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Abstract: A semi-analytical model for ultimate strength prediction of simply supported, 
rectangular, composite plates has been presented previously. The model is based on 
large deflection theory in combination with first order shear deformation theory. After 
damage initiation, a linear degradation of material properties is applied. Rather than 
dividing the plate into many small elements, as in a finite element analysis, a simplified 
approach is used in which the plate is divided into nine regions and degradation is 
confined to the affected region of a failed ply. In the previous work, the model was 
successfully applied to square plates with an initial geometric imperfection in a single 
half sine-wave shape, but in the current report an attempt is made to apply it to long 
plates with mixed modes of geometric imperfections. The strengths estimated for 
thicker plates are satisfactory, while the predicted strengths for thinner plates are very 
conservative. It is believed that the division of the plates has significant influence on the 
strength predictions. In order to obtain more accurate results, alternative locations of the 
boundaries between ply regions or increasing the number of ply regions should be 
considered.     
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1   INTRODUCTION 

 The application of composites consisting of fibre-reinforced plastics (FRP) is 
constantly increasing due to their favourable strength-weight ratio. Composite plates are 
commonly used in many structures, for instance in aircraft, naval ships and wind turbine 
blades. One subcomponent that is of practical importance in structural design is the 
long, rectangular laminated plate. Such plates for instance commonly appear in the wing 
structures of aircraft and in longitudinally stiffened ship hulls (Fig. 1). Numerous types 
of laminates can be obtained by varying the fibre orientations, number of plies and 
stacking sequence. Initially, the buckling analysis of composite plates subjected to in-
plane loadings has been confined to the determination of elastic buckling loads. This 
type of analysis generally considered perfectly flat panels, and numerous analytical and 
numerical approaches are already presented in the literature. Leissa [1] determined the 
elastic buckling loads of composite panels by using eigenvalue analysis. Such analytical 
solutions are also adopted by Brunelle and Oyibo [2] for presenting generic buckling 
curves for specially orthotropic rectangular composite plates. The work by Nemeth [3] 
concerned the buckling analysis of anisotropic plates with application in spacecraft. The 
plates were assumed to be long and symmetric, and subjected to combined loads. Non-
dimensional buckling design curves were established for both simply supported and 
clamped boundary conditions. In the design of composite plates, a separate check for 
material failure is usually performed in addition to the elastic buckling load. For this, 
local laminate strength data could be used or, alternatively, appropriate failure criteria 
could be applied at ply level. For many plates, because they exhibit stable post-buckling 
behaviour, the in-plane load bearing capacity can be much higher than the elastic 
buckling load. On the other hand, the presence of initial geometric imperfections, often 
arising from the manufacturing process, tends to reduce the load carrying capacity. In 
the case of long plates, the situation is more complicated due to the presence of several 
possible modes of initial geometric imperfections. The imperfection caused by the 
fabrication can often be approximated by a single sine-waveform while the preferred 
buckling mode may be another. These effects should be taken into account in order to 
prevent unsafe predictions.   

 
Fig. 1. Longitudinally stiffened composite ship hull structure: Royal Navy Sandown Class minehunter 
[4].  
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More recently, in order to increase the full utilisation of composite materials and 
obtain a more accurate analysis of composite plates, ultimate strength analysis has been 
introduced that can take account of post-buckling deformations, initial geometric 
imperfections and progressive material damage. This type of analysis is already 
available in some finite element (FE) tools and has been reported in several 
publications. The studies presented in [5] (with application in aircraft) and [6] (with 
application in marine structures and wind turbine blades) aim to develop a more 
accurate prediction of collapse for composite panels using FE tools such as ABAQUS. 
These investigations include progressive failure modelling and also involve the design 
and testing of panels for validation. However, such advanced nonlinear FE analysis for 
composites requires special expertise and is normally time consuming in terms of model 
generation, numerical computation and post-processing. Thus, in many design 
situations, such advanced FE analysis is impractical, and simplified yet reliable 
approaches are needed.  

 
Lately, use of semi-analytical methods has become common for strength and 

buckling analysis of both metal and composite panels. An analytical formulation for the 
study of local skin buckling and post-buckling of stiffened laminated panels is presented 
in [7]. In [8], a combination of finite element solution and semi-analytical approach is 
used for the analysis of laminated composite plates. To the authors’ knowledge, the first 
attempt at including progressive damage modelling in a semi-analytical approach is that 
described in [9]. The model is an extension of the already available semi-analytical 
models adopted by Det Norske Veritas Germanischer Lloyd (DNV GL) applied to 
stiffened/unstiffened steel plates and implemented in the computerised software code 
PULS for use in the strength assessment of steel ship structures. These models are 
reported by Steen [10] and Brubak et al. [11]. For the strength prediction of laminated 
composite plates, the present method takes account of post-buckling deformations, 
initial geometric imperfection, out-of-plane shear deformation and material degradation 
for composites. Previously [9,12], the investigation has been performed for square 
composite plates using the analytical and semi-analytical methods. The present report 
investigates the extent to which the model presented in [9] can be applied to long plates 
having a mixed mode of imperfections. The Hashin and Rotem failure criterion [13] will 
be used to detect the failure in the laminates and the material stiffness reduction is 
confined to the affected region of a failed ply. To validate the method, the numerical 
results are compared to the nonlinear analysis performed in ABAQUS by Misirlis and 
reported by Hayman et al. in [6].    

2   BOUNDARY CONDITIONS AND DISPLACEMENT FIELD 

 
Fig 2. Plate geometry and load condition. 
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Following [9], a rectangular plate is considered, with dimensions a × b (Fig. 2) and 
an initial out-of-plane deformation winit. The plate is simply supported on all edges and 
subjected to a mean compression Nx in the x-direction. In the analyses, this is achieved 
by restraining the edge x = 0 in the x-direction and applying a uniform, negative 
displacement uc in the x-direction on the edge x = a, all four edges being held straight. 
The total out-of-plane deformation is wtot=winit+w. The adopted displacement field is 
given in Eqs. (1), and each deformation component is assumed in the form of a 
truncated double Fourier series [14], the in-plane displacements having in addition a 
linear component [11,15]:  

     (1a) 

    (1b) 

   (1c) 

    (1d) 

 
     

(1e) 

The symbols u0 and v0 represent the mid-plane displacements in the x- and y-directions, 
respectively. The rotations of a transverse normal about axes parallel to the y and x axes 
are denoted by φx and φy, respectively. The coefficients uc, vc, umn, vmn, xmn, ymn and wmn 
are unknowns, wimn are given imperfection amplitudes, and m, n, M and N are positive 
integers. 

3   METHODOLOGY 

The semi-analytical method is based on large deflection bending theory combined 
with the first order shear deformation theory. The load-displacement response is traced 
by an incremental procedure, where an arc length parameter is used as a propagation 
parameter [10]. This method is presented in detail in Yang [9] and the Riks-Wempner 
iterative procedure [16,17] is applied within each load increment to correct for the 
disagreement between the external applied forces and the internal forces. As in [9], a 
convergence criterion is introduced to determine the number of iterations needed within 
each load step. This criterion is based on the magnitudes of the unbalanced forces U and 
the internal forces I [18]: 

 (2) 
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In the analyses performed in Section 6, the chosen value of β is set to 0.01.  

4   PROGRESSIVE FAILURE MODELS 

4.1   Hashin and Rotem Failure Criterion 

The Hashin and Rotem failure criterion for in-plane stresses can be written [13]: 

 
 

(3a) 

 
 

(3b) 

Failure occurs when any of the four failure functions from Eqs. (3) reaches unity. Each 
is associated with a dominant failure mode. 

4.2   Degradation of Properties 

A damaged material stiffness matrix for in-plane deformations is defined [6]: 

 

 

(4) 

Here d1 is the damage factor for the longitudinal direction of the material, d2 is that for 
the transverse direction, and d6 is that for the in-plane shear component. The remaining 

parameters in Eq. (4) are defined as , , ,  and 

. 
 

For the Hashin and Rotem criterion, because the shear failure component is 
associated with both fibre and matrix modes of failure, the damage variable d6 is 
defined as: 

 (5) 

 
To allow direct comparison with the results of Misirlis [6], the transverse (out-of-

plane) shear stiffness matrix is not degraded during the analysis. (The ABAQUS shell 
elements used by Misirlis did not allow such degradation) Thus 

 

 

(6) 
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where K44 = G23 and K55 = G13. 

4.3   Material Degradation 

For the linear degradation of the material properties, as used in the present work, the 
degradation procedure is based on the constitutive model proposed by Matzenmiller et 
al. [19], i.e. the damage evolution is similar to the model implemented in ABAQUS. 
More information is given in Appendix A [20].  

5   PLY REGION DEGRADATION MODEL (PRDM) 

To use the ply region degradation model (PRDM), first introduced in [12], the plate 
is divided into 9 regions as shown by the broken lines in Fig. 1. Thus regions 1, 3, 7 and 
9 are corner regions, 5 is a centre region and 2, 4, 6 and 8 are mid-edge regions (of 
which 4 and 6 are loaded edges). This division was first introduced for square plates 
with a half sine-waveform buckling mode to enable differentiation between regions 
having differing predominant stress states. The procedure implemented with linear 
material degradation and the Riks-Wempner method is presented in Fig. 3.  

 

 
Fig. 3. Schematic diagram: the procedure using PRDM with the linear material degradation. The 
procedure is repeated until the maximum load is reached. 

 



 

 7 

6   PARAMETRIC STUDY 
 
6.1   Description 
 

To test the simplified approach by comparing results with those obtained by Misirlis 
using advanced FE analysis [6], parametric studies have been performed for a series of 
long plates, with a = 2000 mm and b = 500 mm, having various b/t ratios and initial 
imperfection amplitudes 0.1%, 1% and 3% of the width b. The shape of the initial 
geometric imperfection is a combination of 20% of the preferred buckling mode shape 
and 80% of a single half sine wave. Two different types of composite layup are 
considered [6]: 

 
• Case A, a triaxial layup:  

           This layup configuration is typical for the main spar of a wind turbine blade. 
 

• Case B, a quasi-isotropic, quadriaxial layup:  

This layup configuration is more typical for ship hull panels that experience a 
mixture of lateral pressure and in-plane loading due to hull girder bending. 
 

A so-called plate affine aspect ratio is introduced in [2] for determining the preferred 
buckling mode and establishing generic buckling curves for specially orthotropic plates. 
This is defined as 

 (7) 

Here, a0/b0 is the plate affine aspect ratio, and D11 and D22 are the terms in the bending 
stiffness matrix corresponding to bending in the x- and y-directions. For simply 
supported, specially orthotropic plates, Brunelle and Oyibo derived the generic buckling 
curves shown in Fig. 4. This figure also shows the transitions between regions with 
differing preferred buckling modes. In Fig. 4, the affine plate buckling coefficient is 
given by k0 and D* is the generalised rigidity ratio. These are given in Eqs. (8). 

k0 =
Nxb

2

π 2 D11D22

 (8a) 

 (8b) 

Here, D12 and D66 are the in-plane bending coupling term and the twisting term in the 
bending stiffness matrix, respectively.  
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Fig.4. Modified uniaxial buckling coefficients vs affine aspect ratio for simply supported (SS) boundary 
conditions provided by Brunelle and Oyibo [2]. Here m is the number of half-waves in the longitudinal 
direction. 

For the layup case A with a/b = 4, D22/D11 ≈ 0.38, which implies a0/b0 ≈ 3.14. Thus, the 
preferred buckling mode for layup case A is three half-sine waves (m = 3).  For the 
layup case B, the plate affine aspect ratio is in the range 3.48-3.92, depending on the 
number of plies. Thus, the preferred buckling mode for the layup case B is four half-
sine waves (m = 4). The initial geometric imperfections are presented in Eqs. (9) with 
the imperfection amplitudewi . The coefficients 1.403 and 1.052 are included in the 
equations for the layup cases A and B, respectively, thus the maximum combined 
amplitude in each layup case is equal to the given imperfection amplitude. 

winit , A (x, y) = 1.403 ⋅wi sin πy
b

⎛
⎝⎜

⎞
⎠⎟

0.80 ⋅ sin πx
a

⎛
⎝⎜

⎞
⎠⎟
+ 0.20 ⋅ sin 3πx

a
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 (9a) 

winit , B(x, y) = 1.052 ⋅wi sin
πy
b

⎛
⎝⎜

⎞
⎠⎟

0.80 ⋅ sin πx
a

⎛
⎝⎜

⎞
⎠⎟
+ 0.20 ⋅ sin 4πx

a
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 (9b) 

Following Misirlis [6], for the triaxial layups (case A), the required b/t values are 
achieved by scaling the thickness of each individual ply. For the quadriaxial layups 
(case B), the thickness is increased by adding groups of plies (increasing X) to give the 
desired b/t values. The material properties and the plate thicknesses for cases A and B 
are given in Tables 1-2. Note that ply number 1 is located on the concave side of the 
plate when the imperfection component with m = 1 is applied. For the ply region 
degradation model (see Fig. 1), regions 1, 3, 7 and 9 are each 650 mm × 160 mm, 
regions 2 and 8 are each 700 mm × 160 mm, regions 4 and 6 are 650 mm × 180 mm and 
region 5 is 700 mm × 180 mm. 
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Table 1 
Material properties (strengths and moduli). 
Property E1 E2 ν12 G12 G13 G23 Xt Xc Yt Yc S12 
Value 49627 15430 0.272 4800 4800 4800 968 915 24 118 65 
Units MPa MPa - MPa MPa MPa MPa MPa MPa MPa MPa 

Table 2 
Plate thicknesses and ply thicknesses for case A layups (left) and case B layups (right). 
Layup b/t t (mm) t0 

(mm) 
t±45 

(mm) 
 Layup b/t t (mm) X t0, t±45, t90 

(mm) 
A1 50 10.02 0.39 0.12  B1 62.50 8.00 1 1.00 
A2 30 16.70 0.65 0.20  B2 31.25 16.00 2 1.00 
A3 20 24.94 0.97 0.30  B3 20.83 24.00 3 1.00 
A4 15 33.40 1.30 0.40  B4 15.63 32.00 4 1.00 
A5 10 49.98 1.95 0.59  B5 10.42 48.00 6 1.00 

6.2   Load-displacement Response Without Material Degradation  

The load-end shortening responses for the layup cases A1 and B1 in Table 2 with 3% 
imperfection are provided in Fig.5. In the case of long plates with the combined modes 
of geometric imperfections, the change in the deformation shape for the thin plate 
sometimes occurs with a snap-back behaviour that is visible in Fig.5. For the layup 
cases A1 and B1, the change of the buckling modes occurred at approximately 70 MPa 
and 35 MPa, respectively. This figure is included to demonstrate that the geometrically 
nonlinear formulation is fully capable of reproducing such behaviour. 

 

 
Fig 5. Load vs. end shortening for the layup cases A1 and B1 with 3% imperfection amplitude. 

6.3   Ultimate Strength Predictions 

The detailed results using the present method are given in Appendix B, Tables B.1-
B.2 for cases A and B, respectively. In Figs. 6 and 9, the ultimate strength for a range of 
b/t values is presented along with the corresponding results presented by Misirlis. The 
ratios of the ultimate strengths estimated using the present model to the reference values 
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found by Misirlis are shown in Figs. 7 and 10 for various values of plate thickness t and 
imperfection amplitude.  

 
For the triaxial layup, case A, the shapes of the graphs provided in Fig. 6 are 

somewhat similar to those of Misirlis with some exceptions, which are also indicated in 
Fig. 7: the results estimated for the layup case A2 are better than layup case A3 with 
imperfections 0.1% and 1%. The predicted strengths are in the range of 10% higher to 
51% lower compared to the ABAQUS results. The best results are obtained for the 
thicker plates, i.e. the layup cases A4 and A5 in Table 2, and the greatest discrepancies 
are observed for the layup case A1. Figure 8 shows the deformed shape of the plate after 
the ultimate load is reached for layup case A5 with 3% imperfection.  

 

 
Fig. 6. Case A (triaxial layup): the ultimate strengths from the present analyses (left) are compared to the 
corresponding results obtained by Misirlis (right) [6] for various b/t values and imperfection amplitudes. 

 
Fig. 7. Case A (triaxial layup) with PRDM: the ultimate strengths from the present analyses are compared 
to the reference values σmax_ref obtained by Misirlis, for various plate thicknesses t and imperfection 
amplitudes. 



 

 11 

 
Fig. 8. Layup case A5 with 3% imperfection: the plate shape with the initial geometric imperfection (a) 
and the deformed shape of the plate after the ultimate load is reached (b). 

 
For the quadriaxial layup, case B, the shapes of the graphs provided in Fig. 9 are 

slightly different compared to those of Misirlis, and this is mainly related to the layup 
cases B2 and B3. The estimated strengths are in the range 3% - 68% lower than 
ABAQUS results. The best results are achieved for the thicker plates, i.e. the layup 
cases B4 and B5 in Table 2, and the greatest discrepancies are observed for the layup 
case B1. In contrast to the layup case A, a trend is observed here: the agreement with 
the ABAQUS prediction increases with the plate thickness. Figure 11 shows the 
deformed shape of the plate after the ultimate load is reached for layup case B2 with 1% 
imperfection. 

 

 
Fig. 9. Case B (quadriaxial layup): the ultimate strengths from the present analyses (left) are compared to 
the corresponding results obtained by Misirlis (right) [6] for various b/t values and imperfection 
amplitudes. 
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Fig. 10. Case B (quadriaxial layup) with PRDM: the ultimate strengths from the present analyses are 
compared to the reference values σmax_ref obtained by Misirlis, for various plate thicknesses t and 
imperfection amplitudes. 

 
Fig. 11. Layup case B2 with 1% imperfection: the plate shape with the initial geometric imperfection (a) 
and the deformed shape of the plate after the ultimate load is reached (b). 

7   DISCUSSION 

To improve computational efficiency, Misirlis modelled only half of the panel in 
ABAQUS and imposed symmetry boundary conditions at the edge corresponding to the 
longitudinal centre-line. This may have caused some inaccuracies since composite 
plates do not necessarily degrade symmetrically. However, the error introduced by this 
approximation is not expected to be significant. 

 
For long plates, the ultimate strengths predicted using the present model are 

acceptable for the thicker plates, while for the thinner plates the predictions are clearly 
too conservative. This could be explained by the fact that the long plates have been 
divided into 9 regions as in [9,12]. In the earlier studies on square plates, the thinner 
plates, characterised by small ply thicknesses (case A) and few plies (case B), were 
found to be the most sensitive to the plate division [9]. The present ply region based 
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material degradation appears to result in unnecessarily large stiffness-reduced areas. 
The total plate stiffness can thus be significantly affected for these plates, even with a 
small number of regions damaged. This will in turn provide incorrect stress distribution 
throughout the plate. Especially for the layup case B1 with 8 plies only, it seems that 
there is almost no reserve strength beyond first ply failure. For the layup case A1, the 
situation is slightly better since this has 34 plies. Furthermore, as the load increases, the 
shape of the plate deformation follows the preferred buckling mode shape, and it is 
suspected that the change of the buckling modes during the analysis causes more 
difficulty for the progressive failure model. Once a ply region fulfils the failure criterion 
in one buckling mode, the material stiffness degradation is initiated based on the single 
equivalent strain value ( ) for this ply region and this dominates throughout the 
degradation process. This value could be correct to a certain point of the analysis, but 
also randomly too rough to give a true picture of the degradation process: the ply region 
may consist of an area that should undergo either more or less stiffness reduction as one 
buckling mode takes over from another. This is believed to affect both thin and thick 
plates, but especially for thinner plates the influence is significant. In contrast, Misirlis 
performed the ABAQUS analysis with the element size 20 mm × 20 mm. However, the 
thick plates are less sensitive to the plate division since these plates undergo less 
bending deformation than thinner plates, so that stresses are more uniformly distributed 
throughout the plate. 

 
In order to improve the PRDM for estimating more accurate ultimate strengths for 

long plates, alternative locations of the boundaries between ply regions should be 
considered or the total number of the ply regions should be increased. From the 
previous work [9], it is shown that the strength predictions based on this PRDM with 9 
regions are satisfactory for square plates (aspect ration a/b = 1) having a half-sine 
waveform imperfection. It seems that this plate division remains correct as long as the 
buckling mode maintains a half-sine waveform. According to [2], this is possible if the 
affine aspect ratio a0/b0 < 1.41, which results in the actual aspect ratio a/b < 1.78 for the 
layup case A and approximately a/b < 1.50 for the layup case B. Since the shape of the 
plate deformation follows the preferred buckling mode shape, the number of the ply 
regions could be determined based on that. Previously in [9], 3 regions in the axial 
direction were found to provide satisfactory results for the square plate with a half sine-
wave buckling shape. Theoretically, for long plates having the aspect ratio equal to 4, it 
is likely that the PRDM should be implemented with approximately 27 and 36 ply 
regions for the layup cases A (three half sine-waveform deformation shape) and B (four 
half sine-waveform deformation shape), respectively. However, this assertion has not 
been pursued in the present study.  

8   CONCLUSIONS 

Ultimate strength prediction using a semi-analytical method has been studied for 
simply supported, long composite plates subjected to uniaxial in-plane compressive 
load. The present model takes account of post-buckling deformations, out-of-plane 
shear deformations and mixed modes of initial geometric imperfections. The plate has 
been divided into nine regions and the linear material stiffness degradation has been 
applied to the failed region in a ply. A parametric study has been performed for long 
plates with the aspect ratio a/b = 4 having a range of thicknesses and geometric 
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imperfections. The numerical results have been compared with the FE analysis 
performed by Misirlis [6]. The strength predictions obtained are satisfactory for thicker 
plates. For thinner plates, the ultimate strengths are conservatively estimated. This could 
be explained by fact that the plates have been divided into 9 regions as for square plates 
in [9,12], and such division of long plates appears to cause a stiffness reduction over an 
unnecessarily large area, and in turn the stresses are not correctly distributed throughout 
the plate after damage initiation. In contrast, thick plates undergo less bending 
deformation than thinner plates, so that stresses are more uniformly distributed 
throughout the plate. The present nine-region based degradation model is applicable for 
plates having an affine aspect ratio a0/b0 < 1.41, which provides a single sine-waveform 
buckling mode. This in turn gives the actually aspect ratio a/b < 1.78 for the layup case 
A and approximately a/b < 1.50 for the layup case B. For higher aspect ratios, other 
locations of the ply region boundaries or increasing the number of ply regions should be 
considered in order to provide more accurate strength prediction.   
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APPENDIX A: DAMAGE EVOLUTION AND FAILURE  

Equivalent stress (σeq) and strain (δeq) for each of the four damage modes are defined 
as follows: 

• Fibre tension: 

 (A.1) 

• Fibre compression: 

 (A.2) 

• Matrix tension:  

 (A.3) 

• Matrix compression: 

 (A.4) 

The symbols 〈 〉 in the equations above represent the Macaulay bracket operator which 
is defined for every a ∈ℜ as . Computation of the damage variables is 
based on the stress-strain relation shown in Fig. A.1. The positive slope of the stress-
strain curve prior to damage initiation corresponds to linear elastic behaviour. After 
damage initiation, the negative slope is achieved by evolution of the respective damage 
variables according to the equations (A.1)-(A.4). After damage initiation (i.e.  ≥ ), 
the damage variable di for a particular mode is given by 

 (A.5) 

Here,  representing the strain at which the initiation criterion for the respective mode 

was met and  the strain at which the material is completely damaged in this failure 

mode. For both matrix and fibre failure modes,  has been used in the cases 
investigated. 
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APPENDIX B: TABULATED RESULTS 
 

For a given layup case with a given initial geometric imperfection amplitude, plate 
thickness (t) and total number of plies (ply regions), Tables B.1-B.2 show the total 
number of terms included, the Δη values and the calculated stress (σFPF) at first ply 
failure (FPF). The ultimate stress using the semi-analytical method is presented as σmax. 
The results from the analysis are compared with those obtained by Misirlis (σmax_ref). 
The ratio of the ultimate strength from the present model to that found by Misirlis are 
given in the last column (σmax /σmax_ref). 

 
The numbers of terms used are shown in Tables B.1-B.2; 247 terms to N = M = 7 and 

407 terms to N = M = 9 and 607 terms corresponds to N = M = 11. The chosen basic 
value of Nx is 150 N/mm for layup cases A1 and B1, and 250 N/mm for layup cases A2 
and B2. For layup cases A3 and B3, Nx is set to 500 N/mm. For layup cases A4 and B4, 
Nx is set to 1000 N/mm. The remaining layup cases are implemented with Nx = 2000 
N/mm. 

 
Table B.1 
Strength predictions for layup case A.  
Layup 
case 

Imp. 
% of b 

t (mm) No. of plies 
(no. of ply 
regions) 

No. of 
terms 

Δη σFPF 
(MPa) 

σmax 
(MPa) 

σmax_ref 

(MPa) 
 

A1 0.1 10.02 34 (306) 607 0.05 40.71 59.68 122 0.49 
A2 0.1 16.70 34 (306) 607 0.10 88.98 183.91 180 1.02 
A3 0.1 24.94 34 (306) 407 0.10 185.02 188.98 220 0.86 
A4 0.1 33.40 34 (306) 407 0.10 314.48 321.78 293 1.10 
A5 0.1 49.98 34 (306) 247 0.10 393.91 608.32 588 1.03 
A1 1.0 10.02 34 (306) 607 0.05 37.91 58.67 120 0.49 
A2 1.0 16.70 34 (306) 607 0.10 75.63 181.03 178 1.02 
A3 1.0 24.94 34 (306) 407 0.10 124.70 159.49 215 0.74 
A4 1.0 33.40 34 (306) 407 0.10 178.37 237.00 268 0.88 
A5 1.0 49.98 34 (306) 247 0.10 276.93 420.37 460 0.91 
A1 3.0 10.02 34 (306) 607 0.05 69.03 69.66 110 0.63 
A2 3.0 16.70 34 (306) 607 0.10 75.49 104.23 176 0.59 
A3 3.0 24.94 34 (306) 407 0.10 89.64 136.78 197 0.69 
A4 3.0 33.40 34 (306) 407 0.10 108.06 282.17 264 1.07 
A5 3.0 49.98 34 (306) 247 0.10 146.46 393.28 425 0.93 
 
Table B.2 
Strength predictions for layup case B.  
Layup 
case 

Imp. 
% of b 

t (mm) No. of plies 
(no. of ply 
regions) 

No. of 
terms 

Δη σFPF 
(MPa) 

σmax 
(MPa) 

σmax_ref 

(MPa) 
 

B1 0.1 8.00 8 (72) 607 0.05 32.61 32.61 97 0.34 
B2 0.1 16.00 16 (144) 607 0.10 92.19 92.82 184 0.50 
B3 0.1 24.00 24 (216) 407 0.10 192.24 198.83 211 0.94 
B4 0.1 32.00 32 (288) 407 0.10 206.42 274.11 284 0.97 
B5 0.1 48.00 48 (432) 247 0.10 207.85 313.24 347 0.90 
B1 1.0 8.00 8 (72) 607 0.05 28.87 42.54 100 0.43 
B2 1.0 16.00 16 (144) 607 0.10 77.18 89.81 178 0.50 
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B3 1.0 24.00 24 (216) 407 0.10 134.05 158.24 209 0.76 
B4 1.0 32.00 32 (288) 407 0.10 188.50 251.44 266 0.95 
B5 1.0 48.00 48 (432) 247 0.10 198.50 294.05 333 0.88 
B1 3.0 8.00 8 (72) 607 0.05 32.58 33.26 100 0.33 
B2 3.0 16.00 16 (144) 607 0.10 62.52 85.97 170 0.51 
B3 3.0 24.00 24 (216) 407 0.10 91.95 191.02 198 0.96 
B4 3.0 32.00 32 (288) 407 0.10 116.44 235.98 249 0.95 
B5 3.0 48.00 48 (432) 247 0.10 158.48 272.76 311 0.88 
 


