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2. Summary 

reasons. This thesis addresses challenges associated with the use of museum data, such 
as sampling bias (paper I and II), the sample size and the design of pseudo-absence/
background data (paper II and III) and the sample size of presence data (paper IV). The 
understanding of how these factors affect species distribution models needs to be based 
on ecological theory. In paper I sampling bias is defined and explained with reference to 
gradient analytic reasoning and macro-ecological biogeographic theory. A set of presence 

observed 

distribution of the true
framework for assessment of sampling bias in presence-only datasets, typically used for 

presence/absence data, sampling bias can be identified by statistical methods. In cases 
without availability of such data, indications of sampling bias can be obtained by visual 

expert knowledge about the species into account). Shape differences between the two 
curves may indicate sampling bias in the response data. Four types of sampling bias can 

sampling gap, i.e., lack of presence observations at one or both of the species’ tolerance 
limits; and (4) stochasticity, i.e., unsystematic variation in sampling effort. It is important to 

the species in the study area. The extent to which strong cases for or against sampling bias 

curve. 

We also provide a framework for assessment of effects of sampling bias on species 
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databases and to explore the effects of sampling bias on Maximum Entropy (MaxEnt) 

conditions in sites where the focal species had been sampled and the ecological conditions 

complex models. This demonstrates good ability of the MaxEnt method to fit response 
models to the data, while at the same time points out that the appropriateness of these 

also show that, in some cases, complex models overfit to irregularities in the presence data, 
and that simpler models fit the more general responses to the environmental variables, 
without significantly loosing predictive power in terms of AUC. Such complex models are 
difficult to interpret ecologically and may not be transferable to other areas or future 
climates.

absence data generated by different sampling designs and in different numbers were added 

had minimal effect on the predictive performance (measured by AUC), while sampling 
design strongly influenced the AUC values. This was attributed to the relationship between 
the environmental range of the pseudo-absences (i.e. the extent of the environmental 
space being considered) and the environmental range of the presence observations (i.e. 



under which environmental conditions the species occurs). Results from paper II and IV 

the selection of an ecologically informative background.

Scarcity of presence data can also be a major obstacle for the modeling of species 

paper IV the critical sample size (CSS) sufficient for non-random predictions of species 
distributions was assessed. Large presence datasets for thirty insect species were used to 
produce reference distribution models. Models based on replicated subsamples of different 
size drawn randomly from the full dataset were compared to the reference model using the 
index of vector similarity (IVS). Clearly non-random models were obtained with as few as 10 

using a minimum sample size of 10–15 presences for Maxent modeling to obtain additional 
information about a species distribution.

 Small presence datasets (paper IV), the lack of absence data (paper III) and the choice 
of pseudo-absence/background data (paper II) can all be related to the issue of sampling 

I). The dataset is biased if the pseudo-absence/background dataset and the presences 

small presence (or pseudo-absence/background) datasets a high occurrence of stochasticity 
(the fourth type of sampling bias) is expected. 

applied ecology and conservation biology. These methods have been seen as “shortcuts’ 
for inferring past, present and future species distributions, as well as exploring species-

button. This shortcut may, however, turn out to be deceptive in cases where the data 

of how the modeling methods work, how the data are handled, and how models are to 
be interpreted are all essential for predicting when and why limitations in museum data 
become obstacles for making reliable distribution models.
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3. Introduction 

Today species are disappearing at a faster rate than has been seen earlier in the 

extinctions are now caused by human actions such as land use changes, pollution, human 
caused climate change and introduction of alien species to new areas. One of today’s 
greatest challenges is to slow down the rate at which species are disappearing. Two 
obstacles are making this task difficult; the Linnean and the Wallacean shortfalls (Whittaker 
et al. 2005), i.e. the lack of knowledge about which and how many species populate the 
earth and the lack of knowledge about how they are distributed. Species distribution 

distributions will change under an altered climate regime (Thomas et al. 2004, Elith and 

Seddon 2012), to explore species-environment relationships (Osborne and Seddon 2012) 

(and sometimes also absence) data with relevant environmental variables in order to 

In the last couple of decades we have seen a strong proliferation of scientific papers 

methodology arise along the way. Questions such as which algorithms to use (Elith et al. 

2012), which environmental variables to apply, how biotic factors influence the models 

to detect and mitigate sampling bias (Kadmon et al. 2003, Kadmon et al. 2004, Loiselle et al. 

applied for practical, e.g., management purposes. 

This thesis focuses on some of the greatest challenges concerning the application of 
museum data for distribution modeling purposes; the quality and quantity of the training 
data, particularly; the challenges of biased data (paper I and II), the sample size and 
the design of pseudo-absence/background data (paper II and III) and the sample size of 
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presence data (paper IV). In all the papers, and especially in the two first, the focus is also 

modeling process, a topic including the choices of model settings. These are all issues that 

Museum data consist of records associated with objects held in museum collections 
and are the largest source of biodiversity data in the world. There may be as many as 3 

the world’s natural history museums, but only a small fraction of these are digitized and 
georeferenced. Museum data span not only space, but time as well. Collections made in 

museum data a virtual goldmine for those interested in the distribution of species.

Most objects are accompanied by information about the locality where the object was 

of the objects are sampled by museum staff, but most objects are collected in by amateurs. 

sampling locality. This is especially challenging when looking at old data. Earlier the focus 
was rarely on exactly where an organism was found, but rather on variations within species, 
which species it was, etc. As a result, museum staff has had to georeference these objects 
retrospectively by interpreting the often rather insufficient locality information supplied by 

sensu stricto is a specific mountain area in Central 
South Norway. Such specimens will inevitably have a very low georeferencing precision. 

when managing the collections has mostly been on knowing what is in the collections 
and approximately where the material was collected, determined to country or region. 

information tends to include geographic coordinates. 

In addition to varying precision of the locality information, a problem with applying 

sampling should be random or designed to sample the whole environmental gradient, 
which is to be studied. Museum data is, however, likely to be biased towards areas that 
are easily accessible for biologists, that are known for their interesting fauna and flora, or 
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will be inaccurate. One example of biased sampling is the sampling of insects, with sweep 
nets, from cars, thus giving a heavy roadside bias in the resulting data. It is well known 
that the insect collections at the Natural History Museum of the University of Oslo are 
geographically biased to the south, were most people live. Although many authors have 

Anderson and Gonzalez 2011, Feeley and Silman 2011a, McCarthy et al. 2011, Merckx et al. 
2011, Yackulic et al. 2013) there is still a strong need for tools that can aid detection of bias 
and effects of such bias on distribution models, as well as guidelines for use of biased data 

why and how it affects species distribution models, including an unambiguous definition of 

any time a limited number of collectors typically provide a large fraction of the objects 
(of a specific broad taxonomic group) delivered to the museum, objects will to a large 
extent represent the taxonomic groups of interest to the most productive collectors. 
Similarly, charismatic species or species of economic interest will be over-represented 
in the collections. Figure 1 shows that a disproportionately large fraction of the museum 
specimens from the four large Natural History Museums in Norway is made up by 
charismatic species groups such as vertebrates and vascular plants. If we restrict ourselves 
to specimens for which information is available in digital form, the bias is even stringer. The 
flipside of this is that few data are available, not only for rare species, which are hard to 
detect, but also for common species and species that, for some reason, are of little interest 
to the majority of collectors. Small datasets have been found to be a major obstacle for 

2011b, Feeley and Silman 2011a, Kamino et al. 2012). The effect of sample size on species 
distribution models and the existence of a minimum presence sample size needed to 
generate reliable models have been widely debated. There exists a general agreement that 

et al. 2008), but no general consensus regarding the amount of presence data needed to 
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reliably predict a species’ distribution has yet been reached. 

Last, but not least, because museum data differ from observational data by being 
verifiable i.e., that the organism is sampled and stored as a physical object, these data 
do not include absence data, i.e. reliable data on where the species is not present. In the 
absence of absence data, pseudo-absence or ‘background’ data are typically created to 

are contrasted (group discriminating methods). Several principles for generating pseudo-

the use of presence observations for other species in the group of species to which the 

models will depend on the extent to which the assumption of similar biases in training and 

Natural history museums and databases all over the world contain large amounts 

deficiencies of museum data with respect to bias, data-set size and the lack of absence 

limitations of the data and interpret our models accordingly. 
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Figure 1. : Chart showing (a) the percent of all Norwegian species belonging to each 
organism group, (b) the percent of all museum objects in the four largest Natural History 
Museums in Norway belonging to each organism group, (c) the percent of all digitalized 
objects from the four largest Natural History Museums in Norway belonging to each 
organism group.
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3.2. Theory

A good grasp of ecological theory, including knowledge about how species 
distributions are limited, is essential for appropriate use and skillful interpretation of 

2012). Here follows a brief introduction to some topics that are of particular relevance to 
understanding how properties of the data influence distribution modeling results: gradient 
analysis, niche theory, source-sink dynamics and biotic interactions. Albeit these topics are 
all interrelated, I will treat them separately in the next sub-chapters. 

3.2.1. Gradient analysis

the species to selected environmental variables, in environmental space. Knowledge of 

which predicts that species respond to environmental complex-gradients, i.e., sets 
of environmental gradients that act on species in concert, rather than to each single 

variables of importance for the survival of the organisms tend to be correlated with other 
environmental variables. Furthermore, a few major complex-gradients do normally account 

Species’ responses to complex-gradients are typically unimodal, because species 

height of its response curve. Many ecological textbooks have described species response 

species belong to one of two categories; core species, characterized by wide tolerance 



and high abundance, and satellite species, characterized by narrow tolerance and low 

rural, species, although fewer species belong to the urban and rural than to the core and 
satellite species categories. 

response curve is symmetric thus depends on the nature and the scaling of the underlying 

commonness and increasing grid-cell size, while a truncated response curve will result if 

area (Halvorsen 2012). 

3.2.2. Niche theory

literature over the last decades and the ‘niche’ is a key concept in many papers (Guisan 

describing the niche as an n-dimensional hypervolume in which every point corresponds to 



are considered part of Hutchinsons fundamental niche, or if they are to be interpreted as 
factors shaping the realized niche (Halvorsen 2012). 

absences are chosen outside of the fundamental niche. 

(2000) points out that the realized niche may be larger than the fundamental niche, when 

could occur (because the values of the relevant environmental variables are appropriate 

concept as such: ‘Niche 
ecology by helping us to re-characterize what living things do in models.’ As of now it seems 

than being a support.

As long as the niche term remains complicated and ambiguous, I agree with the 
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3.2.3. Metapopulation theory and source-sink dynamics 

In the preceding chapter about niche theory I mention that the understanding of the 
term niche is complicated by metapopulation dynamics. Metapopulation theory shows that 
the distribution of populations is dynamic and shifting through time due to local extinctions 

This explains how a species may regularly be found in unsuitable habitats or be absent 
from suitable habitats. A metapopulation is a ‘population of populations’ made up by a 
shifting mosaic of populations, linked by dispersal (the extent to which dispersal occurs and 
influences the populations will vary). 

mortality may continue to exist because of immigration from higher-productive areas 

same time species are sometimes absent from suitable habitats due to limited dispersal 

2004, Ree and Smith 2008). 

A metapopulation can be made up of several short-lived populations, where the 
distribution of the species changes substantially from generation to generation, it can be 
made up by a few source populations and several sink populations, fluctuating with the 

2010). 

Understanding these dynamics of populations, on different spatial and temporal 
scales, is important for conservation biologists and nature managers, because the 
destruction of a source population may result in the extinction of numerous sink 
populations and because habitat fragmentation limits the dispersal necessary to recolonize 

for distribution modelers by explaining that species’ distributions are dynamic, by providing 
a conceptual model for this dynamics, and by explaining that all presences do not indicate 
suitable habitats, and that all absences do not indicate unsuitable habitats.



3.2.4. Biotic interactions

place between many individuals and over a large area. The larger the study area, and the 
coarser a grid that is used to rasterize this area, the more individuals have to be involved 

local scale as 1–1,000 m, the regional scale as 1,000–1,000,000 m and the global scale 
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There are some difficulties associated with introducing biotic effects as variables 

may represent a (real) biotic interaction, or it may act as a proxy for an unidentified 
environmental variable (Austin 2002). Separating these two cases is difficult because 
interspecific biotic interactions can only be detected at a spatial scale where organisms 
meet and interact (Huston 2002), and this scale will differ between organism groups, being 
broader for larger, more mobile species, such as mammals, and finer (and typically much 

The literature gives no unambiguous answer as to whether all biotic interactions 
should be considered as shaping the realized niche, or some of them should be considered 
part of the fundamental niche. I propose to treat biotic interactions, which are absolutely 
essential for a species (obligate biotic interactions), as part of the fundamental niche, 
while other biotic interactions (non-obligate) should be considered as part of the realized 
niche. Examples of the first can be the availability of an obligate prey species for specialist 
parasitic or predator species (or host plants for a specialist herbivore species), while 
examples of the latter are the distribution of predators or competitors. 

3.2.5 Purposes of distribution modeling

According to the gradient analytic perspective, a species’ response to important 
environmental gradients is generally unimodal, while niche theory defines the 
fundamental niche of a species as an n-dimensional hypervolume (with each dimension 
being an environmental variable), in which every point corresponds to a combination of 
environmental conditions that permits the species to exist indefinitely. The realized niche 
is the fundamental niche constrained by biotic interactions. Metapopulation dynamics 
complicate the relationship between realized niche and realized distribution even further, 
by predicting that species may regularly be absent from suitable habitats while present 
in unsuitable habitats. In the same way biotic interactions and metapopulation dynamics 

the shape of the response curve of the species along a gradient, by reducing (or increasing 
in cases of positive interactions) the tolerance of a species, or by reducing (or increasing) 
the abundance of the species within the tolerance limits. These effects are referred to 
as an amplitude response and a magnitude response, respectively, by Halvorsen (2012) 
and will increase towards finer spatial scales. It is, however, important to stress that the 
perspectives of gradient analysis and niche theory are fully compatible, merely being two 
different ways of presenting the same issue. 
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Whether or not effects of factors related to metapopulation dynamics and biotic 

models that are closely fit to the data and models that express general species-environment 
relationships, respectively (Halvorsen 2012). The main purpose of ERM is to model the 
relationship between the distribution of a target species and a set of environmental 
variables. The focus is to find and understand general patterns in the overall ecological 

the other hand, aims at modeling the distribution of the target species in a specific study 
area in a specific time interval, modeled by use of a set of explanatory variables. The main 
purpose is to optimize the fit between model predictions and the true distribution of the 

space.

species-environment relationships, it can be argued that ERM models are estimating 
the fundamental niche, or the potential distribution, of the species. This is, however, 
a problematic argument because the presence/absence or presence-only data used to 
generate the model are drawn from the realized distribution of the species. According to 

species distribution is limited by three classes of factors (Fig. 2); abiotic (region A), biotic 

Valverde et al. 2008) of the species is, however, also limited by the accessibility of the 
area (M). This is determined by the dispersal ability of the species, dispersal barriers and 
(anthropogenic) means of introduction. In practice the species can be found throughout 

populations with positive fitness (source populations) are only encountered in the area 
where all three regions intersect. 



22

While metapopulation theory assumes that the environment consists of discrete 

methods assign a continuous variable of probability of occurrence to each pixel into which 
the study area is gridded. This improves the realism of model predictions (compared to 
approaches which provide binary predictions), by attributing low probability of occurrence 

in sink habitats will depend on how large a fraction of the dataset such observations 
contribute. 

In addition to the three above-mentioned classes of factors (abiotic, biotic and factors 
related to accessibility), deficient sampling may also contribute to imperfect representation 

A = FN 

M

B
RN 

the species to persist. M represents the total area that has been or is accessible to the 

realized niche.
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The degree to which each of these factors will influence a distribution model is also 

imperfect sampling are, hence, the main reasons why ERM models cannot be interpreted 
as representations of the fundamental niche at broader scales. At finer scales, biotic 
interactions and metapopulation dynamics may also contribute to mismatch between 
predictions from an ERM model and the fundamental niche. In cases where biotic 
interactions occur among many individuals over a large area, biotic interactions may also 
influence the distribution of a species on a broad scale. This is especially evident when the 

 It is argued that ERM models should be simple, e.g., in terms of number of model 
parameters, in order to express fundamental species-environment relationships (Halvorsen 
2012), so that effects of biotic interactions, limited accessibility, source-sink dynamics and 
insufficient sampling are ideally smoothed out.

Complex and flexible modeling tools may improve such models, and it can easily be argued 

et al. 2008). The only obstacle left for modeling the realized distribution, then, is imperfect 
sampling. 

by definition, specifically describe a species’ distribution in a specific study area at a given 
time-point (at which the data used to obtain the model are sampled). Models based on 
species-environment relationships characterized by idiosyncrasies of the study area, such as 
dispersal-barriers, anthropogenic influence or biotic interactions, tend not to be valid when 

al. 2010, Schweiger et al. 2012). In cases where the study area is large, these relationships 

are the obvious choice for practical cases in which the purpose is to model suitable 
habitat in the area from which data for training the model is obtained, given that the 
species’ relationship to the environment can be expected to be reasonably homogeneous 
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finding suitable habitat for species reintroductions (Osborne and Seddon 2012) and 
nature reserves (Loiselle et al. 2003), and finding areas for cultivation of species for food, 

hand, express general species-environment relationships, more stable in space and time, 
e.g., with the purpose of projecting to other study areas and points in time (Halvorsen 
2012). ERM models are thus preferable for modeling invasive species in new areas, species 
distributions in an altered climate regime, for species niche conservancy studies and for 
exploring species-environment relationships. 

3.3. What determines the distribution of insect species? 

The distribution of insects have been found to be limited by different factors at 
different spatial scales (Hortal et al. 2010). As for most organisms abiotic factors and 
biogeographic processes (speciation, extinction, isolation and long distance dispersal) 
are the most important factors on a global to regional scale, while biotic factors and 
metapopulation dynamics are more important on a local to micro scale (Cabeza et al. 2010, 
Hortal et al. 2010). A clear limit between scales at which abiotic factors matters more than 
biotic factors and vice versa can, however, hardly be drawn. This will depend, inter alia, on 
the dispersal capabilities of the species and the heterogeneity of the physical environment 
(e.g. Holway et al. 2002) . 

 One abiotic factor of particular importance for the distribution of insects is 

temperature is ultimately determined by the ambient temperature. This in turn influences 
the speed and efficiency of their vital biological processes (such as development, 
metabolism, ecdysis and reproduction). It has been shown that temperature extremes 
are more important than temperature averages in defining species distributions, both in 
temperate regions and in the tropics (Overgaard et al. 2014). Several other temperature-
related descriptors have also been found to correlate with insect distributional limits, 

Another important abiotic factor limiting insect distributions is humidity (Fink and 

insect species directly by altering their water balance, and different species have 
different behavioral and physiological strategies for coping with unfavorable humidity 
regimes (Chown et al. 2011). Larger, more heavily sclerotized insects are less susceptible 
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to desiccation or waterlogging than smaller, more delicate species (Schowalter 2012). 
Similarly, immature stages may be much more vulnerable to dry conditions than adults 
(Chown et al. 2011). An insect’s water balance and exposure to desiccation is also linked 
to temperature. In general, temperature is a more important distribution-limiting factor in 
cool climates, whereas the availability of water is more critical in warmer climates (Hawkins 
et al. 2003).

Temperature and precipitation may also have indirect effects on the species through 

predation and parasitism. Some herbivorous insects may for example be drawn to plants 
stressed by drought (Schowalter 2012). Other abiotic factors which may influence species 

Land cover / habitat availability has also been found to influence insect distributions 

of insect distributions, reflecting the effects of temperature, humidity and soil structure 
on the organisms’ physiology. Land cover may also reflect the availability of resources, 
such as host-plants for parasitic or plant-eating insects. The fact that land-use changes has 
been listed as one of the five biggest threats to the worlds biodiversity, insects included 
(Kålås et al. 2010), indicates that habitat availability is crucial. Habitat destruction is linked 
to metapopulation dynamics because habitat fragmentation limits the dispersal between 

The overall aim of the thesis is to explore how limitations in the response data, i.e. the 

the modeling. 

Specific goals are:

- to provide a theoretically founded understanding of what sampling bias is and to 
explore its effects on species distribution models (paper I and II)

- to explore how the choice of background data affects species distribution models 
(paper II and III)

- to examine how the number of presence observations affects species distribution 



4. General material and methods

4.1. Study area

The study area for the analyses of all four papers was the mainland of Norway, 
2



Insects were chosen as the only study organisms in two of the four papers of this 
thesis. One paper is a theoretical paper, without any analyses, while one paper includes two 
insect species as well as two fungi species (Table 1). 

Insects are particularly interesting because they comprise more than half of the 

histories, dispersal abilities, size and shapes, which can potentially influence their responses 
to environmental variables and, hence, their distributions. For the analyses in paper IV ten 

4). This was done to include species with different dispersal abilities, feeding habits, sizes 
and shapes. 

Coleoptera: 
group of organisms on Earth. In most species the elytra cover the membranous flight 
wings and the abdomen. In this way the beetles are protected against predation and 

of them, Curculionidae and Cerambycidae are associated with wood and are known to 
sometimes cause damage to trees. The species belonging to Nitidulidae and Elateridae are 
herbivorous, while the Cantharidae species is a predator.

Diptera: 
the most diverse insect orders, not only in species richness, but also in structure, habitat 

living plants, in decaying organic material, as parasites or parasitoids of other animals or in 

include species from the families Conopidae (parasitic), Asilidae (predatory) and Syrphidae 
(adults feed on pollen and nectar, while larvae are either saphrotrophs or predatory). 

Lepidoptera: Lepidoptera is a large insect order, including moths and butterflies. They 
inhabit all kinds of terrestrial habitats, but almost all species are associated with higher 
plants, as they feed on nectar. Lepidopterans are soft bodied and fragile and, hence, 
exposed to predation. Almost all species have some form of membranous wings and are 
good dispersers. Some species are even migratory. However, they have to be warm in 

easily identifiable. Therefore Lepidoptera species are well represented in museums 
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and databases. The lepidopteran species used in paper IV include five species from the 

and Lycaenidae, in addition to three species of the family Geometridae, one species from 
the family Lasiocampidae and one from Zygaenidae. 

The choice of species was also based on the desire to include species with different 
distribution patterns. I tried to include wide-spread species as well as species with more 

minimum sample size of 40 presences, for subsampling to be possible. Therefore, few 
red listed species were included, with the exception of three species within the order of 
Lepidoptera; Thecla betulae (Fig. 5 b) (category NT), Glaucopsyche alexis (Fig. 5a) (category 
NT) and Aporia crataegi (category VU) . 

available. In order to avoid having to present too many response curves in paper II, we 
only wanted to analyze a subset of the species used in paper IV. These were chosen to 
fit in a 3x3 design, with three species from each of three orders. Within each order we 
selected one species with a restricted distribution, one with an intermediate distribution 
and one with a broad distribution. If presented with more than one alternative from each 
distribution class, we selected the one with the largest presence dataset. 

altogether) were extracted from the database of the insect collection at the Natural History 

of Natural History and Archaeology (Norwegian University of Science and Technology, 

the beetle species in paper III, all geographically referenced presences of their respective 
taxonomic families in Norway, extracted from the database of the insect collection at the 

fungi in paper III were generated from all geographically referenced presences of their 

because it can be assumed that specimens from the same taxonomic family at the same 
museum (or from the same database) are sampled by the same group of collectors, with 

few collectors contributing data to the museum, and the sampling effort has often been 

the same family may therefore share the same sampling bias. 



Although the datasets for all four papers cover the entire country, sampling intensity 

majority of collectors lives in this part of Norway.

Table 1

Species Family Order Ecological 
range

No. 
presences No. BTG Paper 

II
Paper 

III
Paper 

IV
Ips acuminatus Curculionidae Coleoptera Broad 65 X
Leptura 
maculata Cerambycidae Coleoptera Restricted 58 3292 X X

Meligethes 
aeneus Nitidulidae Coleoptera Restricted 60 443 X X

Otiorhynchus 
nodosus Curculionidae Coleoptera Broad 82 X

Pogonocherus 
hispidus Cerambycidae Coleoptera Restricted 44 X

Rhagium mordax Cerambycidae Coleoptera Intermediate 111 1228 X X
Rhagonycha 
limbata Cantharidae Coleoptera Broad 113 312 X X

Selatosomus 
aeneus Elateridae Coleoptera Broad 84 X

Strophosoma 
capitatum Curculionidae Coleoptera Intermediate 46 X

Tetrops praeusta Cerambycidae Coleoptera Intermediate 41 X
Anoplodera 
sexguttata Cerambycidae Coleoptera - 31 3292 X

Conops 
quadrifasciatus Conopidae Diptera Restricted 133 X

Dioctria 
hyalipennis Asilidae Diptera Restricted 95 375 X X

Eristalis 
arbustorum Syrphidae Diptera Broad 137 X

Eristalis 
interrupta Syrphidae Diptera Broad 92 X

Eristalis 
intricaria Syrphidae Diptera Broad 194 652 X X

Eristalis pertinax Syrphidae Diptera Intermediate 141 X
Asilidae Diptera Intermediate 73 X

Neoitamus socius Asilidae Diptera Restricted 93 X
Sicus ferrugineus Conopidae Diptera Intermediate 210 X
Volucella 
bombylans Syrphidae Diptera Intermediate 103 598 X X

Aporia crataegi Pieridae Lepidoptera Intermediate 57 X
Glaucopsyche 
alexis Lycaenidae Lepidoptera Restricted 84 1541 X X



30

Heterothera 
serraria Geometridae Lepidoptera Intermediate 49 X

Lasiocampa 
trifolii Lasiocampidae Lepidoptera Restricted 45 X

Parnassius 
apollo Papilionidae Lepidoptera Intermediate 88 211 X X

Pieris napi Pieridae Lepidoptera Broad 346 926 X X
Thecla betulae Lycaenidae Lepidoptera Restricted 43 X
Xanthoroe 
annotinata Geometridae Lepidoptera Restricted 112 X

Xanthoroe 
decoloraria Geometridae Lepidoptera Restricted 238 X

Zygaena exulans Zygaenidae Lepidoptera Restricted 169 X

Fomitopsis rosea Fomitopsidaceae Polyporales - 676 35.892 X
Xylobolus 
frustulatus Stereaceae Russulales - 310 35.892 X
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Figure 4. (a) Conops quadrifasciatus (paper IV), (b)  (paper IV), (c) Pieris 
napi (paper II and IV), (d) Parnassius apollo (paper II and IV), (e) 
(paper III) and (f)  Leptura maculata
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Figure 5. The red listed species; (a) (paper II and IV) and (b) Thecla 
betulae 
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paper II, collected in each region of Norway.
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In paper II and IV we used variables representing the two most important regional 
the oceanicity-

continentality gradient (bioclimatic sections) and the summer temperature gradient 
(bioclimatic zones), as explanatory variables. The bioclimatic gradients were expressed 
as step-less variables for which values were available for all 1×1 km grid cells in the 
rasterized study area with center-point not falling on sea. The two variables were obtained 

topographical, hydrological and geological variables. The bulk of these 54 variables were 

terrain data (based upon a 100-m resolution digital elevation model) were obtained 
from the Norwegian Mapping Authorities, hydrological data from the Norwegian Water 

from the Norwegian Geological Survey (based on vector data scale 1:1,000,000). The two 

prior to species distribution modeling to extract a few, step-less, axes of variation from 
large matrices of environmental variables. These variables are then used as environmental 

For the analyses in paper III the two above-mentioned variables were selected in 
addition to terrain ruggedness (the mean elevation difference between adjacent 100 m x 
100 m grid cells within the 5 km x 5 km grid cells of the rasterized study area, calculated 

, forest cover (fraction 
of grid cell covered by forest according to the digital map series N50 from the National 
Mapping Authorities of Norway), solar radiation in April (maps of estimated potential solar 

and 
July precipitation (J

. 
These variables were selected from a candidate set of 12 environmental predictor variables 
available for all of Norway, rasterized to 5 x 5 km resolution, of which no predictor was 

any other selected predictor. 
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4.4.1. MaxEnt and the Maxent software

target over the set of all n

predictive ability even when few presence records are available, i.e., when the sample size 

method MaxEnt). Maxent version 3.3.1 is used in paper IV, while the more recent Maxent 
version 3.3.3k (http://www.cs.princeton.edu/~schapire/maxent) 

A derived variable is a variable derived 
from the raw explanatory variable by transformation, i.e. by a mathematical operation. 
Which types of derived variables that are generated in each case depends on the number 

1-regularisation 

multiplier, set by the user, regulates the stringency of the variable selection procedure. The 
default regularization multiplier in Maxent is 1. When a smaller regularization multiplier 
is selected, the model will be closer fit to the data. The use of default parameterization 

and Gonzalez 2011, Merckx et al. 2011, Warren and Seifert 2011), and Halvorsen (2013) 
suggests that the complex response curves produced with default Maxent settings and 
the large number of derived variables with nonzero parameters listed in the NN.lambdas 
output file from Maxent software indicates that Maxent models tend to be overfit.



In paper IV the raw output format was used. This consists of a set of values that sum to 
unity for the total training dataset of presence and uninformed background observations. 

2013), obtained by multiplication of each raw output value with the total number of 

of N, the number of background observations and by attributing a specific interpretation to 
the output value of 1 (which is the average output value for all background observations).

4.4.2. An alternative MaxEnt process: A manuel forward selection method

ERM) were obtained for each species by a 
as outlined by Halvorsen (2013). The idea behind this approach was to generate simpler 

1

models (Halvorsen 2013)

parsimonious set of explanatory variables, each represented by the sets of derived variables 
obtained in step (2). For comparison of two nested MaxEnt models, we used an F

. All types of derived variables (‘features’ in the 

grid cell’s explanatory variable value
variables, steps (1)–(2) were performed, as described above. Model output was expressed 



4.4.3. Boosted regression trees (BRT)

learning method that in comparative studies has been shown, in general, to perform among 

relate a response to predictors by recursive binary splits) (Hastie et al. 2005) with those of 
boosting (an adaptive method for combining many simple models into a combined model 
with improved predictive performance) (Friedman 2002). 

Tree-based models partition the environmental space into rectangles using a series 
of rules to identify regions having the most homogenous responses to the predictors. 
Then the mean response for observations in each region is fit. A tree is built by recursive 
binary splits, i.e. the two subsets resulting from each split are again each split into two 
subsets. These subsets are described in terms of their homogeneity in the response variable 

is recommended to grow a large tree and then ‘prune’ it , i.e. remove the splits that add the 

repeatedly sampling the data with replacement and developing trees for each dataset. Each 
observation sampled is weighted to have a higher probability of selection if it is modeled 

simple trees that can be understood as an additive regression model (Elith et al. 2008). 

The model-building process performs best if it gradually improves the predictive 
performance of the model, and the contribution of each tree is hence shrunk by a learning 
rate that is less than one. The tree complexity controls whether interactions are fitted. The 

optimal prediction.

improvement to the model as a result of each split, and averaged over all trees (Friedman 
and Meulman 2003). The fitted functions are visualized in partial dependence plots showing 
the effect of a variable on the response. 
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5.1. The frameworks

In this thesis a set of presence observations is defined as sampling biased if the 

assessment of sampling bias in presence-only datasets and one for assessment of effects of 
sampling bias on species distribution models.

According to the definition of sampling bias above, a set of presence observations 

al. 2013). In cases where presence/absence data are lacking altogether we propose to use 

may, however, also represent real properties of the species in the study area and the extent 

In the bias effects framework effects of bias can be visualized by plotting the 

In paper II the two frameworks are tested on nine different species differing with 
regards to taxonomic affiliation and distribution patterns. We find that comparisons 

only data. The largest deviations between the two curves are seen in species with wide 

entirely smooth.



complex and ecologically unrealistic. This shows that MaxEnt models in general are efficient 

method for the species distribution modeling output.

5.2. Choice of background/pseudo-absence

The topic of background / pseudo-absence was treated both in paper II and paper III. 
As paper III was the first to be written, the frameworks had yet to be developed, so the 
main means of comparison between different models was AUC. We found that sampling 
design influenced strongly the predictive performance of the models. The models based 
on randomly selected and fixed-grid pseudo-absence observations were very similar with 

AUC values than the models based on random and fixed pseudo-absence observations. 
Varying the pseudo-absence design also influenced the relative importance of the 
environmental variables, which was similar in the fixed grid models and the random design 

variable generally scored higher than the temperature variable, while the reverse was true 
for the random and fixed designs. 

 In paper II we applied the framework for assessment of sampling bias in presence-
only datasets to evaluate which of the two background designs, uninformed background 

data.

In the last paper of this thesis the critical sample size sufficient for generating a 
nonrandom prediction of species distribution was assessed by generating MaxEnt models 
for datasets of different sizes for 30 insect species. Models based on replicated random 
subsamples were compared to reference models, based on the full datasets, using the 
index of vector similarity (IVS). Nonrandom models were in most cases obtained from 
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made with less than 15 presences. Critical sample sizes were not found to be significantly 
correlated with the size of the full dataset, distributional range or taxonomic affiliation. 

In paper III we found that the number of pseudo-absences had minimal effect on 
the predictive performance of the models. The number of generated pseudo-absences 
did, however, have a direct effect on the predicted probability. A low number of pseudo-
absence observations led to a modeled distribution with a relatively large area of high 
relative predicted probability of presence, whereas the opposite was true when the number 
of pseudo-absence observation was large. However, when the prevalence (i.e. the number 
of presence observations as a fraction of all presence plus all pseudo-absence observations, 
see ) was used as a threshold for converting the predicted 
degree of presence into a black and white presence–absence map, the area with predicted 
presence was very similar for a wide range of prevalence values. 

From the results from paper III and IV I draw the conclusion that sample size of 

than AUC values for the ERM models. 
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6. Discussion

6.1. Data quality

6.1.1. Assessment of sampling bias in presence data (affecting the data model)

2013). The focus in paper I and II is on the latter. 

into two groups: those that address geographical sampling bias and those that address 
environmental sampling bias. Many studies addressing geographical bias do not investigate 
whether or not the observed geographical bias results in environmental bias (Hijmans et al. 

between the geographical and environmental bias is addressed, a general consensus about 
how these two, conceptually different biases, relate is lacking (Kadmon et al. 2004, Loiselle 
et al. 2008, Wolmarans et al. 2010, McCarthy et al. 2011, Merckx et al. 2011). Geographical 
sampling bias is addressed, e.g., by comparing the distribution of distances of presence 
observations to specific geographic features with the distances of a set of random points 

being sources of geographical bias include roads, rivers, cities and ‘biodiversity hotspots’, 
the latter approached by comparing the number of observed species presences inside 
proposed conservation priority areas with the number of observed presences in adjacent 

that a species true prevalence does not differ between the compared areas. Furthermore, 
for geographical sampling bias to be of relevance for assessment of sampling bias (response 
bias) as defined above, the assumption that geographical bias translates into environmental 
bias has to be justified. Several direct approaches to assessment of bias in environmental 
space are proposed. Kadmon et al. (2004) and Loiselle et al. (2008) apply the Kolmogorov-

for binned climatic variables in a set of localities where observations (collections) have 
been made and a random set of localities, taking differences as indications of sampling 
bias. None of these approaches can, however, be used to assess sampling bias as defined 

of-true-presence of the modeled species in environmental space. These assumptions 
cannot be substantiated by use of presence-only data when the distribution of sampling 
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presence in the environmental space (paper I). Our definition of sampling bias establishes 
one and only one standard for an unbiased sample: the true distribution of frequency of 
presence of the modeled species in environmental space. From this follows that the key to 
understanding sampling bias and to finding indications of sampling bias in presence data is 

continentality gradient (paper II) we find examples of under- and oversampling well within 
the tolerance limits of a species (bias type 1 and 2 from paper I), as well as unsystematic 
variation or stochasticity (bias type 4 from paper I). Stochasticity is likely due to the amount 

species to the gradient. From the definition of sampling bias from paper I we conclude 
that such irregularities, even if they are minor, must be interpreted as sampling bias, as 

result from the species having their optimum outside the sampled portion of the gradient. 
The truncated response to the temperature gradient may also be strengthened as a result 
of over-sampling in the high temperature extreme of the gradient. The warmest (south-
eastern) parts of Norway contain the most densely populated areas and sampling intensity 
is particularly high there. 

 It is important to keep in mind that it is impossible to set up a concrete 

gradient analytic and macro-ecological biogeographic theory, which again is build up from 
verified if an 

the proposed framework for assessment of sampling bias in presence-only data by visual 

indications of systematic sampling bias. 

6.1.2. Choice of background dataset (affecting the data model)

background designs have been proposed. Examples are random selection (Stockwell and 
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al. 2002), use of locations that have been visited where the target species was not observed 

for the selection of background data has, however, not been made available. This thesis 

observed presence curves. 

curves for all species with respect to the main complex-gradients to be caused mainly 

shapes change from unimodal (truncated unimodal along the temperature gradient) to a 
monotonous shape without any trace of unimodality left, for both gradients. This is not 

. 
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modeling and without testing other background designs for comparison (Cord and Rödder 
2011, Graham et al. 2011, Crall et al. 2013, Lohmann et al. 2013). Furthermore, in several 

data are found to be poorer than those generated by other background designs (Heibl and 

western and central Europe and tested on species data from Ukraine. To our knowledge, no 

he random- and 

smaller AUCs. However, AUC may be misleading for measuring the accuracy of distribution 
models for several reasons, one of which being that the extent of the study area and 
the environmental distance between the presences and absences, to a large degree, 
determines the AUC value (Lobo et al. 2008). AUC is measuring how efficient the model is at 

range of the pseudo-absences is typically much smaller and less segregated from the 
environmental range of the presences than in the fixed and random design. This causes 

reflected also in the 
the species’ presences and the environmental variables and in some cases either one of 
the variables do not contribute at all to explaining the distribution. Thus, I conclude that 
the drop in AUC is not merely an artefact due to the study area becoming smaller, but 

Another factor influencing AUC is whether AUC is calculated using the training dataset or 
an independent test dataset. In almost all cases AUC will be lower when calculated with 
an independent test dataset. To be able to properly compare AUC values obtained with 

applied. 
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A change in the relative contribution of the environmental variables is also observed 
in paper III when changing the design of the pseudo-absence observations and, notably, the 
range of environmental variation spanned by presence and pseudo-absence observations. 

scaled environmental predictors are suppressed and coarsely varying climate factors 
become dominant when the environmental space for sampling pseudo-absences is 
enlarged. 
paper II, the effect of varying the background design is visualized by observing the changes 

Sicus ferrugineus (paper IV) and (b) (paper II and IV) 



6.1.3. The assessment of effects of sampling bias on species distribution models (the 
statistical model)

data (paper III) strongly influence the outcome of the modeling exercise, in terms of AUC 

relative importance of environmental variables (paper III) and the size of the area with 
high predicted degree of presence. In paper III, the random and fixed grid sampling designs 

It is important that effects of sampling bias and effects of shortcomings in the 

realistic or not. The fact that most of the differences between model results in paper II are 
observed between models trained with different background (or pseudo-absence) data and 

One means for mitigating sampling bias is to avoid overfitting the model to the data. 
The extent to which a model is overfit is, however, related to the modeling purpose. An 

sampling bias), but not when fit to ‘irregularities’ (compared to theoretical response curves) 
caused by factors such as biotic interactions, metapopulation dynamics or the influence 
by complex-gradients other than those used for modelling. In practice, it is more or less 

ERM model, on the other hand, is overfit when it reflects patterns other than the response 
of the modelled target to anything else than the environmental variables (complex-
gradients) applied in the modeling. Halvorsen (2012) recognizes three types of overfitting: 
(1) that a more complex model has lower predictive performance on independent data 
than a simpler model; (2) that a more complex model is similar in predictive performance 
on independent data than a simpler model; and (3) that a more complex model with higher 
predictive performance on independent data than a simpler model fails to fit realistic 
overall ecological response curves. ERM models are considered to be overfit by all three 

first case. This leads to the conclusion that overfitting is much easier to mitigate in an ERM 
with absolute 

certainty whether sampling bias is present or whether deviant curves represent real 
properties of the modeled species, even when the modeling purpose is ERM. 



bioclimatic gradients, in which unsystematic variation is effectively smoothed out. For the 

significantly higher than for ERM models, while AUC values are not significantly higher for 

often very similar. This shows that simple models with very few parameters (variables) 
can be as good as more complex models in representing (relatively) general features of 

models, which seem neither to assist understanding of the focal species’ relationship to the 
environment nor to enhance predictive power (Anderson and Gonzalez 2011, Halvorsen 
2013, Syfert et al. 2013). It is also important to keep in mind that not all modeling methods 

performance in geographical space. An ERM model on the other hand must be judged by 
its ability to express the overall ecological response of the modeled target to the selected 
environmental variables in ecological space (Halvorsen 2012). This is usually done by fitting 
simple and smooth functions and can be accomplished using methods like generalized 
linear models (GLM), generalized additive models (GAM) or other functions by maximum 

models have to be explicitly parameterized, i.e., the relationship between predictor and 
response variables has to be given by a parameterized mathematical function (Austin 

which are not explicitly parameterized, are therefore not appropriate for ERM. MaxEnt, 
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can alternatively be explained by strict application of the maximum likelihood principle 

6.2. How does the data quantity affect the species distribution models?

6.2.1. Presence datasets

Scarcity of presence data is a major obstacle for modeling species distributions (Lim 

Kamino et al. 2012). The effect of sample size on species distribution models and the 
existence of a minimum presence sample size needed to generate reliable models are 
widely debated. There exists a general agreement that the models’ accuracy increases 

consensus regarding the amount of presence data needed to reliably predict a species’ 
distribution is lacking. Recommendations span from 5–10 observations (Hernandez et al. 

Wisz et al. 2008, Mateo et al. 2010b) to more than 200 (Hanberry et al. 2012) presence 
observations being needed. The contrasting conclusions from these studies may result 
from differences with respect to characteristics of the study areas, resolution and extent of 

criteria for determining what constitutes an acceptable distribution model (Hanberry et al. 
2012). 

specialist species, i.e., species with a narrow distribution in environmental variables space 

than generalist species, i.e., species with a broader distribution in the two conceptual 
spaces (geographical and environmental). Accordingly, fewer presences are needed to 
obtain acceptable distribution models for the former. The argument underpinning this 

needed to represent the entire range of suitable environmental conditions for such species.

random distribution models. In order to make non-arbitrary and verifiable conclusions 
about an eventual critical sample size (CSS), we determine thresholds based on 



comparisons with randomly generated models. The idea behind this choice is that a model 
performing better than random (i.e., the model is more similar to the reference model than 
a randomly generated model) provides useful information about the modeled species. 

We find that models based on subsamples become more and more similar to the 
corresponding reference models as presence sample size increases; however, nonrandom 
models are in most cases obtained from datasets with very few presences. For the 
30 species there are no significant correlations between CSS and the species’ relative 
ecological range, the number of presences in the full dataset or taxonomic order. This 
suggests that our generally low CSS estimate is a robust result, of general validity. 

The results from paper IV should be understood in the light of the knowledge gained 
from the two papers discussing sampling bias (papers I and II). Removing presences from a 
dataset resembles the situation of sampling bias in the sense that stochasticity (sampling 

from a smaller number of presences and is hence infested with an increased degree of 
uncertainty. The low CSS obtained in paper IV confirm that MaxEnt models, even if they are 
complex, are able to effectively smooth out stochasticity in the data. 

6.2.2. Pseudo-absence/background datasets

In paper III we show that the number of pseudo-absence observations has a large 
effect on the relative predicted probability of presence, which in turn has a strong effect 

different amounts of pseudo-absences, in most cases, become very similar. 

 Although the main aims of paper II concern sampling bias, the results also opens up 
for a discussion on background dataset sample size. Larger datasets lead to more robust 

will be introduced.
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6.3. Potential limitations

6.3.1. The lack of an independent test dataset

In paper I we emphasize that the eventual existence of sampling bias cannot normally 
be conclusively confirmed without access to a reliable test dataset of independent 
presence/absence data for the species in the study area. A limitation of all the three 

bias or other sources, such as biotic interactions, the absence of species in habitable sites 
or the presence of sink populations in unhabitable sites, are likely to be found by evaluating 
the model on an independent dataset. Such data makes possible generating an empirical 

strongly recommend evaluating the model using an independent test dataset. Nevertheless, 

indication that a 
sample of presences for the modelled target is unbiased. 

In paper III, the effects of combinations of pseudo-absence designs and sample sizes 

values. AUC is here used to measure the ability of a model to correctly predict presences 
and to predict absence for pseudo-absences used to train the model. If an independent 
dataset had been applied for model evaluation, AUC would most likely have been lower. 

would have been levelled out, due to more false absences, and hence a decrease in AUC, in 
the random and fixed designs.

In paper IV the models based on the full datasets for the species are used as reference 
models, with which models based on subsamples are compared. As no independent 
datasets are available for evaluating these reference models, we cannot claim that they 
represent the true distributions of the species. This study therefore shows how the 
predicted distribution changes with decreasing presence sample size, not in relation to 
the true distribution, but in relation to a reference distribution, which may or may not be 
imperfectly sampled. 
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6.3.2. The inclusion of only two environmental variables

It can be argued that a limitation of the thesis is that only two environmental 
variables, oceanicity-continentality and temperature, are applied in the modeling exercises 
of paper II and IV. However, gradient analytic theory predicts that species do not respond 
to single environmental gradients, but to environmental complex-gradients, i.e., sets of 

complex-gradients normally account for most of the variation in species’ composition that 
can be explained environmentally. The step-less oceanicity-continentality gradient and 
the step-less temperature gradient summarize the co-variation of several topographical, 

to the two main bioclimatic gradients used in expert classifications of Norway into 

In paper III a candidate set of 12 environmental predictor variables is used as the 
starting point for variable selection, of which six of these are selected (by the criterion that 

models. The oceanicity-continentality and the temperature gradients themselves, or 
variables strongly related to these, were always among the strongly contributing variables. 
This indicates that the oceanicity-continentality and temperature gradients are the most 
appropriate choices for a reduced set of environmental predictor variables for distribution 
modeling at a fine regional scale in Norway. 

In paper II we use data for variation at the fine regional scale (1 km x 1 km) to judge 
the performance of the bias assessment and bias effects frameworks proposed in paper I. 

and finer (local–micro) scales. On a broader scales, distributions are expected to be limited 
by geophysical processes such as (historical) continental plate movements, sea-level 
changes, mountain-chain upfoldings, and glacial cycles, over very wide time spans (Willis 
and Whittaker 2002). On finer scales, as outlined in the theory chapter, the influence of 
biotic interactions and metapopulation dynamics on observed distributions are expected 
to increase. A shift from unimodal to polymodal or irregular curve shapes may occur when 
these factors are important, but a decrease or increase in the tolerance of a species, or a 
decrease or increase in the abundance of the species within the species’ tolerance limits, is 
expected to be observed more commonly, even in these cases (Halvorsen 2012). 
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7. Perspectives and conclusive remarks 

In paper I we define a set of presence observations for a modeled target to contain 

target’s true presence in the environmental space. From this I conclude that small presence 
datasets (paper IV), the lack of absence data (paper III) and the choice of pseudo-absence/
background data (paper II and III) all relate to the issue of sampling bias and the distribution 

presence- and background/pseudo-absence datasets will be biased if these two, together, 

major complex gradients of importance to the species. If the presence datasets are too 
small and/or biased, or if the selected background is not suitable for revealing the species-

smooth and unimodal shape. 

to be a promising procedure for encountering indications of sampling bias in presence data 

curves, essentially modeling the relationship between ecological conditions found in sites 
where the focal species has been sampled and the ecological conditions in sites where 

addressed in paper III, where it was contrasted against a fixed background design and a 
random background design. While the random and fixed designs produce almost identical 

when the main purpose of a study is to produce broad-scale distribution maps, pseudo-
absences should include environmental conditions from areas where a species does not 
occur to obtain complete map coverage. When the purpose is to investigate effects of 
environmental conditions within the distribution area, however, one should not include 
pseudo-absences from environmental conditions far outside the ecological tolerance of a 
species; as environmental factors working on a broader scale will tend to mask the effect 

tolerance limits along the gradient are contained in the area covered by pseudo-absences 
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most cases are obtained with very few presences available. Only 3 out of the 30 modeled 

as ‘useful’ in the sense that they add to the information available prior to modeling and, 
accordingly, may serve as valuable starting points for further studies of poorly known 
species with few known presence records. Generally, with small presence (or pseudo-
absence/background) datasets, a high occurrence of the fourth type of sampling bias; 
unsystematic variation or stochasticity (paper I) is expected.

demonstrate that although predictions get poorer with smaller presence sample sizes, 
useful predictions can be obtained with very few presence observations. Moreover, paper 
I and II outline a procedure for evaluating whether or not presence and pseudo-absence/
background datasets contain sampling bias and further, if they are suitable for generating 

ensure that the modeling exercise does not result in suboptimal models. I recommend 

assessment method. The distribution is often conditioned on other factors than availability 
of suitable environment. These factors are rarely known and can hence not be accounted 

It may also be useful for other management purposes, such as predicting the distribution 
of invasive species, predicting species distributions in a future climate regime or finding 
habitats suitable for the reintroduction of species. For these purposes it is important to 
keep in mind that a model transferable in space and time is needed. Such models should 
not be too closely fit to idiosyncrasies in the dataset caused by sampling bias, idiosyncrasies 

models overfit to irregularities in the presence data, and that simpler models fit the more 
general responses to the environmental variables, without significantly loosing predictive 

future climates.

applied ecology and conservation biology. These methods have been seen as ‘shortcuts’ 



54

for inferring past, present and future species distributions, as well as exploring species-

button. This thesis shows that the shortcut may not be as short as hoped to be. In cases 

A firm foothold in ecological theory, good understanding of how the modeling methods 
work, how the data are handled, and how models are to be interpreted are all essential 
for obtaining a good understanding of when these shortcomings are obstacles for making 
reliable distribution models. 

of this thesis. I would also like to thank Eirik Rindal for valuable help formatting the final 
manuscript.
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