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1 Introduction

In epidemiology, cohort studies are often used to investigate relationships between exposure
and outcome. The subjects in the cohort are followed from inclusion in study to time of event
or censoring. Fairly inexpensive covariate information can often be obtained for all cohort
members from registries containing standard measurements like for instance height, weight or
BMLI, or from questionnaires. However, in many situations such information is not sufficient to
carry out a particular study and additional information must be collected. This can be expensive,
time consuming and even logistically unfeasible for large cohorts. An alternative is to sample a
subset of the cohort and collect covariate information only from the sampled subjects.

The classical case-control design (Breslow, 1996), which has been used by epidemiologists
since the 19th century (Lilienfeld and Lilienfeld, 1979), is a popular and natural way to sample a
subset from a larger population. Subjects experiencing the event of interest, referred to as cases,
and controls, which are subjects not experiencing the event, are sampled separately, usually with
a higher sampling fraction for cases than for controls. The main underlying idea is that a case
is more informative than a control when the disease is rare. Therefore, including many or
all of them, but only a fraction of the subjects not experiencing the event is a reasonable and
efficient strategy. Sometimes the controls are sampled by simple random sampling, but often
more sophisticated sampling designs which involve stratification or matching are adopted.

The standard unmatched case-control design does not incorporate time. Time is, however, often
important since the incidence of many diseases increase with time (age). Two designs related to
the standard case-control which incorporate the time aspect are the nested case-control (NCC)
(Thomas, 1977) and case-cohort (CC) (Prentice, 1986; Kalbfleisch and Lawless, 1988) designs.
With a nested case-control design, at each event time m subjects who have not yet experienced
the event is sampled from the subjects at risk, and we say that the controls are matched on time
or matched on at risk status. With a case-cohort design, a subcohort is sampled at the outset of
the study and used as control group at all event times.

The nested case-control design has traditionally been more popular than the case-cohort design
among epidemiologists. The reason for this might be that the NCC-design has been considered
easier to analyze. However, the case-cohort design has the advantage that it is straightforward
to use the same controls for a different endpoint, since the subcohort is a random sample from
the cohort. In contrast, it has traditionally been considered impossible to reuse controls from a
NCC-design since the cases and controls are matched on at risk status and potentially additional
factors.

However, Samuelsen (1997) proposed a method for breaking the matching which allows NCC-
data to be analyzed as CC-data. This method involves calculating the probability of ever being
sampled as a control, and then weighting the controls with the inverse sampling probability,
referred to as inverse probability weighting (IPW). This has later been discussed by a number



1. INTRODUCTION

of authors (Suissa et al., 1998; Kim and De Gruttola, 1999; Chen, 2001; Samuelsen et al., 2007;
Saarela et al., 2008; Salim et al., 2009; Cai and Zheng, 2012; Chen et al., 2012; Salim et al.,
2012; Pugh et al., Unpublished report).

Reuse of controls is useful when two or more endpoints are analyzed within the same or over-
lapping cohorts, because the controls for one endpoint can be used as controls for the other
endpoint. Another situation where reuse of controls can increase efficiency is when analyses of
subsets of original cases are carried out. Then, with the traditional method of Thomas (1977),
only the controls sampled for the cases experiencing the sub-endpoint can be included in the
analysis, ignoring all other sampled controls. Unlike with an IPW analysis, all sampled controls
can be used as controls for the cases in question, and this can sometimes increase the number
of controls drastically. Another advantage of the IPW analysis is that the time scale can be cho-
sen after the controls have been sampled, while for the traditional method the time scale must
be determined before sampling the controls, and cannot later be changed. Moreover, it allows
for other models than proportional hazards models, and might be considered somewhat more
general than the traditional method.

Alternatives to IPW for increasing the efficiency in NCC-designs have been suggested. Scheike
and Juul (2004); Saarela et al. (2008) introduced full likelihood methods, where covariates only
known for cases and controls were regarded as missing for non-sampled subjects. A somewhat
similar idea was introduced by Keogh and White (2013), they however, handled the missingness
by multiple imputation.

A problem with nested case-control designs in connection to IPW is additional matching. Often
the controls are matched to the cases on additional factors, and this complicates the estima-
tion of sampling probabilities. Additionally, the matching variables are usually confounders
and breaking the matching will introduce confounding if the matching variables are not prop-
erly adjusted for. Some authors have used IPW in situations with additional matching (Salim
et al., 2009; Cai and Zheng, 2012; Salim et al., 2012), however, they do not discuss the extra
complexities this introduce.

A number of authors have used the NCC-design in a variety of fields. A few examples are
Hultman et al. (1999) who studied the risk of schizophrenia and psychosis in relation to preg-
nancy and perinatal characteristics in a matched nested case-control study and Cnattingius et al.
(1999) looked at preterm birth and the risk of anorexia nervosa. Floderus et al. (1993) and
Tynes and Haldorsen (1997) studied exposure to electromagnetic fields and leukemia and brain
tumors while Grimsrud et al. (2002) investigated the association between nickel exposure and
risk of lung cancer. Other examples include Parsonnet et al. (1991); @yen et al. (1997); Han-
kinson et al. (1998); Juul et al. (2002); Levine et al. (2004); Pischon et al. (2004); Dahm et al.
(2010); Clendenen et al. (2011); Meyer et al. (2013). In all of these studies truncation time,
event/censoring time and potential matching variables are known for all cohort members, and
in 10 of the studies there were either multiple endpoints, or sub-analyses were performed on
smaller parts of the sampled data.

The intention of this thesis was to explore methods for reusing controls with emphasize on IPW,
and then mainly with regard to additional matching. When I started this work there were only
one paper (Salim et al., 2009) mentioning IPW with additionally matched data, as far as I know.
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Since additional matching will complicate the estimation of weights and the analyses itself, and
since matching on additional factors is often performed, a more thorough evaluation of IPW and
additional matching was needed. A secondary goal was to introduce IPW to epidemiologists. It
has been over 15 years since the first paper (Samuelsen, 1997) on IPW for NCC was published,
however, it does not seem that epidemiologists yet have realized the potential. A reason for why
the epidemiologists have not yet picked up on it could be the lack of existing software to carry
out such analyses, thus weight estimation must be carried out "manually" in each study. A step
in the right direction could therefore be to develop software that more automatically estimates
weights and carries out weighted Cox-regressions.

The outline of the thesis is as follows: Important epidemiological designs are discussed in
Section 2, particularly the nested case-control design. I also mention additional matching and
multiple outcomes. The aims of the thesis are given in Section 3, while inverse probability
weighting, both in general and in connection to the NCC-design is discussed in Section 4,
together with weight estimation and calibration of weights. Section 5 presents some promising
alternatives to IPW. A summary of the papers is given in Section 6, while Section 7 contains a
final discussion of our findings and indications of possibilities for further work.

2 Epidemiological designs

2.1 Cohort design and analysis

A cohort is a well-defined group of study subjects, for instance all individuals born in Norway
from 1900 to 1999, or all subjects participating in a specific survey. A cohort study is often
referred to as a prospective study and the conceptual framework is to follow the members of
the cohort forward in time for occurrence of disease. Some cohort members will be exposed to
the risk/protective factor of interest, while other will remain unexposed. Some exposures are
time-invariant for instance sex or ethnicity, while other may change over time e.g. smoking
habits or physical activity. At the end of follow-up, how exposure influenced time until disease
can then be analyzed by contrasting the unexposed subjects with the exposed subjects.

In survival analysis, the time from start of study to the event of interest is in focus. Let 7; be time
to event for subject i, however, all subjects may not experience the event during follow-up, and
are instead censored at ¢;. The censoring time is usually either end of follow-up, which may or
may not be the same for all subjects, or the time when the subject was lost to follow-up for other
reasons, such as death, emigration or withdrawal from study. The observed follow-up time #; for
subject i is therefore the minimum of the censoring time and the event time. Often, the subjects
are not followed from time zero, but from some later time v;. This may for instance happen if
age is used as time scale, then v; will be the age of subject i when it was included in the study.
This is referred to as left-truncation or delayed entry and v; as the left-truncation time.

Since the time until disease is of interest in survival analysis, a natural quantity to model is the
hazard rate h(t), which is defined as the instantaneous probability of experiencing the event at
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time ¢ given that the event has not happened up to that time. Different models for the hazard rate
have been suggested (Marinussen and Scheike, 2006; Aalen et al., 2008), but the most famous
is the proportional hazards model (Cox, 1972)

hi(t[xi) = ho(t) exp(B'xi).

Here h(r) is the baseline hazard, the hazard when all covariates equals zero, X; = [X;1,. .., X;p]
is the vector of covariates and B = [Bi,..., B,] are log-hazard ratios. In this model the baseline
hazard is left unspecified, and it is therefore referred to as semi-parametric. It is, however, pos-
sible to assume a parametric specification of hg(z), for instance with an exponential or Weibull
distribution for the survival times. A more flexible approach is to change to the cumulative log
hazard-scale and model the baseline hazard with spline functions (Royston and Parmar, 2002).
In all these models, the covariates act on the hazard in a multiplicative way, and the hazard rates
are restricted to be proportional (except for the Royston-Parmar model). Aalen (1980) proposed
a non-parametric additive model for the hazard rate

hi(t[xi) = ho(t) + 71 (£)xin () + ...+ ¥p () xip(t)

where the parameters Y are arbitrary functions of time. Other flexible models for the hazard
have been discussed by for instance Marinussen and Scheike (2006).

Cox’s proportional hazards model (Cox, 1972) will be assumed throughout the thesis. The
estimation of regression coefficients is based on a partial likelihood

L(B) = exp(B'x;)

jew Lica, xp(B'xi)’

Here 2 is the collection of all cases and % j is the risk set at time ¢;, thus R ' includes all subjects
at risk just before ¢;. The partial likelihood has similar properties as an ordinary likelihood, thus
ordinary maximum likelihood theory can be applied to obtain estimates and standard errors
(Andersen and Gill, 1982).

2.2 Sampling designs

In situations with rare events, one may need a very large cohort to obtain a sufficient number
of cases. Obtaining (additional) covariate information for all cohort members can therefore, as
mentioned above, be impractical, and performing cohort studies may be too ambitious. Another
situation where full cohort analyses are undesirable is in studies using biological material, for
instance blood samples stored in biobanks. Although such material usually is collected for the
entire cohort, it is often intended for use in a number of different studies and it may therefore
be difficult to access it for all cohort members. A way around such problems is to base the
analyses on only a subset of the cohort. This is often performed by including all cases and
sampling a subset of non-cases who act as controls. With the traditional case-control design,
the cases are identified at end of follow-up and one must therefore look back in time to collect
exposure information, hence the case-control design is often referred to as retrospective. The
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case-cohort and nested case-control designs, see Borgan and Samuelsen (2013) for an overview,
try to overcome this problem by collecting exposure information during follow-up.

2.2.1 Case-control designs

Breslow (1996) stated that

. my belief [is] that the contributions made by statisticians to the development of
case-control methodology over the past 50 years have been among the most impor-
tant of the many contributions they have made to public health and biomedicine.

Thus the case-control design and successors have been, and still are, very important in epi-
demiology. Outcome dependent sampling has also been utilized in econometrics (Manski and
Lerman, 1977; Cosslett, 1981) and there it is often referred to as choice-based sampling. The
econometricians goal when utilizing such designs is often to investigate how some explanatory
variables influence the probabilities of making specific choices, and for rare choices it may be
simpler to sample choices than to sample decision makers, hence the name.

A case-control design is a general term for designs where cases and controls are sampled sep-
arately. However, it is also a more specific group of designs which do not take into account
different length of follow-up. With this design, exposure values for a group of subjects having
the disease in question, referred to as cases are compared to the exposure values of a group of
subjects not having the disease, referred to as controls. The control group can be a completely
random sample from the cohort, or it may be a m:1 matched design where each case have m
controls matched on some background variables. It is not required that the cases and controls
come from a fully defined cohort, however, they should be comparable on important factors and
should also be representative of the population for which one wants to draw conclusions.

Due to the retrospective nature of starting with the effect (disease) and look for the cause (ex-
posure), it was for a long time considered that the information from the cases and controls did
not contain relevant information about the disease rate, which was the parameter of interest.
However, Cornfield (1951) showed that the exposure odds ratio for cases and controls equals
the disease odds ratio for exposed and unexposed. And further, when the disease in question is
rare, the exposure odds ratio approximates the relative risk. Thus, a cohort analysis and the cor-
responding case-control analysis should yield approximately the same result when the disease
is rare. Mantel and Haenszel (1959) put it down in words with the famous quote

A primary goal is to reach the same conclusions in a retrospective study as would
have been obtained from a forward study, if one had been done.

In the same paper a method for controlling for confounding in 2x2 tables, by stratifying into a
number of sub-tables, was introduced.

It seems that the term "rate" was being used in a somewhat wider sense by for instance Cornfield
(1951) than what is common today. He argues that the proportion of smoking subjects in the
general population having cancer of the lung, is the proportion of smoking subjects among
those with cancer of the lung in the sampled data multiplied by the proportion of the general
population who have cancer of the lung during a specified time interval, and he states that this
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proportion is a rate. The time aspect is however only incorporated through the information from
the general population and not from the sampled data. Thus, when considering the ratio of such
proportions or rates, the contribution from the general population cancels and the time aspect is
thereby no longer incorporated.

Today most case-control studies are analyzed with logistic regression and confounding is ad-
justed for by including the confounders in the regression model. This methodological devel-
opment for unmatched studies was initiated in the paper by Cornfield et al. (1960). Further
developments were provided by Cox (1966), Day and Kerridge (1967), Anderson (1972) un-
til Prentice and Pyke (1979) finally demonstrated that the estimates from a logistic regression
model for unmatched case-control data yields the desired estimates, and that the usual covari-
ance matrix for logistic regression is valid.

For matched case-control studies Breslow et al. (1978), see also Prentice and Breslow (1978)
and Hosmer and Lemeshow (1989, Chap. 7), developed a conditional logistic regression model
which coincides with the traditional partial likelihood for NCC-data.

2.2.2 Nested case-control designs

In 1977, Thomas noted that most of the computational cost of carrying out a Cox-regression in
a full cohort was connected to the censored subjects. To simplify the computational burden, he
suggested taking a sample of each risk set. This has later become known as the nested case-
control design. The important difference between this design and the traditional case-control
design is that the controls are sampled from the risk set of each case. Thus the controls are
required to be event free at the time the case experience the event and we say that the cases and
controls are matched on time, or on at risk status. Usually the same number of controls, m, are
sampled for each case, however, time-varying number of controls m(t) are allowed. In addition
to at risk status, the controls can be matched on other factors, for instance year of birth, sex or
county of residence. The controls are sampled independently at each event time, thus a subject
can be sampled as a control for multiple cases. A subject can also be sampled as a control and
later itself become a case. These features are illustrated in Figure 2.1.

Thomas (1977) suggested maximizing a partial likelihood similar to the standard Cox-likelihood

LB)=11 _op(Px) @2.1)

Ly exp(Bx)

to obtain regression coefficients, and Oakes (1981) gave an argument for (2.1) being a partial
likelihood. In (2.1) Z; is the sampled risk set at time ¢;, hence the case at time ¢; and its sampled
controls. The vector x; consists of the main exposure and adjustment variables. In practice, the
estimation is carried out by a stratified Cox-regression, where the stratification is with respect
to sampled risk sets. Maximizing (2.1) is what I will refer to as the traditional estimator for
NCC-data. Note that time varying covariates are easily handled with this likelihood since the
covariate values are only required to be known at the event time of the case in the risk set.

It took about 15 years from Thomas suggested the nested case-control design until the theo-
retical properties were fully understood. Goldstein and Langholz (1992); Borgan et al. (1995)
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Figure 2.1: Example of nested case-control sampling with one control per case from a hypothetical
cohort of 7 subjects. Each line represent the follow-up time for one subject. The beginning of the line is
the left-truncation time and the end of the line is either the event time or the censoring time. Cases are
represented by dots (e), possible controls by bars (|) and sampled controls with circles (o).

proved that inference could be based on large sample theory for the partial likelihood. Hence,
the estimator is approximately normally distributed and the variance can be obtained from the
inverse of the information matrix.

The efficiency of a nested case-control design is approximately m/(m+ 1). When there is
only one covariate and the regression coefficient equals zero, this holds exactly (Goldstein and
Langholz, 1992). However, the efficiency may in general be lower and computations in Bor-
gan and Olsen (1999) suggest that small fractions of exposed subjects and large relative risks
decrease the efficiency.

In the traditional NCC-design all cases are included and the controls are sampled randomly with
replacement from the (matched) risk sets of the cases. However, Borgan et al. (1995); Langholz
and Goldstein (1996) have shown how more general sampling schemes can be analyzed by
applying appropriate sampling weights, w(z;) to a partial likelihood on the form

L) =1 exp(B'x;)w;(t))

_ 22
ico Liew,; exp(B'xi)wi(t;) =2

An application of this is counter-matching (Langholz and Borgan, 1995), which is a stratified
sampling design for NCC-data. The idea is to stratify the covariate of interest, or a surrogate
variable, in say L strata and sample m; controls from the n; subjects at risk in strata /, except
for the strata which the case belong to, where m; — 1 controls are sampled. The m;’s may, but
need not, be chosen proportional to the size of the strata. Sampling the controls in this way will
(approximately) ensure a given covariate distribution within each sampled risk set, thus possibly
increasing the variation of the exposure distribution, which may increase efficiency. Counter-
matching uses all cohort information on the stratification variable, thus if the only covariate in
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the partial likelihood is the stratification variable, one can show that (2.2) is the corresponding
cohort likelihood (Langholz and Borgan, 1995).

It is interesting to note that it is not clear who coined the term "nested case-control design". The
term is sometimes used by epidemiologists when referring to any case-control design nested
within a cohort, it has therefore proven difficult to establish the first use of the term in connection
to Thomas’ design. The first time the term appears in the Web of Science database is in an
abstract to a conference for the Society for Epidemiological Research (Bond and Flores, 1984).
However, they do not define the term in the abstract and from a personal communication with
Bond it appears that the use of the term was in a broader sense. The first paper I could find that
refers to Thomas (1977) and also uses term "nested case-control” is Lubin (1986). He, however,
does not define the term either, which leads me to believe that design was not named by him.
We tried asking Bryan Langholz, who did not know, and as a last resort I contacted Duncan
Thomas, as I thought that he ought to know. From a person communication with him it appears
that he, however, does not, and that he actually has been doing some digging himself to find it
out.

2.2.3 Case-cohort designs

About 10 years after Thomas first suggested the nested case-control design, the case-cohort
design was proposed (Prentice, 1986; Kalbfleisch and Lawless, 1988). It differs from the NCC-
design in how the controls are sampled, instead of sampling from the risk sets, a subcohort is
sampled at the outset of the study and used as control population at all event times. Covariate
information is obtained for the subjects in the subcohort and for the cases occurring outside.
Sampling a subcohort at the outset of the study is advantageous since it can be used as control
population for different types of cases, and also because asserting covariate values can begin at
start of follow-up.

Different estimation procedures have been put forward. Prentice (1986) suggested only includ-
ing the cases outside the subcohort at their event time, thus maximizing a pseudo-likelihood on
the form

!

L(B) = Lﬁxﬂ, (2.3)

i Lic.7,exp(B'xi)
where .; contains the subjects at risk in the subcohort at time ¢; including the case at ¢; if it
did not belong to the subcohort. The inference for (2.3) was later justified by Self and Prentice
(1988). Note that each term in the product in (2.3) is on the same form as the terms in (2.1),
however since the same controls are used repeatedly, the terms are correlated (Langholz and
Thomas, 1991) and (2.3) is therefore not a partial likelihood.

Another possibility is to include all cases whenever they are at risk. The estimation can then be
based on a weighted partial likelihood (Kalbfleisch and Lawless, 1988)

L(ﬁ) - H M 2.4)

jew Liesexp(Bxi)wi’



2.3. Additional matching

Here the <73’ is the collection of subjects in the subcohort and all cases outside the subcohort
at risk at time #;. The weights are the inverse sampling probabilities w; = 1/p;i where p; is
the probability for subject i of being included in the subcohort. This probability is 1 for cases,
when we choose to include all of them. For the non-failures Chen and Lo (1999) and Borgan
et al. (2000) suggested, to use the fraction of non-failures in the subcohort compared to all non-
failures in the cohort. See Cologne et al. (2012) for a review of existing estimation methods for
the case-cohort design.

Since the subcohort is used repeatedly at each event time, the likelihood contributions are cor-
related and the inverse of the information matrix cannot be used to estimate the variance. A
simple solution is to use robust variances (Lin and Ying, 1993; Barlow, 1994). An alternative is
the plug-in estimators (Therneau and Li, 1999; Langholz and Jiao, 2007).

There are often some covariates which are known for all cohort members. If some of these
fully observed variables are correlated with the main exposure, this can be utilized to increase
the efficiency by stratified sampling (Borgan et al., 2000). The idea is to stratify the cohort
in, say L strata, according to the fully observed variables and sample separate subcohorts from
each stratum. The total subcohort is then constructed by combining the separate subcohorts,
and this may increase the variation of the exposure distribution, which in turn may increase the
efficiency compared to simple random sampling. The estimation can for instance be based on
Estimator II in Borgan et al. (2000); Samuelsen et al. (2007) which uses (2.4) with modified
weights. The weights for subjects belonging to stratum [ are estimated as the number of non-
failures in the stratum in the cohort divided by the number of sampled subjects in the given
stratum. The strata are redefined so that the cases make up their own stratum with sampling
probability 1. In this case the robust variance estimator can be conservative and a modified
plug-in variance estimator (Langholz and Jiao, 2007; Samuelsen et al., 2007) should be used
instead.

2.3 Additional matching

A common way of handling confounding is to adjust the estimate of interest for the confounders
by including them in the regression model. Another approach is to only sample controls that
have the same or similar value as the case on one or more variables. This is known as additional
matching, and is often performed with NCC-data.

I will divide the matching criteria into two main methods; category matching and caliper match-
ing (Cochran and Rubin, 1973). With category matching, the matching variable is usually cate-
gorical (with a fairly low number of levels) and the cases and controls must match exactly on the
given variable. Examples of this can be sex or county of residence. With caliper matching, the
control’s matching variable must lie within a specified interval around the case’s matching vari-
able to be considered as a potential control. This type of matching criterion is often preferred
when the matching variable is continuous or has a large number of ordered levels. Examples of
such matching can be date of birth £ 12 months or month of blood sampling £3 months.

With the traditional estimator for NCC-data, the sum in the denominator of (2.1) is over the
sampled risk set, thus the subjects in each risk set will have equal, or similar values of the

9



2. EPIDEMIOLOGICAL DESIGNS

matching variables. With category matching, the matching variables do therefore not need to
be included in the regression model since their contribution cancels in (2.1). The matching
variables are often also ignored with caliper matching, hence the estimation is usually carried
out as if no matching had been applied. However, disregarding the matching variables with
caliper matching can yield biased estimates if the confounding effect is strong, and the matching
intervals are too wide to fully capture the confounding.

2.4 Multiple outcomes

Sometimes more than one endpoint is of interest in a study. It may be planned on beforehand
to study different endpoints, or retrospectively one wants to (re-)use the sampled data for other
types of events or sub-endpoints. In situations with multiple endpoints and nested case-control
data, being able to utilize all sampled controls through IPW may increase efficiency.

Different "types" of multiple outcomes occur in different situations. When two or more mu-
tually exclusive events are of interest, the result is a competing risks situation, Figure 2.2. An
example of this can be death from cancer and death from cardiovascular diseases.

In many situations, the main endpoint can be divided into meaningful sub-groups and separate
analyses of each sub-endpoint can be of interest. It could for instance be informative to analyze
metastatic and non-metastatic cancer separately, or divide cardiovascular disease into ischaemic
heart disease and stroke. Such sub-endpoints can be seen as a special type of competing risks
situations and utilizing all sampled controls when analyzing each endpoint is desirable.

Disease 1

Disease 2

Healthy

Disease k

Figure 2.2: Competing risks.

A somewhat different multiple events situation I came across in Paper II and III is something
we chose to call "subsequent events", Figure 2.3. In such situations a second, or subsequent,
event can only happen after the first event has occurred. The example from Paper II and III
is incidence and death from prostate cancer. Death from prostate cancer cannot occur unless
the subjects developed prostate cancer at an earlier point in time. When considering the sub-
sequent endpoint in Paper II and III, we analyzed the time from inclusion in study to time at
death or censoring, and used the already sampled controls for the incident cases that also died
from prostate cancer as controls. These controls are sampled at the time the cases experience
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2.4. Multiple outcomes

prostate cancer, thus at an earlier point in time than the event of interest. This is not problematic
with IPW analyses since the matching between cases and controls is broken, thus the time of
sampling is irrelevant. We argued that it also will be valid for the traditional estimator as long as
the controls do not change their behavior in any way after they have been sampled as controls.
Another potential problem with the traditional estimator when using controls sampled before
the cases experienced the event, is that some controls may already have been censored at the
event time of their case. Those controls are of course excluded, and it can therefore be viewed
as a situation with time dependent number of controls.

’ - - - b = =~ ~

A S
s \

. v
Healthy ]—)[ Disease 1 ]—»[ Disease 2

Figure 2.3: Subsequent events.

Another situation where IPW can be advantageous is when cases and controls are stratified with
respect to a background covariate into sub-groups, and separate analyses within each stratum
are performed. For instance in a previous analysis of the vitamin D and prostate cancer data
(Meyer et al., 2013) it was considered reasonable to stratify the cases and controls into season
of blood sampling (e.g. winter, spring, summer and autumn), since it is well known that sun
exposure influences the vitamin D levels, and the potential for sun exposure varies with season
in a country like Norway. Even though the controls were matched to the cases on date of blood
sampling, the matching was not close enough to prevent some case-control pairs to be separated
into different strata. With the traditional estimator, only the case-control pairs where both the
case and the control fall into the same strata will contribute to the analysis. With IPW on the
other hand, case-control pairs can be separated but still contribute in their respective strata.

The common feature of multiple endpoints situations is that the traditional estimator can only
utilize controls matched to the cases in question. Therefore, controls with fully available covari-
ate information may have to be disregarded. For instance in competing risks situations; controls
for competing endpoints cannot be utilized. And in subsequent events situations, only the con-
trols for the initial cases that also experience the subsequent event can be included. Excluding
information will generally increase the uncertainty and it is therefore advantageous to be able to
utilize all sampled controls in every analysis. The IPW method allow for breaking the matching
and does therefore permit such use of controls, which in turn may increase the efficiency of the
NCC-design.

I will in the following allow for more than one type of endpoint in the cohort by assuming
a competing risks type of situation, and I will assume outcome specific proportional hazards
models for each type of event k,k = 1,...,K. The model for each endpoint is then on the same
form as in a single event situation, i.e. the cause specific hazard for cause k is given by

hi(1]x;) = hox(t) exp(Byx;)
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where Aoy, is the cause specific baseline hazard and By = (B, .- -, ,ka] are the cause specific
log-hazard ratios. The estimation of the regression coefficients connected to the k—th endpoint
can therefore be based on maximizing

L(B) =[] _owlBix) 2.5)

je7, Yied; exp(Byxi)

Here Z; consists of the cases of type k. The (2.5) is the likelihood for cohort data, but the same
argument apply to NCC-data and the likelihood is given by substituting % with Z.

The competing risks and subsequent event situations are simple and transparent situations. The
picture might however be much more complex, for instance with combinations of competing
risks and subsequent events, Figure 2.4. In such situations, the simple approach by carrying
out one Cox-regression for each endpoint is probably too simplistic for the problem at hand.
However, using all sampled controls for the analyses may still be advantageous. An example of
a situation as in Figure 2.4 can be overweight (Disease 1), cardiovascular diseases (Disease 2)
and death. Overweight may lead to cardiovascular diseases which might lead to death. Subjects
might however experience cardiovascular diseases without being obese and obesity might lead
to death through other diseases than cardiovascular diseases.

Healthy Disease 2

Figure 2.4: Simple example of a more complex situation.

3 Aims of the thesis

The overall topic of this thesis has been reuse of controls in nested case-control designs with
a special focus on inverse probability weighting. The aim has been twofold; investigating the
properties of the weighted partial likelihood estimator, especially in settings with additional
matching, and try to make inverse probability weighting in nested case-control designs more
accessible for epidemiologists.

For the first aim; the experience with IPW is yet fairly limited and gaining more insight through
data examples is important. Multiple endpoints have been central since the potential for ef-
ficiency gain is larger in such situations. In the first paper we considered competing risks

12



situations and compared IPW with other alternatives for reuse of controls, namely maximum
likelihood and the survey sampling technique calibration. A main focus has, however, been
on additional matching since NCC-studies often are matched on additional factors. Looking
into how the weights should be estimated in situations with additional matching, how they are
affected by incorporating this additional matching and how this influence the final hazard ra-
tios and estimated standard errors have been central. Another important aspect has been how
the matching variables should be handled in the Cox-regression. Since the initial matching is
broken with IPW, somehow including the matching variables in the regression seems intuitively
important. These issues have not previously been carefully discussed by authors performing
IPW with matched NCC-data.

The second goal has been to make it more appealing for practitioners i.e. epidemiologists to
utilize the advantages of IPW. A large part of all conducted NCC-studies are carried out by epi-
demiologists, thus increasing their awareness of an alternative method for analyzing such stud-
ies and demonstrating that sometimes large efficiency improvement can be obtained, seemed
relevant. IPW analyses require some programming to obtain sampling probabilities and also
some reorganizing of data, which might prevent epidemiologist from utilizing it. Therefore,
having a more automatic estimation procedure is desirable, and developing a "simple-to-use"
R-package with similar syntax as the standard coxph-function for analyzing proportional haz-
ards models, has been a goal.

4 Methodology

4.1 Inverse probability weighting

Weighting with inverse sampling probabilities originate from survey sampling and was origi-
nally used to obtain totals, means or other quantities of interest in a population. Hansen and
Hurwitz (1943) appear to be the first to formally consider this possibility for sampling with
replacement with unequal probability, and Horvitz and Thompson (1952) later generalized the
idea to sampling without replacement.

The idea behind inverse probability weighting is that each sampled subject should represent
a number of non-sampled subjects in the population. If all subjects are equally likely to be
sampled, each sampled subject should represent equally many in the population. However, if
some "group" of subjects is less likely to be sampled i.e. some subjects are sampled with smaller
probability than the rest, these subjects should represent more population subjects, since those
subjects likely are under-represented in the sample.

Let . be the set of sampled subjects, which in a nested case-control design will be cases and
sampled controls. And further let y; be a variable only known for the subjects in .%, and O; the
sampling indicator. We are interested in an estimate of the population mean of y; which can be
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4. METHODOLOGY

obtained with the Horvitz-Thompson (H-T) estimator

A 1 Z R 1 i 0 Vi
YH-T N,'Ey/ iVi N,‘:] lpi
with w; being the inverse sampling probability of subject i, and N the population size. The
Horvitz-Thompson estimator is not connected to a specific sampling design, and is therefore
very general. Regardless of how the subjects are sampled, as long as the sampling probabilities
are known, the H-T estimator is unbiased since E[O;] = p;. It may, however, have a huge
variance and is therefore not always a good estimator for a population mean or total (Basu,
1988, Chap. XII) i.e. Basu’s elephants, which is an example of estimating the total weight of
circus elephants illustrating the pitfalls of the H-T estimator. It is known among survey samplers
that in order to use the H-T estimator the y;/p; should be approximately constant for all i, thus
y and p should be positively correlated and y and w negatively correlated. In such situations,
the variance of the H-T estimator does not tend to be too large. If, however, y and p are not
positively correlated, a large y-value could be weighted with the inverse of a small p, and this
one observation may dominate the estimated mean.

To account for the unequal sampling fractions among cases and the rest of the subcohort in
case-cohort designs, Kalbfleisch and Lawless (1988) suggested to maximize a weighted partial
likelihood (2.4). This can be seen as an application of the Horvitz-Thompson estimator where
the likelihood contributions are weighted with inverse sampling probabilities.

In a nested case-control study the controls are matched to the cases on follow-up time and
potentially additional factors. In addition, usually all cases, while only a fraction of the subjects
not experiencing the event, are sampled. Due to this, the NCC-data are not a random sample
from the cohort, hence breaking the matching is not trivial.

To account for the non-random sample, inverse probability weighting can be applied also in this
situation. The idea is to weight the controls in such a way that the weighted data set represents
the full cohort, and then carry out a cohort analysis on the weighted data. The weights, which
are inverse sampling probabilities, must be estimated from the available data. They will depend
on length of follow-up, since the longer a potential control has been included in the cohort, the
more opportunities it has had to be sampled as a control. In additionally matched studies, also
the matching variables could influence the sampling probabilities.

The estimation of hazard ratios is based on a weighted version of the traditional Cox-likelihood
(Samuelsen, 1997)

exp(BeX;)

L= T — P&
je, Lies; exp(Bixi)wi

“.1)

Here . is the set of cases and controls at risk at time #;. This likelihood is identical to (2.4),
thus we analyze NCC-data "as if it were CC-data". The sampling procedure is, however, more
complex in the NCC-design, resulting in more complicated weights in (4.1). Note that the
vector of covariates x; may now include additional matching variables z;.
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4.2. Weight estimation

As in (2.4), the likelihood contributions are not independent and the inverse of the information
matrix cannot be used as an estimate for the variance. Robust variances (Barlow, 1994; Lin
and Wei, 1989) are the simple solution to the problem. In our experience this is usually a
good estimator of the variance, however there exist situations where it can be conservative. In
an example given by Samuelsen et al. (2007) where the censoring times were proportional to
the covariate, the robust variance was highly conservative. It is however unlikely that such a
covariate is the main exposure in a NCC study.

Samuelsen (1997) provided a variance estimator for the Kaplan-Meier(KM) weights described
below. The proposed estimator is on the form X~! 4 X~ 'AX~!. Where the first part corresponds
to the variance if we have had ¥ 1/p; ~ N independent observations, and the second part is the
excess variance due to the sampling. The X is the covariance matrix of the score function and
can be estimated with the information matrix of the weighted partial likelihood. The A can be
estimated by

A=y g+ X Y P PPy yu6) @2
i P i jiti PiiPiPj

where the sums run over all sampled non-cases. The p; is the probability of ever being sampled

estimated with the KM-estimator below and p;; is the simultaneous probability of sampling both

subject i and j. The U;(.) is the score contribution for individual i. Note that the individual score

contributions are asymptotically equivalent with the W;’s considered by Samuelsen (1997). Note

also that A is on the same form as the variance estimator of the Horvitz-Thompson estimator
(Horvitz and Thompson, 1952).

A difficulty of the variance estimation is calculating the simultaneous sampling probability of
two subjects 7 and j. Even though the sampling is carried out with replacement at each event
time, the sampling probability considered is the probability of ever being sampled and indica-
tors of this is not independent (Samuelsen, 1997). Since sampling one subject will decrease
the probability of sampling another subject, the sampling indicators are negatively correlated.
Explicit formulas for the covariance between sampling indicators 6(;/,- i = pij — pipj Wwhen no
additional matching is present can be found in Samuelsen (1997). In situations with additional
matching 6(;/,- ; can be estimated using equation (3.1) in Samuelsen (1997), replacing the num-
ber at risk with the number at risk that also meet the matching criterion and taking the product
only over the cases where both i and j can be sampled. More details are given in Paper I'V.

4.2 Weight estimation

The weights in (4.1) must be estimated from the data and several estimation procedures have
been mentioned. Samuelsen (1997) suggested a Kaplan-Meier like estimator, see also Suissa
et al. (1998), which later was generalized to handle additional matching (Salim et al., 2009; Cai
and Zheng, 2012)

m
pi=1- {1} 4.3)
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Here ] is defined as the set of eligible controls for the case at time ¢; {i:vi<t <1,z € lz =
€,zj+¢€|,i=1,...,N} and | &}| is the number of elements in &;. The € is a vector where each
element represent one matching criterion. With category matching, the corresponding element
in € will be zero. For caliper matching, the element in € will correspond to the matching interval,
e.g. if a control is matched on time of blood sampling 4+-2 months the element in € will be 2. The
interpretation of (4.3) is that m/|. 2] is the probability of being sampled as a control for the case
at time #;, and the product over all event times of 1 minus such probabilities is the probability
of not being sampled at any event times, thus 1 minus this is the required probability of ever
being sampled as a control. The KM-weights can fairly easily be generalized to accommodate
more complex sampling designs, for instance did Zheng et al. (2013) recently generalized them
to account for quota sampling and Samuelsen et al. (2007) have earlier generalized them to
counter matching.

More model based approaches for estimating the sampling probabilities, discussed by Robins
et al. (1994); Pugh et al. (Unpublished report); Mark and Katki (2006); Samuelsen et al. (2007);
Saarela et al. (2008) are logistic regression, referred to as GLM, and generalized additive models
(GAM) (Hastie and Tibshirani, 2009, Chap. 9)

exp(& + f(1i,vi,zi))

Pi [ t|17V17Zt] 1+exp(‘§+f(ti,vi72i))

4.4)

The O; is the sampling indicator, i.e 1 for sampled controls and O for non-sampled subjects in
the cohort. The cases are excluded from the estimation since they are sampled with probability 1
by design. I have used f(1;,vi,zi) = f1(t;) + f2(vi) + f3(zi) for simplicity, but interactions could
also have been considered. The fi(z;) and f>(v;) are smooth functions with GAM-weights and
linear functions with GLM-weights. The f3(z;) may take different forms, both with GAM-
and GLM-weights, depending on the matching criterion. For category matching with not too
many levels, the intuitive approach would be to include the matching variable as a categorical
covariate. It is less intuitive how the matching should be handled with caliper matching because
there is no explicit grouping since the intervals are formed around each case. One approach is
to create categories, for instance of the same length as the intervals, and another approach is to
include the matching variable as a continuous covariate in the logistic regression model.

A third weight estimator which I think is not well suited for additional matching is local aver-
aging (Chen, 2001). Without additional matching this method involves choosing a partition of
the time axis both with regard to inclusion time and censoring time. Let 0 =10 < v! < ... <4
be a partition of the range of the left-truncation time and 0 =1 < r! < ... < ¢® a partition of the
range of the follow-up time where 74 and 7z is the upper limit of the left-truncation times and
censoring times respectively. If we further define 7, = (v¢~!,v%] and ., = (t"~!,1”], the local
averaging weights can be expressed as

Z{»V:ll(v,' S /a,ti € Fpi€ (g\@)

Wap = - . 4.5)
i I(vie Jati€ Ipic S\D)

when % denotes the collection of all cohort members. All controls included in the study in
interval a with a censoring time in interval b are given weight w,;,. Hence, all subjects sampled
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within the same combination of intervals will be given the same weight. This corresponds to
approximating the NCC-sampling with stratified random sampling where the strata are defined
by inclusion times and censoring times, and Samuelsen et al. (2007) noted that it corresponds to
post-stratification on follow-up time. Chen did not consider left-truncation, thus (4.5) is a slight
generalization of the weight estimator he presented (Chen, 2001). Generalizing these weights
to additional matching would require a partition of the matching variables in addition to the
range of the left-truncation time and censoring time. This will easily generate a vast number of
intervals with few subjects in each interval, thus the weights may become unstable.

Figure 4.1 displays a typical picture of the sampling probabilities for a situation without left-
truncation and additional matching. The four estimators follow each other fairly closely. The
KM- and GAM-probabilities cannot decrease with time, while the GAM- and Chen-probabilities
can vary more freely and can both increase and decrease with time, which can be seen from the
figure.

2

% 3 Method
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o) Chen
o GAM
2 — GLM
g— — KM
©
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0.02
1

Time

Figure 4.1: Estimated sampling probabilities as a function of follow-up time in a situation with no
matching or left-truncation.

4.3 Calibration

Calibration originates from survey sampling and was first proposed by Deville and Sirndal
(1992) as a technique to improve the Horvitz-Thompson estimator for a population total yio =
Z?/:1 Yi-

In many situations there exists so called auxiliary variables A;, which are fully observed vari-
ables in the cohort correlated with the variable of interest y; which is only known for the sam-
pled subjects. In such situations, taking the weighted mean of the sampled subjects might not
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be efficient, since available information regarding the variables of interest is discarded. One
way of utilizing the additional information is to incorporate A; into the weights. This can be
accomplished with calibration, by finding weights that fulfills the calibration equation

N
Ao =Y diAi =Y A=A (4.6)

i=1

The d;’s are calibrated weights and have the property that the total of the auxiliary variable is
estimated exactly. The idea is then that since A and y are correlated, $ior = Y. o d;y; is probably
closer to yor than yg.t.

The specification of the calibrated weights from (4.6) is not unique and an additional require-
ment is that the calibrated weights should be as close as possible to the original or crude weights.
This requires a distance measure, G(w,d) and Breslow et al. (2009b) suggested two alternatives

(d—w)?

d
o and Gy(d,w) =dlog(—) —d+w.

Gi(d = hd
1 ( 7W) W
Other distance measures are discussed in Deville and Siarndal (1992) and Deville et al. (1993).

The calibrated weights are thus weights that solves the calibration equation while minimizing
Y.G.(di,wi).

Breslow et al. (2009a,b) suggested calibration as a method for reducing the variability due to
the sampling in CC-designs. See also Lumley (2010) and Lumley et al. (2011). Ganna et al.
(2012) used the calibration technique in a stratified CC-design and we informally generalized
the idea to NCC-designs in Paper I.

The suggestion for auxiliary variables in Breslow et al. (2009a,b) is dfbetas A; = £~ (B)U;(jB)
where f is the cohort estimate, £~!(B) the inverse of the information matrix and U;(B) the
individual score contributions at the parameter value . The reason for this choice of auxiliary
variables is as follows: In CC- (or NCC-)analyses, the goal is not to estimate a population total
with a weighted sum, but rather regression coefficients. Hence, using fully observed variables
correlated with the exposure of interest is not necessarily a good idea. However, with a first
order Taylor approximation of U; around the true value of B we have

B~ Bo+ Y. wiE~ (Bo)Ui(Bo)
5

both for CC- and NCC-designs when analyzed with a weighted partial likelihood. This expres-
sion is on the same form as the Horvitz-Thompson estimator, thus a good choice of auxiliary
variables is something correlated with ! (By)U;(Bo), and the natural choice is cohort dfbetas.

Since full cohort information is not available, the cohort dfbetas must be estimated from the
sampled data. By applying an estimation method suggested by Kulich and Lin (2004), the
entire calibration analysis for (N)CC-data is a 5 step procedure. The practical details can be
found in Breslow et al. (2009a) and in Paper I. The important part is that the partially observed
variables are imputed using a regression model with fully observed variables as covariates,
in order to estimate the cohort dfbetas. The stronger the association between the fully and
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partially observed variables is, the better the imputation is, and the more efficient the calibration
technique become.

4.4 Simulation of survival data

In Paper I and II we conducted simulation studies. The main advantage of simulations contra
analysis of real data is that important aspects of the data are under control when it is simulated
from a given model. Hence, the true associations, and therefore also the parameters of interest
are fully known. This makes it possible to quantify bias by comparing the mean of the param-
eters to the true value. Moreover, the variance estimator can be evaluated by comparing the
empirical variance of the parameter estimates to the mean of the estimated variances. Another
aspect often reported from simulation experiments is the coverage; the proportion of times the
true value is contained in the confidence interval. A drawback with simulations is that it is hard
to create simulation models that incorporate the complexities of data from the real world, thus
simulations often create too simplistic situations with "well-behaved" data.

The first step when simulating survival times is to decide upon a parametric specification of
the hazard function and combine this with a relative risk function. This must then in turn be
translated into an expression for the event times. It is well known that a constant baseline haz-
ard yields exponentially distributed survival times, while a monotonic increasing or decreasing
baseline hazard function can correspond to Weibull distributed survival times. Bender et al.
(2005) provide formulas for simulating from the exponential, Weibull and Gompertz distribu-
tions. Perhaps due to an easy relationship between the baseline hazard and survival times, the
exponential or Weibull distribution is often used in practice. However, these distributions can
be too simplistic and Crowther and Lambert (2013) describe a simulation technique where the
baseline hazards can take almost any form.

The second ingredient is the censoring distribution. Since a survival time is the minimum of an
event time and a censoring time, r = min(, ¢), both an event time and a censoring time must
be simulated for each subject in the cohort. The smallest value is defined as the follow-up time
and a subject is considered to be a case if the event time was smaller than the censoring time,
hence experienced the event during follow-up. The censoring distribution is often simpler than
the distribution of event times, i.e. a constant, or uniformly distributed.

In Paper I, we simulated survival times from the simple exponential distribution with a uniform
censoring distribution. While in Paper II, where we wanted to mimic the prostate cancer data,
the Weibull distribution was considered adequate for the survival times. The censoring times
in Paper II were the minimum of age at a certain date, representing end of follow-up and a
Gompertz distributed variable representing the background mortality in the population.
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S5 Alternatives to inverse probability
weighting

IPW is an intuitive and simple method for reusing controls, however, there exist other possibil-
ities. These alternatives are based on taking on a missing data point of view. The full cohort
is used in the estimation and the covariates only known for cases and controls are considered
missing for non-sampled subjects.

5.1 Maximum likelihood methods

The maximum likelihood method of Scheike and Juul (2004) and Saarela et al. (2008) is based
on the likelihood for full cohort data and covariates collected only for sampled subjects X are
considered missing for the non-sampled subjects in the cohort. The full likelihood with no
left-truncation can be expressed as

L(6,u) < [ ] p(Ti, DilXi,zi: 0) p(Xi|zis it)
i€’

X H /p(T,’,D,‘|X71i;9)p(x

€6\

Zis 1)dXx.

Here p(T;,Di|X;,z;;0) is the distribution of (7;,D;) conditional on (X;,z;) while p(Xj|z;;it) is
the conditional distribution of X; given z;. The integral in the last product is due to the fact that
X; is unobserved for non-sampled subjects. Generalization to left-truncation is considered in
Saarela et al. (2008). Note that z is now all fully observed variables included in the model and
not necessarily matching variables.

Saarela et al. (2008) and Scheike and Juul (2004) differ in how they handle both p(7;, D;|X;, 7 0)
and p(Xj|z;; ). Saarela et al. (2008) take a fully parametric approach, thus assume a parametric
specification of baseline, and specify the distribution of the partially observed covariates given
the fully observed variables parametrically. Due to this parametric approach they are able to
maximize the likelihood directly through numerical maximization. Scheike and Juul (2004)
choose to keep the baseline non-parametric, as in a Cox-model, and do not require a parametric
specification of the conditional distribution of the partially observed covariates. Thus this like-
lihood rest on fewer assumptions, but is harder to optimize than the likelihood of Saarela et al.
(2008), and they therefor suggest to use the Expectation-Maximization procedure to obtain the
estimates of interest.

For covariates only observed for cases and controls and when these covariates are (almost) un-
correlated with fully observed variables, the efficiency of Saarela’s likelihood are often only
marginally higher than the efficiency of IPW (Saarela et al., 2008). However, for fully observed
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variables or in situations where the partially observed covariates are correlated with fully ob-
served variables, the efficiency of the full likelihood can be considerably higher.

Simulations in Scheike and Juul (2004) indicate that their likelihood become more efficient than
the traditional estimator for increasing hazard ratios. This may be due to that the traditional
estimator may lose efficiency for increasing hazard ratios (Borgan and Olsen, 1999) while the
efficiency for the Scheike-likelihood seems to remain fairly constant. Another reason for the
efficiency gain can be their large number of cases, which results in fully available information
for a large portion of the cohort. Such efficiency gain is likely to be observed for the IPW
approach as well, and in my master thesis (Stger, 2010, p.42-44) I showed that IPW has almost
the same efficiency as the Scheike-likelihood when using their simulation setup. More formal
comparisons between that likelihood and IPW has, however, not been conducted as far as I
know, neither has comparisons between Saarela’s likelihood and Scheike’s likelihood.

Maximum likelihood methods for the proportional hazards model with other types of missing
patterns has been considered by Chen and Little (1999) by a non-parametric estimator. With
the aim of estimating haplotype-disease associations Zeng et al. (2006) proposed a likelihood
method for NCC-data and Saarela and Kulathinal (2007) for case-cohort data. Scheike and
Martinussen (2004) constructed a more general likelihood for case-cohort data in a similar
manner as in Scheike and Juul (2004) for NCC-data, and Kulathinal and Arjas (2006) did similar
things, only with a Bayesian perspective. It is worth noting that the full likelihood for NCC-
and CC-data are identical, thus the sampling design is irrelevant after the data has been sampled
when a full likelihood approach is chosen for analysis.

5.2 Multiple imputation

A somewhat different approach is based on multiple imputation (MI) (Marti and Chavance,
2011; Keogh and White, 2013). The general idea of MI originates from Rubin (1987) and the
concept is that the missing covariates are drawn from some distribution conditioned on what
is fully known. The analysis is then carried out on the full data set with the missing values
imputed. To account for the extra uncertainty in imputing the missing values, the imputation is
carried out a number of times, and the analyses are performed on each imputed data set. The
individual point estimates are then combined into one final estimate, and the variance estimator
takes into account the variability in predicting the covariates.

Marti and Chavance (2011) suggested using multiple imputation for case-cohort designs with a
simple imputation model that did not account for time. Keogh and White (2013) extended the
work to also include the nested case-control design and suggested more complicated imputation
models that incorporate time. For the imputation, X is sampled from the conditional distribution
of X|z,D,T. This distribution is non-standard and two approaches are suggested; approximate
imputation models and rejection sampling.

From simulations in Keogh and White (2013): With one control per case the MI models have
higher efficiency than the traditional estimator and the efficiency increases as the correlation
between the covariate of interest and the surrogate measure increases. With 5 controls per
case, the MI model is only marginally better than the traditional estimator. This is, however,
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as expected since the efficiency of the traditional estimator with 5 controls is high, thus the
possible improvement is limited. Comparisons between MI and IPW have not been carried out
as far as I know.

6 Summary of papers

6.1 PaperI

Stger NC and Samuelsen SO (2012). Comparison of estimators in nested case-control designs
with multiple outcomes. Lifetime data analysis 18(3):261-283.

The first paper compared IPW with four weight estimators, the maximum likelihood estimator
of Saarela et al. (2008) and calibration through a series of simulations. Calibration had not
previously been considered for the NCC-design, thus we also explained how the concept may
carry over from the case-cohort design. Since the MLE approach relies on more modeling
assumptions than IPW, we performed some simulations with misspecified models to check the
sensitivity to the model assumptions. Finally, we also suggested a method for more efficient
calculation of the likelihood of Saarela et al. by aggregating equal or similar covariate values
and survival times. Additional matching was not considered in this paper.

The results from the comparison indicated that the MLE-method is more efficient than IPW
for fully observed variables, and when the partially observed covariate was correlated with the
fully observed covariate the efficiency was also improved for the partially observed covariate.
The calibration approach was also more efficient than the IPW for the fully observed covariate,
however, the achieved efficiency gains were more moderate than for MLE. For the partially
observed variable, calibration gave only higher efficiency than IPW for the strongest association
between partially and fully observed covariates. Estimates of interest were similar for all four
weighting technique, MLE and calibration.

We further investigated the assumptions in the likelihood of Saarela ef al. by misspecifying the
conditional distribution of the partially observed covariate given the fully observed covariate,
and erroneously specified the baseline hazard. In addition we also looked at a misspecification
of the linear expression of the covariates. The results were that the MLE approach seemed to
be fairly robust against misspecified baseline hazards; however, the modeling of the partially
observed covariate given fully observed variables was important. For the last type of misspeci-
fication, the MLE approach fared no worse than any of the other methods.

Finally, we also found that the aggregation approach can decrease the computation time sub-
stantially in situations where the number of covariates is not too large, without introducing bias.
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6.2. Paper II

6.2 Paper Il

Stger NC and Samuelsen SO (2013). Inverse probability weighting in nested case-control stud-
ies with additional matching - a simulation study. Statistics in Medicine 32(30):5328-5339.

It is common to match the controls on additional factors. Although IPW has been applied to
additionally matched data in a few papers (Salim et al., 2009, 2012; Cai and Zheng, 2012), it
has not previously been carefully investigated how additional matching affects IPW estimation,
moreover how the matching variables should be handled in the Cox-regression has not earlier
been discussed. The aim in Paper II was therefore to consider some situations where we believed
that additional matching could be problematic.

We conducted a series of simulation experiments where the fundamental setting was mimick-
ing the vitamin D and prostate cancer data in Paper III. The controls were matched on date of
blood sampling 2 months and age at blood sampling 6 months. We considered three poten-
tially problematic issues; association between matching variables and exposure/outcome, close
matching and batch effects, in addition to looking at a situation without any of the aforemen-
tioned issues.

When the exposure of interest is measured in batches, some variation between different batches
due to the measurement equipment may occur. In such situations, measurements from the same
batch will be more similar than measurements from different batches, and this is what we refer
to as batch effects. For example, in the prostate cancer and vitamin D study the blood samples
were analyzed in batches of 50 and the batches explained about 10% of the variation in the
vitamin D measurements.

The results from the simulations were as follows: When there are associations between match-
ing variables and exposure/outcome, the matching variables should be adjusted for in the Cox-
regression. Including the matching variables in weight estimation was, however, not important
in our simulations. Close matching seemed to be a smaller problem than we believed on before-
hand. With GAM/GLM-weights we did not see any indication of bias even with extremely close
matching, while with KM-weights there was some indication of bias in the most extreme situa-
tion. Batch effects, on the other hand, may attenuate the covariate effect when the matching is
broken. We believe that the remedy for this problem could be measurement error methodology,
however we did not pursue this in the paper.

6.3 Paper III

Stger NC, Meyer HE and Samuelsen SO (2014). Reuse of controls in nested case-control stud-
ies. Epidemiology 25(2):315-317.

The third paper is a Research Letter including a more detailed web-appendix. It is an application
of IPW in a situation with additional matching. It is also an attempt to reach the epidemiologists
by explaining the concept of inverse probability weighting and weight estimation, and at the
same time emphasizing that fairly large efficiency gains can be obtained by reusing controls.
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6. SUMMARY OF PAPERS

We applied IPW in an additionally matched NCC-study (Meyer et al., 2013) of the association
between vitamin D and incidence and death from prostate cancer. We found that IPW was more
efficient than the traditional estimator, in particular for the death endpoint, and that the estimates
were comparable to the estimates from the traditional estimator. We were also able to compare
the traditional estimator and IPW with a cohort analysis by analyzing a covariate observed for
all cohort members. The result was that the IPW estimates were closer to the cohort estimates
than the estimates from the traditional estimator.

The web-appendix contains more details about the data and weight estimation. It also contains
an additional analysis considering metastasis status. The incident cases were divided into three
metastasis groups: Advanced cancer, localized cancer and unknown metastasis status. This can
be seen as a competing risks situation since the groups are mutually exclusive. The discrepancy
between the traditional estimator and the IPW estimators were similar to previous analysis, and
the efficiency was close to or above 2 for all IPW estimators for all three endpoints.

6.4 Paper IV

Stger NC and Samuelsen SO. multipleNCC: Inverse probability weighting of nested case-
control data in R. Manuscript.

One reason why IPW has not yet become a common tool in epidemiological research could
be that software for carrying out the analyses does not exist. I have therefore constructed an
R-package for calculating the weights and performing weighted Cox-regressions. The program
also includes some possibilities for variance estimation. The entire estimation procedure can
be performed with a one-line call with similar syntax as the coxph-function for analyzing
proportional hazards models.

Paper IV is a demonstration of the R-package. We explain the estimation details and illustrate
the use by analyzing a real NCC-study (Grimsrud et al., 2002) of nickel exposure and lung
cancer and cancer of the nose and nasal sinuses. We also describe variance estimation with
KM-weights with additional matching in some detail.

The estimated hazard ratios from the nickel data are fairly large, above 8 when comparing the
second most exposed group to the least exposed group. Thus the paper offers some additional
information regarding how IPW behaves in situations with large hazard ratios. Overall, large
hazard ratios do not seem to be problematic. There are, however, some discrepancies between
the estimates from the traditional estimator and the IPW estimates, but in relation to the standard
errors, the discrepancies are not larger than expected. It could be anticipated that the efficiency
of IPW would increase when the hazard ratios were large, since the efficiency of the traditional
estimator may be lower than m/(m+ 1) in such situations (Borgan and Olsen, 1999). The
efficiencies were, however, similar to what we have seen in other analyses.
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7 Discussion

The nested case-control design is a popular study design with over 5000 hits in the IST Web
of Science. Some of these hits may be due epidemiologists using the term more generally for
any case-control study nested within a well-defined cohort. Nevertheless, it is a popular design
among practitioners. The main advantage of NCC compared to a cohort analysis is the cost
effectiveness. It is, however, inevitable less efficient than a cohort analysis and it is therefore
important to use the available information as efficiently as possible. The main topic of this thesis
has been reuse of controls by inverse probability weighting of the partial likelihood, which is
one way to better utilize the available information. The main focus has been on additionally
matched NCC-data, but I have also evaluated the different weight estimators, calibration and
maximum likelihood in a situation without additional matching, and developed an R-package
for performing IPW-estimation.

The contribution of Paper I is threefold; comparison between existing weight estimators for
IPW analysis, indicate how calibration can be carried out with NCC-data, and study the MLE
approach of Saarela et al. (2008) including an aggregation technique which may decrease the
computational burden. For the first contribution, although similar comparisons between weight
estimators already had been carried out by Samuelsen et al. (2007) and Saarela et al. (2008)
with similar results, confirming once more that the weight estimators seem to be similar, and
indicate that this also holds for left-truncation is useful. It is reassuring for practitioners that the
estimates and variances are fairly consistent across weighting methods.

With regards to calibration of weights, which had not previously been considered for NCC-data,
it may further improve the efficiency of IPW analyses. It is, however, important to note that the
asymptotic properties of calibration with NCC-data have not yet been investigated. In Paper I,
we only conjecture that the calibration properties of case-cohort data carry over to the NCC-
data. In order to increase efficiency with calibration, fully observed variables correlated with
the variables of interest must exist in the cohort. In situations with additional matching this is
satisfied, and the matching variables will usually be correlated with both exposure and outcome.
Investigating the calibration technique in such situations would be interesting, especially, since
it may seem that IPW is somewhat less efficient in situations with additional matching.

For the last contribution from Paper I, we showed that the likelihood of Saarela et al. can be
almost as efficient as cohort estimation when fully observed covariates correlated with variables
of interest exist in the cohort. The experience with this likelihood is as far as I know fairly lim-
ited. We did, however, show that model misspecification can result in severely biased estimates.
This is of course a drawback since the model assumptions are hard to validate. The likelihood
can also be numerically demanding to evaluate, but our aggregation technique may decrease the
computation time drastically in some situations.

The focus of Paper II is on additional matching. It was not obvious that IPW would continue to
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7. DISCUSSION

work properly in such situations. Since the probability of being sampled for the sampled con-
trols increase towards 1 when the matching criterion gets narrower, the weights will decrease
towards 1. With small weights, the idea of reconstructing the cohort by up-weighting the con-
trols break down. We did, however, show through simulations that extremely narrow matching
must be present before the KM-weights cause biased estimates and the GLM/GAM-weights are
not affected by the matching criteria. Another side of this is that when we analyze NCC-data
with IPW, we break the matching between the cases and controls. Our simulations showed that
it is therefore important to adjust for the matching variables when they are confounders. How-
ever, matching on confounders and adjusting for them are two different things, although with
the same ultimate goal, and again it was not trivial that IPW would continue to work when the
matching was broken.

A problem with IPW, that will become more and more relevant as the number of data sets
containing biological material for instance gene expression data or DNA methylation increases,
is batch effects. This is an intrinsic problem of IPW and occurs because the accuracy of the
analyzing equipment may vary and samples analyzed within the same batch will often be more
similar than samples from different batches. The differences due to the batches do not pose
a problem for the traditional estimator as long as the cases and controls belong to the same
batch. However, when the matching is broken, as with IPW, we have seen from simulations that
this may lead to an attenuating effect of the regression coefficients. Solutions to this problem
can be adjusting for the batches or stratify according to them. Those solutions are however
not satisfactory as the number of bathes can be large. Especially, stratifying on batches may
reduce much of the gained efficiency with IPW. Another approach could be more traditional
measurement error methodology as the addition or reduction due to the batches can be seen as
measurement error. I have not tried this in practice so I do not know whether it would be a
straightforward generalization or a more methodological challenging problem.

Armitage (1975) and Breslow and Day (1980) noted that unmatched analyses of matched data
might cause conservative estimates. Thus, it is not new knowledge that analyzing matched data
as an un-matched study may cause biased estimates. Our results regarding the importance of
adjusting for the matching variables when the matching is broken is therefore not surprising.
However, one could speculate that when the matching variables were included in the weights,
the need for adjusting for the matching variables would vanish. This was not the case in our
simulations. The reason for this is probably that including the matching variables in weight
estimation only corrects for the biased sample with regards to the matching variables, and the
confounding will still be present if the matching variables are not properly adjusted for.

In the simulations, IPW has generally been more efficient than the traditional estimator, even
when the same number of controls were included in the estimation. The exception is in situa-
tions with additional matching when the same number of controls is used by both estimators.
A possible explanation for the efficiency loss in such situations is that the efficiency gain due
to the matching is lost when the matching is broken. Another reason might be that since the
IPW-estimates must be adjusted for the matching variables, the IPW-likelihood contains more
covariates than the traditional likelihood. Unless the extra covariates are independent of the
covariates included in both estimators, the uncertainty of the IPW-estimates will increase.
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In simulations without any additional matching in Paper I and in Samuelsen et al. (2007);
Saarela et al. (2008), the KM-type of weights, GAM/GLM and local averaging produced only
minor differences in final estimates and standard errors. While with additional matching,
we have experienced somewhat larger differences between the GAM/GLM-weights and KM-
weights The probable cause of this difference is that the additional matching is handled fun-
damentally different with the two types of weights. With GAM/GLM-weights, the matching
variables are included as covariates, while for KM-weights, the matching criterion is used more
explicitly when calculating the weights, and the KM-weights therefore reflect more closely the
"true" sampling probabilities. However, with close matching the weights become small, per-
haps even 1, and the idea of reconstructing the cohort breaks down. Then a more model based
approach with GLM/GAM-weights might be better, since the weights do not become as small.

The weights used with additionally matched data are modified KM-weights and GAM/GLM
with adjustment for the matching variables. Another possibility for the logistic regression type
of weights is to do one regression per control with only left truncation times and follow-up times
as covariates. Each regression should then only include the individuals who could have been
sampled to at least one of the cases the control in question could have been sampled for. The
estimated weight for the control in question is the corresponding fitted value from the regression.
With this alternative approach, the issue of how to include the caliper matching criterion in the
regression vanishes. However, for some values of the matching variables there might be few
possible controls and the sampling probabilities will be estimated based on few subjects. As
far as I know, this method has not been tested; it is therefore not possible to conclude how
sensitive it would be for this kind of problems. It is also possible to extend the KM-weights,
for instance by doing a Cox-regression on a sampling indicator with the matching variables as
covariates, use the estimated parameters Y from this regression in a Breslow estimator to find
Hy(1;), the cumulative baseline hazard and finally estimate p; with 1 —exp{—exp(#y;)Ho(t;)}.
The estimated sampling probabilities will now correspond to 1 minus a survival probability
where the event is to be sampled as a control. I have not tried this out in practice either, but
this extension will have the same problems regarding caliper matching. We could, however,
speculate that it might be somewhat better with regard to close matching. In some situation
the matching criteria is unnecessary close and estimating weights based on a wider matching
criteria may improve the performance of the KM-weights. This can easily be accomplished
with our R-package by specifying a wider matching interval.

The NCC-design is based on sampling controls from the cases risk sets, and because of this risk
set sampling it is intrinsically linked to Cox-regression and estimation of hazard ratios. How-
ever, there exist some possibilities for other regression models and estimation of other interest
parameters. Within the framework of the Cox-model, Borgan and Langholz (1993); Langholz
and Borgan (1997) showed that NCC-data can be used for estimation of absolute risk and de-
tails regarding estimation of cumulative baseline has also been provided (Borgan and Langholz,
1993; Borgan et al., 1995). Ganna et al. (2012) performed estimation of absolute risk for case-
cohort and nested case-control data both with unmatched/unstratified and matched/stratified
designs. When considering other models, Borgan and Langholz (1997); Zhang and Borgan
(1999) generalized Aalen’s additive model (Aalen, 1980) to NCC-data and used this to estimate
excess and absolute risk. Zheng et al. (2012) derived estimation equations for NCC-data un-
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7. DISCUSSION

der a class of general additive-multiplicative hazard models (Lin and Ying, 1995). Although,
these possibilities exist for NCC-data, the IPW approach is a more unified alternative since
weighted analyses parallel to cohort analyses can be performed. Details regarding variance
estimation must, however, be sorted out. Chen et al. (2012) utilized the IPW approach and
proposed weighted versions of linear transforation models (Cheng et al., 1995) for data from
generalized case-cohort designs (Chen, 2001), which include the nested case-control and case-
cohort designs, and Samuelsen (1997); Salim et al. (2009) considered parametric models for the
NCC-design.

In some situation it can be of interest to estimate the cohort mean of the exposure variables
only known for cases and controls. For example, using the vitamin D measurements from the
prostate cancer data used in Paper III to estimate the mean vitamin D level for the Norwegian
population, possibly within month of blood sampling, could be interesting. Taking a crude mean
over cases and controls will in most situations yield a biased estimate due to the over-sampling
of cases. Using only controls is probably better, however, a smaller bias in the opposite direction
is expected since all cases are excluded. A natural way to do this is therefore to exploit the
sampling probabilities by using the Horvitz-Thompson estimator. This will give an unbiased
estimate of the population mean, however, this estimator may have a very large variance and
as noted earlier it is best to use this estimator when there is a fairly strong negative correlation
between the weights and the variable you want to estimate the mean of. This will generally not
be the case for NCC-data. With a strong association between the exposure and the outcome,
there may be a correlation between the cases weights (which is 1) and the exposure; however
the weights and the exposure are usually uncorrelated for the controls. I have conducted some
simulation experiments to evaluate the performance of this estimator. As was expected from the
general theory, the estimated mean was close to the true mean, however with a large variance.
The estimated variance was always much larger than the empirical variance and the reason for
this may be too few simulations.

Within the world of causality, it is well known that large weights can cause trouble. I have,
however, still not experienced trouble with large weights in connection to the weighted partial
likelihood. The reason for this may be that the subjects receiving large weights are the subjects
that are followed only for a short period of time, thus having a small probability of being sam-
pled. Those subjects will contribute to the likelihood at few event times, and even though their
contribution will be large at the event times they are contributing, it evens out in the overall
product over all event times. Another way to see this is from a survey sampling point of view.
Then we know that there should be a positive correlation between the sampling probabilities
and the variable one wants to estimate the total of, y. With IPW analyses of NCC-data, the indi-
vidual contributions to the weighted likelihood should play the role of y. They will be small for
subjects followed for a short period of time and those subjects are also unlikely to be sampled.
They therefore have a small sampling probability, and the positive correlation needed for the
H-T estimator is automatically achieved.

Paper 111 is targeting epidemiologists. They are frequently using the NCC-design and one goal
with this thesis was to increase their awareness of this alternative analyzing option for NCC-
data. T hope that IPW will appear more tempting when the concept is explained in a more
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applied setting. Moreover, I hope that the estimation will become simpler with our R-package
multipleNCC, and that this will lead to increasing use of IPW for NCC. The package is
documented in Paper I'V. It estimates weights and carry out weighted Cox-regressions with a
simple one-line call with similar syntax as the coxph-function. I hope that this will increase
the popularity of IPW for NCC.
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