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1 Abstract

The present report is concerned with the evolution of boundary layers during runup of solitary waves on

a beach in a wave tank of depth 0.2m. It comprises both theory and high resolution PIV measurements

of velocity profiles. A linear stability analysis of the boundary layer for solitary waves running up a

sloping beach is performed by means of the Orr-Sommerfeld equation. Due to the increased retardation

phase during runup, the amplification of disturbances in the boundary layer is increased as compared

to that of solitary waves traveling on constant depth. On the basis of these results, we reexamine the

experimental results by Pedersen et al. [11] and find some experimental evidence for Tollmien-Schlichting

waves destabilizing the flow.

2 Introduction

Runup on waves on inclined planes, with apparent applications to tsunamis and coastal engineering, is a

topic which has been studied in a series experimental and theoretical papers over the last 60 years, say.

Any kind of review is beyond the scope of this report and we refer to the references given in the papers

cited below. In [7, 8] runup on a broken beach was investigated, among other things. For reference also

the standard experiment of runup on an inclined plane was revisited. Surprisingly, these experiments

yielded much lower runup than theoretical inviscid models. The presence of a viscous boundary layer

was apparent, but this was inadequately resolved in the measurements. A new set of experiments, with

particular emphasis on shoreline tracking and measurement of viscous boundary layer for solitary waves

incident on a beach was performed and published in Pedersen et al [11]. In some cases they found very

good general agreement between their experimental and numerical velocity profiles in the boundary layer.

They also unraveled a delay in the runup, most pronounced for small amplitudes, due to capillary effects.

Moreover, the reduced runup heights from [7, 8], as compared to inviscid theories, were reproduced. In

[11] this was linked to the viscous effects through integrated mass transport deficiencies and dissipation

in the boundary layer, which points to a scale dependency of wave tank experiments of this kind. A

survey of the experimental literature also suggested that this was observed before, although being little

appreciated.

In some of the experiments reported by Pedersen et al. [11] they observed undulations in the steamline

patterns of the boundary layers followed by the development of structures that may be vortex rollers.

During withdrawal, when the flow again is accelerated, the boundary layers returned to a regular flow

without signs of instabilities or transition. Since no previous analysis or investigation of boundary layers

on beaches was available, the authors compared their findings to the related case of boundary layers
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under solitary waves for which there is a small number of studies in the literature. In particular, the

works by [12, 14, 15, 9] reported the boundary layer stability under solitary waves to be of parametric

nature, meaning that the boundary layer turns unstable in an absolute sense beyond a critical Reynolds

number. Instabilities did first occur in the retardation phase where an inflection point develops in the

boundary layer profile. Since the flow during runup on a beach is a retarded one [11] suggested that

it may have similar boundary layer properties and found irregularities for Reynolds numbers of similar

magnitudes as [12, 14, 15, 9]

Another line of research was attempted by [2] who subjected the stability of boundary layers under

solitons on constant depth to stability analysis by means of an Orr-Sommerfeld type equation. Later [13]

has taken this line of approach much further and contested the concept of parametric instability with a

critical Reynolds number. The latter reference found, on the basis of a linear stability analysis, that the

boundary layer under a solitary wave is convectively unstable, meaning that the boundary layer acts like

a broadband amplifier for incoming perturbations. They explained the observation of diverging critical

Reynolds numbers found by [12, 14, 15, 9] by the fact that the level of noise in these experiments and

direct numerical simulations was uncontrolled and therefore no repeatability of the flow transition could

be expected.

The results [13] motivates us for a renewed investigation of the boundary layers during runup. Herein,

we shall investigate the stability properties of the boundary layer under solitary waves running up a slop-

ing beach numerically by means of linear stability. In particular we apply the Orr-Sommerfeld equation

to the boundary layer profiles computed in [11]. New experiments have not yet been finalized, but the

measurements of [11] will be re-processed and interpreted in light of the stability analysis. In particular

we seek experimental evidence for the present theoretical results.

The present note is organized as follows. In section 3, a short description of the problem is presented.

Following, we explain the basic equations of the present linear stability analysis in section 4. This

section also contains the discussion on the theoretical results of the present note. We then turn to the

reexamination of the experimental work by Pedersen et al [11] in section 5. Next to a short description

of the experimental post-processing, the results of the reexamination are discussed in this section. The

present note is concluded in section 6.

3 Description of the problem

The set up was defined in [11] and will only be summarized briefly here. A solitary waves with amplitude

a is traveling from left to right with speed c in a basin with constant depth d = 0.2m which is then

joined by a plane with inclination angle θ = 10◦. In the experiments the wave is generated by a piston

wave paddle, while it is introduced through initial conditions in the numerical wave models.

The amplitudes of the solitary waves vary between approximately a/d ∼ 0.1 to a/d ∼ 0.5. However,

most emphasis is put on a/d = 0.292 for which we have best measurements. This is also the only

amplitude subjected to stability analysis. As shown in the figure we have a coordinate system x, z

aligned parallel and normal to the beach, respectively. For use in the boundary layer computations the

x axis is construed to follow also the flat part of the bottom, still with z denoting the normal direction,

which then is vertical. In addition we have a horizontal/vertical ξ, ζ system. The origin of both systems

are located at the equilibrium shoreline. Some features of the setup are shown in figure 1. In the

discussion of the stability theory we will use rescaled, non-dimensional, coordinates. Elsewhere units will

generally be applied, or the scaling explicitly stated (such as a/d ≈ 0.3).
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Figure 1: Sketch of problem. Upper panel: Side view of wave tank with the initial wave and the surface
at maximum runup as obtained from an inviscid model for a/d ∼ 0.3. The time series from the gauge
is used to synchronize experiments and theory. Lower panel: the swash zone at maximum runup for
a/d ∼ 0.3 with true aspect ratio. The lower and upper rectangles are FOV 2 and 3, respectively. FOV
1 is located in mid-tank in about the same position as FOV 2.

At ξ = −d/ tan θ, the plane beach is installed. When the solitary wave reaches this points it will

start to produce a gentle reflection, which will mildly influence the properties of the boundary layers

close to the start of the beach. During shoaling the front will steepen, yielding a shorter and stronger

acceleration phase as compared to retardation phase. When the solitary wave reaches the shoreline,

it will develop a thin swash tongue running up the beach( see lower panel of figure 1) . Gravity will

decelerate and then reverse the flow. The flow is first reversed close to the ξ = 0 and finally at the

moving shoreline when the maximum runup height is reached. The flow is then reversed everywhere

reverse and the draw down phase starts. Figure 2 shows a time series of the free stream velocity Uinviscid

of the boundary layer for the positions in figure 3. The typical free stream velocity of a solitary wave

in the constant-depth part of the tank displays an acceleration phase followed by a retardation phase

in a symmetrical fashion. In the lowest part of the swash zone a short acceleration phase is followed

by a longer retardation which then is conceived as acceleration again as the flow is reversed. Further

up the beach the initial acceleration phase is missing and the deceleration phase is even stronger. The

larger velocities and stronger retardation during runup must be expected to increase the amplification of

perturbations in the boundary layer, destabilizing the flow, as compared to the propagation on constant

depth. This boundary layer was investigated by Pedersen et al. [11], who solved the boundary layer

equations numerically, with outer flows taken from numerical solutions of inviscid wave models. In

addition they performed PIV measurements of the boundary layer flow at selected positions as indicated

in figure 1. As mentioned in the introduction, the theoretical and experimental profiles were agreeing well,

except for some cases, where instabilities were observed to change the flow pattern. The investigation

of the stability properties of the boundary layer flow is the focus of the present work, which can be

considered a continuation of the work by Pedersen et al. [11]. We shall first perform some theoretical

considerations, section 4, before turning to the reexamination of the PIV measurements at the locations
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Figure 2: Free stream velocity for different values of ξ∗/d in finite depth and onshore.

in figure 1, cf. section 5.

4 Theory

4.1 Basic equations

In [11], the boundary layer flow under a solitary wave running up a sloping beach was solved numerically.

We shall use this solution to perform a stability analysis by means of the Orr-Sommerfeld equation. The

solution of the boundary layer equations in [11], leads to a velocity field

Ubl(x, y, t) Vbl(x, y, t), (1)

in the boundary layer, which is the subject of the present linear stability analysis.

The scaling of quantities in equation (1) is the following. The velocities in tangential and wall normal

direction are scaled by the shallow water speed
√
gd. Time is scaled by d/

√
gd and horizontal lengths

are scaled by d. On the other hand, wall normal lengths are scaled by δ∗, where δ∗ is a viscous length

scale defined in [14, 15]:

δ∗ =

√

2νd√
gd
. (2)

The scale δ∗ allows for a non-dimensional small parameter δ = δ∗/d, which equals for the present flow
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depth:

δ = 2.67 · 10−3. (3)

The Reynolds number Re for a scaling based on δ∗ and
√
gd is given by:

Re =
2

δ
. (4)

In equation (1) the components are tangential and normal to the bottom. Hence, for x∗ < −d/ sin θ,
cf. figure 1, the tangential coordinate is given by ξ, whereas the normal coordinate is given by ζ. Thus,

the coordinate system for the boundary layer analysis thus always follows the bottom of the wave tank.

The flow defined by (1) is time dependent which necessitates some specification about the exact sense of

instability in the present case, since traditionally instability is defined as the departure from one steady

solution to another flow regime. The meaning of instability employed here is akin to the concept of spatial

growth for a steady boundary layer [6]. For spatial growth, the boundary layer flow is characterized by

slow horizontal change, whereas the perturbation displays a rapid variation in the horizontal direction.

This concept of two scales, a slow scale for the base flow and a fast one for the perturbation, is in the

present note applied to the temporal variation of the flow. The resulting formulation is equivalent to the

one in [1]. Given a position x0 along the beach, the boundary layer flow can be regarded as a succession

of slowly varying profiles in z. The stream function ψ′ of a Tollmien-Schlichting wave with wave number

α can then be written as:

ψ′ = φ(y) exp{iαx− ωt}, (5)

where φ is a shape function in wall normal direction. The imaginary part of the complex number ω gives

us the frequency of the perturbation, whereas the real part stands for the growth rate of the perturbation.

The Tollmien-Schlichting wave displays fast variation compared to the base flow. However, the quantities

φ and ω are assumed to vary on the same scale as the base flow. The governing equation for ψ′ is the

celebrated Orr-Sommerfeld equation [3]:

1

Re

(

D2 − α2
)2
φ− (iαUbl − ω)

(

D2 − α2
)

φ+ iαD2Ublφ = 0, (6)

where D = d/dz. In contrast to the traditional solution of (6), the flow field is not varied in x, but in t,

that means, we fix a certain position x0 and apply equation (6) on a series of profiles for t. Equation (6)

is an eigenvalue problem for the eigenvalue ω and the eigenvector φ. The boundary layer flow becomes

unstable, as soon as the real part of ω for any wave number α becomes positive. The region in the (t, α)

plane for which the real part of ω vanishes is called the neutral curve. It separates the stable from the

unstable region. In addition to the neutral curve, the total amplification of the Tollmien-Schlichting

wave is of major interest, as it tells us by which factor the perturbation will grow during the passage of

the solitary wave. The amplification A/A0 is computed by the following formula:

A

A0

= exp

t
∫

t0

real (ω) dt. (7)

Equation (6) is solved by means of a Chebyshev collocation method as in [13], with 130 nodes in y

direction. The following section presents the results of the above Orr-Sommerfeld analysis applied to the

boundary layer flow in [11].
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4.2 Results

The Orr-Sommerfeld equation, equation (6), is solved for a number of positions along the boundary. In

the following, we denote each position by its horizontal distance ξ from the origin. The value of the

abscissa x on the beach is then obtained by

x =
ξ

cos θ
. (8)

In figure 3, the neutral curves in the (t, α) for these positions are plotted. When the solitary wave is still

propagating on constant depth (for ξ < −1/ tan θ ≈ −5.67), the shape of the neutral curve for early times

is close to the one for a solitary wave traveling in an infinite basin of constant depth d [13]. The neutral

curve starts behind the crest of the solitary wave, where the external flow is decelerating and the resulting

external pressure gradient causes the flow in the boundary layer to reverse. However, for later times, the

shape of the neutral curves differs from the one of a solitary wave in an infinite basin. The neutral curve

reconnects and forms a closed curve much earlier in time. This is due to the reflection of the solitary wave

on the beach, which leads to a wave (different in amplitude and shape) traveling the opposite direction,

i.e. from right to left. This wave is again characterized by an initial acceleration phase, which stabi-

lizes the flow and leads to an earlier closure of the neutral curve for positions further away from the beach.

For positions on the beach, we see a continuous evolution of the shape of the unstable region. Its

extent in time decreases until the equilibrium shoreline ξ = 0, when its duration starts to increase again.

The span in wave numbers α increases for increasing ξ. For later times the neutral curve develops a kind

of bump for ξ ≥ 2. Even if the neutral curves in the boundary layer of a solitary wave running up a sloping

beach display some evolution when compared to the neutral curve for a solitary wave propagating on

constant infinite depth, the most dramatic change is in the amplification of the perturbations. In figure

4 top, the amplification of the critical Tollmien-Schlichting waves is plotted for the positions defined

in figure 3. Far from the beach, the amplification of the critical Tollmien-Schlichting wave corresponds

basically to the one of a solitary wave traveling in an infinitely long basin. However as we approach

the shoreline, the maximum amplification decreases, only to show a strong increase towards the end of

the swash tongue. This indicates that the stability features in the boundary layer of the swash tongue

differ significantly from those of the boundary layer under a solitary wave traveling on constant depth.

Further evidence can be obtained by looking at the phase speed of the critical Tollmien-Schlichting

wave, cf. figure 4 bottom. Since the Tollmien-Schlichting wave is advected by the flow in the boundary

layer, its phase speed reflects qualitatively the boundary layer flow. Far from the beach, we observe

first an acceleration of the Tollmien-Schlichting wave before the wave decelerates and moves in opposite

direction. This pattern is slowly varied when moving towards the beach with the acceleration phase

becoming shorter. Further up the beach ξ = 2, 4, the acceleration phase is even completely missing and

we only observe a deceleration phase in the beginning. For later times we observe a strong acceleration of

the Tollmien-Schlichting wave down the beach. We remark that the very vicinity of the moving shoreline

our solution is not correct. Firstly, the wave model from [11] do not include surface tension which will

modify the dynamics of the shoreline (contact point). Secondly, the abrupt on-set of the outer flow when

a given x position is inundated causes numerical large numerical errors locally.

5 Experimental work

In the present section we employ dimensional quantities, while omitting any stars.
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Figure 3: Neutral curves in the (t, α) plane for the boundary layer flow in [11]. The curves are computed
for different values of ξ∗/d, which is annotated as a label to the respective curve in the figure.
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Figure 4: Top: Amplifications of the critical Tollmien-Schlichting waves in figure 3. Bottom: Phase
speed of the critical Tollmien-Schlichting waves. Curves are marked with ξ⋆/d.
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5.1 Experimental setup and instrumentation

Experiments were performed in a wavetank with length 25m, width 0.51m and depth 1m. Both the

walls and the bottom is made of glass, suitable for optical measuring techniques. A plane beach of 10◦

inclination was installed with the undisturbed shoreline located 7.1m from the wave paddle. The incident

solitary waves were generated by a piston type wave paddle by a modified “Goring’s method”, which

is explained in [5]. The generated waves had the amplitudes a/d = 0.0977, 0.195, 0.292, 0.388, 0.481.

A non-intrusive acoustic wave gauge (Banner U-Gage S 18U) was employed to measure the incident

waves at a distance of 2.045m from the equilibrium shoreline. This gauge was also used to monitor the

equilibrium depth.

A PIV (particle image velocimetry) system was used to measure the velocity fields at the beach.

Three field of views (FOV) were employed in in the work by PAL, one FOV was placed in the middle

of the tank (25 cm from the side wall), 8 cm from the shoreline and with a window size of 5.6 cm ×
5.6 cm. Two of them were located 5 cm from the side wall closest to the camera, placed 7.5 cm and 81 cm

from the equilibrium shoreline position. These had window size of 2.3 cm × 2.3 cm and 3.3 cm × 3.3 cm

respectively. The camera was aligned parallel to the beach, with resolution of 1024 × 1024 pixels and

2000-5000 frames per second. Wave gauges and PIV system was synchronized with the wave paddle,

with t = 0 as the start of the paddle motion. A more detailed description of the experimental setup and

instrumentation are found in [11].

5.2 Post-processing

The main purpose of the investigation in 2013 was to determine the cause of reduced runup heights in

experiments compared to numerical models. Irregularities in the flow were detected in the upper FOV

as well as in the lower FOV located in the middle of the wave tank. The main focus in the present

work is to reanalyze the fluctuations in the flow in the upper FOV. Here, we apply a different kind of

filtering to reveal some more details regarding these irregularities. Our main attention is given to the

case a/d = 0.292. and especially the second of the three runs (Run 2). There is no strict repeatability

considering amplitudes and time range of the detected irregularities and Run 2 displays the most distinct

and regular oscillations in the flow pattern. Run 2 is also the one with the best seeding and, hence, the

most accurate measurements. However, the difference in the measurement quality is probably not the

sole reason for the differences between the experiments. For Run 1 and Run 3 the oscillations lasted for

a shorter time, in addition to being less distinct. Both spatial and temporal resolution is considered for

Run 2 while only spatial resolution is applied for Run 1 and Run 3.

To reduce noise, the data is averaged over 0.003 s in time and 0.02mm in x. We note that the

averaging period is smaller than in [11], where 0.01 s was applied. Figure 5 shows the filtered data where

the fluctuations are visible. In order to extract perturbations from velocities, the horizontal velocity

component is separated into a base flow, which is approximated as a linear function u0 + u1x, and

perturbations up:

u = u0 + u1x+ up (9)

In order to verify the linear approximation of the base flow, it is compared with theoretical computations

at the same position and time regime for nonlinear boundary layers which display a L2 norm of residuals

in order of 10−5 m/s for spatial resolution and 10−3 m/s for temporal resolution. Figure 6 shows the

original data, u, and the perturbations, up, from run 2 at z = 1.9mm for t = 6.43 s in spatial resolution

and x = 0.807m for temporal resolution.

In addition the seeding in Run 1 and Run 3 were less dense than for Run 2, which resulted in reduced

quality of the processed data due to lack of valid velocity vectors.
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1.9mm. Left: Spatial resolution, t = 6.43 s. Left: Temporal resolution, x = 0.807m. a/d = 0.292 Run
2.

Once the perturbations are extracted from the data, the first and last zero-crossings of the perturba-

tions within the FOV are found and Fourier transformation is applied within the interval confined by the

zero crossings. Thus, the chosen domain will determine the wavelengths in the Fourier transformation.

This method is crude, and one must keep in mind that the length of the chosen sequence will vary in time

or space for spatial or temporal resolution respectively. As a consequence of this is that the components

of the Fourier transformation will also vary. Figure 7 shows the selected sequence, denoted ucut, and the

first five terms of the corresponding Fourier transformation for run 2 at t = 6.43 s and x = 0.807m.

Amplitudes of the Fourier components are normalized with the outer velocity of the flow. The outer

flow is extracted from the PIV data at z = 6.5mm. There are drop outs in the outer flow, caused by poor

seeding. Due to this, the outer flow velocity is taken as the median (mean of the middle two numbers in

sorted order) over the chosen sequence for each time frame in spatial resolution and for each x-position

in temporal resolution. For spatial resolution, the outer flow vary slightly within the FOV for each time

frame, with maximum variation of 3%. Variation of the outer flow in temporal resolution is larger, with

a maximum of 25%.

When possible, wavelengths or periods of the oscillations are found from visual inspection (no math-

ematical interpolation involved) of all the zero crossings of the perturbations within the FOV or time

range considered. The method is to extract the distance between zero crossings covering one wavelength,

for all wavelengths within the chosen sequence. The final estimate for the wavelength is then the average

of all distances found within the sequence. This method is even more crude and are used for comparison

to the Fourier transformation.

5.3 Experimental observations

5.3.1 Results of a/d = 0.292, Run 2

Figure 9-11 shows streamlines at different stages of the flow during run up and draw down, while figure

12 shows the corresponding horizontal velocity component, u, at z = 1.9mm. No irregularities are

noticeable in the early stage of the run up, then small fluctuations occur which develop to what might

be related to Tollmien Schlichting waves. These waves are regular for a very short time before the

oscillations become more irregular, followed by formation of vortices in the boundary layer which seems

to be transported outwards. Irregularities are not visible during draw back. The most regular oscillations
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Figure 9: Streamlines extracted from a/d = 0.292 Run 2. Left image, t = 6.35 s, shows the early stage
of run up with no sign of fluctuations, the irregularities in the upper right is caused by lack of seeding.
Right image, t = 6.39 s shows the streamlines when fluctuations occur.

are detected in run 2 at z = 1.9mm, as seen in figure 8 where the horizontal velocity component of the

flow for z = 1, 2, 4 and 6mm is shown.

Figure 13 shows wave numbers ki, i = 0, 1, 2, 3, 4, together with corresponding amplitudes for t = 6.37,

6.41, 6.43 and 6.46 s. The amplitudes are normalized with the outer flow which is extracted from the PIV

data. Inspection of amplitudes of the Fourier components reveals that k1 is the dominant component of

the perturbations. Temporal evolution of amplitudes for k1-k4 are shown in figure 14.

A phase of strong growth in A1 is evident for t between t = 6.38 s and t = 6.43, say. Since we do

not have any knowledge of “initial amplitudes” in the experiments the amplitudes themselves cannot be

related to theory, but times and relative growth rates, A−1dA/dt, can be compared. It is remarkable that

for the given position the theory (figure 4, ξ/d = 4 ) predicts tc = 6.38 s (critical time of instability when A

starts to grow). However, while the growth in the experiment takes place in the range 6.38 s− 6.43 s, with

a relative growth rate of 80 s−1 in the first part of this range, the growth in the theory lasts until t = 6.9 s,

with a maximum relative growth rate of 15.7 s−1 at t = 6.66 s. Naturally, the estimates of the growth rates
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Figure 10: Streamlines extracted from a/d = 0.292 Run 2. Left image, t = 6.43 s, shows the streamlines
when the Tollmien Schlichting waves appear in the flow. Right image, t = 6.69 s shows the first generated
vortex.
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Figure 11: Streamlines extracted from a/d = 0.292 Run 2. Left image, t = 6.77 s, Vortices are transported
outwards. Right image, t = 7.24 s no sign of irregularities during draw back.
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Figure 12: Velocities extracted from a/d = 0.292 Run 2. Left image: horizontal velocity component u,
t = 6.31 s, t = 6.39 s and t = 6.43 s in blue, red and black. Right image: t = 6.69 s, t = 6.77 s and
t = 7.24 s in blue, red and black.
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Figure 13: a/d = 0.292 Run 2. Wave numbers ki, i = 0 : 4 with increasing k from left to right and
corresponding amplitudes of the perturbations at t = 6.37 s upper left, t = 6.39 s upper right, t = 6.43 s
lower left, t = 6.46 s lower right.

in the experiments are inaccurate. According to figure 10 in [10] there may also be significant differences

in the base flows (boundary layer profiles before instability becomes noticeable) between experiments and

theory. A difference must be assumed since the experimental and theoretical/inviscid runup height differs

by 20% and FOV 2 is close to the shoreline (see figure 1). Still, the differences concerning growth rate

are so substantial that we cannot rule out the possibility that the rapid experimental transition around

t = 6.40 s may be a secondary instability and that the first linear instability is lost in the measurements.

According to [4] a secondary instability may be expected when the magnitude of undulations reaches,

say, 1% of that of the base flow, while we measure the strong growth rates when the amplitudes are

between 1% and 5% of the base flow.

Wavelengths, λ1-λ4, are shown in figure 15. Eddies that are formed in the later stage are shown

in figure 16. The average distance measured between two consecutive eddies, shown in the figure,

is 5 × 10−3 m. Wavelengths, λ1, are given in table 1 together with amplitudes of the perturbations,

outer velocities and wavelengths, λviz, that are found by purely visual inspection. Wavelengths λ1 vary

between 1.01 cm and 1.57 cm, while the critical wave number extracted from the theoretical neutral curve

corresponds to a wavelength of 1.05 cm. Hence, the length of first unstable mode in the analysis is clearly

of the same order as the lengths observed in the experiment. Results from the temporal resolution are

given in table 2, where periods T1 are listed together with amplitudes of the perturbations, outer velocity

and periods Tviz that are found by visual inspection.
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Time k0 [m−1] λ1 [m] λviz [m] uout [m/s] A1/uout
6.37 s 2.40× 102 1.31× 10−2 - 7.94× 10−1 0.46× 10−2

6.38 s 2.12× 102 1.49× 10−2 - 7.74× 10−1 0.28× 10−2

6.39 s 3.10× 102 1.01× 10−2 - 7.48× 10−1 0.80× 10−2

6.40 s 2.13× 102 1.47× 10−2 - 7.23× 10−1 1.94× 10−2

6.41 s 2.59× 102 1.21× 10−2 1.2× 10−2 6.92× 10−1 4.37× 10−2

6.42 s 2.12× 102 1.49× 10−2 1.2× 10−2 6.72× 10−1 4.25× 10−2

6.43 s 2.32× 102 1.36× 10−2 1.4× 10−2 6.62× 10−1 5.94× 10−2

6.44 s 2.01× 102 1.57× 10−2 1.4× 10−2 6.35× 10−1 4.63× 10−2

6.45 s 2.33× 102 1.36× 10−2 - 6.19× 10−1 2.55× 10−2

6.46 s 2.05× 102 1.54× 10−2 - 6.02× 10−1 1.63× 10−2

Table 1: a/d = 0.292 Run 2. Wave numbers k0 and wavelengths λ1 extracted from Fourier transforma-
tion, wavelengths λviz extracted manually from the figures, outer velocity uout and amplitude A1/uout

x [m] ω0 [rad/s] T1 [s] Tviz [s] uout [m/s] A1/uout
0.800 1.30× 102 2.42× 10−2 - 6.71× 10−1 5.1× 10−2

0.802 1.30× 102 2.42× 10−2 - 6.62× 10−1 5.1× 10−2

0.803 1.30× 102 2.42× 10−2 3.0× 10−2 6.56× 10−1 4.93× 10−2

0.805 1.06× 102 2.95× 10−2 2.4× 10−2 6.74× 10−1 2.98× 10−2

0.807 1.42× 102 2.22× 10−2 2.6× 10−2 6.79× 10−1 3.77× 10−2

0.815 1.30× 102 2.42× 10−2 2.6× 10−2 6.95× 10−1 3.52× 10−2

0.816 1.23× 102 2.55× 10−2 2.8× 10−2 6.99× 10−1 3.40× 10−2

Table 2: a/d = 0.292 Run 2. Angular frequencies ω0 and periods T1 extracted from Fourier transforma-
tion, periods, Tviz extracted manually from the figures, outer velocity uout and amplitude A1/uout

5.3.2 Brief overview of a/d = 0.292, Run 1 and Run 3

Results from the spatial resolution is extracted from the data for Run 1 and Run 3 and given in tables

3 and 4. Amplitudes of the perturbations are markedly smaller in Run 1 compared to Run 2, while for

Run 3 the amplitudes are comparable to those of Run 2. One should also notice that the time range for

the oscillations are shorter in Run 1 and Run 3 compared to Run 2.

Time k0 [m−1] λ1 [m] λviz [m] uout [m/s] A1/uout
6.41 s 2.77× 102 1.14× 10−2 - 6.93× 10−1 1.08× 10−2

6.42 s 3.53× 102 0.89× 10−2 1.5× 10−2 6.90× 10−1 0.59× 10−2

6.43 s 2.34× 102 1.34× 10−2 - 6.62× 10−1 2.76× 10−2

6.44 s 2.69× 102 1.17× 10−2 1.2× 10−2 6.59× 10−1 2.24× 10−2

6.45 s 2.29× 102 1.38× 10−2 1.2× 10−2 6.38× 10−1 2.31× 10−2

6.46 s 2.24× 102 1.41× 10−2 1.2× 10−2 6.17× 10−1 1.17× 10−2

Table 3: a/d = 0.292 Run 1. Wave numbers k0 and wavelengths λ1 extracted from Fourier transforma-
tion, wavelengths λviz extracted manually from the figures, outer velocity uout and amplitude A1/uout

5.3.3 Irregularities of a/d = 388 and a/d = 0.481

The largest waves with a/d ∼ 0.4 and 0.5 were unstable during runup in the upper FOV. Attempts to

find structures akin to Tollmien Schlichting waves have been made. Unfortunately, they failed due to

poor seeding in the start of the runup tongue causing loss of velocity vectors in the early stage of the

runup.

Fluctuations, but without good repeatability, were also detected for a/d ∼ 0.5 in the FOV located

close to equilibrium in the middle of the tank. The flow turned unstable in one out of four experiments.

Video recordings revealed that the beach experienced a depression (up to 1mm) during runup due to

the load of the swash flow. However, at present it is not clear how this may cause pronounced transverse
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Figure 14: a/d ∼ 0.3 Run 2. Growth in amplitude for k1 (upper left), k2 (upper right), k3 (lower left),
k4 (lower right), t = 6.37− 6.46 s.

6.37 6.39 6.41 6.43 6.45
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time [s]

λ 
[m

]

Case30, Run2

 

 

λ
0

λ
1

λ
2

λ
3

λ
4

Figure 15: a/d ∼ 0.3 Run 2. Wavelengths
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Figure 16: a/d = 0.292 Run 2. Streamlines with eddies at t = 6.70 s

Time k0 [m−1] λ1 [m] λviz [m] uout [m/s] A1/uout
6.37 s 2.54× 102 1.24× 10−2 1.2× 10−2 7.76× 10−1 2.90× 10−2

6.38 s 2.44× 102 1.29× 10−2 1.5× 10−2 7.60× 10−1 4.69× 10−2

6.39 s 2.30× 102 1.37× 10−2 1.2× 10−2 7.31× 10−1 4.41× 10−2

6.40 s 2.13× 102 1.47× 10−2 1.2× 10−2 7.13× 10−1 4.30× 10−2

6.41 s 2.35× 102 1.34× 10−2 1.3× 10−2 7.06× 10−1 4.30× 10−2

6.42 s 2.54× 102 1.24× 10−2 - 6.92× 10−1 3.23× 10−2

Table 4: a/d = 0.292 Run 3. Wave numbers k0 and wavelengths λ1 extracted from Fourier transforma-
tion, wavelengths λviz extracted manually from the figures, outer velocity uout and amplitude A1/uout

variation in the evolution of the boundary layers. In any case, the largest wave may be close to the

transitional regime also in the start of the runup.

6 Remarks

[13] suggested that local instability is always to be expected in the decelerated parts of bottom boundary

layers in transient or oscillatory flow. This is supported by the present theoretical investigation of

instability in swash zone boundary layers. A crucial quantity from linear stability analysis for a flow

of this type is the total amplification during the span of the unstable period. For a solitary wave

in constant depth of 0.2m this amplification is modest. It then decreases during shoaling while it is

strongly increased, well beyond that in constant depth, in the swash zone, where we have large velocities

and decelerations. Hence, in a runup experiment transition in the boundary layer are most likely to

appear onshore.

It is to be expected that small scale features, such as undulatory behaviour in a boundary layer is,

difficult to detect experimentally. From the experiments in [11] we could identify only one FOV in a

single experiment with velocity measurement of sufficient quality for revelation of distinct flow patterns

resembling Tollmien Schlichting waves. It is encouraging that for this experiment we found very good

agreement for the time of appearance of instabilities and that the dominant length of the experimental

undulations are close to the length of the critical Tollmien Schlichting waves. However, the realtive
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growth rate of the observed waves cannot be reconciled with theoretical growth rates. Other repetitions

of the same experiment suffered from poorer seeding leading to a lower quality in the measurements.

Still, this is unlikely as a single explanation for the lack of reproducibility. Even though, irregular flow

was observed in these repetitions as well, there were substantial differences in both amplitudes and the

duration of the oscillations. According to [13] poor repeatability may be expected in such a case due to

the nature of the instability and the absence of a controlled perturbation of the flow. To produce firm

experimental evidence of the boundary layer instabilities in swash flow on this scale one would probably

have to make a vast number of repetitions with well controlled sources of noise of different magnitudes.

Moreover, according to, for instance, [4], a secondary instability may be expected when the magnitude

of undulations reaches, say, 1% of that of the base flow. In our good experiment they reach 3-5% before

vortex formation is observed and it is possible that the observed growth may be associated with the

secondary rather than primary, linear instability. Methods like the PIV often have a noise level of order

1%, which makes direct observation of the first linear stage of the instability difficult in the first place.
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