusters”.
In: Proc. of the 12th Pacific Rim International Symposium on Dependable Com-
puting (PRDC 2006). IEEE Computer Society, 2006.

2. J. Grov, P. Olveczky. “Scalable and Fully Consistent Transactions in the Cloud
through Hierarchical Validation”. In: Proc. of the 6th International Conference
on Data Management in Cloud, Grid and P2P Systems (Globe 2013), volume
8059 of Lecture Notes in Computer Science, Springer, 2013.

3. J. Grov, P. Olveczky. “Formal Modeling and Analysis of Google’s Megastore
in Real-Time Maude”. In: Specification, Algebra, and Software. To appear in
Springer Lecture Notes in Computer Science, 2014.

4. J. Grov, P. Olveczky. “Increasing Consistency in Multi-Site Data Stores:
Megastore-CGC and its Formal Analysis”. Submitted for publication, 2014.

Each paper presents one specific approach to replica management in wide area
networks, and then presents an analysis of the protocol. In the following sections,
we summarize the contributions of each paper.



4.1 A Pragmatic Protocol for Database Replication in Interconnected Clusters 37

4.1 Paper 1: A Pragmatic Protocol for Database
Replication in Interconnected Clusters

The paper [23] introduces the WICE (WIde area and Cluster Enabled) replica
management protocol. WICE is a new optimistic protocol for transactional
multi-site replica management. The main idea behind WICE is that the group
communication-based approach used by several successful replica management
protocols, notably Postgres-R [31] and DBSM [58], is too costly in a wide area
network. In this approach, an optimistic validation procedure is combined with a
black-box atomic broadcast primitive. The main issue is that the atomic broad-
cast primitive “hides” incoming updates from the data management system until
the update becomes stable, i.e., when all sites agree to apply the update.

WICE is based on the assumption that in a wide area network with high mes-
sage latency, remote updates should instead be delivered as soon as possible, and
transactions should be allowed to read unstable data. This is an optimization, as
it reduces the chance that other transactions are aborted due to reading old ver-
sions. Note that consistency is still preserved as long as transactions are blocked
until the updates read are stable.

WICE is an optimistic protocol, used to manage a set of data replicated among
a set of sites.! Each site is assumed to contain one cluster with a number of servers,
and WICE uses a custom protocol for communication among clusters (sites).
Servers within the same cluster use group communication middleware, which
provides attractive features such as automatic group membership management
and reliable multicast.

Clients submit transaction requests to servers within each cluster. Any client
can connect to any server. One of the clusters, the primary cluster, is respon-
sible for validating transactions before commit. The other clusters are denoted
secondary clusters. Each cluster has a delegate server which acts as a prozy to
the other clusters.

The steps for executing an update transaction ¢t in WICE are as follows:

1. When local execution is complete, the receiving server requests ¢ to be ordered
and validated. Ordering and validation is performed by one server within the
primary cluster, denoted the certifier. The validation request is sent to the cer-
tifier as a message containing t’s updates together with its read set, containing
the identifier of all items read by t.

1A note on terminology: in [23], we use the term site to represent individual database
servers within each cluster. Both in this overview and the remaining papers, a site is
used to represent one geographically separate site (which may contain multiple servers),
and the terms site and cluster are equivalent. According to this, the correct interpre-
tation of a “site” in [23] is a server.



38 4 Our Contributions

2. The certifier then orders t against all other transactions executing in the system.
This is the validation procedure.

3. Assuming ¢ is successfully validated, the certifier then distributes the updates
to each cluster’s delegate, which in turn broadcasts them to all servers within
the cluster.

4. A server receiving t’s updates acknowledges to the sender, and then applies the
updates. At this point, the updates are unstable, in which case local transactions
are allowed to read, but they are blocked until all read operations have seen
(transitively) stable data.

5. Eventually, ¢ is acknowledged by all servers and becomes stable.

To demonstrate the effectiveness of the approach, a prototype of WICE was devel-
oped in Java and then benchmarked against the atomic-broadcast-based DBSM
protocol. The experiments were performed using a simulator developed and hosted
by the Distributed Systems Research Group at the University of Minho. In this
simulator, real Java implementations of the replication protocol and communi-
cation middleware are executed within a simulated model of database software,
operating system, network, and hardware components such as CPU and disk. A
workload generator, based on the well-known TPC-C benchmark [76], is used to
generate transaction requests.

The simulator provides a detailed model of a real database server, where the
simulator is calibrated through profiling real system’s CPU usage for similar op-
erations, such as database queries and updates. These data are used to include
precise estimates of CPU delay during simulation, as well as to model contention:
when executing a given operation, the simulator blocks the simulated CPU the
corresponding (measured) time. The protocol prototypes deployed in the simula-
tor are implemented and executed against an abstraction layer which provides job
scheduling, clock access, and a simplified network interface [69]. This simulator
has been used to compare several atomic-broadcast based replica protocols [29,
47,70, 13, 78].

Our experiment setup was six servers organized in two clusters of three servers
each. Within each cluster we assumed a local area network, while the network link
between clusters emulated an inter-continental satellite link (with message delay
at 400ms). Simulated clients injected different transaction requests according to
a distribution of transaction types and “think times” (delay between requests)
given by TPC-C [76]. Our experiments varied the number of clients from 60 to
6000, with clients evenly distributed among servers. As a baseline, the same mea-
surements were performed on the DBSM protocol with all six servers in the same
cluster. The DBSM protocol has previously shown good performance compared to
a number of other protocols, including Postgres-R, using the same simulator [29].

The results are shown in Figure 4.1. Throughput is the number of committed
transactions per minute, latency is the time between the transaction request



4.1 A Pragmatic Protocol for Database Replication in Interconnected Clusters 39

is submitted until it transaction terminates, and abort rate is the fraction of
received transaction requests that are aborted (due to validation failure). As our
results show, the abort rate of WICE is significantly lower than in DBSM, and
in particular, in the the primary cluster. The study also shows that in a medium-
loaded system, the observed latency decreases by 50% in WICE compared to
DBSM. In an optimistic protocol, congestion shows up primarily as higher abort
rate. Lower transaction latency does not only improve user experience, it also
reduces congestion.

Abort Rate

Throughput Latency

=
©

(2)

4.1 Performance results for WICE.

(i)

5000 T T 2000 T T 30 T T
DBSM (CLUSTER) —— DBSM (CLUSTER) —— DBSM (CLUSTER) ——
DBSM - DBSM 3¢ . DBSM 3¢
WICE 3 WICE 3 WICE 3
4000 . ><
E / . > 1500 3
= P _ X P
3000 = ) I
= e H X A ¢
X g 1000 g g
[} H X ; H ¢
— 2000 3 XK 2
— r e o
500 ;
< 1000 b e K * * K
3 i S S 4
> o ol , ’or—k/ , L
O 1000 2000 3000 4000 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000
( 3\27“5 ( 3\6"‘5 Clients
5000 . 2000 . 0 . :
(@) DBSM (CLUSTER) —— DBSM (CLUSTER) —— DBSM (CLUSTER) —f—
DBSM 3 DBSM DBSM
o WICE % WICE - WICE -
4000 X
@ 1500
= 2w gL X
1 o~ X S
— i A s 7 . g P
O & / 2 1000 2 >
g S 2000 s .
g I s v
[ e *
CG <~ 500 pEeme = >
E 1000 ¥ [ DEOR ) Heooo B // .
= ,4/
i 0 0 ] ’/ + :
1000 2000 3000 4000 1000 2000 3000 4000 5000 6000 1000 2000 | 3000 4000 5000
[l ( 3. ( Sm ( Cj\
5000 . . 2000 . . 0 . .
— DBSM (CLUSTER) —— DBSM (CLUSTER) —— . DBSM (CLUSTER) —+—
D DBSM X DBSM X DBSM 3
= WICE % WICE - X WICE K-
(g 4000 / . »
(&} 3000 - e
* % S _ .
N % T w0 % g
= 2000 S o X i ¥
500 % g e *
a 1000 R /Z //
S 0 ol . . .
@ o0 w0 w0 a0 W 20 a0 a0 s e o0 0 w0 aom 5o
N Clents Clients Clents




40 4 Our Contributions

4.2 Paper 2: Scalable and Fully Consistent Transactions in
the Cloud through Hierarchical Validation

Paper [26] presents FLACS (Flexible, Location-Aware ConSistency), a replica
management protocol designed for optimal scalability in multi-site replicated data
stores. We assume a set of data items replicated among a set of sites, and FLACS
then facilitates combining full consistency with performance: the sites are orga-
nized in a (logical) tree structure, and a custom, incremental ordering protocol
allows transactions to be validated and committed near (or at) their origination
site. This may provide a significant advantage, especially in a multi-site environ-
ment with high network latency.

To achieve this advantage, FLACS depends on a certain level of locality in
transaction access, i.e., there must be a pattern in the set of items typically
requested at a given site. In many real-world systems there is significant such
locality, as shown in the following example:

Example 4.1. Assume we have a service for online booking of hotel rooms where
the bookings are replicated between two sites: one in New York and one in Paris.
Then, the majority of bookings seen at the New York site can be expected to
request American hotel rooms, while the majority of bookings received in Paris
request French hotel rooms.

In this example, an attractive optimization is to allow European bookings to
be validated in Paris, while American bookings are validated in New York. Due
to the long message transmission time between New York and Paris, this gives a
significant reduction in transaction delay.

A nailve implementation of this optimization is to partition the data into two
separate databases, and use an independent validator site at each continent (this
could, e.g., be implemented using WICE). However, some transactions will ac-
cess hotel rooms in both Europe and America; to provide consistency for these,
partitioning does not work.

FLACS is designed to solve this problem, by providing full consistency for all
subsets of data items while allowing “local” validation. This is accomplished as
follows:

Sites are structured in a logical validation hierarchy. Data is logically parti-
tioned, and each partition is associated with a set of observers. The observers
receive the initial commit request for an update transaction (after local execu-
tion at the origination site). The commit request is then propagated upwards in
the validation hierarchy through FIFO channels. Throughout this propagation,
transactions are incrementally ordered, and validation and commit can occur as
soon as the committing transaction has been ordered against all (potentially)
conflicting transactions.



4.2 Scalable and Fully Consistent Trans. in the Cloud through Hierarchical Validatidi

An important requirement is that the validation hierarchy is designed accord-
ing to the locality patterns, such that for a majority of transactions, validation
and commit happen as soon as possible. This improves user experience, but it
also improves the abort rate: similarly to the idea behind WICE, reducing the
delay between a transaction’s execution and its commit also reduces the chance
of validation failures, simply because other transactions are allowed to see the
updates sooner.

Note that WICE can be seen as a special case of FLACS where the validation
hierarchy is designed such that the root site orders and validates all transaction.

We defined FLACS a Real-Time Maude model. Using this model, we performed
a simulation study where FLACS was compared to a WICE-like model where
one site was the only observer for all items. Our experiment setup has four sites
(London, Paris, New York, and Los Angeles), and the model was calibrated to
model real message delays between these cities. The test data was hotel rooms,
with multiple clients booking hotel rooms in one or more of the cities.

WICE: New York as FLACS: Rooms are
master validator observed in their local city

ey
070N

Los
Los Angeles
Angeles

Fig. 4.2 Experiment validation hierarchies.

Average transaction latency Abort rate
80 12%
- e ——— 10% ==
@ 60 - - -
E 8% - -
g 40 6% >
H = = \VICE - o= == \WICE
® 20 % -
- FLACS 2% mm— em—FLACS
=
0 T T T d 0% + T T T
20 40 60 80 20 40 60 80
TPS TPS

Fig. 4.3 FLACS vs WICE.

We compared a setup where one site (New York) acted as the “master” ob-
server for all rooms to a setup where rooms were allocated to sites according to
the expected locality, as shown in Figure 4.2. Our results, shown in Figure 4.3,



42 4 Our Contributions

indicate that FLACS represents a significant improvement. However, we observed
during our experiments that choosing the wrong validation hierarchy significantly
impacts performance.

4.3 Paper 3: Formal Modeling and Analysis of Google’s
Megastore in Real-Time Maude

Google’s Megastore is probably the largest existing multi-site transactional data
management system. It handles more than three billion write and 20 billion read
transactions daily and stores nearly a petabyte of data across many global data
centers [3]. It is used both for Google’s own services such as GMail, Android
and Google+ [3, 12], and by Google’s clients through the Platform-as-a-Service
offering Google App Engine. Given the size of Megastore, partial replication is
a requirement, and data may be replicated at any number of sites within the
system. As discussed in Section 2.3, Megastore works by partitioning the data
into entity groups and maintaining a replicated transaction log using a custom
coordination protocol built on Paxos [36]. Transaction execution is optimistic: a
site s receiving a transaction request ¢, updating entities within entity group eg,
initially executes t’s operations locally at site s. After t’s operations are executed
locally, s then proposes t as the next entry for eg’s replicated log. The Paxos-based
coordination protocol provides concurrency control, by ensuring that if multiple
sites propose different transactions for the same log position, only one is chosen
(and the other transactions aborted). Moreover, by using Paxos, the coordination
protocol ensures agreement even in the presence of complex fault scenarios, e.g.,
involving multiple sites. This ensures atomic commit.

For practical usage, Megastore provides very strong fault tolerance and a robust
design where transactions are allowed to commit even in scenarios with multiple
sites failing. Its major disadvantage is that consistency is only provided within
partitions. Another possible disadvantage is that Megastore has relatively low
performance, especially compared to “performance-focused” multi-site replication
protocols such as WICE and FLACS.

Since Megastore is an internal system at Google and has previously only been
described informally, we chose to define a formal Real-Time Maude model of
Megastore, both to obtain a more detailed understanding of its underlying princi-
ples, and to be able to analyze its behavior in different scenarios. In our paper [24],
we provide three contributions:

e We present a Real-Time Maude model of (our interpretation of) Megas-
tore, as given in [3]. This model (containing 56 rewrite rules) facilitates fur-
ther research on the Megastore approach through a clear, unambiguous, and



4.4 Incr. Cons. in Multi-Site Data Stores: Megastore-CGC and its Formal Analysis 43

thoroughly analyzed specification of Megastore’s features for replica manage-
ment. A version of the specification allowing timed model checking is pro-
vided in Appendix B. The executable model can also be downloaded at
http://folk.uio.no/jongr/megastore/maude.html.

e Our model of Megastore is the first publicly available Real-Time Maude model
of a distributed data store system, and we have developed novel techniques
to model specific characteristics such as optimized message broadcast with
variable network delay, and nondeterministic site failures, in Real-Time Maude.
In addition, we provide techniques to analyze correctness and serializability
using Real-Time Maude.

e Together with the model, we present analysis results of Megastore’s behavior

both in the non-faulty scenario and in relatively complex site failure scenarios,
using both model checking and simulation.
Often, protocol design flaws are discovered during Real-Time Maude model-
ing and the following analysis. Since the only available informal description of
Megastore is at a high level and does not provide a sufficient level of detail, it
was impossible to map flaws found during Real-Time Maude model checking
back to the informal description. However, Real-Time Maude’s strong support
for exploring protocol behavior in various scenarios has significantly improved
the correctness of our Megastore model, and therefore, also significantly im-
proved its value as a contribution to the research community.

4.4 Paper 4: Increasing Consistency in Multi-Site Data
Stores: Megastore-CGC and its Formal Analysis

Megastore’s value is proven by its success as an important part of Google’s infras-
tructure. However, since consistency is only provided within entity groups and
only one running update is allowed per entity group, the partitioning of entities
into entity groups requires care and effort to avoid reducing either scalability
and consistency. On the one hand, if entity groups are too large, scalability is
reduced through a higher number of conflicting, concurrent transactions. On the
other hand, if entity groups are too small, the probability of inconsistency is in-
creased due to a higher chance of conflicting transactions accessing multiple entity
groups.? This increases maintenance cost and risk for practical deployments, and
for some systems, finding the right balance may be impossible.

2 In detail, the trade-off also involves user access patterns and whether the entities have
a “natural” grouping. For an email service such as GMalil, a partitioning scheme based
on user is a natural grouping, while for an online retail service, the partitioning scheme
for inventory is less obvious.



44 4 Our Contributions

In [25], we present an extension of Megastore, denoted Megastore-CGC (Mega-
store with Cross-Group Consistency). Megastore-CGC is based on the key obser-
vation that, in Megastore, a site replicating a set of entity groups participates in
all updates on these entity groups. Therefore, this site implicitly has an order-
ing on these updates. Making this ordering explicit makes it possible to validate
the transactions, to ensure that only transactions with a consistent view across
multiple entity groups are allowed to commit.

Megastore-CGC allows a set of entity groups to be combined into an ordering
class, and consistency is ensured among transactions accessing multiple entity
groups if all entity groups belong to the same ordering class. Any set of entity
groups may be combined into an ordering class, given that at least one site repli-
cates all entity groups in the set.

This is a significant improvement compared to Megastore, and it is provided
without impacting either fault tolerance or performance by piggybacking an or-
dering and validation protocol onto Megastore’s coordination protocol. In outline,
Megastore-CGC works as follows:

e For each ordering class, one site is designated the ordering site. As the ordering
site receives notification of transactions updating entity groups in the ordering
class, it orders the updating transaction, and then performs a validation step
to verify that the transaction’s read set is correct according to the given order.
The role of the ordering site (within the ordering class) is similar to the certifier
of WICE, but since Megastore’s coordination protocol requires each site to vote
before a commit decision is made, the validation outcome is included in the
ordering site’s vote. This allows us to extend Megastore with cross-entity group
consistency without introducing additional messages.

e For “Megastore-friendly” transactions accessing one entity group only, i.e., not
requiring validation, Megastore’s fault tolerance features and performance are
fully preserved. In addition, we provide fault tolerance for the ordering and val-
idation extension: if the ordering site for an ordering class becomes unavailable,
a failover protocol is initiated to elect a new ordering site (among the other
sites replicating all entity groups in the ordering class). Transactions requiring
validation are preventively aborted until a new ordering site is active.

Megastore-CGC is formally specified in Real-Time Maude, extending the Mega-
store model we present in Section 4.3. We performed several experiments to
analyze both performance and correctness (details are given in [25]). Here, we
present the simulations to verify that Megastore-CGC does not reduce perfor-
mance compared to Megastore. We compared Megastore-CGC with Megastore
in two simulation experiments, each simulating 1,000 seconds with 2.5 transac-
tions per second. Both experiments involve three sites Site 1, Site 2, and RSite,
where Site 1 and Site 2 are assumed to be located in the same area while RSite



4.4 Incr. Cons. in Multi-Site Data Stores: Megastore-CGC and its Formal Analysis 45

is at a more remote location. In Experiment 1, some of the transactions require
cross-entity group validation since they access multiple entity groups. In Exper-
iment 2, all transactions are “Megastore-friendly”, i.e., accessing only one entity
group (in which case Megastore and Megastore-CGC should perform equally).
The tables below show the results, with Comm. representing the transactions
successfully committed, Abs. is the number of transactions aborted due to con-
flict, and Awg.lat. is the average transaction latency of committed transactions.
For Megastore-CGC, we also show the number of transactions aborted due to
validation failures (Val.abs.).

Megastore Megastore-CGC
Comm.|Abs.|Avg.lat|Comm.|Abs.|Val.abs.|Avg.lat
Site 1 652| 152 126 660| 144 0 123
Site 2 704| 100 118 674| 115 15 118
RSite 640| 172 151 631 171 10 150

Experiment 1: Cross-entity group transactions

Megastore Megastore-CGC
Comm.|Abs.|Avg.lat|Comm.|Abs.|Val.abs.|Avg.lat
Site 1 684| 120 122 679 125 0 120
RSite 674| 138 132 677 135 0 130
Site 2 693| 111 110 691| 113 0 113

Experiment 2: Single entity group transactions

We see that in Experiment 1, the number of commits in Megastore-CGC at Site
1 and RSite is lower than Megastore’s due to validation failures. In Megastore,
these transactions are committed, but possibly after an inconsistent execution.
Experiment 2 confirms that for transactions accessing one entity group, there are
no validation aborts in Megastore-CGC, and the performance of Megastore-CGC
equals Megastore.

Our Real-Time Maude model of Megastore-CGC is included in Appendix C.
The entire executable model can be downloaded at http://folk.uio.no/jongr/
mcgc/.






Chapter 5

Discussion

There is no “silver bullet” approach to transactional multi-site data management.
Instead, different use cases require different approaches. This is reflected in the
four replica management protocols presented in this thesis: WICE and FLACS
focus mainly on performance, while Megastore-CGC and Megastore focus on fault
tolerance. In Figure 5.1, we informally compare these approaches in the three
dimensions performance, fault tolerance, and consistency.

N\ Performance

@ rLacs
@ WICE
FLACS/
Megastore/ Megastore Megastore-CGC WICE
Megastore-CGC [ ] [ )
2 ~
L r

Fault tolerance Consistency

Fig. 5.1 Protocol characteristics informally compared.

e FLACS is designed for performance and consistency through a validation pro-
tocol which ensures both, given proper configuration. However, FLACS requires
a trade-off between performance and fault tolerance. In addition, its fault toler-
ance features are immature and only superficially described. In an environment
with frequent network or site failures, the commit protocol of FLACS is vul-
nerable to blocking.

o WICE represents a “compromise” between performance and fault tolerance.
Its strongest features are full consistency combined with a simple design and
good performance through an efficient optimistic commit protocol. Its weakest
point is that the Paxos-based commit protocol of Megastore/Megastore-CGC
offer better fault tolerance.

47



48 5 Discussion

e Megastore’s strongest advantage is a robust, well-tested protocol to ensure
atomic commit even in the presence of major failures. Its main disadvantages
are consistency only within partitions, combined with a three-step commit pro-
tocol which also restricts updates to one running update per partition.

e Megastore-CGC' is an extension of Megastore, with similar fault tolerance and
performance features. Megastore-CGC has stronger consistency features than
Megastore due to its support for cross-entity group validation.

Among the three new approaches presented here, I believe Megastore-CGC has
the highest potential as a general purpose approach: it is based on Megastore,
which has already proven its success, its features are thoroughly developed and
tested using Real-Time Maude, and there is a huge demand for stable, scalable
and consistent data management systems. Still, I believe there exist use cases
where WICE and FLACS may be a good fit: the WICE approach could be used
in interactive planning systems where both highly consistent updates and multi-
site replication are highly useful features, but where performance of updates is
critical. FLACS could be a viable option for applications where data have different
SLA requirements, e.g., in e-commerce, where data with a specific “owner” (such
as the inventory of a local store) can be combined with order tracking data,
and these different data types can have different performance and fault tolerance
characteristics based on configuration.

In addition, the ordering and validation features of Megastore-CGC were in-
spired by FLACS and WICE: the ordering and validation features of WICE are
essentially piggybacked on a two-phase commit protocol in a similar manner as
Megastore-CGC’s ordering and validation is piggybacked onto Paxos, and the
tree structure of FLACS inspired Megastore-CGC’s grouping of entity groups
into ordering classes.

Finally, I would like to briefly share my experiences with Real-Time Maude,
both for specification and analysis. Initially, I had doubts whether a formal spec-
ification in Real-Time Maude adds value over a textual specification combined
with a reference implementation written in some programming language (say
Java). This is partly because competence in Java is far more common, and partly
because development tools are more mature.

However, after some experience with Real-Time Maude, I have no doubts any-
more: while a Java implementation must make a lot of explicit assumptions re-
garding, e.g., control flow, which are not really part of the specification, Real-Time
Maude is a declarative language which allows clear, unambiguous statements spec-
ifying protocol behavior only. As a result, both the initial development and main-
tenance of a Real-Time Maude specification is less error-prone and more intuitive.
Once past the initial confusion, I also found Real-Time Maude features, such as
simulation and model checking, very powerful when working with distributed pro-
tocols. This was mainly due to their simplicity and efficiency, but also because



REFERENCES 49

system state is represented ezplicitly. This allows simple recording and inspection
of individual states, in addition to traces representing the entire behavior up to
a certain (undesired) state. A particular advantage was that Real-Time Maude
provides powerful tools to model and analyze complex systems without any previ-
ous formal method background, and I believe Real-Time Maude can significantly
improve both the development process and result for most organizations working
with data management protocols.

References

Amazon.com, Inc. Amazon. URL: http://www.amazon.com/.

Khalil Amiri, Garth A Gibson, and Richard Golding. “Highly concurrent
shared storage”. In: Proc. of the 20th International Conference on Dis-
tributed Computing Systems. IEEE Computer Society. 2000.

Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin,
James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim
Yushprakh. “Megastore: Providing Scalable, Highly Available Storage for
Interactive Services”. In: Proc. of the Fifth Biennial Conference on Innova-
tive Data Systems Research (CIDR 2011). www.cidrdb.org, 2011.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,
and Patrick O’Neil. “A critique of ANSI SQL isolation levels”. In: ACM
SIGMOD Record 24.2 (1995), pp. 1-10.

Eric A. Brewer. “Towards robust distributed systems (abstract)”. In: Proc.
of the 19th annual ACM Symposium on Principles of Distributed Computing
(PODS 2000). ACM, 2000.

David G. Campbell, Gopal Kakivaya, and Nigel Ellis. “Extreme scale with
full SQL language support in Microsoft SQL Azure”. In: Proc. of the 2010
ACM SIGMOD International Conference on Management of Data (SIG-
MOD 2010). ACM, 2010.

Rick Cattell. “Scalable SQL and NoSQL data stores”. In: ACM SIGMOD
Record 39.4 (2011), pp. 12-27.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. “Bigtable: A Distributed Storage System for Structured Data”. In:
ACM Transactions on Computer Systems (TOCS) 26.2 (2008), 4:1-4:26.
Bernadette Charron-Bost, Fernando Pedone, and Andre Schiper. Replica-
tion: Theory and Practice. Springer, 2010.



50

[10]

[11]

[12]

[13]

[14]

[15]

[16]

22]

23]

REFERENCES

Manuel Clavel et al. All About Maude - A High-Performance Logical Frame-
work, How to Specify, Program and Verify Systems in Rewriting Logic.
Vol. 4350. Lecture Notes in Computer Science. Springer, 2007.

Continuent. Tungsten. 2013. URL: http://www.continuent.com/solutions/
replication.

James C. Corbett et al. “Spanner: Google’s globally-distributed database”.
In: Proc. of the 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI 2012). USENIX Association, 2012.

Alfranio Correia Jr, José Pereira, and Rui Oliveira. “AKARA: A flexible
clustering protocol for demanding transactional workloads”. In: Proc. of
the 10th International Symposium on Distributed objects, Middleware and
Applications (DOA 2008). Springer, 2008.

Flaviu Cristian, Houtan Aghili, H. Raymond Strong, and Danny Dolev.
“Atomic Broadcast: From Simple Message Diffusion to Byzantine Agree-
ment”. In: Information and Computation 118 (1995), pp. 158-179.
Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. “ElasTraS: An Elas-
tic Transactional Data Store in the Cloud”. In: Proc. of the 2009 Conference
on Hot Topics in Cloud Computing (HotCloud 2009). USENIX, 2009.
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-
lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,
Peter Vosshall, and Werner Vogels. “Dynamo: Amazon’s highly available
key-value store”. In: Proc. of the 21st ACM SIGOPS Symposium on Oper-
ating Systems Principles. ACM, 2007.

eBay, Inc. eBay. URL: http://www.ebay.com/

Facebook, Inc. Facebook. URL: http://www.facebook.com/.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. “Impossibility
of distributed consensus with one faulty process”. In: Journal of the ACM
(JACM) 32.2 (1985), pp. 374-382.

Felix C Freiling, Rachid Guerraoui, and Petr Kuznetsov. “The failure de-
tector abstraction”. In: ACM Computing Surveys (CSUR) 43.2 (2011), p. 9.
Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. “The Dangers
of Replication and a Solution”. In: Proc. of the 1996 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD 1996). ACM,
1996.

Jim Gray and Leslie Lamport. “Consensus on transaction commit”. In:
ACM Transactions on Database Systems (TODS) 31.1 (2006), pp. 133-160.
J. Grov, L. Soares, A. Jr. Correia, J. Pereira, R. Oliveira, and F. Pedone. “A
Pragmatic Protocol for Database Replication in Interconnected Clusters”.
In: Proc. of the 12th Pacific Rim International Symposium on Dependable
Computing (PRDC 2006). IEEE Computer Society, 2006.



REFERENCES o1

[24]

[25]

[26]

[27]

[30]

[31]

[32]

[34]

[35]

[36]

Jon Grov and Peter Csaba Olveczky. “Formal Modeling and Analysis of
Google’s Megastore in Real-Time Maude”. In: Specification, Algebra, and
Software. To appear in Springer Lecture Notes in Computer Science. 2014.
URL: http://folk.uio.no/jongr/ms.pdf.

Jon Grov and Peter Csaba Olveczky. Increasing Consistency in Multi-Site
Data Stores: Megastore-CGC' and its Formal Analysis. Submitted for pub-
lication.

Jon Grov and Peter Csaba Olveczky. “Scalable and Fully Consistent Trans-
actions in the Cloud through Hierarchical Validation”. In: Proc. of the 6th
International Conference on Data Management in Cloud, Grid and P2P
Systems (Globe 2013). Springer, 2013.

Modou Gueye, Idrissa Sarr, and Samba Ndiaye. “Database replication in
large scale systems: optimizing the number of replicas”. In: Proc. of the
2009 EDBT/ICDT Workshops. ACM. 20009.

Jonathan Hui. Top J2EE application performance problems. URL: http://
www. jonathanhui.com/top-j2ee-application-performance-problems.

Alfranio Correia Jr., A. Sousa, Luis Soares, José Pereira, Francisco Moura,
and Rui Carlos Oliveira. “Group-Based Replication of On-Line Transaction
Processing Servers”. In: Proc. of the 2nd Latin-American Symposium on
Dependable Computing (LADC 2005). Springer, 2005.

Bettina Kemme and Gustavo Alonso. “Database Replication: a Tale of Re-
search across Communities”. In: Proceedings of the VLDB Endowment 3.1
(2010), pp. 5-12.

Bettina Kemme and Gustavo Alonso. “Don’t Be Lazy, Be Consistent:
Postgres-R, A New Way to Implement Database Replication”. In: Proc.
of 26th International Conference on Very Large Data Bases (VLDB 2000).
VLDB Endowment, 2000.

Donald Kossmann, Tim Kraska, and Simon Loesing. “An evaluation of al-
ternative architectures for transaction processing in the cloud”. In: Proc. of
the 2010 ACM SIGMOD International Conference on Management of Data
(SIGMOD 2010). ACM, 2010.

Hsiang-Tsung Kung and John T Robinson. “On optimistic methods for
concurrency control”. In: ACM Transactions on Database Systems (TODS)
6.2 (1981), pp. 213-226.

Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized struc-
tured storage system”. In: ACM SIGOPS Operating Systems Review 44.2
(2010), pp. 35-40.

Leslie Lamport. “Fast paxos”. In: Distributed Computing 19.2 (2006),
pp. 79-103.

Leslie Lamport. “Paxos made simple”. In: ACM Sigact News 32.4 (2001),
pp. 18-25.



52

[37]

[38]

[39]

[40]

[41]

[42]

REFERENCES

Butler W. Lampson and David B. Lomet. “A New Presumed Commit Opti-
mization for Two Phase Commit”. In: Proc. of the 19th International Con-
ference on Very Large Data Bases (VLDB 1993). Morgan Kaufmann, 1993.
Butler Lampson and Howard Sturgis. Crash recovery in a distributed data
storage system. Xerox Palo Alto Research Center, 1979.

Yi Lin, Bettina Kemme, Marta Patino-Martinez, and Ricardo Jiménez-
Peris. “Consistent data replication: Is it feasible in wans?” In: Proc. of the
11th International Euro-Par Conference (Euro-Par 2005). Springer, 2005.

Peter Membrey, Eelco Plugge, and Tim Hawkins. The definitive guide to
MongoDB: the noSQL database for cloud and desktop computing. Apress,
2010.

José Meseguer. “Conditional rewriting logic as a unified model of concur-
rency”. In: Theoretical Computer Science 96 (1992), pp. 73-155.

José Meseguer. “Membership Algebra as a Logical Framework for Equa-
tional Specification”. In: Proc. of the 12th International Workshop on Re-
cent Trends in Algebraic Development Techniques (WADT 1997). Springer,
1998.

Microsoft. Microsoft SQL Server. URL: https://www.microsoft.com/sql.
MongoDB, Inc. MongoDB: Production Deployments. URL: http://www .
mongodb . org/about/production-deployments/.

National Institute of Standards and Technology. Standards for Security Cat-
egorization of Federal Information and Information Systems. 2004. URL:
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-
final.pdf.

Netflix, Inc. Netfliz. URL: http://www.netflix.com/.

Rui Oliveira, José Pereira, Afranio Correia Jr, and Edward Archibald. “Re-
visiting 1-copy equivalence in clustered databases”. In: Proc. of the 2006
ACM Symposium on Applied computing (SAC 2006). ACM. 2006.

Peter Csaba Olveczky. “Formal Modeling and Analysis of a Distributed
Database Protocol in Maude”. In: Proc. of the 11th IEEE International
Conference on Computational Science and Engineering Workshops (CSE-
WORKSHOPS 2008). IEEE Computer Society, 2008.

Peter Csaba Olveczky. Real-Time Maude 2.3 Manual. 2007. URL: http :
//folk.uio.no/peterol/RealTimeMaude/intro.pdf.

Peter Csaba Olveczky and José Meseguer. “Formal Modeling, Performance
Estimation, and Model Checking of Wireless Sensor Network Algorithms
in Real-Time Maude”. In: Theoretical Computer Science 410.2-3 (2009),
pp- 254-280.

Peter Csaba Olveczky and José Meseguer. “Semantics and Pragmatics of
Real-Time Maude”. In: Higher-Order and Symbolic Computation 20.1-2
(2007), pp. 161-196.



REFERENCES 53

Oracle Corp. MySQL. URL: http://www.mysql.com/.

Oracle Corp. Oracle DB. URL: http://www.oracle.com/database.
Oracle Corp. Oracle Real Application Clusters (RAC). URL: http://www.
oracle.com/rac.

Codership Oy. Galera. 2013. URL: http://codership . com/products/
galera_replication.

M Tamer Ozsu and Patrick Valduriez. “Distributed and parallel database
systems”. In: ACM Computing Surveys (CSUR) 28.1 (1996), pp. 125-128.
M Tamer Ozsu and Patrick Valduriez. Principles of distributed database
systems. Springer, 2011.

Fernando Pedone, Rachid Guerraoui, and André Schiper. “The Database
State Machine Approach”. In: Distributed Parallel Databases 14.1 (2003),
pp. 71-98.

Peter Csaba Olveczky and Marco Caccamo. “Formal Simulation and Anal-
ysis of the CASH Scheduling Algorithm in Real-Time Maude”. In: Proc. of
the 9th International Conference on Fundamental Approaches to Software
Engineering (FASE 2006). Springer, 2006.

Peter Csaba Olveczky, José Meseguer, and Carolyn L. Talcott. “Specifica-
tion and Analysis of the AER/NCA Active Network Protocol Suite in Real-
Time Maude”. In: Formal Methods in System Design 29.3 (2006), pp. 253~
293.

Stefan Pleisch, Olivier Rutti, and André Schiper. “On the specification of
partitionable group membership”. In: In Proc. of the Seventh European De-
pendable Computing Conference (EDCC 2008). IEEE Computer Society,
2008.

PostgreSQL. PostrgreSQL. URL: http://www.postgresql.org/.

Dan Pritchett. “BASE: An Acid Alternative”. In: ACM Queue 6.3 (2008),
pp- 48-55.

Jun Rao, Eugene J. Shekita, and Sandeep Tata. “Using Paxos to build a
scalable, consistent, and highly available datastore”. In: Proceedings of the
VLDB Endowment 4.4 (2011), pp. 243-254.

Nicolas Schiper, Pierre Sutra, and Fernando Pedone. “P-store: Genuine par-
tial replication in wide area networks”. In: Proc. of the 29th IEEE Sympo-
sium on Reliable Distributed Systems. IEEE Computer Society. 2010.
Oliver Schmitt and Tim A. Majchrzak. “Using Document-Based Databases
for Medical Information Systems in Unreliable Environments”. In: Proc.
of the 9th International Conference on Information Systems for Crisis Re-
sponse and Management (ISCRAM 2012). IAS of ISCRAM, 2012.

Fred B Schneider. “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial”. In: ACM Computing Surveys (CSUR) 22.4
(1990), pp. 299-319.



54

[68]

[69]

[70]

REFERENCES

Dale Skeen. “Nonblocking commit protocols”. In: Proc. of the 1981 ACM
SIGMOD International Conference on Management of Data (SIGMOD
1981). ACM. 1981.

Luis Soares and José Pereira. “Experimental performability evaluation of
middleware for large-scale distributed systems”. In: Proc. of the 7th Inter-
national Workshop on Performability Modeling of Computer and Commu-
nication Systems (PMCCS 2005). 2005.

Anténio Sousa, Alfranio Correia Jr, Francisco Moura, José Pereira, and Rui
Oliveira. “Evaluating certification protocols in the partial database state
machine”. In: Proc. of The First International Conference on Awvailability,
Reliability and Security (ARES 2006). IEEE Computer Society, 2006.
Anténio Sousa, Fernando Pedone, Rui Oliveira, and Francisco Moura. “Par-
tial replication in the database state machine”. In: Proc. of the IEEE Inter-
national Symposium on Network Computing and Applications (NCA 2001).
IEEE Computer Society, 2001.

Spotify AB. Spotify. URL: http://www.spotify.com/.

Michael Stonebraker and Rick Cattell. “10 rules for scalable performance
in ’simple operation’ datastores”. In: Communications of the ACM 54.6
(2011), pp. 72-80.

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J. Abadi. “Calvin: Fast Distributed Transactions for Par-
titioned Database Systems”. In: Proc. of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD 2012). ACM, 2012.
Milo Tomasevic, Jelica Protic, Milo Tomasevic, and Veljko Milutinovié¢. Dis-
tributed shared memory: Concepts and systems. John Wiley & Sons, 1998.
Transaction Processing Performance Council. TPC Benchmark™C' standard
specification version 5. Tech. rep. 2001. URL: http://www.tpc.org/tpcc/
spec/tpcc_v5.pdf.

Twitter, Inc. Twitter. URL: http://twitter.com/.

Ricardo Vilaca, Rui Oliveira, and Jose Pereira. “A correlation-aware data
placement strategy for key-value stores”. In: Distributed Applications and
Interoperable Systems. Springer. 2011, pp. 214-227.

Werner Vogels. “Eventually consistent”. In: Communications of the ACM
52 (1 2009), pp. 40-44.

Gerhard Weikum and Gottfried Vossen. Concurrency Control and Recovery
i Database Systems. Morgan Kaufman, 2001.

Yan Zhang, Nirwan Ansari, Mingquan Wu, and Heather Yu. “On wide area
network optimization”. In: Communications Surveys € Tutorials, IEEE
14.4 (2012), pp. 1090-1113.



Part 11
Research Papers






Paper 1: A Pragmatic Protocol for Database
Replication in Interconnected Clusters

o7






A Pragmatic Protocol for Database Replication in
Interconnected Clusters

J. Grov L. Soares A. Correia Jr.
U. Oslo U. Minho U. Minho
Abstract

Multi-master update everywhere database replication,
as achieved by protocols based on group communication
such as DBSM and Postgres-R, addresses both performance
and availability. By scaling it to wide area networks, one
could save costly bandwidth and avoid large round-trips to
a distant master server. Also, by ensuring that updates are
safely stored at a remote site within transaction boundaries,
disaster recovery is guaranteed. Unfortunately, scaling ex-
isting cluster based replication protocols is troublesome.

In this paper we present a database replication proto-
col based on group communication that targets intercon-
nected clusters. In contrast with previous proposals, it uses
a separate multicast group for each cluster and thus does
not impose any additional requirements on group commu-
nication, easing implementation and deployment in a real
setting. Nonetheless, the protocol ensures one-copy equiv-
alence while allowing all sites to execute update transac-
tions. Experimental evaluation using the workload of the
industry standard TPC-C benchmark confirms the advan-
tages of the approach.

1. Introduction

Database replication is an attractive concept both to in-
crease fault tolerance and to improve scalability by en-
abling several database sites to serve the same queries. The
main challenge of such systems is that coordinating up-
dates among the participating servers inevitably delays the
execution of update-transactions. A particularly promis-
ing approach is taken by replication protocols based on
group communication such as DBSM [12, 7] and Postgres-
R[10, 21]. By taking advantage of optimistic concur-
rency control allowed by transactional semantics and of
atomic multicast provided by group communication, it pro-
vides performance and scalability even in face of demand-
ing workloads such as the industry standard TPC-C bench-
mark [17].

Unfortunately, scaling existing cluster based replication
protocols to a wide area network is troublesome. Notably,
the latency of uniform atomic (or safe) delivery required to
ensure fault tolerance has a profound impact in optimistic

R. Oliveira
U. Minho

F. Pedone
U. Lugano

J. Pereira
U. Minho

concurrency protocols leading to increased abort rate [6].
This wastes resources and endangers the ability to commit
long lived transactions in a busy server. Although optimistic
delivery can mitigate this limitation [16], using it requires
an in-depth rewrite of existing protocol implementations.
In fact, the only generally available group communication
toolkit supporting it is Appia[11, 14].

Furthermore, although research has been addressing
group communication in wide area networks for a long
time, industrial deployment is far more common in clusters.
Therefore one should expect wide area features to be far
less tested and optimized, if implemented at all. The over-
head of maintaining automatic management of membership
spanning multiple geographically apart sites is also not neg-
ligible. Finally, the practicality of group communication
over wide area networks is also compromised by network
configuration and security issues, such as firewalls, tunnels
and NAT gateways. In particular, using true multicast for
efficiency is often not an option.

In this paper we present WICE, a protocol targeted at
multiple clusters interconnected by a wide area network.
In contrast with lazy replication protocols, such as Ora-
cle Streams [20], WICE ensures that no globally committed
transaction (i.e. which has been acknowledged to clients) is
lost. On the other hand, by allowing all replicas to be fully
on-line and executing update transactions, it improves re-
source efficiency and performance when compared to vol-
ume replication [18], often the only choice for disaster re-
covery in mission critical applications.

In detail, the contributions of this paper are the follow-
ing: (i) introduces the protocol providing 1-copy equiva-
lence of the native database consistency criterion, even in
the presence of faults, while confining group communi-
cation within LANs and improving practicality, (ii) takes
advantage of directly implementing updates stabilization
across wide-area directly on TCP/IP to greatly reduce the
likelihood of a transaction being aborted during the certi-
fication phase, which is the single greatest obstacle to the
scalability of previous proposals [6], and (iii) provides an
experimental evaluation of the protocol applied to a multi-
version database when running the workload of the industry
standard TPC-C benchmark [19], thus verifying the previ-



ous claim.

2. System Model

We assume the page model for a database [2]: A collec-
tion of named data items which have a value. The combined
values of the data items at any given moment is the database
state. We do not make any assumptions on the granularity
of data items.

A database site is modeled as a sequential process. In de-
tail, the execution of each site is modeled as a sequence of
steps that may change the site’s state. Namely, the database
state is manipulated by executing READ(z) and WRITE(x)
steps, where x represents a database tuple. A transaction
is a sequence of read and write operations followed by a
COMMIT(t) or ABORT(t) operation. Each site contains a
complete copy of the database and is responsible for ensur-
ing local concurrency control.

We consider a finite set of database sites that communi-
cate through a fully connected network. Both computation
and communication are asynchronous. Sites may fail only
by crashing and do not recover, thus stopping to execute
database operations, or send or deliver further messages.

Database sites are organized in clusters. Within a cluster
we assume a primary component group membership service
that provides current and consistent views of the sites be-
lieved to be up [4]. This service is intended to allow, at any
moment, the deterministic identification of a distinguished
site as the cluster’s delegate as well as providing a view-
synchronous multicast primitive (Section 2.2). The avail-
ability of a primary component group membership service
implicitly assumes that consensus is solvable in our system
model [8]. The assumed failure patterns and failure detec-
tion capabilities of our model are thus indirectly determined
by the actual solution adopted for consensus.

Among clusters, we assume that the failure of an entire
cluster is reliably detected at the other sites. That is, if all
sites in a cluster fail then the fact is eventually noticed by
the other clusters’ delegates. Otherwise, the cluster is never
suspected to have failed.! At each cluster, the set of clusters
believed to be up is given by a function remoteClusters().

2.1. Database Interface

The replication protocol presented in Section 3 uses a
replication interface with the database engine that is part
of the API being defined in the context of the GORDA
project[5]. The interface has been implemented in a num-
ber of DBMS, notably in PostgreSQL [9] and Derby [1].
The interested reader can find its detailed definition in [13].

I'This assumption is equivalent to have a perfect failure detector among
the clusters [3]. In a wide area setting, its provision would require the use
of a specially dedicated communication infrastructure among the clusters
or rely on human intervention to declare the unavailability of all cluster
sites.

Basically, it allows the inspection of a transaction’s execu-
tion at three specific points: (1) at the beginning of the trans-
action’s execution, (2) at the end of the transaction’s execu-
tion, just before it starts committing updates or rolls back,
and (3) when the local database system has committed the
transaction and is ready to reply to the client. Furthermore,
the database engine provides an update function executed
with priority over any other running transactions that allows
to update the values of a given set of items.
More precisely, we assume that the replicated database
engine allows to register four callback functions as follows:
onExecuting(tid) invoked before a transaction is about to
enter the executing state, i.e., before it starts execution.
The transaction is identified by tid.

onCommitting(tid, rs, ws, wv) invoked when the transac-
tion tid succeeds and is about to enter the commit
phase. The database provides the set of tuples read (rs)
and written (ws) by the transaction, as well as the writ-
ten values (wv). At this point the transaction has all its
updates buffered and all write locks still acquired.

onAborting(tid) invoked when the transaction tid fails and
is about to abort.

onCommitted(tid) invoked after the transaction has com-
pleted making all updates persistent, released locks,
entered the committed state and is ready to reply to
the client.

When it invokes any of the above functions, the database
engine suspends the execution of the transaction until
the protocol replies by invoking the database functions
continueExecuting(tid), continueCommitting(tid), contin-
ueAborting(tid) and continueCommitted (tid), respectively.

Replica updates are submitted to the database using the
db_update (tid, ws, wv) function which applies the values in
wv to the tuples in ws by means of a high priority trans-
action. A transaction submitted through db_update only
triggers the onCommitted(tid) event. High priority means
that any regular (i.e., non high priority) transaction holding
locks on any item in ws will be aborted. Moreover, high pri-
ority transactions are serialized when requesting locks and
then executed concurrently.

2.2. Communication Primitives

Among sites within the same cluster, a group com-
munication toolkit is available providing reliable point-to-
point communication and FIFO uniform view-synchronous
multicast [4]. Uniform view-synchronous multicast is de-
fined through primitives u_vscast and u_vsdeliver. FIFO
uniform view-synchronous multicast is invoked through
primitive fifo_u_vscast. Point-to-point reliable communi-
cation is defined by two primitives r_send and r_deliver.
These primitives rely on the existence of a (primary compo-
nent) group membership service that tracks the membership
of the cluster. Among clusters, messages are exchanged



Cluster A

Cluster B

4
delegate(®)

Figure 1: WICE: example of handling of transaction 7'

through a point-to-point FIFO reliable channel using prim-
itives fifo_r_send and fifo_r_deliver. A cluster is said to be
correct if it does not fail entirely.

3. The WICE Protocol

The WICE protocol adopts an optimistic concurrency
control policy. Transactions are executed optimistically at
any site and then, just before commit, certified against con-
current transactions. WICE borrows from protocols such
as Postgres-R [10] and DBSM [12] often called certification
based protocols. These protocols share two fundamental
characteristics: (1) each database site is assumed to store
the whole database and transactions can be executed at any
site, and (2) all update transactions are certified and, if valid,
committed in the same order at all sites.

WICE does not make use of a total order communica-
tion primitive, instead ordering is explicitly handled by the
protocol. In WICE, one of the sites plays the role of certi-
fier, it totally orders and certifies all transactions. Each valid
transaction is then broadcast together with its commit order
and updates. This allows to leverage the knowledge about
the system’s topology and to make optimizations that would
not be possible otherwise.

The WICE algorithm is exemplified in Figurel. In a
nutshell, the handling of a transaction proceeds as follows.
Consider a system consisting of two clusters A and B. Each
cluster has a designated delegate responsible for handling
the communication with the other cluster. The delegate of
cluster A, site s, is also responsible for certifying all exe-
cuted transactions. When an update transaction 7" is sub-
mitted to site sy (7”s initiator), it is readily executed and
sent to the certifier. If it succeeds, then the certifier prop-
agates T’s updates and commit order, both locally and to
cluster’s B delegate. The latter, in turn, propagates 1 lo-
cally. Once a delegate is certain that all sites in its cluster
delivered 1"s data it acknowledges the fact to the other clus-
ter’s delegate. This acknowledgement is multicast locally
by each delegate. Once a database site knows 7"’s data has
been delivered everywhere and all previous transactions had
been committed or aborted, then it commits 7'. The initiator
of T' can then reply to its client.

Note that the algorithm discussed here only applies to
update transactions, as read-only transactions do not need
such a validation. Nevertheless we cannot allow any trans-
action to read and expose updates before the updating trans-
actions become stable, i.e., committed. For clarity, we omit
this from the protocol and assume it to be handled by the
local DBMS by blocking the commit of a read-only trans-
action until all updaters from which it has read from become
stable.

3.1. Algorithm

We now consider the protocol algorithm in detail (Fig-
ure2). It is composed by a set of handlers that deal with
events triggered by the database engine (“Events at the ini-
tiator” and “Transaction commit” ) and with message deliv-
ery. We assume that every database site knows the current
system’s certifier through a function certifier(). The local
concurrency control strategy of a given site, which we admit
to be either snapshot isolation (SI) or strict two-phase lock-
ing (S2PL), is given by the function local CC(). Each cluster
delegate can find the other participating clusters through a
function remoteClusters() as well as identifying some dele-
gate’s cluster through function cluster(). Further, the func-
tion delegate() is used to determine whether the current site
is the delegate of its cluster or not.

Global site variables Each database site manages four
sets containing transactions known to be certified, locally
updated, locally commited and remotely stable. It keeps
track of the number of locally executed transactions in vari-
able Its. The certifier keeps track of the number of certified
transactions in variable gts.

Events at the initiator Before a transaction tid executes
its first operation, the onExecuting handler is invoked. The
version of the database seen by tid is required for the val-
idation procedure, and for sites running snapshot isolation,
this is equal to the number of committed transactions when
tid begins execution. For sites using two-phase locking, the
version must instead be recorded at the end of the execution,
i.e., in the onCommitting handler.

If the transaction at any time aborts locally, onAborting()
is invoked and the transaction is simply forgotten by the
protocol. On the contrary, if tid succeeds execution then
onCommitting() is invoked. If local consistency is S2PL,
the database version is recorded here. Then, tid’s read set,
write set and written values (rs, ws and wv) provided by
the database are reliably sent to the certifier along with the
version of the database on which the transaction executed.
The transaction’s execution is left suspended until it is cer-
tified and its outcome known. If tid ends up committing
then continueCommitting(tid) will be called, otherwise the
initiator receives a (ABORT, tid) message from the certifier
and forces the transaction to abort locally.



Certification Upon delivering an update transaction to
certify — (CERTIFY, tid, ts, rs, ws, wv) — from some
initiator site the certifier performs the certification of tid
against its concurrent transactions. For every certified trans-
action (but not necessarily committed yet) ctid with times-
tamp equal or greater than tid’s, a certification function is
called with ctid’s write set and tid’s read and write sets.
When preserving 1-SR the certification function checks
tid’s read and write sets against ctid’s write set. If 1-SI is
the adopted consistency criterion then only the write sets of
both transactions are compared. In both cases, if there is
a non empty intersection then the certification fails and an
abort message is sent back to tid’s initiator.

When tid’s passes the certification test then the certifier’s
sequence number is incremented and tid added to its set
of certified transactions. The transaction’s id, commit or-
der, write set and written values are then sent to all other
replicas. Locally, tid is sent using the FIFO uniform view-
synchronous multicast primitive as a (UPDATE_LOC, tid,
gts, ws, wv) message. Remotely, it is sent using the FIFO
reliable point-to-point primitive to each remote cluster as a
(UPDATE_REM, tid, gts, ws, wv) message.

Remote delivery of updates Once a cluster delegate de-
livers a transaction from the certifier it simply forwards the
message to the local replicas using the FIFO uniform view-
synchronous multicast primitive.

Local delivery of updates When a replica delivers a
transaction tid it signals the fact adding it to its set of up-
dated transactions. The use of a uniform primitive ensures
that once the transaction is delivered at the current replica
it is eventually delivered at all non faulty replicas in the
cluster. Therefore, if the replica is a cluster delegate it ac-
knowledges the fact that tid became stable at the cluster to
all clusters. The just delivered updates are applied. If the
replica is the tid’s initiator then it just needs to proceed with
continueCommitting(tid). Although tid does not hold high
priority locks at the initiator, the fact that it passed certifica-
tion means that between its execution and the given commit
order, no other certified transaction conflicted with it, and
consequently, tid will not be aborted by another transaction
requesting high-priority locks at tid’s initiator. For all other
sites, db_update is invoked.

Delivery of remote acks Each time a delegate delivers
a stability acknowledgment for transaction tid from some
cluster, the pair (tid, cluster) is added to its acks set. When
tid has been acknowledged by all remote clusters, then the
delegate locally declares the transaction remotely stable us-
ing the (non- uniform) view-synchronous multicast primi-
tive — (STABLE_REM, tid). When this message is deliv-
ered each replica adds tid to its remotestable set.

Transaction commit Here, each site handles the onCom-
mitted callback. When onCommitted (tid) is invoked the

site just increments its local database version Its and adds
tid to its committed set. Since all tid locks have been re-
leased then any new transaction can read from tid and there-
fore from a more recent version of the database. When tid
is known to be commited locally and stable everywhere the
database is then allowed to reply to the client, which hap-
pens after continueCommitted(tid).

3.2. Failure Handling

The WICE algorithm tolerates both the failure of single
database sites as well as the failure of whole clusters. In this
section we present and explain the recovery procedures in
both cases.

Locally, each cluster is governed by a group mem-
bership service and local communication rests on view-
synchronous multicast primitives. This definitely eases fail-
ure handling locally. In the event of a site been expelled
from the group (because it was taken down, has failed, be-
came unreachable, etc.) every other site in the group even-
tually becomes aware of the fact by installing a new view
of the group. This allows each site to deterministically
determine the cluster’s delegate should the former failed.
Moreover, view-synchrony ensures that all sites surviving
the previous view delivered the same set of messages, thus
not requiring any synchronization among them. As a result,
no particular procedure is required on the failure or an ordi-
nary site. In the next two sections we examine the failures
of a cluster’s delegate and of the system’s certifier. Then, we
consider the failure of an entire cluster. For the sake of sim-
plicity and lack of space, we assume that no sites are added
to a cluster and that once a site is expelled from the group,
whatever was the reason for this, it is no longer readmitted.

3.2.1 Delegate Failover

In Figure 3a, we sketch a protocol for recovering from a site
failure when this site was the cluster’s delegate. On a view
change, site d becomes aware it is the new cluster’s dele-
gate. To ensure that no transactions are blocked, d must re-
run all transaction updates and acknowledgements received
from remote clusters that may have been incompletely pro-
cessed by the previous delegate.

New delegate: Synchronization request When ini-
tialized, the new delegate d sends a message (DELE-
GATE_SYNC, 1ts) to the certifier in order to ensure that
all transactions certified since Its are delivered in its local
cluster. The Its value corresponds to the latest transactions
updated in d’s cluster. The new delegate also contacts each
remote cluster with (ACK_SYNC, Its, TRUE) acknowledg-
ing the local stability of all transactions up to lts, requesting
similar action from the recipients (argument TRUE of the
message).



Global site variables

1

local =ts =[]

(1) Certification

21 upon rdeliver(CERTIFY, tid, ts, rs, ws, wv) from initiator

(4 and 5) Delivery of remote acks
gg upon r_deliver(ACK_REM, tid) from cluster

2 certified = updated = () 22 foreach (ctid, cts, cws, cwv) in certified do acked={}
3 commited = remotestable = acks = {r 23 if cts > ts and !certification(cws, rs, ws) then 48 add (tid, cluster) to acks
4 gs=lts=0 %g r_send(ABORT, tid) to initiator 49 foreach (tid, ¢) in acks do
return 50 add c to acked
Events at the initator 26 gts=gts + 1 51 if remoteClusters() C acked then
5 upon onExccuting(tid) 27 enqueue (tid, gts, ws, wv) to certified 52 u_vscast(STABLE-REM, tid)
e T o ol the 28 fifo.u.vscast(UPDATE.LOC, tid, gts, ws, wv) 53 end
if localCC() == SI then ]
7 local[tid]=lts 29 foreach cluster in remoteClusters() do
8 continueExecuting(tid) 30 tfllfo_r‘_send(UPDATE_REM, tid, gts, ws, w) to 54 upon vsdeliver(STABLE_REM, tid)
9 end 31 end cluster 55 add (tid) to remotestable
56 end
10 upon onComitting(tid, rs, ws, wv, type) (2) Remote delivery of updates Transaction commit
11 if local CC() == S2PL then . .
12 ]uc(a)l[lid]:lls gg upon fifo.r.deliver(UPDATE.REM, tid, ts, ws, wv) from certifier 57 upon onCommitted(tid) and ts[tid] = Its + 1
13 rsend(CERTIFY, tid, local[tid], rs, ws, wv) to certifier() 31 fifo-u-vscast(UPDATE.LOC, tid, ts, ws, wv) 58 lts=lts + 1
14 end end 59 add tid to commited
(3) Local delivery of updates 60 ena
15 upon onAborting(tid) .
16 continueAborting(tid) 35 upon fifo_u_vsdeliver(UPDATE_LOC, tid, ts, s, wv) 61  upon (tid) in commited and (tid) in remotestable
17 end 36 ts[tid] = ts 62 continueCommitted(tid)
37 enqueue (tid, ts, ws, wv) to updated 63 end
18 . . . 38 if delegate() then
10 upon rdeliver(ABORT, tid) from i 39 foreach cluster in remoteClusters() do
20 ena db-abort(tid) 40 r_send(ACK_REM, tid) to cluster
en 41 if local[tid] then
42 continueCommitting(tid)
43 else
44 db_update(tid, ws, wv)
45 end

Figure 2: WICE protocol

Certifier: Handle synchronization request When deliv-
ering this message, the certifier resends (in order) each cer-
tified transaction with a certification timestamp larger than
d’s Its value.

All delegates: Synchronize ACK’s When the message
(ACK _SYNC, clts, reply) from a cluster is delivered in a
remote cluster C, the delegate of C regards all its updated
transactions with ts <= clts as acknowledged by cluster.
It then just checks whether these transactions became stable
in every cluster and proceeds accordingly. If reply was set
to TRUE a similar message (now with reply set to FALSE)
is sent back to the initializing delegate (just elected) so it
can also update the respective acknowledgements.

3.2.2 Certifier Failover

The most serious single server failure is when the current
system’s certifier becomes unavailable. When initialized,
the new certifier advertises itself to all delegates. There may
be previously certified transactions not yet known to new
certifier so a state synchronization is due. Figure 3b shows
our synchronization protocol in pseudocode. The code as-
sumes two existing functions, blockCertification() and un-
blockCertification(). Their implementation is not shown,
but they state whether all arriving certification requests
should be buffered, awaiting the synchronization protocol
to finish.

New certifier: Synchronization request The new certi-
fier c starts by invoking blockCertification() and requesting
from each cluster all the transactions they might have deliv-
ered and updated after the last one updated by c.

Each delegate: Send missing transactions When a
(CERTSYNC _REQUEST, clts) is received by the delegate
of a cluster C, it replies with a list of its updated transactions

(tid, ts, ws, wv) such that ts > clts, that is, transactions not
yet seen by the new certifier.

Certifier: Missing updates When processing a (CERT-
SYNC _REPLY, clts, missing) from remote cluster C, the
new certifier ¢ then checks each member of the missing list
whether it has already received this transaction from another
cluster. This will happen if two or more remote clusters both
know about a transaction which is unknown to ¢. If not,
the transaction is enqueued in c’s certified queue. As soon
as all replies from remoteCluster() are delivered, c sets the
certifiers counter gts to Its and starts distributing from its
certified queue (1) locally transactions with ts > lts and
(2) remotely according to each cluster’s last updated trans-
action. The certifier’s gts counter is updated for each trans-
action distributed locally. Finished the update, certification
is unblocked.

3.2.3 Multiple Failures

The WICE protocol shall tolerate situations where multiple
servers or entire clusters can fail abruptly. Most failure sce-
narios can be handled using a combination of the procedure
for single servers. To avoid blocking during synchroniza-
tion, we assume that all running synchronization routines
are restarted if a delegate fails.

The only scenario which requires special treatment is the
loss of an entire cluster. In that case, the other clusters must
be informed as soon as possible to allow blocking current
and future transactions to become stable. A handler for this
event is illustrated in Figure 3c.

4. Evaluation

In replication protocols that rely on a system-wide uni-
form atomic broadcast, updates cannot be applied before



Figure 3a: Delegate failover
New delegate: Synchronization request

1 upon site is initialized as new delegate

Figure 3b: Certifier failover

Global site variables
1 synch =[]

Certifier: Missing updates

14 upon rdeliver(CERTSYNC_REPLY, clts, missing) from cluster
15 synched = { }
16 foreach (tid, ts, ws, wv) in missing do

rsend(DELEGATE_SYNC, Its) to certifier() . . . . 17 if (tid, ts, ws, wv) ¢ certified then
2 foreach cluster in remoteClusters() do New certifier: Synchronization request 18 enqueue (tid, ts, ws, wv) to certified
5 o rsend(ACK-SYNC, Its, TRUE) to cluster 2 upon site is initialized as the new certifier %g add (cluster, clts) to synch;
e blockCertification() foreach (c, ts) in synch do
: . . . 4 foreach cluster in remoteClusters() do 21 add c to synched;
Certifier: Handle synchronization request rsend(CERTSYNC_REQUEST, lts) to cluster %% if remoteClusters() C synched then
6 upon rdeliver(DELEGATE_SYNC, clts) from cluster 6 end gts=lts N . .
7 foreach (ctid, cts, cws, cwv) in certified do .. . %g foreach (tid, ts, ws, wv) in certified do
ifcts > clts then All delegates: Send missing transactions if (ts > Its) then
9 fifo_rsend(UPDATE_REM, ctid, cts, cws. . . 26 gs=gts+1
owv) ocluster PRI ; upon rdeliver(CERTSYNC_REQUEST, clts) from certifier 27 fifo-u_vscast(UPDATE.LOC, tid,
; missing = [] 1S, WS, WV)
10 end 1(9) foreach (tid, ts, ws, wv) in updated do 28 foreach (cluster, clts) in synch do
. 1 ifts > clts then 29 if ts > clts then
All delegates: Synchronize ACK’s ! . i
. 11 enqueue (tid, ts, ws, wv) to missing 30 fifor_send(UPDATE-REM
11 upon rdeliver(ACK_SYNC, clts, reply) from cluster 12 rsend(CERTSYNC_REPLY, lts, missing) to certifier tid, ts, ws, wv) to cluster
12 foreach (utid, uts, uws, uwv) in updated do 13 end 31 unblockCertification()
13 acked = { } 32 end
14 if clts > uts then .
15 add (utid, cluster) to acks Flgure j’c:
16 foreach (utid, c) in acks do .
17 add ¢ to acked All delegates: On failure of remote cluster
18 if remoteClusters() C acked then i o
19 u-vscast(STABLE_REM, utid) upon failure notification of cluster C
20 if reply == TRUE then foreachv (-zd;;i ws, wv) in updated do
21 rsend(ACK-SYNC, Its, FALSE) to cluster acked={}
22 end foreach (tid, c) in acks do

add ¢ to acked
if remoteClusters() C acked then
u_vscast(STABLE_REM, utid)

NN W

e
F]
e

Figure 3: Failover handlers

their carrier message has been delivered (and acknowl-
edged) by all sites. This means that a full round-trip to
the most distant site 2 - ¢,,4, is required before updates can
be installed, regardless of the location of the initiator. As
the probability of two concurrent transactions conflicting
depends on the latency, this has a profound impact in the
abort rate of certification based protocols such as DBSM
and Postgres-R [6].

In WICE, and considering two clusters C'4 and C'p, total
ordering of messages is performed using a sequencer sited,
say, in cluster C'4, also referred to as the primary cluster.
The updates of each update transaction can be installed as
soon as the certification result is known but they are made
visible to clients only after stabilization. Thus, it makes
sense to distinguish between install-interval and commit-
interval. Commit-interval denotes the time elapsed from
the end of execution until the transaction gets committed at
the originating site and is still lower bounded by 2 - ¢,,44.
The install-interval is the time elapsed from the moment the
transaction finishes its optimistic execution until some site
installs the incoming updates. Ignoring intra-cluster latency,
and considering transactions originated at C'4, the install-
interval is negligible for servers in cluster C'4 and close to
tmaz 10 cluster Cg. On the other hand, for transactions
originating in cluster C'p, the install-interval will be close
tmaz and 2 - 4., for Cy4 and Cp respectively.

The most significant advantage of the WICE protocol
when compared to DBSM in a wide area network should
therefore be its impact on the abort rate due to early deliv-
ery of updates. In this section, we experimentally verify this
claim.

4.1. Experimental Environment

Experimental evaluation is conducted by running an ac-
tual implementation of the protocol within a simulated en-
vironment. By profiling real components with CPU cycle
counters, the technique captures the actual overhead intro-
duced by protocols [15]. By fine tuning the simulation com-
ponents to accurately reproduce real components, it realis-
tically reproduces results of real distributed systems [17].
When compared to testing in a real setting, this allows a
tight control over experimental conditions, with advantages
in repeatability and observability. The approach has been
previously used to evaluate database replication protocols
both in LANs and WANSs [6]. In detail, we use simulated
database clients, database engines and networks, and real
implementations of replication and group communication
protocols.

The workload generator is configured according to the
industry standard on-line transaction processing benchmark
TPC-C[19]. Briefly, a wholesale supplier with a number
of geographically distributed sales districts and associated
warehouses. This workload is update intensive, as 92% of
the transactions perform updates. It is also varied, as the
delivery transaction takes a considerable amount of CPU
time and has a very large read-set. The payment transaction
is likely to produce Write-Write conflicts. The neworder
transaction is short-lived and with higher locality.

The results thus vary according to the platform used for
calibration of the simulated environment[17]. Results pre-
sented in this paper refer to the following hardware con-
figuration: Each server has a single CPU AMD Opteron
250 running at 2.4GHz, 4GB RAM and a RAID 5 SATA
disk array with fibre attachment. Transaction processing
engines and overheads are configured according to Post-



Transaction  Empirical Estimators

Name Distribution

Delivery normal mean=143.70  sd=2.33
Neworder uniform min=6.45 max=16.83
Orderstatus normal mean=1.66 sd=0.83
Stocklevel uniform min=1.85 max=2.33
Payment normal mean=2.26 sd=0.21

Table 1: CPU Times distributions (milliseconds).

Primary Secondary
Cluster Cluster

Figure 4: Network Topology.

greSQL 8.0. Storage throughput as measured at the transac-
tion log is 40MBps. CPU overheads are presented in Table 1
along with the corresponding generator distribution and es-
timators parameters. With properly configured indexes and
within the range of presented results, it was verified that
these are independent of the size of the database, as dictated
by TPC-C scaling rules. Note also that these values do not
include contention, as when blocked waiting for a resource
processes are not scheduled. Also according to PostgreSQL
8.0, transaction processing engines use a multi-version con-
currency control approach.

In our target scenario, 3 database servers are positioned
at each of two different sites, as shown in Figure 4. The
network simulator is configured as a pair of switched 1Gbps
Ethernet local area networks, connected by a dedicated T3
link (45Mbps) with 400ms round-trip latency, representa-
tive of an inter-continental satellite link. As a baseline, we
present also results obtained when configuring all 6 servers
within the same local area network.

In all scenarios, we vary the number of simulated clients
from 60 to 6000, equally spread by all servers. We also
take advantage of the locality in TPC-C: Clients associated
with the same warehouse are connected to the same server
to exploit locality, as suggested by the TPC-C specification.
Note however, that with a small probability any client up-
dates records associated with any warehouse.

4.2. Performance Results

The performance of the WICE protocol is evaluated by
observing the throughput, latency and abort rate achieved
when compared with plain DBSM. As a baseline, we
present results obtained by grouping all 6 servers in the
same cluster (DBSM CLUSTER). The results, obtained
with Write-Write conflict certification (achieving 1-SI), are
presented in Figure 5. Results are presented separately for
each cluster.

The first interesting observation from the baseline proto-
col (DBSM CLUSTER) is that the capacity of the system
is exhausted with 6000 clients. This shows up as through-
put peaking (Figure 5(a)), increasing latency due to queuing

Primary cluster C' 4 Secondary cluster C'

-
H * X
S X
="
=
)
=]
2
= T o s e e
S~
() (®)
Xeeh
o o - - %
« J X
> * w x X
Q N * He K // e * J
=
g—; S .
5 E o E
() ()
o ol
z - X X
8 g Py —
& X - A*’ e . - *
g ,,/ -
=] 2000 3000 2000 5000 6000 o 1000 2000 3000 4000 5000 ‘6000
< o s
(e) ()

Figure 5: Performance results with 1-SI.

(Figure 5(c)), and abort rate due to increased concurrency
(Figure 5(e)). By examining resource usage logs one con-
cludes that this is due to saturation of available CPU time.
We should thus focus on system behavior up to 4000 clients,
as a properly configured system will perform flow control to
ensure operation in that range. Throughput grows linearly,
latency is approximately constant and the abort rate negli-
gible.

Then, we turn our attention to DBSM in the target sce-
nario. Although throughput scalability is apparently close
to linear, it is misleading as it corresponds to a high abort
rate and a linearly increasing latency, in particular in cluster
Cp (Figures 5(d) and 5(f)). Both are explained by the same
phenomenon: As locks are withheld during wide area stabi-
lization, queuing delays arise, thus proportionally increas-
ing the probability of later being aborted. Aborted transac-
tions have to be resubmitted by the application, thus further
loading the system. It is also important to underline that, as
expected, latency and abort rate impact both clusters equally
as both suffer with the same 2 - ¢,,,,, commit-interval.

As expected, the WICE protocol improves the perfor-
mance at the primary cluster without negatively impacting
secondary clusters. Namely, in the primary cluster the abort
rate is negligible (Figure 5(e)), comparable only with the
DBSM CLUSTER scenario. The latency is also approxi-
mately constant in the safe operating range (i.e., up to 4000
clients), although impacted by the round-trip over the wide
area link (Figure 5(c)). Note however that such impact is
very close to the absolute minimum of 2 - £,,,,, at 400 ms.

Also as expected, the abort rate of transactions initi-
ated in the second cluster, which are impacted by a .42
to 2 - t;ner commit-interval, is not negligible although still



offering a substantial improvement on DBSM. In the next
section, we discuss the impact of this in the expected usage
scenario of WICE.

4.3. Discussion

The workload assignment used in the previous section
deserves some additional comments. The WICE protocol
targets the global enterprise where the goal of replication
is twofold. First, by providing a cluster for each region of
the globe one avoids having to route all queries to a cen-
tral location and thus avoid imposing the large latency on
clients when no updates are performed, while at the same
time balancing the load. Second, it improves availability as
even catastrophic disasters can only impact the computing
or communication infrastructure at a single location. One
has therefore to consider clusters located in different time-
zones, having distinct peak utilization periods.

This means that the evaluation scenario in the previous
section, in which traffic in both clusters is exactly the same,
is the worst case scenario for the proposed protocol. In real-
ity, one should be able to migrate the centralized sequencer
to the currently most loaded cluster. The additional abort
rate at other locations can then be easily solved by resub-
mission, as these clusters are off peak and thus with under-
utilized resources.

We also have not assumed that resubmission can be done
automatically by the database management system. How-
ever, this is true for many workloads, especially in current
multi-tiered applications. By taking advantage of such op-
tion one could thus completely mask the abort rate at sec-
ondary clusters.

5. Conclusion

Eager update-everywhere database replication optimized
for interconnected clusters in wide area networks is a valu-
able contribution to the infrastructure of the global enter-
prise. By providing the ability to locally serve clients it im-
proves performance and by allowing failover ensures dis-
aster recovery with no data loss. This is a hard problem,
which existing commercial solutions address either by ad-
mitting some data loss or by centralizing update processing.

The proposed WICE protocol shows how to scale repli-
cation protocols based on group communication to a wide
area setting with increased performance, while at the same
time increasing their practicality. This is achieved by re-
stricting group communication within clusters and using a
simple peer protocol over long distance links. The evalua-
tion performed in a realistic platform illustrates the advan-
tages of the approach, namely, linear throughput scalability,
up to 2 times less latency and a negligible abort rate at the
cluster supporting the region currently generating the most
traffic.

References

[1] Apache. Apache derby. http://db.apache.org/derby.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[3] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2), Mar.
1996.

[4] G. V. Chockler, I. Keidar, and R. Vitenberg. Group commu-
nication specifications: a comprehensive study. ACM Com-
puting Surveys, 2001.

[5] G. Consortium. Gorda - open replication of databases. http:
//gorda.di.uminho.pt/consortium, October 2004.

[6] A. Correia Jr., A. Sousa, L. Soares, J. Pereira, R. Oliveira,
and F. Moura. Group-based replication of on-line transac-
tion processing servers. In Dependable Computing: Second
Latin-American Symposium, 2005.

[7] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database repli-
cation using generalized snapshot isolation. In Proceedings
of The 24th IEEE Symposium on Reliable Distributed Sys-
tems, 2005.

[8] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of
the ACM, 1985.

[9] P.Inc. Postgresql. http://www.postgresql.org.

[10] B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-R, A new way to implement database replication.
In Proceedings of 26th International Conference on Very
Large Data Bases, 2000.

[11] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible
protocol kernel supporting multiple coordinated channels. In
Proceedings of The IEEE 21st International Conference on
Distributed Computing Systems, 2001.

[12] F. Pedone, R. Guerraoui, and A. Schiper. The database state
machine approach. Distributed Parallel Databases, 2003.

[13] J. Pereira, A. C. Jr., N. Carvalho, S. Guedes, R. Oliveira,
and L. Rodrigues. Database interfaces for replication sup-
port. Technical report, Universidade do Minho/Faculdade
de Ciéncias da Universidade de Lisboa, 2006.

[14] L. Rodrigues, J. Mocito, and N. Carvalho. From sponta-
neous total order to uniform total order: different degrees
of optimistic delivery. In In Proceedings of the 21st ACM
Symposium on Applied Computing, 2006.

[15] L. Soares and J. Pereira. Experimental performability eval-
uation of middleware for large-scale distributed systems. In
7th International Workshop on Performability Modeling of
Computer and Communication Systems, 2005.

[16] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic
total order in wide area networks. In Proceedings of The
21st Symposium on Reliable Distributed Systems, 2002.

[17] A. Sousa, J. Pereira, L. Soares, A. C. Jr., L. Rocha,
R. Oliveira, and F. Moura. Testing the dependability and
performance of group communication based database repli-
cation protocols. In IEEE International Conference on De-
pendable Systems and Networks - Performance and Depend-
ability Symposium, 2005.

[18] Symantec. Veritas backup software. http://www.symantec.
com/enterprise/veritas/index.jsp.

[19] T. P. P. C. (TPC). TPC benchmark™ C standard specifica-
tion revision 5.0, Feb. 2001.

[20] M. Tumma. Oracle Streams - High Speed Replication and
Data Sharing. Rampant TechPress, 2004.

[21] S. Wu and B. Kemme. Postgres-r(si): Combining replica
control with concurrency control based on snapshot isola-
tion. In International Conference on Data Engineering,
2005.



Paper 2: Scalable and Fully Consistent
Transactions in the Cloud through Hierarchical
Validation

67






Scalable and Fully Consistent Transactions in
the Cloud through Hierarchical Validation*

Jon Grov!? and Peter Csaba Olveczky!:3

! University of Oslo
2 Bekk Consulting AS
3 University of Illinois at Urbana-Champaign

Abstract. Cloud-based systems are expected to provide both high avail-
ability and low latency regardless of location. For data management,
this requires replication. However, transaction management on repli-
cated data poses a number of challenges. One of the most important
is isolation: Coordinating simultaneous transactions in a local system
is relatively straightforward, but for databases distributed across mul-
tiple geographical sites, this requires costly message exchange. Due to
the resulting performance impact, available solutions for scalable data
management in the cloud work either by reducing consistency standards
(e.g., to eventual consistency), or by partitioning the data set and pro-
viding consistent execution only within each partition. In both cases,
application development is more costly and error-prone, and for criti-
cal applications where consistency is crucial, e.g., stock trading, it may
seriously limit the possibility to adopt a cloud infrastructure. In this
paper, we propose a new method for coordinating transactions on repli-
cated data. We target cloud systems with distribution across a wide-area
network. Our approach is based on partitioning data to allow efficient
local coordination while providing full consistency through a hierarchical
validation procedure across partitions. We also present results from an
experimental evaluation using Real-Time Maude simulations.

1 Introduction

Cloud-based systems are expected to provide good performance combined with
high availability and ubiquitous access, regardless of physical location and system
load. Data management services in the cloud also need database features such as
transactions, which allow users to execute groups of operations atomically and
consistently. For many applications, including payroll management, banking,
resource booking (e.g., tickets), shared calendars, and stock trading, a database
providing consistency through transactions is crucial to enable cloud adoption.

To achieve high availability and ubiquitous access, cloud-based databases re-
quire data replication. Replication improves availability, since data are accessible
even if a server fails, and ubiquitous access, since copies of data can be placed

* This work was partially supported by AFOSR, Grant FA8750-11-2-0084.



near the users. Replication may also increase scalability as the workload can be
distributed among multiple hosts. Unfortunately, transaction management on
replicated data is hard. Managing concurrent access on replicated data requires
coordination, and if copies are separated by slow network links, this may increase
transaction latency beyond acceptable bounds.

These challenges have made most cloud-based databases relax consistency.
Several applications use data stores, which abandon transaction support to re-
duce latency and increase availability. Notable examples of such data stores are
Amazon’s Dynamo [1], Cassandra [2], and Google BigTable [3]. A recent trend
is data stores with transactional capabilities within partitions of the data set.
Examples include ElaStraS [4], Spinnaker [5] and Google’s Megastore [6]. All of
these provide high availability, but the transaction support is limited as there
is no isolation among transactions accessing different partitions. This imposes
strict limits on how to partition the data, and reduce the general applicability.

Managing consistency in applications without transaction support is difficult
and expensive [7]. Furthermore, inconsistencies related to concurrent transac-
tions can potentially go undetected for a long time. Google’s Spanner [8] com-
bines full consistency with scalability, availability, and low latency in a system
replicated across a large geographical area (both sides of the US). However, Span-
ner is deployed on a complex infrastructure based on GPS and atomic clocks,
which limits its applicability as a general-purpose solution.

In this paper, we propose a method for managing replicated data which pro-
vides low latency, transaction support, and scalability, without requiring specific
infrastructure. Our approach, FLACS (Flexible, Location-Aware Consistency),
is based on the observation that in cloud systems, transactions accessing the
same data often originate in the same area. In a world wide online bookstore,
the chance is high that most transactions from Spain access Spanish books, while
German customers buy German book. For this, partitioning the database accord-
ing to language would work with traditional methods. However, since we also
need to support customers purchasing books both in Spanish and in German, a
more sophisticated solution is needed.

FLACS provides full consistency across partitions by organizing the sites in
a tree structure, and allow transactions to be validated and committed as near
their originating site as possible. To facilitate this, we propose an incremental
ordering protocol which allows validation without full view of concurrent trans-
actions. For many usage patterns, this allows the majority of transactions to
execute with minimal delay.

We have formally specified the FLACS protocol as a real-time rewrite the-
ory [9], and have used Real-Time Maude [9] simulations to compare the perfor-
mance of FLACS to a classical approach with a master-site for validation.

The rest of the paper is structured as follows. Section 2 defines our system
model. Section 3 gives an overview of the FLACS protocol. Section 4 explains
the protocol in more detail. Section 5 presents our simulation results. Finally,
Section 6 discusses related work and Section 7 gives some concluding remarks.



2 System Model

We formalize a system for storing and accessing replicated data as a tuple
(P7 U7 I’ 07 T7 Q7 D’ lb) Where:

— P is a finite set (of process identifiers representing a set of real-world pro-

cesses, typically a set of network hosts).

U is a set (representing possible data values).

— I is a set (of identifiers for logical data items).

O C ({read} x I U ({write} x I x U) is a set of possible operations on items.

T is a set (of transaction identifiers).

— @ is a set of transactions of the form (¢,p, Oy p, <¢p), where t € T is the
transaction identifier, p € P is the process hosting transaction, O, C O is
the set of operations executed by ¢ on p and <., is a partial order on Oy p,.

— DCIxUxPisaset (with (¢,u,p) a replica of i with value u at p).

— 1bis a function (b : P x P — N (denoting the lower bound on the message
transmission time from p to p’).

The read set of a transaction (£, p, Oy p, <tp) is the set RS(t) = {i € I|(read, i) €
Oy p}, and the write set of t is WS(t) = {i € I|(write,i) € Op}. A pair of
transactions ¢, ¢’ are in conflict ift WS(t) N (RS(')UWS(¢')) # 0, or vice versa.

A read-only transaction is a transaction ¢ where WS (¢) = (). Managing read-
only transactions is relatively easy. Therefore, by the term transaction we will
mean a transaction ¢ with WS(¢) # 0 unless stated otherwise. The treatment of
read-only transactions is discussed in Section 3.4.

We assume that processes communicate by message passing, and that each
pair (p,p’) of processes is connected by a link with minimum message transmis-
sion time b(p,p’). We also assume that the underlying infrastructure provides
the following operations for inter-process communication:

— unicast(m,p,p’), where m is some message, p is the sender and p’ is the
receiver. Unicast does not guarantee any upper bound on message delivery
times nor that messages are delivered in the order in which they were sent.

— fifoUnicast(m,p,p'). Similar to unicast, but guarantees that messages be-
tween two processes are delivered in the order in which they were sent.

We use simple utility functions for multicast and broadcast built on unicast, and
do not assume access to sophisticated group communication middleware.

3 Overview of the FLACS Protocol

State-of-the-art database replication protocols, such as Postgres-R [10] or DBSM
[11], provide serializability through optimistic validation combined with atomic
broadcast to order all transactions before commit. FLACS is an optimistic pro-
tocol following a similar approach with one notable exception: FLACS does not
require a total order on all transactions before validation. Instead, a transaction
t is executed as follows:



1. Execute all operations at the process receiving ¢ (denoted t’s initiator).

2. Ordering: A set of processes denoted observers are asked to order ¢ against all
conflicting transactions. The observers for ¢ are given by RS(t) and WS(¢).

3. Validation: Once t is ordered against all conflicting transactions, it is ready
for validation. The validating process p is determined by the observers. ¢ is
granted commit if and only if for each member i of RS(t), ¢ has read the
most recent version of ¢ according to the local order of p.

4. If ¢ is committed, updates are applied according to the order seen by the
validator. Otherwise, an abort-message is sent to participating processes.

The purpose of FLACS is to reduce validation delay since coordination among
the observers usually requires fewer messages than an atomic broadcast.

3.1 Observers

An observer’s task is to serialize updates on its observed items. Formally, an
observer function obs : I — P+ (P) maps each item i to its observer(s) obs(i).
The idea is to choose as observers processes physically near the most frequent
users, and assign items commonly accessed by conflicting transactions to the
same observer(s). The observers for a transaction ¢ is the union of the observers
for all items in WS(t).

Example 1. Consider a hotel reservation service. Since most reservations are
local, rooms in France should map to observers physically located in Paris, while
rooms in Germany are observed by processes in Berlin. As explained below, this
allows transactions accessing rooms only in France to commit locally in Paris.

3.2 Ordering

The FLACS validation procedure dictates that a transaction ¢ is granted commit
if and only if ¢ has read the most recent version of each i € RS(t). Since there is
no common time among processes, we need to define “most recent.” For protocols
where transactions are included in a total order before validation, the definition
of most recent is simple: it is the most recent according to the total order.

FLACS does not include transactions in a total order before validation. In-
stead, FLACS uses an incremental ordering and validates a transaction ¢ as soon
as it is ordered against all conflicting transactions. Each process p maintains a
local, strict partial order <, on the (update) transactions seen so far. Intuitively,
<, must order any pair of transactions ¢,¢ known by p to be in conflict. How-
ever, the local orders at different processes might be inconsistent. Our idea is to
combine these local orders using a tree structure among processes, in which the
root of a subtree is responsible for combining the local orders of its descendants,
or discovering inconsistencies and resolving them by aborting transactions.

A transaction ¢ can be validated if all observers of items in WS(t) have
treated ¢, and if the local orders of these observers are consistent up to t; i.e.,
they can be combined into one strict partial order.



The first step of validating a transaction ¢ is to ensure that ¢ is included in the
local order of every observer for each item in WS(¢). The next step is to merge
the local observer orders and check if they are consistent. As explained above,
we achieve this by organizing processes in a tree structure, called the validation
hierarchy. After a transaction is ordered at the observer level, the proposed
ordering is propagated upwards in the hierarchy. Eventually, each transaction is
included in a total order at the root of the hierarchy; however, the validation
(and commit) of a transaction ¢ may take place before ¢ is included in this total
order, as explained below.

Example 2. Consider the validation hierarchy in Fig. 1. Process p, represents the
European headquarters of our travel agent. Processes p, and p; are observers for
German and French hotel rooms, respectively. Let t; and ¢5 be two transactions,
reserving one room in Berlin and one room in Paris, respectively, and let t3
reserve a room in both cities. The orderings then develop as follows:

— pg orders t; and t3, and all other transactions updating German rooms. The
resulting local ordering <, is then propagated to pe.

— py orders t3 and 3, and all other transactions updating French hotel rooms.
The resulting local ordering <, is then propagated to pe.

— Finally, the local ordering <, combines <, and <,

@,_ European HQ

Berlin Paris
Observes: Rooms in Germany | - -- Observes: Rooms in France

Fig. 1. Example validation hierarchy

Transactions only accessing German rooms can therefore be validated by p,
alone. A transaction accessing both German and French rooms is validated by
De, which combines the orderings of p, and py.

3.3 Validation

We next explain in more detail how a transaction ¢ is validated in FLACS. The
validating process p for ¢, called t’s validator, is given as follows:

1. For each item 7 in WS(t), all observers obs(i) of i are contained in the subtree
rooted at p in the validation hierarchy.

2. At least one observer of each item in RS(t) is contained in the subtree rooted
at p in the validation hierarchy.

3. No descendant of p in the validation hierarchy satisfies properties 1 and 2.

To validate ¢, t’s initiator sends a validation request to t’s validator p containing
RS(t), WS(t), Wual(t) (values written by t), and Rver(t) (item versions read by
t; each version is represented by the id of the updating transaction). Transaction
t is ready for validation once this message is received and t is included in <,,. ¢



is granted commit if and only if, for each member ¢ of RS(t), Rver(t) contains
the most recent version of ¢ according to <.

The correctness argument is the following: To perform this test at the val-
idating process p is equivalent to performing it at the root of the validation
hierarchy, where the ordering is global. Since all observers for ¢ are contained
within the subtree rooted at p, t’s ordering at p is consistent. Additionally, due
to the ordering being propagated upwards in the validation hierarchy, we know
that any preceding transaction in conflict with ¢ will be known at p upon t’s
validation. Therefore, the validation test for ¢ at p is equivalent to testing at
the root of the validation hierarchy and FLACS guarantees serializability (and
consequently, strong consistency).

If ¢ fails the validation test, a message abort(t) is broadcast. Otherwise, a
commit message for ¢ is sent to all processes replicating items updated by ¢.
This may include processes that are neither the initiator, observers or part of
the validation hierarchy for ¢. Since transactions updating the same items may
be validated by different processes, commit messages can arrive out of order. To
handle this, we introduce sequence numbers. For an item 4, the lowest process p
where all ¢ € obs(i) are in the subtree rooted at p, is responsible for the sequence
number of i. Whenever p orders a transaction ¢ updating 4, the sequence number
of 7 is incremented and propagated upwards in the validation hierarchy together
with the proposed ordering for ¢t. Consequently, t’s validator will have a complete
set of sequence numbers for items in WS(t). We denote this set Wseq(t).

Upon receiving a commit message commit(t, WS(t), Wval(t), Wseq(t)), each
process p replicating items in WS(t) initiates a local transaction containing ¢’s
write operations. For each item 4, the sequence number of the most recent version
is stored at p. We refer to this value as curseq(i,p). We then apply Thomas’
Write Rule: Let seq;, represent the sequence number of ¢ created by t¢. For a
replicated item i at process p, we apply t’s write operation at p if and only if
curseq(i,p) < seq;, .

3.4 Fault Tolerance and Read-only Transactions

For fault tolerance, our ordering protocol represents the first phase of a two-
phase commit. If we assign more than one observer to an item, and then require
the validator to synchronize with observers before commit, this item will be
accessible as long as a majority of observers are available. In future work, we
will combine FLACS with Paxos to provide more sophisticated fault tolerance.
To ensure a consistent read set, a read-only transaction ¢, must be executed
at, or validated by, a process p,, where, for every item 4 in RS(t,), there is at least
one observer for ¢ in the subtree rooted by p,. Read-only transactions requiring
“fresh” data follow the same validation procedure as update transactions.

4 The FLACS Protocol

This section presents the FLACS protocol in more detail. The complete formal,
executable Real-Time Maude specification of FLACS is available at http://



folk.uio.no/jongr/flacs_model.html. In this paper, we describe the protocol
using pseudocode as a set of rules. The following message types are involved in
completing the execution of a transaction ¢:

— informObserver: Sent from ¢’s initiator to t’s observers to initiate t’s ordering.
— propagateOrder: Propagate the order upwards in the validation hierarchy.
— wvalidateRequest: Sent from t’s initiator to its validator (see Section 3.3).

— commit: Sent from t’s validator to all processes to signal commit.

— abort: Sent from a process which determines that ¢ must abort.

The following variables represent the local state of each process p:

— DATABASE: A set of records (i, value, seqnum, update-history, lock-regqs)
representing p’s version of the database, where value is the local value of item
i; seqnum is the sequence number of the most recent update of i; update-
history is a list containing the transaction name of previous updaters of ;
and lock-regs is a list of requests for either read lock or write lock on 1.

— LOCAL-ORDER: A list of transaction ids representing the local order at p.

— REMOTE-TRANS: The set of currently executing remote transactions.

— ORDER-GRAPH: A graph of transactions awaiting to be ordered at p.

— VALIDATE-REQ: A list representing received validation requests.

RULE: EXECUTE-TRANS(t)
while t has more operations do
(optype,i) = getNextOperation(t)
wait for lock on i
when lock granted do executeOperation(t, optype)
when aborted by high priority transaction do abortTransaction()
ops; = getExecutedOperations(t)
RS(t) = getReadSet(ops;)
RVer(t) = findReadVersions(opsy, DATABASE)
WS (t) = getWriteSet(opst)
writeobs = getWriteObservers( WS(t))
validator = findValidator(RS(t), writeobs)
multiCast informObserver(t, WS(t)) from p to writeobs
uniCast validateRequest(t, RS(t), WS(t), WVal(t), RVer(t)) from p to validator
await commit decision
if commit granted then report success to client else report abort to client
releaseLocks(t, DATABASE)

Fig. 2. Initial execution at initiator

4.1 Initial Execution

The execution of a transaction t at t’s initiator is described in Fig. 2. The op-
erations in t are executed sequentially, and we assume local concurrency control
using locks.

When all operations of ¢ have been executed, t is submitted for ordering and
validation. The list of executed operations is logged, and the read set and write
set (including written values) can be retrieved. The initiator determines the ob-
servers for ¢ and initiates the ordering protocol by multicasting informQObservers
to those observers. This message contains the write set of ¢ which is used to



acquire locks for the relevant items. Furthermore, the validating process is noti-
fied by the message validateRequest, which also contains WVal(t), the updated
values, and the mapping RVer(t), associating every item ¢ in RS(t) to the id of
the transaction performing the most recent update on 7 prior to ¢’s read. Note
that the initiator may be an observer, and often also the validator.

After the ordering and validation messages are sent, the initiator waits for the
commit decision, and replies to the client accordingly. Finally, locks are released.

4.2 Ordering

Figure 3 describes the rules for ordering transactions. Whenever an observer
receives an informObserver message for transaction t (rule INIT-ORDER), it
creates a remote subtransaction to apply t’s updates (unless this observer is the
initiator). Remote subtransactions are write-only, request high priority locks to
abort any local transaction (these would eventually fail validation anyway), and
await the commit decision of ¢ before committing. A node for ¢ is also added to
the order graph.

The rule ORDERED is executed at process p when a transaction ¢ satisfies
the requirements to be ordered at p; i.e., all expected order requests have been
received and there are no preceding transactions in the local ordering graph.
Then, t is appended to the local order at p and a propagateOrder-message is
sent to p’s parent in the validation hierarchy. Since we use FIFO-unicast, the
ordering of propagateOrder-messages from process p, to pp reflects the local
order at p,.

The rule RCV-ORDER is executed whenever a process p receives a prop-
agateOrder message for ¢ from a child p’ in the validation hierarchy. Unless ¢
is already known at p, the process p first initiates a remote subtransaction to
acquire the necessary write locks. In any case, an edge from t,,c, to t is added
to the local order graph of p, where t,,¢, is the most recent transaction received
from p’ before t. If the ordering becomes inconsistent, there will be a cycle in
the local order graph and the transaction is aborted. This rule will be triggered
repeatedly for ¢ until all expected propagateOrder messages have arrived. Even-
tually, ¢ will either be aborted or satisfy the conditions for the rule ORDERED
at p; the proposed ordering is then propagated to p’s parent.

4.3 Validation

The rule for validation is given in Fig. 4. For each transaction ¢, validation is
performed by the receiver of the wvalidate Request. Validation of ¢ occurs as soon
as t has been ordered at p, and p, has received the validate Request message for
t. The validation test is a standard optimistic validation procedure, using the
local update history at p, to verify that for each item ¢ read by t, ¢ saw the most
recent version of 7 according to p,’s local order.



RULE: INIT-ORDER

when receive message informObserver(t, WS(t)) from pinit to p do
Wseq(t) = createEmptySeqnumMap()

if p =/= pinia then newRemoteSubtransaction(t, WS(t))

insert (t, WS(t), Wseq(t)) into REMOTE-TRANS
addNodeToOrderGraph(t,order-graph)

RULE: ORDERED

when all order requests received for t at p and predecessors(t, order-graph) == 0 do
(WS(t), Wseq(t)) = getTrans(t, REMOTE-TRANS)

append t to LOCAL-ORDER

foreach ¢ in WS(t) do

if hasAllObserversInSubtree(i, p) then

seqgnum,; = incrementLocalSeqnum/(i)

append (i — item-seqnum) to Wseq(t)

g = getParent(p)

if ¢ # nil then fifoUnicast propagateOrder(¢, pinit, WS(t), Wseq(t)) to g
removeFromOrderGraph(t)

RULE: RCV-ORDER
when receive message propagateOrder(tid, pinit, WS(t), Wseq(t)) from p do
if nott € REMOTE-TRANS then
addNodeToOrderGraph(t, order-graph)
newRemoteSubtransaction(t, WS(t))
addEdgeToOrderGraph(¢,p, order-graph)
if hasCycle(order-graph) then broadCast abort(t)

func hasAllObserversInSubtree(i : item id, p : process id)
return true iff p is the lowest process in the validation hierarchy where all observers for i are
in the subtree rooted by p;

func newRemoteSubtransaction(t : transaction id, WS(t))
| applyRemoteUpdatesWithHighPriorityLocks(t, WS(t), DATABASE);

Fig. 3. Ordering

5 Performance Evaluation

We have implemented a simulation model using the Real-Time Maude tool, and
compared FLACS to a “classical” approach where one master process acts as
the central validator. The latter approach was previously shown to outperform
protocols that use atomic broadcast in wide-area networks [12]. Since recent
research focuses on atomic broadcast-based replica control or weaker consistency
models, this comparison is relevant to evaluate the performance of FLACS.

5.1 Experiment Setup

Our experiment setup is an imaginary international travel agent, providing hotel
bookings in Paris, New York, London, and Los Angeles. Each city is served
by one process, and each process maintains a complete copy of the database.
Scenario A is a setting with a master validating all transactions. Scenario B
is our FLACS model, where we assign as observer for an item i the process
most likely to access . We assume a validation hierarchy and network setup as
shown in Fig. 5. We model a network with stochastic delay with average values



RULE: VALIDATION
when hasLocalOrder(t) and hasReceived ValidationRequest(t) do
if isValid(RS(t), RVer(t), WS(t)) then broadCast commit (¢, WS(t), WVal(t), Wseq(t))
‘ else broadCast abort(t)
func isValid(RS(t), RVer(t), WS(t))
foreach i in RS(t) do
version = getVersion(i, RVer(i))
if version < getLatestVersion(i, DATABASE) then return false
return true

Fig. 4. Validation

Scenario A: New York as Scenario B: Rooms are
master validator observed in their local city

London New42York 1%2 Pil;is Lon—don
0Ss P 1 4 4 -
Pais | @ |m - | s
CD ‘

Fig. 5. Validation hierarchy with observer placement, and average network delay (ms).

chosen according to the geographical distance.* We inject transactions with a
load generator per process, which generates transaction requests at random times
with an adjustable average rate, measured in transactions per second (TPS). All
processes have the same average. Once a lock is acquired, we assume a delay
of 2 ms per local operation. We do not model protocol overhead since network
latency is the dominating factor. In these experiments, no failures are injected.
Each item represents one hotel room at some date. We assume a “hotspot”
setting (e.g., a sale period) with only 10 items at each process. We have different
transaction types, and each transaction type will access either one room in one
city or two rooms (total) in two cities. Each load generator randomly selects a
transaction type according to the distribution given in Table 1. The rooms ac-
cessed are chosen randomly, and Book London represents a read and consecutive
write of one room in London. Correspondingly, Book London+Paris is the read
and consecutive write of one room in London and then one in Paris. We per-
formed four experiments, varying the overall target throughput between 20 and
60 transactions per second. We measured the abort rate and transaction latency,
i.e., the time between a request is submitted and it is successfully returned.

5.2 Results

The abort rate and average transaction latency for Scenarios A and B are shown
in Fig. 6. Decentralized validation allows FLACS to commit a significantly higher

4 The delays New York—Paris and New York-London are the same, assuming trans-
atlantic backbone links from each of these cities. The delay between Paris and Lon-
don reflect that network equipment and local lines increase delivery times.



New York Los Angeles London Paris

Book NY 80%|Book LA 80%|Book London 80% |Book Paris 80%
Book Paris 10%|Book NY 10%|Book Paris 10%|Book London 10%
Book NY+LA 10%|Book NY+LA 5%|Book NY+London  5%|Book London+Paris 5%

Book London+Paris 5%|Book London+Paris 5%|Book NY+London 5%
Table 1. Distribution of transaction types per city.

number of transactions, and the observed transaction latency, affecting both
abort rate and user experience, is significantly lower where observers are dis-
tributed. This is as expected: In Scenario A, all processes except New York have
an average of 84 ms added latency before commit. This increases the delay from
an update is initiated until it is applied to other replicas, and consequently, there
is a higher probability for transactions elsewhere to read stale data. In Scenario
B, the abort rate for transactions accessing items from multiple locations is
relatively high. Especially the transaction Book London+Paris initiated in Los
Angeles suffers, with an abort rate close to 54% at 60 TPS, it should be noted
that our experiment is an extreme scenario with only 10 items per city, which
greatly increase the chance of conflicts. Figure 7 shows the abort rate per pro-

Abort rate Average transaction latency

12%
10%

o
3

-— - = =

- = -
8% ,4‘—— E%® ———
6% > T 40

- - A < - p
4% - &2
2% / — 3 8
0% 0

20 40 60 80 20 40 60 80
s s

Fig. 6. Abort rate.

cess for both scenarios. In Scenario A, the validation site has significantly lower
abort rate than other processes, while in Scenario B, the aborts are more evenly
distributed. In FLACS, observer placement and the validation hierarchy are cru-

Scenario A (60 TPS) Scenario B (60 TPS)

100% T || — | 100 9% T m— — — —
80 % 80 %
60% c0% B #aborts
40% = #taborts 40 % # "
‘commits
20% #commits 20%
0% 0%

London  Los Angeles New York Paris London Los Angeles New York Paris

Fig. 7. Commits vs. aborts, per process.

cial parameters, and in a real system, the observer mapping would benefit from
historical data on access patterns, and possibly also semi- or fully-automatized
dynamic reconfiguration. The general rule is that observers for items commonly
accessed together should be close in the validation hierarchy.



6 Related Work

Most recent proposals for efficient data storage in cloud systems are based on
decentralization with partitioning. In ElasTraS [4], transactions spanning parti-
tions are only allowed as short transactions with predeclared read sets and write
sets. Megastore [6] assumes a relatively fine-grained partitioning of the data set,
and replicates each partition across a subset of servers. Consistency is achieved
by running Paxos within each partition. Spinnaker [5] coordinates updates in
the same way as Megastore, but executes consistent reads directly at the leader
of each partition. Although more fault-tolerant than FLACS, they do not pro-
vide consistency across partitions (Megastore provides two-phase commit, but
without serializability).

In a wide-area setting, approaches based on atomic multicast have been lim-
ited by the message delay required to order every update among all processes.
The protocols in [13,14] build upon atomic multicast, but they target a wide
area setting through partial replication, requiring message ordering only within
the group of replicas that together manage the read sets and write sets of the
transaction. This differs from FLACS since FLACS allows full replication, but
only requires coordination among a limited set of participants (the observers).

Many real-world systems are deployed on top of non-transactional data stores
such as Amazon’s Dynamo [1] and Cassandra [2]. Both provide eventual con-
sistency by committing updates with synchronization among only a subset of
participating sites, and the new values are then propagated among other replicas
in the background. Updates are versioned using vector clocks, and in the case
of conflicts updates are reconciled by the application. Although efficient, lacking
transactions is a significant disadvantage for systems managing critical data such
as audit records, reservations, or financial data.

Microsoft’s Azure [15] and Google’s Spanner [8] also provide large-scale trans-
actions for cloud applications. Azure is known to give good performance [16]
through a master-slave approach, but publicly available details are scarce. Com-
pared to FLACS the transaction latency of any master-based approach will be
worse for clients far from the master site, since every update transaction needs
at least one message exchange with the master. Spanner provides both high
availability through Paxos, replication across wide area networks, and consis-
tency through Multi Version Concurrency Control (using global timestamps).
But Spanner is hard to deploy; one obstacle for widespread adoption is that to
provide global timestamps, Spanner depends on precisely synchronized clocks
and demands a relatively complex infrastructure involving GPS hardware and
atomic clocks. Our approach with logical ordering through the validation hier-
archy provides a simpler, more generic solution.

7 Conclusion

We have defined a new approach to ensure consistency in cloud-based database
systems. The main features of our approach are a method for incremental order-



ing and a distributed hierarchical validation procedure. Together, these features
allow most transactions to be validated near or at the originating site.

We have formalized the entire protocol in Real-Time Maude, and our Real-

Time Maude simulations show, as expected, that this approach outperforms a
more classical approach where validation takes place at centralized master site.

A number of systems for cloud-based data management use Paxos for high

availability. We believe FLACS could be combined with one of these, e.g., Mega-
store, to provide both high availability and consistency across partitions.

References

10.

11.

12.

13.

14.

15.

16.

DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. SIGOPS
Oper. Syst. Rev. 41 (October 2007) 205-220

Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44 (April 2010) 35-40

Chang, F., et al.: Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst. 26 (June 2008) 4:1-4:26

Das, S., Agrawal, D., Abbadi, A.E.: ElasTraS: An elastic transactional data store
in the cloud. In: USENIX HotCloud, USENIX (2009)

Rao, J., Shekita, E.J., Tata, S.: Using Paxos to build a scalable, consistent, and
highly available datastore. Proc. VLDB Endow. 4(4) (January 2011) 243-254
Baker, J., et al.: Megastore: Providing scalable, highly available storage for inter-
active services. In: CIDR’11, www.cidrdb.org (2011)

Stonebraker, M., Cattell, R.: 10 rules for scalable performance in ’simple operation’
datastores. Commun. ACM 54(6) (2011) 72-80

Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: OSDI’12,
Berkeley, CA, USA, USENIX Association (2012) 251264

Olveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2) (2007) 161-196

Kemme, B., Alonso, G.: Don’t be lazy, be consistent: Postgres-R, A new way to
implement database replication. In: VLDB’00, http://www.vldb.org/ (2000)
Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach.
Distributed Parallel Databases (2003)

Grov, J., et al.: A pragmatic protocol for database replication in interconnected
clusters. In: PRDC 06, IEEE Computer Society (2006)

Sutra, P., Shapiro, M.: Fault-tolerant partial replication in large-scale database
systems. In: Euro-Par ’08, Springer-Verlag (2008) 404-413

Schiper, N., Sutra, P., Pedone, F.: P-store: Genuine partial replication in wide area
networks. In: SRDS ’10, IEEE (2010)

Campbell, D.G., Kakivaya, G., Ellis, N.: Extreme scale with full SQL language
support in Microsoft SQL Azure. In: SIGMOD ’10, ACM (2010) 1021-1024
Kossmann, D., Kraska, T., Loesing, S.: An evaluation of alternative architectures
for transaction processing in the cloud. In: SIGMOD ’10, ACM (2010)






Paper 3: Formal Modeling and Analysis of
Google’s Megastore in Real-Time Maude

83






Formal Modeling and Analysis of Google’s
Megastore in Real-Time Maude*

Jon Grov'? and Peter Csaba Olveczky!:3

! University of Oslo
2 Bekk Consulting AS
3 University of Illinois at Urbana-Champaign

Abstract. Cloud systems need to replicate data to ensure scalability
and high availability. To enable their use for applications where consis-
tency of the data is important, cloud systems should provide transac-
tions. Megastore, developed and widely applied at Google, is one of very
few cloud data stores that provide transactions; i.e., both data replica-
tion, fault tolerance, and data consistency. However, the only publicly
available description of Megastore is short and informal. To facilitate
the widespread study, adoption, and further development of Megastore’s
novel approach to transactions on replicated data, a much more detailed
and precise description is needed. In this paper, we describe an executable
formal model of Megastore in Real-Time Maude that we have developed.
Our model is the result of many iterations resulting from correcting de-
sign flaws uncovered during Real-Time Maude analysis. We describe our
model and explain how it can be simulated for QoS estimation and model
checked to verify functional correctness.

1 Introduction

Cloud systems enable customers to deploy applications in a highly scalable and
available infrastructure. Key to these features is replication: several copies of
customer data in geographically distributed data centers allow cloud services to
cope with peaks in system load, as well as with network and site failures.
Many applications require database facilities for storing valuable data. Data-
bases provide transactions: for a given sequence of read and write operations on
data items, the user is assured atomicity, which means that either no operation is
completed or all operations are completed, and serializability, which means that
the execution of concurrent transactions must provide the same result as some
sequential execution. Transactions are necessary protection against inconsistency
due to interleaved operations on shared data. For example, if two transactions t;
and to both read and write bank account x to deposit $20, it is crucial to avoid
both the execution t; : read(z) = 10; ta:read(z) = 10; t1:x := 10+ 20; to:
x:= 104 20; t;:write(z,30); tq:write(x,30), where ¢1’s deposit is lost, and
the execution ty :read(x) = 10; t;:2 :=10+20; t;:write(x,30); to:read(x) =

* This work was partially supported by AFOSR Grant FA8750-11-2-0084.



30; to:x:=30+420; ty:write(x,50); abort(t1), where to was allowed to read
t1’s update which was later aborted.

Some applications, such as newspaper content management and social net-
works like Facebook, can tolerate lower degrees of consistency. Other applications
have strict consistency requirements; notable examples include stock exchange
systems, online auctions, banking, and medical systems: it is clear that a lost up-
date due to concurrent transactions could have serious consequences in a system
recording the medication of hospital patients.

Transactions are among the most important features of a database manage-
ment system (DBMS), since a correct implementation of atomicity and serializ-
ability impose significant challenges. To quote Michael Stonebraker [20]:

“It is possible to build your own [transaction support] on any of these
systems, given enough additional code. However, the task is so difficult,
we wouldn’t wish it on our worst enemy. If you need [transaction sup-
port]|, you want to use a DBMS that provides them; it is much easier to
deal with this at the DBMS level than at the application level.”

Transaction management in the cloud, with geographical distribution and data
replication, involves additional challenges because of:

— Performance: Concurrent access to replicas at different locations requires
costly network coordination.

— Availability: The complexity of coordinating transactions across network
sites increases significantly due to possible network and site failures.

Given the difficulties of transaction management on replicated data, we believe
that formal methods are crucial to enable the use of cloud-based data stores also
for applications where strong data consistency is required. First of all, formal
analysis should be used to catch subtle “corner case” errors during design and
development of the data store. Second, because of the complexity and criticality
of such systems, it is necessary for application providers to be convinced that the
cloud system indeed provides transaction support. Formal verification could be a
major component in providing such assurance to application providers, just like
formal methods can be used in Level A certification of critical avionics systems.

There are currently only a few cloud data stores with transaction support.
Microsoft’s SQL Azure [4] uses a master-based approach to coordination, which
reduces fault-tolerance and gives worse performance for clients far from the mas-
ter site. Google’s Spanner [6] demands a complex infrastructure involving GPS
hardware and atomic clocks, which reduces its applicability. Google’s Megas-
tore [2] provides replication and transactions through a replicated transaction
log. Despite its relatively low performance, Megastore is used by Google for many
well-known services such as GMail, Android Market, and Google+ [6], and is of-
fered to customers using Google’s cloud-based application platform AppEngine.

In this paper, we use the rewriting-logic-based Real-Time Maude language
and tool [17] to formally model, simulate, and model check Megastore. The de-
sign of Megastore is informally described in the paper [2]. However, designing a



complete fault-tolerant protocol requires much more detail than publicly avail-
able. Our contributions are:

1. We provide a precise, formal model of Megastore, which includes many de-
tails and aspects not even described informally in [2]|. Because of the ambi-
guity and the lack of detail in the informal specification, we had to make a
number of assumptions and design choices in our formalization. Our model
is the result of several modifications resulting from extensive model checking
during this formalization process.

2. We show how Megastore can be model checked and probabilistically simu-
lated using Maude and Real-Time Maude.

3. We provide a general method for analyzing serializability in distributed
transactional systems with replicated data.

Our formal model should facilitate further research on the Megastore approach.
In particular, we are working on combining Megastore with the FLACS ap-
proach [8] to provide serializable transactions also across partitions.

The rest of the paper is organized as follows: Section 2 gives some background
on Maude and Real-Time Maude. Section 3 presents an overview of Megastore
and its approach to fault-tolerance. Section 4 describes our formal model of
Megastore. Section 5 explains how we have formally analyzed our model. Finally,
Section 6 discusses related work and gives some concluding remarks.

2 Maude and Real-Time Maude

Real-Time Maude [13] is a language and tool that extends Maude [5] to sup-
port the formal specification and analysis of real-time systems. The specification
formalism emphasizes ease and generality of specification, and is particularly
suitable for modeling distributed real-time systems in an object-oriented style.
Real-Time Maude specifications are executable, and the tool provides a variety
of formal analysis methods, including simulation, reachability analysis, and LTL
and timed CTL model checking.

2.1 Maude

Maude [5] is a rewriting-logic-based formal language and high-performance simu-
lation and model checking tool. A Maude module specifies a rewrite theory [10,3]
(X, EUA, R), where:

— X is an algebraic signature; that is, a set of declarations of sorts, subsorts,
and function symbols.

— (X, EUA) is a membership equational logic theory [11], with F a set of possi-
bly conditional equations and membership axioms, and A a set of equational
axioms such as associativity, commutativity, and identity, so that equational
deduction is performed modulo the axioms A. The theory (X, FUA) specifies
the system’s state space as an algebraic data type.



— R is a collection of labeled conditional rewrite rules specifying the system’s
local transitions, each of which has the form* [I] : t — ¢ if A", cond;,
where each cond; in the condition is either an equality u; = v; (u; and v;
have the same normal form) or a rewrite t; — ¢’ (t; rewrites to ¢} in zero or
more rewrite steps), and [ is a label. Such a rule specifies a one-step transition
from a substitution instance of ¢ to the corresponding substitution instance
of t', provided the condition holds. The rules are universally quantified by
the variables appearing in the X-terms ¢, t’, u;, vj, t;, and t;, and are applied
modulo the equations U A.%

We briefly summarize the syntax of Maude and refer to [5] for more details.
Operators are introduced with the op keyword: op f : s1...s, -> s. They can
have user-definable syntax, with underbars ‘_’ marking the argument positions.
Some operators can have equational attributes, such as assoc, comm, and id,
stating, for example, that the operator is associative and commutative and has
a certain identity element. Such attributes are used by the Maude engine to
match terms modulo the declared axioms. An operator can also be declared to be
a constructor (ctor) that defines the carrier of a sort. Equations and rewrite rules
are introduced with, respectively, keywords eq, or ceq for conditional equations,
and rl and crl. The mathematical variables in such statements are declared
with the keywords var and vars, or can be introduced on the fly in a statement
without being declared previously, in which case they have the form var:sort.
An equation f(t1,...,t,) = t with the owise (for “otherwise”) attribute can
be applied to a subterm f(...) only if no other equation with left-hand side
flug, ..., u,) can be applied.
In object-oriented Maude modules, a class declaration

class C | atty : s1, ... , att, : s,

declares a class C' with attributes att; to att,, of sorts s; to s,,. An object of class
C' in a given state is represented as a term < O : C' | atty : valy, ..., atty, : val, >
of sort Object, where O, of sort 0id, is the object’s identifier, and where valy
to val, are the current values of the attributes att; to att,. A message is a term
of sort Msg, where the declaration msg m : s; ... s, -> Msg defines the syntax
of the message (m) and the sorts (s ... s,) of its parameters.

The state is a term of the sort Configuration in a concurrent object-oriented
system, and has the structure of a multiset made up of objects and messages.
Multiset union for configurations is denoted by a juxtaposition operator (empty
syntax) that is declared associative and commutative, so that rewriting is multi-
set rewriting supported directly in Maude. Since a class attribute may have sort
Configuration, we can have hierarchical objects which contain a subconfigura-
tion of other (possibly hierarchical) objects and messages.

4 An equational condition u; = w; can also be a matching equation, written w;:= w;,
which instantiates the variables in u; to the values that make u; = w; hold, if any.

5 Operationally, a term is reduced to its E-normal form modulo A before any rewrite
rule is applied in Real-Time Maude.



The dynamic behavior of concurrent object systems is axiomatized by spec-
ifying each of its transition patterns by a rewrite rule. For example, the rule

rl [1] : m(0,w)
<0:Cl al : x, a2 : 0°, a3 : z >
=>
<0:Clal:x+w,a2:0, a3 : z >
m’(0°,x)

defines a parameterized family of transitions (one for each substitution instance)
in which a message m, with parameters 0 and w, is read and consumed by an
object 0 of class C, the attribute a1l of the object O is changed to x + w, and
a new message m’ (0’ ,x) is generated. The message m(0,w) is removed from
the state by the rule, since it does mot occur in the right-hand side of the rule.
Likewise, the message m’ (0? ,x) is generated by the rule, since it only occurs in
the right-hand side of the rule. By convention, attributes whose values do not
change and do not affect the next state of other attributes or messages, such as
a3, need not be mentioned in a rule. Similarly, attributes whose values influence
the next state of other attributes or the values in messages, but are themselves
unchanged, such as a2, can be omitted from right-hand sides of rules.

A subclass inherits all the attributes and rules of its superclasses.

Formal Analysis in Maude. A Maude module is executable under some condi-
tions, such as the equations being confluent and terminating, possibly modulo
some structural axioms, and the theory being coherent [5].

Maude’s rewrite command simulates one of the many possible system behav-
iors from the initial state by rewriting the initial state. Maude’s search command
uses a breadth-first strategy to search for states that are reachable from the ini-
tial state, match the search pattern, and satisfy the search condition.

Maude’s linear temporal logic model checker analyzes whether each behavior
satisfies a temporal logic formula. State propositions, possibly parametrized, are
operators of sort Prop, and their semantics is defined by equations of the form

ceq statePattern |= prop = b if cond

for b a term of sort Bool, which defines the state proposition prop to hold in
all states ¢t such that ¢ |= prop evaluates to true. A temporal logic formula is
constructed by state propositions and temporal logic operators such as True,
False, ~ (negation), /\, \/, -> (implication), [1 (“always”), <> (“eventually”), U
(“until”), and W (“weak until”). The command

(red modelCheck(t, formula) .)
then checks whether the temporal logic formula formula holds in all behaviors

starting from the initial state t. Such model checking terminates if the state
space reachable from the initial state ¢ is finite.



2.2 Real-Time Maude

A Real-Time Maude [17] timed module specifies a real-time rewrite theory [16],
that is, a rewrite theory R = (X, E U A, R), such that:

1. (¥, E U A), contains a specification of a sort Time defining the (discrete or
dense) time domain.
2. The rules in R are decomposed into:
— “ordinary” rewrite rules that model instantaneous change that is assumed
to take zero time, and
— tick (rewrite) rules of the form
crl [1 : {t} => {t'} in time u if cond
that model the elapse of time in a system, where { 1} is a constructor
of a new sort GlobalSystem and u is a term of sort Time denoting the
duration of the rewrite.

The initial state of a system must be equationally reducible to a term {to}. The
form of the tick rules then ensures uniform time elapse in all parts of a system.

Real-Time Maude extends Maude’s analysis features to the real-time setting.
Real-Time Maude’s timed fair rewrite command simulates one behavior of the
system up to a certain duration. It is written with syntax

(tfrew t in time <= timeLimit .)

where ¢ is the term to be rewritten (“the initial state”), and timeLimit is a ground
term of sort Time. Real-Time Maude extends Maude’s search command to search
for states that can be reached within a given time interval from the initial state.

Real-Time Maude provides both unbounded and time-bounded LTL model
checking. The unbounded model checking command

(mc t |=u formula .)

checks whether the temporal logic formula formula holds in all behaviors starting
from the initial state t. When the reachable state space is infinite, time-bounded
LTL model checking, in which each behavior starting in ¢ is only analyzed up to
a certain time bound, can be used to ensure termination of the model checking.

3 Overview of Megastore

A data store is a system providing functionality to write and access persistent
data. Data stores are used to offload the complexity of data management from
individual applications by providing transaction support, access control, and/or
fault recovery. A data store often uses replication to ensure high availability in
the presence of site and/or network failures: several copies of the same data are
stored at different locations.

Megastore [2] is a data store offering very high availability and transaction
support. It is deployed within Google’s own cloud infrastructure. In addition



to being widely used internally at Google, Megastore is also used by Google’s
customers through the cloud-based application platform AppEngine. Megastore
handles more than three billion write and 20 billion read transactions daily and
stores nearly a petabyte of data across many global data centers [2].

Data are replicated among sites (data centers), and Megastore can tolerate
failure of up to n—1 replicas, with n the total number of replicas. A transaction is
a sequence of read and write operations on entities, followed by a commit request.
Clients can issue transaction requests from any site replicating the relevant data,
and updates are propagated to the other replicas before the transaction commits.

In Megastore, data are stored as entities, each entity being a set of key-value
pairs. Entities are organized into entity groups. Transactional serializability is
only guaranteed for operations within the same entity group.

Initially, all operations in a transaction are executed locally at the receiving
site. When a commit request is issued, a coordination procedure between the sites
is used to decide whether or not the transaction is valid and can be committed.
If not, usually due to some concurrent update of the same data, the entire
transaction is aborted and must be restarted from the beginning.

Megastore uses the Paxos protocol [9] for coordinating updates. This allows
most transactions to complete even in the presence of site and/or network fail-
ures. Section 3.1 explains the behavior of Megastore in the absence of failures in
more detail, and Section 3.2 explains how Megastore deals with faults.

3.1 Megastore without Failures

Any Megastore site S may receive transaction requests for entities replicated at
S. Entities are versioned, and Megastore provides reads with different levels of
consistency. We focus here on current reads, which give the most recent version
written. Any transaction updating an entity must perform a current read before
performing the update.

In the absence of failures, current read operations are performed locally. Each
site has a coordinator, which is always informed whether the local replica is up-
to-date. When a current read is issued, it is executed locally if and only if granted
by the local coordinator. Otherwise, a majority read is required, as explained in
Section 3.2.

During the execution of a transaction, read operations are completed imme-
diately, while write operations are buffered. When receiving the commit request,
the site initiates the coordination procedure. Megastore’s approach to combine
availability with serializability is to partition data into relatively small units (en-
tity groups), and maintain a separate transaction log for each entity group. This
log is replicated, and serializability within the entity group is ensured, since, at
any given time, only one transaction is allowed to update the log.

Therefore, when committing a transaction ¢, the site receiving t, denoted the
originating site of t, performs the following steps for each entity group accessed
by ¢: (i) prepare a log entry containing ¢’s updates within this entity group, and
propose this to the other sites as the next entry in the replicated transaction



log; and (ii) if accepted by a majority of replicas, ¢’s log entry is added to the
replicated log, and its updates are applied at all sites.

3.2 Megastore in the Presence of Failures

Failures may cause some processes to stop responding and/or may block net-
work messages from being delivered. Fault tolerance implies that a transaction
execution must be able to proceed even if some replicating sites are unable to
participate in the coordination procedure.

Magority Read. If a site has missed previous updates, a current read must syn-
chronize with other sites to retrieve the correct data. Since the coordinator is
assumed to always be informed whether the local replica is in sync, it must be
reachable even if a site is unable to receive an update. Otherwise the update is
blocked until the entire site is confirmed to be down by Megastore’s underlying
failure detection mechanism.

If a site is missing updated values for the entity requested by a current read, it
performs a magority read for the relevant entity group before proceeding. During
the majority read, the local site s; requests from each other replicating site s,
the most recent log position known to be valid by s,.. When s; has received
a reply from a majority of the replicating sites, it initiates a catchup: any log
position missing at s; is requested from some updated site. When the catchup is
complete, the local coordinator marks the replica as valid, and the current read
operation can proceed.

Update Coordination. Megastore uses Paxos [9] to commit transactions in the
presence of failures. Paxos is a generic consensus protocol for distributed systems
which consists of the following phases:

1. Agree on a leader. The leader for this Paxos round then proposes a value to
the participating processes.

2. Once the proposed value is acknowledged by at least a majority of the pro-
cesses, the leader informs all participants about the decision.

In the presence of failures, this may be insufficient to reach consensus, in which
case a new round is initiated where another process becomes the leader.

In Megastore, the originating site proposes an entry in the replicated log, it
initiates a new run of Paxos to ensure consensus. Megastore optimizes Paxos by
including in each log entry the Paxos-leader for the nezt log entry. Phase 1 is
therefore replaced by a request from the originating site directly to the leader,
before the log entry is multicast to the other replicating sites. In the case of
conflict, i.e., if multiple sites request different values for the same log position,
Paxos ensures that only one is elected, and the other is aborted.



4 Formalizing Megastore in Real-Time Maude

This section explains how we have formalized Megastore in Real-Time Maude.
Our model contains 56 rewrite rules, of which we only present 15 in this paper.
The entire executable formal specification is available at http://folk.uio.no/
jongr/megastore/maude.html. Section 4.1 lists our system assumptions, Sec-
tion 4.2 presents our model of Megastore in the absence of failures, and Sec-
tion 4.3 shows our model in the presence of failures.

4.1 System Assumptions

Based on the description in [2], we make the following system assumptions:

— Megastore is deployed across geographically distant sites connected by a
wide-area network. The network delays between two nodes can therefore
vary significantly, and we do not assume FIFO delivery between the same
pair of nodes.

— A site always knows all the other replicating sites for an entity group.

— Sites can fail and recover spontaneously, and messages can be dropped due
to site or network failures.

— Coordinators are supposed to be very stable. Furthermore, Megastore re-
quires that the coordinator of each running site is accessible; otherwise up-
date transactions are blocked until the given replica is confirmed down and
can be excluded. We therefore assume that coordinators are always available.

— Small time differences caused by clock skews of the local clocks are ignored.

4.2 The Model without Failure Handling

We model Megastore in an object-oriented way, where the global state consists
of a multiset of site objects and messages traveling between them. Each site is
modeled as an object instance of the following class:

class Site |
entityGroups : Configuration,
localTransactions : Configuration,
coordinator : EntGroupLogPosPairSet .

The attribute entityGroups contains one EntityGroup object for each entity
group replicated at the site, and the attribute localTransactions contains one
Transaction object for each active transaction originating at the site. The at-
tribute coordinator denotes the local coordinator state for each entity group,
and is a ;-separated set of pairs eglp(eg,lp), denoting that the entity group eg
is up-to-date at log position [p, and pairs invalidCstate(eg,lp), denoting that
the local replica of eg may be missing some log entries at or before Ip.



Entity Groups. Each local entity group copy is modeled as an object instance of
the following class:
class EntityGroup |
entitiesState : EntitySet,
transactionLog : LogEntryList,
replicas : EntityGroupReplicaSet,
proposals : PaxosProposalSet,
pendingWrites : PendingWriteList .

The attribute entitiesState describes the available versions of each entity in the
entity group. Each such record is a term entity(eg,i) |-> (1pos(pi),v1)

(1pos(pr) ,v), where entity(eg,i) denotes the ith entity of the entity group
eg, and (1pos(p;),v;) is an entity version containing the value v;, created at log
position p;.

The attribute transactionLog denotes the local copy of the replicated trans-
action log which is the core of Megastore’s replication protocol. Each log entry
belongs to a given log position. A log entry (¢t Ip s ol) contains the identity ¢
of the originating transaction, the log position Ip, the leader site s for the next
log entry, and the list ol of write operations executed by ¢.

The attribute replicas denotes the set of sites replicating this entity group.
The attribute proposals denotes the local state in ongoing Paxos processes in-
volving this entity group. It contains two types of values: proposal(s,t,lp,pn),
which represents a request from site s to become the leader for log position Ip
on behalf of transaction ¢, and accepted(s,le,pn), which states that this site has
accepted Paxos proposal number pn containing the log entry le from site s.

Megastore executes write operations in two steps: (i) write to the log, which
occurs immediately when the chosen log entry is committed; and (ii) updating
the actual data in the entityState. The attribute pendingWrites maintains a list
of write operations waiting to be applied to the entityState.

Transactions. A transaction request is a ::-separated list of current read op-
erations cr(e) and write operations w(e,v). Transactions being executed are
modeled as object instances of the following class:
class Transaction |

operations : OperationList,

reads : EntitySet,

writes : OperationList,

status : TransStatus,

readState : ReadStateSet,

paxosState : PaxosStateSet .

The attribute operations initially contains the transaction request. During exe-
cution, operations are removed from this list. For a read operation the resulting
entity is stored in the attribute reads. The attribute writes is used to buffer write
operations. status denotes the overall transaction status: idle, executing(ip,t)
(the transaction is executing at log position lp and will continue executing for
time t), and in-paxos, which is used during the commit process. The attributes
readState and paxosState store transient data for each entity group accessed by
the transaction execution.



Modeling Communication. We assume that the communication delay is non-
deterministic. The set of possible delays depends on the sender and receiver, and
is given by possibleMsgDelays(sy, s2) as a ‘;’-separated set of time values:

sort TimeSet . subsort Time < TimeSet .
op emptyTimeSet : -> TimeSet .
op _;_ : TimeSet TimeSet -> TimeSet [ctor assoc comm id: emptyTimeSet]

op possibleMsgDelays : SiteId SiteId -> TimeSet [comm]

A “ripe” message has the form

msg mc from sender to receiver

where mc is the message content. A message in transit that will be delivered
after ¢ time units is modeled by a term dly(msg mc from sender to receiver, t):

sort DlyMsg .

subsort Msg < DlyMsg < NEConfiguration .

op dly : Msg Time -> DlyMsg [ctor right id: 0]
msg msg_from_to_ : MsgContent 0id 0id -> Msg .

Nondeterministically selecting any possible delay from possibleMsgDelays(s1, S2)
can be done using a matching equation in the condition of the rewrite rule. A
rule creating a single message with nondeterministic delay should have the form®

var T : Time . var TS : TimeSet .

crl [sendMsgAnd...]

< 8ID : Site | ... >
=>
< 8ID : Site | ... > .
dly(msg mc from SID to SID’, T)
if ... /\ T ; TS := possibleMsgDelays(SID,SID’)

A site must often multicast a message to all other sites replicating an entity
group. The delay of each single message must of course be selected nondeter-
ministically. A nalve solution to model such multicast by generating the corre-
sponding single messages in any order would be prohibitively expensive from a
model checking perspective: if there are n recipients, there would be n! different
orders in which these messages could be created. We can therefore use a “partial
order reduction” technique, in which the messages are sent in a certain order.
In particular, the replicas attribute of an EntityGroup object contains sets of
tuples egrs(SID,N), where the second component is unique in the group. We
can therefore order the set of recipients, and generate the single messages in this
order, reducing the number of possible orders of sending the messages from n!
to 1. The following rewrite rule is used to “dissolve” a “multicast message”

multiCast mc from SID to EGRS

5 We do not show most variable declarations, but follow the Maude convention that
variables are written with capital letters.



into single messages with nondeterministically selected delays:

op multiCast_from_to_ : MsgContent 0id EntityGroupReplicaSet -> Configuration [ctor]
eq multiCast MC from SID to noEGR = none .
crl [multiCastToUnicast]
multiCast MC from SID to (egrs(SID’, N) ; EGRS)
=>
dly(msg MC from SID to SID’, T)
(multiCast MC from SID to EGRS)
if N == smallest(egrs(SID’, N) ; EGRS)
/\ T ; TS := possibleMsgDelays(SID, SID’)

Therefore, to multicast a message with message content mc to all other sites
replicating the entity group EG, a rule of the following form could be used:

rl [multicastReplicatingSites]

< SID : Site | entityGroups : < EG : EntityGroup | replicas : EGRS, ... >
=
< SID : Site | .... >

(multiCast mc from SID to EGRS)

However, this would still involve n + 1 rewrite steps needed to get to a state
where all the single messages have been generated, unnecessarily increasing the
state space explored during model checking. By using rewrite conditions, we can
replace the above rewrite rule with a rule

var SINGLE-MSGS : NEConfiguration .

crl [multicastReplicatingSitesEfficient]
< SID : Site | entityGroups : < EG : EntityGroup | replicas : EGRS, ... >
=>
< 8ID : Site | .... >
SINGLE-MSGS
if (multiCast mc from SID to EGRS) => SINGLE-MSGS .

where SINGLE-MSGS is a variable of some sort containing sets of delayed messages,
but no occurrences of the multiCast operator. In this rewrite rule, all the single
messages are created in one rewrite step, drastically reducing the reachable state
space. (The local “partial order reduction” is still important, since it significantly
reduces the number of behaviors explored by Maude during the evaluation of the
rewrite condition; however, it does not reduce the reachable state space.)

Dynamic Behavior. The dynamic behavior of Megastore without fault tol-
erance features is modeled by 16 rewrite rules, 7 of which are given below. A
transaction request with operations ol and name t is sent to a site s by a message
newTrans(s,t,0l). When a site gets such a transaction request, the site adds a
corresponding transaction object to its localTransactions.

rl [newTrans]
newTrans (SID, TID, OL)
< SID: Site | localTransactions : LOCALTRANS >



=>
< SID: Site | localTransactions : LOCALTRANS
< TID : Transaction | operations : OL, readState : emptyReadState,
paxosState : emptyPaxosState, reads : emptyEntitySet,
writes : emptyOpList, status : idle > .

If the next operation in an idle transaction TID is a current read (cr) of an
entity entity(EG,N) in entity group EG, the transaction goes to the local state
executing (LP,readDelay), where LP is the local coordinator’s current log position
for EG, and readDelay is the time it takes to perform a read operation:

crl [startCurrentLocalRead]
< SID : Site | coordinator : (eglp(EG, LP) ; CES),
entityGroups : EGROUPS
< EG : EntityGroup | pendingWrites : emptyPWList >
localTransactions : LOCALTRANS
< TID : Transaction | operatioms : cr(entity(EG,N)) :: OL,
status : idle > >
=>
< SID: Site | localTransactions : LOCALTRANS
< TID : Transaction | operations : cr(entity(EG,N)) :: OL,
status : executing(LP, readDelay) > >
if not (containsUpdate(entity(EG,N), OL) and
inConflictWithRunning(EG, LOCALTRANS))

To avoid locals conflicts, a site only allows one active update transaction for
each entity group. The condition of the rewrite rule blocks the read request if
the transaction TID contains an update operation on entity(EG,N) until there
are no other active conflicting transactions.

When the executing timer expires (i.e., becomes zero), the read operation
completes and adds the version read at the given log position to reads. The
transaction status is then set to idle, allowing execution to proceed:

rl [endCurrentLocalRead]
< SID: Site |
entityGroups : EGROUPS
< EG : EntityGroup | entitiesState : (entity(EG,N) |-> EVERSIONS) ; BSTATE >,
localTransactions : LOCALTRANS
< TID : Transaction | operations : cr(entity(EG,N)) :: OL, readState : RSTATE,
status : executing(LP, 0), reads : READS > >
=>
< SID: Site | localTransactions : LOCALTRANS
< TID : Transaction |
operations : OL, readState : readpos(EG, LP) ; RSTATE, status : idle,
reads : READS ; (entity(EG,N) |-> getVersion(LP, EVERSIONS)) > > .

A write operation is moved to the buffer writes, and will be executed once
the transaction is committed:

rl [bufferWriteOperation]
< SID: Site | localTransactions : LOCALTRANS
< TID : Transaction | operations : w(EID, VAL) :: OL, writes : WRITEOPS,



status : idle > >
=>
< SID: Site | localTransactions : LOCALTRANS
< TID : Transaction | operatioms : OL, writes : WRITEOPS :: w(EID, VAL) > > .

When all operations in the operations list are completed (reads) or buffered
(writes), the transaction is ready to commit. All buffered updates are merged
into a candidate log entry. If the transaction updates entities from several entity
groups, one log entry is created for each group.

For each such entity group, the first step is to send the candidate log entry
to the leader for the next log position, which was selected during the previous
coordination round. The rule for initiating Paxos is modeled as follows:

crl [initiateCommit]
< SID: Site |
entityGroups : EGROUPS,
localTransactions : LOCALTRANS
< TID : Transaction | operations : emptyOpList,
writes : WRITEOPS, status : idle
readState : RSTATE, paxosState : PSTATE > >
=>
< SID: Site |
localTransactions : LOCALTRANS
< TID : Transaction | paxosState : NEW-PAXOS-STATE,
status : in-paxos > >
ACC-LEADER-REQ-MSGS
if EIDSET := getEntityGroupIds(WRITEOPS) /\
NEW-PAXOS-STATE := initiatePaxosState(EIDSET, TID, WRITEOPS,
SID, RSTATE, EGROUPS)
/\ (createAcceptLeaderMessages(SID, NEW-PAXOS-STATE)) => ACC-LEADER-REQ-MSGS .

getEntityGroupIds (WRITEOPS) contains entity groups accessed by operations in
WRITEOPS, and NEW-PAX0S-STATE contains one record for each entity group. These
records contain the log position that TID requests to update and the candidate log
entry le. The operator createAcceptLeaderMessages generates an acceptLeaderReq
message to the leader of each entity group containing the transaction id TID and
candidate log entry le.

The execution then proceeds as follows for each entity group:

1. When the leader s; receives an acceptLeaderReq message from the originating
site s, for the transaction TID, the leader site inspects the proposals set for
the given entity group, to check whether it has previously accepted some
value for this log position and entity group. If so, there is a conflict, and s;
signals this with a message to the originating site of TID, which aborts the
transaction. Otherwise, s; sends an acceptLeaderRsp message to s,.

2. When it receives an acceptLeaderRsp message, the originating site proceeds
by multicasting the log entry to the other replicating sites. Each recipient
of this message must verify that it has not already granted an accept for
this log position. If so, the recipient replies with an accept message to the
originating site. We show this rule below.



3. After receiving an acceptAllRsp message from all replicating sites, the origi-
nating site confirms the commit by multicasting an applyReq message. When
receiving this message, a recipient appends the proposed log entry to the
transactionLog of the entity group, and the update operations are added to
the pendinglirites list. With this, the transaction is committed.

The following rule shows the rule from step 2 where a replicating site re-
ceives an acceptAllReq message. The site verifies that it has not already granted
an accept for this log position (since messages could be delayed for a long time, it
checks both the transaction log and received proposals). If there are no such con-
flicts, the site responds with an accept message, and stores its accept in proposals
for this entity group. The record (TID’ LP SID OL) represents the candidate log
entry, containing the transaction identifier TID’, the log position LP, the proposed
leader site SID, and the list of update operations OL.

crl [rcvAcceptAllReq] :
(msg acceptAllReq(TID, EG, (TID’ LP SID OL), PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : EGROUPS
< EG : EntityGroup | proposals : PROPSET, transactionLog : LEL > >
=>
< THIS : Site |
entityGroups : EGROUPS
< EG : EntityGroup |
proposals : accepted (SENDER, (TID’ LP SID OL), PROPNUM) ;
removeProposal (LP, PROPSET) > >
dly(acceptAllRsp(TID, EG, LP, PROPNUM) from THIS to SENDER), T)
if not (containsLPos(LP, LEL) or hasAcceptedForPosition(LP, PROPSET))
/\' T ; TS := possibleMessageDelay(THIS, SENDER) .

Modeling Time and Time Elapse. We follow the guidelines in [17] for mod-
eling time in object-oriented specifications. Since an action can only be triggered
by the arrival of a message, the expiration of a timer, or by another event, we
use the following tick rule to advance time until the next event will take place:

crl [tick] : {SYSTEM} => {delta(SYSTEM, mte(SYSTEM))
if mte(SYSTEM) > 0 /\ mte(SYSTEM) =/= INF .

The function mte denotes the minimum time that can elapse until the next
event will take place, and delta defines the effect of time elapse on the state.
For example, mte(dly(M,T) REST) = min(T, mte(REST)), which means that
mte (m) is zero for a ripe message m (since m is identical to d1y(m,0)). There-
fore, time cannot advance when there are ripe messages in the configuration.

We import the built-in module NAT-TIME-DOMAIN-WITH-INF, which defines
the time domain Time to be the natural numbers, with an additional constant
INF (for oo) of a supersort TimeInf.



4.3 Modeling Megastore’s Fault Tolerance Mechanisms

Megastore is supposed to tolerate: (i) site failures (except for the coordinators);
(ii) message loss; and (iii) arbitrarily long message delays. We have formalized
these fault tolerance features using 37 rewrites rules, out of which we show only
1 rule in this paper. Our model provides fault tolerance and consistency through
the following mechanisms:

— A Paxos-based commit protocol to ensure that even in the presence of multi-
ple failure and recovery events, all available replicas agree on the value for the
next log position. If the originating site s,, after sending an acceptLeaderReq
message for log position Ip, does not receive a response from the leader of Ip
within a certain amount of time, it attempts to become the leader itself by
sending a prepareAllReq message to all replicating sites. When receiving a
positive response from a majority of sites, s, proceeds with the accept phase
by multicasting an acceptAllReq message to all replicating sites. If at this
point s, fails to receive an acceptAllRsp message from a majority of sites, it
re-initiates the prepare step after a nondeterministic backoff.

— If a replicating site s, is unable to apply an update, the coordinator at
s, must ensure that the site avoids serving invalid data. After obtaining a
acceptAllRsp message from a majority of the replicating sites, the originat-
ing site sends an invalidateCoordinator message to each site which did not
respond in time to the acceptAllReq message.

— A majority read and catchup procedure is used to bring a replica up-to-
date in case of failures. When executing a current read operation requesting
an entity from an invalid entity group eg (according to the coordinator),
the originating site s, broadcasts a majorityRead request to all sites repli-
cating eg. Fach available recipient responds with the highest log position
seen so far. When a majority of replicating sites have responded, s, sends
a catchupRequest containing the highest received log position to one of the
responding sites. If this site does not have a complete log, s, sends several
catchup requests. Once s,’s log is complete, the entity group is marked as
valid in the coordinator.

The following rule belongs to the first mechanism above, and shows how
we meet a requirement of Paxos: after a site has accepted a log entry, it can
never accept another log entry for this log position. Therefore, if a replicating
site receives a prepareAllReq message for a log position where it has already
accepted a log entry, the entry is sent to the originating site in a prepareAllRsp
message. At the originating site, the log entry for the highest proposal number
seen so far is stored within the prepare record of paxosState. If the originat-
ing site has received prepareAllRsp from a majority of the participating sites
(hasQuorum(size (SIS ; SENDER), REPLICAS)), it initiates the acceptAll step by
multicasting an acceptAllReq to all sites replicating the entity group EG:

crl [rcvPrepareAllRspWithValue] :
(msg prepareAllRsp(TID, EG, (TID2 LP MSID1 OL1), PROPNUM, PN) from SENDER to THIS)
< THIS : Site |



entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : LOCALTRANS
< TID : Transaction | status : in-paxos,
paxosState : prepare(EG, (TID3 LP MSID2 OL2),
PROPNUM, SEEN-PROPNUM, SIS, EXP) ; PSTATE > >
=>
< THIS : Site |
localTransactions : LOCALTRANS
(if hasQuorum(size (SIS ; SENDER), REPLICAS) then
< TID : Transaction | status : in-paxos, paxosState :
acceptAll1(EG, NEW-LE, PROPNUM, THIS, defTimeout) ; PSTATE >
else
< TID : Transaction |
paxosState : prepare(EG, NEW-LE, PROPNUM, maxPn(PN, SEEN-PROPNUM),
(SIS ; SENDER), EXP) ; PSTATE >
fi) >
MSGS
if REPLICAS := getSites(EGRS) /\
NEW-LE := chooseValue (PN, SEEN-PROPNUM, (TID2 LP MSID1 OL1),(TID3 LP MSID2 0OL2))
/\ (if hasQuorum(size(SIS ; SENDER), REPLICAS) then
multiCast acceptAllReq(TID, EG, NEW-LE, PROPNUM) from THIS to EGRS
else none fi) => MSGS .

Site Failures. All processing is blocked and incoming messages are dropped
when a site has failed. The exception is that the (co-located) coordinator of
the site is supposed to be available, and be able to receive and respond to
invalidateCoordinator messages even when the site is otherwise failed.

We model site failures in a modular way by enclosing the failed site object
by a “wrapper”: a failed site is modeled as a term failed(< s : Site | ... >).
This wrapper is declared to be a frozen operator (see [5])

op failed : Object -> Object [ctor frozen (1)]

which ensures that no activity takes place inside the failed object.
A message arriving at a failed site is dropped, unless it is a message to the
coordinator:

crl [msgWhenSiteFailurel]

(msg MC from SENDER to SID) failed(< SID : Site | >)
=>

failed(< SID : Site | >)
if not isInvalidateCoordinator (MC)

crl [invalidateCoordinator]
(msg invalidateCoordinator(EG, LP) from SENDER to THIS)
failed(< THIS : Site | coordinator : CES >)
=>
failed(< THIS : Site | coordinator : applyInvalidate(EG, LP, CES) >)
(dly invalidateConfirmed(EG, LP) from THIS to SENDER, T)
if T ; TS := possibleMsgDelays(THIS,SENDER)

In our analysis, we use “messages” siteFailure(s) and siteRepair(s) to inject
failures and repairs as follows:



msgs siteFailure siteRepair : Siteld -> Msg .

crl [siteDown] :
siteFailure(SID) < SID : Site | > => failed(< SID | >) dly(siteRepair(SID), T)
if T ; TS := possibleSiteRepairTimes .

rl [siteUp] :
siteRepair(SID) failed(< SID : Site | >) => < SID : Site | > .

5 Formally Analyzing our Model of Megastore

We used both simulation and temporal logic model checking throughout the
development of our formal model from the overview description in [2]. Simulation
provided quick feedback; allowed us to analyze large systems with many sites,
transactions, and failures; and “probabilistic” simulation was used for quality
of service (QoS) estimation of the model. Model checking, which explores all
possible system behaviors, turned out to be very useful to find a number of
subtle design flaws that were not uncovered during extensive simulations.

This section shows how our model of Megastore can be formally analyzed
in (Maude and) Real-Time Maude. In particular, Section 5.1 lists some param-
eters of our model, Section 5.2 shows how we can simulate our model for QoS
estimation; Section 5.3 explains our model checking of the model without fault-
tolerance features, and Section 5.4 describes the model checking of the entire
model. Finally, Section 5.5 presents a general technique for formally analyzing
the serializability property of transactional systems: each execution is equiva-
lent to one in which all operations of a transaction are completed before the
next transaction begins.

5.1 System Parameters
There are a number of system parameters in our model, including:

— the number of sites;

the set of possible message delays between each pair of sites;

the number of transactions and their arrival times;

— the set of operations in each transaction;

the number of entities and their organization into entity groups;

— the degree of replication of the different entity groups;

the number and time distribution of site failures, and the set of possible
durations of a site failure;

— the amount of message losses; and

— the duration of the timeouts before initiating fault handling procedures.

Changing these parameters allows us to analyze the model under different scenar-
ios. For example, to define the set of possible message delays, we need to define
the function possibleMsgDelays. In some of the model checking commands, we
use three sites and the following message delays:



eq possibleMsgDelays(PARIS, LONDON) = (10 ; 30 ; 80) .
eq possibleMsgDelays (PARIS, NEW-YORK) = (30 ; 60 ; 120)
eq possibleMsgDelays (LONDON, NEW-YORK) = (30 ; 60 ; 120)

Transactions and failures are injected into the system by (delayed) messages
dly(newTrans(s,t,ol),startTime) and dly(siteFailure(s), failureTime). For ex-
ample, some of our analyses use initTransactions and initFailures:

crl [delayTransactions]
initTransactions
=>
dly(newTrans(PARIS, T-K, cr(entity(EG1,0)) :: w(entity(EG1,0),value(2))), T1)
dly(newTrans (LONDON, T-L, cr(entity(EG1,0)) :: w(entity(EG1,0),value(5))), T2)
dly(newTrans (NEW-YORK, T-M, cr(entity(EG2,0)) :: w(entity(EG2,0),value(4))), T3)
if T1 ; TS1 := transStartTime /\ T2 ; TS2 := transStartTime
/\ T3 ; TS3 := transStartTime

eq transStartTime = (10 ; 50 ; 200)

crl [delayFailures]
initFailures => dly(siteFailure(LONDON), T1) dly(siteFailure(NEW-YORK), T2)
if T1 ; TS1 := ttf /\ (T2 ; TS2) := ttf

eq ttf = (40 ; 100)

The initial state initMegastore can then be defined as follows:

op initMegastore : -> GlobalSystem .
eq initMegastore = {initSites initTransactions initFailures} .

eq initSites =
< PARIS : Site | coordinator : (eglp(EG1l, lpos(0)) ; eglp(EG2, 1lpos(0))),
entityGroups : entityGroupsParis, localTransactions : none >
< LONDON : Site | coordinator : (eglp(EG1, 1lpos(0)) ; eglp(EG2, 1lpos(0))),
entityGroups : entityGroupsLondon, localTransactions : none >
< NEW-YORK : Site | coordinator : (eglp(EG1l, 1lpos(0)) ; eglp(EG2, 1lpos(0))),
entityGroups : entityGroupsNY, localTransactions : none > .

5.2 Simulation

We can use Real-Time Maude’s timed rewrite command to simulate the system
for a certain duration:

Maude> (tfrew initMegastore in time <= 850 .)

{< LONDON : Site | coordinator :(eglp(EG1,lpos(0)); eglp(EG2,1lpos(1))),

entityGroups :(

< EG1 : EntityGroup |
entitiesState : entity(EG1,0) |-> lpos(0)value(0) ; entity(EG1,1) |-> 1lpos(0)value(0),
pendingWrites : emptyPWList,
proposals : accepted(LONDON,T-L lpos(1) LONDON w(entity(EG1,0),value(5)),2),
replicas : egr(LONDON,0,1lpos(0)) ; egr(NEW-YORK,2,1lpos(0)) ; egr(PARIS,1,1lpos(0)),
transactionLog : initTrans lpos(0) PARIS emptyOpList >

< EG2 : EntityGroup | ... >),

localTransactions :



< T-L : Transaction | operations : emptyOpList,
paxosState : acceptAll(EG1,T-L lpos(1) LONDON w(entity(EG1,0),value(5)),
1,LONDON ; NEW-YORK, 240),
reads : entity(EG1,0)|-> lpos(0)value(0), writes : w(entity(EG1,0),value(5)),
readState : readpos(EG1,lpos(0)), status : in-paxos > >
< NEW-YORK : Site | ... >
< PARIS : Site | ... >} in time 850

Although this gives very quick and useful feedback, each application of a rule
which selects a value nondeterministically will select the same value. To simulate
more random behaviors, and to obtain more realistic QoS estimates, we have
also defined a “probalistic” version of our model where the different delays are
given by discrete probability distributions. We then add an object containing
the seed to Maude’s built-in random function to the configuration, and use this
random value to sample a message delay from the probability distribution. Our
probability distribution for the network delays is as follows:”

30%|30%]30%]|10%
London < Paris 10 | 15 | 20 | 50
London <+ New York| 30 | 35 | 40 | 100
Paris +» New York 30 | 35 | 40 | 100

We generate transactions with a transaction generator for each site, which
generates transaction requests at random times, with an adjustable average rate
measured in transactions per second (TPS). We simulated two fully replicated
entity groups. We assume a delay of 10 ms for a local read operation in accor-
dance with the real-world measurements reported in [2].

Simulation without Fault Injection. With an average of 2.5 TPS and no failures,
we observe the following results in a run of 200 seconds:

Avg. latency (ms)|Commits|Aborts
London 122 149 15
New York 155 132 33
Paris 119 148 18

The relatively high abort rate is expected, since we have only two entity
groups. While our calibration data are estimates based on a typical setup for
this type of cloud service combined with information given in [2], our measured
latency appears fairly consistent with Megastore itself [2]: “Most users see aver-
age write latencies of 100-400 milliseconds, depending on the distance between
datacenters, the size of the data being written, and the number of full replicas.”

Stmulation with Fault Injection. We have modified the above experiment by
adding a fault injector that randomly injects short outages in the sites. The

" The delays New York—Paris and New York-London are the same, assuming trans-
atlantic backbone links from each of these cities. The delay between Paris and London
reflect that network equipment and local lines increase delivery times.



mean time to failure and the mean time to repair for each site was set to 10 and
2 seconds, respectively. This is a challenging scenario where a large fraction of
the transactions will experience failure on one or multiple sites. The results from
our simulation are given in the following table.

Avg. latency (ms)|Commits|Aborts
London 218 109 38
New York 336 129 16
Paris 331 116 21

Although both the average latency and the abort rate increase significantly,
these results indicate that Megastore is able to maintain an acceptable quality
of service under this challenging failure scenario.

5.3 Model Checking the Model without Fault Tolerance

If there are a finite number of transactions to be executed, then the main prop-
erties that the system should satisfy are:

All transactions will eventually finish their execution.

All replicas of an entity must eventually have the same value.

All logs for the same entity group must eventually contain the same entries.
The execution is serializable; i.e., it gives the same result as some execution
where the transactions are executed one after the other.

5. Furthermore, from some point on, the properties 1-4 above must hold for all
future states.

Ll

We use linear temporal logic model checking to verify that all possible executions
from a given initial state satisfy these properties (the serializability analysis is
explained in Section 5.5).

The state proposition allTransFinished is true in all states where all transac-
tions have finished executing. That is, there are no Transaction objects remaining
in a site’s localTransactions and there are no messages in the system:

vars SYSTEM REST LOCALTRANS EGS1 EGS2 : Configuration .
var M: Msg . vars ES1 ES2 : EntitySet . vars TL1 TL2 : LogEntryList .

op allTransFinished : -> Prop [ctor] .

eq {initTransactions REST} |= allTransFinished = false .

eq {< S1:Site | localTransactions : < TID : Transaction | > LOCALTRANS > REST}
|= allTransFinished = false .

eq {M REST} |= allTransFinished = false .

eq {SYSTEM} |= allTransFinished = true [owise] .

(This definition first characterizes the states where allTransFinished does not
hold, and then the last equation, with the owise attribute, defines al1TransFinished
to be true for all other states.)

The following proposition entityGroupsEqual is true for all states where all
replicas of each entity have the same value:



op entityGroupsEqual : -> Prop [ctor] .

ceq {< S1:Site | entityGroups : < EG1 : EntityGroup | entitiesState : ES1 > EGS1 >
< S2:Site | entityGroups : < EG1 : EntityGroup | entitiesState : ES2 > EGS2 >
REST} |= entityGroupsEqual = false if ES1 =/= ES2 .

eq {SYSTEM} |= entityGroupsEqual = true [owise] .

In the same way, we can define when all transitions logs for each entity group
are equal:

op transLogsEqual : -> Prop [ctor] .

ceq {< S1:Site | entityGroups : < EG1 : EntityGroup | tramsactionLog : TL1 > EGS1 >
< 82 :Site | entityGroups : < EG1 : EntityGroup | transactionLog : TL2 > EGS2 >
REST} |= transLogsEqual = false if TL1 =/= TL2 .

eq {SYSTEM} |= transLogsEqual = true [owise] .

The temporal logic formula

<> [1 (allTransFinished /\ entityGroupsEqual /\ transLogsEqual)

says that in all possible executions from the initial state, a state satisfying Prop-
erties 1-3 and where all subsequent states also satisfy those properties, will
eventually be reached.

In the absence of the sophisticated failure handling, this formula should hold
for all possible message delays and transaction (start and execution) times. We
have therefore abstracted from the real-time features of our model, such as mes-
sage delays, execution times, and timers, and have transformed our model into
an untimed model that will exhibit all possible behaviors of the system. Model
checking this property for the initial state initMegastore (without delays) with
the three sites and three transactions can be done in Maude as follows:

Maude> (red modelCheck(initMegastore,
<>[](allTransFinished /| entityGroupsEqual /\ translogsEqual)) .)

result Bool : true

That is, the desired property holds. The model checking took 950 seconds on
an Intel Xeon 1.87Ghz CPU with 128 GB RAM. A simple reachability analysis
showed that this untimed model has 992,992 states reachable from initMegastore.
Both model checking and reachability analysis from initMegastore extended with
one transaction were aborted due to lack of memory after 11 hours.

5.4 Model Checking the Model with Failure Handling

The analysis in Section 5.3 shows that model checking the untimed model is
unfeasible for four transactions even without the large fault-tolerance part. Fur-
thermore, the fault-tolerance features of Megastore require an extensive use of
timers. Therefore, we model check only the real-time version described in Sec-
tion 4 when including the fault-tolerance part.

Since we consider a finite number of transactions, the desired property must
now also take into account the following possibility: if a failure causes one or



more of the sites to miss the last update, leaving its coordinator invalidated,
then no further transactions will arrive to initiate a majority read. Therefore,
we use modified versions of the propositions in Section 5.3, that make sure that
we only require equal entitiesState and transactionLog among sites where the
coordinator indicates that the given entity group is up-to-date:

op entityGroupsEqualOrInvalid : -> Prop [ctor] .
ceq {< S1:Site | coordinator : eglp(EG1, LP) ; EGLP,
entityGroups : < EG1 : EntityGroup | entitiesState : ES1 > EGS1 >
< 82 :8Site | coordinator : eglp(EG1, LP) ; EGLP,
entityGroups : < EG1 : EntityGroup | entitiesState : ES2 > EGS2 >
REST} |= entityGroupsEqual = false if ES1 =/= ES2 .
eq {SYSTEM} |= entityGroupsEqualOrInvalid = true [owise] .

We have model checked a number of scenarios, all with three sites, two entity
groups, three transactions (each accessing one item in each entity group). The
parameters we modify are: the number of possible message delays, the possible
start times of a transaction, and the number of failures and their start times. In
the case with possible message delays {20,100}, possible transaction start times
{10,50, 200}, and one failure at time 60, the following (unbounded) Real-Time
Maude model checking command verifies the desired property in 1164 seconds:

Maude: (mc initMegastore [=u <> [] (allTransFinished /| entityGroupsEquallrInvalid
/\ translogsEqualOrInvalid) .)

result Bool : true

We summarize the execution time of the above model checking command for
different system parameters, where {nq,...,n;} means that the corresponding
value is selected nondeterministically from the set. All the model checking com-
mands that finished executing returned true. DNF means that the execution
was aborted after more than 4 hours.

Msg. delay |#Trans| Trans. start time |#Fail.| Fail. time |Run (sec)
120,100} 4 [{19,80} and {50,200} 0 - 1367
{20,100} 3 {10, 50,200} 1 60 1164
{20, 40} 3 | 20, 30, and {10,50} | 2 {40, 80} 872
{20, 40} 4 20, 20, 60, and 110 | 2 |70 and {10,130} 241
{20, 40} 4 20, 20, 60, and 110 | 2 {30,80} DNF

{10,30,80},and

{30, 60,120} 3 20, 30, 40 1 {30, 80} DNF
{10, 30,80},and

{30, 60, 120} 3 20, 30, 40 1 60 DNF

5.5 Model Checking Serializability

The serialization graph for a given execution of a set of committed transactions
is a directed graph where each transaction is represented by a node, and where



there is an edge from a node ¢; to another node ty iff the transaction ¢; has
executed an operation on entity e before transaction to executed an operation
on the same entity, and at least one of the operations was a write operation. It is
well known that an execution of multiple transactions is serializable if and only
if its serialization graph is acyclic [21].

If there is only one version of each entity, and every update therefore over-
writes the previous version, the before relation follows real time. In a multi-
versioned replicated data store like Megastore, we require a defined version order
<< on the written entity values to decide the before relation when constructing
the serialization graph. For example: a write operation w(e,v) which creates a
version k of entity e occurs before a current read cr(e) iff cr(e) reads a version
I where k << [ according to the selected version order.

Since we require serializability within each entity group only, and every com-
mitted transaction is assigned a unique log position for each entity group it
updates, we use log positions for the version order. This means that if, for ex-
ample, t; reads from log position [p and t; commits an update at log position
lp’, then t; — t; in the serialization graph iff Ip < Ip’.

When an update transaction ¢; commits, it produces a message containing:

— the log position and value of each entity it has read; and
— the set of entities written, all of them have the log position assigned to ;.

We therefore add to the state an object of class TransactionHistory contain-
ing the current serialization graph. Each time a transaction commits, this object
reads the above message and updates its serialization graph.

The sort SerGraph defines a set of edges:

var E : Edge .

sort SerGraph . sort Edge . subsort Edge < SerGraph .

op _<->_ : TransId TransId -> Edge [ctor]

op emptyGraph : -> SerGraph [ctor] .

op _;_ : SerGraph SerGraph -> SerGraph [ctor assoc comm id: emptyGraph] .
eqE; E=E .

class TransactionHistory | graph : SerGraph .

The proposition isSerializable can then be defined as expected:

op isSerializable : -> Prop [ctor] .
eq {< th : TransactionHistory | graph : GRAPH > REST}
|= isSerializable = not hasCycle(GRAPH) .

We can therefore verify that for each state, the execution up to the current
state is serializable:

Maude: (mc initMegastore [=u [] isSerializable .)

result Bool : true



6 Related Work and Concluding Remarks

Despite the importance of transactional data stores, we are not aware of any
work on formalizing and verifying such systems. We are also not aware of any
detailed description of Megastore itself beyond [2].

The paper [18] addresses the need for formal analysis of replication and con-
currency control in transactional cloud data stores. Using Megastore as a moti-
vating example, the authors propose a generic framework for concurrency control
based on Paxos, and include a pseudo-code description of Paxos and a proof of
how it can be used to ensure serializability. In contrast, we provide a much more
detailed and formal model not only of Paxos, but of Megastore itself.

The value of Maude for formally analyzing other cloud mechanisms is demon-
strated in [19], where the authors point out possible bottlenecks in a naive im-
plementation of ZooKeeper for key distribution, and in [7], where the authors
analyze denial-of-service prevention mechanisms using Maude and PVeStA.

Real-Time Maude has been used to model and analyze a wide range of ad-
vanced state-of-the-art systems, including multicast protocols [14], wireless sen-
sor network algorithms [15], and scheduling protocols [12]. In all these applica-
tions, Real-Time Maude analysis uncovered significant design errors that could
be traced back to flaws in the original system. The work presented in this paper
differs fundamentally from those applications of Real-Time Maude: in this case,
our starting point was a fairly brief and informal overview paper on Megastore —
in addition to a number of papers describing the underlying Paxos protocol. We
therefore had to “fill in” a lot of details, in essence developing and formalizing our
own version of the Megastore approach. The available source on Megastore was
not detailed enough to allow us to map flaws found during Real-Time Maude
model checking to flaws in the original description of Megastore. Instead, we
used Real-Time Maude simulation and model checking extensively throughout
our development of this very complex system to improve our model to the point
where we cannot find any flaws during our model checking analyses.

Our main contribution is therefore this fairly detailed executable formal
model of (our version of) Megastore. Minor contributions include general tech-
niques for: (i) efficiently modeling multicast with nondeterministic message de-
lays in Real-Time Maude; and (ii) model checking the serializability property of
distributed transactions on replication data in (Real-Time) Maude.

We hope that our formalization contributes to further research on the Mega-
store approach to transactional data stores. In particular, we are planning on
combining Megastore with the FLACS approach [8] to provide serializability
also for transactions accessing multiple entity groups. Other future work in-
cludes defining a probabilistic version of our model in a probabilistic extension
of Maude, and use the PVeStA tool [1] for statistical model checking and more
advanced QoS estimation.



References

1.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

AlTurki, M., Meseguer, J.: PVeStA: A parallel statistical model checking and quan-
titative analysis tool. In: Algebra and Coalgebra in Computer Science, LNCS, vol.
6859, pp. 386-392. Springer (2011)

Baker, J., et al.: Megastore: Providing scalable, highly available storage for inter-
active services. In: CIDR’11. www.cidrdb.org (2011)

Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 360(1-3), 386414 (2006)

Campbell, D.G., Kakivaya, G., Ellis, N.: Extreme scale with full SQL language
support in Microsoft SQL Azure. In: SIGMOD ’10. pp. 1021-1024. ACM (2010)
Clavel, M., Durén, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude — A High-Performance Logical Framework, LNCS, vol. 4350.
Springer (2007)

Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: OSDI’12.
pp. 251-264. USENIX Association, Berkeley, CA, USA (2012)

Eckhardt, J., Mithlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable avail-
ability under denial of service attacks through formal patterns. In: Lara, J., Zisman,
A. (eds.) FASE 2012. LNCS, Springer (2012)

Grov, J., Olveczky, P.C.: Scalable and fully consistent transactions in the cloud
through hierarchical validation. In: Globe 2013. LNCS, vol. 8059. Springer (2013)
Lamport, L.: Paxos made simple. ACM Sigact News 32(4), 18-25 (2001)

. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-

oretical Computer Science 96, 73-155 (1992)

Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Proc. WADT’97. LNCS, vol. 1376. Springer (1998)

Olveczky, P.C., Caccamo, M.: Formal simulation and analysis of the CASH schedul-
ing algorithm in Real-Time Maude. In: Proc. FASE’06. LNCS, vol. 3922. Springer
2006

gjlvec)zky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161-196 (2007)

Olveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods
in System Design 29(3), 253-293 (2006)

Olveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theo-
retical Computer Science 410(2-3), 254-280 (2009)

Olveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in

rewriting logic. Theor. Comput. Sci. 285(2), 359-405 (2002)

Olveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.

Higher-Order and Symbolic Computation 20(1-2), 161-196 (2007)

Patterson, S., Elmore, A.J., Nawab, F., Agrawal, D., El Abbadi, A.: Serializabil-

ity, not serial: concurrency control and availability in multi-datacenter datastores.
Proc. VLDB Endow. 5(11), 1459-1470 (Jul 2012)

Skeirik, S., Bobba, R.B., Meseguer, J.: Formal analysis of fault-tolerant group key

management using ZooKeeper. Cluster Computing and the Grid, IEEE Interna-

tional Symposium on 0, 636-641 (2013)

Stonebraker, M., Cattell, R.: 10 rules for scalable performance in ’simple operation’

datastores. Commun. ACM 54(6), 72-80 (2011)

Weikum, G., Vossen, G.: Concurrency Control and Recovery in Database Systems.
Morgan Kaufman Publishers (2001)



Paper 4: Increasing Consistency in Multi-Site
Data Stores: Megastore-CGC and its Formal
Analysis

111






Increasing Consistency in Multi-Site Data Stores:
Megastore-CGC and its Formal Analysis’

Jon Grov
University of Oslo

ABSTRACT

The few distributed data stores that provide support for
transactions only offer fairly limited consistency guarantees.
Google’s Megastore partitions the set of data into entity
groups and provides serializability only for transactions ac-
cessing single entity groups. In this paper, we propose an
extension to Megastore, called Megastore-CGC, that also
allow us to ensure consistency for transactions accessing
data from multiple entity groups. One important advan-
tage of our approach is that most of the additional informa-
tion that must be maintained by Megastore-CGC to enable
cross-group validation can be added to the messages being
exchanged by Megastore. This allows Megastore-CGC to
offer its additional functionality while maintaining the per-
formance and fault tolerance of Megastore. A fault-tolerant
coordination protocol, such as Megastore-CGC, is a very
complex artifact whose correctness is virtually impossible
to prove “by hand.” We therefore formalize Megastore-CGC
in Real-Time Maude, use Real-Time Maude simulations to
estimate the performance of Megastore-CGC, and use Real-
Time Maude model checking to automatically verify that
Megastore-CGC satisfies some crucial system properties, at
least for the initial system configurations considered.

1. INTRODUCTION

Multi-site data stores replicate user data in geographically
distributed data centers. This improves scalability since re-
quests can be distributed, and availability, since data are
accessible even if a data center fails. However, ensuring
transactional consistency in this setting is hard for multi-
ple reasons, in particular since controlling concurrent access
requires costly message coordination, and because combin-
ing fault tolerance and consistency is a highly complex and
error-prone task.

Google’s Megastore [1] is one of few multi-site data stores
offering transaction support. It is used both for Google’s

*This work was partially supported by AFOSR Grant
FA8750-11-2-0084.

Peter Csaba Olveczky
University of Oslo
University of lllinois at Urbana-Champaign

own services such as GMail, and by Google’s clients through
the Platform-as-a-Service offering Google AppEngine. Al-
though Megastore provides strong fault tolerance and scal-
ability, its consistency guarantees have some limitations.

Megastore’s Approach to Consistency. Megastore’s ap-
proach to combine consistency, fault tolerance, and scala-
bility is to partition the data items (called entities) into a
number of entity groups, and to maintain a replicated trans-
action log for each entity group. Updates to one such log
are distributed among replicating sites using a variant of
the Paxos [11] consensus protocol. This approach provides
consistency within each entity group, since only one running
update is allowed on each entity group, and fault tolerance,
since update transactions are allowed to commit as long as
a majority of replicas are available.

How the data are partitioned into entity groups depends
on application access patterns and requirements for consis-
tency. For an application accessing two entities A and B,
consistent access is only guaranteed if A and B belong to the
same entity group. Large entity groups are therefore desired
to ensure consistency for many different transactions types.
However, this is unacceptable for scalability purposes. Since
only one concurrent update is allowed per entity group, the
system’s ability to serve multiple users would be severely re-
stricted. As the following example illustrates, it can some-
times be hard (or even impossible) to find a partitioning of
the entities that achieves the required levels of consistency
and concurrency.

Example. Consider a hospital with thousands of employ-
ees. To enable efficient and safe allocation of personnel to
tasks (both planned and emergencies), the hospital is im-
plementing a shared scheduling system to assign each em-
ployee a status throughout the day. The scheduling system
maintains a set of entities of the form (employee, time slot,
status), where each employee has a set of capabilities (heart
surgery, anesthesia, etc), and where status is either booked,
available, or off-duty.

The scheduling system must satisfy the following critical
constraints:

1. An employee can be booked for at most 12 hours dur-
ing a 24-hour period.

2. Emergency preparedness requires the hospital to have
a certain number of employees with a given capability
and status available for every time slot. There should,



for example, always be an available heart surgeon to
deal with emergencies.

To satisfy these constraints, transactions need to inspect
multiple entities before performing updates. For Constraint
1, other records for the same employee must be inspected.
For Constraint 2, records of other employees must be in-
spected to ensure that the number of available employees
does not fall below the required emergency capacity.

Megastore is an attractive option for the scheduling sys-
tem because of its fault tolerance features. The question is
how to group the records into entity groups such that the
above constraints are preserved.

One option is to group all entities into the same entity
group, which allows us to check various constraints. How-
ever, simultaneous assignments (by different operators) would
be impossible in this solution. Since changes in scheduling
occur constantly, this is unacceptable.

The other option is to instead group all entities belonging
to one employee into the same entity group. This allows
us to enforce Constraint 1: If two operators simultaneously
try to book the same employee such that the two updates
combined would violate the 12-of-24-hours constraint, the
violation will be detected by Megastore, and one of the up-
dates will be aborted. However, with this option, we are
unable to ensure Constraint 2: Let H1 and H2 represent
two heart surgeons with status available at time slot 7. At
least one of them must always be available. Furthermore, let
two concurrent transactions Book-HI and Book-H2 attempt
to book H1 and H2, respectively, at time 7. If H1 and H2
belong to different entity groups, Megastore cannot ensure
consistency across H1 and H2. It is therefore possible that
both Book-H1 and Book-H2 see that the other heart sur-
geon is available and therefore, both bookings are allowed,
leading to the violation of Constraint 2.

Similar scenarios occur in other applications; e.g., in sys-
tems used for resource management and planning, such as
for flight reservations, where we want to allow multiple seat
reservations at one flight while preserving constraints such
as maximum number of infants. Likewise, in e-commerce
applications, there could be a limited number of items avail-
able for a given price.

This motivates our work to extend Megastore to support
consistent transactions across multiple entity groups, while
maintaining Megastore’s scalability and reliability features.

Megastore-CGC. In this paper, we propose an extension
of Megastore, called Megastore-CGC (“Megastore with Cross-
Group Consistency”), which also provides validation across
entity groups.

Megastore-CGC is based on the key observation that, in
Megastore, a site replicating a set of entity groups partici-
pates in all updates on these entity groups. Therefore, this
site implicitly has an ordering on these updates. Making
this ordering explicit makes it possible to validate the trans-
actions to ensure that only transactions with a consistent
view across multiple entity groups are allowed to commit.

A significant advantage of making such an implicit order-
ing explicit is that validation information can be piggybacked
onto Megastore’s coordination messages, which implies that:

e Megastore’s performance and scalability are preserved,
since no additional messages or waiting is introduced.

e Transactions not requiring validation across entity groups
have the same fault tolerance as in Megastore.

Specification and Validation Methodology. Fault-tolerant
data management protocols for replicated data stores are
highly complex artifacts, yet it is crucial to establish their
performance and correctness.

Complex protocols are typically described using a combi-
nation of English prose and pseudo-code. For prototyping
and performance estimation purposes, a prototype of the
protocol is usually implemented in a programming language
like Java, or using some simulation tool. Finally, the correct-
ness of the protocol is “proved by hand.” This methodology
has a number of disadvantages, including:

1. The prose + pseudo-code description is ambiguous and
imprecise, and does not make explicit critical assump-
tions (or lack thereof).

2. A Java prototype is problematic for two reasons: (1) it
is an additional artifact beyond the specification of the
protocol; and (2) we must somehow ensure that this
Java prototype is consistent with the specification.

3. Proofs “by hand” tend to be error-prone. Indeed, ab-
sent a precise and unambiguous definition of the pro-
tocol, there is in principle nothing that can be formally
proved. Furthermore, the size and complexity of the
systems that are the topic of this paper make the pos-
sibility of a serious “hand proof” quite futile anyways.

We therefore advocate a formal-methods-based approach to
the specification, performance estimation, and correctness
analysis of replica management protocols. One obvious ad-
vantage is that a formal specification defines a mathemati-
cal model of the protocol that is precise, unambiguous, and
where implicit assumptions are made explicit. Furthermore,
a mathematical model of the system enables rigorous math-
ematical analysis of its correctness. However, the specifica-
tion and validation of a system of the size and complexity
that we develop in this paper presents a number of chal-
lenges for formal methods, including;:

1. The formal language should be easy and intuitive to al-
low protocol developers—who may have limited (or no)
background in formal methods—to define their proto-
cols using the formal modeling language.

2. The need to analyze both performance and correctness.

3. Typically, more restricted formal modeling languages
ensure decidability of important properties, and hence
support fully automatic formal analyses, whereas more
expressive languages (often based on higher-order log-
ics) support interactive theorem proving, which may
require highly nontrivial user interaction during the
verification process.

In this paper, we advocate using the rewriting-logic-based
Real-Time Maude formal specification language and analysis
tool [13] for the modeling and analysis of replica manage-
ment protocols for the following reasons:

1. The Real-Time Maude specification language is object-
oriented and fairly easy and intuitive, making the bar-
rier to use the language acceptable for researchers with



limited /no formal methods background. Furthermore,
previous experience shows that network engineers can
easily understand Real-Time Maude specifications with-
out formal methods background [14].

2. Real-Time Maude specifications are executable, and
therefore, provides for free a prototype that can be
executed for immediate feedback.

3. Real-Time Maude specifications can be subjected to
Monte Carlo simulations for performance estimation.

4. Real-Time Maude is fairly expressive, allowing us to
specify Megastore-CGC at an appropriate level of ab-
straction with reasonable effort.

5. Real-Time Maude provides a range of fully automated
formal analyses methods. For example, temporal logic
model checking investigates whether all possible sys-
tem behaviors (from a given system configuration) sat-
isfy desired properties. Such model checking can be re-
garded both as automatic verification, and as a method
to find “corner case” bugs that are easily missed even
during very extensive testing of the system.!

In this paper, we formalize Megastore-CGC in Real-Time
Maude. We then use Real-Time Maude simulations to com-
pare the performance with our model of Megastore. Finally,
we use automated model checking to verify a number of key
properties of our protocol. One main benefit of Real-Time
Maude is that it enables a “test-driven” development cycle
where new ideas and features can be tested in a large num-
ber of scenarios in very short time using both simulation
and model checking. We have also experienced that, in the
presence of failures, anticipating all possible behaviors is im-
possible. This experience is shared by Google’s Megastore
team which have implemented a pseudo-random test frame-
work for this purpose, and report that “Through running
thousands of simulated hours of operation each mnight, the
tests have found many surprising problems” [1]. Compared
to such a framework, Real-Time Maude model checking an-
alyzes not only a set of pseudo-random behaviors, but cov-
ers all possible behaviors. Given that Google’s test frame-
work tests the real implementation, it could not be replaced
by model checking a Real-Time Maude model, but we be-
lieve that, especially in the early stages of protocol devel-
opment, using Real-Time Maude provides an effective way
to quickly and easily analyze the consequences of different
design choices.

Paper Structure. Section 2 provides some background on
Megastore and Real-Time Maude. Section 3 gives an over-
view of Megastore-CGC. Section 4 explains how we have
formalized Megastore-CGC in Real-Time Maude. Section 5
uses Real-Time Maude simulations to estimate the perfor-
mance of Megastore-CGC and compare its performance with
that of Megastore. Section 6 shows how we have model
checked our model to prove that Megastore-CGC satisfies
the desired properties, at least for the system configurations
considered. Finally, Section 7 discusses related work and
Section 8 gives some concluding remarks.

1Since most properties of Real-Time Maude specification
in general are undecidable, there is no guarantee that the
automatic analysis will terminate.

2. PRELIMINARIES
2.1 Megastore

Megastore [1] is a data store system with transaction sup-
port developed and run by Google. Megastore provides very
high availability through replication across data centers, and
is used both within Google’s own cloud infrastructure and
by Google’s customers through the application platform Ap-
pEngine. Megastore handles more than three billion write
and 20 billion read transactions daily and stores nearly a
petabyte of data across many global data centers [1].

In Megastore, data are stored as entities, each entity be-
ing a set of key-value pairs. A transaction is a sequence of
read and write operations on entities, followed by a com-
mit request. Megastore’s approach to transactional consis-
tency is to partition data into fairly small units, denoted
entity groups, and maintain a replicated transaction log for
each entity group. Serializability within each entity group
is ensured, since, at any given time, only one transaction is
allowed to update the log.

Clients can issue transaction requests to any site replicat-
ing the relevant data, and updates are propagated to the
other replicas before the transaction commits.

Megastore works as follows. Initially, all operations in a
transaction are executed locally at the receiving site. When
a commit request is issued, a coordination procedure among
the sites is used to decide whether or not the transaction is
valid and can be committed. If not, usually due to some con-
current update of the same data, the transaction is aborted.

Entities are versioned, and Megastore provides reads with
different levels of consistency. We focus on current reads,
which give the most recent version. A transaction updating
an entity must perform a current read before writing.

Each site has a coordinator, which is always informed
about whether the local replica is up-to-date. A current
read is executed locally if and only if granted by the local
coordinator. Otherwise, a majority read is required.

A transaction t accessing an entity group eg reads entities
in eg at a given log position Ip. t’s updates are buffered
during transaction execution. When all operations of ¢ are
completed, the originating site of ¢ prepares a log entry for
eg containing t’s updates and runs Pazos [11] to request that
this log entry becomes entry Ip + 1 in the replicated log.

Paxos is a generic consensus protocol for distributed sys-
tems which consists of the following phases:

1. Agree on a leader.
2. The leader proposes a value to the other processes.

3. When the proposed value is acknowledged by a major-
ity of the processes, the leader informs all participants
about the decision.

In the presence of failures, this may be insufficient to reach
consensus, in which case a new round is initiated where an-
other process becomes the leader.

Megastore diverges from Paxos by (i) waiting for accept
(or invalidation of the coordinator) from all replicating sites
before allowing a transaction to commit, and (ii) including in
each log entry the Paxos leader for the nezt log entry. Phase
1 is therefore replaced by a request from the originating site
directly to the leader. If multiple sites request different log
entries for the same log position, Paxos ensures that only
one is elected, and the others are aborted.



After a successful Paxos round, each site replicating eg
then appends the chosen log entry for position Ip + 1 to the
local copy of the transaction log for eg, and subsequently
updates the local data store.

2.2 Real-Time Maude

Real-Time Maude [13] is an object-oriented formal mod-
eling language and high-performance simulation and model
checking tool for distributed real-time systems. The model-
ing formalism is expressive yet simple and intuitive, which
together should allow developers with limited formal meth-
ods experience to model very complex real-time systems.

In short, an algebraic equational specification defines the
data types and the necessary functions in a “functional pro-
gramming style,” and rewrite rules ¢ — ¢’ if cond define
local transitions from state ¢ to state t’. A specification may
exhibit nondeterministic behaviors, since (i) a rewrite rule
might be applied to different parts of the state, and/or (ii)
different rewrite rules might be applied to the same state.

Real-Time Maude specifications are executable, and the
tool provides a variety of formal analysis methods. Sim-
ulation, that simulates ome possible behavior of the sys-
tem, is useful for quick prototyping and performance es-
timation. Reachability analysis and temporal logic model
checking automatically check whether all possible system
behaviors from an initial state satisfy a desired requirement.

Specification. A Real-Time Maude module specifies a real-
time rewrite theory [13] (X, EU A, IR, TR), where:

e Y is an algebraic signature; that is, a set of declarations
of sorts, subsorts, and function symbols.

e (X,EUA) is a membership equational logic theory [12],
with E a set of possibly conditional equations, and A a
set of equational axioms such as associativity, commu-
tativity, and identity, so that equational deduction is
performed modulo the axioms A. (X, F U A) specifies
the system’s state space as an algebraic data type.

e /R is a collection of labeled conditional rewrite rules
specifying the system’s local transitions, each of which
has the form? [I] : t — ¢’ if NjL, uj = vj, where
is a label. Such a rule specifies an instantaneous tran-
sition from an instance of ¢ to the corresponding in-
stance of ', provided the condition holds.

e TR is a set of tick rules | : {t} —— {t'} if cond that
advance time in the entire state ¢ by 7 time units.

Equations and rewrite rules are introduced with, respec-
tively, keywords eq, or ceq for conditional equations, and
rl and crl. The mathematical variables in such statements
are declared with the keywords var and vars.

A declaration class C' | att1 : s1, ..., attn : Sn de-
clares a class C with attributes att; to att, of sorts si to
sn. An object of class C in a given state is represented as
a term <O : C' | atty : valy, ..., att, : val, > of sort Object,
where O, of sort 0id, is the object’s identifier, and where
valy to val, are the current values of the attributes att; to
att,. A message is a term of sort Msg.

2An equational condition uw; = v; can also be a matching
equation, written wu;:= v;, which instantiates the variables
in u; to the values that make u; = v; hold, if any.

The state is a term of sort Configuration, and is a multi-
set of objects and messages. Multiset union is denoted by an
associative and commutative juxtaposition operator, so that
rewriting is multiset rewriting. For example, the rewrite rule

rl [1] m(0,w)
<0:Cl al : x, a2 : 0’, a3 : z >
=>
<0:Clal:x+w, a2 :0’ a3 : z >

dly(m’(0’,x), z) .

defines a family of transitions in which a message m, with
parameters 0 and w, is read and consumed by an object 0 of
class C, the attribute al of object 0 is changed to x + w, and
a new message dly(m’ (0’ ,x) ,z) is generated; this message
will become the “ripe” message m’ (0’ ,x) after z time units.
Attributes whose values do not change and do not affect the
next state of other attributes or messages, such as a3, need
not be mentioned in a rule. Attributes that are unchanged,
such as a2, can be omitted from right-hand sides of rules.

Formal Analysis. Real-Time Maude’s timed fair rewrite
command simulates one of the many possible system be-
haviors from the initial state by rewriting the initial state
up to a certain duration. It is written with syntax

(tfrew t in time <= timeLimit .)

where ¢ is the term to be rewritten (“the initial state”).

Real-Time Maude’s linear temporal logic model checker
analyzes whether each behavior satisfies a temporal logic
formula. State propositions are operators of sort Prop, and
their semantics is defined by equations of the form

ceq statePattern |= prop = b if cond

for b a term of sort Bool, which defines prop to hold in all
states t where ¢ |= prop evaluates to true. A temporal logic
formula is constructed by state propositions and temporal
logic operators such as True, False, ~ (negation), /\, \/, ->
(implication), [] (“always”), <> (“eventually”), and U (“un-
til”). The unbounded model checking command

(mc t |=u formula .)

checks whether the temporal logic formula formula holds in
all behaviors starting from the initial state ¢t. If the reachable
state space is infinite, time-bounded LTL model checking, in
which each behavior is only analyzed up to a given time
bound, can be used to ensure termination of the analysis.

3. MEGASTORE-CGC: CONSISTENCY
ACROSS ENTITY GROUPS

This section describes Megastore-CGC, an extension to
Megastore which provides consistency also for transactions
accessing multiple entity groups.

In Megastore, the data is a set E of entities replicated
across a set S of sites. E is partitioned into a set EG =
{eg,...,eg,} of non-empty entity groups. A function R :
S — P(EG) assigns to a site the entity groups it replicates.

In Megastore-CGC, the set EG of entity groups is par-
titioned into a set OC of ordering classes. A number of
entity groups should belong to the same ordering class if
consistent transactions across these entity groups may be



required. Furthermore, for each ordering class, there must
be at least one site replicating all entity groups in the or-
dering class (i.e., Yoc € OC Js € S oc C R(s)). One of the
sites replicating all the entity groups in an ordering class oc
is the ordering site of oc.

Ezample 1. In the example in Section 1, constraint (2)
requires that there is always a given number of available
employees with a certain expertise. As explained in Sec-
tion 1, different employees should belong to different entity
groups. Since Megastore only provides consistency within
single entity groups, using Megastore may lead to violation
of constraint (2). In Megastore-CGC, grouping the entity
groups for all employees with a given expertise into the same
ordering class allows us to ensure also constraint (2).

In Megastore, a transaction ¢ first executes a sequence of
read and write operations at one site, t’s originating site.
Then, before commit, all sites replicating entities updated
by t must agree to accept t’s updates. Conflicts between
concurrent updates in the same entity group are detected
and resolved by aborting all but one conflicting transaction.

A key observation is that, in Megastore, a site replicating
a set of entity groups participates in all updates on these
entity groups. Therefore, this site should be able to main-
tain an ordering on these updates. The main idea behind
Megastore-CGC is that with this ordering, one site, the or-
dering site, is able to validate transactions for consistency.

Ezample 2. Let the status of heart surgeon h at time slot
T be represented by the entity h,, which is part of the entity
group ey, representing all time slots of h at the given day.

Let ¢ be a transaction, initiated at site s, that wants to
book h,. Since there must always be at least one heart
surgeon available, t also reads the status of the other heart
surgeons at time 7. These entities belong to different entity
groups which, together with ey, all belong to the ordering
class HS. Finally, ¢t completes by changing the availability
status of h, to booked, if possible.

There is a risk of inconsistency if some concurrent trans-
action t', executing at some other site s,/, attempts to book
another heart surgeon A’ at time slot 7. Let h’ be the only
other available heart surgeon at 7, and let ¢’ issue a booking
for entity h. at the same time ¢ is executing. h. belongs to
entity group e/, with e, # ep/. In Megastore, constraint
(2) could be violated in the following scenario:

1. t reads the value of h, and h at s;.
2. t' reads the value of h, and h.. at sy.

3. t books h,. This update is distributed by s; and ap-
plied at all sites replicating h-, including s;/.

4. t' books h.. This update is distributed by s,/ and
applied at all replicating sites, including s:.

This execution is clearly not serializable, and both heart
surgeons are booked. This scenario is possible in Megastore,
which enforces consistency within one entity group.

This execution will not occur in Megastore-CGC, whose
commit protocol includes ordering and validation of concur-
rent updates to entity groups in the ordering class HS. The
ordering site of HS ensures that ¢t and t' are ordered and
then validated by checking whether all read operations have
seen the most recent updates (according to the given order).

In the above scenario, either ¢ or ' would fail this test and
be aborted, leaving one heart surgeon available.

Since Megastore-CGC makes explicit and uses the implicit
ordering of updates during Megastore commits, Megastore-
CGC is essentially piggybacked onto Megastore’s commit
protocol — as explained in detail in Sections 3.1 and 3.2 —
which has the following advantages:

e Performance on par with Megastore, as Megastore-
CGC does not introduce additional coordination mes-
sages or blocking.

e For transactions requiring the consistency level pro-
vided by Megastore, fault tolerance is identical to that
of Megastore.

3.1 Megastore-CGC Without Error Handling

This section explains the behavior of Megastore-CGC with-
out its fault-tolerance features; i.e., assuming that messages
are not lost and that sites never fail.

Megastore uses a replicated transaction log for each entity
group, and updates these logs using Paxos. Megastore-CGC
maintains the following additional information:

e A mapping os : OC — S, which assigns to each order-
ing class oc its ordering site s satisfying oc C R(s).

e A function ol : OC — Orderlist, assigning to each
ordering class its ordering list. Each entry in the or-
dering list for oc contains the updates on entity groups
in oc, together with the updating transaction.

As mentioned above, any Megastore site replicating all
entity groups in an ordering class oc implicitly orders all
transactions updating these entity groups. We can select
any of these sites as the ordering site for oc. The ordering
list ol(oc) makes this implicit order explicit at the order-
ing site of oc. The list is replicated at all sites, with each
site maintaining a projection of ol(oc) containing updates
to locally replicated entity groups only.

The mapping os is stored as a special entity group egos
replicated at all sites. This ensures a consistent view among
all participating sites.

The entity groups accessed by transaction ¢ determine the
ordering class of t. When a transaction ¢ with ordering class
oc commits, an entry for ¢ is appended to the list ol(oc) by
the ordering site of os(oc). This represents the ordering of
t in oc. When t is ordered within oc, t can be validated: its
execution is valid if and only if all its read operations have
seen the most recent update according to ol(oc).

The challenge is to provide ordering and validation with-
out reducing performance, scalability, or fault tolerance. Our
approach is to avoid introducing new messages before com-
mit, but instead piggyback the necessary information onto
the coordination messages in Megastore’s commit protocol.

Recall from Section 2.1 that the Megastore commit pro-
tocol can be summarized by the following steps:

1. Request accept from the leader for this log position.

2. The leader checks whether there are conflicting up-
dates for this log position. If no such conflicts exist,
the request is accepted. Otherwise, the leader signals
a conflict (and the transaction will be aborted).



3. After leader-accept, request all participating processes
to accept the transaction.

4. Upon receiving the accept request, each participant
acknowledges the transaction.

5. When the transaction has been acknowledged by all
processes, the originating site requests all participants
to apply the update.

Let t be a transaction with ordering class oc. Megastore-
CGC then extends Megastore’s commit protocol as follows:

e ¢ is ordered once the ordering site os(oc) accepts t. If
0s(oc) is the leader for this log position, this occurs at
Step 2. Otherwise, it occurs at Step 4.

e After ordering, os(oc) wvalidates t, using the read set
of t as input. The read set is included in the accept-
request from t’s initiator, and contains the id of all en-
tities read by t, together with the version (represented
by the log position) read by ¢. The validation proce-
dure works as follows: ¢ is allowed to commit if and
only if it, for each element of the read set, has seen the
most recent version according to ol(oc). This provides
consistency as follows: For any pair of transactions
in a read-write conflict (i.e., where one is reading and
the other is writing the same entity), this ensures that
unless the conflicting operations occur in transaction
order, i.e., according to ol(oc), one of the transactions
is aborted. This is sufficient to verify that the serial-
ization graph [20] for any Megastore-CGC schedule is
acyclic, as long as all transactions access entity groups
within one ordering class only.?

e If validation at os(oc) is successful, the originating site
distributes the updated order to all sites replicating eg
as part of the apply message for ¢.

e If validation is not successful, the apply-step is re-
placed by a rollback-step, requesting all participating
sites to abort ¢.

The steps for committing a transaction ¢, which reads a set
of entity groups EG and updates an entity group eg € EG,
are summarized in Table 1. All entity groups in EG belong
to an ordering class oc. Ry denotes all sites replicating eg.

3.2 Failure Handling in Megastore-CGC

This section explains how Megastore-CGC deals with site
failures and/or message losses. The goal is to complete as
many transactions as possible while ensuring consistent ex-
ecution even in the presence of failures. An additional fault-
tolerance challenge in Megastore-CGC is that the ordering
of transactions must be consistent even if the ordering site
fails and/or messages containing ordering information are
lost. The key ideas in our approach to fault tolerance are:

e Transactions not requiring the additional consistency
features provided by Megastore-CGC are treated as in
Megastore: they are committed regardless of whether
Megastore-CGC’s validation features are available.

e We choose a new ordering site if the current ordering
site is suspected to be unavailable.

3Megastore is a multi-version data store where write-write
conflicts do not occur.

Megastore-CGC extends the failure handling features of Mega-
store, including electing a new leader if the leader has failed,
and ensuring commit of a transaction as long as a majority
of sites have acknowledged the update.

Some characteristics of Megastore-CGC are:

e Transactions accessing only one entity group have the
same fault tolerance and performance as in Megastore.
This means that even during failures, transactions are
completed with the same number of messages as in
Megastore. If ordering fails, we provide features to or-
der such transactions later, and piggyback this order-
ing onto the next successful transaction. Therefore,
reinstating a complete transaction order is provided
with no additional messages being transmitted.

e Transactions accessing multiple entity groups are ei-
ther successfully ordered or aborted. This ensures
cross-group-consistency in case of failure.

e For an ordering class, ordering will fail if the ordering
site becomes unavailable. To minimize the time to re-
covery, an ordering site failover procedure is provided.
A new ordering site is elected using a special purpose
update transaction, thus ensuring fault tolerance and
consistency through Paxos.

Ordering Failure. We first discuss how Megastore-CGC
deals with situations where a transaction ¢ is acknowledged
by a majority of sites, without being ordered (and validated)
by the ordering site. This can happen for several reasons:

1. The ordering site is down (or recovering from failure,
and hence unable to safely order new transactions).

2. The accept request from the initiator to the ordering
site was lost.

3. The acknowledgment from the ordering site to the ini-
tiator was lost.

4. The initiator site crashed after sending the accept re-
quest, and this transaction was completed by some
other site (this is a feature provided by Paxos).

In this scenario, the apply message for t is sent without the
ordering information for ¢. Since this implies that ¢ has
not been validated, the next step depends on the validation
requirements of ¢:

e If ¢ only reads entities from one entity group, recipi-
ents of the message register ¢t as awaiting order before
applying t’s updates.

e If ¢t accesses multiple entity groups, ¢ cannot be safely
committed, and its updates will be replaced by an
empty list of operations.

Ordering Site Failover. In case of failure of the ordering
site, Megastore-CGC provides a method to reinstate order-
ing if there is another site replicating all entity groups of the
ordering class. The steps of this ordering site failover are:

e Let t be a transaction with ordering class oc. If the
ordering site os(oc) fails to order ¢ during ¢’s commit,
t’s initiator site s; initiates an ordering site failover for
order class oc.



Step | Site(s) Megastore CGC extension

0 St t’s operations are executed at site s;.

1 St Send an acceptLeader request to the leader | If s; = os(oc), include ¢’s read set and request ordering
s; for the current log position. and validation from s;.

2 S1 Receive acceptLeader request. If there are | If s; = 0s(oc) and there are no conflicting updates in eg,
no conflicting updates within eg, send ac- | order and validate ¢ by appending ¢’s updates to ol(oc)
cept to s;. Otherwise, request s; to abort | and then verifying that ¢ has seen the most recent up-
t. date for each member of FG. If validation is successful,

ol(oc) is included in the accept message. If validation
is unsuccessful, request s; to abort t.

3 St Receive response from s;. If s; requests | If s; # os(oc) and s; = os(oc), order and validate ¢.
abort, t is aborted. Otherwise, multicast | If validation is successful, s; requests accept from the
an accept request for ¢ to all sites replicat- | other sites. Otherwise, ¢ is aborted.
ing entity group eg, excluding s; and s;. If s; # o0s(oc) and s; # os(oc): include t’s read set in

the accept request for os(oc).

4a Reg \ Receive and store the accept request, send

{os(oc), st, s1}| acknowledgment to st.
4b os(oc), if | Receive and store the accept request, send | Order and validate ¢. If validation is successful, include
os(oc) # st N\ | acknowledgment to s;. ol(oc) in the acknowledgment message. If validation is
os(oc) # s unsuccessful, the acknowledgment is sent without in-
cluding the ordering.

5 St Multicast apply message containing t’s up- | If ¢ was successfully ordered and validated, include

dates. ol(oc) in this message. Otherwise, replace t’s updates
with an empty list of operations (effectively aborting t).

6 Rey Apply t’s updates to local transaction log | If the apply message contains ol(oc), update the local

and replicated entity store. copy of ol(oc).

Table 1: Transaction execution in Megastore-CGC without failure handling.

s¢ selects the new ordering site s’ from the sites repli-
cating all entity groups in oc. If no such site (except
0s(oc)) exists, the failover procedure is canceled.

e If a new ordering site is available, s; prepares an up-
date to the special entity group eg,,, which for each
ordering class oc contains the current ordering site.

e Once this update is accepted by a majority of sites,
the new ordering site s’ is elected. The mapping os is
updated to os[oc — s'].

e Once elected, s’ orders all transactions registered as
awaiting order. Their ordering is also included in re-
sponse to the next accept message received for an up-
date t' within oc, and propagated to the other sites as
part of the the apply message of t'.

4. FORMALIZING MEGASTORE-CGC

This section presents our formal Real-Time Maude model
of Megastore-CGC, which extends and modifies our model of
Megastore in [9]. The entire executable formal specification
is available at http://folk.uio.no/jongr/mcgc/.

Classes. We model Megastore-CGC in an object-oriented
way, where the state consists of a multiset of site objects
and messages traveling between them. Each site is modeled
as an object instance of the following class:

class Site | entityGroups : Configuration,

localTransactions : Configuration,
coordinator : EntGroupLogPosPairSet,
egOrderings : OrderClassUpdates,

awaitingOrder : EntGroupUpdateList .

The attribute entityGroups contains one EntityGroup object
for each entity group replicated at the site; localTransactions
contains one Transaction object for each active transaction
originating at the site; coordinator denotes the local coordi-
nator state for each entity group; egOrderings contains a list
of entries (t,eg,lp) for each ordering class oc, representing
ol(oc), where Ip denotes the log position of ¢’s update in the
transaction log for entity group eg; and awaitingOrder is a
set of entries on the form (oc,t, eg, Ip), used during failures
to register transactions requiring ordering later.

Each site’s copy of an entity group is modeled as an object
instance of the following class:

class EntityGroup | entitiesState : EntitySet,
transactionLog : LogEntryList,
replicas : EntityGroupReplicaSet,
proposals : PaxosProposalSet,
pendingWrites : PendingWriteList .

The attribute entitiesState describes the available versions
of each entity in the entity group. transactionLog denotes
the local copy of the replicated transaction log. A log entry
(t Ip s ol) contains the identity t of the originating trans-
action, the log position Ip, the leader site s for the next
log entry, and the list ol of write operations executed by
t. The attribute replicas denotes the set of sites replicat-
ing this entity group; proposals denotes the local state in
ongoing Paxos processes involving this entity group; and
pendingWirites maintains a list of write operations waiting to
be applied to the entitiesState.

A transaction request is a list of current read operations
cr(e) and write operations w(e,v). Executing transactions
are modeled as object instances of the class

class Transaction | operations : OperationList,




crl [rcvAcceptAllReqWithOrderRequest]

(msg acceptAllReq(TID, EG, (TID LP SENDER OL), READS, PNUM) from SENDER to SID)
< SID : Site | coordinator : CES, egOrderings : CUR-OLIST, awaitingOrder : AWAIT-ORDERSET,

entityGroups :
=>

< EG : EntityGroup | proposals : PROPSET, transactionLog : LEL, replicas : EGRS > EGROUPS >

< SID : Site | egOrderings : (if (VALID and ALLOW-ORDERING) then NEW-OLIST else CUR-OLIST fi),

entityGroups : EGROUPS
< EG : EntityGroup | proposals :

(if (not VALID) then PROPSET else

(accepted(SENDER, (TID LP SENDER OL), (not IN-SINGLE-EG), PNUM) ; removeProposal(LP, PROPSET)) fi) >,
awaitingOrder : (if (VALID and ALLOW-ORDERING) then noAwaitingOrderSet else AWAIT-ORDERSET fi) >

(if (VALID and ALLOW-ORDERING) then

dly(msg acceptAllRsp(TID, EG, LP, createPredMap(EGRS, EG, getUpdateList(OCID, OLIST),
< EG : EntityGroup | > EGROUPS), PNUM) from SID to SENDER, T)
else dly(msg acceptAllRsp(TID, EG, LP, noReplicaPredMap, PNUM) from SID to SENDER, T) fi)

if not (containsLPos(LP, LEL) or hasAcceptedForPosition(LP, PROPSET))

/\ OCID := getOrderingClass(EG, < EG : EntityGroup | > EGROUPS)

/\ ORDERSITE := getOrderingSite(OCID, < EG : EntityGroup | > EGROUPS)

/\ ALLOW-ORDERING := ((SID == ORDERSITE) and isUpToDate(OCID, OCUPDATES, THIS, < EG : EntityGroup | > EGROUPS, READS, CES))

/\ OLIST := applyAwaiting(OCID, AWAIT-ORDERSET, CUR-OLIST)
/\ NEW-OLIST := updateOrdering(0CID, (TID EG LP), OLIST)
/\ IN-SINGLE-EG := withinSingleEntityGroup(READS)

/\ VALID := (IN-SINGLE-EG or (ALLOW-ORDERING and isValid?(TID, READS, getUpdateList(0CID, NEW-OLIST),
(< EG : EntityGroup | proposals : PROPSET, replicas : EGRS, transactionLog : LEL > EGROUPS))))

/\' T ; TS := possibleMsgDelays(SID, SENDER) .

Figure 1: Processing an accept message at the ordering site (Step 4b in Table 1)

reads : EntitySet,

writes : OperationlList,
status : TransStatus,
readState : ReadStateSet,
paxosState : PaxosStateSet .

The attribute operations contains the remaining operations
in the transaction; reads stores the value fetched during
read operations; write operations are buffered in writes;
status holds the current transaction status; and readState
and paxosState store transient data during execution.

Communication. We assume that the sites are connected
by a wide-area network. The network delays between two
nodes can therefore vary significantly, and we do not assume
FIFO delivery between the same pair of nodes.

The set of possible delays between s1 and sz is given by
possibleMsgDelays(s1, s2) as a ‘;’-separated set of time val-
ues. A “ripe” message has the form

msg mc from sender to receiver

where mc is the message content. We can nondeterministi-
cally select any delay from the set possibleMsgDelays(s1, S2)
by sending messages using rewrite rules of the form

var T : Time . var TS : TimeSet .
crl [sendMsgAnd...]
< 8ID : Site | ... >
=>
< 8ID : Site | ... > .
dly(msg mc from SID to SID’, T)
if ... /\ T ; TS := possibleMsgDelays(SID,SID’)

This is a valuable feature: it allows us to define an initial
state (with a set of transactions and a list of possible message
delays), and then through model checking inspect all possi-
ble executions to check a large number of different message
orderings and protocol states for consistency.

Dynamic Behavior. The dynamic behavior of Megastore-
CGC is defined by 72 rewrite rules; we present one of them

in Figure 1. This rule formalizes Step 4b in Table 1, with
additional failure handling, when a site SID receives an accept
request for transaction TID from TID’s initiator SENDER.

In this rule, SID receives a message acceptAllReq(TID, EG,
(TID LP SENDER OL), READS, PNUM) from the site SENDER. TID
is the transaction identifier and EG is the entity group up-
dated by TID. The tuple (TID LP SENDER OL) is a candidate
log entry for log position LP in the replicated log for EG, with
0L the list of updates executed by TID. READS is the read set
of TID, i.e., all entities and entity versions read by TID. PNUM
is the proposal number, used by Paxos to distinguish com-
peting requests for the same log position.

Since the message contains the read set READS of TID, we
know from Step 3 in Table 1 that SID is supposed to be the
ordering site for TID, and this request asks SID to order and
validate TID. However, since messages can be delayed, SID
must verify that it is still the ordering site before distributing
TID’s order. Therefore, the rule first extracts the ordering
class 0CID for EG; it then extracts the current ordering site
ORDERSITE for 0CID from the special entity group egos, which
is replicated as an entity group in SID.

Next, the rule checks whether SID is can order TID. It ver-
ifies that SID is still the ordering site (SID == ORDERSITE) and
that no updates are missing due to failures (isUpToDate(...)).
If both conditions hold, SID can order and validate TID.

If there are updates awaiting ordering (due to previous
failures), these are first applied to the local order ol(0CID).
The resulting list is assigned to the variable OLIST. Then, TID
is ordered and the resulting order list is stored in NEW-OLIST.

The transaction is VALID if either TID has only read entities
from one entity group (IN-SINGLE-EG is true), or if SID can
order TID and its read set is consistent (i.e., it has seen the
most recent version of each entity according to ol(0CID)).

The attributes of SID are updated as follows:

e If TID is ordered and validated, the egOrderings at-
tribute, denoting SID’s local order lists, is updated to
the new value NEW-0OLIST.

e The proposals attribute of entity group EG, which con-
tains SID’s current registry of Paxos-interactions for



EG, is updated if TID is valid: all obsolete entries are
removed, and an accepted-entry for TID is added.

e If SID was able to order TID, the awaitingOrder set is
reset (since any updates previously awaiting ordering
will now be included in NEW-OLIST).

Finally, the response to SENDER depends on the validation
outcome. If TID is both validated and ordered, an acceptAll-
Rsp message is sent, containing the updated order. Other-
wise, the same message is sent without ordering information.

S. PERFORMANCE ESTIMATION

This section shows how randomized Real-Time Maude
simulations can estimate the performance of Megastore-CGC
by rewriting a given initial system configuration. We mea-
sure the following performance parameters:

e Average time, per committed transaction, between the
request arrives and the response is sent.

e Number of commits, conflict aborts, and validation
aborts at each site.

We compare the performance of (our model of) Megastore-
CGC with that of (our Real-Time Maude model of) Megas-
tore, both when transactions read multiple entity groups (re-
quiring cross-group validation), and when they only read one
entity group. Given the right system parameters, Real-Time
Maude simulations should provide realistic performance es-
timates. For example, it is shown in [15] that Real-Time
Maude simulations of wireless sensor networks give as good
performance estimates as dedicated simulation tools.
The main parameters of our simulations are:

e Frequency and distribution of transaction requests.

Number of sites.

Number and size of entity groups and ordering classes.

Network delay distribution between each pair of sites.

Network and site failure rates.

e Initial values of the seeds for the random function.

We can very easily change these parameters by modifying
the initial state shown in Figure 2. We use an example
scenario with three sites, four entities, two entity groups,
and a set of different transaction types reading and writing
these entity groups. A local read operation requires 10 ms
to complete, according to real-world measurements in [1].
After commit, we assume a delay of 100 ms for each write
operation before the new value is available for reads.

For Megastore-CGC, we use one ordering class (containing
both entity groups). Our scenario is a “hot spot” setting
where the chance of conflicting transactions is high. We
assume two sites, Site 1 and Site 2, located in the same
area, and a third site (RSite) at a more remote location. The
probability distribution for the network delays is as follows:

30% | 30% | 30% | 10%
Site 1 <+ Site 2 10 15 20 50
Site 1 < RSite 30 35 40 100
Site 2 <+ RSite 30 35 40 100

Transaction requests are generated at each site by a trans-
action generator that creates transactions of different types
randomly, according to the following frequency distribution
(where “Book H14” is a transaction that also reads the entity
H2,4 (“heart surgeon H2 in the afternoon”) before possibly
booking (heart surgeon) H1 in the afternoon):

Site 1 Site 2
Update H1ps  50% | Update Hly,  25%
Update H1 4 50% | Update H14 25%

Update Hlps  25%
Book H24 25%

Remote site
Update H1ys  25%
Update H1 4 25%
Update H24  25%
Book Hl4 25%

Since rewriting only returns the final state, we add “record”
objects that record events during the simulation, using tech-
niques in [15]. The initial state initState, shown in Figure 2,
is then a multiset containing: one Site object for each site;
one NetworkDelays object containing the (possibly dynami-
cally changing) network delay distributions; one Random ob-
ject containing the seed used to randomly select a network
delay when a message is sent; one SiteStatistics object
for each site to record relevant statistics during simulation;
and a PoissonTransGen object for each site, which generates
transactions randomly according to the given distribution.

We can then simulate the system up to 1,000,000 ms by
giving the Real-Time Maude command

(tfrew initState(10) in time <= 1000000 .)
which returns the term*
{< stats(RSite): SiteStatistics |

94579/631, commitCount : 631,
: 171, validationAborts : 10, ... > ... }

avglatency :
conflictAborts

in 145,957ms cpu time on a Pentium Intel Core i7 2,6 GHz.

We have also run these experiments on our model of Mega-
store. We have run experiments with different system pa-
rameters, and show the result when the average (overall)
transaction rate is 2.5 TPS (transactions per second). The
following table shows the number of transactions success-
fully committed (Comm.), and aborted due to conflict (Abs.),
and the average transaction latency (Avg.lat). For Megastore-
CGC, we also show the number of transactions aborted due
to validation failures (Val.abs).

Megastore Megastore-CGC
Comm. | Abs. | Avg.lat | Comm. | Abs. | Val.abs. | Avg.lat
Site 1 652 | 152 126 660 | 144 0 123
Site 2 704 | 100 118 674 | 115 15 118
RSite 640 | 172 151 631 | 171 10 150

Since Megastore-CGC provides validation without addi-
tional messages, the average latency is virtually the same as
in Megastore. Some transactions accessing multiple entity
groups (book-H1-A and book-H2-A) could see an inconsistent
read set. In Megastore-CGC, this shows up as validation
aborts, whereas they are committed by Megastore.

We have also compared the performance on “Megastore-
friendly” transactions where each transaction only accesses
a single entity group. The performance of Megastore and
Megastore-CGC is virtually the same in this experiment:

Megastore Megastore-CGC
Comm. | Abs. | Avg.lat | Comm. | Abs. | Val.abs. | Avg.lat
Site 1 684 [ 120 122 679 | 125 0 120
RSite 674 | 138 132 677 | 135 0 130
Site 2 693 | 111 110 691 | 113 0 113

The small differences can be explained by nondeterminism;
e.g., the set of rewrite rules is different in the two models.

“Parts of the term are replaced by “...’



eq initState(N) =

{< RSite : Site
awaitingOrder : noAwaitingOrderSet, coordinator : ., egOrderings : ., --- ordering list for each order class
entityGroups :
(< H1 : EntityGroup | pendingWrites : emptyPWList, proposals : emptyProposalSet, replicas : ...,
entitiesState : ..., --- the initial value of each entity in H1
transactionLog : . > --- this entity group’s local copy of the replicated transaction log
< H2 : EntityGroup | ... >
< OrderSites : EntityGroup | . >), --- the special entity group used to map ordering classes to ordering sites
localTransactions : none, seqGen : 0 >
< Sitel : Site | ... >
< Site2 : Site | ... >
< NWRK : NetworkDelays |
connections : (conn(Sitel <-> RSite,< 1 ; 30 ; 30 > < 31 ; 60 ; 35 > < 61 ; 90 ; 40 > < 91 ; 100 ; 100 >, true) ;
conn(RSite <-> Site2, , true) ; conn(Sitel <-> Site2, , true)) >
< rnd : Random | seed : N >
< stats(Sitel): SiteStatistics | avglatency : O, commits : O, conflictAborts : 0, validationAborts : 0, ... >
< stats(RSite): SiteStatistics | ... > < stats(Site2): SiteStatistics | ... >
< transGen(RSite): PoissonTransGen | idCounter : 1, status : waiting(10),
workload : < 1 ; 25 ; update-H1-M > < 26 ; 50 ; update-H1-A > < 51 ; 75 ; update-H2-A > < 76 ; 100 ; book-H1-A > >
< transGen(Sitel): PoissonTransGen | ... > < transGen(Site2): PoissonTransGen | S

Figure 2: An initial state in our simulations (with parts of the term replaced by ¢...”).

The following table shows the result of simulating Megastore-

CGC in a challenging scenario, where 2% of the messages
are lost, and where one site (Site 2) repeatedly fails for half
a second, with a mean time between failures of 200 seconds:

Megastore-CGC
Comm. | Abs. | Val.abs | Avg.lat
Site 1 658 154 0 185
RSite 497 162 163 209
Site 2 469 160 189 169

If the ordering site cannot verify that it has the most re-
cent state (e.g., due to lost messages), transactions requir-
ing cross-entity group validation are preventively aborted,
explaining the number of validation aborts in this setting.

6. MODEL CHECKING VERIFICATION

It must be validated that Megastore-CGC is working in
the desired way before deploying it in a real cloud system.
However, Megastore-CGC is very complex, and any “hand
proof” of its correctness would be too superficial and error-
prone to instill much confidence in its correctness. Computer-
aided verification could prove correctness of Megastore-CGC,
but would require significant non-trivial user interaction.

We instead use model checking [3] to analyze our model.
Model checking automatically explores all possible behav-
iors that can happen nondeterministically from a given ini-
tial system configuration; such analysis therefore does not
verify that the system is correct for all possible initial config-
urations. In addition to verifying desired properties, model
checking is invaluable during the design process, and helped
us discover many subtle “corner case” bugs in (earlier ver-
sions of) Megastore-CGC that were not uncovered during
extensive simulation. (For example, what happens if a site
goes down, is invalidated, misses some updates, and then
comes up and becomes the ordering site again before an-
other site has been selected as the ordering site?)

We analyze the original nondeterministic model (not the
randomized one used for performance estimation). For the
model checking analysis to terminate, we only analyze sce-
narios with a finite number of transactions. Since the reach-
able state space quickly becomes very large due to the large

10

number of possible concurrent executions, we have also re-
stricted the different message delays, transaction start times,
site and communication failures, etc.

With a finite number of transactions, the system should
satisfy the property that in all states from some point on:

1. All transactions have finished their execution.

2. All replicas of an entity have the same value or the
coordinator of diverging site(s) is invalidated.

3. All logs for an entity group contain the same entries,
again unless a coordinator is invalidated.

4. The execution was serializable; i.e., it gives the same
result as some execution where the transactions are
executed one after the other.

This correctness property can be formalized as the temporal
logic formula (which we denote ® below)

<> [] (allTransFinished /\ entityGroupsEqualOrInvalid
/\ transLogsEqualOrInvalid /\ isSerializable)

where: allTransFinished is a state proposition that is true in
a state if all transactions have finished; entityGroupsEqual-
OrlInvalid is a state proposition that is true in all states
where all replicas of each entity have the same value, unless
the coordinator has been invalidated; and transLogsEqualOr-
Invalid is true when all transitions logs for each entity group
are equal (unless a coordinator has been invalidated). The
last of these propositions is defined as follows:

op transLogsEqualOrInvalid : -> Prop [ctor]

ceq {REST
< 81 : Site | coordinator : eglp(EG1, LP) ; EGLP,

entityGroups : < EG1 : EntityGroup | transactionLog : LOGL > ... >
< 82 : Site | coordinator : eglp(EG1l, LP) ; EGLP,

entityGroups : < EG1 : EntityGroup | transactionLog : LOG2 > ... >}

|= transLogsEqual = false if LOG1 =/= L0OG2 .
eq {SYSTEM} |= transLogsEqualOrInvalid = true [owise]

This definition first characterizes the states where transLogs-
EqualOrInvalid does not hold, namely, the states where there
are two sites with valid coordinators and with some entity
group EG1 with different values. The last equation, with the



Site Transaction Operations Start time
Site 1 | update-H1-A | read HI1-A; write(H1-A, Avail,) 150
RSite | update-H2-A | read H2-A; write(H2-A, Avails) 150
Site 2 | update-H2-A | read H2-A; write(H2-A, Availz) 150
RSite | book-H2-A read H1-A; read H2-A; write(H2-A, Booked;) | {180,210}
Site 2 | book-HI1-A read H2-A; read H1-A; write(H1-A, Bookeds) | {180,210}

Table 2: Example: Model checking setup

owise (“otherwise”) attribute, defines transLogsEqualOrInvalid
to be true for all other states. The other state propositions
can be defined similarly, as explained in [9].

To analyze the serializability property, we use the tech-
nique in [9] and add an “observer” object to the state that
stores the serialization graph resulting from the execution.
The state proposition isSerializable is then true in a state
if the serialization graph in the state does not contain cycles.

Model Checking. We have model checked the above tem-
poral logic formula ® with a number of different system
parameters. For example, we have executed the command
without site and communication failures, where the mes-
sage delay is either 30 or 80, with 5 transactions. Three
of the transactions have fixed start times at 150, while the
two remaining transactions may nondeterministically start
at either time 180 or time 210, i.e., we inject two conflict-
ing transactions in the middle of an execution with three
single-entity-group transactions. This setup is shown in 2.
As in Section 5, we use three sites and one ordering class
containing both entity group H1 and entity group H2.

We then use the following command to check whether each
behavior satisfies the desired properties in Megastore-CGC:

(mc initl |=u ® .)

which returned true in 124 seconds cpu time. The number
of different states reachable from the initial state is 108,279.

Performing the exact same model checking in Megastore
returns the following counterexample, in which there is both
an edge from book-H1-A to book-H2-A and from book-H2-A to

book-H1-A in the serialization graph:
Result ModelCheckResult : counterexample({initTransactions

< th

: TransactionHistory | graph :(
< book-H2-A ; book-H1-A > ;
< book-H1-A ; book-H2-A > ; ...) >},...)

Real-Time Maude outputs the entire behavior invalidating
® when the model checking fails; this was allowed us to easily
identify the (often subtle) issues causing the problem.

We have also successfully model checked Megastore-CGC
in a number of other scenarios, including:

e Three transactions, two possible start times, one site
failure and fixed message delay (1,874,946 reachable
states, model checked in 6,311 seconds).

e Three transactions, two possible start times, fixed mes-
sage delay and one message failure (265,410 reachable
states, model checked in 858 seconds).

7. RELATED WORK

Data stores such as Amazon’s Dynamo [7], Cassandra [10]
and Google’s BigTable [2] are widely used due to their com-
bination of high availability and scalability. However, given

11

their lack of transaction features, several data stores with
(limited) transaction support have emerged to address the
need for strong consistency in many real-world applications.
In addition to Megastore, ElasTraS [6], Spinnaker [17], and
Calvin [19] achieve high availability and scalability by par-
titioning the data, and provide consistency within each par-
tition. Both Megastore, Spinnaker, and Calvin use Paxos
to distribute updates among sites. We are not aware of any
generic, publicly available method for transactional consis-
tency across partitions besides Megastore-CGC. Google’s
Spanner [5] provides both high availability, scalability, and
transactional consistency across partitions, but this approach
is less generic since it demands a complex infrastructure in-
volving GPS hardware and atomic clocks.

Despite the importance of transactional data stores, we
have not seen any other work on formalizing and verifying
such systems using formal verification tools. In [16] the au-
thors assert the need for formal analysis of replication and
concurrency control in transactional cloud data stores, and
they present and analyze a prose-and-pseudo-code descrip-
tion of a concurrency control protocol based on Paxos. In
contrast to our work, this description is not amenable to
model checking and simulation.

A prerequisite for extending Megastore is to have detailed
knowledge of it, which is in itself a challenging task, since
Megastore is an internal system at Google that is publicly
described only in a quite informal way in the paper [1].
In [9] we therefore develop and model check a fairly detailed
Real-Time Maude model of Megastore. The value of us-
ing Maude [4] (the “untimed” version of Real-Time Maude)
for formally analyzing other cloud systems is demonstrated
in [18], where the authors point out possible bottlenecks in
a naive implementation of ZooKeeper for key distribution,
and in [8], where the authors analyze denial-of-service pre-
vention mechanisms.

8. CONCLUDING REMARKS

We have proposed Megastore-CGC as an extension of
Megastore to also provide consistency for transactions that
access multiple entity groups.

The main observation behind our approach is that, in
Megastore, sites replicating multiple partitions (entity groups)
implicitly observe an ordering of updates across this set of
partitions. We make this ordering explicit by defining or-
dering classes. An ordering class is a set of entity groups,
with at least one site replicating all the entity groups in
the set. One such site, the ordering site, maintains an or-
dering on all updates in the ordering class, and uses this
ordering to validate transactions. An important advantage
of Megastore-CGC is that ordering and validation is piggy-
backed onto the existing message interactions of Megastore’s
commit protocol, allowing Megastore-CGC to provide these
features without introducing new messages or waiting. This
is also reflected in our Monte Carlo simulations, which in-



dicate that the performance of Megastore-CGC is virtually
the same as that of Megastore.

We believe that the Megastore-CGC approach could be
applicable to other Paxos-based transactional data stores
such as Spinnaker [17] and Calvin [19]. However, one distin-
guishing feature of Megastore is the quite strong assumption
that each site has a coordinator which knows whether the
local site has received all updates. Without this feature,
changing the ordering site (in case of failure) becomes sig-
nificantly more complex.

A main question when applying Megastore-CGC is how
to partition entity groups into ordering classes. On the one
hand, ordering classes should be as large as possible to sup-
port transactions reading many different entity groups. On
the other hand, replicating a large number of entity groups
at the same site(s) may be impractical, and reduces fault
tolerance since failover of the ordering site is provided only
if there are other available sites replicating all entity groups
in the ordering class.

Designing and validating a sophisticated, fault tolerant
protocol such as Megastore-CGC is very challenging. We
use Real-Time Maude to give a precise, formal specification
of Megastore-CGC. Real-Time Maude specifications are ex-
ecutable, which allows us both to simulate the system for
quick prototyping and performance estimation, as well as
to use model checking to automatically explore all possible
behaviors from a given system configuration, both to ver-
ify properties, but also to find subtle “corner case” design
errors. Model checking was very helpful during the design
process, since it uncovered many subtle errors that were not
found during extensive simulations.

9. REFERENCES
[1] J. Baker et al. Megastore: Providing scalable, highly

available storage for interactive services. In CIDR’11.
www.cidrdb.org, 2011.

[2] F. Chang et al. Bigtable: A distributed storage system
for structured data. ACM Trans. Comput. Syst.,
26(2):4:1-4:26, 2008.

[3] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2001.

[4] M. Clavel et al. All About Maude, volume 4350 of
LNCS. Springer, 2007.

[5] J. C. Corbett et al. Spanner: Google’s globally-
distributed database. In OSDI’12. USENIX, 2012.

[6] S. Das, D. Agrawal, and A. E. Abbadi. ElasTraS: An
elastic transactional data store in the cloud. In
USENIX HotCloud. USENIX, 2009.

12

[7] G. DeCandia et al. Dynamo: Amazon’s highly
available key-value store. SIGOPS Oper. Syst. Rewv.,
41:205-220, 2007.

[8] J. Eckhardt et al. Stable availability under denial of
service attacks through formal patterns. In FASE
2012, volume 7212 of LNCS. Springer, 2012.

[9] J. Grov and P. C. Olveczky. Formal modeling and

analysis of Google’s Megastore in Real-Time Maude.

In Specification, Algebra, and Software, 2014. To

appear in Springer LNCS,

http://folk.uio.no/jongr/ms.pdf.

A. Lakshman and P. Malik. Cassandra: a

decentralized structured storage system. SIGOPS

Oper. Syst. Rev., 44:35—40, 2010.

L. Lamport. Paxos made simple. ACM Sigact News,

32(4):18-25, 2001.

J. Meseguer. Membership algebra as a logical

framework for equational specification. In Proc.

WADT’97, volume 1376 of LNCS. Springer, 1998.

P. C. Olveczky and J. Meseguer. Semantics and

pragmatics of Real-Time Maude. Higher-Order and

Symbolic Computation, 20(1-2):161-196, 2007.

P. C. Olveczky, J. Meseguer, and C. L. Talcott.

Specification and analysis of the AER/NCA active

network protocol suite in Real-Time Maude. Formal

Methods in System Design, 29(3):253-293, 2006.

P. C. Olveczky and S. Thorvaldsen. Formal modeling,

performance estimation, and model checking of

wireless sensor network algorithms in Real-Time

Maude. Theoretical Computer Science,

410(2-3):254-280, 2009.

S. Patterson et al. Serializability, not serial:

concurrency control and availability in

multi-datacenter datastores. Proc. VLDB,

5(11):1459-1470, 2012.

J. Rao, E. J. Shekita, and S. Tata. Using Paxos to

build a scalable, consistent, and highly available

datastore. Proc. VLDB, 4(4):243-254, 2011.

S. Skeirik, R. B. Bobba, and J. Meseguer. Formal

analysis of fault-tolerant group key management using

ZooKeeper. In Proc. CCGRID. IEEE, 2013.

A. Thomson et al. Calvin: Fast distributed

transactions for partitioned database systems. In Proc.

SIGMOD 2012. ACM, 2012.

G. Weikum and G. Vossen. Concurrency Control and

Recovery in Database Systems. Morgan Kaufman,

2001.

(10]

[11]

(12]

(13]

(14]

[15]

[16]

(17]

18]

(19]

20]



Part III
Appendices






Appendix A
Real-Time Maude Example

The following listing contains:

The modules defined in the examples of Section 3.

A sample initial state, defined as the equation initState.
A sample model-checking setup for initState.

A sample simulation setup for initState.

Assuming a working Maude environment, and Real-Time Maude installed in

the directory RTM32, the model can be executed as is.

Listing A.1 rtm_example.rtmaude

load RTM23/real—time—maude

(tmod TIME—DOMAIN is pr NAT—TIME—DOMAIN—WITH—INF .
endtm)

(tomod TIMED—BEHAVIOR is
pr TIME—DOMAIN .

var C : Configuration .
vars NEC NEC' : NEConfiguration .
var T : Time .

crl [tick] :
{C} => {delta(C, mte(C))} in time mte(C) if mte(C) > 0 /\ mte(C) =/= INF .

op delta : Configuration Time —> Configuration [format (r! o) frozen (1)] .
eq delta(none, T) = none .
eq delta(NEC NEC', T) = delta(NEC, T) delta(NEC', T) .

op mte : Configuration —> TimeInf [format (r! o) frozen (1)] .
eq mte(none) = INF .
eq mte(NEC NEC') = min(mte(NEC), mte(NEC')) .

endtom)

(mod SETUP is
inc TIMED—BEHAVIOR .
sorts Item ItemVal .

sorts OpList Op Read Write .
sort NoOp .

127




128 A Real-Time Maude Example

subsorts Read Write < Op < NoOp < OpList .

op read : Item —> Read [ctor] .

op write : Item ItemVal —> Write [ctor] .

op noOp : —> NoOp [ctor] .

op _::_ : OpList OpList —> OpList [assoc id: noOp] .

vars PRED SUCC : OpList .

op isReadOnly? : OpList —> Bool .
eq isReadOnly?(PRED :: write(I:Item, IV:ItemVal) :: SUCC) = false .
eq isReadOnly?(OPLIST:0pList) = true [owise] .

endm)

(tomod TRANSACTION is
inc SETUP .

var OPLIST : OpList .
vars T1 T2 : Time .
var TID : 0id .

class Trans | ops : OpList, nextop : Time .
class UpdateTrans | bufferedWrites : OpList .
subclass UpdateTrans < Trans .

eq mte(< TID : Trans | ops : OPLIST:OpList, nextop : T1:Time >) = T1:Time .
eq delta(< TID : Trans | ops : OPLIST, nextop : T1 >, T2) =
< TID : Trans | ops : OPLIST, nextop : T1 monus T2 > .
endtom)

(tomod SITE is
inc TRANSACTION .
inc NAT .

var OPLIST : OpList .

var OP : Op .

vars SID TID : 0id .

var TRANS : Configuration .
var T : Time .

class Site |
transactions : Configuration,
available : Bool,
numCompl : Nat .

eq mte(< SID : Site | transactions : TRANS >) = mte(TRANS) .
eq delta(< SID : Site | transactions : TRANS >, T) =
< SID: Site | transactions : delta(TRANS, T) > .

msg newlrans : 0id OpList —> Msg .

crl [receiveNewUpdateTrans] :
newTrans(TID, OPLIST)
< SID: Site | transactions : TRANS, available : true >
=>
< SID: Site | transactions : TRANS < TID : Trans | ops : OPLIST, nextop : 0 > >
if not isReadOnly?(OPLIST) .

rl [nextOperation] :
< SID: Site |
transactions : < TID : Trans | ops : OP :: OPLIST, nextop : 0 > TRANS




A Real-Time Maude Example 129

>
=>
< SID: Site |
transactions : < TID : Trans | ops : OPLIST, nextop : 10 > TRANS
> .
endtom)

(tomod INIT is
inc SITE .

opsts:—>0id .opsxy:—> Item.opVv:—> ItemVal .

op initState : —> GlobalSystem .

eq initState = {
< s :Site | transactions : none, available : true, numCompl : 0 >
newTrans(t, read(x) :: read(y) :: write(x, v))

1.

endtom)

(tomod PROPS is
inc INIT .
inc TIMED—MODEL—CHECKER .
vars SID TID : 0id .
var OPLIST : OpList .
var SYSTEM : Configuration .

op isComplete : —> Prop [ctor] .
eq { < SID: Site | transactions : < TID:0id : Trans | ops : noOp > > SYSTEM}
|= isComplete = true .
endtom)

(mc initState |=u <> isComplete .)

(set tick def 1.)
(tfrew initState in time <= 30 .)







Appendix B
Real-Time Maude Model of Megastore

Listing B.1 time_behavior.rtmaude

(tomod TIMED—BEHAVIOR is
pr TIME—DOMAIN .

var C : Configuration .
vars NEC NEC' : NEConfiguration .
var T : Time .

crl [tick] :
{C} => {delta(C, mte(C))} in time mte(C) if mte(C) > 0 /\ mte(C) =/= INF .

op delta : Configuration Time —> Configuration [format (r! o) frozen (1)] .
eq delta(none, T) = none .
eq delta(NEC NEC', T) = delta(NEC, T) delta(NEC', T) .

op mte : Configuration —> TimeInf [format (r! o) frozen (1)] .
eq mte(none) = INF .
eq mte(NEC NEC') = min(mte(NEC), mte(NEC')) .

endtom)

Listing B.2 megastore_setup.rtmaude

(tomod MEGASTORE—SETUP is
inc TIMED—BEHAVIOR .
inc RANDOM .

var SID : Siteld .

var EGRS : EntityGroupReplicaSet .
var LP : LogPosition .

var TID : TransId .

vars N N' : Nat .

var SIL : SiteIdList .

vars 0ID 0 0' : 0id .

vars 0S 0IS 0S1 0S2 : OidSet .

var CES : EntGroupLogPosPairSet .
var LP : LogPosition .

var EG : EntityGroupId .

var OL : OperationList .

var LOCALTRANS : Configuration .

s ( Mapping from entity group to log position sxx)

sorts EntGroupLogPosPair EntGroupLogPosPairSet DefEntGroupLogPosPair .
subsort EntGroupLogPosPair < EntGroupLogPosPairSet .

131




132 B Real-Time Maude Model of Megastore

op noEntGroupLogPosPair : —> EntGroupLogPosPairSet [ctor] .

op eglp : EntityGroupld LogPosition —> EntGroupLogPosPair [ctor] .

op _;_ : EntGroupLogPosPairSet EntGroupLogPosPairSet —> EntGroupLogPosPairSet [ctor assoc comm id:
noEntGroupLogPosPair] .

——— Used for coordinator
op invalidCstate : EntityGroupId LogPosition —> EntGroupLogPosPair [ctor] .

op containsEntityGroupld : EntityGroupId EntGroupLogPosPairSet —> Bool .
eq containsEntityGroupId(EG, eglp(EG, LP) ; CES) = true .
eq containsEntityGroupId(EG, CES) = false [owise] .

sk Sites )k
sort Siteld .
subsort Siteld < 0id .

class Site |
coordinator : EntGroupLogPosPairSet,
entityGroups : Configuration,
localTransactions : Configuration .

s ( Transaction log )*xx

sorts LogPosition LogPositionList DefLogPosition .

subsort LogPosition < LogPositionList .

subsort LogPosition < DefLogPosition .

op noLogPosition : —> DefLogPosition [ctor] .

op emptyLPlist : —> LogPositionList [ctor] .

op lpos : Nat —> LogPosition [ctor] .

op _:_ : LogPositionList LogPositionList —> LogPositionList [ctor assoc id: emptyLPlist] .

op min : LogPosition DefLogPosition —> LogPosition .
eq min(1lpos(N), 1pos(N')) = if (N <= N') then lpos(N) else lpos(N') fi .
eq min(1pos(N), noLogPosition) = lpos(N) .

sorts LogEntry LogEntryList .

subsort LogEntry < LogEntryList .

op noEntries : —> LogEntryList [ctor] .

——— Usage: Transaction Logposition Siteld Leader—replica Updates

op ____ : TransId LogPosition SiteId OperationlList —> LogEntry [ctor] .

op _::i_ : LogEntryList LogEntryList —> LogEntryList [ctor assoc id: noEntries] .

sk Entities )sook

sorts EntityId EntityIdSet .

subsort Entityld < EntityIdSet .

op emptyEntityIdSet : —> EntityIdSet [ctor] .

op entity : EntityGroupId Nat —> EntityId [ctor] .

op _;_ : EntityIdSet EntityIdSet —> EntityIdSet [ctor assoc comm id: emptyEntityIdSet] .

sorts Entity EntitySet .

subsort Entity < EntitySet .

op emptyEntitySet : —> EntitySet [ctor] .

op _|—>_ : EntityId EntityVersionList —> Entity [ctor] .

op _;_ : EntitySet EntitySet —> EntitySet [ctor assoc comm id: emptyEntitySet] .

sort EntityValue .
op v : Nat —> EntityValue [ctor] .

sorts EntityVersion EntityVersionList .

subsort EntityVersion < EntityVersionList .

op noEntityVersions : —> EntityVersionList [ctor] .

op __ : LogPosition EntityValue —> EntityVersion [ctor] .




B Real-Time Maude Model of Megastore 133

op _::i_ : EntityVersionList EntityVersionList —> EntityVersionList [ctor assoc id: noEntityVersions]

sk ( Transactions )ssx

sorts TransId .

subsort TransId < 0id .

op initTrans : —> TransId [ctor] .

sorts Operation OperationList .

subsort Operation < OperationList .

op cr : EntityId —> Operation [ctor] .

op w : EntityId EntityValue —> Operation [ctor] .

op emptyOpList : —> OperationList [ctor] .

op _::i_ : OperationList OperationList —> OperationList [ctor assoc id: emptyOpList] .

sort TransStatus .

ops idle in—paxos : —> TransStatus [ctor] .

op executing : LogPosition Time —> TransStatus [ctor] .
op transTimer : Time —> TransStatus [ctor] .

op defTimeout : —> Time .

Kok

(

Coordination state represents a mapping to allow a running transaction to keep metadata per replica,
eg. while conducting a current read

KoKk )

sorts ReadState ReadStateSet .

subsort ReadState < ReadStateSet .

op emptyReadState : —> ReadStateSet [ctor] .

op _;_ : ReadStateSet ReadStateSet —> ReadStateSet [ctor assoc comm id: emptyReadState] .

sorts PaxosState PaxosStateSet .

subsort PaxosState < PaxosStateSet .

op emptyPaxosState : —> PaxosStateSet [ctor] .

op _;_ : PaxosStateSet PaxosStateSet —> PaxosStateSet [ctor assoc comm id: emptyPaxosState] .

class Transaction |
operations : OperationList,
reads : EntitySet,
writes : OperationList,
status : TransStatus,
readState : ReadStateSet,
paxosState : PaxosStateSet .

op createNewTrans : TransId OperationList —> Object .
eq createNewTrans(TID, OL) =
< TID : Transaction | operations : OL, status : idle,
readState : emptyReadState,
paxosState : emptyPaxosState,
reads : emptyEntitySet, writes : emptyOpList > .

w4 ( Applying updates skx)

sort PendingWriteState .

ops idle : —> PendingWriteState [ctor] .

op updating : Time —> PendingWriteState [ctor] .

sorts PendingWrite PendingWriteList .

subsort PendingWrite < PendingWriteList .

op pw : LogPosition PendingWriteState OperationList —> PendingWrite [ctor] .

op emptyPWList : —> PendingWriteList [ctor] .

op _::i_ : PendingWriteList PendingWriteList —> PendingWriteList [ctor assoc id: emptyPWList] .




134 B Real-Time Maude Model of Megastore

sx%( Update coordination ssx)
sorts Propnum DefPropnum .
subsort Nat < Propnum .
subsort Propnum < DefPropnum .

op noPropnum : —> DefPropnum .

sorts PaxosProposal PaxosProposalSet .
subsort PaxosProposal < PaxosProposalSet .
op emptyProposalSet : —> PaxosProposalSet .
op proposal : SiteId TransId LogPosition OperationList Propnum —> PaxosProposal [ctor] .
op accepted : Siteld LogEntry Propnum —>> PaxosProposal [ctor] .
op _;_ : PaxosProposalSet PaxosProposalSet —>
PaxosProposalSet [ctor assoc comm id: emptyProposalSet] .

s#%( Replicas with metadata sss)

sorts EntityGroupReplica EntityGroupReplicaSet .

subsort EntityGroupReplica < EntityGroupReplicaSet .

op egr : SiteId Nat LogPosition —> EntityGroupReplica [ctor] .

op noEGR : —> EntityGroupReplicaSet [ctor] .

op _;_ : EntityGroupReplicaSet EntityGroupReplicaSet —>
EntityGroupReplicaSet [ctor comm assoc id: noEGR]| .

op getSites : EntityGroupReplicaSet —> SiteldSet .
eq getSites(egr(SID, N, LP) ; EGRS) = SID ; getSites(EGRS) .
eq getSites(noEGR) = emptyOidSet .

sk EntityGroups )
sort EntityGrouplId .
subsort EntityGroupld < 0id .

class EntityGroup |
entitiesState : EntitySet,
replicas : EntityGroupReplicaSet,
proposals : PaxosProposalSet,
pendingWrites : PendingWritelList,
transactionLog : LogEntryList .

sk ((Site id—lists k)

sort SiteIdList .

subsort Siteld < SiteIdList .

op emptySiteIdList : —> SiteIdList [ctor] .

op _:i_: SiteIdList SiteIdList —> SiteIdList [ctor assoc id: emptySiteIdList] .
op length : SiteIdList —> Nat .

eq length(SID :: SIL) = 1 + length(SIL) .

eq length(emptySiteIdList) =0 .

s#% ( Necessary set constructs sskx)

sort NatSet .

subsort Nat < NatSet .

op emptyNatSet : —> NatSet [ctor] .

op _;_ : NatSet NatSet —> NatSet [ctor assoc comm id: emptyNatSet] .

sorts Empty0idSet SiteIdSet TransIdSet EntityGroupIdSet OidSet .
subsort Empty0idSet < TransIdSet EntityGroupIdSet SiteIdSet < 0idSet .
subsort TransId < TransIdSet .

subsort EntityGroupId < EntityGroupIdSet .

subsort Siteld < SiteldSet .

subsort 0id < OidSet .




B Real-Time Maude Model of Megastore

op empty0idSet : —> Empty0idSet [ctor] .

op _;_ : Empty0idSet Empty0OidSet —> EmptyOidSet [ctor assoc comm id: emptyOidSet] .

: TransIdSet TransIdSet —> TransIdSet [ctor ditto] .

op _;

op _;_ : EntityGroupIdSet EntityGroupIdSet —> EntityGroupIdSet [ctor ditto] .
: SiteIdSet SiteIdSet —> SiteIdSet [ctor ditto] .

op _;_ : 0idSet 0idSet —> OidSet [ctor ditto] .

eq0;0=0.

op _setminus_ : 0idSet OidSet —> 0idSet [assoc] .
eq (081 ; 0) setminus (0S2 ; 0) = 0S1 setminus (0S2 ; 0) .
eq 0S1 setminus 0S2 = 0S1 [owise] .

op _in_ : 0id 0idSet —> Bool .
eq 0in (0 ; 0S) = true .
eq 0 in 0S = false [owise] .

sk (Aggregates k)

op size : 0idSet —> Nat .

eq size(0ID ; 0IS) = 1 + size(OIS setminus 0ID) .
eq size(empty0idSet) =0 .
endtom)

(omod MSG—WRAPPERS is
inc MEGASTORE—SETUP .

var MC : MsgContent .

vars SID SID' : Siteld .

var SIS : SiteldSet .

vars SYSTEM REST : Configuration .

sort MsgContent .

op msg_from_to_ : MsgContent Siteld Siteld —> Msg [ctor] . ——— msg to be read/rcvd
op uniCast_from_to_ : MsgContent SiteId SiteId —> Msg [ctor] . ——— msg to be transmitted

op multiCast_from_to_ : MsgContent Siteld SiteIdSet —> MsgConfiguration .

——— Sometimes we need to store the set of message contents received,
——— and we therefore define a sort for multisets of message contents:
sort MsgContentSet .

subsort MsgContent < MsgContentSet .

op noMsgContent : —> MsgContentSet [ctor] .

op __ : MsgContentSet MsgContentSet —> MsgContentSet [ctor assoc comm id: noMsgContent] .

eq multiCast MC from SID to (SID'; SIS) =
(uniCast MC from SID to SID')
(multiCast MC from SID to SIS) .

eq multiCast MC from SID to empty0idSet = none .

endom)

(omod CLIENT—INTERFACE is
inc MEGASTORE—SETUP .

msg newTrans : Siteld TransId OperationList —> Msg .

msg notifyCommit : Siteld TransId EntGroupLogPosPairSet EntitySet OperationList —> Msg .

msg notifyReadOnlyCommit : SiteId TransId EntitySet —> Msg .
msg notifyConflictAbort : Siteld TransId EntitySet OperationList —> Msg .
msg notifyAbort : Siteld TransId EntitySet OperationList —> Msg .

endom)

135




136 B Real-Time Maude Model of Megastore

Listing B.3 client_mc.rtmaude

(omod CLIENT—FOR—MODEL—CHECKING is
inc CLIENT—INTERFACE .
inc TRANSACTION—HISTORY .

var TID : TransId .

vars OL : OperationList .

vars SID SID' : Siteld .

var LOCALTRANS : Configuration .
var READS : EntitySet .

var WRITES : OperationList .

var EG : EntityGroupId .

var EVAL : EntityValue .

vars N N' : Nat .

vars LP LP' : LogPosition .

var EID : Entityld .

var ES : EntitySet .

var THIST : Configuration .

var TH : 0id .

var EGLP : EntGroupLogPosPairSet .

——— Receive transaction request
rl [newTrans] :
(newTrans(SID, TID, OL))
< SID: Site | localTransactions : LOCALTRANS >
=>
< SID: Site | localTransactions : createNewTrans(TID, OL) LOCALTRANS > .

rl [notifyCommit] :
(notifyCommit(SID, TID, EGLP, READS, WRITES))
< TH : TransactionHistory | >
=>
updateHistoryReads(TID, READS,
updateHistoryWrites(TID, EGLP, WRITES, < TH : TransactionHistory | >)) .

rl [notifyReadOnlyCommit] :
(notifyReadOnlyCommit(SID, TID, READS))
< TH : TransactionHistory | >
=>
updateHistoryReads(TID, READS, < TH : TransactionHistory | >) .

op updateHistoryReads : TransId EntitySet Configuration —> Configuration .

eq updateHistoryReads(TID, (EID |—> (LP' EVAL)) ; ES, THIST) = updateHistoryReads(TID, ES, addRead(
TID, EID, LP', THIST)) .

eq updateHistoryReads(TID, emptyEntitySet, THIST) = THIST .

op updateHistoryWrites : TransId EntGroupLogPosPairSet OperationList Configuration —>
Configuration .

eq updateHistoryWrites(TID, eglp(EG, LP) ; EGLP, w(entity(EG,N), EVAL) :: OL, THIST) =
updateHistoryWrites(TID, eglp(EG, LP) ; EGLP, OL, addWrite(TID, entity(EG,N), LP, THIST)) .

eq updateHistoryWrites(TID, EGLP, emptyOpList, THIST) = THIST .

rl [notifyConflictAbort] :
(notifyConflictAbort(SID, TID, READS, WRITES))
=>
none .

endom)

Listing B.4 current_read.rtmaude

T



B Real-Time Maude Model of Megastore

(tomod CURRENT—READ is
inc MEGASTORE—SETUP .
inc MSG—WRAPPERS .

vars TID TID' : TransId .

vars SID SID' THIS SENDER : Siteld .
var TS : TransStatus .

vars SIS SIS': SiteldSet .

var EGRS : EntityGroupReplicaSet .
var EID : EntityId .

var EGID : EntityGroupld .

vars CNT N N' N1 N2 : Nat .

var EGIS : EntityGroupIdSet .

var LOCALTRANS : Configuration .
vars OL OL' : OperationList .

vars ES BSTATE READS : EntitySet .
var EV : EntityVersion .

var DLP : DefLogPosition .

vars LP LP' : LogPosition .

vars VAL1 VAL2 : EntityValue .

vars EG EG' : EntityGroupId .

var CE : EntGroupLogPosPair .

var CES : EntGroupLogPosPairSet .
var EGROUPS : Configuration .

vars EVERSIONS EVERSIONS' : EntityVersionList .
var RSTATE : ReadStateSet .

var LEL : LogEntryList .

var T : Time .

var SIL : SiteIdList .

vars OL1 OL2 : OperationList .

op readpos : EntityGroupld LogPosition —> ReadState [ctor] .

ops readDelay : —> Time .

——— Proceed transaction locally

stk

——— Current read:

——— % If local coordinator is up—to—date (e.g. an

——— entry for the given entityid exists in the coordinator state):
——— Read locally.

——— % If local coordinator is not up—to—date, perfom

——— amajority read to find the maximum logposition. Once a given
——— logposition has been received from a majority of sites, the
——— most responsive replica is elected for a "catchup”. See

——— MAJORITY—READ for details. In addition to the modelled delay
——— for local access (representing the actual bigtable—lookup), we
——— require the pending write queue to be empty We store the most
——— recent log entry upon start of the read — this LP is maintained
——— throughout the transaction. Any conflict with concurrent

——— updates will then be detected upon commit.

*kk )

skx A: Non—faulty scenario: Perform a local read
crl [CRAl1—startCurrentLocalRead] :
< SID: Site |
coordinator : (eglp(EG, LP) ; CES),
entityGroups : < EG : EntityGroup |
pendingWrites : emptyPWList > EGROUPS,

localTransactions : < TID : Transaction | operations : cr(entity(EG,N)) :: OL, status :

LOCALTRANS >

137

idle >




138 B Real-Time Maude Model of Megastore

< SID : Site |
localTransactions : < TID : Transaction | operations : cr(entity(EG,N)) :: OL, status :
executing(LP, readDelay) > LOCALTRANS >
if not (containsUpdate(entity(EG,N), OL) and inConflictWithRunning(EG, LOCALTRANS)) .

op inConflictWithRunning : EntityGroupId Configuration —> Bool .
ceq inConflictWithRunning(EG, < TID : Transaction |
status : TS, reads : READS, operations : OL1 :: w(entity(EG,N), VAL1) :: OL2 > LOCALTRANS) = true
if not (TS == idle and filterReads(EG, READS) == emptyEntitySet) .
eq inConflictWithRunning(EG, < TID : Transaction | writes : OL1 :: w(entity(EG,N), VAL1) :: OL2 >
LOCALTRANS) = true .
eq inConflictWithRunning(EG, LOCALTRANS) = false [owise] .

op filterReads : EntityGroupId EntitySet —> EntitySet .
eq filterReads(EG, (entity(EG,N) |[—> EV) ; ES) = (entity(EG,N) |—> EV) ; filterReads(EG, ES) .
eq filterReads(EG, ES) = emptyEntitySet [owise] .

op containsUpdate : EntityId OperationList —> Bool .
eq containsUpdate(EID, OL1 :: w(EID, VAL1) :: OL2) = true .
eq containsUpdate(EID, OL) = false [owise] .

rl [CRA2—endCurrentLocalRead] :
< SID : Site |
entityGroups :
< EG : EntityGroup | entitiesState : (entity(EG,N) |—> EVERSIONS) ; BSTATE > EGROUPS,
localTransactions : < TID : Transaction | operations : cr(entity(EG,N)) :: OL, status :
executing(LP, 0), readState : RSTATE,
reads : READS > LOCALTRANS >
=>
< SID : Site |
localTransactions : < TID : Transaction | operations : OL, status : idle,
readState : readpos(EG, LP) ; RSTATE,
reads : (entity(EG,N) |—> getVersion(LP, EVERSIONS)) ; READS > LOCALTRANS > .

op getVersion : LogPosition EntityVersionList —> EntityVersion .

ceq getVersion(lpos(N), EVERSIONS :: (1pos(N1) VAL1) :: (1pos(N2) VAL2) :: EVERSIONS') = (lpos(N1) VAL1)
if (N1 <N /\ N < N2) .

ceq getVersion(lpos(N), EVERSIONS :: (1pos(N1) VAL1)) = (1lpos(N1) VAL1) if (N1 <=N) .

op hasQuorum : Nat SiteIdSet —> Bool .
eq hasQuorum(N, SIS) = (N >= (size(SIS) quo 2 + 1)) .

endtom)

Listing B.5 updates.rtmaude

(tomod UPDATES is
inc CLIENT—INTERFACE .
inc CURRENT—READ .

var EID : EntityId .

var EIDSET : EntityGroupIdSet .

vars N N' N1 N2 : Nat .

var NS : NatSet .

vars T EXP : Time .

vars PN PN' PROPNUM : Propnum .

var PXSID : Nat .

vars DPN SEEN—PROPNUM : DefPropnum .
vars EG EG' : EntityGroupld .

var EGROUPS : Configuration .




B Real-Time Maude Model of Megastore 139

vars TID TID' TID1 TID2 TID3 : TransId .

vars SID SID' MSID1 MSID2 SENDER THIS : Siteld .
vars SIS SIS—FAILED REPLICAS : SiteIdSet .

var EGRS : EntityGroupReplicaSet .

var RSTATE : ReadStateSet .

vars PSTATE NEW—PAXOS—STATE : PaxosStateSet .
vars LOCALTRANS LTRANS1 LTRANS2 : Configuration .
vars WRITEOPS OL OL' OL1 OL2 : OperationList .
var OP : Operation .

var PROPSET : PaxosProposalSet .

vars VAL VAL' : EntityValue .

vars LEL LEL' : LogEntryList .

vars LE LE' NEW—LE NEXT—VALUE : LogEntry .
vars LP LP' : LogPosition .

var ES : EntitySet .

vars EVERSIONS EVERSIONS' : EntityVersionList .
var PWL : PendingWriteList .

var CA : Bool .

var RND : 0id .

var CE : EntGroupLogPosPair .

var CES : EntGroupLogPosPairSet .

var READS : EntitySet .

var WRITES : OperationList .

op defPropExp : —> Time .
ops updateDelay : —> Time .

sk Messages #kx)

op acceptLeaderReq : TransId EntityGroupld LogEntry —> MsgContent .

op acceptLeaderRsp : TransId EntityGroupId LogPosition —> MsgContent .

op signalConflict : TransId EntityGroupId LogPosition —> MsgContent .

op acceptAllReq : TransId EntityGroupIld LogEntry Propnum —> MsgContent .

op acceptAllRsp : TransId EntityGroupld LogPosition Propnum —> MsgContent .
op applyReq : TransId EntityGroupIld LogPosition Propnum —> MsgContent .

op acceptLeader : EntityGroupld LogEntry SiteId Time —> PaxosState [ctor] .

——— Propnum == proposal number, SiteIdSetl == sites responded yes
op acceptAll : EntityGroupId LogEntry Propnum SiteIdSet Time —> PaxosState [ctor] .
——— SiteldSet == sites who did not accept

op acceptedPS : EntityGroupId LogEntry Propnum —>> PaxosState [ctor] .

sx%( Paxos—states involved in presence of errors, see UPDATE—FAULT—HANDLERS ss:)

——— Propnuml == proposal number, Propnum2 == seen proposal number, SiteIdSet == sites responded
op prepare : EntityGroupId LogEntry Propnum DefPropnum SiteIdSet Time —>> PaxosState [ctor] .

op restartPrepare : EntityGroupId LogEntry Time —> PaxosState [ctor] .

——— SiteldSet == sites who did not accept

op invalidating : EntityGroupId LogEntry Propnum SiteIdSet Time —>> PaxosState [ctor] .

rl [bufferWriteOperation] :
< SID : Site |
localTransactions : < TID : Transaction | operations : w(EID, VAL) :: OL, writes : WRITEOPS,
status : idle > LOCALTRANS

>
=>
< SID: Site |
localTransactions : < TID : Transaction | operations : OL, writes : WRITEOPS :: w(EID, VAL) >
LOCALTRANS




140 B Real-Time Maude Model of Megastore

crl [initiateCommit] :
< SID: Site |
entityGroups : EGROUPS,
localTransactions : < TID : Transaction | operations : emptyOpList, writes : WRITEOPS,
readState : RSTATE, paxosState : PSTATE, status : idle > LOCALTRANS

>
=>
< SID: Site |
localTransactions : < TID : Transaction |
paxosState : NEW—PAXOS—STATE, status : in—paxos > LOCALTRANS
>

(createAcceptLeaderMessages(SID, NEW—PAXOS—STATE))
if EIDSET := getEntityGroupIlds(WRITEOPS) /\
NEW—PAXOS—STATE := initiatePaxosState(EIDSET, TID, WRITEOPS, SID, RSTATE, EGROUPS) .

op initiatePaxosState : EntityGroupIdSet TransId OperationList SiteId ReadStateSet Configuration
—> PaxosStateSet .
eq initiatePaxosState(EG ; EIDSET, TID, WRITEOPS, SID, readpos(EG, 1pos(N)) ; RSTATE,
< EG : EntityGroup | transactionLog : LEL :: (TID' 1pos(N) MSID1 OL1) :: LEL' > EGROUPS) =
acceptLeader(EG, (TID lpos(s N) SID filterEGWrites(EG, WRITEOPS)), MSID1, defTimeout)
; initiatePaxosState(EIDSET, TID, WRITEOPS, SID, RSTATE, < EG : EntityGroup | > EGROUPS) .
eq initiatePaxosState(empty0idSet, TID, WRITEOPS, SID, RSTATE, EGROUPS) = emptyPaxosState .

op getEntityGroupIds : OperationList —> EntityGroupIdSet .
eq getEntityGrouplds(w(entity(EG,N),VAL) :: OL) = EG ; getEntityGroupIds(OL) .
eq getEntityGroupIds(emptyOpList) = empty0idSet .

op createAcceptLeaderMessages : Siteld PaxosStateSet —> Configuration .
eq createAcceptLeaderMessages(SID, acceptLeader(EG, (TID LP MSID2 OL), MSID1, EXP) ; PSTATE) =
(uniCast acceptLeaderReq(TID, EG, (TID LP MSID2 OL)) from SID to MSID1)
createAcceptLeaderMessages(SID, PSTATE) .
eq createAcceptLeaderMessages(SID, PSTATE) = none [owise] .

op filterEGWrites : EntityGroupId OperationList —> OperationList .

eq filterEGWrites(EG, emptyOpList) = emptyOpList .

eq filterEGWrites(EG, w(entity(EG, N), VAL) :: OL) = w(entity(EG,N), VAL) :: filterEGWrites(EG, OL) .
eq filterEGWrites(EG, w(entity(EG', N), VAL) :: OL) = filterEGWrites(EG, OL) [owise] .

——— For read—only transactions, we remove the transaction and commit immediately
rl [initiateCommitReadOnly] :
< SID: Site |
localTransactions : < TID : Transaction | operations : emptyOpList, reads : READS, writes :
emptyOpList > LOCALTRANS

>
=>
< SID: Site |
localTransactions : LOCALTRANS
>

(notifyReadOnlyCommit(SID, TID, READS)) .

s#%( Section 4.6.3 of Baker et.al Accept Leader. No conflicting proposal sx)

——— Note: In the "Fast write” —scenario, we do not run the explicit prepare step. But it appears
——— correct to regard the present proposal as proposal number 0 and store this at the leader
——— (if the original proposer then fails, there is a chance its value will ”survive” due to
——— this)
crl [L2successfulleaderAccept] :

(msg acceptLeaderReq(TID, EG, (TID LP SID OL)) from SENDER to THIS)




B Real-Time Maude Model of Megastore 141

< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : PROPSET, transactionLog : LEL > EGROUPS
>
=>
< THIS : Site |
entityGroups :
< EG : EntityGroup |
proposals : accepted(SENDER, (TID LP SID OL), 0) ; PROPSET
>
EGROUPS
>
(uniCast acceptLeaderRsp(TID, EG, LP) from THIS to SENDER)
if not (containsLPos(LP, LEL) or conflictingProposal(TID, LP, 0, PROPSET)) .

op conflictingProposal : TransId LogPosition Propnum PaxosProposalSet —> Bool .
ceq conflictingProposal(TID, LP, PROPNUM, proposal(SID, TID', LP, OL, PN) ; PROPSET) =
true if (PN >= PRDPNUM) .
ceq conflictingProposal(TID, LP, PROPNUM, accepted(SID, LE, PN) ; PROPSET) =
true if (PN >= PROPNUM) .
eq conflictingProposal(TID, LP, PROPNUM, PROPSET) = false [owise] .

op containsLPos : LogPosition LogEntryList —> Bool .
eq containsLPos(LP, LEL :: (TID LP SID OL) :: LEL') = true .
eq containsLPos(LP, LEL) = false [owise] .

s#%( Section 4.6.3 Accept Leader/Invalidate. Paxos with conflicting proposals )
crl [LFircvAcceptLeaderReq] :
(msg acceptLeaderReq(TID, EG, (TID LP MSID1 OL1)) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup |
transactionlog : LEL,
proposals : PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
(uniCast signalConflict(TID, EG, LP) from THIS to SENDER)
if (containsLPos(LP, LEL) or conflictingProposal(TID, LP, O, PROPSET)) .

——— If we receive a conflict signal, we abort the transaction.
rl [UF2rcvDenyLeaderRsp] :
(msg signalConflict(TID, EG, LP) from SENDER to THIS)
< THIS : Site |
localTransactions : < TID : Transaction | reads : READS, writes : WRITES > LOCALTRANS
>
=>
< THIS : Site | localTransactions : LOCALTRANS >
(notifyConflictAbort(THIS, TID, READS, WRITES)) .

——— We ignore a conflict signal for an already missing transaction.
crl [UF2.1rcvDenyLeaderRsp] :
(msg signalConflict(TID, EG, LP) from SENDER to THIS)
< THIS : Site | localTransactions : LOCALTRANS >
=>
< THIS : Site | >
if not containsTrans(TID, LOCALTRANS) .

op containsTrans : TransId Configuration —> Bool .
eq containsTrans(TID, < TID : Transaction | > LOCALTRANS) = true .
eq containsTrans(TID, LOCALTRANS) = false [owise] .




142 B Real-Time Maude Model of Megastore

——— If accept—1leader message arrives delayed, ignore the message
crl [LF3rcvAcceptLeaderRspDelayed] :
(msg acceptLeaderRsp(TID, EG, LP) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS

>
=>
< THIS : Site |
localTransactions : LOCALTRANS
>

if (not acceptingleader(TID, EG, LP, LOCALTRANS)) .

op acceptingleader : TransId EntityGroupld LogPosition Configuration —> Bool .
eq acceptingLleader(TID, EG, LP,
< TID : Transaction | paxosState : acceptLeader(EG, (TID LP SID OL), MSID1, EXP) ; PSTATE >
LOCALTRANS) = true .
eq acceptingLeader(TID, EG, LP, LOCALTRANS) = false [owise] .

sk Section 4.6.3 — Accept—step k)

s%x Common case: Received accept from leader, proceed with requesting accept from all
rl [AlrcvAcceptLeaderRsp] :
(msg acceptLeaderRsp(TID, EG, LP) from SENDER to THIS)
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : acceptLeader(EG, (TID LP SID OL),
SENDER, EXP) ; PSTATE,
status : in—paxos, reads : READS, writes : WRITES >
LOCALTRANS,
entityGroups : < EG : EntityGroup | proposals : PROPSET, replicas : EGRS > EGROUPS >
=>
——— Note: We now have accept from leader + this (which might be the same site)
< THIS : Site |
entityGroups : EGROUPS
< EG : EntityGroup |
proposals : if (SENDER =/= THIS) then
accepted(THIS, (TID LP SID OL), 0) else emptyProposalSet fi ; PROPSET >,
localTransactions : LOCALTRANS
(if ((getSites(EGRS) setminus (SENDER ; THIS)) =/= empty0idSet) then
< TID : Transaction |
paxosState : acceptAl1(EG,(TID LP SID OL), O, (THIS ; SENDER), defTimeout) ; PSTATE,
status : in—paxos >
else
none

——— With two replicas and the other being master, or only one and ourself being master, we'
re done now
(if allEGSAccepted(PSTATE) then none
else (
< TID : Transaction | paxosState : acceptedPS(EG, (TID LP SID OL), 0) ; PSTATE > )
£i)
£i)
>
(if ((getSites(EGRS) setminus (SENDER ; THIS)) =/= empty0idSet) then
(multiCast acceptAllReq(TID, EG, (TID LP SID OL), 0) from THIS to getSites(EGRS) setminus (SENDER ;
THIS))
else
(if allEGSAccepted(PSTATE) then (
createApplyMessages(THIS, < EG : EntityGroup | > EGROUPS, acceptedPS(EG, (TID LP SID OL), 0) ;
PSTATE)




B Real-Time Maude Model of Megastore 143

notifyCommit(THIS, TID, eglp(EG, LP) ; getEntGroupLogPosPair(PSTATE), READS, WRITES))
else none
£i)

£i) .

——— Common case: This is the first time we receive an accept for this log position
crl [A2rcvAcceptAllReq] :
(msg acceptAllReq(TID, EG, (TID' LP SID OL), PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : PROPSET, transactionLog : LEL > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : accepted(SENDER, (TID' LP SID OL), PROPNUM) ;
removeProposal(LP, PROPSET) > EGROUPS
>
(uniCast acceptAllRsp(TID, EG, LP, PROPNUM) from THIS to SENDER)
if not (containsLPos(LP, LEL) or hasAcceptedForPosition(LP, PROPSET)) .

op hasAcceptedForPosition : LogPosition PaxosProposalSet —> Bool .
eq hasAcceptedForPosition(LP, accepted(SID, (TID LP SID' OL'), PN) ; PROPSET) = true .
eq hasAcceptedForPosition(LP, PROPSET) = false [owise] .

op removeProposal : LogPosition PaxosProposalSet —> PaxosProposalSet .
eq removeProposal(LP, proposal(SID, TID, LP, OL, PN) ; PROPSET) = removeProposal(LP, PROPSET) .
eq removeProposal(LP, PROPSET) = PROPSET [owise] .

——— Log the accept—vote. If this was the last, proceed the transaction
rl [AdrcvAcceptAllRsp] :
(msg acceptAllRsp(TID, EG, LP, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction | paxosState : acceptAl1(EG, (TID' LP SID OL), PROPNUNM,
SIS, EXP) ; PSTATE,
reads : READS, writes : WRITES > LOCALTRANS
>
=>
< THIS : Site | localTransactions :
LOCALTRANS
(if ((SENDER ; SIS) =/= getSites(EGRS)) then
< TID : Transaction |
paxosState : acceptAll(EG, (TID' LP SID OL), PROPNUM, SIS ; SENDER, EXP) ; PSTATE >
else (
if allEGSAccepted(PSTATE) then none
else (
< TID : Transaction | paxosState : acceptedPS(EG, (TID' LP SID OL), PROPNUM) ; PSTATE > )
£i)
£i)
>
(if ((SIS ; SENDER) == getSites(EGRS) and allEGSAccepted(PSTATE)) then (
createApplyMessages(THIS, < EG : EntityGroup | > EGROUPS, acceptedPS(EG, (TID' LP SID OL), PROPNUM)
; PSTATE)
(if (TID == TID') then (
notifyCommit(THIS, TID, eglp(EG, LP) ; getEntGroupLogPosPair(PSTATE), READS, WRITES))
else (notifyConflictAbort(THIS, TID, READS, WRITES))
1))
else none
£i) .

op createApplyMessages : Siteld Configuration PaxosState —> Configuration .




144 B Real-Time Maude Model of Megastore

eq createApplyMessages(SID, < EG : EntityGroup | replicas : EGRS > EGROUPS, acceptedPS(EG, (TID LP SID
OL), PROPNUM) ; PSTATE) =
(multiCast applyReq(TID, EG, LP, PROPNUM) from SID to getSites(EGRS)) createApplyMessages(SID,
EGROUPS, PSTATE) .
eq createApplyMessages(SID, EGROUPS, emptyPaxosState) = none .

op getEntGroupLogPosPair : PaxosState —> EntGroupLogPosPairSet .

eq getEntGroupLogPosPair(acceptedPS(EG, (TID LP SID OL), PROPNUM) ; PSTATE) = eglp(EG, LP) ;
getEntGroupLogPosPair(PSTATE) .

eq getEntGroupLogPosPair(emptyPaxosState) = noEntGroupLogPosPair .

s#%( Section 4.6.3 — Apply step )

op allEGSAccepted : PaxosStateSet —> Bool .

eq allEGSAccepted(acceptedPS(EG, LE, N) ; PSTATE) = allEGSAccepted(PSTATE) .
eq allEGSAccepted(emptyPaxosState) = true .

eq allEGSAccepted(PSTATE) = false [owise] .

——— Apply at site which previously accepted a proposal
crl [APP3initUpdates] :
(msg applyReq(TID2, EG, 1pos(N2), PN) from SENDER to THIS)
< THIS : Site |
coordinator : eglp(EG, 1lpos(N1)) ; CES,
entityGroups : < EG : EntityGroup | transactionLog : LEL :: (TID1 lpos(N1) MSID1 OL1),
pendingWrites : PWL,
proposals : accepted(SID, (TID3 lpos(N2) MSID2 OL2), PN') ;
PROPSET > EGROUPS,
localTransactions : LOCALTRANS

>
=>
< THIS : Site |
coordinator : eglp(EG, 1pos(N2)) ; CES,
entityGroups : < EG : EntityGroup | transactionLog : LEL :: (TID1 lpos(N1) MSID1 OL1) :: (TID3
1pos(N2) MSID2 OL2),
pendingWrites : pw(lpos(N2), idle, OL2) :: PWL,
proposals : removeProposals(lpos(N2), PROPSET) > EGROUPS,
localTransactions : removeOthersForLogPosition(EG, 1pos(N2), LOCALTRANS)
>

(sendNotifyAbort(THIS, LOCALTRANS, removeOthersForLogPosition(EG, 1pos(N2), LOCALTRANS)))
if N2 == s N1 /\ ((PN == PN') or (TID2 == TID3)) .

op removeOthersForLogPosition : EntityGroupIld LogPosition Configuration —> Configuration .
eq removeOthersForLogPosition(EG, LP, < TID2 : Transaction | paxosState : prepare(EG, (TID3 LP MSID1
OL), PN, PN', SIS, EXP) ; PSTATE > LOCALTRANS) =
removeOthersForLogPosition(EG, LP, LOCALTRANS) .
eq removeOthersForLogPosition(EG, LP, < TID2 : Transaction | paxosState : restartPrepare(EG, (TID3 LP
MSID1 OL), EXP) ; PSTATE > LOCALTRANS) =
removeOthersForLogPosition(EG, LP, LOCALTRANS) .
eq removeOthersForLogPosition(EG, LP, < TID2 : Transaction | paxosState : acceptAl1l(EG, (TID3 LP MSID1
OL), PN, SIS, EXP) ; PSTATE > LOCALTRANS) =
removeOthersForLogPosition(EG, LP, LOCALTRANS) .
eq removeOthersForLogPosition(EG, LP, < TID2 : Transaction | paxosState : acceptLeader(EG, (TID3 LP
MSID1 OL), MSID2, EXP) ; PSTATE > LOCALTRANS) =
removeOthersForLogPosition(EG, LP, LOCALTRANS) .
eq removeOthersForLogPosition(EG, LP, LOCALTRANS) = LOCALTRANS [owise] .

op removeProposals : LogPosition PaxosProposalSet —> PaxosProposalSet .
eq removeProposals(LP, accepted(SID, (TID LP MSID1 OL1), PN) ; PROPSET) = removeProposals(LP, PROPSET)

eq removeProposals(LP, proposal(SID, TID, LP, OL, PN) ; PROPSET) = removeProposals(LP, PROPSET) .




B Real-Time Maude Model of Megastore 145

eq removeProposals(LP, PROPSET) = PROPSET [owise] .

op sendNotifyAbort : Siteld Configuration Configuration —> Configuration .

eq sendNotifyAbort(SID, < TID : Transaction | > LTRANS1, < TID : Transaction | > LTRANS2) =
sendNotifyAbort(SID, LTRANS1, LTRANS2) .

eq sendNotifyAbort(SID, none, LTRANS1) = none .

eq sendNotifyAbort(SID, < TID : Transaction | reads : READS, writes : WRITES > LTRANS1, LTRANS2) =
(notifyConflictAbort(SID, TID, READS, WRITES)) sendNotifyAbort(SID, LTRANS1, LTRANS2) [owise] .

rl [APP4beginPendingWrite] :
< THIS : Site |
entityGroups : < EG : EntityGroup | pendingWrites : PWL :: pw(LP, idle, OL) > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | pendingWrites : PWL :: pw(LP, updating(updateDelay), OL) >
EGROUPS
>

rl [APP5endPendingWrite] :

< THIS : Site | entityGroups : < EG : EntityGroup | entitiesState : ES,

pendingWrites : PWL :: pw(LP, updating(0), OL :: OP) >
EGROUPS >

=>

< THIS : Site | entityGroups :

< EG : EntityGroup | entitiesState : applyUpdates(OP, LP, ES),
pendingWrites : updatePWListUponComplete(LP, OL, PWL) > EGROUPS
>

op updatePWListUponComplete : LogPosition OperationlList PendingWriteList —> PendingWriteList .
eq updatePWListUponComplete(LP, emptyOpList, PWL) = PWL .
eq updatePWListUponComplete(LP, OL, PWL) = PWL :: pw(LP, idle, OL) [owise] .

op applyUpdates : OperationList LogPosition EntitySet —> EntitySet .

eq applyUpdates(w(EID,VAL) :: OL, LP, (EID |—> EVERSIONS) ; ES) = (EID |—> insertEntityValSorted((LP
VAL), EVERSIONS)) ; ES .

eq applyUpdates(emptyOpList, LP, ES) = ES .

op insertEntityValSorted : EntityVersion EntityVersionList —> EntityVersionList .
eq insertEntityValSorted((1pos(N) VAL), (1pos(N') VAL') :: EVERSIONS) =
if (N' < N) then
((1pos(N') VAL') :: insertEntityValSorted((lpos(N) VAL), EVERSIONS))
else
((1pos(N) VAL) :: (1pos(N') VAL') :: EVERSIONS)
fi.
eq insertEntityValSorted((1lpos(N) VAL), noEntityVersions) = (1pos(N) VAL) .

endtom)

Listing B.6 majority read.rtmaude

sorok
This module implements ”catchup”, see step 3 and 4 of section 4.6.2 in Baker et.al
koK )

(tomod MAJORITY—READ is
inc UPDATES .

var EG : EntityGroupld .
var EGROUPS : Configuration .




146 B Real-Time Maude Model of Megastore

var LOCALTRANS : Configuration .

vars N N1 N2 N3 CNT : Nat .

vars TID TID' TID1 TID2 TID3 : TransId .

vars LPL LPL—MISSING : LogPositionList .

var LE : LogEntry .

vars LEL LEL—RECEIVED LEL' NEW—TRANS—LOG : LogEntryList .
vars RSTATE NEW—RSTATE : ReadStateSet .

vars NEW—TSTATUS TSTATUS : TransStatus .

vars LATEST LP LP—TARGET : LogPosition .

vars SID SID' MSID1 MSID2 MSID3 SENDER THIS : Siteld .
var NEXT—SITE : SiteIdList .

var EID : EntitylId .

var DLP : DefLogPosition .

vars EVERSIONS EVERSIONS' : EntityVersionList .
vars VAL1 VAL2 : EntityValue .

var SIS : SitelIdSet .

var EGRS : EntityGroupReplicaSet .

vars OL OL1 OL2 OL3 : OperationList .

var CE : EntGroupLogPosPair .

var CES : EntGroupLogPosPairSet .

var PWL : PendingWriteList .

var T : Time .

var PROPSET : PaxosProposalSet .

var PN : Propnum .

vars SIL SIL': SiteIdList .

vars HAS—QUORUM CATCHUP—COMPLETE : Bool .

op majorityRead : EntityGroupld TransId —> MsgContent .

op majorityReadResponse : EntityGroupId TransId LogPosition —> MsgContent .
op catchupRequest : EntityGroupld TransId LogPositionList —> MsgContent .
op catchupResponse : EntityGroupId TransId LogEntryList —> MsgContent .

op catchingUp : EntityId SiteIdList LogPositionList —> ReadState [ctor] .

op majorityRead : EntityId DefLogPosition SiteIdList —> ReadState [ctor] .
op maxLocRead : —> Time .

sk Majority read skx)
s*% Due to some previous fault, the local coordinator is not up—to—date. Perform a majority read
crl [CRB1—initMajorityRead] :
< SID : Site |
coordinator : CES,
entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction | operations : cr(entity(EG,N)) :: OL, readState : RSTATE
, status : idle > LOCALTRANS >
=>
< SID : Site |
localTransactions : < TID : Transaction | operations : cr(entity(EG,N)) :: OL,
readState : majorityRead(entity(EG,N), noLogPosition, emptySiteIdList) ; RSTATE,
status : transTimer(defTimeout) > LOCALTRANS >
(multiCast majorityRead(EG, TID) from SID to getSites(EGRS) setminus SID)
if not (inConflictWithRunning(EG, LOCALTRANS) or containsEntityGroupId(EG, CES)) .

rl [CRB2—rcvMajorityReadRequest] :
(msg majorityRead(EG,TID) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL :: (TID' lpos(N) SID OL) > EGROUPS >
=>
< THIS : Site | >
(uniCast majorityReadResponse(EG, TID, lpos(N)) from THIS to SENDER) .

crl [CRB3—rcvMajorityReadResponse] :
(msg majorityReadResponse(EG, TID, LP) from SENDER to THIS)




B Real-Time Maude Model of Megastore 147

< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL, replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(T),
readState : majorityRead(entity(EG,N), DLP, SIL) ; RSTATE > LOCALTRANS >
=>
< THIS : Site | localTransactions : LOCALTRANS
(if (not HAS—QUORUM) then
< TID : Transaction |
readState : majorityRead(entity(EG,N), LATEST, SIL' :: SID) ; RSTATE >
else
< TID : Transaction |
status : transTimer(defTimeout),
readState : catchingUp(entity(EG,N), SIL' LPL—MISSING) ; RSTATE >
£i)
>
(if HAS—QUORUM then
(uniCast catchupRequest(EG, TID, LPL—MISSING) from THIS to SID)
else none fi)
if HAS—QUORUM := hasQuorum(length(SENDER :: SIL), getSites(EGRS)) /\
1pos(N1) := getMostRecentLPos(LEL) /\
majorityRead(entity(EG,N), LATEST, SIL' :: SID) := updateMreadState(SENDER, entity(EG,N), LP,
majorityRead(entity(EG,N), DLP, SIL)) /\
LPL—MISSING := (getLogHoles(LEL) :: addLogPositionsBetween(lpos(s N1), LATEST)) .

op updateMreadState : Siteld EntityIld LogPosition ReadState —> ReadState .
eq updateMreadState(SENDER, EID, 1pos(N1), majorityRead(EID, lpos(N2), SIL)) =
if (N2 > N1) then
(majorityRead(EID, lpos(N2), SIL :: SENDER))
else (majorityRead(EID, lpos(N1), SENDER :: SIL))
fi.
eq updateMreadState(SENDER, EID, LP, majorityRead(EID, noLogPosition, emptySiteIdList)) =
majorityRead(EID, LP, SENDER) .

crl [rcvLateMajorityReadResponse] :
(msg majorityReadResponse(EG, TID, LP) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS >
=>
< THIS : Site | >
if (not inMajorityRead(TID, EG, LOCALTRANS)) .

op inMajorityRead : TransId EntityGroupId Configuration —> Bool .

eq inMajorityRead(TID, EG, < TID : Transaction | readState : majorityRead(entity(EG, N), DLP, SIL) ;
RSTATE > LOCALTRANS) = true .

eq inMajorityRead(TID, EG, LOCALTRANS) = false [owise] .

op hasQuorum : Nat SiteIdSet —> Bool .
eq hasQuorum(N, SIS) = (N >= (size(SIS) quo 2 + 1)) .

op getVersion : LogPosition EntityVersionList —> EntityVersion .

ceq getVersion(lpos(N), EVERSIONS :: (1pos(N1) VAL1) :: (1pos(N2) VAL2) :: EVERSIONS') = (1lpos(N1) VAL1)
if (N1 <N /\ N < N2).

ceq getVersion(lpos(N), EVERSIONS :: (1pos(N1) VAL1)) = (1lpos(N1) VAL1) if (N1 <=N) .

——— If majority—read timed out, restart
rl [restartCatchup] :
< THIS : Site | entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(0),
readState : majorityRead(entity(EG, N), DLP, SIL) ; RSTATE > LOCALTRANS




148 B Real-Time Maude Model of Megastore

>
=>
< THIS : Site | entityGroups : < EG : EntityGroup | > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(defTimeout),
readState : majorityRead(entity(EG, N), noLogPosition, emptySiteIdList) ;
RSTATE > LOCALTRANS
>
(multiCast majorityRead(EG, TID) from THIS to getSites(EGRS) setminus THIS) .

sk ( Perform catchup )

——— Determine missing entries in a given log

op getLogHoles : LogEntryList —> LogPositionList .

ceq getLogHoles((TID1 lpos(N1) MSID1 OL1) :: (TID2 lpos(N2) MSID2 OL2) :: LEL) =
getLogHoles((TID2 lpos(N2) MSID2 OL2) :: LEL) if N2 == s N1 .

ceq getLogHoles((TID1 lpos(N1) MSID1 OL1) :: (TID2 lpos(N2) MSID2 OL2) :: LEL) =
addLogPositionsBetween(lpos(s N1), 1lpos(sd(N2,1))) :: getLogHoles((TID2 lpos(N2) MSID2 OL2) :: LEL

Yif N2 =/=s N1 .
eq getLogHoles(LE) = emptyLPlist .

——— Utility function: Return a log—position list between the two positions N1 and N2 (including
them both)
op addLogPositionsBetween : LogPosition LogPosition —> LogPositionList .
ceq addLogPositionsBetween(lpos(N1), 1pos(N2)) =
1pos(N1) :: addLogPositionsBetween(lpos(s N1), 1pos(N2)) if N1 <= N2 .
eq addLogPositionsBetween(lpos(N1), 1lpos(N2)) = emptyLPlist [owise] .

——— Utility function: Get the most recent log entry.
——— Invariant: The log entry list always has) one element
op getMostRecentLPos : LogEntryList —> LogPosition .

eq getMostRecentLPos(LEL :: (TID LP SID OL)) = LP .

——— Upon receiving a catchup request, traverse the log position list representing
——— missing entries, and respond with all entries present at this site
rl [rcvCatchupRequest] :
(msg catchupRequest(EG, TID, LPL) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL > EGROUPS
>
=>
< THIS : Site | >
(uniCast catchupResponse(EG, TID, getPresentEntries(LPL, LEL)) from THIS to SENDER) .

op getPresentEntries : LogPositionlList LogEntryList —> LogEntryList .
eq getPresentEntries(lpos(N) :: LPL, LEL :: (TID lpos(N) SID OL) :: LEL') =
(TID lpos(N) SID OL) :: getPresentEntries(LPL, LEL :: (TID lpos(N) SID OL) :: LEL') .
eq getPresentEntries(emptyLPlist, LEL) = noEntries .
eq getPresentEntries(1lpos(N) :: LPL, LEL) =
getPresentEntries(LPL, LEL) [owise] .

crl [rcvCatchupResponse] :
(msg catchupResponse(EG, TID, LEL—RECEIVED) from SENDER to THIS)
< THIS : Site | localTransactions : LOCALTRANS >

=>
< THIS : Site | >

if (not catchingUp(TID, LOCALTRANS)) .

op catchingUp : TransId Configuration —> Bool .




B Real-Time Maude Model of Megastore 149

eq catchingUp(TID, < TID : Transaction | readState : catchingUp(EID, SIL, LPL) ; RSTATE > LOCALTRANS)
= true .
eq catchingUp(TID, LOCALTRANS) = false [owise] .

crl [rcvCatchupResponse] :
(msg catchupResponse(EG, TID, LEL—RECEIVED) from SENDER to THIS)
< THIS : Site | coordinator : CES,
entityGroups : < EG : EntityGroup | replicas : EGRS, proposals : PROPSET,
transactionlog : LEL, pendingWrites : PWL >
EGROUPS,
localTransactions : < TID : Transaction |
status : TSTATUS,
readState : catchingUp(entity(EG, N), SIL, LPL) ; RSTATE > LOCALTRANS
>
=>
< THIS : Site | coordinator : (if CATCHUP—COMPLETE
then setValidated(EG, getMostRecentLPos(NEW—TRANS—LOG), CES)
else CES fi),
entityGroups : < EG : EntityGroup | proposals : removeObsoleteProposals(LEL—
RECEIVED, PROPSET),
transactionlLog : NEW—TRANS—LOG,
pendingWrites : addPendingWrites(LEL—RECEIVED,
PWL) > EGROUPS,
localTransactions : removeObsoleteTrans(TID, EG, LEL—RECEIVED, LOCALTRANS)
(if CATCHUP—COMPLETE then
< TID : Transaction | status : idle, readState : RSTATE >
else (
if (NEXT—SITE =/= emptySiteldList) then
(< TID : Transaction | status : transTimer(defTimeout),
readState : catchingUp(entity(EG, N), removeIfPresent(NEXT—SITE, SIL), LPL
—MISSING) ; RSTATE >)
else
(< TID : Transaction | status : transTimer(defTimeout),
readState : majorityRead(entity(EG, N), noLogPosition, emptySiteIdList) ;
RSTATE >)
£i)
£i)
>
(sendNotifyAbort(THIS, LOCALTRANS, removeObsoleteTrans(TID, EG, LEL—RECEIVED, LOCALTRANS)))
(if (not CATCHUP—COMPLETE) then
(if (NEXT—SITE =/= emptySiteIdList) then
(uniCast catchupRequest(EG, TID, LPL—MISSING) from THIS to NEXT—SITE)
else
(multiCast majorityRead(EG, TID) from THIS to getSites(EGRS) setminus THIS)
£i)
else none fi)
if LPL—MISSING := getLogHoles(applyRemoteLogEntries(LEL—RECEIVED, LEL)) /\
CATCHUP—COMPLETE := (LPL—MISSING == emptyLPlist) /\
NEW—TRANS—LOG := applyRemoteLogEntries(LEL—RECEIVED, LEL) /\
NEXT—SITE := getNextSite(SIL) .

op getNextSite : SiteldList —> Siteld .
eq getNextSite(SIL :: SID) = SID .
eq getNextSite(emptySiteIdList) = emptySiteIdList .

op removelfPresent : SiteId SiteIdList —> SiteIdList .
eq removeIfPresent(SID, SIL :: SID :: SIL') = SIL :: SIL'.
eq removeIfPresent(SID, SIL) = SIL [owise] .

op removeObsoleteProposals : LogEntryList PaxosProposalSet —> PaxosProposalSet .
eq removeObsoleteProposals((TID1 LP MSID1 OL1) :: LEL, proposal(SID, TID2, LP, OL, PN) ; PROPSET) =
removeObsoleteProposals(LEL, PROPSET) .




150 B Real-Time Maude Model of Megastore

eq removeObsoleteProposals((TID1 LP MSID1 OL1) :: LEL, accepted(SID, (TID2 LP MSID2 OL2), PN) ; PROPSET)
removeObsoleteProposals(LEL, PROPSET) .

eq removeObsoleteProposals(noEntries, PROPSET) = PROPSET .

eq removeObsoleteProposals((TID1 LP MSID1 OL1) :: LEL, PROPSET) =
removeObsoleteProposals(LEL, PROPSET) [owise] .

op removeObsoleteTrans : TransId EntityGroupIld LogEntryList Configuration —> Configuration .

eq removeObsoleteTrans(TID1, EG, (TID2 LP MSID1 OL) :: LEL, LOCALTRANS) =
removeObsoleteTrans(TID1, EG, LEL, removeOthersForLogPosition(EG, LP, LOCALTRANS)) .

eq removeObsoleteTrans(TID1, EG, noEntries, LOCALTRANS) = LOCALTRANS .

op applyRemoteLogEntries : LogEntryList LogEntryList —> LogEntryList .
——— We might receive multiple catchup—response (due to failures). If we already have the log entry,
simply ignore it.
eq applyRemoteLogEntries((TID lpos(N) SID OL) :: LEL—RECEIVED, LEL :: (TID lpos(N) SID OL) :: LEL') =
applyRemoteLogEntries(LEL—RECEIVED, LEL :: (TID lpos(N) SID OL) :: LEL') .
——— Common case: Find the right hole in the log, and insert missing entry
ceq applyRemoteLogEntries((TID1 lpos(N1) MSID1 OL1) :: LEL—RECEIVED, LEL :: (TID2 lpos(N2) MSID2 OL2) ::
(TID3 1pos(N3) MSID3 OL3) :: LEL') =
applyRemoteLogEntries(LEL—RECEIVED, LEL :: (TID2 lpos(N2) MSID2 OL2) :: (TID1 lpos(N1) MSID1 OL1) :: (
TID3 1lpos(N3) MSID3 OL3) :: LEL') if (N2 < N1 /\ N1 < N3) .
——— A missing log entry might have arrived while we wait for catchup
eq applyRemoteLogEntries((TID1 lpos(N1) MSID1 OL1) :: LEL—RECEIVED, LEL :: (TID1 lpos(N1) MSID1 OL1) ::
LEL') =
applyRemoteLogEntries(LEL—RECEIVED, LEL :: (TID1 lpos(N1) MSID1 OL1) :: LEL—RECEIVED) .
——— We're at the end of the local log, append all entries
ceq applyRemoteLogEntries((TID1 lpos(N1) MSID1 OL1) :: LEL—RECEIVED, LEL :: (TID2 lpos(N2) MSID2 OL2))
LEL :: (TID2 lpos(N2) MSID2 OL2) :: (TID1 1pos(N1) MSID1 OL1) :: LEL—RECEIVED if N1 > N2 .
——— All entries applied, we are done
eq applyRemoteLogEntries(noEntries, LEL) = LEL .

op addPendingWrites : LogEntryList PendingWriteList —> PendingWriteList .
eq addPendingWrites((TID LP SID OL) :: LEL, PWL) = addPendingWrites(LEL, pw(LP, idle, OL) :: PWL) .
eq addPendingWrites(noEntries, PWL) = PWL .

——— If catchup—response timed out and we have sites to try, try the next site
rl [restartCatchup] :
< THIS : Site | entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(0),
readState : catchingUp(entity(EG, N), SIL :: SID, LPL) ; RSTATE > LOCALTRANS
>
=>
< THIS : Site | entityGroups : < EG : EntityGroup | > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(defTimeout),
readState : catchingUp(entity(EG, N), SIL, LPL) ; RSTATE > LOCALTRANS
>
(uniCast catchupRequest(EG, TID, LPL) from THIS to SID) .

——— If no sites are available, restart the majority read
rl [restartCatchup] :
< THIS : Site | entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(0),
readState : catchingUp(entity(EG, N), emptySiteIdList, LPL) ; RSTATE >
LOCALTRANS
>
=>
< THIS : Site | entityGroups : < EG : EntityGroup | > EGROUPS,




B Real-Time Maude Model of Megastore 151

localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(defTimeout),
readState : majorityRead(entity(EG, N), noLogPosition, emptySiteIdList) ;
RSTATE > LOCALTRANS
>
(multiCast majorityRead(EG, TID) from THIS to getSites(EGRS) setminus THIS) .

op setValidated : EntityGroupld LogPosition EntGroupLogPosPairSet —> EntGroupLogPosPairSet .

ceq setValidated(EG, 1pos(N1), eglp(EG, 1pos(N2)) ; CES) = eglp(EG, 1pos(N2)) ; CES if (N2 >=N1) .

ceq setValidated(EG, 1pos(N1), eglp(EG, 1pos(N2)) ; CES) = eglp(EG, lpos(N1)) ; CES if (N2 < N1) .

ceq setValidated(EG, 1pos(N1), invalidCstate(EG, 1pos(N2)) ; CES) = invalidCstate(EG, 1pos(N2)) ; CES if
(N1 < N2) .

ceq setValidated(EG, 1pos(N1), invalidCstate(EG, 1pos(N2)) ; CES) = eglp(EG, 1pos(N1)) ; CES if (N2 <=
N1) .

eq setValidated(EG, lpos(N1), CES) = eglp(EG, lpos(N1)) ; CES [owise] .

endtom)

Listing B.7 megastore_timing.rtmaude

(tomod MEGASTORE—TIMING is
inc MEGASTORE—SETUP .
inc UPDATES .

var SID : Siteld .

var TID : TransId .

var EG : EntityGroupId .

var SIS : SiteldSet .

var EGRS : EntityGroupReplicaSet .

vars T1 T2 T3 EXP : Time .
vars TI1 TI2 : TimeInf .

var N : Nat .

var OL : OperationList .

vars EGROUPS LOCALTRANS REMAININGTRANS : Configuration .
var TS : TransStatus .

vars PN PN' : Propnum .

var DPN : DefPropnum .

var PWL : PendingWriteList .

var LE : LogEntry .

var EG : EntityGroupld .

var LP : LogPosition .

var CES : EntGroupLogPosPairSet .

var PSTATE : PaxosStateSet .

sk Sites sokk)

eq mte(< SID : Site | coordinator : CES, entityGroups : EGROUPS, localTransactions : LOCALTRANS >) =
min( mte(EGROUPS), mteTrans(EGROUPS, LOCALTRANS, LOCALTRANS)) .

eq delta(< SID : Site | entityGroups : EGROUPS, localTransactions : LOCALTRANS >, T1) =
< SID: Site | entityGroups : delta(EGROUPS, T1), localTransactions : delta(LOCALTRANS, T1) > .

s ( Transactions sokx)

op mteTrans : Configuration Configuration Configuration —> TimeInf .




152 B Real-Time Maude Model of Megastore

——— Determine mte if TS == idle
ceq mteTrans(< EG : EntityGroup | pendingWrites : emptyPWList > EGROUPS, LOCALTRANS,
< TID : Transaction | operations : cr(entity(EG,N)) :: OL, status : idle > REMAININGTRANS) = 0 if not
inConflictWithRunning(EG, removeTid(TID, LOCALTRANS)) .
eq mteTrans(EGROUPS, LOCALTRANS,
< TID : Transaction | operations : w(EID:EntityId, EVAL:EntityValue) :: OL, status : idle >
REMAININGTRANS) = O .
eq mteTrans(EGROUPS, LOCALTRANS,
< TID : Transaction | operations : emptyOpList, status : idle > REMAININGTRANS) =0 .
eq mteTrans(EGROUPS, LOCALTRANS,
< TID : Transaction | status : executing(LP, T1) > REMAININGTRANS) = min(T1, mteTrans(EGROUPS,
LOCALTRANS, REMAININGTRANS)) .
eq mteTrans(EGROUPS, LOCALTRANS,
< TID : Transaction | status : transTimer(T1) > REMAININGTRANS) =
min(T1, mteTrans(EGROUPS, LOCALTRANS, REMAININGTRANS)) .
eq mteTrans(EGROUPS, LOCALTRANS,
< TID : Transaction | paxosState : PSTATE, status : in—paxos > REMAININGTRANS) =
min(mte(PSTATE), mteTrans(EGROUPS, LOCALTRANS, REMAININGTRANS)) .
eq mteTrans(EGROUPS, LOCALTRANS, REMAININGTRANS) = INF [owise] .

op mte : PaxosStateSet —> Time .

eq mte(acceptLeader(EG, LE, SID, T1) ; PSTATE) = min(T1, mte(PSTATE)) .

eq mte(acceptAl1(EG, LE, PN, SIS, T1) ; PSTATE) = min(T1, mte(PSTATE)) .

eq mte(prepare(EG, LE, PN, DPN, SIS, T1) ; PSTATE) = min(T1, mte(PSTATE)) .
eq mte(restartPrepare(EG, LE, T1) ; PSTATE) = min(T1, mte(PSTATE)) .

eq mte(invalidating(EG, LE, PN, SIS, T1) ; PSTATE) = min(T1, mte(PSTATE)) .
eq mte(PSTATE) = INF [owise] .

op hasPrepareQuorum : Configuration PaxosState —> Bool .
ceq hasPrepareQuorum(< EG : EntityGroup | replicas : EGRS > EGROUPS, prepare(EG, LE, PN, PN', SIS, EXP) ;
PSTATE) =
true if REPLICAS:SiteIdSet := getSites(EGRS) /\ hasQuorum(size(SIS), REPLICAS:SiteIdSet) .
eq hasPrepareQuorum(EGROUPS, PSTATE) = false [owise] .

op removeTid : TransId Configuration —> Configuration .
eq removeTid(TID, < TID : Transaction | > REMAININGTRANS) = REMAININGTRANS .
eq removeTid(TID, LOCALTRANS) = LOCALTRANS [owise] .

eq delta(< TID : Transaction | status : executing(LP, T2) >, T1) = < TID : Transaction | status :
executing(LP, T2 monus T1) > .
eq delta(< TID : Transaction | status : transTimer(T2) >, T1) = < TID : Transaction | status :
transTimer (T2 monus T1) > .
eq delta(< TID : Transaction | paxosState : PSTATE, status : in—paxos >, T1) =
< TID : Transaction | paxosState : delta(PSTATE, T1) > .
eq delta(< TID : Transaction | status : TS >, T1) = < TID : Transaction | > [owise] .

op delta : PaxosStateSet Time —> PaxosStateSet .

eq delta(acceptLeader(EG, LE, SID, T2) ; PSTATE, T1) = acceptLeader(EG, LE, SID, T2 monus T1) ; delta(
PSTATE, T1) .

eq delta(acceptAl1l(EG, LE, PN, SIS, T2) ; PSTATE, T1) = acceptAl1(EG, LE, PN, SIS, T2 monus T1) ; delta(
PSTATE, T1) .

eq delta(prepare(EG, LE, PN, DPN, SIS, T2) ; PSTATE, T1) = prepare(EG, LE, PN, DPN, SIS, T2 monus T1) ; delta
(PSTATE, T1) .

eq delta(restartPrepare(EG, LE, T2) ; PSTATE, T1) = restartPrepare(EG, LE, T2 monus T1) ; delta(PSTATE,
T1) .

eq delta(invalidating(EG, LE, PN, SIS, T2) ; PSTATE, T1) = invalidating(EG, LE, PN, SIS, T2 monus T1) ;
delta(PSTATE, T1) .

eq delta(emptyPaxosState, T1) = emptyPaxosState .

s ( Entity groups sekk)




B Real-Time Maude Model of Megastore 153

eq mte(< EG : EntityGroup | pendingWrites : PWL >) = mte(PWL) .
eq delta(< EG : EntityGroup | pendingWrites : PWL >, T1) =
< EG : EntityGroup | pendingWrites : delta(PWL, T1) > .

op mte : PendingWriteList —> Time .

eq mte(emptyPWList) = INF .

eq mte(PWL :: pw(LP, idle, OL)) =0 .

eq mte(PWL :: pw(LP, updating(T1), OL)) = T1 .

op delta : PendingWriteList Time —> PendingWriteList .

eq delta(emptyPWList, T1) = emptyPWList .

eq delta(PWL :: pw(LP, idle, OL), T1) = (PWL :: pw(LP, idle, OL)) .

eq delta(PWL :: pw(LP, updating(T2), OL), T1) = pw(LP, updating(T2 monus T1), OL) .
endtom)

Listing B.8 updates_fault_handling.rtmaude

(tomod UPDATE—FAULT—HANDLERS is
inc UPDATES .

var EID : EntityId .

vars N N' N1 N2 : Nat .

var NS : NatSet .

vars T EXP : Time .

vars PN PN' PROPNUM : Propnum .

var PXSID : Nat .

vars DPN SEEN—PROPNUM : DefPropnum .
vars EG : EntityGroupld .

var EGROUPS : Configuration .

vars TID TID' TID1 TID2 TID3 : TransId .
var TIS : TransIdSet .

vars SID SID' MSID1 MSID2 SENDER THIS : Siteld .
vars SIS SIS—FAILED REPLICAS : SitelIdSet .
var EGRS : EntityGroupReplicaSet .

var PSTATE : PaxosStateSet .

var LOCALTRANS : Configuration .

vars OL OL' OL1 OL2 : OperationList .
var OP : Operation .

var PROPSET : PaxosProposalSet .

vars LEL LEL' : LogEntryList .

vars LE LE' NEW—LE : LogEntry .

vars LP LP' : LogPosition .

var PWL : PendingWriteList .

var CES : EntGroupLogPosPairSet .

var READS : EntitySet .

var WRITES : OperationList .

var COMPLETE : Bool .

s#%( Messages involved in presence of errors sssk)

op prepareAllReq : TransId EntityGroupId LogPosition OperationList Propnum —> MsgContent .
——— Used when acceptor has an existing proposal

op prepareAllRsp : TransId EntityGroupId LogEntry Propnum Propnum —> MsgContent .

——— Used when acceptor does not has an existing proposal

op prepareAllRsp : TransId EntityGroupld LogPosition Propnum —> MsgContent .

op invalidateCoordinator : EntityGroupId LogPosition —> MsgContent .

op invalidateConfirmed : EntityGroupIld LogPosition —> MsgContent .

s+%( Paxos phase 1: Leader election )

——— We did not get any response from the leader. Run phase 1 of Paxos.
crl [PlacceptLeaderFailureRsp] :

< THIS : Site |




154 B Real-Time Maude Model of Megastore

localTransactions : < TID : Transaction | paxosState : acceptLeader(EG, (TID LP MSID1 OL1),
MSID2, 0) ; PSTATE,
status : in—paxos > LOCALTRANS,
entityGroups : < EG : EntityGroup | proposals : PROPSET,
replicas : egr(THIS, PXSID, LP') ; EGRS > EGROUPS

>
=>
< THIS : Site |
localTransactions : < TID : Transaction |
paxosState : prepare(EG, (TID LP MSID1 OL1), PN, noPropnum, empty0idSet, defTimeout) ;
PSTATE,
status : in—paxos > LOCALTRANS,
entityGroups : < EG : EntityGroup | > EGROUPS
>

(multiCast prepareAllReq(TID, EG, LP, OL1, PN) from THIS to REPLICAS)
if REPLICAS := getSites(egr(THIS, PXSID, LP') ; EGRS) /\
PN := createPropnum(getCurPropnum(LP, PROPSET), size(REPLICAS), PXSID) .

op getCurPropnum : LogPosition PaxosProposalSet —> DefPropnum .

eq getCurPropnum(LP, proposal(SID, TID, LP, OL, PN) ; PROPSET) =
maxPn (PN, getCurPropnum(LP, PROPSET)) .

eq getCurPropnum(LP, accepted(SID, (TID1 LP MSID1 OL), PN) ; PROPSET) =
maxPn(PN, getCurPropnum(LP, PROPSET)) .

eq getCurPropnum(LP, PROPSET) = noPropnum [owise] .

——— Use the method described in footnote on page 4 og Chandra 2007 (”Paxos made live”)
——— to ensure every proposal has a unique PN
op createPropnum : DefPropnum Nat Nat —> Propnum .
eq createPropnum(PN, N, PXSID) =
if ((PN rem N) >= PXSID) then
(N % (s (PN quo N)) + (PXSID rem N))
else
(PN + sd(PXSID, (PN rem N)))
fi.
eq createPropnum(noPropnum, N, PXSID) = 1 + PXSID .

op maxPn : Propnum DefPropnum —> Propnum .
ceq maxPn(PN, PN') = PN if (PN >=PN') .

ceq maxPn(PN, PN') = PN' if (PN < PN') .

eq maxPn(PN, noPropnum) = PN .

——— Receive a prepare—message with a previous proposal for this log position
crl [P2rcvPrepareAllReq] :
(msg prepareAllReq(TID1, EG, LP, OL1, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL, proposals : accepted(SID, (TID2 LP MSID1
0L2), PN) ; PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : accepted(SID, (TID2 LP MSID1 OL2), PROPNUM) ;
PROPSET > EGROUPS
>
(uniCast prepareAllRsp(TID1, EG, (TID2 LP MSID1 OL2), PROPNUM, PN) from THIS to SENDER)
if PROPNUM > PN .

crl [P2rcvPrepareAllReq] :
(msg prepareAllReq(TID1, EG, LP, OL, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL,
proposals : proposal(SID, TID2, LP, OL2, PN) ; PROPSET > EGROUPS
>




B Real-Time Maude Model of Megastore 155

=>
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : proposal(SID, TID2, LP, OL2, PROPNUM) ; PROPSET >
EGROUPS
>
(uniCast prepareAllRsp(TID1, EG, (TID2 LP SID OL2), PROPNUM, PN) from THIS to SENDER)
if PROPNUM > PN .

——— If we receive a proposal with an obsolete number,
——— then we can safely ignore it
crl [PF2.1rcvPrepareAl1ReqWithObsoletePropnum| :
(msg prepareAllReq(TID, EG, LP, OL, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL, proposals : PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
if conflictingProposal(EG, LP, PROPNUM, PROPSET) .

crl [PF2.1rcvPrepareAllReqForApplied] :
(msg prepareAllReq(TID, EG, LP, OL, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLlog : LEL, proposals : PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
(uniCast signalConflict(TID, EG, LP) from THIS to SENDER)
if containsLogPosition(LP, LEL) .

op conflictingProposal : EntityGroupIld LogPosition Propnum PaxosProposalSet —> Bool .
ceq conflictingProposal(EG, LP, PN, accepted(SID, (TID LP MSID1 OL), PN') ; PROPSET) =
true if PN' >=PN .
ceq conflictingProposal(EG, LP, PN, proposal(SID, TID, LP, OL, PN') ; PROPSET) =
true if PN' >= PN .
eq conflictingProposal(EG, LP, PN, PROPSET) = false [owise] .

——— Receive a prepare—message without a previous proposal for this log position
crl [P3rcvPrepareAllReq] :
(msg prepareAllReq(TID1, EG, LP, OL, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL, proposals : PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : proposal(SENDER, TID1, LP, OL, PROPNUM) ; PROPSET >
EGROUPS
>
(uniCast prepareAllRsp(TID1, EG, LP, PROPNUM) from THIS to SENDER)
if not (containsProposal(EG, LP, PROPSET) or containsLogPosition(LP, LEL)) .

op containsProposal : EntityGroupId LogPosition PaxosProposalSet —> Bool .

eq containsProposal(EG, LP, accepted(SID, (TID LP MSID1 OL), PN') ; PROPSET) = true .
eq containsProposal(EG, LP, proposal(SID, TID, LP, OL, PN) ; PROPSET) = true .

eq containsProposal(EG, LP, PROPSET) = false [owise] .

op removePreviousProposal : LogPosition Propnum PaxosProposalSet —> PaxosProposalSet .
eq removePreviousProposal(LP, PN, proposal(SID, TID, LP, OL, PN') ; PROPSET) = PROPSET .




156 B Real-Time Maude Model of Megastore

eq removePreviousProposal(LP, PN, PROPSET) = PROPSET [owise] .

rl [PF3rcvPrepareAllReqWithFormerLogEntry] :
(msg prepareAllReq(TID1, EG, LP, OL, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL :: (TID2 LP MSID2 OL2) :: LEL', proposals :
PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
(if (TID2 =/= TID1) then (uniCast signalConflict(TID1, EG, LP) from THIS to SENDER) else none fi) .

crl [P4rcvPrepareAllRspWithValue] :
(msg prepareAl1Rsp(TID, EG, (TID2 LP MSID1 OL1), PROPNUM, PN) from SENDER to THIS)

< THIS : Site |

entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction |
paxosState : prepare(EG, (TID3 LP MSID2 OL2), PROPNUM, SEEN—PROPNUM, SIS, EXP) ; PSTATE,
status : in—paxos > LOCALTRANS

>
=>

< THIS : Site |

localTransactions : LOCALTRANS
(if hasQuorum(size(SIS ; SENDER), REPLICAS) then
< TID : Transaction |
paxosState : acceptAl1l(EG, NEW—LE, PROPNUM, THIS, defTimeout) ; PSTATE, status : in—paxos >
else
< TID : Transaction |
paxosState : prepare(EG, NEW—LE, PROPNUM, maxPn(PN, SEEN—PROPNUM), (SIS ; SENDER), EXP) ;
PSTATE >
fi)
>
(if hasQuorum(size(SIS ; SENDER), REPLICAS) then
multiCast acceptAllReq(TID, EG, NEW—LE, PROPNUM) from THIS to REPLICAS

else none fi)
if REPLICAS := getSites(EGRS) /\

NEW—LE := chooseValue(PN, SEEN—PROPNUM, (TID2 LP MSID1 OL1), (TID3 LP MSID2 OL2)) .

op chooseValue : Propnum DefPropnum LogEntry LogEntry —> LogEntry .
eq chooseValue(PN, noPropnum, LE, LE') = LE .
eq chooseValue(PN, PN', LE, LE') = if PN > PN' then LE else LE' fi .

crl [PSrcvPrepareAllRspWithoutValue] :
(msg prepareAllRsp(TID, EG, LP, PN) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction | paxosState : prepare(EG, (TID2 LP MSID1 OL1), PN, SEEN—
PROPNUM, SIS, EXP) ; PSTATE,
status : in—paxos > LOCALTRANS
>
=>
< THIS : Site |
localTransactions : LOCALTRANS
(if hasQuorum(size(SIS ; SENDER), REPLICAS) then
< TID : Transaction |
paxosState : acceptAl1(EG, (TID2 LP MSID1 OL1), PN, THIS, defTimeout) ; PSTATE >
else
< TID : Transaction |




B Real-Time Maude Model of Megastore 157

paxosState : prepare(EG, (TID2 LP MSID1 OL1), PN, SEEN—PROPNUM, (SIS ; SENDER), EXP) ; PSTATE
>
£i)
>
(if hasQuorum(size(SIS ; SENDER), REPLICAS) then
multiCast acceptAllReq(TID, EG, (TID2 LP MSID1 OL1), PN) from THIS to REPLICAS
else none fi)
if REPLICAS := getSites(EGRS) .

crl [PFircvObsoletePrepareRspWithoutValue] :
(msg prepareAllRsp(TID, EG, LP, PN) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS
>
=>
< THIS : Site | localTransactions : LOCALTRANS >
if (not inPrepare(TID, EG, LP, PN, LOCALTRANS)) .

crl [PF2rcv0bsoletePrepareRspWithValue] :
(msg prepareAllRsp(TID, EG, (TID' LP MSID1 OL), PROPNUM, PN) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS
>
=>
< THIS : Site | localTransactions : LOCALTRANS >
if (not inPrepare(TID, EG, LP, PROPNUM, LOCALTRANS)) .

op inPrepare : TransId EntityGroupId LogPosition Propnum Configuration —> Bool .
ceq inPrepare(TID, EG, LP, PN, LOCALTRANS) = false if not containsTrans(TID, LOCALTRANS) .
eq inPrepare(TID, EG, LP, PN,
< TID : Transaction | paxosState : prepare(EG, (TID LP MSID1 OL1), PN, SEEN—PROPNUM, SIS, EXP) ;
PSTATE > LUCALTRANS) = true .
eq inPrepare(TID, EG, LP, PN, < TID : Transaction | paxosState : PSTATE > LOCALTRANS) = false [owise] .

——— If we failed to obtain a quorum within the specified time, try again
——— NOTE: This is not included in the Megastore—paper, but is our interpretation
crl [PF3failedPrepareAllReq] :
< THIS : Site |
entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction |
paxosState : prepare(EG, (TID2 LP MSID1 OL), PROPNUM, SEEN—PROPNUNM, SIS, 0) ; PSTATE,
status : in—paxos > LOCALTRANS

>
=>
< THIS : Site |

localTransactions : < TID : Transaction | paxosState : restartPrepare(EG, (TID2 LP MSID1 OL),

N) ; PSTATE,
status : in—paxos > LOCALTRANS,

entityGroups : < EG : EntityGroup | > EGROUPS

>

if (not hasQuorum(size(SIS), getSites(EGRS))) /\ N ; NS := possibleBackoffs .
op possibleBackoffs : —> NatSet .
x#x( Paxos phase 2: Accept xx)

——— If we receive another accept request for this log position, accept it if and only if it is the
same (re—sent) proposal, or
——— the new proposal number is higher than the previous
crl [A3rcvAcceptAllReqSubseq] :
(msg acceptAllReq(TID, EG, (TID1 LP MSID1 OL1), PN) from SENDER to THIS)




158 B Real-Time Maude Model of Megastore

< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : accepted(SID, (TID2 LP MSID2 OL2), PN') ; PROPSET >
EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : accepted(SID, (TID1 LP MSID1 OL1), PN) ; PROPSET >
EGROUPS
>
(uniCast acceptAllRsp(TID, EG, LP, PN) from THIS to SENDER)
if (TID1 == TID2 and PN == PN') or (PN > PN') .

——— If we receive another accept request for this log position with a lower proposal number than
the previous,
——— we discard the message
crl [AF2rcvAcceptAllReqObsolete] :
(msg acceptAllReq(TID, EG, (TID1 LP MSID1 OL1), PN) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : accepted(SID, (TID2 LP MSID2 OL2), PN') ; PROPSET >
EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
if (PN < PN') or (TID1 =/= TID2 and PN == PN') .

crl [AF2rcvAcceptAllReqObsolete] :
(msg acceptAllReq(TID, EG, (TID1 LP MSID1 OL1), PN) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : accepted(SID, (TID2 LP MSID2 OL2), PN') ; PROPSET >
EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
if (PN < PN') or (TID1 =/= TID2 and PN == PN') .

——— If we receive an accept request for an already logged transaction, discard the message
rl [AF2.2rcvAcceptAllReqObsolete] :
(msg acceptAllReq(TID, EG, (TID1 LP MSID1 OL1), PN) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL :: (TID2 LP MSID2 OL2) :: LEL' > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
(if (TID2 =/= TID1) then (uniCast signalConflict(TID1, EG, LP) from THIS to SENDER) else none fi) .

——— Ignore an unexpected accept response
crl [AF3rcvAcceptAllRspObsolete] :
(msg acceptAl1Rsp(TID, EG, LP, PROPNUM) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS
>
=>
< THIS : Site |
localTransactions : LOCALTRANS




B Real-Time Maude Model of Megastore 159

>
if (not inAcceptAll(TID, EG, LP, PROPNUM, LOCALTRANS)) .

op inAcceptAll : TransId EntityGroupld LogPosition Propnum Configuration —> Bool .
ceq inAcceptAll(TID, EG, LP, PROPNUM, LOCALTRANS) = false if not containsTrans(TID, LOCALTRANS) .
eq inAcceptAll(TID, EG, LP, PROPNUM,
< TID : Transaction | paxosState : acceptAl1(EG, (TID' LP MSID1 OL), PROPNUM, SIS, EXP) ; PSTATE
> LOCALTRANS) = true .
eq inAcceptAll(TID, EG, LP, PROPNUM,
< TID : Transaction | paxosState : PSTATE > LOCALTRANS) = false [owise] .

——— Only some replicas responded, but sufficient for a quorum. Send invalidate—message to others
crl [A6initInvalidation] :
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : acceptAl1(EG, (TID' LP SID OL), PROPNUNM,
SIS, 0) ; PSTATE,
status : in—paxos > LOCALTRANS,
entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS

>
=>
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : invalidating(EG, (TID' LP SID OL),
PROPNUM, REPLICAS setminus SIS, defTimeout) ; PSTATE > LOCALTRANS,
entityGroups : < EG : EntityGroup | > EGROUPS
>

(multiCast invalidateCoordinator(EG, LP) from THIS to REPLICAS setminus SIS)
if REPLICAS := getSites(EGRS) /\ hasQuorum(size(SIS), REPLICAS) .

rl [A7invalidateCoordinator] :
(msg invalidateCoordinator(EG, 1pos(N)) from SENDER to THIS)
< THIS : Site |
coordinator : CES >
=>
< THIS : Site |
coordinator : applyInvalidate(EG, lpos(N), CES) >
(uniCast invalidateConfirmed(EG, 1pos(N)) from THIS to SENDER) .

op applyInvalidate : EntityGroupld LogPosition EntGroupLogPosPairSet —> EntGroupLogPosPairSet .
ceq applyInvalidate(EG, 1lpos(N), eglp(EG, 1pos(N')) ; CES) = invalidCstate(EG, lpos(N)) ; CES
if (W <=1N) .
ceq applylInvalidate(EG, lpos(N), invalidCstate(EG, lpos(N')) ; CES) = invalidCstate(EG, 1lpos(N)) ; CES
if (W < N) .
ceq applyInvalidate(EG, lpos(N), eglp(EG, 1pos(N')) ; CES) = eglp(EG, 1lpos(N')) ; CES if (N' > N) .
eq applyInvalidate(EG, 1lpos(N), CES) = CES [owise] .

crl [A8rcvInvalidateConfirmed] :
(msg invalidateConfirmed(EG, LP) from SENDER to THIS)
< THIS : Site |
entityGroups : EGROUPS,
localTransactions : < TID : Transaction |
paxosState : invalidating(EG, (TID' LP SID OL), PROPNUM, SIS—FAILED, EXP) ; PSTATE,
reads : READS, writes : WRITES > LOCALTRANS
>
=>
< THIS : Site | localTransactions : LOCALTRANS
(if COMPLETE then
(if allEGSAccepted(PSTATE) then none

else
< TID : Transaction | paxosState : acceptedPS(EG, (TID' LP SID OL), PROPNUM) ; PSTATE >




160 B Real-Time Maude Model of Megastore

£i)
else
< TID : Transaction |
paxosState : invalidating(EG, (TID' LP SID OL), PROPNUM, SIS—FAILED setminus SENDER, EXP) ;
PSTATE >
£i)
>
(if (COMPLETE and allEGSAccepted(PSTATE)) then
createApplyMessages(SID, EGROUPS, acceptedPS(EG, (TID' LP SID OL), PROPNUM) ; PSTATE)
(if (TID == TID') then
notifyCommit(THIS, TID, eglp(EG, LP) ; getEntGroupLogPosPair(PSTATE), READS, WRITES)
else (notifyConflictAbort(THIS, TID, READS, WRITES))
£i)
else none
£i)
if COMPLETE := ((SIS—FAILED setminus SENDER) == empty0idSet) .

crl [A8rcvInvalidateConfirmedObsolete] :
(msg invalidateConfirmed(EG, LP) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS
>
=>
< THIS : Site |
localTransactions : LOCALTRANS
> if not inInvalidate(EG, LP, LUCALTRANS) .

op inInvalidate : TransId LogPosition Configuration —> Bool .
eq inInvalidate(EG, LP,
< TID : Transaction | paxosState : invalidating(EG, (TID' LP MSID1 OL), PROPNUM, SIS, EXP) ;
PSTATE > LOCALTRANS) = true .
eq inInvalidate(EG, LP, LOCALTRANS) = false [owise] .

rl [AF6resendInvalidate] :
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : invalidating(EG, (TID' LP SID OL),
PROPNUM, SIS, 0) ; PSTATE,
status : in—paxos > LOCALTRANS,
entityGroups : < EG : EntityGroup | > EGROUPS

>
=>
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : invalidating(EG, (TID' LP SID OL),
PROPNUM, SIS, defTimeout) ; PSTATE > LOCALTRANS,
entityGroups : < EG : EntityGroup | > EGROUPS
>

(multiCast invalidateCoordinator(EG, LP) from THIS to SIS) .

——— Timeout without quorum — failure handling according to #3 in 4.6.3
crl [restartPrepare] :
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : acceptAl1(EG, (TID' LP MSID1 OL),
PROPNUM, SIS, 0) ; PSTATE,
status : in—paxos > LOCALTRANS,
entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS
>
=>
< THIS : Site |




B Real-Time Maude Model of Megastore 161

localTransactions : < TID : Transaction | paxosState : restartPrepare(EG, (TID' LP MSID1 OL), N
) ; PSTATE > LOCALTRANS,
entityGroups : < EG : EntityGroup | > EGROUPS
>
if not hasQuorum(size(SIS), getSites(EGRS)) /\ N ; NS := possibleBackoffs .

crl [AF4initiatePrepare] :
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : restartPrepare(EG, (TID' LP MSID1 OL1),
0) ; PSTATE,
status : in—paxos > LOCALTRANS,
entityGroups : < EG : EntityGroup | proposals : PROPSET,
replicas : egr(THIS, PXSID, LP') ; EGRS > EGROUPS

>
=>
< THIS : Site |

localTransactions : < TID : Transaction | paxosState : prepare(EG, (TID' LP MSID1 OL1), PN,

noPropnum, empty0idSet, defTimeout) ; PSTATE,
status : in—paxos > LOCALTRANS,

entityGroups : < EG : EntityGroup | > EGROUPS

>

(multiCast prepareAllReq(TID, EG, LP, OL1, PN) from THIS to REPLICAS)
if REPLICAS := getSites(egr(THIS, PXSID, LP') ; EGRS) /\
PN := createPropnum(getCurPropnum(LP, PROPSET), size(REPLICAS), PXSID) .

s#%( After Paxos—consensus: Apply sx)

——— In case of some previous error, we allow processing "out of order”
crl [APP3.1initUpdatesInvalidated] :
(msg applyReq(TID, EG, LP, PROPNUM) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
entityGroups :
< EG : EntityGroup | transactionLog : LEL, pendingWrites : PWL,
proposals : accepted(SID, (TID2 LP MSID1 OL), PN') ; PROPSET >

EGROUPS,
localTransactions : LOCALTRANS
>
=>
< THIS : Site |
coordinator : CES,
entityGroups :
< EG : EntityGroup | transactionLog : insertLogEntrySorted((TID2 LP MSID1 OL), LEL),
pendingWrites : pw(LP, idle, OL) :: PWL,
proposals : removeProposals(LP, PROPSET) > EGROUPS,
localTransactions : removeOthersForLogPosition(EG, LP, LOCALTRANS)
>

(sendNotifyAbort(THIS, LOCALTRANS, removeOthersForLogPosition(EG, LP, LOCALTRANS)))
if not containsEntityGroupId(EG, CES) /\ ((PROPNUM == PN') or (TID == TID2)) .

op insertLogEntrySorted : LogEntry LogEntryList —> LogEntryList .
eq insertLogEntrySorted((TID1 lpos(N1) MSID1 OL1), (TID2 lpos(N2) MSID2 OL2) :: LEL) =
if (N1 < N2) then
(TID1 1pos(N1) MSID1 OL1) :: (TID2 lpos(N2) MSID2 OL2) :: LEL
else
(TID2 1pos(N2) MSID2 OL2) :: insertLogEntrySorted((TID1 lpos(N1) MSID1 OL1), LEL) fi .
eq insertLogEntrySorted(LE, noEntries) = LE .

——— Here, we discover that this site is not up—to—date upon receiving an apply
crl [APP3.2initUpdatesOut0f0rder] :
(msg applyReq(TID, EG, 1pos(N1), PROPNUM) from SENDER to THIS)




162 B Real-Time Maude Model of Megastore

< THIS : Site |
coordinator : eglp(EG, 1pos(N2)) ; CES,
entityGroups : < EG : EntityGroup | transactionLog : LEL,
pendingWrites : PWL,
proposals : accepted(SID, (TID2 lpos(N1) MSID1 OL), PN') ;
PROPSET > EGROUPS,
localTransactions : LOCALTRANS
>
=>
< THIS : Site |
coordinator : applyInvalidate(EG, lpos(s N1), CES),
entityGroups : < EG : EntityGroup | transactionLlog : insertLogEntrySorted((TID2 lpos(N1)
MSID1 OL), LEL),
pendingWirites : pw(lpos(N1), idle, OL) :: PWL,
proposals : removeProposals(lpos(N1), PROPSET) > EGROUPS,
localTransactions : removeOthersForLogPosition(EG, 1pos(N1), LOCALTRANS)
>
(sendNotifyAbort(THIS, LOCALTRANS, removeOthersForLogPosition(EG, 1pos(N1), LOCALTRANS)))
if N1 > s N2 /\ ((PROPNUM == PN') or (TID == TID2)) .

——— If we receive an apply req for which we do not have an accept, we invalidate the coordinator
crl [APP3.2initUpdatesWithoutAccept] :
(msg applyReq(TID, EG, LP, PROPNUM) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
entityGroups : < EG : EntityGroup | proposals : PROPSET > EGROUPS
>
=>
< THIS : Site | coordinator : applyInvalidate(EG, LP, CES) >
if not containsAccept(SENDER, TID, LP, PROPNUM, PROPSET) .

op containsAccept : Siteld TransId LogPosition Propnum PaxosProposalSet —> Bool .

eq containsAccept(SID, TID, LP, PN, accepted(SID, (TID' LP MSID1 OL), PN) ; PROPSET) = true .
eq containsAccept(SID, TID, LP, PN, accepted(SID, (TID LP MSID1 OL), PN') ; PROPSET) = true .
eq containsAccept(SID, TID, LP, PN, PROPSET) = false [owise] .

——— With competing leaders, we might receive two apply messages for the same transaction
crl [APP4initUpdatesForAppliedTrans]| :
(msg applyReq(TID, EG, LP, PROPNUM) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
entityGroups : < EG : EntityGroup | transactionLog : LEL,
proposals : PROPSET > EGROUPS
>
=>
< THIS : Site |
coordinator : CES,
entityGroups : < EG : EntityGroup | transactionLog : LEL,
proposals : removeProposals(LP, PROPSET) > EGROUPS
> if containsLogPosition(LP, LEL) .

op containsLogPosition : LogPosition LogEntryList —> Bool .

eq containsLogPosition(LP, LEL :: (TID LP MSID1 OL) :: LEL') = true .

ceq containsLogPosition(lpos(N), (TID lpos(N') MSID1 OL) :: LEL') = true if (N < N') .
eq containsLogPosition(LP, LEL) = false [owise] .

endtom)

Listing B.9 transaction-history.rtmaude

sorok
Semantics for a serialization graph:




B Real-Time Maude Model of Megastore 163

There is a path from transaction T1 and T2 if and only if T1 and T2 are in conflict.
The basis definition of a conflict graph is:

— Whenever transaction T2 reads an item I:
* create an edge from any previous updater of I
— Whenever a transaction Tl writes an item I:
* create an edge from any previous updater TU of I to T1
* create an edge from any previous reader TR of to T1
***)

(tomod TRANSACTION—HISTORY is
inc MEGASTORE—SETUP .

var EID : EntityId .

vars N N' : Nat .

vars SG SG' : SerGraph .

var LP : LogPosition .

vars TID TID' : TransId .

vars TIS1 TIS2 TIS3 : TransIdSet .

var TH : 0id .

var T1 : Time .

vars TOPS READERS WRITERS : TransOpSet .
var E : Edge .

class TransactionHistory |
graph : SerGraph,
readers : TransOpSet,
writers : TransOpSet .

eq mte(< TH : TransactionHistory | >) = INF .
eq delta(< TH : TransactionHistory | >, T1) = < TH: TransactionHistory | > .

sort SerGraph .

sort Edge .

subsort Edge < SerGraph .

op <_;_> : TransId TransId —> Edge [ctor] .

op emptyGraph : —> SerGraph [ctor] .

op _;_ : SerGraph SerGraph —> SerGraph [ctor assoc comm id: emptyGraph)] .
eq (SG; E); (SG'; E) = (SG; E) ; SG'.

sorts TransOp TransOpSet .

subsort TransOp < TransOpSet .

op op : TransId EntityId LogPosition —> TransOp [ctor] .

op emptyTransOpSet : —> TransOpSet [ctor] .

op _;_ : TransOpSet TransOpSet —> TransOpSet [ctor comm assoc id: emptyTransOpSet] .

op predecessors : EntityId LogPosition TransOpSet —> TransIdSet .

ceq predecessors(EID, 1pos(N), op(TID, EID, 1pos(N')) ; TOPS) = TID ; predecessors(EID, 1pos(N), TOPS)
if N> N'.

ceq predecessors(EID, 1pos(N), op(TID, EID, 1pos(N')) ; TOPS) = predecessors(EID, 1pos(N), TOPS)
if N<=N'.

eq predecessors(EID, 1pos(N), TOPS) = empty0idSet [owise] .

op successors : Entityld LogPosition TransOpSet —> TransIdSet .

ceq successors(EID, 1pos(N), op(TID, EID, 1pos(N')) ; TOPS) = TID ; successors(EID, 1pos(N), TOPS)
if N<N'.

ceq successors(EID, 1pos(N), op(TID, EID, 1pos(N')) ; TOPS) = successors(EID, 1pos(N), TOPS)
if N >=N'.

eq successors(EID, 1pos(N), TOPS) = empty0OidSet [owise] .




164 B Real-Time Maude Model of Megastore

op getCreator : Entityld LogPosition TransOpSet —> TransId .
eq getCreator(EID, LP, op(TID, EID, LP) ; TOPS) = TID .

op addWrite : TransId EntityId LogPosition Object —> Object .
op addRead : TransId EntityId LogPosition Object —> Object .
eq addWrite(TID, EID, LP,
< TH : TransactionHistory | graph : SG, readers : READERS, writers : WRITERS >) =
< TH : TransactionHistory |
graph : addInEdges(TID, predecessors(EID, LP, READERS), addInEdges(TID, predecessors(EID, LP,
WRITERS), SG)),
writers : op(TID, EID, LP) ; WRITERS > .
eq addRead(TID, EID, LP,
< TH : TransactionHistory | graph : SG, readers : READERS, writers : WRITERS >) =
< TH : TransactionHistory |
graph : addInEdges(TID, getCreator(EID, LP, WRITERS), addOutEdges(TID, successors(EID, LP,
WRITERS), SG)),
readers : op(TID, EID, LP) ; READERS > .

op addInEdges : TransId TransIdSet SerGraph —> SerGraph .

ceq addInEdges(TID, TID' ; TIS1, SG) = < TID'; TID > ; addInEdges(TID, TIS1, SG) if TID' =/= TID .
ceq addInEdges(TID, TID' ; TIS1, SG) = addInEdges(TID, TIS1, SG) if TID' == TID .

eq addInEdges(TID, empty0idSet, SG) = SG .

op addOutEdges : TransId TransId SerGraph —> SerGraph .

ceq addOutEdges(TID, TID' ; TIS1, SG) = < TID ; TID' > ; addOutEdges(TID, TIS1, SG) if TID' =/= TID .
ceq addOutEdges(TID, TID' ; TIS1, SG) = addOutEdges(TID, TIS1, SG) if TID' == TID .

eq addOutEdges(TID, empty0idSet, SG) = SG .

op hasCycle : SerGraph —> Bool .
eq hasCycle(SG) = hasCycle(getTransIds(SG), SG, empty0OidSet) .

——— Usage: Awaiting Graph Visited
op hasCycle : TransIdSet SerGraph TransIdSet —> Bool .
ceq hasCycle((TID ; TIS1), SG, TIS3) = true if (TID in TIS3) .
ceq hasCycle((TID ; TIS1), SG, TIS3) =
hasCycle(destNodes(TID, SG), SG, (TIS3 ; TID))
or
hasCycle(TIS1, SG, TIS3)
if (not (TID in TIS3)) .
eq hasCycle(empty0idSet, SG, TIS3) = false .

op destNodes : TransId SerGraph —> TransIdSet .
eq destNodes(TID, < TID ; TID' > ; SG) = (TID'; destNodes(TID, SG)) .
eq destNodes(TID, SG) = emptyOidSet [owise] .

op getTransIds : SerGraph —> TransIdSet .
eq getTransIds(< TID ; TID' > ; SG) = TID ; TID' ; getTransIds(SG) .
eq getTransIds(emptyGraph) = emptyOidSet .

endtom)

Listing B.10 network_model_mc.rtmaude

(tomod NETWORK—MODEL is
inc MSG—WRAPPERS .
inc TIMED—BEHAVIOR .

var N : Nat .

var NS : NatSet .

var MC : MsgContent .
vars SID SID': Siteld .




B Real-Time Maude Model of Megastore 165

vars T1 T2 : Time .
var M : Msg .

sort D1yMsg .
subsort Msg < DlyMsg < NEConfiguration .
op dly : Msg Time —> DlyMsg [ctor right id: 0] .

op possibleMsgDelays : SiteId SiteId —> NatSet [comm]| .
eq delta(dly(M, T2), T1) = dly(M, T2 monus T1) .

eq mte(dly(M, T1)) = T1 .

crl [sendMsg] :
(uniCast MC from SID to SID')
=>
dly(msg MC from SID to SID', N)
if SID =/= SID' /\ N ; NS := possibleMsgDelays(SID, SID') .

eq uniCast MC from SID to SID = msg MC from SID to SID .

endtom)

Listing B.11 mc_fault_injection.rtmaude

(tomod FAULT—INJECTION is
inc TIMED—BEHAVIOR .
inc MEGASTORE—SETUP .
inc MAJORITY—READ .
inc UPDATES .
inc UPDATE—FAULT—HANDLERS .
inc NETWORK—MODEL .
inc CLIENT—INTERFACE .

vars SID SENDER THIS : Siteld .
var EG : EntityGroupId .

var TID : TransId .

var LP : LogPosition .

var LPL : LogPositionList .
var LE : LogEntry .

var LEL : LogEntryList .

var PN : Propnum .

var MC : MsgContent .

var T : Time .

var M : Msg .

var REST : Configuration .

var OBJECT : Object .

var OL : OperationList .

var CES : EntGroupLogPosPair .

msg siteFailure : Siteld —> Msg .
msg siteRepair : SiteId —> Msg .

op ttf : —> Time .
op ttr : —> Time .

op failed : Object —> Object [ctor frozen(1)] .

eq mte(failed(0OBJECT)) = INF .
eq delta(failed(OBJECT), T) = failed(OBJECT) .




166 B Real-Time Maude Model of Megastore

rl [takeSiteDown] :

siteFailure(SID)
< SID : Site | >
=>

failed(< SID: Site | >)
dly(siteRepair(SID), ttr) .

rl [bringSiteUp] :
(siteRepair(SID))
failed(< SID : Site | >)
=>
< SID : Site | > .

crl [msgWhenSiteFailure] :
(msg MC from SENDER to SID)
failed(< SID : Site | >)
=>
failed(< SID : Site | >)
if not isInvalidateCoordinator(MC) .

op isInvalidateCoordinator : MsgContent —> Bool .
eq isInvalidateCoordinator(invalidateCoordinator(EG, LP)) = true .
eq isInvalidateCoordinator(MC) = false [owise] .

rl [newTrans] :
(newTrans(SID, TID, OL))
failed(< SID: Site | >)
=>
failed(< SID : Site | >) .

rl [invalidateCoordinator] :
(msg invalidateCoordinator(EG, LP) from SENDER to THIS)
failed(< THIS : Site | coordinator : CES >)
=>
failed(< THIS : Site | coordinator : applyInvalidate(EG, LP, CES) >)
(uniCast invalidateConfirmed(EG, LP) from THIS to SENDER) .

endtom)




Appendix C
Real-Time Maude Model of Megastore-CGC

Listing C.1 timed_behavior.rtmaude

(tomod TIMED—BEHAVIOR is
pr TIME—DOMAIN .

var C : Configuration .
vars NEC NEC' : NEConfiguration .
var T : Time .

crl [tick] :
{C} => {delta(C, mte(C))} in time mte(C) if mte(C) > 0 /\ mte(C) =/= INF .

op delta : Configuration Time —> Configuration [format (r! o) frozen (1)] .
eq delta(none, T) = none .
eq delta(NEC NEC', T) = delta(NEC, T) delta(NEC', T) .

op mte : Configuration —> TimeInf [format (r! o) frozen (1)] .
eq mte(none) = INF .
eq mte(NEC NEC') = min(mte(NEC), mte(NEC')) .

endtom)

Listing C.2 megastore_setup.rtmaude

(tomod MEGASTORE—SETUP is
inc TIMED—BEHAVIOR .
inc RANDOM .

vars SID SID' ORDERSITE : Siteld .

var SIS : SiteldSet .

var EGRS : EntityGroupReplicaSet .

var LP : LogPosition .

var T : Time .

var TID : TransId .

vars N N' : Nat .

var SIL : SiteIdList .

vars 0ID 0 0' VH : 0id .

vars 0S OIS 0S1 0S2 : OidSet .

var CES : EntGroupLogPosSet .

var EGLP : EntGroupLogPos .

var LP : LogPosition .

var EG : EntityGroupld .

var OL : OperationList .

vars LOCALTRANS EGROUPS : Configuration .
vars PREV—EGLP EGLP : EntGroupLogPos .

167




168 C Real-Time Maude Model of Megastore-CGC

vars EGSET ORDCLASS : EntityGrouplIdSet .
var EVERSIONS : EntityVersionList .

vars ES ORDERCLASSES : EntitySet .

var VAL : EntityValue .

var 0CID : OrderClassId .

s ( Mapping from entity group to log position sxx)

sorts EntGroupLogPos EntGroupLogPosSet DefEntGroupLogPos .

subsort EntGroupLogPos < EntGroupLogPosSet .

op noEntGroupLogPos : —> EntGroupLogPos [ctor] .

op eglp : EntityGroupld LogPosition —> EntGroupLogPos [ctor] .

op _;_ : EntGroupLogPosSet EntGroupLogPosSet —> EntGroupLogPosSet [ctor assoc comm id:
noEntGroupLogPos] .

sort EntGroupLogPosList .

subsort EntGroupLogPos < EntGroupLogPosList .

op emptyEntityGroupLogPosClassList : —> EntGroupLogPosList .

op _::_ : EntGroupLogPosList EntGroupLogPosList —>
EntGroupLogPosList [ctor assoc id: noEntGroupLogPos] .

——— Used for coordinator
op invalidCstate : EntityGroupId LogPosition —> EntGroupLogPos [ctor] .

op containsEntityGroupId : EntityGroupId EntGroupLogPosSet —> Bool .
eq containsEntityGroupId(EG, eglp(EG, LP) ; CES) = true .
eq containsEntityGroupId(EG, CES) = false [owise] .

s#%( Ordering extensions ssks)

sorts OrderClassId OrderClass .

subsort EntityId < OrderClassId .

subsort OrderClass < EntityValue .

op _!>_: SiteId EntityGroupIdSet —> OrderClass [ctor] .
op noOrderClass : —> OrderClassId [ctor] .

op OrderSites : —> EntityGroupId .

——— The entity group updates at each site is a 1ist of sets, where

——— each element in the list represents one transaction

sorts EntGroupUpdate DefEntGroupUpdate EntGroupUpdateList EntGroupUpdateSet .

subsort EntGroupUpdate < EntGroupUpdateSet < DefEntGroupUpdate < EntGroupUpdateList .

op ____ : TransId EntityGroupId LogPosition Bool —> EntGroupUpdate [ctor] .

op _;_ : EntGroupUpdateSet EntGroupUpdateSet —> EntGroupUpdateSet [ctor comm assoc id:
emptyEntGroupUpdateSet] .

op _::_ : EntGroupUpdateList EntGroupUpdateList —> EntGroupUpdateList [ctor assoc id:
noEntGroupUpdate] .

op noEntGroupUpdate : —> EntGroupUpdatelist [ctor] .
op emptyEntGroupUpdateSet : —> EntGroupUpdateSet [ctor] .

op tentativeMarker : —> EntGroupUpdate [ctor] .

sorts ReplicaMapEntry ReplicaPredMap DefReplicaPredMap .

subsort ReplicaMapEntry < ReplicaPredMap < DefReplicaPredMap .

op __ : Siteld EntGroupUpdateList —> ReplicaMapEntry [ctor] .

op _;_ : ReplicaPredMap ReplicaPredMap —> ReplicaPredMap [ctor comm assoc id: noReplicaPredMap] .
op noReplicaPredMap : —> DefReplicaPredMap [ctor] .

sorts OrderClassUpdates .

op _—_|>>_ : OrderClassId EntityGroupIdSet EntGroupUpdateList —> OrderClassUpdates [ctor] .
op _;_ : OrderClassUpdates OrderClassUpdates —> OrderClassUpdates [ctor comm assoc id:
noOrderClassUpdates] .

op noOrderClassUpdates : —> OrderClassUpdates [ctor] .




C Real-Time Maude Model of Megastore-CGC 169

s%x Utility functions for reading the OrderSites entitity group
op osu : Siteld Nat —> TransId [ctor] .
op osr : Siteld Nat —> TransId [ctor] .

op validOrderSiteStatus : EntGroupLogPosSet —> Bool .
eq validOrderSiteStatus(eglp(OrderSites, LP) ; CES) = true .
eq validOrderSiteStatus(CES) = false [owise] .

op getOrderClass : EntityGroupIdSet EntitySet —> OrderClassId .
eq getOrderClass(EG ; EGSET, (OCID |—> EVERSIONS :: (LP (SID !> (EG ; ORDCLASS)))) ; ES) = OCID .
eq getOrderClass(EGSET, ES) = noOrderClass [owise] .

op isOrderingSite : OrderClassId Siteld EntitySet —> Bool .
eq isOrderingSite(0CID, SID, (OCID |—> EVERSIONS :: (LP (SID !> ORDCLASS))) ; ES) = true .
eq isOrderingSite(OCID, SID, ES) = false [owise] .

op getOrderingClass : EntityGroupIdSet Configuration —> OrderClassId .
eq getOrderingClass(EGSET, < OrderSites : EntityGroup |

entitiesState : ((OCID |—> EVERSIONS :: (LP (SID !>> EGSET ; ORDCLASS))) ; ES) > EGROUPS) = 0CID .
eq getOrderingClass(EGSET, EGROUPS) = noOrderClass [owise] .

op getOrderingSite : OrderClassId Configuration —> Siteld .
eq getOrderingSite(0CID, < OrderSites : EntityGroup |

entitiesState : ((OCID |—> EVERSIONS :: (LP (SID !> ORDCLASS))) ; ES) > EGROUPS) = SID .
eq getOrderingSite(0CID, EGROUPS) = noSiteld [owise] .

op getOrderClasses : Configuration —> EntitySet .
eq getOrderClasses(< OrderSites : EntityGroup | entitiesState : ORDERCLASSES > EGROUPS) =
ORDERCLASSES .

op getOrderingSite : OrderClassId EntitySet —> Siteld .
eq getOrderingSite(0CID, (OCID |—> EVERSIONS :: (LP (SID !> ORDCLASS))) ; ES) = SID .

op getOrderingEGs : OrderClassId Configuration —> EntityGroupIdSet .
eq getOrderingEGs(0CID, < OrderSites : EntityGroup |

entitiesState : ((OCID |—> EVERSIONS :: (LP (SID !> ORDCLASS))) ; ES) > EGROUPS) = ORDCLASS .
eq getOrderingEGs(0CID, EGROUPS) = noSiteld [owise] .

sorts AwaitingOrder AwaitingOrderSet .

subsort AwaitingOrder < AwaitingOrderSet .

op ____ : OrderClassId TransId EntityGroupId LogPosition —> AwaitingOrder [ctor] .

op _;_ : AwaitingOrderSet AwaitingOrderSet —> AwaitingOrderSet [ctor assoc id: noAwaitingOrderSet] .
op noAwaitingOrderSet : —> AwaitingOrderSet [ctor] .

sk Sites )sokok
sort Siteld .
subsort Siteld < 0id .

sort DefSiteld .
subsort Siteld < DefSiteld .
op noSiteId : —> DefSiteId [ctor] .

class Site |
coordinator : EntGroupLogPosSet,
egOrderings : OrderClassUpdates,
awaitingOrder : AwaitingOrderSet,
entityGroups : Configuration,
seqGen : Nat,




170 C Real-Time Maude Model of Megastore-CGC

localTransactions : Configuration .

sk ( Transaction log )sxx

sorts LogPosition LogPositionList DefLogPosition .

subsort LogPosition < LogPositionList .

subsort LogPosition < DefLogPosition .

op nolLogPosition : —> DefLogPosition [ctor] .

op emptyLPlist : —> LogPositionList [ctor] .

op lpos : Nat —> LogPosition [ctor] .

op _::i_ : LogPositionList LogPositionList —> LogPositionList [ctor assoc id: emptyLPlist] .

op min : LogPosition DefLogPosition —> LogPosition .
eq min(1lpos(N), 1pos(N')) = if (N <= N') then lpos(N) else lpos(N') fi .
eq min(1lpos(N), noLogPosition) = lpos(N) .

sorts LogEntry LogEntryList .

subsort LogEntry < LogEntryList .

op noEntries : —> LogEntryList [ctor] .

——— Usage: Transaction Logposition Siteld Leader—replica Updates

op ____ : TransId LogPosition SiteId OperationList —> LogEntry [ctor] .

op _::i_ : LogEntryList LogEntryList —> LogEntryList [ctor assoc id: noEntries] .

sk ( Entities )soek

sorts EntityId EntityIdSet .

subsort Entityld < EntityIdSet .

op emptyEntityIdSet : —> EntityIdSet [ctor] .

op entity : EntityGroupld Nat —> EntityId [ctor] .

op _;_ : EntityIdSet EntityIdSet —> EntityIdSet [ctor assoc comm id: emptyEntityIdSet] .

sorts Entity EntitySet .

subsort Entity < EntitySet .

op emptyEntitySet : —> EntitySet [ctor] .

op _|—>_ : EntityId EntityVersionList —> Entity [ctor] .

op _;_ : EntitySet EntitySet —> EntitySet [ctor assoc comm id: emptyEntitySet] .

sort EntityValue .
op v : Nat —> EntityValue [ctor] .

sorts EntityVersion EntityVersionList .
subsort EntityVersion < EntityVersionList .

op noEntityVersions : —> EntityVersionList [ctor] .
op __ : LogPosition EntityValue —> EntityVersion [ctor] .
op _::_ : EntityVersionList EntityVersionList —>

EntityVersionList [ctor assoc id: noEntityVersions] .

w0k Transactions )=k

sorts TransId .

subsort TransId < 0id .

op initTrans : —> TransId [ctor] .

sorts Operation OperationList .

subsort Operation < OperationList .

——— Custom operation to see the latest ordering site

op cr : EntityId —> Operation [ctor] .

op w : EntityId EntityValue —> Operation [ctor] .

op emptyOpList : —> OperationList [ctor] .

op _:i_ : OperationList OperationList —> OperationList [ctor assoc id: emptyOpList] .

op getWriteEGS : OperationList —> EntityGrouplIdSet .

eq getWriteEGS(cr(entity(EG,N)) :: OL) = getWriteEGS(OL) .

eq getWriteEGS(w(entity(EG,N),VAL) :: OL) = EG ; getWriteEGS(OL) .
eq getWriteEGS(emptyOpList) = empty0idSet .




C Real-Time Maude Model of Megastore-CGC 171

sort TransStatus .

ops idle in—paxos : —> TransStatus [ctor] .

op executing : LogPosition Time —> TransStatus [ctor] .
op awaitOrder : Time —> TransStatus [ctor] .

op transTimer : Time —> TransStatus [ctor] .

op defTimeout : —> Time .

Hokok

(

Coordination state represents a mapping to allow a running transaction to keep metadata per replica,
eg. while conducting a current read

*okok )

——— Used to maintain the state of

sorts ReadState ReadStateSet .

subsort ReadState < ReadStateSet .

op emptyReadState : —> ReadStateSet [ctor] .

op _;_ : ReadStateSet ReadStateSet —> ReadStateSet [ctor assoc comm id: emptyReadState] .

sorts PaxosState PaxosStateSet .

subsort PaxosState < PaxosStateSet .

op emptyPaxosState : —> PaxosStateSet [ctor] .

op _;_ : PaxosStateSet PaxosStateSet —> PaxosStateSet [ctor assoc comm id: emptyPaxosState] .

class Transaction |
operations : OperationList,
reads : EntitySet,
writes : OperationList,
status : TransStatus,
readState : ReadStateSet,
paxosState : PaxosStateSet .

op createNewTrans : TransId OperationList —> Object .
eq createNewTrans(TID, OL) =
< TID : Transaction | operations : OL, status : idle,
readState : emptyReadState,
paxosState : emptyPaxosState,
reads : emptyEntitySet, writes : emptyOpList > .

s#x( Applying updates s#xx)

sort PendingWriteState .

ops idle : —> PendingWriteState [ctor] .

op updating : Time —> PendingWriteState [ctor] .

sorts PendingWrite PendingWriteList .

subsort PendingWrite < PendingWriteList .

op pw : LogPosition PendingWriteState OperationList —> PendingWrite [ctor] .

op emptyPWList : —> PendingWriteList [ctor] .

op _::i_ : PendingWriteList PendingWriteList —> PendingWriteList [ctor assoc id: emptyPWList] .

w#%( Update coordination ssx)
sorts Propnum DefPropnum .
subsort Nat < Propnum .
subsort Propnum < DefPropnum .

op noPropnum : —> DefPropnum .

sorts PaxosProposal PaxosProposalSet .

subsort PaxosProposal < PaxosProposalSet .

op emptyProposalSet : —> PaxosProposalSet .

op proposal : SiteId TransId LogPosition OperationList Bool Propnum —> PaxosProposal [ctor] .




172 C Real-Time Maude Model of Megastore-CGC

op accepted : Siteld LogEntry Bool Propnum —> PaxosProposal [ctor] .
op _;_ : PaxosProposalSet PaxosProposalSet —> PaxosProposalSet [ctor assoc comm id: emptyProposalSet

1.

s%%( Replicas with metadata sss)

sorts EntityGroupReplica EntityGroupReplicaSet .

subsort EntityGroupReplica < EntityGroupReplicaSet .

op egr : Siteld Nat LogPosition —> EntityGroupReplica [ctor] .

op noEGR : —> EntityGroupReplicaSet [ctor] .

op _;_ : EntityGroupReplicaSet EntityGroupReplicaSet —> EntityGroupReplicaSet [ctor comm assoc id:
noEGR] .

op getSites : EntityGroupReplicaSet —> SiteIdSet .
eq getSites(egr(SID, N, LP) ; EGRS) = SID ; getSites(EGRS) .
eq getSites(noEGR) = emptyOidSet .

sk ( EntityGroups sox)

sort EntityGroupld .

subsort EntityGroupId < 0id .

op OrderSite : —> EntityGroupld [ctor] .

class EntityGroup |
entitiesState : EntitySet,
replicas : EntityGroupReplicaSet,
proposals : PaxosProposalSet,
pendingWrites : PendingWriteList,
transactionlLog : LogEntryList .

sk (Site id—lists xxx)

sort SiteIdList .

subsort Siteld < SiteldList .

op emptySiteIdList : —> SiteIdList [ctor] .

op _:i_: SiteIdList SiteIdList —> SiteIdList [ctor assoc id: emptySiteIdList] .
op length : SiteIdList —> Nat .

eq length(SID :: SIL) = 1 + length(SIL) .

eq length(emptySiteIdList) =0 .

s#% (Necessary set constructs sx)

sort NatSet .

subsort Nat < NatSet .

op emptyNatSet : —> NatSet [ctor] .

op _;_ : NatSet NatSet —> NatSet [ctor assoc comm id: emptyNatSet] .

sorts Empty0idSet SiteIdSet TransIdSet EntityGroupIdSet 0OidSet .
subsort Empty0idSet < TransIdSet EntityGroupIdSet SiteIdSet < 0OidSet .
subsort TransId < TransIdSet .

subsort EntityGroupId < EntityGroupIdSet .

subsort Siteld < SiteldSet .

subsort 0id < 0idSet .

op empty0idSet : —> Empty0idSet [ctor] .

op _;_ : Empty0idSet Empty0OidSet —> EmptyOidSet [ctor assoc comm id: emptyOidSet] .
op _;_ : TransIdSet TransIdSet —> TransIdSet [ctor ditto] .

op _;_ : EntityGroupIdSet EntityGroupIdSet —> EntityGroupIdSet [ctor ditto] .

op _;_ : SiteIdSet SiteIdSet —> SiteldSet [ctor ditto] .

op _;_ : 0idSet 0idSet —> DidSet [ctor ditto] .

eq0;0=0.

op _setminus_ : 0idSet 0OidSet —> 0idSet [assoc] .
eq (081 ; 0) setminus (0S2 ; 0) = 0S1 setminus (0S2 ; 0) .
eq 0S1 setminus 0S2 = 0S1 [owise] .




C Real-Time Maude Model of Megastore-CGC 173

op _in_ : 0id 0idSet —> Bool .
eq 0in (0 ; 0S) = true .
eq 0 in 0S = false [owise] .

op intersection : 0idSet 0idSet —> 0idSet .
eq intersection(0 ; 0S1, 0 ; 0S2) = O ; intersection(0S1, 0S2) .
eq intersection(0S1, 0S2) = emptyOidSet [owise] .

sk (Aggregates k)

op size : 0idSet —> Nat .

eq size(0ID ; 0IS) = 1 + size(0IS setminus 0ID) .
eq size(empty0idSet) =0 .
endtom)

(omod MSG—WRAPPERS is
inc MEGASTORE—SETUP .

var MC : MsgContent .

vars SID SID' : Siteld .

var SIS : SitelIdSet .

vars SYSTEM REST : Configuration .

sort MsgContent .

op msg_from_to_ : MsgContent Siteld Siteld —> Msg [ctor] . ——— msg to be read/rcvd

op uniCast_from_to_ : MsgContent SiteId Siteld —> Msg [ctor] . ——— msg to be transmitted
op multiCast_from_to_ : MsgContent Siteld SiteIdSet —> MsgConfiguration .

——— Sometimes we need to store the set of message contents received,

——— and we therefore define a sort for multisets of message contents:

sort MsgContentSet .

subsort MsgContent < MsgContentSet .

op noMsgContent : —> MsgContentSet [ctor] .

op __ : MsgContentSet MsgContentSet —> MsgContentSet [ctor assoc comm id: noMsgContent] .

eq multiCast MC from SID to (SID'; SIS) =
(uniCast MC from SID to SID')
(multiCast MC from SID to SIS) .

eq multiCast MC from SID to empty0idSet = none .

endom)

(omod CLIENT—INTERFACE is
inc MEGASTORE—SETUP .

msg newTrans : Siteld TransId OperationList —> Msg .

msg notifyCommit : Siteld TransId EntGroupLogPosSet EntitySet OperationList —> Msg .
msg notifyReadOnlyCommit : SiteId TransId EntitySet —> Msg .

msg notifyReadOnlyAbort : Siteld TransId —> Msg .

msg notifyConflictAbort : Siteld TransId EntitySet OperationList —> Msg .

msg notifyValidationAbort : Siteld TransId EntitySet OperationList —> Msg .

msg notifyAbort : Siteld TransId EntitySet OperationList —> Msg .

endom)

Listing C.3 current_read.rtmaude

(tomod CURRENT—READ is
inc CLIENT—INTERFACE .
inc MEGASTORE—SETUP .
inc MSG—WRAPPERS .




174 C Real-Time Maude Model of Megastore-CGC

vars TID TID' : TransId .

vars SID SID' THIS SENDER : Siteld .
var TS : TransStatus .

vars SIS SIS': SiteldSet .

var EGRS : EntityGroupReplicaSet .
var EID : EntityId .

var EGID : EntityGroupld .

vars CNT N N' SEQ N1 N2 : Nat .

var EGIS : EntityGroupIdSet .

var LOCALTRANS : Configuration .
vars OL OL' : OperationList .

vars ES BSTATE READS : EntitySet .
var EV : EntityVersion .

var DLP : DefLogPosition .

vars LP LP' : LogPosition .

vars VAL1 VAL2 : EntityValue .

var EVER : EntityVersion .

vars EG EG' : EntityGroupId .

var CE : EntGroupLogPos .

var CES : EntGroupLogPosSet .

var EGROUPS : Configuration .
vars EVERSIONS EVERSIONS' : EntityVersionList .
var RSTATE : ReadStateSet .

var LEL : LogEntryList .

var T : Time .

var SIL : SiteIdList .

vars OL1 OL2 : OperationList .

var 0OCID : OrderClassId .

var EGIDS : EntityGroupIdSet .
var ORDERCLASSES : EntitySet .
var CATCHUP—O0SS : Bool .

op readpos : EntityGroupId LogPosition —> ReadState [ctor] .

ops readDelay : —> Time .

——— Proceed transaction locally

sotok

——— Current read:

——— * If local coordinator is up—to—date (e.g. an

— entry for the given entityid exists in the coordinator state): Read locally.
——— % If local coordinator is not up—to—date, perfom

— amajority read to find the maximum logposition. Once a given
——— logposition has been received from a majority of sites, the
——— most responsive replica is elected for a "catchup”. See

——— MAJORITY—READ for details In addition to the modelled delay for
——— local access (representing the actual bigtable—lookup), we

— require the pending write queue to be empty We store the most
——— recent log entry upon start of the read — this LP is maintained
— throughout the transaction. Any conflict with concurrent

——— updates will then be detected upon commit.

*kk )

skx A: Non—faulty scenario: Perform a local read
crl [CRAl1—startCurrentLocalRead] :
< SID: Site |

coordinator : (eglp(EG, LP) ; CES),

seqGen : SEQ,

entityGroups : < EG : EntityGroup |

pendingWrites : emptyPWList > EGROUPS,
localTransactions : < TID : Transaction | operations : cr(entity(EG,N)) :: OL, status : idle >
LOCALTRANS >




C Real-Time Maude Model of Megastore-CGC 175

=>
< SID : Site |
localTransactions : < TID : Transaction | operations : cr(entity(EG,N)) :: OL, status :
executing(LP, readDelay) > LOCALTRANS,
seqGen : (if CATCHUP—OSS then s SEQ else SEQ fi) >
(if CATCHUP—OSS then (newTrans(SID, osr(SID, SEQ), cr(0CID))) else none fi)
if not (containsUpdate(entity(EG,N), OL) and inConflictWithRunning(EG, LOCALTRANS)) /\
OCID := getOrderingClass(EG, < EG : EntityGroup | > EGROUPS) /\
CATCHUP—O0SS := not (validOrderSiteStatus(eglp(EG, LP) ; CES) or contains0SSCatchup(LOCALTRANS)) .

op contains0SSCatchup : Configuration —> Bool .
eq contains0SSCatchup(< osr(SID, N') : Transaction | > LOCALTRANS) = true .
eq contains0SSCatchup(LOCALTRANS) = false [owise] .

op inConflictWithRunning : EntityGroupId Configuration —> Bool .
ceq inConflictWithRunning(EG, < TID : Transaction |
status : TS, reads : READS, operations : OL1 :: w(entity(EG,N), VAL1) :: OL2 > LOCALTRANS) = true
if not (TS == idle and filterReads(EG, READS) == emptyEntitySet) .
eq inConflictWithRunning(EG, < TID : Transaction | writes : OL1 :: w(entity(EG,N), VAL1) :: OL2 >
LOCALTRANS) = true .
eq inConflictWithRunning(EG, LOCALTRANS) = false [owise] .

op filterReads : EntityGroupId EntitySet —> EntitySet .
eq filterReads(EG, (entity(EG,N) |—> EVER) ; ES) = (entity(EG,N) |—> EVER) ; filterReads(EG, ES) .
eq filterReads(EG, ES) = emptyEntitySet [owise] .

op containsUpdate : EntityId OperationList —> Bool .
eq containsUpdate(EID, OL1 :: w(EID, VAL1) :: OL2) = true .
eq containsUpdate(EID, OL) = false [owise] .

rl [CRA2—endCurrentLocalRead] :
< THIS : Site |
entityGroups : < EG : EntityGroup | entitiesState : (entity(EG,N) |—> EVERSIONS) ; BSTATE >
EGROUPS,
localTransactions : < TID : Transaction | operations : cr(entity(EG,N)) :: OL,
status : executing(LP, 0), readState : RSTATE, reads : READS >
LOCALTRANS >
=>
< THIS : Site |
localTransactions : < TID : Transaction | operations : OL, status : idle,
readState : readpos(EG, LP) ; RSTATE, reads : (entity(EG,N) |—>
getVersion(LP, EVERSIONS)) ; READS > LOCALTRANS > .

op getVersion : LogPosition EntityVersionList —> EntityVersion .

ceq getVersion(lpos(N), EVERSIONS :: (1pos(N1) VAL1) :: (1pos(N2) VAL2) :: EVERSIONS') = (1lpos(N1) VAL1)
if (N1 <N /\ N < N2) .

ceq getVersion(lpos(N), EVERSIONS :: (1pos(N1) VAL1)) = (1lpos(N1) VAL1) if (N1 <=N) .

op hasQuorum : Nat SiteIdSet —> Bool .
eq hasQuorum(N, SIS) = (N >= (size(SIS) quo 2 + 1)) .

endtom)

Listing C.4 ordering.rtmaude

(omod ORDERING is
inc CURRENT—READ .

vars EG EG1 EG2 : EntityGroupld .
var EID : EntityId .
var SID : Siteld .




176 C Real-Time Maude Model of Megastore-CGC

vars LP LP' : LogPosition .

var SIS : SiteldSet .

var EGS : EntityGroupIdSet .

var ES : EntitySet .

var EGROUPS : Configuration .

var EVERSIONS : EntityVersionList .
var ORDERCLASSES : EntitySet .

vars EGIDS ORDCLASS : EntityGroupIldSet .
vars UPS1 UPS2 : EntGroupUpdateSet .
vars DEFUP : DefEntGroupUpdate .

vars UP1 : EntGroupUpdate .

vars PRED1 PRED2 UPDATELST1 UPDATELST2 : EntGroupUpdateList .
vars TID TID1 TID2 : TransId .

var N : Nat .

var EVAL : EntityValue .

var OL : OperationList .

var LEL : LogEntryList .

vars OCID 0CID1 OCID2 : OrderClassId .
var OCUPDATES : OrderClassUpdates .
vars AWAITING : AwaitingOrderSet .
vars TENTATIVE TENT1 TENT2 : Bool .

——— For a transaction T updating entity groups EG1, EG2,
——— the initiator receives a set of updates preceding T in EG1 and EG2, respectively
op applyOrdering : OrderClassId EntGroupUpdateSet EntGroupUpdateList OrderClassUpdates —>
OrderClassUpdates .
eq applyOrdering(0CID, (TID EG LP TENT1), PRED1, (OCID — empty0idSet |>>> UPDATELST1) ; OCUPDATES) =
(OCID — emptyOidSet |>> updateOrder((TID EG LP TENT1),
applyPermanent (UPDATELST1, PRED1),
applyPermanent(PRED1 :: (TID EG LP TENT1), UPDATELST1))) ; OCUPDATES .
——— If the local ordering is invalid, simply apply the order when received
ceq applyOrdering(0CID, ((TID EG LP TENTATIVE) ; DEFUP), PRED1, (OCID — EGIDS |>> UPDATELST1) ;
OCUPDATES) =
(0OCID — empty0idSet |>> PRED1 :: ((TID EG LP TENTATIVE) ; DEFUP)) ; OCUPDATES if EGIDS =/=
empty0OidSet .

op applyPermanent : EntGroupUpdateList EntGroupUpdateList —> EntGroupUpdateList .
eq applyPermanent(PRED1 :: ((TID1 EG LP false) ; DEFUP) :: UPDATELST1, PRED2 :: ((TID2 EG LP true) ; DEFUP)
:: UPDATELST2) =
applyPermanent(PRED1 :: ((TID1 EG LP false) ; DEFUP) :: UPDATELST1, PRED2 :: ((TID2 EG LP false) ;
DEFUP) :: UPDATELST2) .
eq applyPermanent (UPDATELST1, UPDATELST2) = UPDATELST2 [owise] .

op updateOrder : EntGroupUpdate EntGroupUpdateList EntGroupUpdatelList —> EntGroupUpdateList .

eq updateOrder((TID EG LP false), PRED1, PRED2 :: ((TID EG LP true) ; DEFUP) :: UPDATELST1) =
updateOrder((TID EG LP false), PRED1, PRED2 :: UPDATELST1) .

eq updateOrder((TID EG LP TENT1), PRED1 :: UPDATELST1, PRED2 :: UPDATELST1 :: ((TID EG LP TENT1) ; DEFUP)
:: UPDATELST2) =
PRED2 :: UPDATELST1 :: ((TID EG LP TENT1) ; DEFUP) :: UPDATELST2 .

ceq updateOrder((TID EG LP TENT1), noEntGroupUpdate, UPDATELST1) = UPDATELST1 :: (TID EG LP TENT1)
if not containsOrdering(TID, EG, LP, UPDATELST1) .

ceq updateOrder((TID EG LP TENT1), PRED1 :: UPDATELST1 :: UPDATELST2, PRED2 :: UPDATELST1) =
(UPDATELST1 :: UPDATELST?2 :: (TID EG LP TENT1))
if not containsOrdering(TID, EG, LP, UPDATELST1) /\ UPDATELST1 =/= noEntGroupUpdate .

ceq updateOrder((TID EG1 LP TENT1), PRED1 :: UPDATELST1 :: UPDATELST2, PRED2 :: UPDATELST1 :: (TID2 EG2 LP
' true)) =
(PRED2 :: UPDATELST1 :: UPDATELST2 :: (TID EG1 LP TENT1))




C Real-Time Maude Model of Megastore-CGC 177

if not containsOrdering(TID, EG1, LP, UPDATELST1) /\ UPDATELST1 =/= noEntGroupUpdate .

op applyAwaiting : OrderClassId AwaitingOrderSet OrderClassUpdates —> OrderClassUpdates .
eq applyAwaiting(0CID, (OCID TID EG LP) ; AWAITING, OCUPDATES) =
applyAwaiting(0CID, AWAITING, updateOrdering(0CID, (TID EG LP true), OCUPDATES)) .
ceq applyAwaiting(0CID1, (OCID2 TID EG LP) ; AWAITING, OCUPDATES) =
applyAwaiting(0CID1, AWAITING, OCUPDATES) if 0CID1 =/= OCID2 .
eq applyAwaiting(0CID, noAwaitingOrderSet, OCUPDATES) = OCUPDATES .

op removeOrdered : AwaitingOrderSet OrderClassUpdates —> AwaitingOrderSet .
eq removeOrdered((0CID TID EG LP) ; AWAITING,
(0CID — empty0idSet |>>> UPDATELST1 :: ((TID EG LP TENTATIVE) ; DEFUP) :: UPDATELST2) ;
OCUPDATES) =
removeOrdered(AWAITING, (OCID — emptyOidSet |>> UPDATELST1 :: ((TID EG LP TENTATIVE) ; DEFUP) ::
UPDATELST2) ; OCUPDATES) .
eq removeOrdered(noAwaitingOrderSet, OCUPDATES) = noAwaitingOrderSet .
eq removeOrdered(AWAITING, OCUPDATES) = AWAITING [owise] .

——— Even if a transaction is applied as a "dummy”, it might be ordered at the ordering site

——— and later aborted since the ordering message never arrived. In that case only

——— we allow changing the order list to remove this transaction.

op removelfOrdered : TransId OrderClassUpdates —> OrderClassUpdates .

eq removeIfOrdered(TID, (OCID — EGIDS |>>> (UPDATELST1 :: ((TID EG LP TENTATIVE) ; DEFUP) :: UPDATELST2)
) ; OCUPDATES) =
((0CID — EGIDS |>> (UPDATELST1 :: UPDATELST2)) ; OCUPDATES) .

eq removeIfOrdered(TID, OCUPDATES) = OCUPDATES [owise] .

op containsOrdering : TransId EntityGroupld LogPosition EntGroupUpdateList —> Bool .
eq containsOrdering(TID, EG, LP, UPDATELST1 :: ((TID EG LP TENTATIVE) ; DEFUP) :: UPDATELST2) = true .
eq containsOrdering(TID, EG, LP, UPDATELST1) = false [owise] .

op containsTid : TransId EntGroupUpdateList —> Bool .
eq containsTid(TID, UPDATELST1 :: ((TID EG LP TENTATIVE) ; DEFUP) :: UPDATELST2) = true .
eq containsTid(TID, UPDATELST1) = false [owise] .

op getLastUpdate : OrderClassId OrderClassUpdates —> EntGroupUpdateSet .
eq getLastUpdate(OCID, (OCID — emptyOidSet |>>> UPDATELST1 :: UPS1) ; OCUPDATES) = UPS1 .

op updateOrdering : OrderClassId EntGroupUpdateSet OrderClassUpdates —> OrderClassUpdates .
eq updateOrdering(0CID, UPS1, OCUPDATES) =
applyOrdering(0CID, UPS1, noEntGroupUpdate, OCUPDATES) .

op getUpdatelList : OrderClassId OrderClassUpdates —> EntGroupUpdateList .
eq getUpdateList(OCID, (OCID — emptyOidSet |>>> UPDATELST1) ; OCUPDATES) = UPDATELST1 .

op removeTidIfPresent : OrderClassId TransId OrderClassUpdates —> OrderClassUpdates .

ceq removeTidIfPresent(0CID, TID, (OCID — emptyOidSet |>>> UPDATELST1 :: UPS1 :: (TID EG LP TENTATIVE) ;
DEFUP :: UPDATELST2) ; OCUPDATES) =
((OCID — empty0idSet |>> UPDATELST1 :: UPDATELST2) ; OCUPDATES) if UPS1 =/= tentativeMarker .

eq removeTidIfPresent(0CID, TID, (OCID — emptyOidSet |>>> UPDATELST1 :: tentativeMarker :: (TID EG LP
TENTATIVE) ; DEFUP :: UPDATELST2) ; OCUPDATES) =
((0CID — empty0idSet |>>> UPDATELST1 :: UPDATELST2) ; OCUPDATES) .

eq removeTidIfPresent(0CID, TID, (OCID — emptyOidSet |>> (TID EG LP TENTATIVE) ; DEFUP :: UPDATELST1)
; OCUPDATES) = (OCID — emptyOidSet |>> UPDATELST1) .

eq removeTidIfPresent(0CID, TID, OCUPDATES) = OCUPDATES [owise] .

endom)

(omod VALIDATION—INTERFACE is
inc ORDERING .

——— Actual implementation in a separate module
op isValid? : TransId EntitySet EntGroupUpdatelList Configuration —> Bool .




178 C Real-Time Maude Model of Megastore-CGC

op isValidReadOnly? : EntitySet EntGroupUpdateList Configuration —> Bool .
op isTentative? : EntGroupUpdateList —> Bool .
endom)

Listing C.5 updates.rtmaude

(tomod UPDATES is
inc CLIENT—INTERFACE .
inc CURRENT—READ .
inc ORDERING .
inc VALIDATION—INTERFACE .

var EID : EntityId .

var EIDSET : EntityGroupIdSet .

vars N N' SEQ N1 N2 : Nat .

var NS : NatSet .

vars T EXP : Time .

vars PN PN' PROPNUM : Propnum .

var PXSID : Nat .

vars DPN SEEN—PROPNUM : DefPropnum .

vars EG EG' : EntityGroupld .

var EGROUPS : Configuration .

vars TID TID' TID1 TID2 TID3 : TransId .

vars SID SID' MSID1 MSID2 OSITE NEW—OSITE SENDER THIS ORDERSITE : Siteld .
vars SIS SIS—FAILED REPLICAS : SiteIdSet .

var EGRS : EntityGroupReplicaSet .

var RSTATE : ReadStateSet .

vars PSTATE NEW—PAX0OS—STATE : PaxosStateSet .

vars LOCALTRANS LTRANS1 LTRANS2 : Configuration .

vars WRITEOPS OL OL' OL1 OL2 : OperationList .

var OP : Operation .

var PROPSET : PaxosProposalSet .

vars VAL VAL' : EntityValue .

vars LEL LEL' : LogEntryList .

vars LE LE' NEW—LE NEXT—VALUE : LogEntry .

vars LP LP' : LogPosition .

var ES : EntitySet .

vars EVERSIONS EVERSIONS' : EntityVersionList .

var PWL : PendingWriteList .

vars CA COMPLETE ORDERED VAL—REQ VAL—REQ1 VAL—REQ2 CATCHUP—O0SS : Bool .
var RND : Oid .

vars CE PREV—EGLP : EntGroupLogPos .

var CES : EntGroupLogPosSet .

var READS : EntitySet .

var WRITES : OperationList .

var ORDERCLASSES : EntitySet .

vars NEW—0OCUPDATES CHANGED—OCUPDATES OCUPDATES PREDUPDATES : OrderClassUpdates .
var NEW—PREDMAP RCVD—PREDMAP PREDMAP : DefReplicaPredMap .
var PREDLIST : EntGroupUpdateList .

vars UPDATE—LIST UPDATELST1 UPDATELST2 : EntGroupUpdateList .
var UPS : EntGroupUpdateSet .

var DEFUP : DefEntGroupUpdate .

vars TENTATIVE IN—SINGLE—EG VALID VALIDATED READ—ONLY IS—ORDERING—SITE : Bool .
var OCID : OrderClassId .

var AWAIT—ORDERSET : AwaitingOrderSet .

var EGIDS : EntityGroupIdSet .

op defPropExp : —> Time .
ops updateDelay : —> Time .

sk ( Messages ko)




C Real-Time Maude Model of Megastore-CGC 179

op acceptLeaderReq : TransId EntityGroupId LogEntry Bool —> MsgContent .

op acceptLeaderReq : TransId EntityGroupld LogEntry EntitySet —> MsgContent .

op acceptLeaderRsp : TransId EntityGroupld LogPosition DefReplicaPredMap —> MsgContent .

op signalConflict : TransId EntityGroupId LogPosition —> MsgContent .

op signalValidationFail : TransId EntityGroupId LogPosition —> MsgContent .

op acceptAllReq : TransId EntityGroupId LogEntry Bool Propnum —> MsgContent .

op acceptAllReq : TransId EntityGroupId LogEntry EntitySet Propnum —> MsgContent .

op acceptAllRsp : TransId EntityGroupld LogPosition DefReplicaPredMap Propnum —> MsgContent .
op applyReq : TransId EntityGroupId LogPosition Bool DefReplicaPredMap Propnum —> MsgContent .
op abortTrans : TransId OrderClassId —> MsgContent .

sk Paxos states skx)
op acceptLeader : EntityGroupld LogEntry SiteId Time —> PaxosState [ctor] .

——— Propnum == proposal number, SiteIdSetl == sites responded yes

op acceptAll : EntityGroupId LogEntry Bool Propnum SiteIdSet DefReplicaPredMap Time —> PaxosState
[ctor] .

——— SiteldSet == sites who did not accept

op acceptedPS : EntityGroupld LogEntry Bool DefReplicaPredMap Propnum —> PaxosState [ctor] .

w#%( Paxos—states involved in presence of errors, see UPDATE—FAULT—HANDLERS s#s:)

——— Propnuml == proposal number, Propnum2 == seen proposal number, SiteIdSet —= sites responded

op prepare : EntityGroupId LogEntry Bool Propnum DefPropnum SiteIdSet Time —> PaxosState [ctor] .

op restartPrepare : EntityGroupId LogEntry Bool Time —> PaxosState [ctor] .

——— SiteldSet == sites who did not accept

op invalidating : EntityGroupId LogEntry Bool Propnum SiteIdSet DefReplicaPredMap Time —>
PaxosState [ctor] .

rl [bufferWriteOperation] :
< SID : Site |
entityGroups : EGROUPS,
localTransactions : < TID : Transaction | operations : w(EID, VAL) :: OL, writes : WRITEOPS,
status : idle > LOCALTRANS

>
=>
< SID : Site |
localTransactions : < TID : Transaction | operations : OL, writes : WRITEOPS :: w(EID, VAL) >
LOCALTRANS
>

#x% Initiate commit. If the initiator is the ordering site, we first order and validate the transaction.
crl [initiateCommit] :
< THIS : Site |
entityGroups : EGROUPS,
localTransactions : < TID : Transaction | operations : emptyOpList, writes : WRITEQPS,
readState : RSTATE, reads : READS, paxosState : PSTATE, status : idle > LOCALTRANS
>
=>
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : NEW—PAXOS—STATE, status : in—paxos >
LOCALTRANS
>
(createAcceptLeaderMessages(THIS, ORDERSITE, READS, NEW—PAX0S—STATE))
if WRITEOPS =/= emptyOpList /\
ORDERCLASSES := getOrderClasses(EGROUPS) /\
0CID := getOrderClass(getWriteEGS(READS), ORDERCLASSES) /\
ORDERSITE := getOrderingSite(0CID, ORDERCLASSES) /\
EIDSET := getWriteEGS(WRITEOPS) /\
NEW—PAX0S—STATE := initiatePaxosState(EIDSET, TID, WRITEOPS, THIS, RSTATE, EGROUPS) .

op initiatePaxosState : EntityGroupIldSet TransId OperationList SiteId
ReadStateSet Configuration —> PaxosStateSet .




180 C Real-Time Maude Model of Megastore-CGC

eq initiatePaxosState(EG ; EIDSET, TID, WRITEOPS, SID, readpos(EG, 1pos(N)) ; RSTATE,
< EG : EntityGroup | replicas : EGRS, transactionlog : LEL :: (TID' 1pos(N) MSID1 OL1) :: LEL' >
EGROUPS) =
acceptLeader(EG, (TID lpos(s N) SID filterEGWrites(EG, WRITEOPS)), MSID1, defTimeout)
; initiatePaxosState(EIDSET, TID, WRITEOPS, SID, RSTATE, < EG : EntityGroup | > EGROUPS) .
eq initiatePaxosState(empty0idSet, TID, WRITEOPS, SID, RSTATE, EGROUPS) = emptyPaxosState .

op createAcceptLeaderMessages : Siteld SiteId EntitySet PaxosStateSet —> Configuration .

ceq createAcceptLeaderMessages(SID, ORDERSITE, READS, acceptLeader(EG, (TID LP MSID2 OL), MSID1, EXP) ;
PSTATE) =
(uniCast acceptLeaderReq(TID, EG, (TID LP MSID2 OL), (not withinSingleEntityGroup(READS))) from

SID to MSID1)

createAcceptLeaderMessages(SID, ORDERSITE, READS, PSTATE) if (MSID1 =/= ORDERSITE) .

ceq createAcceptLeaderMessages(SID, ORDERSITE, READS, acceptLeader(EG, (TID LP MSID2 OL), MSID1, EXP) ;
PSTATE) =
(uniCast acceptLeaderReq(TID, EG, (TID LP MSID2 OL), READS) from SID to MSID1)
createAcceptLeaderMessages(SID, ORDERSITE, READS, PSTATE) if (MSID1 == ORDERSITE) .

eq createAcceptLeaderMessages(SID, ORDERSITE, READS, PSTATE) = none [owise] .

op filterEGWrites : EntityGroupId OperationList —> OperationList .

eq filterEGWrites(EG, emptyOpList) = emptyOpList .

eq filterEGWrites(EG, w(entity(EG, N), VAL) :: OL) = w(entity(EG,N), VAL) :: filterEGWrites(EG, OL) .
eq filterEGWrites(EG, w(entity(EG', N), VAL) :: OL) = filterEGWrites(EG, OL) [owise] .

——— For read—only transactions accessing one entity group, we remove the transaction and commit
immediately
crl [initiateCommitReadOnly] :
< SID: Site |
entityGroups : EGROUPS,
egOrderings : OCUPDATES,
localTransactions :
< TID : Transaction | operations : emptyOpList, readState : RSTATE, status : idle,
reads : READS, writes : emptyOpList > LOCALTRANS

>
=>

< SID: Site |
localTransactions : LOCALTRANS
(if TENTATIVE then

< TID : Transaction | status : awaitOrder(defTimeout) >

else none fi)

>

(if withinSingleEntityGroup(READS) then
(notifyReadOnlyCommit(SID, TID, READS))
else
(if not TENTATIVE then
(if isValidReadOnly?(READS, UPDATE—LIST, EGROUPS) then
(notifyReadOnlyCommit(SID, TID, READS))
else
(notifyReadOnlyAbort(SID, TID))
£i)
else
none
£i)
fi)
if ORDERCLASSES := getOrderClasses(EGROUPS) /\
0CID := getOrderClass(getWriteEGS(READS), ORDERCLASSES) /\
UPDATE—LIST := getUpdateList(0CID, OCUPDATES) /\
TENTATIVE := isTentative?(UPDATE—LIST) .

op getWriteEGS : EntitySet —> EntityGroupldSet .
eq getWriteEGS((entity(EG,N) |—> EVERSIONS) ; ES) = EG ; getWriteEGS(ES) .




C Real-Time Maude Model of Megastore-CGC 181

eq getWriteEGS(emptyEntitySet) = emptyOidSet .

op withinSingleEntityGroup : EntitySet —> Bool .

ceq withinSingleEntityGroup((entity(EG, N1) |—> EVERSIONS) ; (entity(EG', N2) |—> EVERSIONS') ; ES) =
false if EG =/= EG'.

eq withinSingleEntityGroup(ES) = true [owise] .

s#x( Section 4.6.3 Accept Leader. No conflicting proposal s#xx)

——— Note: In the ”"Fast write” —scenario, we do not run the explicit prepare step. But it appears
——— correct to regard the present proposal as proposal number O and store this at the leader
——— (if the original proposer then fails, there is a chance its value will "survive” due to
——— this)

s+%( Receive a leader—accept request without validation request sss)
crl [L2successfulleaderAccept] :
(msg acceptLeaderReq(TID, EG, (TID LP SID OL), VAL—REQ) from SENDER to THIS)
< THIS : Site |
entityGroups :
< EG : EntityGroup | proposals : PROPSET, transactionLog : LEL, replicas : EGRS >
EGROUPS
>
=>
< THIS : Site |
entityGroups :
< EG : EntityGroup |
proposals : accepted(SENDER, (TID LP SID OL), VAL—REQ, 0) ; PROPSET
>
EGROUPS
>
(uniCast acceptLeaderRsp(TID, EG, LP, noReplicaPredMap) from THIS to SENDER)
if not (containsLPos(LP, LEL) or conflictingProposal(TID, LP, 0, PROPSET)) /\
ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) .

s+%( Receive a leader—accept request with read—set (representing a request for validation) sx)
crl [L2successfulleaderAcceptWidthValidation] :
(msg acceptLeaderReq(TID, EG, (TID LP SID OL), READS) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
entityGroups :
< EG : EntityGroup | proposals : PROPSET, transactionLog : LEL, replicas : EGRS >
EGROUPS,
egOrderings : OCUPDATES,
awaitingOrder : AWAIT—ORDERSET
>
=>
< THIS : Site |
entityGroups :
< EG : EntityGroup |
proposals : (if VALID then
accepted(SENDER, (TID LP SID OL), (not IN—SINGLE—EG), 0) ; PROPSET
else PROPSET £i)
>
EGROUPS,
egOrderings : (if (VALID and ORDERED) then NEW—OCUPDATES else OCUPDATES fi),
awaitingOrder : (if (VALID and ORDERED) then noAwaitingOrderSet else AWAIT—ORDERSET fi)
>
(if (VALID) then
(if ORDERED then
(uniCast acceptLeaderRsp(TID, EG, LP,




182 C Real-Time Maude Model of Megastore-CGC

createPredMap(EGRS, EG, getUpdateList(0OCID, PREDUPDATES), < EG : EntityGroup | >
EGROUPS)) from THIS to SENDER)
else
(uniCast acceptLeaderRsp(TID, EG, LP, noReplicaPredMap) from THIS to SENDER)
£i)
else
(uniCast signalValidationFail(TID, EG, LP) from THIS to SENDER)
£i)
if not (containsLPos(LP, LEL) or conflictingProposal(TID, LP, 0, PROPSET)) /\
ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) /\
ORDERED := (isOrderingSite(0CID, THIS, ORDERCLASSES) and isUpToDate(OCID, OCUPDATES, THIS, < EG :
EntityGroup | > EGROUPS, READS, CES)) /\
PREDUPDATES := applyAwaiting(0CID, AWAIT—ORDERSET, OCUPDATES) /\
NEW—OCUPDATES := updateOrdering(0CID, (TID EG LP true), PREDUPDATES) /\
IN—SINGLE—EG := withinSingleEntityGroup(READS) /\
UPDATE—LIST := getUpdateList(0CID, NEW—0OCUPDATES) /\
VALID := ((IN—SINGLE—EG or (not ORDERED)) or isValid?(TID, READS, UPDATE—LIST,
(< EG : EntityGroup | > EGROUPS))) .

——— If all versions read in "EntitySet” are valid at least up to the log positon
——— _and_ the local coordinator state of the OrderSites—entity group is valid, this site is ready
to order
op isUpToDate : OrderClassId OrderClassUpdates Siteld Configuration EntitySet EntGroupLogPosSet
—> Bool .
eq isUpToDate(0CID, OCUPDATES, SID, EGROUPS, ES, CES) =
hasValidOrder(OCID, OCUPDATES) and hasSeenAllUpdates(ES, CES) and
(not acceptedNotOrdered(0CID, getOrderingEGs(0CID, EGROUPS), getUpdateList(0CID, OCUPDATES),
EGROUPS)) and
containsEntityGroupld(OrderSites, CES) and (getOrderingUpdate(0OCID, SID, EGROUPS) ==
noLogPosition) .

op acceptedNotOrdered : OrderClassId EntityGroupIdSet EntGroupUpdateList Configuration —> Bool .
eq acceptedNotOrdered(0OCID, EGIDS, UPDATELST1, EGROUPS) = true .
ceq acceptedNotOrdered(0CID, EG ; EGIDS, UPDATELST1,
< EG : EntityGroup | proposals : accepted(SID, (TID LP MSID1 OL1), VAL—REQ, PN) ; PROPSET >
EGROUPS) =
true if not containsOrdering(TID, EG, LP, UPDATELST1) .
eq acceptedNotOrdered(OCID, EGIDS, UPDATELST1, EGROUPS) = false [owise] .

op hasValidOrder : OrderClassId OrderClassUpdates —> Bool .
eq hasValidOrder(OCID, (OCID — emptyOidSet |>>> UPDATE—LIST) ; OCUPDATES) = true .
eq hasValidOrder(0CID, (OCID — EGIDS |>> UPDATE—LIST) ; OCUPDATES) = false [owise] .

op getOrderingUpdate : OrderClassId Siteld Configuration —> DefLogPosition .
ceq getOrderingUpdate(0CID, OSITE,
< OrderSites : EntityGroup | proposals :
accepted(SID, (TID LP MSID1 OL1 :: w(OCID, NEW—OSITE !> EGIDS) ::
0L2),
VAL—REQ, PN) ; PROPSET > EGROUPS) = LP if NEW—0SITE =/= OSITE

eq getOrderingUpdate(0CID, SID, EGROUPS) = noLogPosition [owise] .

op hasSeenAllUpdates : EntitySet EntGroupLogPosSet —> Bool .

ceq hasSeenAllUpdates((entity(EG,N) |—> (LP VAL)) ; ES, eglp(EG, LP') ; CES) =
hasSeenAllUpdates(ES, eglp(EG, LP') ; CES) if min(LP', LP) == LP .

eq hasSeenAllUpdates(emptyEntitySet, eglp(EG, LP) ; CES) = true .

eq hasSeenAllUpdates(ES, CES) = false [owise] .

op conflictingProposal : TransId LogPosition Propnum PaxosProposalSet —> Bool .
ceq conflictingProposal(TID, LP, PROPNUM, proposal(SID, TID', LP, OL, VAL—REQ, PN) ; PROPSET) =
true if (PN >= PROPNUM) .




C Real-Time Maude Model of Megastore-CGC 183

ceq conflictingProposal(TID, LP, PROPNUM, accepted(SID, LE, VAL—REQ, PN) ; PROPSET) =
true if (PN >= PROPNUM) .
eq conflictingProposal(TID, LP, PROPNUM, PROPSET) = false [owise] .

op containsLPos : LogPosition LogEntryList —> Bool .
eq containsLPos(LP, LEL :: (TID LP SID OL) :: LEL') = true .
eq containsLPos(LP, LEL) = false [owise] .

——— Task: For each site replicating this entity group, find the most
——— recent member of ”"0OrderClassUpdates”

op createPredMap : EntityGroupReplicaSet EntityGroupId EntGroupUpdateList Configuration —>
DefReplicaPredMap .

eq createPredMap(egr(SID, N, LP) ; EGRS, EG, UPDATE—LIST, EGROUPS) =
(SID createMapEntry(UPDATE—LIST, SID, EGROUPS)) ; createPredMap(EGRS, EG, UPDATE—LIST, EGROUPS)

eq createPredMap(noEGR, EG, UPDATE—LIST, EGROUPS) = noReplicaPredMap .

——— From ”"EntGroupUpdateList”, create a projected ordering list for "SiteId”.
——— Configuration is the set of all entity groups, used to determine which entity groups
——— Siteld replicates.
op createMapEntry : EntGroupUpdateList Siteld Configuration —> EntGroupUpdateList .
eq createMapEntry(UPDATE—LIST :: UPS, SID, EGROUPS) =
createMapEntry(UPDATE—LIST, SID, EGROUPS) ::
(if (filterReplicatedEntries(UPS, SID, EGROUPS) =/= emptyEntGroupUpdateSet) then
filterReplicatedEntries(UPS, SID, EGROUPS) else noEntGroupUpdate fi) .

eq createMapEntry(noEntGroupUpdate, SID, EGROUPS) = noEntGroupUpdate .

op filterReplicatedEntries : EntGroupUpdateSet Siteld Configuration —> EntGroupUpdateSet .
eq filterReplicatedEntries(emptyEntGroupUpdateSet, SID, EGROUPS) = (emptyEntGroupUpdateSet) .
eq filterReplicatedEntries((TID EG LP TENTATIVE) ; UPS, SID,
< EG : EntityGroup | replicas : egr(SID, N, LP') ; EGRS > EGROUPS) = (TID EG LP TENTATIVE)
; filterReplicatedEntries(UPS, SID, < EG : EntityGroup | replicas : egr(SID, N, LP') > EGROUPS) .
eq filterReplicatedEntries(UPS, SID, EGROUPS) = (emptyEntGroupUpdateSet) [owise] .

sx%( Section 4.6.3 Accept Leader/Invalidate. Paxos with conflicting proposals sssx)
crl [LFircvAcceptLeaderReq] :
(msg acceptLeaderReq(TID, EG, (TID LP MSID1 OL1), VAL—REQ) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup |
transactionlLog : LEL,
proposals : PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
(uniCast signalConflict(TID, EG, LP) from THIS to SENDER)
if (containsLPos(LP, LEL) or conflictingProposal(TID, LP, O, PROPSET)) .

crl [LFircvAcceptLeaderReqWithValidationRequest] :
(msg acceptLeaderReq(TID, EG, (TID LP MSID1 OL1), READS) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup |
transactionlLog : LEL,
proposals : PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>




184 C Real-Time Maude Model of Megastore-CGC

(uniCast signalConflict(TID, EG, LP) from THIS to SENDER)
if (containsLPos(LP, LEL) or conflictingProposal(TID, LP, O, PROPSET)) .

——— If we receive a conflict signal, we abort the transaction.
rl [UF2rcvDenyLeaderRsp] :
(msg signalConflict(TID, EG, LP) from SENDER to THIS)
< THIS : Site |
localTransactions : < TID : Transaction | reads : READS, writes : WRITES, paxosState : PSTATE
> LOCALTRANS

>
=>
< THIS : Site |
localTransactions : LOCALTRANS
>

(notifyConflictAbort(THIS, TID, READS, WRITES)) .

——— We ignore a conflict signal for an already missing transaction.
crl [UF2.1rcvDenyLeaderRsp] :
(msg signalConflict(TID, EG, LP) from SENDER to THIS)
< THIS : Site | localTransactions : LOCALTRANS >
=>
< THIS : Site | >
if not containsTrans(TID, LOCALTRANS) .

op containsTrans : TransId Configuration —> Bool .
eq containsTrans(TID, < TID : Transaction | > LOCALTRANS) = true .
eq containsTrans(TID, LOCALTRANS) = false [owise] .

——— If accept—leader message arrives delayed, ignore the message
crl [LF3rcvAcceptLeaderRspDelayed] :
(msg acceptLeaderRsp(TID, EG, LP, PREDMAP) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS
>
=>
< THIS : Site |
localTransactions : LOCALTRANS
>
if (not acceptinglLeader(TID, EG, LP, LOCALTRANS)) .

op acceptingleader : TransId EntityGroupId LogPosition Configuration —> Bool .
eq acceptingLleader(TID, EG, LP,
< TID : Transaction | paxosState : acceptLeader(EG, (TID LP SID OL), MSID1, EXP) ; PSTATE >
LOCALTRANS) = true .
eq acceptingLeader(TID, EG, LP, LOCALTRANS) = false [owise] .

sk ( Section 4.6.3 — Accept—step ss#:k)

s Received accept from leader, proceed with requesting accept from all
crl [AlrcvAcceptLeaderRsp] :
(msg acceptLeaderRsp(TID, EG, LP, RCVD—PREDMAP) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
localTransactions : < TID : Transaction | paxosState : acceptLeader(EG, (TID LP SID OL),
SENDER, EXP) ; PSTATE,
status : in—paxos, reads : READS, writes : WRITES >
LOCALTRANS,
entityGroups :
< EG : EntityGroup | proposals : PROPSET, replicas : EGRS, transactionLog : LEL >
EGROUPS,




Real-Time Maude Model of Megastore-CGC 185

egOrderings : OCUPDATES
awaitingOrder : AWAIT—ORDERSET
>
=>
——— Note: We now have accept from leader + this (which might be the same site)
< THIS : Site |
entityGroups : EGROUPS

< EG : EntityGroup |
proposals : (if ((SENDER =/= THIS) and not (VALIDATED and (not VALID))) then

accepted(THIS, (TID LP SID OL), (not IN—SINGLE—EG), 0)
else emptyProposalSet fi) ; PROPSET >,
egOrderings : (if (not (VALIDATED and (not VALID))) then NEW—OCUPDATES else OCUPDATES fi),
awaitingOrder : (if (VALID and ORDERED) then noAwaitingOrderSet else AWAIT—ORDERSET fi),
localTransactions : LOCALTRANS
(if (VALIDATED and ((not VALID) or (COMPLETE and VALID))) then
none
else
(if ((getSites(EGRS) setminus (SENDER ; THIS)) =/= empty0OidSet) then
< TID : Transaction |
paxosState : acceptAll(EG, (TID LP SID OL), (not IN—SINGLE—EG), O, (THIS ; SENDER), NEW—
PREDMAP, defTimeout) ; PSTATE >
else
——— If we get here, TID is VALIDATED and VALID (since all replicas have accepted),
——— but not COMPLETE
< TID : Transaction |
paxosState : acceptedPS(EG, (TID LP SID OL), (not IN—SINGLE—EG), NEW—PREDMAP, 0)
PSTATE >
£i)
£i)
>
(if ((getSites(EGRS) setminus (SENDER ; THIS)) =/= empty0idSet) then
(multiCast acceptAllReq(TID, EG, (TID LP SID OL), (not IN—SINGLE—EG), 0) from THIS to
getSites(EGRS) setminus (SENDER ; THIS ; ORDERSITE))
(if ((ORDERSITE =/= THIS) and (ORDERSITE =/= SENDER)) then
(uniCast acceptAllReq(TID, EG, (TID LP SID OL), READS, 0) from THIS to ORDERSITE)
else
none fi)
else
(if (VALIDATED) then
(if (COMPLETE and VALID) then
createApplyMessages(THIS, < EG : EntityGroup | > EGROUPS,
acceptedPS(EG, (TID LP SID OL), (not IN—SINGLE—EG), NEW—PREDMAP, 0) ; PSTATE)
notifyCommit(THIS, TID, eglp(EG, LP) ; getEntGroupLogPos(PSTATE), READS, WRITES)
else
(if (not VALID) then
(uniCast abortTrans(TID, OCID) from THIS to SENDER)
notifyValidationAbort(THIS, TID, READS, WRITES)
else none fi)
£i)
else
none
£i)
£i)
if ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) /\
ORDERSITE := getOrderingSite(OCID, ORDERCLASSES) /\
PREDUPDATES := applyAwaiting(0CID, AWAIT—ORDERSET, OCUPDATES) /\
ORDERED := (DRDERSITE == THIS) and isUpToDate(OCID, OCUPDATES, THIS, < EG : EntityGroup | >
EGROUPS, READS, CES) /\
NEW—PREDMAP :=
(if (RCVD—PREDMAP =/= noReplicaPredMap) then
RCVD—PREDMAP




186 C Real-Time Maude Model of Megastore-CGC

else
(if (ORDERED) then
createPredMap(EGRS, EG, getUpdateList(0CID, PREDUPDATES), < EG : EntityGroup | > EGROUPS

else noReplicaPredMap fi)
£) /\
NEW—OCUPDATES :=
(if (ORDERED) then
applyOrdering(0CID, (TID EG LP true), getLocalPred(THIS, NEW—PREDMAP), PREDUPDATES)
else
(if (RCVD—PREDMAP =/= noReplicaPredMap) then
applyOrdering(0CID, (TID EG LP true), getLocalPred(THIS, NEW—PREDMAP), OCUPDATES)
else OCUPDATES fi)
£1) /\
UPDATE—LIST := getUpdateList(0CID, NEW—0OCUPDATES) /\
COMPLETE := ((getSites(EGRS) setminus (SENDER ; THIS)) == emptyOidSet) and allEGSAccepted(PSTATE)

VALIDATED := (RCVD—PREDMAP =/= noReplicaPredMap) or (ORDERSITE == THIS) /\
IN—SINGLE—EG := withinSingleEntityGroup(READS) /\
VALID :=
(if (RCVD—PREDMAP =/= noReplicaPredMap) then true
else
((IN—SINGLE—EG or (not ORDERED)) or

isValid?(TID, READS, UPDATE—LIST, < EG : EntityGroup | > EGRDUPS))
£i) .

ssx% Common case: This is the first time we receive an accept for this log position
crl [A2rcvAcceptAllReqWithoutOrderRequest] :
(msg acceptAllReq(TID, EG, (TID' LP SID OL), VAL—REQ, PROPNUM) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
seqGen : SEQ,
entityGroups :
< EG : EntityGroup | proposals : PROPSET, transactionLog : LEL, replicas : EGRS > EGROUPS,
localTransactions : LOCALTRANS
>
=>
< THIS : Site |
seqGen : (if CATCHUP—O0SS then s SEQ else SEQ fi),
entityGroups :
< EG : EntityGroup | proposals : accepted(SENDER, (TID' LP SID OL), VAL—REQ, PROPNUM) ;
removeProposal(LP, PROPSET) > EGROUPS
>
(uniCast acceptAllRsp(TID, EG, LP, noReplicaPredMap, PROPNUM) from THIS to SENDER)
(if CATCHUP—OSS then (newTrans(THIS, osr(THIS, SEQ), cr(0CID))) else none fi)
if not (containsLPos(LP, LEL) or hasAcceptedForPosition(LP, PROPSET)) /\
ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
OCID := getOrderClass(EG, ORDERCLASSES) /\
CATCHUP—O0SS := not (validOrderSiteStatus(CES) or contains0SSCatchup(LOCALTRANS)) .

%% Accept request at ordering site sxxx
crl [A2rcvAcceptAllReqWithOrderRequest] :
(msg acceptAllReq(TID, EG, (TID LP SENDER OL), READS, PROPNUM) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
entityGroups :
< EG : EntityGroup | proposals : PROPSET, transactionLog : LEL, replicas : EGRS > EGROUPS,
egOrderings : OCUPDATES,
awaitingOrder : AWAIT—ORDERSET
>
=>




C Real-Time Maude Model of Megastore-CGC 187

< THIS : Site |
entityGroups :
< EG : EntityGroup | proposals :
(accepted(SENDER, (TID LP SENDER OL), (not IN—SINGLE—EG), PROPNUM) ;
removeProposal(LP, PROPSET)) > EGROUPS,
egOrderings : (if (VALID and ORDERED) then NEW—OCUPDATES else OCUPDATES fi),
awaitingOrder : (if (VALID and ORDERED) then noAwaitingOrderSet else AWAIT—ORDERSET fi)
>
(if VALID and ORDERED then
(uniCast acceptAllRsp(TID, EG, LP,
createPredMap(EGRS, EG, getUpdateList(0OCID, PREDUPDATES), < EG : EntityGroup | >
EGROUPS), PROPNUM)
from THIS to SENDER)
else
——— If validation fails, the response is returned without an ordering map. This signals that
——— this transaction should be applied only if it does not require validation.
(uniCast acceptAllRsp(TID, EG, LP, noReplicaPredMap, PROPNUM) from THIS to SENDER)
£i)
if not (containsLPos(LP, LEL) or hasAcceptedForPosition(LP, PROPSET)) /\
OCID := getOrderingClass(EG, < EG : EntityGroup | > EGROUPS) /\
ORDERSITE := getOrderingSite(0CID, < EG : EntityGroup | > EGROUPS) /\
ORDERED := ((THIS == ORDERSITE) and isUpToDate(0CID, OCUPDATES, THIS, < EG : EntityGroup | >
EGROUPS, READS, CES)) /\
PREDUPDATES := applyAwaiting(0CID, AWAIT—ORDERSET, OCUPDATES) /\
NEW—OCUPDATES := updateOrdering(0CID, (TID EG LP true), PREDUPDATES) /\
IN—SINGLE—EG := withinSingleEntityGroup(READS) /\
UPDATE—LIST := getUpdateList(0CID, NEW—0OCUPDATES) /\
VALID := (IN—SINGLE—EG or (DRDERED and isValid?(TID, READS, UPDATE—LIST,
(< EG : EntityGroup | proposals : PROPSET, replicas : EGRS, transactionLog : LEL > EGROUPS)))) .

crl [A2rcvAcceptAllReqWithOrderRequestForOtherTrans] :
(msg acceptAllReq(TID, EG, (TID' LP SID OL), READS, PROPNUM) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
entityGroups :
< EG : EntityGroup | proposals : PROPSET, transactionLog : LEL, replicas : EGRS > EGROUPS

>
=>
< THIS : Site |
entityGroups :
< EG : EntityGroup | proposals :
(if IN—SINGLE—EG then (accepted(SENDER, (TID' LP SID OL), true, PROPNUM) ;
removeProposal(LP, PROPSET))

else PROPSET fi) > EGROUPS

>

(if IN—SINGLE—EG then

(uniCast acceptAl1lRsp(TID, EG, LP, noReplicaPredMap, PROPNUM) from THIS to SENDER)
else

(uniCast signalValidationFail(TID, EG, LP) from THIS to SENDER)
£i)
if not (containsLPos(LP, LEL) or hasAcceptedForPosition(LP, PROPSET)) /\
TID =/= TID' /\
IN—SINGLE—EG := withinSingleEntityGroup(READS) .

op hasAcceptedForPosition : LogPosition PaxosProposalSet —> Bool .
eq hasAcceptedForPosition(LP, accepted(SID, (TID LP SID' OL'), VAL—REQ, PN) ; PROPSET) = true .
eq hasAcceptedForPosition(LP, PROPSET) = false [owise] .

op removeProposal : LogPosition PaxosProposalSet —> PaxosProposalSet .
eq removeProposal(LP, proposal(SID, TID, LP, OL, VAL—REQ, PN) ; PROPSET) = removeProposal(LP, PROPSET)




188 C Real-Time Maude Model of Megastore-CGC

eq removeProposal(LP, PROPSET) = PROPSET [owise] .

——— Log the accept—vote. If this was the last, proceed the transaction (validation
——— is implicit, if the transaction comes this far without abort, it has passed the validation step)
crl [Ad4rcvAcceptAllRsp] :
(msg acceptAllRsp(TID, EG, LP, RCVD—PREDMAP, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups :
< EG : EntityGroup | transactionlLog : LEL, replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction | paxosState : acceptAl1(EG, (TID' LP SID OL),
VAL—REQ, PROPNUM, SIS, PREDMAP, EXP) ; PSTATE,
reads : READS, writes : WRITES, status : in—paxos > LOCALTRANS,
egOrderings : OCUPDATES
>
=>
< THIS : Site |
egOrderings : NEW—0CUPDATES,
localTransactions :
LOCALTRANS
(if ((SENDER ; SIS) =/= getSites(EGRS)) then
< TID : Transaction |
paxosState : acceptAll(EG, (TID' LP SID OL), VAL—REQ, PROPNUM, SIS ; SENDER, NEW—PREDMAP,
EXP) ; PSTATE >
else
(if (allEGSAccepted(PSTATE)) then
none
else (
< TID : Transaction | paxosState : acceptedPS(EG, (TID' LP SID OL), VAL—REQ, NEW—PREDMAP,
PROPNUM) ; PSTATE > )
£i)
£i)
>
(if COMPLETE then (
createApplyMessages(THIS, < EG : EntityGroup | > EGROUPS, acceptedPS(EG, (TID' LP SID OL), VAL—REQ
, NEW—PREDMAP, PROPNUM) ; PSTATE)
(if (TID == TID') then
(if ((NEW—PREDMAP =/= noReplicaPredMap) or (VAL—REQ == false)) then
——— If the transaction is ordered, or it does not require
——— ordering, register it as committed.
notifyCommit(THIS, TID, eglp(EG, LP) ; getEntGroupLogPos(PSTATE), READS, WRITES)
else
——— If the transaction is not ordered and requires validation,
——— register an abort. Since VAL—REQ is true and NEW—PREDMAP == noReplicaPredMap
——— the transaction will be aborted by all recipients.
notifyValidationAbort(THIS, TID, READS, WRITES)
£i)
else notifyConflictAbort(THIS, TID, READS, WRITES)
£1))
else none
£i)
if ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) /\
NEW—PREDMAP := (if (RCVD—PREDMAP =/= noReplicaPredMap and PREDMAP == noReplicaPredMap) then
RCVD—PREDMAP else PREDMAP fi) /\
COMPLETE := ((SIS ; SENDER) == getSites(EGRS) and allEGSAccepted(PSTATE)) /\
NEW—OCUPDATES :=
(if ((RCVD—PREDMAP =/= noReplicaPredMap) and (TID' == TID)) then
applyOrdering(0CID, (TID EG LP true), getLocalPred(THIS, NEW—PREDMAP), OCUPDATES)
else OCUPDATES
fi) .

op getLocalPred : Siteld ReplicaPredMap —> EntGroupUpdateList .




C Real-Time Maude Model of Megastore-CGC 189

eq getLocalPred(SID, (SID PREDLIST) ; PREDMAP) = PREDLIST .

op createApplyMessages : Siteld Configuration PaxosState —> Configuration .
eq createApplyMessages(SID, < EG : EntityGroup | replicas : EGRS > EGROUPS,
acceptedPS(EG, (TID LP MSID1 OL), VAL—REQ, PREDMAP, PROPNUM) ; PSTATE) =
(multiCast applyReq(TID, EG, LP, VAL—REQ, setOrderPermanent(TID, EG, LP, PREDMAP), PROPNUM)
from SID to getSites(EGRS)) createApplyMessages(SID, EGROUPS, PSTATE) .
eq createApplyMessages(SID, EGROUPS, emptyPaxosState) = none .

op setOrderPermanent : TransId EntityGroupId LogPosition DefReplicaPredMap —> DefReplicaPredMap .
eq setOrderPermanent(TID, EG, LP, (SID (UPDATELST1 :: ((TID EG LP true) ; DEFUP) :: UPDATELST2)) ; PREDMAP
)=
setOrderPermanent(TID, EG, LP, (SID (UPDATELST1 :: ((TID EG LP false) ; DEFUP) :: UPDATELST2)) ; PREDMAP
).

eq setOrderPermanent(TID, EG, LP, PREDMAP) = PREDMAP [owise] .

op getEntGroupLogPos : PaxosState —> EntGroupLogPosSet .

eq getEntGroupLogPos(acceptedPS(EG, (TID LP SID OL), VAL—REQ, PREDMAP, PROPNUM) ; PSTATE) = eglp(EG,
LP) ; getEntGroupLogPos(PSTATE) .

eq getEntGroupLogPos(emptyPaxosState) = noEntGroupLogPos .

op createAbortMessages : TransId Siteld OrderClassId Configuration PaxosState —> Configuration .
eq createAbortMessages(TID, SID, OCID, < EG : EntityGroup | replicas : EGRS > EGROUPS,
acceptedPS(EG, (TID LP SID OL), VAL—REQ, PREDMAP, PROPNUM) ; PSTATE) =
(multiCast abortTrans(TID, 0CID) from SID to getSites(EGRS)) createAbortMessages(TID, SID, 0CID,
EGROUPS, PSTATE) .
eq createAbortMessages(TID, SID, OCID, < EG : EntityGroup | replicas : EGRS > EGROUPS,
acceptLeader(EG, (TID LP SID OL), MSID1, EXP) ; PSTATE) =
(multiCast abortTrans(TID, 0CID) from SID to getSites(EGRS)) createAbortMessages(TID, SID, OCID,
EGROUPS, PSTATE) .
eq createAbortMessages(TID, SID, OCID, < EG : EntityGroup | replicas : EGRS > EGROUPS,
acceptAl1(EG, (TID LP SID OL), VAL—REQ, PN, SIS, PREDMAP, EXP) ; PSTATE) =
(multiCast abortTrans(TID, 0CID) from SID to getSites(EGRS)) createAbortMessages(TID, SID, OCID,
EGROUPS, PSTATE) .
eq createAbortMessages(TID, SID, OCID, EGROUPS, emptyPaxosState) = none .
eq createAbortMessages(TID, SID, OCID, none, PSTATE) = none .

w##( Handle validation aborts )
crl [receiveAbortSignalAtInitiatorWithinAcceptLeaderStep]:
(msg signalValidationFail(TID, EG, LP) from SENDER to THIS)
< THIS : Site |
entityGroups : EGROUPS,
localTransactions :
< TID : Transaction | reads : READS, writes : WRITES, paxosState : acceptLeader(EG, LE,
SENDER, EXP) ; PSTATE > LOCALTRANS
>
=>
< THIS : Site |
localTransactions : LOCALTRANS
>
notifyValidationAbort(THIS, TID, READS, WRITES)
if ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) .

crl [processTransactionAbort] :
(msg abortTrans(TID, 0CID) from SENDER to THIS)
< THIS : Site |
egOrderings : OCUPDATES,
entityGroups : EGROUPS
>




190 C Real-Time Maude Model of Megastore-CGC

=>
< THIS : Site |
egOrderings : NEW—0CUPDATES,
entityGroups : removePState(TID, EGROUPS)
>

if NEW—OCUPDATES := removeTidIfPresent(0CID, TID, OCUPDATES) .

op removePState : TransId Configuration —> Configuration .

eq removePState(TID, < EG : EntityGroup | proposals : accepted(SENDER, (TID LP MSID1 OL1), VAL—REQ, PN)
; PROPSET > EGROUPS) =
removePState(TID, < EG : EntityGroup | proposals : PROPSET > EGROUPS) .

eq removePState(TID, EGROUPS) = EGROUPS [owise] .

w#x( Section 4.6.3 — Apply step xxx)

op allEGSAccepted : PaxosStateSet —> Bool .

eq allEGSAccepted(acceptedPS(EG, LE, VAL—REQ, PREDMAP, N) ; PSTATE) = allEGSAccepted(PSTATE) .
eq allEGSAccepted(emptyPaxosState) = true .

eq allEGSAccepted(PSTATE) = false [owise] .

——— Apply a valid transaction at site which previously accepted a proposal for TID2
crl [APP3initUpdates] :
(msg applyReq(TID2, EG, 1lpos(N2), VAL—REQ1, (THIS PREDLIST) ; PREDMAP, PN) from SENDER to THIS)
< THIS : Site |
coordinator : eglp(EG, lpos(N1)) ; CES,
entityGroups :
< EG : EntityGroup | transactionLog : LEL :: (TID1 lpos(N1) MSID1 OL1),
pendingWrites : PWL,
proposals : accepted(SID, (TID2 lpos(N2) MSID2 OL2), VAL—REQ2, PROPNUNM) ;
PROPSET > EGROUPS,
localTransactions : LOCALTRANS,
egOrderings : OCUPDATES,
awaitingOrder : AWAIT—ORDERSET
>
=>
< THIS : Site |
coordinator : eglp(EG, 1lpos(N2)) ; CES,
entityGroups :
< EG : EntityGroup | transactionLog : LEL :: (TID1 lpos(N1) MSID1 OL1) :: (TID2 lpos(N2) MSID2
0L2),
pendinglWirites : pw(lpos(N2), idle, OL2) :: PWL,
proposals : removeProposals(lpos(N2), PROPSET) > EGROUPS,
localTransactions : removeOthersForLogPosition(EG, lpos(N2), LOCALTRANS),
egOrderings : (if (THIS =/= SENDER) then applyOrdering(0CID, (TID2 EG lpos(N2) false),
PREDLIST, OCUPDATES) else OCUPDATES fi),
awaitingOrder : removeOrdered(AWAIT—ORDERSET, NEW—OCUPDATES)
>
(sendNotifyAbort(THIS, LOCALTRANS, removeOthersForLogPosition(EG, 1lpos(N2), LOCALTRANS)))
if N2 == s N1 /\
ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) /\
NEW—OCUPDATES := (if (THIS =/= SENDER) then applyOrdering(0OCID, (TID2 EG lpos(N2) false),
PREDLIST, OCUPDATES) else OCUPDATES fi) .

s Receive an apply request for a transaction not requiring validation, but without a correct order.
crl [APP3initUpdatesWithoutAndNotRequiringValidation] :
(msg applyReq(TID2, EG, 1pos(N2), false, noReplicaPredMap, PN) from SENDER to THIS)
< THIS : Site |
coordinator : eglp(EG, 1pos(N1)) ; CES,
entityGroups :
< EG : EntityGroup | transactionLog : LEL :: (TID1 lpos(N1) MSID1 OL1),




C Real-Time Maude Model of Megastore-CGC 191

pendingWrites : PWL,
proposals : accepted(SID, (TID2 lpos(N2) MSID2 OL2), false, PROPNUM) ;
PROPSET > EGROUPS,
localTransactions : LOCALTRANS,
awaitingOrder : AWAIT—ORDERSET

>
=>
< THIS : Site |
coordinator : eglp(EG, 1pos(N2)) ; CES,
entityGroups :
< EG : EntityGroup | transactionLog : LEL :: (TID1 lpos(N1) MSID1 OL1) :: (TID2 lpos(N2) MSID2
emptyOpList)

pendingWrites : pw(lpos(N2), idle, OL2) :: PWL,
proposals : removeProposals(lpos(N2), PROPSET) > EGROUPS,
localTransactions : removeOthersForLogPosition(EG, 1pos(N2), LOCALTRANS),
awaitingOrder : AWAIT—ORDERSET ; (OCID TID2 EG lpos(N1))
>
(sendNotifyAbort(THIS, LOCALTRANS, removeOthersForLogPosition(EG, 1pos(N2), LOCALTRANS)))
if N2 == s N1 /\
ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
OCID := getOrderClass(EG, ORDERCLASSES) .

#*x Receive an apply request for a transaction requiring a validation, but without a correct order.
#xx We apply this as a dummy, effectively aborting it.
crl [APP3initUpdatesWithoutAndRequiringValidation] :
(msg applyReq(TID2, EG, 1pos(N2), true, noReplicaPredMap, PN) from SENDER to THIS)
< THIS : Site |
coordinator : eglp(EG, 1lpos(N1)) ; CES,
entityGroups :
< EG : EntityGroup | transactionLog : LEL :: (TID1 lpos(N1) MSID1 OL1),
proposals : accepted(SID, (TID2 lpos(N2) MSID2 OL2), VAL—REQ2, PROPNUM) ;
PROPSET > EGROUPS,
localTransactions : LOCALTRANS,
egOrderings : OCUPDATES

>
=>
< THIS : Site |
coordinator : eglp(EG, 1pos(N2)) ; CES,
entityGroups :
< EG : EntityGroup | transactionLog : LEL :: (TID1 lpos(N1) MSID1 OL1) :: (TID2 lpos(N2) MSID2
emptyOpList),
proposals : removeProposals(lpos(N2), PROPSET) > EGROUPS,
localTransactions : removeOthersForLogPosition(EG, lpos(N2), LOCALTRANS),
egOrderings : removeIfOrdered(TID2, OCUPDATES)
>

(sendNotifyAbort(THIS, LOCALTRANS, removeOthersForLogPosition(EG, 1pos(N2), LOCALTRANS)))
if N2 == s N1 .

op isNewOrderingSite : Siteld OperationList —> Bool .
eq isNewOrderingSite(SID, OL1 :: w(OCID, THIS !> EIDSET) :: OL2) = true .
eq isNewOrderingSite(SID, OL1) = false [owise] .

op removeOthersForLogPosition : EntityGroupIld LogPosition Configuration —> Configuration .
eq removeOthersForLogPosition(EG, LP, < TID2 : Transaction | paxosState : prepare(EG, (TID3 LP MSID1
OL), VAL—REQ, PN, PN', SIS, EXP) ; PSTATE > LOCALTRANS) =
removeOthersForLogPosition(EG, LP, LOCALTRANS) .
eq removeOthersForLogPosition(EG, LP, < TID2 : Transaction | paxosState : restartPrepare(EG, (TID3 LP
MSID1 OL), VAL—REQ, EXP) ; PSTATE > LOCALTRANS) =
removeOthersForLogPosition(EG, LP, LOCALTRANS) .
eq removeOthersForLogPosition(EG, LP, < TID2 : Transaction | paxosState : acceptAl1(EG, (TID3 LP MSID1
OL), VAL—REQ, PN, SIS, PREDMAP, EXP) ; PSTATE > LOCALTRANS) =




192 C Real-Time Maude Model of Megastore-CGC

removeOthersForLogPosition(EG, LP, LOCALTRANS) .
eq removeOthersForLogPosition(EG, LP, < TID2 : Transaction | paxosState : acceptLeader(EG, (TID3 LP
MSID1 OL), MSID2, EXP) ; PSTATE > LOCALTRANS) =
removeOthersForLogPosition(EG, LP, LOCALTRANS) .
eq removeOthersForLogPosition(EG, LP, LOCALTRANS) = LOCALTRANS [owise] .

op removeProposals : LogPosition PaxosProposalSet —> PaxosProposalSet .

eq removeProposals(LP, accepted(SID, (TID LP MSID1 OL1), VAL—REQ, PN) ; PROPSET) = removeProposals(LP,
PROPSET) .

eq removeProposals(LP, proposal(SID, TID, LP, OL, VAL—REQ, PN) ; PROPSET) = removeProposals(LP,
PROPSET) .

eq removeProposals(LP, PROPSET) = PROPSET [owise] .

op sendNotifyAbort : Siteld Configuration Configuration —> Configuration .

eq sendNotifyAbort(SID, < TID : Transaction | > LTRANS1, < TID : Transaction | > LTRANS2) =
sendNotifyAbort(SID, LTRANS1, LTRANS2) .

eq sendNotifyAbort(SID, none, LTRANS1) = none .

eq sendNotifyAbort(SID, < TID : Transaction | reads : READS, writes : WRITES > LTRANS1, LTRANS2) =
(notifyConflictAbort(SID, TID, READS, WRITES)) sendNotifyAbort(SID, LTRANS1, LTRANS2) [owise] .

rl [APP4beginPendingWrite] :
< THIS : Site |
entityGroups : < EG : EntityGroup | pendingWrites : PWL :: pw(LP, idle, OL) > EGROUPS

>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | pendingWrites : PWL :: pw(LP, updating(updateDelay), OL) >
EGROUPS
>

rl [APP5endPendingWrite] :

< THIS : Site | entityGroups : < EG : EntityGroup | entitiesState : ES,

pendingWrites : PWL :: pw(LP, updating(0), OL :: OP) >
EGROUPS >
=>
< THIS : Site | entityGroups :
< EG : EntityGroup | entitiesState : applyUpdates(OP, LP, ES),
pendingWrites : updatePWListUponComplete(LP, OL, PWL) > EGROUPS
> .

op updatePWListUponComplete : LogPosition OperationList PendingWriteList —> PendingWriteList .
eq updatePWListUponComplete(LP, emptyOpList, PWL) = PWL .
eq updatePWListUponComplete(LP, OL, PWL) = PWL :: pw(LP, idle, OL) [owise] .

op applyUpdates : OperationList LogPosition EntitySet —> EntitySet .

eq applyUpdates(w(EID,VAL) :: OL, LP, (EID |—> EVERSIONS) ; ES) = (EID |—> insertEntityValSorted((LP
VAL), EVERSIONS)) ; ES .

eq applyUpdates(emptyOpList, LP, ES) = ES .

op insertEntityValSorted : EntityVersion EntityVersionList —> EntityVersionList .
eq insertEntityValSorted((lpos(N) VAL), (1pos(N') VAL') :: EVERSIONS) =
if (N' < N) then
((1pos(N') VAL') :: insertEntityValSorted((1lpos(N) VAL), EVERSIONS))
else
((1pos(N) VAL) :: (lpos(N') VAL') :: EVERSIONS)
fi.
eq insertEntityValSorted((1lpos(N) VAL), noEntityVersions) = (1pos(N) VAL) .

endtom)




C Real-Time Maude Model of Megastore-CGC 193

Listing C.6 ordering_fault_tolerance.rtmaude

(omod ORDERING—FAULT—TOLERANCE is
inc UPDATES .

var 0CID : OrderClassId .

vars SID CURSID : Siteld .

var EGROUPS : Configuration .

var SIS : SiteldSet .

var EVERSIONS : EntityVersionList .

var EGIDS : EntityGroupIdSet .

var LP : LogPosition .

var ES : EntitySet .

var EG : EntityGroupId .

var EGRS : EntityGroupReplicaSet .

vars TID1 TID2 TID3 : TransId .

var EG : EntityGroupld .

vars PN PN' : Propnum .

var PWL : PendingWriteList .

vars N1 N2 : Nat .

vars SENDER THIS MSID1 MSID2 : Siteld .
var LEL : LogEntryList .

vars OL1 OL2 : OperationList .

var CES : EntGroupLogPosSet .

var LOCALTRANS : Configuration .

var AWAIT—ORDERSET : AwaitingOrderSet .
var PROPSET : PaxosProposalSet .

var ORDERCLASSES : EntitySet .

var VAL—REQ : Bool .

var N : Nat .

op initOrderSiteUpdate : OrderClassId Siteld Siteld Nat Configuration —> Msg .
eq initOrderSiteUpdate(0CID, SID, CURSID, N, EGROUPS) =
(newTrans(SID, osu(SID, N), chooseNewOrderSite(OCID, SID, CURSID, EGROUPS))) .

op chooseNewOrderSite : OrderClassId Siteld Siteld Configuration —> OperationList .
eq chooseNewOrderSite(0CID, SID, CURSID, < OrderSites : EntityGroup | entitiesState : ES > EGROUPS) =
cr(0CID) :: createUpdate(0CID, getEntityGroupIdSet(0CID, ES), CURSID, EGROUPS) .

op getEntityGroupIdSet : OrderClassId EntitySet —> EntityGroupIdSet .
eq getEntityGroupIdSet(0CID, (OCID |—> EVERSIONS :: (LP (SID !> EGIDS))) ; ES) = EGIDS .

op createUpdate : OrderClassId EntityGroupIdSet Siteld Configuration —> Operation .
eq createUpdate(0CID, EG ; EGIDS, CURSID, < EG : EntityGroup | replicas : EGRS > EGROUPS) =
w(0CID, chooseSite(orderSiteCandidates(getSites(EGRS), EGIDS, EGROUPS) setminus CURSID) !> (EG
: EGIDS)) .
’

op chooseSite : SiteIdSet —> Siteld .
eq chooseSite(SID ; SIS) = SID .

op orderSiteCandidates : SiteIdSet EntityGroupIdSet Configuration —> SiteldSet .

eq orderSiteCandidates(SIS, EG ; EGIDS, < EG : EntityGroup | replicas : EGRS > EGROUPS) =
orderSiteCandidates(intersection(SIS, getSites(EGRS)), EGIDS, EGROUPS) .

eq orderSiteCandidates(SIS, emptyOidSet, EGROUPS) = SIS .

s#%( Handle apply for trans without order, and where the transaction does not require validation sss)
crl [APP3initUpdates] :
(msg applyReq(TID2, EG, 1pos(N2), false, noReplicaPredMap, PN) from SENDER to THIS)
< THIS : Site |
coordinator : eglp(EG, 1lpos(N1)) ; CES,
entityGroups :
< EG : EntityGroup | transactionLog : LEL :: (TID1 lpos(N1) MSID1 OL1),
pendingWrites : PWL,




194 C Real-Time Maude Model of Megastore-CGC

proposals : accepted(SID, (TID2 lpos(N2) MSID2 OL2), VAL—REQ, PN) ;
PROPSET > EGROUPS,
localTransactions : LOCALTRANS,
awaitingOrder : AWAIT—ORDERSET

>
=>
< THIS : Site |
coordinator : eglp(EG, 1lpos(N2)) ; CES,
entityGroups :
< EG : EntityGroup | transactionLog : LEL :: (TID1 lpos(N1) MSID1 OL1) :: (TID2 lpos(N2) MSID2
oL2),
pendinglWirites : pw(lpos(N2), idle, OL2) :: PWL,
proposals : removeProposals(lpos(N2), PROPSET) > EGROUPS,
localTransactions : removeOthersForLogPosition(EG, 1pos(N2), LOCALTRANS),
awaitingOrder : AWAIT—ORDERSET ; (OCID TID2 EG lpos(N2))
>

(sendNotifyAbort(THIS, LOCALTRANS, removeOthersForLogPosition(EG, 1pos(N2), LOCALTRANS)))
if N2 == s N1 /\
ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) .

stk
Handle apply for trans without order, and where the transaction does require validation.
Here, we simply ignore the updates and treat this update as a ”"dummy” for the given log position.
***)
crl [APP3initUpdates] :
(msg applyReq(TID2, EG, 1pos(N2), true, noReplicaPredMap, PN) from SENDER to THIS)
< THIS : Site |
coordinator : eglp(EG, 1lpos(N1)) ; CES,
entityGroups :
< EG : EntityGroup |
transactionLog : LEL :: (TID1 1pos(N1) MSID1 OL1),
proposals : accepted(SID, (TID2 lpos(N2) MSID2 OL2), VAL—REQ, PN) ;
PROPSET > EGROUPS,
localTransactions : LOCALTRANS

>
=>
< THIS : Site |
coordinator : eglp(EG, 1pos(N2)) ; CES,
entityGroups :
< EG : EntityGroup |
transactionLog : LEL :: (TID1 lpos(N1) MSID1 OL1) :: (TID2 lpos(N2) MSID2
emptyOpList),
proposals : removeProposals(lpos(N2), PROPSET) > EGROUPS,
localTransactions : removeOthersForLogPosition(EG, 1pos(N2), LOCALTRANS)
>

(sendNotifyAbort(THIS, LOCALTRANS, removeOthersForLogPosition(EG, 1pos(N2), LOCALTRANS)))
if N2 == s N1 /\
ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) .

endom)

Listing C.7 updates_fault_handling.rtmaude

(tomod UPDATE—FAULT—HANDLERS is
inc UPDATES .
inc ORDERING—FAULT—TOLERANCE .

var EID : EntityId .
vars N N' N1 N2 : Nat .
var NS : NatSet .




C Real-Time Maude Model of Megastore-CGC 195

vars T EXP : Time .

vars PN PN' PROPNUM : Propnum .

var PXSID : Nat .

vars DPN SEEN—PROPNUM : DefPropnum .

vars EG : EntityGroupId .

var EGROUPS : Configuration .

vars TID TID' TID1 TID2 TID3 : TransId .

var TIS : TransIdSet .

vars SID SID' MSID1 MSID2 SENDER THIS ORDERSITE : Siteld .
vars SIS SIS—FAILED REPLICAS : SiteIdSet .

var EGRS : EntityGroupReplicaSet .

var PSTATE : PaxosStateSet .

var LOCALTRANS : Configuration .

vars OL OL' OL1 OL2 : OperationList .

var OP : Operation .

var PROPSET : PaxosProposalSet .

vars LEL LEL' : LogEntryList .

vars LE LE' NEW—LE : LogEntry .

vars LP LP' : LogPosition .

var PWL : PendingWriteList .

var CES : EntGroupLogPosSet .

var READS : EntitySet .

var WRITES : OperationList .

vars COMPLETE ORDERED VALID WITHIN—SINGLE—EG AWAITING—ORDER : Bool .
var PREDMAP : DefReplicaPredMap .

var PRED : DefEntGroupUpdate .

var PREDLIST : EntGroupUpdateList .

vars NEW—OCUPDATES OCUPDATES PREDUPDATES : OrderClassUpdates .
var ORDERCLASSES : EntitySet .

var OCID : OrderClassId .

var UPDATE—LIST : EntGroupUpdateList .

var AWAIT—ORDERSET : AwaitingOrderSet .

vars VAL—REQ VAL—REQ1 VAL—REQ2 NEW—VAL—REQ ELECT—0RDERSITE : Bool .
var EGIDS : EntityGroupIdSet .

s#%( Messages involved in presence of errors sssk)

op prepareAllReq : TransId EntityGroupId LogPosition OperationList Bool Propnum —> MsgContent .
——— Used when acceptor has an existing proposal

op prepareAllRsp : TransId EntityGroupId LogEntry Bool Propnum Propnum —> MsgContent .

——— Used when acceptor does not has an existing proposal

op prepareAllRsp : TransId EntityGroupId LogPosition Propnum —> MsgContent .

op invalidateCoordinator : EntityGroupId LogPosition —> MsgContent .

op invalidateConfirmed : EntityGroupIld LogPosition —> MsgContent .

w#x%( Paxos phase 1: Leader election )
——— We did not get any response from the leader. Run phase 1 of Paxos.
——— Megastore—CEG: Check if we should also initiate a new ordering site
crl [PlacceptLeaderFailureRsp] :
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : acceptLeader(EG, (TID LP MSID1 OL1),
MSID2, 0) ; PSTATE,
status : in—paxos, reads : READS > LOCALTRANS,
entityGroups : < EG : EntityGroup | proposals : PROPSET,
replicas : egr(THIS, PXSID, LP') ; EGRS >
EGROUPS
>
=>
< THIS : Site |
localTransactions : < TID : Transaction |
paxosState : prepare(EG, (TID LP MSID1 OL1), VAL—REQ, PN, noPropnum, emptyOidSet,
defTimeout) ; PSTATE,
status : in—paxos > LOCALTRANS




196 C Real-Time Maude Model of Megastore-CGC

>
(multiCast prepareAllReq(TID, EG, LP, OL1, VAL—REQ, PN) from THIS to REPLICAS)

if REPLICAS := getSites(egr(THIS, PXSID, LP') ; EGRS) /\
PN := createPropnum(getCurPropnum(LP, PROPSET), size(REPLICAS), PXSID) /\
ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) /\
ORDERSITE := getOrderingSite(0CID, ORDERCLASSES) /\
AWAITING—ORDER := (MSID2 == ORDERSITE) /\
VAL—REQ := (not withinSingleEntityGroup(READS)) .

op getCurPropnum : LogPosition PaxosProposalSet —> DefPropnum .

eq getCurPropnum(LP, proposal(SID, TID, LP, OL, VAL—REQ, PN) ; PROPSET) =
maxPn(PN, getCurPropnum(LP, PROPSET)) .

eq getCurPropnum(LP, accepted(SID, (TID1 LP MSID1 OL), VAL—REQ, PN) ; PROPSET) =
maxPn(PN, getCurPropnum(LP, PROPSET)) .

eq getCurPropnum(LP, PROPSET) = noPropnum [owise] .

——— Use the method described in footnote on page 4 og Chandra 2007 (”Paxos made live”)
——— to ensure every proposal has a unique PN
op createPropnum : DefPropnum Nat Nat —> Propnum .
eq createPropnum(PN, N, PXSID) =
if ((PN rem N) >= PXSID) then
(N * (s (PN quo N)) + (PXSID rem N))
else
(PN + sd(PXSID, (PN rem N)))
fi.
eq createPropnum(noPropnum, N, PXSID) = 1 + PXSID .

op maxPn : Propnum DefPropnum —> Propnum .
ceq maxPn(PN, PN') = PN if (PN >= PN') .

ceq maxPn(PN, PN') = PN' if (PN < PN') .

eq maxPn(PN, noPropnum) = PN .

——— Receive a prepare—message with a previous proposal for this log position
crl [P2rcvPrepareAllReq] :
(msg prepareAllReq(TID1, EG, LP, OL1, VAL—REQ1, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL, proposals : accepted(SID, (TID2 LP MSID1
0L2), VAL—REQ2, PN) ; PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : accepted(SID, (TID2 LP MSID1 OL2), VAL—REQ2,
PROPNUM) ; PROPSET > EGROUPS
>
(uniCast prepareAl1Rsp(TID1, EG, (TID2 LP MSID1 OL2), VAL—REQ2, PROPNUM, PN) from THIS to SENDER)
if PROPNUM > PN .

crl [P2rcvPrepareAllReq] :
(msg prepareAllReq(TID1, EG, LP, OL, VAL—REQ1, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL, proposals : proposal(SID, TID, LP, OL2, VAL
—REQ2, PN) ; PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : proposal(SID, TID, LP, OL2, VAL—REQ2, PROPNUM) ;
PROPSET > EGROUPS
>
(uniCast prepareAllRsp(TID1, EG, (TID LP SID OL2), VAL—REQ2, PROPNUM, PN) from THIS to SENDER)
if PROPNUM > PN .




C Real-Time Maude Model of Megastore-CGC

——— If we receive a proposal with an obsolete number,
——— then we can safely ignore it
crl [PF2.1rcvPrepareAllReqWithObsoletePropnum] :
(msg prepareAllReq(TID, EG, LP, OL, VAL—REQ, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL, proposals : PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
if conflictingProposal(EG, LP, PROPNUM, PROPSET) .

crl [PF2.1rcvPrepareAllReqForApplied] :
(msg prepareAllReq(TID, EG, LP, OL, VAL—REQ, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL, proposals : PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
(uniCast signalConflict(TID, EG, LP) from THIS to SENDER)
if containsLogPosition(LP, LEL) .

op conflictingProposal : EntityGroupId LogPosition Propnum PaxosProposalSet —> Bool .

ceq conflictingProposal(EG, LP, PN, accepted(SID, (TID LP MSID1 OL), VAL—REQ, PN') ; PROPSET) =
true if PN' >= PN .

ceq conflictingProposal(EG, LP, PN, proposal(SID, TID, LP, OL, VAL—REQ, PN') ; PROPSET) =
true if PN' >= PN .

eq conflictingProposal(EG, LP, PN, PROPSET) = false [owise] .

——— Receive a prepare—message without a previous proposal for this log position
crl [P3rcvPrepareAllReq] :
(msg prepareAllReq(TID1, EG, LP, OL, VAL—REQ, PROPNUM) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL, proposals : PROPSET > EGROUPS
>
=>
< THIS : Site |

197

entityGroups : < EG : EntityGroup | proposals : proposal(SENDER, TID1, LP, OL, VAL—REQ, PROPNUM) ;

PROPSET > EGROUPS
>
(uniCast prepareAllRsp(TID1, EG, LP, PROPNUM) from THIS to SENDER)
if not (containsProposal(EG, LP, PROPSET) or containsLogPosition(LP, LEL)) .

op containsProposal : EntityGroupId LogPosition PaxosProposalSet —> Bool .

eq containsProposal(EG, LP, accepted(SID, (TID LP MSID1 OL), VAL—REQ, PN') ; PROPSET) = true .
eq containsProposal(EG, LP, proposal(SID, TID, LP, OL, VAL—REQ, PN) ; PROPSET) = true .

eq containsProposal(EG, LP, PROPSET) = false [owise] .

op removePreviousProposal : LogPosition Propnum PaxosProposalSet —> PaxosProposalSet .

eq removePreviousProposal(LP, PN, proposal(SID, TID, LP, OL, VAL—REQ, PN') ; PROPSET) = PROPSET .

eq removePreviousProposal(LP, PN, PROPSET) = PROPSET [owise] .

crl [P4rcvPrepareAllRspWithValue] :
(msg prepareAl1Rsp(TID, EG, (TID2 LP MSID1 OL1), VAL—REQ1, PROPNUM, PN) from SENDER to THIS)
< THIS : Site |
entityGroups :
< EG : EntityGroup | replicas : EGRS >
EGROUPS,




198 C Real-Time Maude Model of Megastore-CGC

localTransactions : < TID : Transaction |
paxosState : prepare(EG, (TID3 LP MSID2 OL2), VAL—REQ2, PROPNUM, SEEN—PROPNUM, SIS, EXP) ;
PSTATE,
status : in—paxos, reads : READS > LOCALTRANS
>
=>
< THIS : Site |
localTransactions : LOCALTRANS
(if hasQuorum(size(SIS ; SENDER), REPLICAS) then
< TID : Transaction |
paxosState : acceptAll(EG, NEW—LE, NEW—VAL—REQ, PROPNUM, THIS, noReplicaPredMap,
defTimeout) ; PSTATE >
else
< TID : Transaction |
paxosState : prepare(EG, NEW—LE, NEW—VAL—REQ, PROPNUM, maxPn(PN, SEEN—PROPNUM), (SIS ;
SENDER), EXP) ; PSTATE >
£i)
>
(if hasQuorum(size(SIS ; SENDER), REPLICAS) then
(multiCast acceptAllReq(TID, EG, (TID2 LP MSID1 OL1), VAL—REQ1, PROPNUM) from THIS to (REPLICAS
setminus ORDERSITE))
(uniCast acceptAllReq(TID, EG, (TID2 LP MSID1 OL1), READS, PROPNUM) from THIS to ORDERSITE)
else none fi)
if REPLICAS := getSites(EGRS) /\
NEW—LE := chooseValue (PN, SEEN—PROPNUM, (TID2 LP MSID1 OL1), (TID3 LP MSID2 OL2)) /\
NEW—VAL—REQ := chooseValReq(PN, SEEN—PROPNUM, VAL—REQ1, VAL—REQ2) /\
ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) /\
ORDERSITE := getOrderingSite(0CID, ORDERCLASSES) .

op chooseValue : Propnum DefPropnum LogEntry LogEntry —> LogEntry .
eq chooseValue(PN, noPropnum, LE, LE') = LE .
eq chooseValue(PN, PN', LE, LE') = if PN > PN' then LE else LE' fi .

op chooseValReq : Propnum DefPropnum Bool Bool —> Bool .
eq chooseValReq(PN, noPropnum, VAL—REQ1, VAL—REQ2) = VAL—REQ1 .
eq chooseValReq(PN, PN', VAL—REQ1, VAL—REQ2) = if PN > PN' then VAL—REQ1 else VAL—REQ2 fi .

sorok
If we have a prepare—quorum, start the accept—phase. If the accept—message contains some other
transaction
than the original, we do not request ordering .
***)
crl [P5rcvPrepareAllRspWithoutValue] :
(msg prepareAllRsp(TID, EG, LP, PN) from SENDER to THIS)
< THIS : Site |
entityGroups :
< EG : EntityGroup | replicas : EGRS >
EGROUPS,
localTransactions : < TID : Transaction | paxosState : prepare(EG, (TID2 LP MSID1 OL1), VAL—REQ, PN
, SEEN—PROPNUM, SIS, EXP) ; PSTATE,
status : in—paxos, reads : READS > LOCALTRANS
>
=>
< THIS : Site |
localTransactions : LOCALTRANS
(if hasQuorum(size(SIS ; SENDER), REPLICAS) then
< TID : Transaction |
paxosState : acceptAl1(EG, (TID2 LP MSID1 OL1), VAL—REQ, PN, THIS, noReplicaPredMap,
defTimeout) ; PSTATE >
else
< TID : Transaction |




C Real-Time Maude Model of Megastore-CGC 199

paxosState : prepare(EG, (TID2 LP MSID1 OL1), VAL—REQ, PN, SEEN—PROPNUM, (SIS ; SENDER), EXP)
: PSTATE >
£i)
>
(if hasQuorum(size(SIS ; SENDER), REPLICAS) then
(if (TID == TID2) then
(multiCast acceptAllReq(TID, EG, (TID2 LP MSID1 OL1), VAL—REQ, PN) from THIS to (REPLICAS
setminus ORDERSITE))
(uniCast acceptAllReq(TID, EG, (TID2 LP MSID1 OL1), READS, PN) from THIS to ORDERSITE)
else
(multiCast acceptAllReq(TID, EG, (TID2 LP MSID1 OL1), VAL—REQ, PN) from THIS to REPLICAS)
£i)
else none fi)
if REPLICAS := getSites(EGRS) /\
ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) /\
ORDERSITE := getOrderingSite(0CID, ORDERCLASSES) .

crl [PFircvObsoletePrepareRspWithoutValue] :
(msg prepareAllRsp(TID, EG, LP, PN) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS
>
=>
< THIS : Site | localTransactions : LOCALTRANS >
if (not inPrepare(TID, EG, LP, PN, LOCALTRANS)) .

crl [PF2rcv0bsoletePrepareRspWithValue] :
(msg prepareAl1Rsp(TID, EG, (TID' LP MSID1 OL), VAL—REQ, PROPNUM, PN) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS
>
=>
< THIS : Site \ localTransactions : LOCALTRANS >
if (not inPrepare(TID, EG, LP, PROPNUM, LOCALTRANS)) .

op inPrepare : TransId EntityGroupId LogPosition Propnum Configuration —> Bool .
ceq inPrepare(TID, EG, LP, PN, LOCALTRANS) = false if not containsTrans(TID, LOCALTRANS) .
eq inPrepare(TID, EG, LP, PN,
< TID : Transaction | paxosState : prepare(EG, (TID LP MSID1 OL1), VAL—REQ, PN, SEEN—PROPNUM,
SIS, EXP) ; PSTATE > LOCALTRANS) = true .
eq inPrepare(TID, EG, LP, PN, < TID : Transaction | paxosState : PSTATE > LOCALTRANS) = false [owise] .

——— If we failed to obtain a quorum within the specified time, try again
——— NOTE: This is not included in the Megastore—paper, but is our interpretation
crl [PF3failedPrepareAllReq] :
< THIS : Site |
entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction |
paxosState : prepare(EG, (TID2 LP MSID1 OL), VAL—REQ, PROPNUM, SEEN—PROPNUY, SIS, 0) ; PSTATE,
status : in—paxos > LOCALTRANS

>
=>
< THIS : Site |

localTransactions : < TID : Transaction | paxosState : restartPrepare(EG, (TID2 LP MSID1 OL),

VAL—REQ, N) ; PSTATE,
status : in—paxos > LOCALTRANS,

entityGroups : < EG : EntityGroup | > EGROUPS

>

if (not hasQuorum(size(SIS), getSites(EGRS))) /\ N ; NS := possibleBackoffs .




200 C Real-Time Maude Model of Megastore-CGC

op possibleBackoffs : —> NatSet .
s#%( Paxos phase 2: Accept x)

——— If we receive another accept request for this log position, accept it if and only if it is the
same (re—sent) proposal, or
——— the new proposal number is higher than the previous
crl [A3rcvAcceptAllReqSubseqNonOrderingSite] :
(msg acceptAllReq(TID, EG, (TID1 LP MSID1 OL1), VAL—REQ, PN) from SENDER to THIS)
< THIS : Site |
entityGroups :
< EG : EntityGroup | proposals : accepted(SID, (TID2 LP MSID2 OL2), VAL—REQ, PN') ; PROPSET,
replicas : EGRS > EGROUPS,
egOrderings : OCUPDATES
>
=>
< THIS : Site |
entityGroups :
< EG : EntityGroup | proposals : accepted(SID, (TID1 LP MSID1 OL1), VAL—REQ, PN) ; PROPSET >
EGROUPS
>
(uniCast acceptAllRsp(TID, EG, LP, noReplicaPredMap, PN) from THIS to SENDER)
if ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) /\
(TID1 == TID2 and PN == PN') or (PN > PN') .

crl [A3rcvAcceptAllReqSubseqOrderingSite] :
(msg acceptAllReq(TID, EG, (TID1 LP MSID1 OL1), READS, PN) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
entityGroups :
< EG : EntityGroup | proposals : accepted(SID, (TID2 LP MSID2 OL2), VAL—REQ, PN') ; PROPSET,
replicas : EGRS > EGROUPS,
egOrderings : OCUPDATES,
awaitingOrder : AWAIT—ORDERSET
>
=>
< THIS : Site |
entityGroups :
< EG : EntityGroup | proposals : accepted(SID, (TID1 LP MSID1 OL1), (not WITHIN—SINGLE—EG), PN) ;
PROPSET > EGROUPS,
egOrderings : (if (VALID and ORDERED) then NEW—OCUPDATES else OCUPDATES fi),
awaitingOrder : (if (VALID and ORDERED) then noAwaitingOrderSet else AWAIT—ORDERSET fi)
>
(if VALID and ORDERED then
(uniCast acceptAl1lRsp(TID, EG, LP,
createPredMap(EGRS, EG, getUpdateList(0OCID, PREDUPDATES), < EG : EntityGroup | >
EGROUPS), PN)
from THIS to SENDER)
else
(uniCast acceptAl1Rsp(TID, EG, LP, noReplicaPredMap, PN) from THIS to SENDER)
£i)
if ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) /\
(TID1 == TID2 and PN == PN') or (PN > PN') /\
PREDUPDATES := applyAwaiting(DCID, AWAIT—ORDERSET, OCUPDATES) /\
NEW—OCUPDATES := updateOrdering(0CID, (TID EG LP true), PREDUPDATES) /\
ORDERED := (TID == TID1 and isOrderingSite(OCID, THIS, ORDERCLASSES) and
isUpToDate(0OCID, OCUPDATES, THIS, < EG : EntityGroup | > EGROUPS, READS, CES)) /\
WITHIN—SINGLE—EG := withinSingleEntityGroup(READS) /\
UPDATE—LIST := getUpdateList(0CID, NEW—OCUPDATES) /\




C Real-Time Maude Model of Megastore-CGC 201

VALID := ((WITHIN—SINGLE—EG or (not ORDERED)) or isValid?(TID1, READS, UPDATE—LIST, (< EG :
EntityGroup | > EGROUPS))) .

——— If we receive another accept request for this log position with a lower proposal number than
the previous,
——— we discard the message
crl [AF2rcvAcceptAllReqObsolete] :
(msg acceptAllReq(TID, EG, (TID1 LP MSID1 OL1), VAL—REQ1, PN) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : accepted(SID, (TID2 LP MSID2 OL2), VAL—REQ2, PN') ;
PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
if (PN < PN') or (TID1 =/= TID2 and PN == PN') .

crl [AF2rcvAcceptAllReqObsoleteWithValidation] :
(msg acceptAllReq(TID, EG, (TID1 LP MSID1 OL1), READS, PN) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | proposals : accepted(SID, (TID2 LP MSID2 0L2), VAL—REQ, PN') ;
PROPSET > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
if (PN < PN') or (TID1 =/= TID2 and PN == PN') .

——— If we receive an accept request for an already logged transaction, discard the message
rl [AF2.2rcvAcceptAllReqObsolete] :
(msg acceptAllReq(TID, EG, (TID1 LP MSID1 OL1), READS, PN) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL :: (TID2 LP MSID2 OL2) :: LEL' > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
(if (TID2 =/= TID1) then (uniCast signalConflict(TID1, EG, LP) from THIS to SENDER) else none fi) .

rl [AF2.2rcvAcceptAllReqObsoleteWidthValidation] :
(msg acceptAllReq(TID, EG, (TID1 LP MSID1 OL1), VAL—REQ, PN) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL :: (TID2 LP MSID2 OL2) :: LEL' > EGROUPS
>
=>
< THIS : Site |
entityGroups : < EG : EntityGroup | > EGROUPS
>
(if (TID2 =/= TID1) then (uniCast signalConflict(TID1, EG, LP) from THIS to SENDER) else none fi) .

——— Ignore an unexpected accept response
crl [AF3rcvAcceptAllRspObsolete] :
(msg acceptAllRsp(TID, EG, LP, PREDMAP, PROPNUM) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS




202 C Real-Time Maude Model of Megastore-CGC

< THIS : Site |
localTransactions : LOCALTRANS
>
if (not inAcceptAll(TID, EG, LP, PROPNUM, LOCALTRANS)) .

op inAcceptAll : TransId EntityGroupIld LogPosition Propnum Configuration —> Bool .
ceq inAcceptAl1(TID, EG, LP, PROPNUM, LOCALTRANS) = false if not containsTrans(TID, LOCALTRANS) .
eq inAcceptAll(TID, EG, LP, PROPNUM,
< TID : Transaction | paxosState : acceptAl1(EG, (TID' LP MSID1 OL), VAL—REQ, PROPNUM, SIS,
PREDMAP, EXP) ; PSTATE > LOCALTRANS) = true .
eq inAcceptAll(TID, EG, LP, PROPNUM,
< TID : Transaction | paxosState : PSTATE > LOCALTRANS) = false [owise] .

——— Only some replicas responded, but sufficient for a quorum. Send invalidate—message to others
crl [A6initInvalidation] :
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : acceptAl1(EG, (TID' LP SID OL), VAL—REQ
, PROPNUM, SIS, PREDMAP, 0) ; PSTATE,
status : in—paxos > LOCALTRANS,
entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,

seqGen : N
>
=>
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : invalidating(EG, (TID' LP SID OL), VAL—
REQ, PROPNUM,
REPLICAS setminus SIS, PREDMAP, defTimeout) ;
PSTATE > LOCALTRANS,
entityGroups : < EG : EntityGroup | > EGROUPS,
seqGen : (if ELECT—ORDERSITE then (s N) else N fi)
>

(if (ELECT—ORDERSITE) then
initOrderSiteUpdate(OCID, THIS, ORDERSITE, N, < EG : EntityGroup | > EGROUPS)
else none fi)
(multiCast invalidateCoordinator(EG, LP) from THIS to REPLICAS setminus SIS)
if REPLICAS := getSites(EGRS) /\ hasQuorum(size(SIS), REPLICAS) /\
ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) /\
ORDERSITE := getOrderingSite(0CID, ORDERCLASSES) /\
ELECT—ORDERSITE := (not (ORDERSITE in SIS)) and hasAllEntityGroups(getOrderingEGs(0CID, < EG :
EntityGroup | > EGROUPS), < EG : EntityGroup | > EGROUPS) .

op hasAl1EntityGroups : EntityGroupIdSet Configuration —> Bool .
eq hasAl1EntityGroups(EG ; EGIDS, < EG : EntityGroup | > EGROUPS) = hasAllEntityGroups(EGIDS, EGROUPS)

eq hasA11EntityGroups(empty0idSet, EGROUPS) = true .
eq hasAl1EntityGroups(EGIDS, EGROUPS) = false [owise] .

rl [A7invalidateCoordinator] :

(msg invalidateCoordinator(EG, 1lpos(N)) from SENDER to THIS)

< THIS : Site |
coordinator : CES >

=>

< THIS : Site |
coordinator : applyInvalidate(EG, lpos(N), CES) >

(uniCast invalidateConfirmed(EG, lpos(N)) from THIS to SENDER) .

op applyInvalidate : EntityGroupId LogPosition EntGroupLogPosSet —> EntGroupLogPosSet .




C Real-Time Maude Model of Megastore-CGC 203

ceq applyInvalidate(EG, lpos(N), eglp(EG, 1pos(N')) ; CES) = invalidCstate(EG, 1lpos(N)) ; CES if (N' <= N

ceq applyInvalidate(EG, 1lpos(N), invalidCstate(EG, 1lpos(N')) ; CES) = invalidCstate(EG, lpos(N)) ; CES
if (W < N).

ceq applyInvalidate(EG, 1lpos(N), eglp(EG, lpos(N')) ; CES) = eglp(EG, lpos(N')) ; CES if (N' > N) .

eq applyInvalidate(EG, 1lpos(N), CES) = CES [owise] .

crl [A8rcvInvalidateConfirmed] :
(msg invalidateConfirmed(EG, LP) from SENDER to THIS)
< THIS : Site |
entityGroups : EGROUPS,
localTransactions : < TID : Transaction |
paxosState : invalidating(EG, (TID' LP SID OL), VAL—REQ, PROPNUM, SIS—FAILED, PREDMAP, EXP) ;
PSTATE,
reads : READS, writes : WRITES > LOCALTRANS
>
=>
< THIS : Site | localTransactions : LOCALTRANS
(if COMPLETE then
(if allEGSAccepted(PSTATE) then none

else
< TID : Transaction | paxosState : acceptedPS(EG, (TID' LP SID OL), VAL—REQ, PREDMAP, PROPNUNM) ;
PSTATE >
£i)
else

< TID : Transaction |
paxosState : invalidating(EG, (TID' LP SID OL), VAL—REQ, PROPNUM, SIS—FAILED setminus SENDER,
PREDMAP, EXP) ; PSTATE >
£i)
>
(if (COMPLETE and allEGSAccepted(PSTATE)) then
createApplyMessages(SID, EGROUPS, acceptedPS(EG, (TID' LP SID OL), VAL—REQ, PREDMAP, PROPNUM) ;
PSTATE)
(if (TID == TID') then
(if ((PREDMAP =/= noReplicaPredMap) or (VAL—REQ == false)) then
notifyCommit(THIS, TID, eglp(EG, LP) ; getEntGroupLogPos(PSTATE), READS, WRITES)
else
notifyValidationAbort(THIS, TID, READS, WRITES)
£i)
else (notifyConflictAbort(THIS, TID, READS, WRITES))
£i)
else none
£i)
if COMPLETE := ((SIS—FAILED setminus SENDER) == empty0idSet) .

crl [A8rcvInvalidateConfirmedObsolete] :
(msg invalidateConfirmed(EG, LP) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS
>
=>
< THIS : Site |
localTransactions : LOCALTRANS
> if not inInvalidate(EG, LP, LOCALTRANS) .

op inInvalidate : TransId LogPosition Configuration —> Bool .
eq inInvalidate(EG, LP,
< TID : Transaction | paxosState : invalidating(EG, (TID' LP MSID1 OL), VAL—REQ, PROPNUM, SIS,
PREDMAP, EXP) ; PSTATE > LOCALTRANS) = true .
eq inInvalidate(EG, LP, LOCALTRANS) = false [owise] .




204 C Real-Time Maude Model of Megastore-CGC

rl [AF6resendInvalidate] :
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : invalidating(EG, (TID' LP SID OL), VAL—
REQ, PROPNUM, SIS, PREDMAP, 0) ; PSTATE,
status : in—paxos > LOCALTRANS,
entityGroups : < EG : EntityGroup | > EGROUPS

>
=>
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : invalidating(EG, (TID' LP SID OL), VAL—
REQ, PROPNUM, SIS, PREDMAP, defTimeout) ; PSTATE > LOCALTRANS,
entityGroups : < EG : EntityGroup | > EGROUPS
>

(multiCast invalidateCoordinator(EG, LP) from THIS to SIS) .

——— Timeout without quorum — failure handling according to #3 in 4.6.3
crl [restartPrepare] :
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : acceptAl1(EG, (TID' LP MSID1 OL), VAL—
REQ, PROPNUM, SIS, PREDMAP, 0) ; PSTATE,
status : in—paxos > LOCALTRANS,
entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS
>
=>
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : restartPrepare(EG, (TID' LP MSID1 OL),
VAL—REQ, N) ; PSTATE > LOCALTRANS,
entityGroups : < EG : EntityGroup | > EGROUPS
>
if not hasQuorum(size(SIS), getSites(EGRS)) /\ N ; NS := possibleBackoffs .

crl [AF4initiatePrepare] :
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : restartPrepare(EG, (TID' LP MSID1 OL1),
VAL—REQ, 0) ; PSTATE,
status : in—paxos > LOCALTRANS,
entityGroups : < EG : EntityGroup | proposals : PROPSET,
replicas : egr(THIS, PXSID, LP') ; EGRS > EGROUPS
>
=>
< THIS : Site |
localTransactions : < TID : Transaction | paxosState : prepare(EG, (TID' LP MSID1 OL1), VAL—
REQ, PN, noPropnum, empty0idSet, defTimeout) ; PSTATE,
status : in—paxos > LOCALTRANS,
entityGroups : < EG : EntityGroup | > EGROUPS
>
(multiCast prepareAllReq(TID, EG, LP, OL1, VAL—REQ, PN) from THIS to REPLICAS)
if REPLICAS := getSites(egr(THIS, PXSID, LP') ; EGRS) /\
PN := createPropnum(getCurPropnum(LP, PROPSET), size(REPLICAS), PXSID) .

w4 ( After Paxos—consensus: Apply skx)

——— In case of some previous error, we allow processing "out of order”
crl [APP3.linitUpdatesInvalidated] :
(msg applyReq(TID, EG, LP, VAL—REQ, (THIS PREDLIST) ; PREDMAP, PROPNUM) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
entityGroups :




C Real-Time Maude Model of Megastore-CGC 205

< EG : EntityGroup | transactionLog : LEL,
pendingWrites : PWL,
proposals : accepted(SID, (TID2 LP MSID1 OL), VAL—REQ2, PN') ; PROPSET >
EGROUPS,
localTransactions : LOCALTRANS,
egOrderings : OCUPDATES,
awaitingOrder : AWAIT—ORDERSET
>
=>
< THIS : Site |
coordinator : invalidateUnlessUpToDate(EG, LP, CES),
entityGroups :
< EG : EntityGroup | transactionLog :

(if (TID == TID2 or (VAL—REQ2 == false)) then
insertLogEntrySorted((TID2 LP MSID1 OL), LEL) else
insertLogEntrySorted((TID2 LP MSID1 emptyOpList), LEL) fi),

pendingWrites : (if (TID == TID2 or (VAL—REQ2 == false)) then pw(LP,
idle, OL) :: PWL else PWL fi),
proposals : removeProposals(LP, PROPSET) > EGROUPS,
localTransactions : removeOthersForLogPosition(EG, LP, LOCALTRANS),
egOrderings : NEW—OCUPDATES,
awaitingOrder :
(if (TID2 =/= TID) then AWAIT—ORDERSET ; (OCID TID2 EG LP)
else removeOrdered(AWAIT—ORDERSET, NEW—OCUPDATES) fi)
>
(sendNotifyAbort(THIS, LOCALTRANS, removeOthersForLogPosition(EG, LP, LOCALTRANS)))
if ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\
0CID := getOrderClass(EG, ORDERCLASSES) /\
NEW—OCUPDATES := (if ((THIS =/= SENDER) and (TID2 == TID)) then
applyOrdering(0CID, (TID2 EG LP false), PREDLIST, OCUPDATES) else OCUPDATES £i) /\
((PROPNUM == PN') or (TID == TID2)) /\
not (containsEntityGroupId(EG, CES) and isNext(LP, LEL)) .

——— In case of some previous error, we allow processing ”out of order”
crl [APP3.1initUpdatesInvalidatedNotOrdered] :
(msg applyReq(TID, EG, LP, VAL—REQ, noReplicaPredMap, PROPNUM) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
entityGroups :
< EG : EntityGroup | transactionLog : LEL,
pendingWrites : PWL,
proposals : accepted(SID, (TID2 LP MSID1 OL), VAL—REQ2, PN') ; PROPSET >
EGROUPS,
localTransactions : LOCALTRANS,
awaitingOrder : AWAIT—ORDERSET

>

=>

< THIS : Site |
coordinator : invalidateUnlessUpToDate(EG, LP, CES),
entityGroups :

< EG : EntityGroup | transactionLog :
(if (VAL—REQ2 == false) then
insertLogEntrySorted((TID2 LP MSID1 OL), LEL) else
insertLogEntrySorted((TID2 LP MSID1 emptyOpList), LEL) fi),
pendingWrites : (if (VAL—REQ2 == false) then pw(LP, idle, OL) :: PWL
else PWL fi),
proposals : removeProposals(LP, PROPSET) > EGROUPS,
localTransactions : removeOthersForLogPosition(EG, LP, LOCALTRANS),
awaitingOrder : (if (VAL—REQ2 == false) then (OCID TID2 EG LP) ; AWAIT—ORDERSET else AWAIT—

ORDERSET fi)




206 C Real-Time Maude Model of Megastore-CGC

(sendNotifyAbort(THIS, LOCALTRANS, removeOthersForLogPosition(EG, LP, LOCALTRANS)))
if ORDERCLASSES := getOrderClasses(< EG : EntityGroup | > EGROUPS) /\

OCID := getOrderClass(EG, ORDERCLASSES) /\

((PROPNUM == PN') or (TID == TID2)) /\

not (containsEntityGroupId(EG, CES) and isNext(LP, LEL)) .

op isNext : LogPosition LogEntryList —> Bool .
eq isNext(1lpos(s N), LEL :: (TID lpos(N) MSID1 OL)) = true .
eq isNext(LP, LEL) = false [owise] .

op invalidateUnlessUpToDate : EntityGroupld LogPosition EntGroupLogPosSet —> EntGroupLogPosSet .
ceq invalidateUnlessUpToDate(EG, 1pos(N1), eglp(EG, 1lpos(N2)) ; CES) =

applyInvalidate(EG, lpos(N1), eglp(EG, 1pos(N2)) ; CES) if N1 > (s N2) .
eq invalidateUnlessUpToDate(EG, LP, CES) = CES [owise] .

op insertLogEntrySorted : LogEntry LogEntryList —> LogEntryList .
cq insertLogEntrySorted((TID1 1pos(N1) MSID1 OL1), (TID2 lpos(N2) MSID2 OL2) :: LEL) =
if (N1 < N2) then
(TID1 lpos(N1) MSID1 OL1) :: (TID2 lpos(N2) MSID2 OL2) :: LEL
else
(TID2 1pos(N2) MSID2 OL2) :: insertLogEntrySorted((TID1 lpos(N1) MSID1 OL1), LEL) fi .
eq insertLogEntrySorted(LE, noEntries) = LE .

——— If we receive an apply req for which we do not have an accept, we invalidate the coordinator
crl [APP3.2initUpdatesWithoutAccept] :
(msg applyReq(TID, EG, LP, VAL—REQ, PREDMAP, PROPNUM) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
entityGroups : < EG : EntityGroup | proposals : PROPSET > EGROUPS
>
=>
< THIS : Site | coordinator : applyInvalidate(EG, LP, CES) >
if not containsAccept(SENDER, TID, LP, PROPNUM, PROPSET) .

op containsAccept : Siteld TransId LogPosition Propnum PaxosProposalSet —> Bool .

eq containsAccept(SID, TID, LP, PN, accepted(SID, (TID' LP MSID1 OL), VAL—REQ, PN) ; PROPSET) = true .
eq containsAccept(SID, TID, LP, PN, accepted(SID, (TID LP MSID1 OL), VAL—REQ, PN') ; PROPSET) = true .
eq containsAccept(SID, TID, LP, PN, PROPSET) = false [owise] .

——— With competing leaders, we might receive two apply messages for the same transaction
crl [APP4initUpdatesForAppliedTrans]| :
(msg applyReq(TID, EG, LP, VAL—REQ, PREDMAP, PROPNUM) from SENDER to THIS)
< THIS : Site |
coordinator : CES,
entityGroups : < EG : EntityGroup | transactionLog : LEL,
proposals : PROPSET > EGROUPS
>
=>
< THIS : Site |
coordinator : CES,
entityGroups : < EG : EntityGroup | transactionLog : LEL,
proposals : removeProposals(LP, PROPSET) > EGROUPS
> if containsLogPosition(LP, LEL) .

op containsLogPosition : LogPosition LogEntryList —> Bool .

eq containsLogPosition(LP, LEL :: (TID LP MSID1 OL) :: LEL') = true .

ceq containsLogPosition(lpos(N), (TID lpos(N') MSID1 OL) :: LEL') = true if (N < N') .
eq containsLogPosition(LP, LEL) = false [owise] .

endtom)




C Real-Time Maude Model of Megastore-CGC 207

Listing C.8 majority_read.rtmaude

***(
This module implements
Hokok )

)

"catchup”, see step 3 and 4 of section 4.6.2

(tomod MAJORITY—READ is
inc CLIENT—INTERFACE .
inc UPDATES .

var EG : EntityGroupId .

var EGROUPS : Configuration .

var LOCALTRANS : Configuration .

vars N N1 N2 N3 SEQ CNT : Nat .

vars TID TID' TID1 TID2 TID3 : TransId .

vars LPL LPL—MISSING : LogPositionList .

var LE : LogEntry .

vars LEL LEL—RECEIVED LEL—RESP LEL' NEW—TRANS—LOG : LogEntryList .
vars RSTATE NEW—RSTATE : ReadStateSet .

vars NEW—TSTATUS TSTATUS : TransStatus .

vars LATEST LP LP—TARGET : LogPosition .

vars SID SID' MSID1 MSID2 MSID3 SENDER THIS : Siteld .

var NEXT—SITE : SitelIdList .

var EID : EntityId .

var DLP : DefLogPosition .

vars EVERSIONS EVERSIONS' : EntityVersionList .

vars VAL1 VAL2 : EntityValue .

var SIS : SiteldSet .

var EGRS : EntityGroupReplicaSet .

vars OL OL1 OL2 OL3 : OperationList .

var CE : EntGroupLogPos .

var CES : EntGroupLogPosSet .

var PWL : PendingWriteList .

var T : Time .

var PROPSET : PaxosProposalSet .

var PN : Propnum .

vars SIL SIL' : SiteIdList .

vars HAS—QUORUM CATCHUP—COMPLETE VAL—REQ VALID : Bool .
vars UPDATELST1 UPDATELST2 PREDLIST : EntGroupUpdateList .
var DEFUP : DefEntGroupUpdate .

var OLISTS : OrderClassUpdates .

var OCID : OrderClassId .

vars CATCHUP—0SS MISSING—ORDERS TENTATIVE : Bool .

var AWAIT—ORDERSET NEW—AWAIT—ORDERSET AOS1 AOS2 : AwaitingOrderSet .
var OCUPDATES : OrderClassUpdates .

var EGIDS : EntityGroupIdSet .

op majorityRead : EntityGroupld TransId —> MsgContent .

op majorityReadResponse : EntityGroupId TransId LogPosition —> MsgContent .

op catchupRequest : EntityGroupld TransId LogPositionList —> MsgContent .

op catchupResponse : EntityGroupId TransId LogEntryList EntGroupUpdateList —> MsgContent .
op catchingUp : EntityId SiteIdList LogPositionList Bool —> ReadState [ctor] .

op requestOrdering : OrderClassId —> MsgContent .

op orderingResponse : OrderClassId —> MsgContent .

op majorityRead : EntityId DefLogPosition SiteIdList —> ReadState [ctor] .

op maxLocRead : —> Time .

sk Majority read skx)
%% Due to some previous fault, the local coordinator is not up—to—date. Perform a majority read
crl [CRB1—initMajorityRead] :
< SID : Site |
coordinator : CES,




208 C Real-Time Maude Model of Megastore-CGC

seqGen : SEQ,
entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
egOrderings : OLISTS,
localTransactions : < TID : Transaction | operations : cr(entity(EG,N)) :: OL, readState :
RSTATE, status : idle > LOCALTRANS >
=>
< SID : Site |
localTransactions : < TID : Transaction | operations : cr(entity(EG,N)) :: OL,
readState : majorityRead(entity(EG,N), noLogPosition, emptySiteIdList) ; RSTATE,
status : transTimer(defTimeout) > LOCALTRANS,
egOrderings : invalidateOrdering(EG, 0CID, OLISTS),
seqGen : (if CATCHUP—OSS then s SEQ else SEQ fi) >
(multiCast majorityRead(EG, TID) from SID to getSites(EGRS) setminus SID)
(if CATCHUP—OSS then (newTrans(SID, osr(SID, SEQ), cr(0CID))) else none fi)
if not (inConflictWithRunning(EG, LOCALTRANS) or containsEntityGroupId(EG, CES)) /\
OCID := getOrderingClass(EG, < EG : EntityGroup | > EGROUPS) /\
CATCHUP—O0SS := (EG =/= OrderSites) and (not (validOrderSiteStatus(CES) or contains0SSCatchup(
LOCALTRANS))) .

op invalidateOrdering : EntityGroupIld OrderClassId OrderClassUpdates —> OrderClassUpdates .
eq invalidateOrdering(EG, 0CID, (OCID — EGIDS |>> UPDATELST1) ; OLISTS) = (OCID — (EGIDS ; EG) |>>
UPDATELST1) ; OLISTS .

op setValidOrdering : EntityGroupId OrderClassId OrderClassUpdates —> OrderClassUpdates .

eq setValidOrdering(EG, OCID, (0CID — (EG ; EGIDS) |>>> UPDATELST1) ; OLISTS) = (0CID — EGIDS |>>
UPDATELST1) ; OLISTS .

eq setValidOrdering(EG, OCID, (OCID — emptyOidSet |>> UPDATELST1) ; OLISTS) = (OCID — emptyOidSet
|>> UPDATELST1) ; OLISTS .

rl [CRB2—rcvMajorityReadRequest] :
(msg majorityRead(EG,TID) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL :: (TID' 1pos(N) SID OL) > EGROUPS >
=>
< THIS : Site | >
(uniCast majorityReadResponse(EG, TID, lpos(N)) from THIS to SENDER) .

crl [CRB3—rcvMajorityReadResponse] :
(msg majorityReadResponse(EG, TID, LP) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL, replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(T),
readState : majorityRead(entity(EG,N), DLP, SIL) ; RSTATE > LOCALTRANS >
=>
< THIS : Site | localTransactions : LOCALTRANS
(if (not HAS—QUORUM) then
< TID : Transaction |
readState : majorityRead(entity(EG,N), LATEST, SIL' :: SID) ; RSTATE >
else
< TID : Transaction |
status : transTimer(defTimeout),
readState : catchingUp(entity(EG,N), SIL' LPL—MISSING, false) ; RSTATE >
£i)
>
(if HAS—QUORUM then
(uniCast catchupRequest(EG, TID, LPL—MISSING) from THIS to SID)
else none fi)
if HAS—QUORUM := hasQuorum(length(SENDER :: SIL), getSites(EGRS)) /\
lpos(N1) := getMostRecentLPos(LEL) /\




C Real-Time Maude Model of Megastore-CGC 209

majorityRead(entity(EG,N), LATEST, SIL' :: SID) := updateMreadState(SENDER, entity(EG,N), LP,
majorityRead(entity(EG,N), DLP, SIL)) /\
LPL—MISSING := (getLogHoles(LEL) :: addLogPositionsBetween(lpos(s N1), LATEST)) .

op updateMreadState : Siteld EntityIld LogPosition ReadState —> ReadState .
eq updateMreadState(SENDER, EID, 1pos(N1), majorityRead(EID, 1pos(N2), SIL)) =
if (N2 > N1) then
(majorityRead(EID, lpos(N2), SIL :: SENDER))
else (majorityRead(EID, lpos(N1), SENDER :: SIL))
fi.
eq updateMreadState(SENDER, EID, LP, majorityRead(EID, noLogPosition, emptySiteIdList)) =
majorityRead(EID, LP, SENDER) .

crl [rcvLateMajorityReadResponse] :
(msg majorityReadResponse(EG, TID, LP) from SENDER to THIS)
< THIS : Site |
localTransactions : LOCALTRANS >
=>
< THIS : Site | >
if (not inMajorityRead(TID, EG, LOCALTRANS)) .

op inMajorityRead : TransId EntityGroupld Configuration —> Bool .

eq inMajorityRead(TID, EG, < TID : Transaction | readState : majorityRead(entity(EG, N), DLP, SIL) ;
RSTATE > LOCALTRANS) = true .

eq inMajorityRead(TID, EG, LOCALTRANS) = false [owise] .

op hasQuorum : Nat SiteIdSet —> Bool .
eq hasQuorum(N, SIS) = (N >= (size(SIS) quo 2 + 1)) .

op getVersion : LogPosition EntityVersionList —> EntityVersion .

ceq getVersion(lpos(N), EVERSIONS :: (1pos(N1) VAL1) :: (1pos(N2) VAL2) :: EVERSIONS') = (1lpos(N1) VAL1)
if (N1 <N /\ N < N2) .

ceq getVersion(lpos(N), EVERSIONS :: (1pos(N1) VAL1)) = (1lpos(N1) VAL1) if (N1 <=N) .

——— If majority—read timed out, restart
rl [restartCatchup] :
< THIS : Site | entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(0),
readState : majorityRead(entity(EG, N), DLP, SIL) ; RSTATE > LOCALTRANS
>
=>
< THIS : Site | entityGroups : < EG : EntityGroup | > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(defTimeout),
readState : majorityRead(entity(EG, N), noLogPosition, emptySiteIdList) ;
RSTATE > LOCALTRANS
>
(multiCast majorityRead(EG, TID) from THIS to getSites(EGRS) setminus THIS) .

sk ( Perform catchup sox)

——— Determine missing entries in a given log

op getLogHoles : LogEntryList —> LogPositionList .

ceq getLogHoles((TID1 lpos(N1) MSID1 OL1) :: (TID2 lpos(N2) MSID2 OL2) :: LEL) =
getLogHoles((TID2 lpos(N2) MSID2 OL2) :: LEL) if N2 == s N1.

ceq getLogHoles((TID1 lpos(N1) MSID1 OL1) :: (TID2 lpos(N2) MSID2 OL2) :: LEL) =
addLogPositionsBetween(lpos(s N1), 1lpos(sd(N2,1))) :: getLogHoles((TID2 lpos(N2) MSID2 OL2) :: LEL

Yif N2 =/= s N1 .
eq getLogHoles(LE) = emptyLPlist .




210 C Real-Time Maude Model of Megastore-CGC

——— Utility function: Return a log—position list between the two positions N1 and N2 (including
them both)
op addLogPositionsBetween : LogPosition LogPosition —> LogPositionList .
ceq addLogPositionsBetween(lpos(N1), 1pos(N2)) =
1pos(N1) :: addLogPositionsBetween(lpos(s N1), 1pos(N2)) if N1 <= N2 .
eq addLogPositionsBetween(lpos(N1), 1pos(N2)) = emptyLPlist [owise] .

——— Utility function: Get the most recent log entry.
——— Invariant: The log entry list always has) one element
op getMostRecentLPos : LogEntryList —> LogPosition .

eq getMostRecentLPos(LEL :: (TID LP SID OL)) = LP .

——— Upon receiving a catchup request, traverse the log position list representing
——— missing entries, and respond with all entries present at this site
crl [rcvCatchupRequest] :
(msg catchupRequest(EG, TID, LPL) from SENDER to THIS)
< THIS : Site |
entityGroups : < EG : EntityGroup | transactionLog : LEL > EGROUPS,
egOrderings : OLISTS
>
=>
< THIS : Site | >
(uniCast catchupResponse(EG, TID, LEL—RESP,
createMapEntry(getUpdateList(0CID, OLISTS), SENDER, < EG : EntityGroup | > EGROUPS)) from
THIS to SENDER)
if LEL—RESP := getPresentEntries(LPL, LEL) /\
OCID := getOrderingClass(EG, < EG : EntityGroup | > EGROUPS) .

op getPresentEntries : LogPositionList LogEntryList —> LogEntryList .
eq getPresentEntries(1lpos(N) :: LPL, LEL :: (TID 1lpos(N) SID OL) :: LEL') =
(TID lpos(N) SID OL) :: getPresentEntries(LPL, LEL :: (TID lpos(N) SID OL) :: LEL') .
eq getPresentEntries(emptyLPlist, LEL) = noEntries .
eq getPresentEntries(1lpos(N) :: LPL, LEL) =
getPresentEntries(LPL, LEL) [owise] .

crl [rcvCatchupResponse] :
(msg catchupResponse(EG, TID, LEL—RECEIVED, PREDLIST) from SENDER to THIS)
< THIS : Site | localTransactions : LOCALTRANS >

=>
< THIS : Site | >

if (not catchingUp(TID, LOCALTRANS)) .

op catchingUp : TransId Configuration —> Bool .

eq catchingUp(TID, < TID : Transaction | readState : catchingUp(EID, SIL, LPL, MISSING—ORDERS) ; RSTATE
> LOCALTRANS) = true .

eq catchingUp(TID, LOCALTRANS) = false [owise] .

crl [rcvCatchupResponse] :
(msg catchupResponse(EG, TID, LEL—RECEIVED, PREDLIST) from SENDER to THIS)
< THIS : Site | coordinator : CES,
entityGroups : < EG : EntityGroup | replicas : EGRS, proposals : PROPSET,
transactionlog : LEL, pendingWrites : PWL >
EGROUPS,
egOrderings : OCUPDATES,
awaitingOrder : AWAIT—ORDERSET,
localTransactions : < TID : Transaction |
status : TSTATUS,
readState : catchingUp(entity(EG, N), SIL, LPL, MISSING—ORDERS) ; RSTATE >
LOCALTRANS




C Real-Time Maude Model of Megastore-CGC 211

>
=>
< THIS : Site | coordinator : (if CATCHUP—COMPLETE
then setValidated(EG, getMostRecentLPos(NEW—TRANS—LOG), CES)
else CES fi),
entityGroups : < EG : EntityGroup | proposals : removeObsoleteProposals(LEL—
RECEIVED, PROPSET),
transactionLog : NEW—TRANS—LOG,
pendingWrites : addPendingWrites(LEL—RECEIVED,
PWL) > EGROUPS,
egOrderings : (if (CATCHUP—COMPLETE and (not MISSING—ORDERS)) then
setValidOrdering(EG, 0CID, OCUPDATES) else OCUPDATES fi),
awaitingOrder : NEW—AWAIT—ORDERSET,
localTransactions : removeObsoleteTrans(TID, EG, LEL—RECEIVED, LOCALTRANS)
(if CATCHUP—COMPLETE then
< TID : Transaction | status : idle, readState : RSTATE >
else (
if (NEXT—SITE =/= emptySiteIdList) then
(< TID : Transaction | status : transTimer(defTimeout),
readState : catchingUp(entity(EG, N), removeIfPresent(NEXT—SITE, SIL),
LPL—MISSING, checkMissingOrders(NEW—AWAIT—ORDERSET,
PREDLIST)) ; RSTATE >)
else
(< TID : Transaction | status : transTimer(defTimeout),
readState : majorityRead(entity(EG, N), noLogPosition, emptySiteIdList) ;
RSTATE >)
£i)
£i)
>
(sendNotifyAbort(THIS, LOCALTRANS, removeObsoleteTrans(TID, EG, LEL—RECEIVED, LOCALTRANS)))
(if (not CATCHUP—COMPLETE) then
(if (NEXT—SITE =/= emptySiteIdList) then
(uniCast catchupRequest(EG, TID, LPL—MISSING) from THIS to NEXT—SITE)
else
(multiCast majorityRead(EG, TID) from THIS to getSites(EGRS) setminus THIS)
£i)
else none fi)
if LPL—MISSING := getLogHoles(applyRemoteLogEntries(LEL—RECEIVED, LEL)) /\
CATCHUP—COMPLETE := (LPL—MISSING == emptyLPlist) /\
NEW—TRANS—LOG := applyRemoteLogEntries(LEL—RECEIVED, LEL) /\
NEXT—SITE := getNextSite(SIL) /\
OCID := getOrderingClass(EG, < EG : EntityGroup | > EGROUPS) /\
NEW—AWAIT—ORDERSET := merge(AWAIT—ORDERSET, addNotOrdered(LEL—RECEIVED, EG, OCID, OCUPDATES)) .

op getNextSite : SiteIdList —> Siteld .
eq getNextSite(SIL :: SID) = SID .
eq getNextSite(emptySiteIdList) = emptySiteIdList .

op removelfPresent : SiteId SiteldList —> SiteIdList .
eq removeIfPresent(SID, SIL :: SID :: SIL') = SIL :: SIL'.
eq removeIfPresent(SID, SIL) = SIL [owise] .

op removeObsoleteProposals : LogEntryList PaxosProposalSet —> PaxosProposalSet .

eq removeObsoleteProposals((TID1 LP MSID1 OL1) :: LEL, proposal(SID, TID2, LP, OL, VAL—REQ, PN) ;
PROPSET) =
removeObsoleteProposals(LEL, PROPSET) .

eq removeObsoleteProposals((TID1 LP MSID1 OL1) :: LEL, accepted(SID, (TID2 LP MSID2 OL2), VAL—REQ, PN) ;
PROPSET) =
removeObsoleteProposals(LEL, PROPSET) .

eq removeObsoleteProposals(noEntries, PROPSET) = PROPSET .

eq removeObsoleteProposals((TID1 LP MSID1 OL1) :: LEL, PROPSET) =
removeObsoleteProposals(LEL, PROPSET) [owise] .




212 C Real-Time Maude Model of Megastore-CGC

op removeObsoleteTrans : TransId EntityGroupId LogEntryList Configuration —> Configuration .

eq removeObsoleteTrans(TID1, EG, (TID2 LP MSID1 OL) :: LEL, LOCALTRANS) =
removeObsoleteTrans(TID1, EG, LEL, removeOthersForLogPosition(EG, LP, LOCALTRANS)) .

eq removeObsoleteTrans(TID1, EG, noEntries, LOCALTRANS) = LOCALTRANS .

op merge : AwaitingOrderSet AwaitingOrderSet —> AwaitingOrderSet .
eq merge((0CID TID EG LP) ; A0S1, (OCID TID EG LP) ; A0OS2) = merge(A0S1, (OCID TID EG LP) ; A0S2) .
eq merge(A0S1, A0OS2) = AO0S1 ; AOS2 [owise] .

——— If some entry in "EntGroupUpdateList” exists in the ”AwaitingOrderSet”,

——— return ”"true”. Otherwise, return false.

op checkMissingOrders : AwaitingOrderSet EntGroupUpdateList —> Bool .

eq checkMissingOrders((0CID TID EG LP) ; AOS1, UPDATELST1 :: ((TID EG LP TENTATIVE) ; DEFUP) ::
UPDATELST2) = true .

eq checkMissingOrders(AOS1, UPDATELST1) = false [owise] .

op applyRemoteLogEntries : LogEntryList LogEntryList —> LogEntryList .
——— We might receive multiple catchup—response (due to failures). If we already have the log entry,
simply ignore it.
eq applyRemoteLogEntries((TID lpos(N) SID OL) :: LEL—RECEIVED, LEL :: (TID lpos(N) SID OL) :: LEL') =
applyRemoteLogEntries(LEL—RECEIVED, LEL :: (TID lpos(N) SID OL) :: LEL') .
——— Common case: Find the right hole in the log, and insert missing entry
ceq applyRemoteLogEntries((TID1 lpos(N1) MSID1 OL1) :: LEL—RECEIVED, LEL :: (TID2 lpos(N2) MSID2 OL2) ::
(TID3 1pos(N3) MSID3 OL3) :: LEL') =
applyRemoteLogEntries(LEL—RECEIVED, LEL :: (TID2 lpos(N2) MSID2 OL2) :: (TID1 lpos(N1) MSID1 OL1) :: (
TID3 1lpos(N3) MSID3 OL3) :: LEL') if (N2 < N1 /\ N1 < N3) .

——— We're at the end of the local log, append all entries

ceq applyRemoteLogEntries((TID1 lpos(N1) MSID1 OL1) :: LEL—RECEIVED, LEL :: (TID2 lpos(N2) MSID2 OL2))
LEL :: (TID2 lpos(N2) MSID2 OL2) :: (TID1 lpos(N1) MSID1 OL1) :: LEL—RECEIVED if N1 > N2 .

——— All entries applied, we are done

eq applyRemoteLogEntries(noEntries, LEL) = LEL .

op addPendingWrites : LogEntryList PendingWriteList —> PendingWriteList .

ceq addPendingWrites((TID LP SID OL) :: LEL, PWL) = addPendingWrites(LEL, pw(LP, idle, OL) :: PWL) if OL
=/= emptyOpList .

eq addPendingWrites((TID LP SID emptyOpList) :: LEL, PWL) = addPendingWrites(LEL, PWL) .

eq addPendingWrites(noEntries, PWL) = PWL .

op addNotOrdered : LogEntryList EntityGroupId OrderClassId OrderClassUpdates —> AwaitingOrderSet

eq addNotOrdered((TID LP SID OL) :: LEL, EG, OCID, (OCID — EGIDS |>>> UPDATELST1 :: ((TID EG LP TENTATIVE
) ; DEFUP) :: UPDATELST2) ; OCUPDATES) =
addNotOrdered(LEL, EG, 0CID, (OCID — EGIDS |>> UPDATELST1 :: ((TID EG LP TENTATIVE) ; DEFUP) ::
UPDATELSTQ) ; UCUPDATES) .
eq addNotOrdered(noEntries, EG, 0CID, OCUPDATES) = noAwaitingOrderSet .
eq addNotOrdered((TID LP SID OL) :: LEL, EG, OCID, OCUPDATES) =
(0CID TID EG LP) ; addNotOrdered(LEL, EG, OCID, OCUPDATES) [owise] .

——— If catchup—response timed out and we have sites to try, try the next site
rl [restartCatchup] :
< THIS : Site | entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(0),
readState : catchingUp(entity(EG, N), SIL :: SID, LPL, MISSING—ORDERS) ; RSTATE
> LOCALTRANS
>
=>
< THIS : Site | entityGroups : < EG : EntityGroup | > EGROUPS,
localTransactions : < TID : Transaction |




C Real-Time Maude Model of Megastore-CGC 213

operations : cr(entity(EG,N)) :: OL, status : transTimer(defTimeout),
readState : catchingUp(entity(EG, N), SIL, LPL, MISSING—ORDERS) ; RSTATE >
LOCALTRANS
>
(uniCast catchupRequest(EG, TID, LPL) from THIS to SID) .

——— If no sites are available, restart the majority read
rl [restartCatchup] :
< THIS : Site | entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(0),
readState : catchingUp(entity(EG, N), emptySiteIdList, LPL, MISSING—ORDERS) ;
RSTATE > LOCALTRANS
>
=>
< THIS : Site | entityGroups : < EG : EntityGroup | > EGROUPS,
localTransactions : < TID : Transaction |
operations : cr(entity(EG,N)) :: OL, status : transTimer(defTimeout),
readState : majorityRead(entity(EG, N), noLogPosition, emptySiteIdList) ;
RSTATE > LOCALTRANS
>
(multiCast majorityRead(EG, TID) from THIS to getSites(EGRS) setminus THIS) .

op setValidated : EntityGroupId LogPosition EntGroupLogPosSet —> EntGroupLogPosSet .

ceq setValidated(EG, 1pos(N1), eglp(EG, 1pos(N2)) ; CES) = eglp(EG, 1pos(N2)) ; CES if (N2 >=N1) .

ceq setValidated(EG, lpos(N1), eglp(EG, 1pos(N2)) ; CES) = eglp(EG, lpos(N1)) ; CES if (N2 < N1) .

ceq setValidated(EG, 1pos(N1), invalidCstate(EG, 1pos(N2)) ; CES) = invalidCstate(EG, lpos(N2)) ; CES
if (N1 < N2) .

ceq setValidated(EG, 1pos(N1), invalidCstate(EG, 1pos(N2)) ; CES) = eglp(EG, 1lpos(N1)) ; CES
if (N2 <=N1) .

eq setValidated(EG, lpos(N1), CES) = eglp(EG, lpos(N1)) ; CES [owise] .

endtom)

Listing C.9 megastore_timing.rtmaude

(tomod MEGASTORE—TIMING is
inc MEGASTORE—SETUP .
inc UPDATES .

var SID : Siteld .

var TID : TransId .

var EG : EntityGroupId .

var SIS : SiteldSet .

var EGRS : EntityGroupReplicaSet .

vars T1 T2 T3 EXP : Time .
vars TI1 TI2 : TimeInf .

var N : Nat .

var OL : OperationList .

vars EGROUPS LOCALTRANS REMAININGTRANS : Configuration .
var TS : TransStatus .

var PREDMAP : DefReplicaPredMap .

vars PN PN' : Propnum .

var DPN : DefPropnum .

var PWL : PendingWriteList .
var LE : LogEntry .




214 C Real-Time Maude Model of Megastore-CGC

var EG : EntityGroupld .

var LP : LogPosition .

var CES : EntGroupLogPosSet .
var VAL—REQ : Bool .

var PSTATE : PaxosStateSet .

eq mte(< SID : Site | coordinator : CES, entityGroups : EGROUPS, localTransactions : LOCALTRANS >) =
min( mte(EGROUPS), mteTrans(EGROUPS, LOCALTRANS, LOCALTRANS)) .

eq delta(< SID : Site | entityGroups : EGROUPS, localTransactions : LOCALTRANS >, T1) =
< SID: Site | entityGroups : delta(EGROUPS, T1), localTransactions : delta(LOCALTRANS, T1) > .

sk Transactions sx)
op mteTrans : Configuration Configuration Configuration —> TimelInf .

——— Determine mte if TS == idle
ceq mteTrans(< EG : EntityGroup | pendingWrites : emptyPWList > EGROUPS, LOCALTRANS,
< TID : Transaction | operations : cr(entity(EG,N)) :: OL, status : idle > REMAININGTRANS) = 0 if not
inConflictWithRunning(EG, removeTid(TID, LOCALTRANS)) .
eq mteTrans(EGROUPS, LOCALTRANS,
< TID : Transaction | operations : w(EID:EntityId, EVAL:EntityValue) :: OL, status : idle >
REMAININGTRANS) = 0 .
eq mteTrans(EGROUPS, LOCALTRANS,
< TID : Transaction | operations : emptyOpList, status : idle > REMAININGTRANS) = 0 .
eq mteTrans(EGROUPS, LOCALTRANS,
< TID : Transaction | status : executing(LP, T1) > REMAININGTRANS) = min(T1, mteTrans(EGROUPS,
LOCALTRANS, REMAININGTRANS)) .
eq mteTrans(EGROUPS, LOCALTRANS,
< TID : Transaction | status : transTimer(T1) > REMAININGTRANS) =
min(T1, mteTrans(EGROUPS, LOCALTRANS, REMAININGTRANS)) .
eq mteTrans(EGROUPS, LOCALTRANS,
< TID : Transaction | status : awaitOrder(T1) > REMAININGTRANS) =
min(T1, mteTrans(EGROUPS, LOCALTRANS, REMAININGTRANS)) .
eq mteTrans(EGROUPS, LOCALTRANS,
< TID : Transaction | paxosState : PSTATE, status : in—paxos > REMAININGTRANS) =
min(mte(PSTATE), mteTrans(EGROUPS, LOCALTRANS, REMAININGTRANS)) .
eq mteTrans(EGROUPS, LOCALTRANS, REMAININGTRANS) = INF [owise] .

op mte : PaxosStateSet —> Time .

eq mte(acceptLeader(EG, LE, SID, T1) ; PSTATE) = min(T1, mte(PSTATE)) .

eq mte(acceptAll(EG, LE, VAL—REQ, PN, SIS, PREDMAP, T1) ; PSTATE) = min(T1, mte(PSTATE)) .

eq mte(prepare(EG, LE, VAL—REQ, PN, DPN, SIS, T1) ; PSTATE) = min(T1, mte(PSTATE)) .

eq mte(restartPrepare(EG, LE, VAL—REQ, T1) ; PSTATE) = min(T1, mte(PSTATE)) .

eq mte(invalidating(EG, LE, VAL—REQ, PN, SIS, PREDMAP, T1) ; PSTATE) = min(T1, mte(PSTATE)) .
eq mte(PSTATE) = INF [owise] .

op hasPrepareQuorum : Configuration PaxosState —> Bool .
ceq hasPrepareQuorum(< EG : EntityGroup | replicas : EGRS > EGROUPS, prepare(EG, LE, VAL—REQ, PN, PN',
SIS, EXP) ; PSTATE) =
true if REPLICAS:SiteIdSet := getSites(EGRS) /\ hasQuorum(size(SIS), REPLICAS:SiteIdSet) .
eq hasPrepareQuorum(EGROUPS, PSTATE) = false [owise] .

op removeTid : TransId Configuration —> Configuration .
eq removeTid(TID, < TID : Transaction | > REMAININGTRANS) = REMAININGTRANS .
eq removeTid(TID, LOCALTRANS) = LOCALTRANS [owise] .

eq delta(< TID : Transaction | status : executing(LP, T2) >, T1) = < TID : Transaction | status :
executing(LP, T2 monus T1) > .




C Real-Time Maude Model of Megastore-CGC 215

eq delta(< TID : Transaction | status : transTimer(T2) >, T1) = < TID : Transaction | status :
transTimer (T2 monus T1) > .
eq delta(< TID : Transaction | status : awaitOrder(T2) >, T1) = < TID : Transaction | status :
awaitOrder (T2 monus T1) > .
eq delta(< TID : Transaction | paxosState : PSTATE, status : in—paxos >, T1) =
< TID : Transaction | paxosState : delta(PSTATE, T1) > .
eq delta(< TID : Transaction | status : TS >, T1) = < TID : Transaction | > [owise] .

op delta : PaxosStateSet Time —> PaxosStateSet .

eq delta(acceptLeader(EG, LE, SID, T2) ; PSTATE, T1) = acceptLeader(EG, LE, SID, T2 monus T1) ; delta(
PSTATE, T1) .

eq delta(acceptAll(EG, LE, VAL—REQ, PN, SIS, PREDMAP, T2) ; PSTATE, T1) = acceptAll(EG, LE, VAL—REQ, PN,
SIS, PREDMAP, T2 monus T1) ; delta(PSTATE, T1) .

eq delta(prepare(EG, LE, VAL—REQ, PN, DPN, SIS, T2) ; PSTATE, T1) = prepare(EG, LE, VAL—REQ, PN, DPN, SIS,
T2 monus T1) ; delta(PSTATE, T1) .

eq delta(restartPrepare(EG, LE, VAL—REQ, T2) ; PSTATE, T1) = restartPrepare(EG, LE, VAL—REQ, T2 monus
T1) ; delta(PSTATE, T1) .

eq delta(invalidating(EG, LE, VAL—REQ, PN, SIS, PREDMAP, T2) ; PSTATE, T1) = invalidating(EG, LE, VAL—
REQ, PN, SIS, PREDMAP, T2 monus T1) ; delta(PSTATE, T1) .

eq delta(acceptedPS(EG, LE, VAL—REQ, PREDMAP, PN) ; PSTATE, T1) = acceptedPS(EG, LE, VAL—REQ, PREDMAP,
PN) ; delta(PSTATE, T1) .

eq delta(emptyPaxosState, T1) = emptyPaxosState .

s ( Entity groups sekk)
eq mte(< EG : EntityGroup | pendingWrites : PWL >) = mte(PWL) .
eq delta(< EG : EntityGroup | pendingWrites : PWL >, T1) =

< EG : EntityGroup | pendingWrites : delta(PWL, T1) > .

op mte : PendingWriteList —> Time .

eq mte(emptyPWList) = INF .

eq mte(PWL :: pw(LP, idle, OL)) =0 .

eq mte(PWL :: pw(LP, updating(T1), OL)) = T1 .

op delta : PendingWriteList Time —> PendingWriteList .

eq delta(emptyPWList, T1) = emptyPWList .

eq delta(PWL :: pw(LP, idle, OL), T1) = (PWL :: pw(LP, idle, OL)) .

eq delta(PWL :: pw(LP, updating(T2), OL), T1) = pw(LP, updating(T2 monus T1), OL) .

endtom)

Listing C.10 validation.rtmaude

(omod VALIDATION is
inc UPDATES .

vars EG EG2 : EntityGroupld .

var EID : EntitylId .

vars SID SID1 SID2 : Siteld .

var SIS : SitelIdSet .

var PROPSET : PaxosProposalSet .
vars LP LP1 LP2 : LogPosition .

var SIS : SiteldSet .

var EGS : EntityGroupIdSet .

var ES : EntitySet .

var EGROUPS : Configuration .

var EVERSIONS : EntityVersionList .
var ORDCLASS : EntityGroupIdSet .
vars UPS1 UPS2 : EntGroupUpdateSet .
vars DEFUP : DefEntGroupUpdate .
vars UP1 : EntGroupUpdate .




216 C Real-Time Maude Model of Megastore-CGC

vars UPDATELST1 UPDATELST2 : EntGroupUpdateList .
var TID : TransId .

var N : Nat .

var T : Time .

var PN : Propnum .

var EVAL : EntityValue .

vars OL OL1 OL2 : OperationList .
var LEL : LogEntryList .

var OCID : OrderClassId .

var OCUPDATES : OrderClassUpdates .
vars VAL—REQ TENTATIVE : Bool .

sorok
Validation procedure:

1. Find the most recent eg/logpos—pair in readset according to the local order
2. Verify that every other eg/logpos—pair in the readset is the most recent according to the local
ordero

***)
ceq isValid?(TID, ES, UPDATELST1 :: ((TID EG LP TENTATIVE) ; DEFUP) :: UPDATELST2, EGROUPS) =
verifyMostRecentReadVersions(ES, UPDATELST1, EGROUPS)
if not isTentative?(UPDATELST1) .
ceq isValid?(TID, ES, UPDATELST1, EGROUPS) =
verifyMostRecentReadVersions(ES, UPDATELST1, EGROUPS)
if not (containsTid(TID, UPDATELST1) or isTentative?(UPDATELST1)) .

ceq isValidReadOnly?(ES, UPDATELST1, EGROUPS) =
verifyMostRecentReadVersions(ES,
getPrefix(getMaximum(ES, noEntGroupUpdate, UPDATELST1), UPDATELST1), EGROUPS)
if not isTentative?(UPDATELST1) .

op isTentative? : EntGroupUpdateList —> Bool .
eq isTentative?(UPDATELST1 :: tentativeMarker :: UPDATELST2) = true .
eq isTentative?(UPDATELST1) = false [owise] .

op verifyMostRecentReadVersions : EntitySet EntGroupUpdateList Configuration —> Bool .
eq verifyMostRecentReadVersions((entity(EG,N) |[—> (LP EVAL)) ; ES, UPDATELST1,
(< EG : EntityGroup | proposals : PROPSET, transactionLog : LEL > EGROUPS)) =
(if (not containsRunningUpdate(entity(EG,N), UPDATELST1, PROPSET)) and isMostRecentInSnapshot?(
entity(EG,N), LP, UPDATELST1, LEL) then
verifyMostRecentReadVersions(ES, UPDATELST1, < EG : EntityGroup | transactionLog : LEL > EGROUPS

)
else
false
£i) .
eq verifyMostRecentReadVersions(ES, noEntGroupUpdate, EGROUPS) = true .
eq verifyMostRecentReadVersions(emptyEntitySet, UPDATELST1, EGROUPS) = true .

op containsRunningUpdate : EntityId EntGroupUpdatelList PaxosProposalSet —> Bool .
eq containsRunningUpdate(entity(EG,N), UPDATELST1 :: ((TID EG LP1 TENTATIVE) ; DEFUP) :: UPDATELST2,
accepted(SID1, (TID LP2 SID2 (OL1 :: w(entity(EG,N), EVAL) :: OL2)), VAL—REQ, PN) ; PROPSET) =
true .
eq containsRunningUpdate(EID, UPDATELST1, PROPSET) = false [owise] .

op getPrefix : EntGroupUpdateSet EntGroupUpdateList —> EntGroupUpdateList .

eq getPrefix((TID EG LP TENTATIVE), UPDATELST1 :: ((TID EG LP TENTATIVE) ; UPS1) :: UPDATELST2) =
UPDATELST1 :: (TID EG LP TENTATIVE) ; UPS1 .

eq getPrefix(noEntGroupUpdate, UPDATELST1) = noEntGroupUpdate .

op isMostRecentInSnapshot? : EntityId LogPosition EntGroupUpdateList LogEntryList —> Bool .
ceq isMostRecentInSnapshot?(entity(EG,N), LP, UPDATELST1, LEL) = true




C Real-Time Maude Model of Megastore-CGC 217

if (getMostRecentUpdate(entity(EG,N), UPDATELST1, LEL) == LP or
getMostRecentUpdate(entity(EG,N), UPDATELST1, LEL) == noLogPosition) .
eq isMostRecentInSnapshot?(entity(EG,N), LP, UPDATELST1, LEL) = false [owise] .

op getMostRecentUpdate : EntityId EntGroupUpdatelList LogEntryList —> LogPosition .
ceq getMostRecentUpdate(entity(EG,N), UPDATELST1, LEL :: (TID LP SID OL)) =
getMostRecentUpdate(entity(EG,N), UPDATELST1, LEL)
if not (containsUpdate(entity(EG,N), OL) and containsEntry(EG, LP, UPDATELST1)) .
ceq getMostRecentUpdate(entity(EG,N), UPDATELST1, LEL :: (TID LP SID OL)) = LP
if containsUpdate(entity(EG,N), OL) and containsEntry(EG, LP, UPDATELST1) .
eq getMostRecentUpdate(entity(EG,N), UPDATELST1, noEntries) = noLogPosition .

op containsEntry : EntityGroupld LogPosition EntGroupUpdatelList —> Bool .
eq containsEntry(EG, LP, UPDATELST1 :: ((TID EG LP TENTATIVE) ; UPS1) :: UPDATELST2) = true .
eq containsEntry(EG, LP, UPDATELST1) = false [owise] .

op getMaximum : EntitySet DefEntGroupUpdate EntGroupUpdatelList —> DefEntGroupUpdate .

eq getMaximum((entity(EG,N) |—> (LP EVAL)) ; ES, DEFUP, UPDATELST! :: ((TID EG LP TENTATIVE) ; UPS1) ::
UPDATELST2) =
getMaximum(ES, (TID EG LP TENTATIVE), UPDATELST2) .

eq getMaximum(emptyEntitySet, DEFUP, UPDATELST1) = DEFUP .

eq getMaximum((entity(EG,N) |—> (LP EVAL)) ; ES, DEFUP, UPDATELST1) = getMaximum(ES, DEFUP, UPDATELST1
) [owise] .

endom)

Listing C.11 predicates.rtmaude

sorok
Things to verify:

— Liveness: That the system keeps running
— Safety:
1] Given no failures, all sites will eventually contain the same entity state

2] Serializability: For any pair of transactions T1,T2 where T2
reads an entity E updated by T1 in EG: There is no other
transaction T3 who as updated E, and where T1 < T3 < T2 according to the transaction order of EG.

*kk )

sk ( Predicates )

(tomod PREDICATES—FOR—MODEL—CHECKING is
inc INIT—STATE .
inc TIMED—MODEL—CHECKER .

vars SID1 SID2 : Siteld .

var EG1 : EntityGroupld .

vars ES1 ES2 : EntitySet .

vars SYSTEM REST LOCALTRANS EGROUPS1 EGROUPS2 : Configuration .
var M : Msg .

var T : Time .

vars TLOG1 TLOG2 : LogEntryList .
var TID : TransId .

var GRAPH : SerGraph .

var LP : LogPosition .

var EGLP : EntGroupLogPosSet .




218 C Real-Time Maude Model of Megastore-CGC

op allTransFinished : —> Prop [ctor] .

eq { initTransactions REST } |= allTransFinished = false .

eq { < SID1: Site | localTransactions : < TID : Transaction | > LOCALTRANS > REST } |=
allTransFinished = false .

eq { dly(M, T) REST } |= allTransFinished = false .

eq { SYSTEM } |= allTransFinished = true [owise] .

op isSerializable : —> Prop [ctor] .
eq { < th: TransactionHistory | graph : GRAPH > REST } |= isSerializable = not hasCycle(GRAPH) .

op entityGroupsEqualOrInvalid : —> Prop [ctor] .
ceq { < SID1: Site | coordinator : eglp(EG1, LP) ; EGLP, entityGroups : < EG1 : EntityGroup |
entitiesState : ES1 > EGROUPS1 >
< SID2: Site | coordinator : eglp(EG1, LP) ; EGLP, entityGroups : < EG1 : EntityGroup |
entitiesState : ES2 > EGROUPS2 >
REST } |= entityGroupsEqual = false if ES1 =/=ES2.
eq { SYSTEM } |= entityGroupsEqualOrInvalid = true [owise] .

op transLogsEqualOrInvalid : —> Prop [ctor] .
ceq { < SID1: Site | coordinator : eglp(EG1, LP) ; EGLP, entityGroups : < EG1 : EntityGroup |
transactionLog : TLOG1 > EGROUPS1 >
< SID2: Site | coordinator : eglp(EG1, LP) ; EGLP, entityGroups : < EG1 : EntityGroup |
transactionLog : TLOG2 > EGROUPS2 >
REST } |= transLogsEqual = false if TLOG1 =/= TLOG2 .
eq { SYSTEM } |= transLogsEqualOrInvalid = true [owise] .

op entityGroupsEqual : —> Prop [ctor] .

ceq { < SID1: Site | entityGroups : < EG1 : EntityGroup | entitiesState : ES1 > EGROUPS1 >
< SID2: Site | entityGroups : < EG1 : EntityGroup | entitiesState : ES2 > EGROUPS2 >
REST } |= entityGroupsEqual = false if ES1 =/=ES2 .

eq { SYSTEM } |= entityGroupsEqual = true [owise] .

op transLogsEqual : —> Prop [ctor] .

ceq { < SID1: Site | entityGroups : < EG1 : EntityGroup | transactionLog : TLOG1 > EGROUPS1 >
< SID2: Site | entityGroups : < EG1 : EntityGroup | transactionLog : TLOG2 > EGROUPS2 >
REST } |= transLogsEqual = false if TLOG1 =/= TLOG2 .

eq { SYSTEM } |= transLogsEqual = true [owise] .

endtom)

Listing C.12 fault_injection.rtmaude

(tomod FAULT—INJECTION is
inc TIMED—BEHAVIOR .
inc MEGASTORE—SETUP .
inc UPDATES .
inc UPDATE—FAULT—HANDLERS .
inc NETWORK—MODEL .
inc CLIENT—INTERFACE .

vars SID SENDER THIS : Siteld .
var EG : EntityGroupId .
var TID : TransId .

var LP : LogPosition .

var LPL : LogPositionList .
var LE : LogEntry .

var LEL : LogEntryList .
var PN : Propnum .

var MC : MsgContent .

vars T T1 T2 : Time .

var M : Msg .




C Real-Time Maude Model of Megastore-CGC

var REST : Configuration .
var OBJECT : Object .

var 0 : 0id .

var OL : OperationList .

var CES : EntGroupLogPosSet .

op failed : Object —> Object [ctor frozen(1)] .

eq mte(failed(OBJECT)) = INF .
eq delta(failed(OBJECT), T) = failed(OBJECT) .

class MsgShark | start : Time, end : Time .
eq mte(< O : MsgShark | start : T1, end : T2 >) = T2.
eq delta(< O : MsgShark | start : T1, end : T2 >, T) =
< 0 : MsgShark | start : T1 monus T, end : T2 monus T > .
s Failure injection for modell checking s
op ttf : —> Time .

op ttr : —> Time .

msg siteFailure : Siteld —> Msg .
msg siteRepair : SiteId —> Msg .

rl [takeSiteDown] :

siteFailure(SID)
< SID : Site | >
=>

failed(< SID : Site | >)
dly(siteRepair(SID), ttr) .

rl [bringSiteUp] :
(siteRepair(SID))
failed(< SID : Site | >)
=>
< SID : Site | > .

crl [msgWhenSiteFailure] :
(msg MC from SENDER to SID)
failed(< SID : Site | >)
=>
failed(< SID : Site | >)
if not isInvalidateCoordinator(MC) .

rl [expireMsgShark] :
< 0 : MsgShark | end : 0 > => none .

rl [captureMessage] :

< 0 : MsgShark | start : 0 >

(dly((msg MC from SENDER to SID), T2))
=>

none .

op isInvalidateCoordinator : MsgContent —> Bool .

eq isInvalidateCoordinator(invalidateCoordinator(EG, LP)) = true .

eq isInvalidateCoordinator(MC) = false [owise] .

rl [newTrans] :
(newTrans(SID, TID, OL))
failed(< SID : Site | >)
=>
failed(< SID : Site | >) .

219




220 C Real-Time Maude Model of Megastore-CGC

rl [invalidateCoordinator] :
(msg invalidateCoordinator(EG, LP) from SENDER to THIS)
failed(< THIS : Site | coordinator : CES >)
=>
failed(< THIS : Site | coordinator : applyInvalidate(EG, LP, CES) >)
(uniCast invalidateConfirmed(EG, LP) from THIS to SENDER) .

endtom)

A test setup for model checking Megastore-CGC with five transactions.

Listing C.13 mc_cgc_five_transactions.rtmaude

in validation.rtmaude
in megastore_timing.rtmaude

(tomod WORKLOAD is
inc CLIENT—INTERFACE .
inc NETWORK—MODEL .
inc TESTSETUP—IDS .

vars SID SID' : Siteld .
eq possibleMsgDelays(SID, SID') = (30;80) .

op value : Nat —> EntityValue [ctor] .

op transStartTime : —> NatSet .
eq transStartTime = ( 180 ; 210 ) .

sox( Test transactions soks)
op initTransactions : —> NEConfiguration .

eq mte(initTransactions) =0 .

vars N1 N2 N3 N4 N5 N6 : Nat .
vars NS1 NS2 NS3 NS4 NS5 NS6 : NatSet .

crl [delayTransactons] :
initTransactions

=>
dly(newTrans(PARIS, T—L, cr(entity(EG1,0)) :: w(entity(EG1,0),v(3))), 150)
dly(newTrans(NEW—YORK, T—M, cr(entity(EG2,0)) :: w(entity(EG2,0),value(4))), 150)
dly(newTrans(PARIS, T—N, cr(entity(EG2,0)) :: w(entity(EG2,0),v(4))), 150)
dly(newTrans(NEW—YORK, T—R, cr(entity(EG1,0)) :: cr(entity(EG2,0)) :: w(entity(EG2,0), v(2))), N1)
dly(newTrans(PARIS, T—Q, cr(entity(EG1,0)) :: cr(entity(EG2,0)) :: w(entity(EG1,0), v(4))), N2)

if (N1 ; NS1) := transStartTime /\ (N2 ; NS2) := transStartTime .

endtom)

(tomod INIT—STATE is
inc TIME—DOMAIN .
inc UPDATES .
inc VALIDATION .
inc TRANSACTION—HISTORY .
inc CLIENT—FOR—MODEL—CHECKING .
inc MEGASTORE—TIMING .
inc NETWORK—MODEL .
inc TESTSETUP—IDS .
inc WORKLOAD .




C Real-Time Maude Model of Megastore-CGC 221

xx% ( For random generation sxx)
var SEED : Nat .
op rnd : —> 0id .

s#% (Simulation parameters )
——— Local reads
eq readDelay = 10 .

——— Local update cost
eq updateDelay = 100 .

——— Timeout for a Paxos—step
eq defTimeout = 500 .

——— Time for a proposal to expire — if no decision, invalidate coordinator
eq defPropExp = 500 .

sk ( Entity group ids sssk)
ops entitySetEGl—updated entitySetEG2—updated : —> EntitySet .
eq entitySetEGl—updated =
(entity(EG1,0) |—> (1pos(0) value(0))) ;
(entity(EG1,1) |—> (1pos(0) value(0))) .
eq entitySetEG2—updated =
(entity(EG2,0) |—> (1pos(0) value(0))) ;
(entity(EG2,1) |—> (1pos(0) value(0))) .

*aok( Sites k)
op orderSitesReplicas : —> EntityGroupReplicaSet .
eq orderSitesReplicas = (egr(LONDON, 0, 1pos(0)) ; egr(PARIS, 1, 1pos(0)) ; egr(NEW—YORK, 2, 1pos(0))) .

op eglReplicas : —> EntityGroupReplicaSet .
eq eglReplicas = (egr(LONDON, 0, 1pos(0)) ; egr(PARIS, 1, 1pos(0)) ; egr(NEW—YORK, 2, 1pos(0))) .

op eg2Replicas : —> EntityGroupReplicaSet .
eq eg2Replicas = (egr(PARIS, 0, 1pos(0)) ; egr(NEW—YORK, 1, 1pos(0))) .

op entitySetOrderSites : —> EntitySet .

eq entitySetOrderSites =
((entity(OrderSites,1) |[—> (1pos(0) (PARIS !> EG1 ; EG2))) ;
(entity(OrderSites,2) |—> (1lpos(0) (NEW—YORK !> OrderSites)))) .

op entityGroupReplicaSets : —> Configuration .
eq entityGroupReplicaSets =
< OrderSites : EntityGroup | entitiesState : entitySetOrderSites, replicas : orderSitesReplicas,
proposals : emptyProposalSet,
pendingWrites : emptyPWList,
transactionlog : (initTrans lpos(0) PARIS emptyOpList) > .

ops entityGroupsLondon entityGroupsParis entityGroupsNewYork : —> Configuration .
eq entityGroupsLondon =
entityGroupReplicaSets
< EG1 : EntityGroup | entitiesState : entitySetEGl—updated, replicas : eglReplicas,
proposals : emptyProposalSet,
pendingWrites : emptyPWList,
transactionlog : (initTrans lpos(0) PARIS emptyOpList) > .
eq entityGroupsParis =
entityGroupReplicaSets
< EG1 : EntityGroup | entitiesState : entitySetEGl—updated, replicas : eglReplicas,
proposals : emptyProposalSet,
pendingWrites : emptyPWList,
transactionLog : (initTrans lpos(0) PARIS emptyOpList) >
< EG2 : EntityGroup | entitiesState : entitySetEG2—updated, replicas : eg2Replicas,




222 C Real-Time Maude Model of Megastore-CGC

proposals : emptyProposalSet,
pendingWrites : emptyPWList,
transactionlog : (initTrans lpos(0) NEW—YORK emptyOpList) > .
eq entityGroupsNewYork =
entityGroupReplicaSets
< EG1 : EntityGroup | entitiesState : entitySetEGl—updated, replicas : eglReplicas,
proposals : emptyProposalSet,
pendingWrites : emptyPWList,
transactionlog : (initTrans lpos(0) PARIS emptyOpList) >
< EG2 : EntityGroup | entitiesState : entitySetEG2—updated, replicas : eg2Replicas,
proposals : emptyProposalSet,
pendingWrites : emptyPWList,
transactionLog : (initTrans lpos(0) NEW—YORK emptyOpList) > .

op initSites : —> Configuration .
eq initSites =
< PARIS : Site | coordinator : eglp(EG1, 1pos(0)) ; eglp(EG2, 1pos(0)) ; eglp(OrderSites, 1pos(0)),
awaitingOrder : noAwaitingOrderSet, seqGen : 0,
egOrderings : ((entity(OrderSites,1) — emptyOidSet |>> ((initTrans EG1 lpos(0) false) ; (
initTrans EG2 1pos(0) false))) ;
(entity(OrderSites,2)— emptyOidSet |>> (initTrans OrderSites lpos
(0) false))),
entityGroups : entityGroupsParis, localTransactions : none >
< LONDON : Site | coordinator : eglp(EG1, 1pos(0)) ; eglp(OrderSites, 1pos(0)),
awaitingOrder : noAwaitingOrderSet, seqGen : 0,
entityGroups : entityGroupsLondon, localTransactions : none,
egOrderings : ((entity(OrderSites,1) — emptyOidSet |>> (initTrans EG1 lpos(0) false)) ;
(entity(OrderSites,2) — empty0idSet |>> (initTrans OrderSites lpos
(0) false))) >
< NEW—YORK : Site | coordinator : eglp(EG1, 1pos(0)) ; eglp(EG2, 1pos(0)) ; eglp(OrderSites, 1pos(0))

I’
awaitingOrder : noAwaitingOrderSet, seqGen : 0,
egOrderings : ((entity(OrderSites,1) — empty0idSet |>> ((initTrans EG1 lpos(0) false) ; (
initTrans EG2 lpos(0) false))) ;
(entity(OrderSites,2)— emptyOidSet |>> (initTrans OrderSites lpos
(0) false))),
entityGroups : entityGroupsNewYork, localTransactions : none > .

op th: —> 0id .
op initTransHist : —> Configuration .
eq initTransHist =
< th : TransactionHistory | graph : emptyGraph,
readers : emptyTransOpSet,

writers : op(initTrans, entity(EG1,0), lpos

(EG1,0) (0))
op(initTrans, entity(EG1,1), 1pos(0)) ;
op(initTrans, entity(EG2,0), 1pos(0)) ;
op(initTrans, entity(EG2,1), 1pos(0)) > .

op initMegastore : —> GlobalSystem .
eq initMegastore =

initSites
initTransactions
initTransHist

endtom)




