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2. Summary

Museum data is a great resource for species distribution modeling (SDM), and may
consequently be of potential value for nature management and conservation purposes.
Museum data are, however, not designed for SDM and may be suboptimal for several
reasons. This thesis addresses challenges associated with the use of museum data, such
as sampling bias (paper | and II), the sample size and the design of pseudo-absence/
background data (paper Il and Ill) and the sample size of presence data (paper IV). The
understanding of how these factors affect species distribution models needs to be based
on ecological theory. In paper | sampling bias is defined and explained with reference to
gradient analytic reasoning and macro-ecological biogeographic theory. A set of presence
observations is defined as sampling biased if the frequency distribution of observed
presence along major environmental complex-gradients deviates from the frequency
distribution of the true presence of the species. Based on this definition, we provide a
framework for assessment of sampling bias in presence-only datasets, typically used for
species distribution modeling, by use of frequency-of-presence curves. With access to
presence/absence data, sampling bias can be identified by statistical methods. In cases
without availability of such data, indications of sampling bias can be obtained by visual
inspection of frequency-of-observed-presence (FOP) curves, using theoretical frequency-
of-presence (TFP) curves as a reference (see table 1 in paper | for definitions of different
frequency-of-presence curves). These reference curves are typically smooth and unimodal
(deduced from generalization of empirical frequency-of-presence curves and by taking
expert knowledge about the species into account). Shape differences between the two
curves may indicate sampling bias in the response data. Four types of sampling bias can
be expected: (1) under-sampling, i.e., lower-than-true FOP in intervals along a gradient;
(2) over-sampling, i.e., higher-than-true FOP in intervals along a gradient; (3) peripheral
sampling gap, i.e., lack of presence observations at one or both of the species’ tolerance
limits; and (4) stochasticity, i.e., unsystematic variation in sampling effort. It is important to
be aware that local minima and maxima on the FOP curve may represent real properties of
the species in the study area. The extent to which strong cases for or against sampling bias
can be made will depend on the quality of the information that forms the basis for the TFP

curve.

We also provide a framework for assessment of effects of sampling bias on species
distribution models by comparison between FOP- and predicted relative-frequency-of-
presence (PRFP) curves generated from model output. The PRFP curve may deviate from
the TFP curve for two reasons; the training dataset may be biased, or the modeling method
may not be able to parameterize the FOP curve. With the exception of stochastic variation
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in training data, SDM methods cannot be expected to be able to distinguish sampling
bias from real properties of the data. The PRFP curves should therefore reproduce the
FOP curve with a degree of detail that matches the level of generalization required by the
purpose of the study (Halvorsen 2012), regardless of the FOP curve being realistic or not.
Datasets that give rise to unrealistic FOP curves because of probable sampling bias should
not be used for SDM.

In paper Il FOP- and PRFP curves were plotted to explore the extent to which museum
data used for SDM contain sampling bias, to address the assumption that background
target group (BTG) data with similar bias as presence data may be obtained from museum
databases and to explore the effects of sampling bias on Maximum Entropy (MaxEnt)
models differing with respect to model complexity. AlImost all the FOP curves deviated from
the expected smooth, unimodal curve shapes. Curves calculated with BTG data, which is
applied in SDM as a way of correcting for sampling bias, showed the strongest deviations
from the TFP curves. The BTG approach was found to give rise to complex, often ecological
meaningless FOP curves, essentially modeling the relationship between ecological
conditions in sites where the focal species had been sampled and the ecological conditions
in sites where taxonomically related species had been sampled. PRFP curves were in
general similar to the corresponding FOP curves, most strongly so for curves for the most
complex models. This demonstrates good ability of the MaxEnt method to fit response
models to the data, while at the same time points out that the appropriateness of these
models depends on the quality of the response data. However, results from papers | and Il
also show that, in some cases, complex models overfit to irregularities in the presence data,
and that simpler models fit the more general responses to the environmental variables,
without significantly loosing predictive power in terms of AUC. Such complex models are
difficult to interpret ecologically and may not be transferable to other areas or future

climates.

In paper Il the effect of varying pseudo-absence data in SDM was explored by using
empirical data for four real species and simulated data for two imaginary species. Pseudo-
absence data generated by different sampling designs and in different numbers were added
to assess their relative importance for the SDM output. The number of pseudo-absences
had minimal effect on the predictive performance (measured by AUC), while sampling
design strongly influenced the AUC values. This was attributed to the relationship between
the environmental range of the pseudo-absences (i.e. the extent of the environmental

space being considered) and the environmental range of the presence observations (i.e.



under which environmental conditions the species occurs). Results from paper Il and IV
show that uncritical use of BTG data in SDM should be avoided and that plotting species
FOP curves, calculated by different kinds of background datasets, can be a valuable aid in
the selection of an ecologically informative background.

Scarcity of presence data can also be a major obstacle for the modeling of species
distributions. Accordingly, knowing the minimum number of presences required to obtain
reliable distribution models is of fundamental importance for applied use of SDM. In
paper IV the critical sample size (CSS) sufficient for non-random predictions of species
distributions was assessed. Large presence datasets for thirty insect species were used to
produce reference distribution models. Models based on replicated subsamples of different
size drawn randomly from the full dataset were compared to the reference model using the
index of vector similarity (/VS). Clearly non-random models were obtained with as few as 10
presences for 90% of the species and 15 presences for 97% of the species. We recommend
using a minimum sample size of 10-15 presences for Maxent modeling to obtain additional
information about a species distribution.

Small presence datasets (paper 1V), the lack of absence data (paper Ill) and the choice
of pseudo-absence/background data (paper Il) can all be related to the issue of sampling
bias and the distribution of frequency of presence along environmental gradients (paper
1). The dataset is biased if the pseudo-absence/background dataset and the presences
together fail to reflect the frequency of true presence of the model target. Moreover, with
small presence (or pseudo-absence/background) datasets a high occurrence of stochasticity
(the fourth type of sampling bias) is expected.

The development of SDM methods has opened up for numerous possibilities within
applied ecology and conservation biology. These methods have been seen as “shortcuts’
for inferring past, present and future species distributions, as well as exploring species-
environment relationships and dealing with phylogenetic questions, with the click of a
button. This shortcut may, however, turn out to be deceptive in cases where the data
quality is poor or data are sparse. A firm foothold in ecological theory, good understanding
of how the modeling methods work, how the data are handled, and how models are to
be interpreted are all essential for predicting when and why limitations in museum data
become obstacles for making reliable distribution models.



3. Introduction

Today species are disappearing at a faster rate than has been seen earlier in the
Earth’s history (Barnosky et al. 2011) and there is scientific consensus that most species
extinctions are now caused by human actions such as land use changes, pollution, human
caused climate change and introduction of alien species to new areas. One of today’s
greatest challenges is to slow down the rate at which species are disappearing. Two
obstacles are making this task difficult; the Linnean and the Wallacean shortfalls (Whittaker
et al. 2005), i.e. the lack of knowledge about which and how many species populate the
earth and the lack of knowledge about how they are distributed. Species distribution
modeling (SDM) has been developed as a promising tool to address these challenges in
diverse ways: to find new populations (Bourg et al. 2005, Guisan et al. 2006, Pearson et al.
2007) and new species (Raxworthy et al. 2003), to increase the knowledge of how species
distributions will change under an altered climate regime (Thomas et al. 2004, Elith and
Leathwick 2009, Austin and Van Niel 2011), or if introduced to new areas (Peterson 2003,
Bean et al. 2012), to identify suitable habitats for reintroduction of species (Osborne and
Seddon 2012), to explore species-environment relationships (Osborne and Seddon 2012)
etc. The term SDM refers to correlative methods that link georeferenced species presence
(and sometimes also absence) data with relevant environmental variables in order to

predict the species distribution (Guisan and Zimmermann 2000, Elith et al. 2006).

In the last couple of decades we have seen a strong proliferation of scientific papers
focusing on SDM and, as for most new tools, problems and challenges concerning the
methodology arise along the way. Questions such as which algorithms to use (Elith et al.
2006), how grain and extent of the study area influence the models (Boulangeat et al.
2012), which environmental variables to apply, how biotic factors influence the models
(Boulangeat et al. 2012, Wisz et al. 2013), how to deal with small datasets (Pearson et
al. 2007, Bean et al. 2012, Hanberry et al. 2012) or the lack of information about species
absence data (Stokland et al. 2011, Barbet-Massin et al. 2012, Golicher et al. 2012) and how
to detect and mitigate sampling bias (Kadmon et al. 2003, Kadmon et al. 2004, Loiselle et al.
2008, Phillips et al. 2009, Bean et al. 2012) have all been discussed in numerous scientific
papers. All of these questions need to be properly answered for SDM tools to be safely
applied for practical, e.g., management purposes.

This thesis focuses on some of the greatest challenges concerning the application of
museum data for distribution modeling purposes; the quality and quantity of the training
data, particularly; the challenges of biased data (paper | and ll), the sample size and
the design of pseudo-absence/background data (paper Il and 1ll) and the sample size of
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presence data (paper IV). In all the papers, and especially in the two first, the focus is also
on what Austin (2007) calls the ecological model, i.e. the ecological understanding of the
modeling process, a topic including the choices of model settings. These are all issues that
should be addressed and understood before applying SDM for practical purposes.

3.1. Museum data: Properties and limitations in the context of species distribution
modeling

Museum data consist of records associated with objects held in museum collections
and are the largest source of biodiversity data in the world. There may be as many as 3
billion objects (http://www.sciencedaily.com/releases/2014/02/140226132750.htm) in
the world’s natural history museums, but only a small fraction of these are digitized and
georeferenced. Museum data span not only space, but time as well. Collections made in
habitats that no longer exist or of species now extinct are among the qualities that make

museum data a virtual goldmine for those interested in the distribution of species.

Most objects are accompanied by information about the locality where the object was
found, the taxonomy of the object and sometimes the technique used for sampling. Some
of the objects are sampled by museum staff, but most objects are collected in by amateurs.
This results in a great variation in the quality of the information related to the objects. In
an SDM context, one of the greatest problems is poor (inaccurate) information about the
sampling locality. This is especially challenging when looking at old data. Earlier the focus
was rarely on exactly where an organism was found, but rather on variations within species,
which species it was, etc. As a result, museum staff has had to georeference these objects
retrospectively by interpreting the often rather insufficient locality information supplied by
the collectors. One example is the use of the locality name “Dovre’ for all mountain areas
in Southern Norway, although Dovre sensu stricto is a specific mountain area in Central
South Norway. Such specimens will inevitably have a very low georeferencing precision.
Because the traditional use of museum data has been for taxonomic studies, the focus
when managing the collections has mostly been on knowing what is in the collections
and approximately where the material was collected, determined to country or region.
Nowadays, however, most collectors own a global positioning system (GPS) unit and locality

information tends to include geographic coordinates.

In addition to varying precision of the locality information, a problem with applying
museum data for SDM is that they are normally not sampled for this purpose. Ideally,
sampling should be random or designed to sample the whole environmental gradient,
which is to be studied. Museum data is, however, likely to be biased towards areas that
are easily accessible for biologists, that are known for their interesting fauna and flora, or
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otherwise of special interest. As a consequence, distribution models trained with such data
will be inaccurate. One example of biased sampling is the sampling of insects, with sweep
nets, from cars, thus giving a heavy roadside bias in the resulting data. It is well known
that the insect collections at the Natural History Museum of the University of Oslo are
geographically biased to the south, were most people live. Although many authors have
addressed sampling bias-related question in an SDM context (Loiselle et al. 2008, Veloz
2009, Boakes et al. 2010, Costa et al. 2010, Robertson et al. 2010, Wolmarans et al. 2010,
Anderson and Gonzalez 2011, Feeley and Silman 2011a, McCarthy et al. 2011, Merckx et al.
2011, Yackulic et al. 2013) there is still a strong need for tools that can aid detection of bias
and effects of such bias on distribution models, as well as guidelines for use of biased data
(or when to leave data unused) in SDM (Boakes et al. 2010). Development of such tools
and guidelines requires theoretical in-depth understanding of what sampling bias is and
why and how it affects species distribution models, including an unambiguous definition of

sampling bias in an SDM context.

Another type of bias associated with museum data is the temporal bias. Because at
any time a limited number of collectors typically provide a large fraction of the objects
(of a specific broad taxonomic group) delivered to the museum, objects will to a large
extent represent the taxonomic groups of interest to the most productive collectors.
Similarly, charismatic species or species of economic interest will be over-represented
in the collections. Figure 1 shows that a disproportionately large fraction of the museum
specimens from the four large Natural History Museums in Norway is made up by
charismatic species groups such as vertebrates and vascular plants. If we restrict ourselves
to specimens for which information is available in digital form, the bias is even stringer. The
flipside of this is that few data are available, not only for rare species, which are hard to
detect, but also for common species and species that, for some reason, are of little interest
to the majority of collectors. Small datasets have been found to be a major obstacle for
modeling species distributions (Lim et al. 2002, Papes and Gaubert 2007, Feeley and Silman
2011b, Feeley and Silman 2011a, Kamino et al. 2012). The effect of sample size on species
distribution models and the existence of a minimum presence sample size needed to
generate reliable models have been widely debated. There exists a general agreement that
the models’ accuracy increases when sample size increases (Cumming 2000, Pearce and
Ferrier 2000, Stockwell and Peterson 2002, Reese et al. 2005, Hernandez et al. 2006, Wisz
et al. 2008), but no general consensus regarding the amount of presence data needed to
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reliably predict a species’ distribution has yet been reached.

Last, but not least, because museum data differ from observational data by being
verifiable i.e., that the organism is sampled and stored as a physical object, these data
do not include absence data, i.e. reliable data on where the species is not present. In the
absence of absence data, pseudo-absence or ‘background’ data are typically created to
make possible the use of modeling methods that require data to which presence data
are contrasted (group discriminating methods). Several principles for generating pseudo-
absence data have been proposed during the last two decades (Stockwell and Peters 1999,
Hirzel et al. 2001, Zaniewski et al. 2002, Elith and Leathwick 2007), one of which being
the use of presence observations for other species in the group of species to which the
target species belongs (background target group; BTG) (Phillips and Dudik 2008, Phillips et
al. 2009). BTG has been launched as a means of mitigating the effects of bias in presence
datasets on SDM models. The idea is that, by using background data with similar bias as
the presence-only data, the estimated frequencies of observed presence will be closer to
the true frequencies of presence. The degree to which use of BTG will improve distribution
models will depend on the extent to which the assumption of similar biases in training and
BTG data holds true (Phillips et al. 2009).

Natural history museums and databases all over the world contain large amounts
of information of where different species of animals and plants are located. Despite the
deficiencies of museum data with respect to bias, data-set size and the lack of absence
data, these data can be of great value for SDM as long as we are able to assess the

limitations of the data and interpret our models accordingly.
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3.2. Theory

A good grasp of ecological theory, including knowledge about how species
distributions are limited, is essential for appropriate use and skillful interpretation of
species distribution models (Austin 2002, Guisan and Thuiller 2005, Austin 2007, Halvorsen
2012). Here follows a brief introduction to some topics that are of particular relevance to
understanding how properties of the data influence distribution modeling results: gradient
analysis, niche theory, source-sink dynamics and biotic interactions. Albeit these topics are
all interrelated, | will treat them separately in the next sub-chapters.

3.2.1. Gradient analysis

The species distribution model is a generalization of the ecological response of
the species to selected environmental variables, in environmental space. Knowledge of
how species are distributed in conceptual environmental space is therefore essential
for evaluating the quality of the response data used in distribution modeling and for
interpreting model output. Species-environment relationships can be explained by the
so-called gradient analytic perspective (Ter Braak and Prentice 1988, Halvorsen 2012),
which predicts that species respond to environmental complex-gradients, i.e., sets
of environmental gradients that act on species in concert, rather than to each single
environmental variable individually (Whittaker 1956). This is because environmental
variables of importance for the survival of the organisms tend to be correlated with other
environmental variables. Furthermore, a few major complex-gradients do normally account

for most of the variation in species composition in a given ecosystem.

Species’ responses to complex-gradients are typically unimodal, because species
have developed preferences for specific parts of the environmental space. With increasing
‘environmental distance’ from the optimum of a species along a major complex-gradient,
habitat suitability and species performance decrease gradually (Whittaker 1956, Austin
and Smith 1989). The tolerance of the species to conditions that vary along important
environmental gradients determines the width of the species’ response curve (e.g. Dahl
and Birks, 1998), which, in turn, determines the range of the species’ distribution along
the gradient. The commonness of the species within its distributional range is given by the
height of its response curve. Many ecological textbooks have described species response
curves as unimodal and symmetrically bell-shaped (Giller 1984, Begon et al. 1990, Krebs
1994). The relationship between a species’ tolerance and its commonness is the topic of
abundance-occupancy theory, which predicts the two to be positively correlated (Gaston
and Lawton 1988, Brown et al. 1996, Gaston et al. 2000). Hanski (1982) proposes that most
species belong to one of two categories; core species, characterized by wide tolerance
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and high abundance, and satellite species, characterized by narrow tolerance and low
abundance. The CURS model of Collins et al.(1993) opens for the existence also of urban
species with restricted distributions but high local abundance, and widespread but rare,
rural, species, although fewer species belong to the urban and rural than to the core and
satellite species categories.

The symmetrical, unimodal pattern can be displaced by other response curve shapes
for several reasons, such as the influence of other species (Austin and Smith 1989, Austin
and Gaywood 1994, Austin 2002), dispersal constraints (Primack and Miao 1992, Spens
et al. 2007, Hatteland et al. 2013), the influence of other important complex-gradients
(Halvorsen 2012) or by local adaptations (Westley et al. 2013). The degree to which a
response curve is symmetric thus depends on the nature and the scaling of the underlying
gradient and the species’ response to it (Bkland 1986, @kland 1992). The response-curve
shape is also strongly affected by the grain and the extent of the study area (Loehle 2012);
the tendency for a curve to become flat-topped (platykurtic) will increase with increasing
commonness and increasing grid-cell size, while a truncated response curve will result if
the full range of the species along the gradient in question is not contained within the study
area (Halvorsen 2012).

3.2.2. Niche theory

What is really being estimated in SDM? This question has been widely debated in SDM
literature over the last decades and the ‘niche’ is a key concept in many papers (Guisan
and Zimmermann 2000, Pulliam 2000, Guisan and Thuiller 2005, Soberon and Peterson
2005, Araujo and Guisan 2006, Soberén 2007, Mclnerny and Etienne 2012a, Mclnerny and
Etienne 2012b, Mclnerny and Etienne 2012c). The understanding of this concept seems
fundamental for the interpretation of species distribution models, and a short summary of
the debate over the validity of the niche concept in SDM is given here.

The ecological niche of a species was originally defined in two conceptionally different
ways, which are now referred to as the Grinellian niche (Grinnell 1917), which encompasses
the environmental conditions that determine a species’ distribution, and the Eltonian niche
(Elton 1927), which emphasizes the functional attributes of species and their corresponding
trophic position. Hutchinson (1957) developed the Grinnellian niche concept further by
describing the niche as an n-dimensional hypervolume in which every point corresponds to
an environmental state (combination of important environmental conditions), which permit
the species to exist indefinitely. He further distinguished between the fundamental niche,
defined without including the effects of competition, and the realized niche, described
as the fundamental niche reduced by the effects of competition. Competition comprises
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interactions with a negative outcome for both organisms. Depending on the relative
magnitude of the outcomes for each of the interacting organisms, competitive interactions
can be ordered along a gradient from symmetric (equal outcomes for both species) to
asymmetric. It remains unclear whether or not other biotic interactions than competition
are considered part of Hutchinsons fundamental niche, or if they are to be interpreted as
factors shaping the realized niche (Halvorsen 2012).

Most authors have argued that the realized niche is estimated in SDM studies. The
rationale behind this is that georeferenced species presence and/or absence data used in
the modeling are already constrained by biotic interactions, so that they cannot be used to
model the fundamental niche of the species (Guisan and Zimmermann 2000, Pearson and
Dawson 2003, Kearney 2006). Soberon and Peterson (2005) do, however, claim that the
resulting model may approach the fundamental niche of the species in certain cases. To be
specific these cases occur when biotic interactions are not assumed to influence and when

absences are chosen outside of the fundamental niche.

There are several issues complicating the use of the niche terms in SDM. Pulliam
(2000) points out that the realized niche may be larger than the fundamental niche, when
taking source-sink theory into account (see chapter on metapopulation dynamics below).
Kearney (2006) argues that correlative methods applied in SDM are not suitable to quantify
the niche, because the niche concept implies understanding how biotic and abiotic variables
affect the fitness of an organism. Jiménes-Valverde et al. (2008) suggest that, because of the
above mentioned uncertainties regarding how to understand the fundamental and realized
niches, it would be preferable simply to speak of potential and realized distributions in the
context of SDM. The potential distribution of a species refers to places where a species
could occur (because the values of the relevant environmental variables are appropriate
for the survival of the species), while the realized distribution of a species refers to places
where the species actually occurs. Aradjo and Guisan (2006) propose to discard the
fundamental and realized niche concepts altogether, accepting that any characterization
of the niche is an incomplete description of the abiotic and biotic factors determining a
species distribution. Mclnerny and Etienne (2012b) formulate the ultimate goal of the niche
concept as such: ‘Niche is a term that should support communication and understanding in
ecology by helping us to re-characterize what living things do in models.” As of now it seems
that the term ‘niche’ complicates the communication and understanding in ecology, rather
than being a support.

As long as the niche term remains complicated and ambiguous, | agree with the

above mentioned authors in their conclusion that it cannot be applied alone to describe
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the output of SDM studies. | have therefor chosen not to use it in my scientific works. The
debate of what is being estimated in SDM studies has, however, been valuable to follow, in

order to conceptionally better understand how species distributions are limited.

3.2.3. Metapopulation theory and source-sink dynamics

In the preceding chapter about niche theory | mention that the understanding of the
term niche is complicated by metapopulation dynamics. Metapopulation theory shows that
the distribution of populations is dynamic and shifting through time due to local extinctions
and dispersal (Hanski and Simberloff 1997, Hanski 1998, Hanski and Ovaskainen 2000).

This explains how a species may regularly be found in unsuitable habitats or be absent
from suitable habitats. A metapopulation is a ‘population of populations’ made up by a
shifting mosaic of populations, linked by dispersal (the extent to which dispersal occurs and

influences the populations will vary).

Populations found in habitats where reproduction is insufficient to balance local
mortality may continue to exist because of immigration from higher-productive areas
nearby. Pulliam (1988) terms such habitats ‘sink’ and ‘source’ habitats, respectively. At the
same time species are sometimes absent from suitable habitats due to limited dispersal
capacity, dispersal barriers or insufficient time to disperse (Primack and Miao 1992, Spens
et al. 2007, Hatteland et al. 2013), or due to local extinctions (Harrison 1991, Matthies et al.
2004, Ree and Smith 2008).

A metapopulation can be made up of several short-lived populations, where the
distribution of the species changes substantially from generation to generation, it can be
made up by a few source populations and several sink populations, fluctuating with the
arrivals of immigrants, or the distribution of populations can be relatively stable (Primack
2010).

Understanding these dynamics of populations, on different spatial and temporal
scales, is important for conservation biologists and nature managers, because the
destruction of a source population may result in the extinction of numerous sink
populations and because habitat fragmentation limits the dispersal necessary to recolonize
a habitat after local extinction (Hanski et al. 1996). In the same way this insight is important
for distribution modelers by explaining that species’ distributions are dynamic, by providing
a conceptual model for this dynamics, and by explaining that all presences do not indicate

suitable habitats, and that all absences do not indicate unsuitable habitats.
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3.2.4. Biotic interactions

In some of the sub-chapters above | have mentioned that species respond, not only to
abiotic (non-living, ‘environmental’) factors, such as temperature and precipitation, but also
to biotic factors (the influence of other living organisms).

An organism’s effect on another organism can be intraspecific (a species’ effect on
itself) or it can be interspecific (a species’ effect on other species) (Elton 1927, Mclnerny
and Etienne 2012c). My focus here will be on interspecific biotic interactions, as these are
the most relevant for SDM.

Biotic interactions can essentially be of five different types; negative effects on both
species (competition), positive effects on both species (mutualism), negative effect on one
species and positive effects on the other (predation, parasitism and contramensalism),
positive effects on one of the species and no effect on the other (facilitation and
commensalism) and negative effects on one species and no effect on the other
(amensalism) (Halvorsen 2012, Mclnerny and Etienne 2012c).

In the context of SDM it is important to keep in mind that interspecific interactions
are neighbor phenomena, i.e., interactions that take place between individuals. In order to
affect the distribution of a species, biotic interactions with similar outcomes have to take
place between many individuals and over a large area. The larger the study area, and the
coarser a grid that is used to rasterize this area, the more individuals have to be involved
in interactions to affect the distribution, and hence, the distribution model (Halvorsen
2012). The SDM literature contains several examples of effects of biotic interactions on
different spatial scales (by spatial scale | here specifically mean the linear grain of the study
area (grain being the size, in geographical space, of one observation unit). | here use the
terminology of spatial scales of Halvorsen (2012), defining the micro scale as 0.1-1 m, the
local scale as 1-1,000 m, the regional scale as 1,000—1,000,000 m and the global scale
as more than 1,000,000 m. Effects of biotic interactions are assumed mostly to influence
species distributions on micro to local scales (Pearson and Dawson 2003, Hortal et al. 2010).
Effects on distribution models obtained for local-scale data are shown for competition
(Meier et al. 2010, Boulangeat et al. 2012), facilitation (Boulangeat et al. 2012), mutualism
(Gutiérrez et al. 2005), and parasitic/amensalistic relationships such as effects of the
availability of host plants for butterflies (Pellissier et al. 2012). Effects of biotic interactions
on regional-scale distribution models have, however, also been shown; for competition
(Leathwick and Austin 2001, Anderson et al. 2002), facilitation (Heikkinen et al. 2007), effect
of predation (Hebblewhite et al. 2005) and the availability of host plants (Aratjo and Luoto
2007, Schweiger et al. 2012) and prey (Redfern et al. 2006).
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There are some difficulties associated with introducing biotic effects as variables
in SDM. A biotic variable such as the presence of a potentially interacting species
may represent a (real) biotic interaction, or it may act as a proxy for an unidentified
environmental variable (Austin 2002). Separating these two cases is difficult because
interspecific biotic interactions can only be detected at a spatial scale where organisms
meet and interact (Huston 2002), and this scale will differ between organism groups, being
broader for larger, more mobile species, such as mammals, and finer (and typically much

finer than the scale at which SDMs are performed) for small, sessile species, such as plants.

The literature gives no unambiguous answer as to whether all biotic interactions
should be considered as shaping the realized niche, or some of them should be considered
part of the fundamental niche. | propose to treat biotic interactions, which are absolutely
essential for a species (obligate biotic interactions), as part of the fundamental niche,
while other biotic interactions (non-obligate) should be considered as part of the realized
niche. Examples of the first can be the availability of an obligate prey species for specialist
parasitic or predator species (or host plants for a specialist herbivore species), while
examples of the latter are the distribution of predators or competitors.

3.2.5 Purposes of distribution modeling

According to the gradient analytic perspective, a species’ response to important
environmental gradients is generally unimodal, while niche theory defines the
fundamental niche of a species as an n-dimensional hypervolume (with each dimension
being an environmental variable), in which every point corresponds to a combination of
environmental conditions that permits the species to exist indefinitely. The realized niche
is the fundamental niche constrained by biotic interactions. Metapopulation dynamics
complicate the relationship between realized niche and realized distribution even further,
by predicting that species may regularly be absent from suitable habitats while present
in unsuitable habitats. In the same way biotic interactions and metapopulation dynamics
can be incorporated into a gradient analytic perspective. Biotic interactions may influence
the shape of the response curve of the species along a gradient, by reducing (or increasing
in cases of positive interactions) the tolerance of a species, or by reducing (or increasing)
the abundance of the species within the tolerance limits. These effects are referred to
as an amplitude response and a magnitude response, respectively, by Halvorsen (2012)
and will increase towards finer spatial scales. It is, however, important to stress that the
perspectives of gradient analysis and niche theory are fully compatible, merely being two

different ways of presenting the same issue.
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Whether or not effects of factors related to metapopulation dynamics and biotic
interactions should be accounted for in SDM, depends on the modeling purpose. Spatial
response modeling (SPM) and ecological response modeling (ERM) can be seen as end-
points of a continuous gradient from less to more general modeling purposes, requiring
models that are closely fit to the data and models that express general species-environment
relationships, respectively (Halvorsen 2012). The main purpose of ERM is to model the
relationship between the distribution of a target species and a set of environmental
variables. The focus is to find and understand general patterns in the overall ecological
response of the modeled target to explanatory variables in environmental space. SPM, on
the other hand, aims at modeling the distribution of the target species in a specific study
area in a specific time interval, modeled by use of a set of explanatory variables. The main
purpose is to optimize the fit between model predictions and the true distribution of the
species in this area at this point in time. SPM thus addresses relationships in geographical

space.

The ERM — SPM duality can be discussed in light of the currently ongoing debate
over the validity of the ecological niche term for SDM (Guisan and Zimmermann 2000,
Pulliam 2000, Guisan and Thuiller 2005, Soberon and Peterson 2005, Araujo and Guisan
2006, Soberdn 2007, Mclnerny and Etienne 2012a, Mclnerny and Etienne 2012b, Mclnerny
and Etienne 2012c). Because SDMs with the ERM purpose aim at modeling general
species-environment relationships, it can be argued that ERM models are estimating
the fundamental niche, or the potential distribution, of the species. This is, however,

a problematic argument because the presence/absence or presence-only data used to
generate the model are drawn from the realized distribution of the species. According to
the conceptual model of Soberon and Peterson (2005) [modified in Soberdn (2007)], a
species distribution is limited by three classes of factors (Fig. 2); abiotic (region A), biotic
(region B) and factors related to accessibility (region M). Region A corresponds to the
fundamental niche (FN) of the species, while the intersection of region A and B (ANB)
corresponds to the realized niche (RN) of the species. The realized distribution (Jiménes-
Valverde et al. 2008) of the species is, however, also limited by the accessibility of the
area (M). This is determined by the dispersal ability of the species, dispersal barriers and
(anthropogenic) means of introduction. In practice the species can be found throughout
the entire region M, due to the presence of sink populations (Pulliam 2000), although
populations with positive fitness (source populations) are only encountered in the area
where all three regions intersect.
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While metapopulation theory assumes that the environment consists of discrete
patches of suitable habitat surrounded by uniformly unsuitable habitats, modern SDM
methods assign a continuous variable of probability of occurrence to each pixel into which
the study area is gridded. This improves the realism of model predictions (compared to
approaches which provide binary predictions), by attributing low probability of occurrence
to sink habitat areas. The degree to which SDMs are influenced by presence observations
in sink habitats will depend on how large a fraction of the dataset such observations
contribute.

In addition to the three above-mentioned classes of factors (abiotic, biotic and factors
related to accessibility), deficient sampling may also contribute to imperfect representation
of the fundamental niche by an ERM-purpose SDM.

Figure 2. : A representation of factors affecting the distribution of a species, redrawn
from Soberdn (2007). Region A represents the geographical area where the abiotic
environment is suitable for the species. Region B represents the geographical area
where the biotic factors that affect resource use and biotic interactions would allow
the species to persist. M represents the total area that has been or is accessible to the
species within a time period of interest. Solid circles represent source populations.
Open triangles are sink populations with negative growth rates due to competitive
exclusion. Open squares represent sink populations due to negative intrinsic growth
rates. Open circles are combinations of the above. FN = fundamental niche and RN =

realized niche.
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The degree to which each of these factors will influence a distribution model is also
affected by the scale of the study. Dispersal barriers are expected to be rare when the
extent of the study area is small (Soberon and Peterson 2005). Limitations and potentially
imperfect sampling are, hence, the main reasons why ERM models cannot be interpreted
as representations of the fundamental niche at broader scales. At finer scales, biotic
interactions and metapopulation dynamics may also contribute to mismatch between
predictions from an ERM model and the fundamental niche. In cases where biotic
interactions occur among many individuals over a large area, biotic interactions may also
influence the distribution of a species on a broad scale. This is especially evident when the
biotic interaction is obligate [such as the availability of host plants for host-specific insects
(Araujo and Luoto 2007, Schweiger et al. 2012)].

It is argued that ERM models should be simple, e.g., in terms of number of model
parameters, in order to express fundamental species-environment relationships (Halvorsen
2012), so that effects of biotic interactions, limited accessibility, source-sink dynamics and
insufficient sampling are ideally smoothed out.

SPM models are, by definition, less general than ERM models (Halvorsen 2012).
Complex and flexible modeling tools may improve such models, and it can easily be argued
that SDM models are representations of the realized niche of the species, with effects
of biotic interactions taken into account (Guisan and Zimmermann 2000, Pearson and
Dawson 2003, Kearney 2006). Nevertheless, temporal and geographical accessibility and
metapopulation dynamics may also affect SPM models. The modeled entity is consequently
not the realized niche, but rather the realized distribution of the species (Jiménes-Valverde
et al. 2008). The only obstacle left for modeling the realized distribution, then, is imperfect

sampling.

ERM and SPM models are suitable for different applied purposes. SPM models do,
by definition, specifically describe a species’ distribution in a specific study area at a given
time-point (at which the data used to obtain the model are sampled). Models based on
species-environment relationships characterized by idiosyncrasies of the study area, such as
dispersal-barriers, anthropogenic influence or biotic interactions, tend not to be valid when
projected onto another study area or to another point in time (Barbosa 2009, Wolmarans et
al. 2010, Schweiger et al. 2012). In cases where the study area is large, these relationships
may not even be transferable between different parts within the study area. SPM models
are the obvious choice for practical cases in which the purpose is to model suitable
habitat in the area from which data for training the model is obtained, given that the

species’ relationship to the environment can be expected to be reasonably homogeneous
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throughout the study area. Applications of SPM models can include assistance in finding
new populations of a species (Bourg et al. 2005, Guisan et al. 2006, Pearson et al. 2007),
finding suitable habitat for species reintroductions (Osborne and Seddon 2012) and

nature reserves (Loiselle et al. 2003), and finding areas for cultivation of species for food,
biofuels, etc. (Barney and DiTomaso 2010, Evans et al. 2010). ERM models, on the other
hand, express general species-environment relationships, more stable in space and time,
e.g., with the purpose of projecting to other study areas and points in time (Halvorsen
2012). ERM models are thus preferable for modeling invasive species in new areas, species
distributions in an altered climate regime, for species niche conservancy studies and for

exploring species-environment relationships.

3.3. What determines the distribution of insect species?

The distribution of insects have been found to be limited by different factors at
different spatial scales (Hortal et al. 2010). As for most organisms abiotic factors and
biogeographic processes (speciation, extinction, isolation and long distance dispersal)
are the most important factors on a global to regional scale, while biotic factors and
metapopulation dynamics are more important on a local to micro scale (Cabeza et al. 2010,
Hortal et al. 2010). A clear limit between scales at which abiotic factors matters more than
biotic factors and vice versa can, however, hardly be drawn. This will depend, inter alia, on
the dispersal capabilities of the species and the heterogeneity of the physical environment
(e.g. Holway et al. 2002) .

One abiotic factor of particular importance for the distribution of insects is
temperature. Because insects, with few exceptions, are ectothermic, their body
temperature is ultimately determined by the ambient temperature. This in turn influences
the speed and efficiency of their vital biological processes (such as development,
metabolism, ecdysis and reproduction). It has been shown that temperature extremes
are more important than temperature averages in defining species distributions, both in
temperate regions and in the tropics (Overgaard et al. 2014). Several other temperature-
related descriptors have also been found to correlate with insect distributional limits,

e.g., degree days (Hawkins and Porter 2003, Luoto et al. 2006, Pellissier et al. 2012), mean
temperatures (Luoto et al. 2006) and the amounts of solar radiation (Pellissier et al. 2012).

Another important abiotic factor limiting insect distributions is humidity (Fink and
Volkl 1995, Hill et al. 1999). Factors related to humidity and precipitation can influence
insect species directly by altering their water balance, and different species have
different behavioral and physiological strategies for coping with unfavorable humidity
regimes (Chown et al. 2011). Larger, more heavily sclerotized insects are less susceptible
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to desiccation or waterlogging than smaller, more delicate species (Schowalter 2012).
Similarly, immature stages may be much more vulnerable to dry conditions than adults
(Chown et al. 2011). An insect’s water balance and exposure to desiccation is also linked

to temperature. In general, temperature is a more important distribution-limiting factor in
cool climates, whereas the availability of water is more critical in warmer climates (Hawkins
et al. 2003).

Temperature and precipitation may also have indirect effects on the species through
habitat alterations, which again affects resource quality and availability, and exposure to
predation and parasitism. Some herbivorous insects may for example be drawn to plants
stressed by drought (Schowalter 2012). Other abiotic factors which may influence species
distributions are wind (Fink and V&lkl 1995) and soil chemistry (Schowalter 2012).

Land cover / habitat availability has also been found to influence insect distributions
(Hill et al. 1999, Ulrichs and Hopper 2008). Land cover is likely to be an indirect predictor
of insect distributions, reflecting the effects of temperature, humidity and soil structure
on the organisms’ physiology. Land cover may also reflect the availability of resources,
such as host-plants for parasitic or plant-eating insects. The fact that land-use changes has
been listed as one of the five biggest threats to the worlds biodiversity, insects included
(Kalas et al. 2010), indicates that habitat availability is crucial. Habitat destruction is linked
to metapopulation dynamics because habitat fragmentation limits the dispersal between
different habitat patches (Hanski et al. 1996).

3.4. Aims of the thesis

The overall aim of the thesis is to explore how limitations in the response data, i.e. the
quality and quantity of the data used to train or parameterize SDMs, affect the outcome of
the modeling.

Specific goals are:

- to provide a theoretically founded understanding of what sampling bias is and to

explore its effects on species distribution models (paper | and 1)

- to explore how the choice of background data affects species distribution models
(paper Il and IlI)

- to examine how the number of presence observations affects species distribution
models, and to assess if a general minimum sample size required to obtain useful

SDMs, can be found (paper IV)
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4. General material and methods

4.1. Study area

The study area for the analyses of all four papers was the mainland of Norway,
comprising 323,782 km?, from 58 to 71° N and from 5 to 31 ° S, from sea level to 2469 m
a.s.l. This area is especially suited for exploring properties of distribution models because of
the high topographical and geological diversity and the variation in intensity of human land-
use, e.g. for agricultural purposes, which bring about variation in environmental conditions
and species composition over a large range of spatial scales (Halvorsen 2012). The degree
of variation over short distances is rare, not only within the Nordic countries, but also in a
global context (Moen 1999).

Norway contains strong regional bioclimatic gradients in temperature and oceanicity-
continentality (Moen 1999, Bakkestuen et al. 2008). The temperature gradient follows the
range of vegetation zones represented in Norway (from boreonemoral to high alpine) (Fig.
3a), while the oceanicity-continentality gradient follows the range of vegetation sections
(from the strongly oceanic to the slightly continental) (Fig. 3b).

The main land-cover types in Norway are non-forested land (46%; mainly situated
above and north of the tree line), forest (38%) and mires and lakes (6 % each).

Vegetation zones Vegetation sections

[ 1Alpine B Winter-mild
[ /North-boreal [ ] Strongly oceanic
[ Mid-boreal [ 1Clearly oceanic

[ South-boreal
[ 1Boreo-nemoral
[ INemoral

1 Weakly oceanic
[ 1 Transition zone
[T Weakly continental

Figure 3. Map of (a) the vegetation zones and (b) the vegetation sections of Norway

(Moen 1999).
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4.2. Study organisms; presence and background target group datasets

Insects were chosen as the only study organisms in two of the four papers of this
thesis. One paper is a theoretical paper, without any analyses, while one paper includes two
insect species as well as two fungi species (Table 1).

Insects are particularly interesting because they comprise more than half of the
worlds described species (Chapman 2009) and because many of them are represented
by few presence records (New 2009). Furthermore insects represent a wide variety of life
histories, dispersal abilities, size and shapes, which can potentially influence their responses
to environmental variables and, hence, their distributions. For the analyses in paper IV ten
species from each of three orders (Coleoptera, Lepidoptera and Diptera) were chosen (Fig.
4). This was done to include species with different dispersal abilities, feeding habits, sizes
and shapes.

Coleoptera: Based on numbers of described species, beetles are the most diverse
group of organisms on Earth. In most species the elytra cover the membranous flight
wings and the abdomen. In this way the beetles are protected against predation and
environmental stress (Foottit and Adler 2009). Of the families represented in paper 4, two
of them, Curculionidae and Cerambycidae are associated with wood and are known to
sometimes cause damage to trees. The species belonging to Nitidulidae and Elateridae are
herbivorous, while the Cantharidae species is a predator.

Diptera: Diptera are commonly called true flies or two-winged flies and are among
the most diverse insect orders, not only in species richness, but also in structure, habitat
selection and life habits. The larvae of most diptera species can be considered aquatic in
the broadest sense, because they require a moist to wet environment within the tissues of
living plants, in decaying organic material, as parasites or parasitoids of other animals or in
association with bodies of water (Foottit and Adler 2009). The diptera species in paper IV
include species from the families Conopidae (parasitic), Asilidae (predatory) and Syrphidae

(adults feed on pollen and nectar, while larvae are either saphrotrophs or predatory).

Lepidoptera: Lepidoptera is a large insect order, including moths and butterflies. They
inhabit all kinds of terrestrial habitats, but almost all species are associated with higher
plants, as they feed on nectar. Lepidopterans are soft bodied and fragile and, hence,
exposed to predation. Almost all species have some form of membranous wings and are
good dispersers. Some species are even migratory. However, they have to be warm in
order to fly and this is further dependent on their environment (Foottit and Adler 2009).
Lepidopterans are easy targets for SDM studies because they are charismatic and relatively
easily identifiable. Therefore Lepidoptera species are well represented in museums
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and databases. The lepidopteran species used in paper IV include five species from the
superfamiliy papilionoidea (the true butterflies); from the families Papilionidae, Pieridae
and Lycaenidae, in addition to three species of the family Geometridae, one species from
the family Lasiocampidae and one from Zygaenidae.

The choice of species was also based on the desire to include species with different
distribution patterns. | tried to include wide-spread species as well as species with more
limited distributions. This was, however, not easy, as an additional requirement was a
minimum sample size of 40 presences, for subsampling to be possible. Therefore, few
red listed species were included, with the exception of three species within the order of
Lepidoptera; Thecla betulae (Fig. 5 b) (category NT), Glaucopsyche alexis (Fig. 5a) (category
NT) and Aporia crataegi (category VU) .

Paper Il was written after paper IV, and all datasets from paper IV were already
available. In order to avoid having to present too many response curves in paper Il, we
only wanted to analyze a subset of the species used in paper IV. These were chosen to
fit in a 3x3 design, with three species from each of three orders. Within each order we
selected one species with a restricted distribution, one with an intermediate distribution
and one with a broad distribution. If presented with more than one alternative from each

distribution class, we selected the one with the largest presence dataset.

Most of the insect presence data used in this thesis (3267 georeferenced presences
altogether) were extracted from the database of the insect collection at the Natural History
Museum, University of Oslo, Norway (89 %). Additional data were obtained from the insect
collections at Bergen Museum (University of Bergen, Norway) (6 %) and the Museum
of Natural History and Archaeology (Norwegian University of Science and Technology,
Trondheim) (5 %).

To generate background target group (BTG) datasets for each species in paper Il and
the beetle species in paper llI, all geographically referenced presences of their respective
taxonomic families in Norway, extracted from the database of the insect collection at the
Natural History Museum, University of Oslo, Norway were used. The BTG datasets for the
fungi in paper lll were generated from all geographically referenced presences of their
taxonomic family in Norway, extracted from the Norwegian GBIF database. This was done
because it can be assumed that specimens from the same taxonomic family at the same
museum (or from the same database) are sampled by the same group of collectors, with
approximately the same sampling technique. For each taxonomic family there are often a
few collectors contributing data to the museum, and the sampling effort has often been
concentrated around the ‘favorite sampling areas’ of these collectors. Data for species from

the same family may therefore share the same sampling bias.
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Although the datasets for all four papers cover the entire country, sampling intensity

has generally been higher in the south east (Fig. 6). This is related to the fact that the

majority of collectors lives in this part of Norway.

Table 1. List of modeled species included in the different papers, with their systematic

position, ecological range of the collected presences, number of presences, and number of
presences for the family of which they belong (BTG).

. . Ecological No. Paper | Paper | Paper
Species Family Order fange I No. BTG I T v
Ips acuminatus | Curculionidae Coleoptera | Broad 65 X
Leptura Cerambycidae Coleoptera | Restricted 58 3292 X X
maculata
Meligethes Nitidulidae Coleoptera | Restricted 60 443 X X
aeneus
Otiorhynchus Curculionidae Coleoptera | Broad 82 X
nodosus
j;l’.ogo.nochems Cerambycidae Coleoptera | Restricted 44

ispidus
Rhagium mordax | Cerambycidae Coleoptera | Intermediate 111 1228
Rﬁagony cha Cantharidae Coleoptera | Broad 113 312
limbata
Selatosomus Elateridae Coleoptera | Broad 84 X
aeneus
Strop hosoma Curculionidae Coleoptera | Intermediate 46
capitatum
Tetrops praeusta | Cerambycidae Coleoptera | Intermediate 41
Anoplodera Cerambycidae Coleoptera | - 31 3292 X
sexguttata
Conops . . .
quadrifasciatus Conopidae Diptera Restricted 133 X
Dioc}‘ria . Asilidae Diptera Restricted 95 375 X X
hyalipennis
Eristalis . .
arbusiorum Syrphidae Diptera Broad 137 X
Eristalis . .
interrupta Syrphidae Diptera Broad 92 X
Eristalis . .
intricaria Syrphidae Diptera Broad 194 652 X X
Eristalis pertinax | Syrphidae Diptera Intermediate 141 X
Laphria flava Asilidae Diptera Intermediate 73 X
Neoitamus socius | Asilidae Diptera Restricted 93 X
Sicus ferrugineus | Conopidae Diptera Intermediate 210 X
Volucella . . .
bombylans Syrphidae Diptera Intermediate 103 598 X X
Aporia crataegi | Pieridae Lepidoptera | Intermediate 57 X
ZZ:;SOP syche Lycaenidae Lepidoptera | Restricted 84 1541 X X

29




Heterothera

. Geometridae Lepidoptera | Intermediate 49 X

serraria

Lasiocampa . . . .

rifolii Lasiocampidae | Lepidoptera | Restricted 45 X
Parnassius Papilionidae Lepidoptera | Intermediate 88 211 X
apollo

Pieris napi Pieridae Lepidoptera | Broad 346 926 X
Thecla betulae Lycaenidae Lepidoptera | Restricted 43 X
Xanthgroe Geometridae Lepidoptera | Restricted 112 X
annotinata

Xa;zthorog Geometridae Lepidoptera | Restricted 238 X
decoloraria

Zygaena exulans | Zygaenidae Lepidoptera | Restricted 169 X
Fomitopsis rosea | Fomitopsidaceae | Polyporales 676 35.892

Xylobolus Stereaceae Russulales 310 35.892
frustulatus
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(e) (f)

Figure 4. (a) Conops quadrifasciatus (paper V), (b) Eristalis pertinax (paper V), (c) Pieris
napi (paper Il and V), (d) Parnassius apollo (paper Il and 1V), (e) Anoplodera sexguttata

(paper lll) and (f) Leptura maculata (paper Il and IV) (Photo: Karsten Sund).
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(a)

(b)

Figure 5. The red listed species; (a) Glaucopsyche alexis (paper Il and V) and (b) Thecla

betulae (paper IV) (Photo: Karsten Sund).
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Number of objects
collected in each region
28 - 131

132 - 262

263 - 393

394 - 524

525 - 655

Figure 6. Number of objects from the five background target group families used in

paper ll, collected in each region of Norway.
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4.3. Environmental variables

In paper Il and IV we used variables representing the two most important regional
bioclimatic gradients in Norway (Moen 1999, Bakkestuen et al. 2008), the oceanicity-
continentality gradient (bioclimatic sections) and the summer temperature gradient
(bioclimatic zones), as explanatory variables. The bioclimatic gradients were expressed
as step-less variables for which values were available for all 1x1 km grid cells in the
rasterized study area with center-point not falling on sea. The two variables were obtained
by Bakkestuen et al. (2008) as the directions of best fit of vectors for ordered classes for
vegetation sections and vegetation zones according to Moen (1999), in the space spanned
by the first two axes of the principal component analysis (PCA) ordination of 54 climatic,
topographical, hydrological and geological variables. The bulk of these 54 variables were
derived from 1-km resolution raster climatic data based on the 1960-90 normals (Aune
1993, Fgrland 1993), compiled by the Meteorological Institute (Tveito et al. 1997) while
terrain data (based upon a 100-m resolution digital elevation model) were obtained
from the Norwegian Mapping Authorities, hydrological data from the Norwegian Water
Resources and Energy Directorate (Beldring et al. 2002) and geological data were obtained
from the Norwegian Geological Survey (based on vector data scale 1:1,000,000). The two
resulting PCA axes accounted for 63% of the variation in the dataset (Bakkestuen et al.
2008). PCA efficiently reduces the dimensionality of matrices of correlated, multicollinearly
related variables (Bakkestuen et al. 2008). PCA ordination is therefore commonly used
prior to species distribution modeling to extract a few, step-less, axes of variation from
large matrices of environmental variables. These variables are then used as environmental
predictor variables in the subsequent species distribution model (Barve et al. 2011).

For the analyses in paper Ill the two above-mentioned variables were selected in
addition to terrain ruggedness (the mean elevation difference between adjacent 100 m x
100 m grid cells within the 5 km x 5 km grid cells of the rasterized study area, calculated
by a standard procedure (TRl in ArcView GIS 9.1; (Riley et al. 1999), forest cover (fraction
of grid cell covered by forest according to the digital map series N50 from the National
Mapping Authorities of Norway), solar radiation in April (maps of estimated potential solar
irradiance in April, rasterized from vector format maps scale 1:7,000,000; (Aune 1993) and
July precipitation (July mean values for precipitation, based on the 1961-90 normal, where
the original estimates obtained for a 1 km x 1 km grid were averaged; (Tveito et al. 1997).
These variables were selected from a candidate set of 12 environmental predictor variables
available for all of Norway, rasterized to 5 x 5 km resolution, of which no predictor was
allowed to have a Pearson’s product-moment correlation coefficient higher than 0.7 with

any other selected predictor.
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4.4. Modeling methods

4.4.1. MaxEnt and the Maxent software

Most of the data available for species DM are of the presence-only type, i.e., datasets
in which observations of species absences are lacking (Franklin 2009, Stokland et al. 2011).
Accordingly, many of the commonly used DM methods are adapted to use presence-only
data (Franklin 2009). One such method is Maximum Entropy (MaxEnt) (Phillips et al. 2006,
Phillips and Dudik 2008, Elith et al. 2011, Halvorsen 2013) which, based upon the maximum
entropy principle (Jaynes 1957a, b), estimates a probability distribution for the modeled
target over the set of all n grid cells of a rasterized study area (Phillips et al. 2006, Phillips
and Dudik 2008, Elith et al. 2011). MaxEnt has proved to give models with acceptable
predictive ability even when few presence records are available, i.e., when the sample size
is small (Elith et al. 2006, Hernandez et al. 2006, Marini et al. 2010, Rebelo and Jones 2010,
Peterson et al. 2011). The most popular software for MaxEnt as a method for distribution
modeling is Maxent (Phillips et al. 2004, Phillips et al. 2006, Phillips and Dudik 2008,
Phillips et al. 2012) (note the distinction between the software Maxent and the modeling
method MaxEnt). Maxent version 3.3.1 is used in paper IV, while the more recent Maxent
version 3.3.3k (http://www.cs.princeton.edu/~schapire/maxent) is used in paper Il. Default
Maxent settings implies automatic generation of derived variables of up to five types [‘auto
features’ in the terminology of Phillips et al. (2006)]. A derived variable is a variable derived
from the raw explanatory variable by transformation, i.e. by a mathematical operation.
Which types of derived variables that are generated in each case depends on the number
of presence observations: linear variables are used for all sets; quadratic variables are
used for sets with > 10 presence observations; hinge variables for sets with > 15 presence
observations; and product and threshold variables are used for sets with > 80 presence
observations. The most parsimonious model is then selected by the € -regularisation
(Hastie et al. 2009) or lasso penalty (Tibshirani 1996) method which operates by parameter
shrinkage (Reineking and Schréder 2006, Halvorsen 2013). By this method, a regularization
multiplier, set by the user, regulates the stringency of the variable selection procedure. The
default regularization multiplier in Maxent is 1. When a smaller regularization multiplier
is selected, the model will be closer fit to the data. The use of default parameterization
in Maxent has been questioned by several authors (Raes and ter Steege 2007, Anderson
and Gonzalez 2011, Merckx et al. 2011, Warren and Seifert 2011), and Halvorsen (2013)
suggests that the complex response curves produced with default Maxent settings and
the large number of derived variables with nonzero parameters listed in the NN.lambdas

output file from Maxent software indicates that Maxent models tend to be overfit.
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In paper IV the raw output format was used. This consists of a set of values that sum to
unity for the total training dataset of presence and uninformed background observations.
In paper Il model output was expressed in probability-ratio output (PRO) format (Halvorsen,
2013), obtained by multiplication of each raw output value with the total number of
background observations. PRO output values differ from raw output by being independent
of N, the number of background observations and by attributing a specific interpretation to

the output value of 1 (which is the average output value for all background observations).

4.4.2. An alternative MaxEnt process: A manuel forward selection method

In paper Il additional MaxEnt models (referred to as ecological response models;
ERM) were obtained for each species by a two-phase stepwise forward selection procedure
as outlined by Halvorsen (2013). The idea behind this approach was to generate simpler
models with fewer parameters, by which ecologically more realistic response curves could

be obtained, a to make the steps in the variable selection process more traceable.

By this alternative procedure, default & -regularisation is replaced by a model
optimization criterion based upon comparison of variations accounted for by nested MaxEnt
models (Halvorsen 2013). Forward selection of variables can be described as a process with
three phases: (1) testing each single derived variable for individually significant contribution
to explaining variation in the response; (2) selection of a parsimonious set of the derived
variables passing step (1) to represent each explanatory variable; and (3) selection of a
parsimonious set of explanatory variables, each represented by the sets of derived variables
obtained in step (2). For comparison of two nested MaxEnt models, we used an F-ratio
test with the significance level a = 1-107°. All types of derived variables (‘features’ in the
terminology of Phillips et al. 2006), except product (interaction) variables, were generated.
In addition, a sixth variable type, the deviation variable, was obtained for all combinations
of species and explanatory variables for which the FOP curve (after smoothing) had a
distinct peak. This peak was used as an estimate for the species’ optimum along the
gradient. The deviation variable was obtained as the absolute value difference between a
grid cell’s explanatory variable value and the estimated optimum. After generating derived
variables, steps (1)—(2) were performed, as described above. Model output was expressed
in PRO format (Halvorsen 2013). A set of customized R scripts (S. Mazzoni & R. Halvorsen,
unpubl. material) was used together with the Maxent software (Phillips et al. 2006, Phillips
and Dudik 2008).
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4.4.3. Boosted regression trees (BRT)

In paper Il boosted regression trees (BRT) (Friedman et al. 2000, Friedman 2002,
Hastie et al. 2005, Elith et al. 2008) is applied as the modeling method. BRT is a machine
learning method that in comparative studies has been shown, in general, to perform among
the best (Elith et al. 2006). It combines the strengths of regression trees (models that
relate a response to predictors by recursive binary splits) (Hastie et al. 2005) with those of
boosting (an adaptive method for combining many simple models into a combined model
with improved predictive performance) (Friedman 2002).

Tree-based models partition the environmental space into rectangles using a series
of rules to identify regions having the most homogenous responses to the predictors.
Then the mean response for observations in each region is fit. A tree is built by recursive
binary splits, i.e. the two subsets resulting from each split are again each split into two
subsets. These subsets are described in terms of their homogeneity in the response variable
(reduction in deviance is one measure of homogeneity) (Elith et al. 2008, Franklin 2009). It
is recommended to grow a large tree and then ‘prune’ it , i.e. remove the splits that add the

least to overall subgroup homogeneity (Hastie et al. 2009).

Boosting is a forward stagewise procedure for improving model accuracy and works by
repeatedly sampling the data with replacement and developing trees for each dataset. Each
observation sampled is weighted to have a higher probability of selection if it is modeled
poorly by the existing collection of trees. The final BRT model thus consists of numerous

simple trees that can be understood as an additive regression model (Elith et al. 2008).

The model-building process performs best if it gradually improves the predictive
performance of the model, and the contribution of each tree is hence shrunk by a learning
rate that is less than one. The tree complexity controls whether interactions are fitted. The
learning rate and the tree complexity determine together the number of trees required for

optimal prediction.

In BRT, the relative contribution of the environmental variables is based on
the number of times the variable is selected for splitting, weighted by the squared
improvement to the model as a result of each split, and averaged over all trees (Friedman
and Meulman 2003). The fitted functions are visualized in partial dependence plots showing

the effect of a variable on the response.
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5. Main findings

5.1. The frameworks

In this thesis a set of presence observations is defined as sampling biased if the
frequency distribution of presence observations along major environmental complex-
gradients deviates from the frequency distribution of the modeled target’s true presence
in the environmental space. Based on this definition, we provide two frameworks; one for
assessment of sampling bias in presence-only datasets and one for assessment of effects of
sampling bias on species distribution models.

According to the definition of sampling bias above, a set of presence observations
for a species in a study area contains sampling bias if the species frequency-of-observed-
presence (FOP) curve deviates from its frequency-of-true-presence (FTP) curve. By
definition, the FTP curve requires presence/absence information for all observation units
in the study area. Because this information is rarely available, FTP curves can, in almost
all cases, not be generated. The second-best option is to estimate empirical frequency-of-
presence (EFP) curves, using an independently collected sample of presence/absence data
(Edwards et al. 2005, Edwards et al. 2006, Veloz 2009, Edvardsen et al. 2011, Erikstad et
al. 2013). In cases where presence/absence data are lacking altogether we propose to use
theoretical-frequency-of-presence (TFP) curves, based on ecological theory, as a reference
with which FOP curves are compared (cf. Vaughan and Ormerod 2003). Deviations between
FOP and TFP curves may indicate sampling bias. Local minima and maxima on the FOP curve
may, however, also represent real properties of the species in the study area and the extent
to which strong cases for or against sampling bias can be made will depend on the quality

of the information that forms the basis for the TFP curve.

In the bias effects framework effects of bias can be visualized by plotting the
predicted-relative-frequency-of-presence (PRFP) curve. PRFP curves should reproduce the
FOP curve with a degree of detail that matches the level of generalization required by the

purpose of the study (Halvorsen 2012), regardless of the FOP curve being realistic or not.

In paper Il the two frameworks are tested on nine different species differing with
regards to taxonomic affiliation and distribution patterns. We find that comparisons
between FOP- and TFP curves indeed show indications of sampling bias in presence-
only data. The largest deviations between the two curves are seen in species with wide
distributions. For the species with narrower distributions FOP curves are unimodal, yet not
entirely smooth.
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The PRFP curves for the nine study species did, in most cases, resemble the FOP curves
closely. This was true for both ERM- and SPM models, also in cases where FOP curves were
complex and ecologically unrealistic. This shows that MaxEnt models in general are efficient
at reproducing the FOP curve patterns, and that data quality is more limiting than modeling
method for the species distribution modeling output.

5.2. Choice of background/pseudo-absence

The topic of background / pseudo-absence was treated both in paper Il and paper Ill.
As paper Il was the first to be written, the frameworks had yet to be developed, so the
main means of comparison between different models was AUC. We found that sampling
design influenced strongly the predictive performance of the models. The models based
on randomly selected and fixed-grid pseudo-absence observations were very similar with
respect to AUC values, while models based on the BTG design obtained significantly lower
AUC values than the models based on random and fixed pseudo-absence observations.
Varying the pseudo-absence design also influenced the relative importance of the
environmental variables, which was similar in the fixed grid models and the random design
models, but different in the BTG design models. In the latter the oceanicity-continentality
variable generally scored higher than the temperature variable, while the reverse was true

for the random and fixed designs.

In paper Il we applied the framework for assessment of sampling bias in presence-
only datasets to evaluate which of the two background designs, uninformed background
(UB) and background target group, led to the most realistic models. We found that the
FOP curves calculated by use of BTG background differed more or less strongly, and in a

seemingly unpredictable manner, from FOP curves calculated by use of UB background.

Results from paper Il and Il show that the use of BTG background, which has been
launched as a means to mitigate effects of sampling bias (Phillips and Dudik 2008, Phillips et
al. 2009), may, in some cases, actually introduce bias or increase already existing bias in the
data.

5.3. Sample size of presences and background points

In the last paper of this thesis the critical sample size sufficient for generating a
nonrandom prediction of species distribution was assessed by generating MaxEnt models
for datasets of different sizes for 30 insect species. Models based on replicated random
subsamples were compared to reference models, based on the full datasets, using the

index of vector similarity (/VS). Nonrandom models were in most cases obtained from
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datasets even with very few presences; for 97% of species clearly nonrandom models were
made with less than 15 presences. Critical sample sizes were not found to be significantly

correlated with the size of the full dataset, distributional range or taxonomic affiliation.

In paper Il we found that the number of pseudo-absences had minimal effect on
the predictive performance of the models. The number of generated pseudo-absences
did, however, have a direct effect on the predicted probability. A low number of pseudo-
absence observations led to a modeled distribution with a relatively large area of high
relative predicted probability of presence, whereas the opposite was true when the number
of pseudo-absence observation was large. However, when the prevalence (i.e. the number
of presence observations as a fraction of all presence plus all pseudo-absence observations,
see Jiménez-Valverde et al. 2009) was used as a threshold for converting the predicted
degree of presence into a black and white presence—absence map, the area with predicted

presence was very similar for a wide range of prevalence values.

From the results from paper lll and IV | draw the conclusion that sample size of
presences or background/pseudo-absences are not as important as the quality of the data.

5.4. Model complexity

The effect of model complexity was studied in paper Il. The PRFP curves produced
in paper Il did, in most cases, resemble the shapes of the FOP curves, both in the case of
simple ERM models and more complex SPM models. The number of derived predictors in
SPM models was significantly higher than in ERM models. This did, however, not result in
significantly better models, as AUC values for SPM models were not significantly higher
than AUC values for the ERM models.
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6. Discussion
6.1. Data quality

6.1.1. Assessment of sampling bias in presence data (affecting the data model)

Data quality may be suboptimal for several reasons, including geo-referencing
uncertainties (Graham et al. 2008), misidentification of species (Lozier et al. 2009) and
sampling bias (Kadmon et al. 2003, Loiselle et al. 2008, Phillips et al. 2009, Yackulic et al.
2013). The focus in paper | and Il is on the latter.

Methods and approaches proposed for detecting and quantifying sampling bias fall
into two groups: those that address geographical sampling bias and those that address
environmental sampling bias. Many studies addressing geographical bias do not investigate
whether or not the observed geographical bias results in environmental bias (Hijmans et al.
2000, Veloz 2009, Costa et al. 2010). Furthermore, among studies in which the relationship
between the geographical and environmental bias is addressed, a general consensus about
how these two, conceptually different biases, relate is lacking (Kadmon et al. 2004, Loiselle
et al. 2008, Wolmarans et al. 2010, McCarthy et al. 2011, Merckx et al. 2011). Geographical
sampling bias is addressed, e.g., by comparing the distribution of distances of presence
observations to specific geographic features with the distances of a set of random points
to the same features (Hijmans et al. 2000, Reddy and Davalos 2003). Features tested for
being sources of geographical bias include roads, rivers, cities and ‘biodiversity hotspots’,
the latter approached by comparing the number of observed species presences inside
proposed conservation priority areas with the number of observed presences in adjacent
non-priority areas (Reddy and Davalos 2003). Such comparisons rest on the assumption
that a species true prevalence does not differ between the compared areas. Furthermore,
for geographical sampling bias to be of relevance for assessment of sampling bias (response
bias) as defined above, the assumption that geographical bias translates into environmental
bias has to be justified. Several direct approaches to assessment of bias in environmental
space are proposed. Kadmon et al. (2004) and Loiselle et al. (2008) apply the Kolmogorov-
Smirnov test (Massey 1951) to evaluate the difference between the frequency distributions
for binned climatic variables in a set of localities where observations (collections) have
been made and a random set of localities, taking differences as indications of sampling
bias. None of these approaches can, however, be used to assess sampling bias as defined
above because they are based upon assumptions about the distribution of the frequency-
of-true-presence of the modeled species in environmental space. These assumptions
cannot be substantiated by use of presence-only data when the distribution of sampling
effort is unknown. Because SDM takes place in environmental space we define a presence
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dataset to contain sampling bias if the frequency distribution of observed presence along
major environmental complex-gradients deviates from the frequency distribution of its true
presence in the environmental space (paper 1). Our definition of sampling bias establishes
one and only one standard for an unbiased sample: the true distribution of frequency of
presence of the modeled species in environmental space. From this follows that the key to
understanding sampling bias and to finding indications of sampling bias in presence data is

to explore the FOP curve of the species.

By examining the FOP curves of nine insect species with respect to the oceanicity-
continentality gradient (paper Il) we find examples of under- and oversampling well within
the tolerance limits of a species (bias type 1 and 2 from paper I), as well as unsystematic
variation or stochasticity (bias type 4 from paper ). Stochasticity is likely due to the amount
of presences not being large enough to adequately recapture the true response of the
species to the gradient. From the definition of sampling bias from paper | we conclude
that such irregularities, even if they are minor, must be interpreted as sampling bias, as
they give rise to erroneous estimates of frequency of presence along the gradient. With
respect to the temperature gradient, all FOP curves are right-truncated. This is likely to
result from the species having their optimum outside the sampled portion of the gradient.
The truncated response to the temperature gradient may also be strengthened as a result
of over-sampling in the high temperature extreme of the gradient. The warmest (south-
eastern) parts of Norway contain the most densely populated areas and sampling intensity
is particularly high there.

It is important to keep in mind that it is impossible to set up a concrete
parameterization of theoretical frequency-of-presence (TFP) curves, with which to compare
the FOP curves. Consequently it is impossible to make a formal test of the extent to which
a FOP curve deviates from the corresponding TFP curve. The TFP curves are deduced from
gradient analytic and macro-ecological biogeographic theory, which again is build up from
numerous empirical studies. Sampling bias in data used for SDM can only be verified if an
independent presence-absence test dataset is applied to generate an EFP curve, with which
the FOP curve can be compared. Nevertheless, results obtained in paper | and Il show that
the proposed framework for assessment of sampling bias in presence-only data by visual
comparison of frequency-of-observed-presence (FOP) curves with theoretical frequency-of-
presence (TFP) curves can provide useful indications of systematic sampling bias.

6.1.2. Choice of background dataset (affecting the data model)

The choice of background data is heavily debated in SDM literature and several
background designs have been proposed. Examples are random selection (Stockwell and
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Peters 1999), random selection with geographic-weighted exclusion (Hirzel et al. 2001,
Dudik et al. 2005), random selection with environmental-weighted exclusion (Zaniewski et
al. 2002), use of locations that have been visited where the target species was not observed
(Elith and Leathwick 2007), and use of observations for the group of species to which the
target species belongs (Ponder et al. 2001, Phillips and Dudik 2008). It is well-known that
the choice of background data influences the outcome of the SDM exercise (Thuiller et

al. 2004, Chefaoui and Lobo 2008, VanDerWal et al. 2009, Lobo et al. 2010). A clear guide
for the selection of background data has, however, not been made available. This thesis
offers a tool for the selection of appropriate background data, using species frequency-of-
observed presence curves.

In paper Il we interpret the observed discrepancies between FOP-UB curves and TFP
curves for all species with respect to the main complex-gradients to be caused mainly
by sampling bias. We therefor examine whether the use of BTG reduces or removes the
discrepancy between FOP and TFP curves. If the BTG data are biased to the same degree as
the presence data (Phillips et al. 2009), the FOP-BTG curves should approximate FTP better
than FOP-UB curves. However, we find that FOP-BTG curves deviate even more strongly
from the expected TFP curves than FOP-UB curves and in all cases, in which a unimodal
FOP curve is found for the UB approach, the unimodal pattern weakens, or disappears
entirely, when applying BTG data. One clear example is R. mordax, for which FOP-curve
shapes change from unimodal (truncated unimodal along the temperature gradient) to a
monotonous shape without any trace of unimodality left, for both gradients. This is not
surprising, considering that the FOP-BTG shows the relationship between the ratios of
the frequency by which the focal species is recorded and the frequency by which species
of the BTG is recorded, as a function of position along the underlying complex-gradient.
Taxonomically related species often have similar ecological requirements and this will result
in @ monotonous shaped FOP curve, as seen for R. mordax.

Our results show that FOP-BTG curves are not more similar to TFP curves than FOP-
UB curves, and hence apparently do not reduce sampling bias in Norwegian insect data.
This contrasts the common view that applying BTG data is an effective way of mitigating
sampling bias in presence-only data used for DM by group discriminative methods (Phillips
and Dudik 2008, Phillips et al. 2009, Mateo et al. 2010a, Bystriakova et al. 2012, Yackulic
et al. 2013). The idea of using BTG in distribution modeling, as a means of correcting for
imperfect sampling was introduced by Ponder et al. (2001). It has since then been used by
some authors (LUtolf et al. 2006, Elith and Leathwick 2007), but it was not until Phillips and
Dudik (2008) introduced the use of BTG as a new extension in the software Maxent, that
BTG really gained a reputation of being an effective way of mitigating effects of sampling
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bias in SDM. In many studies BTG is, however, applied, without exploring the data prior to
modeling and without testing other background designs for comparison (Cord and Rédder
2011, Graham et al. 2011, Crall et al. 2013, Lohmann et al. 2013). Furthermore, in several
studies where different background designs are compared, models generated with BTG
data are found to be poorer than those generated by other background designs (Heibl and
Renner 2012, Millar and Blouin-Demers 2012). Bystriakova et al. (2012), on the other hand,
find BTG models to perform better than UB models when trained with species data from
western and central Europe and tested on species data from Ukraine. To our knowledge, no
studies have yet addressed the BTG approach from the perspective offered by comparison
between response curves generated with UB or BTG data. Our results suggest that this
issue should be carefully addressed in future studies and that use of BTG for DM should be
based upon careful examination of the two types of FOP curves.

The effects of using different background designs in SDM will also be apparent on the
modeling results. In paper Il values of AUC drop significantly from the UB approach to the
BTG approach. Differences in AUC are also observed in paper Ill, where the random- and
the fixed designs produce almost identical results, while use of the BTG design results in
smaller AUCs. However, AUC may be misleading for measuring the accuracy of distribution
models for several reasons, one of which being that the extent of the study area and
the environmental distance between the presences and absences, to a large degree,
determines the AUC value (Lobo et al. 2008). AUC is measuring how efficient the model is at
discriminating presences from (pseudo-)absences. With the BTG design the environmental
range of the pseudo-absences is typically much smaller and less segregated from the
environmental range of the presences than in the fixed and random design. This causes
AUC to be lower, when the BTG design is used, for all species in papers Il and Ill. In paper
Il the poor discriminatory power of the BTG models and hence the drop in AUC values are
reflected also in the FOP curves; in many cases there are no apparent relationship between
the species’ presences and the environmental variables and in some cases either one of
the variables do not contribute at all to explaining the distribution. Thus, | conclude that
the drop in AUC is not merely an artefact due to the study area becoming smaller, but
reflects an actual reduced ability of the BTG models to reproduce the FTP of the species.
Another factor influencing AUC is whether AUC is calculated using the training dataset or
an independent test dataset. In almost all cases AUC will be lower when calculated with
an independent test dataset. To be able to properly compare AUC values obtained with
UB data with AUC values obtained with BTG data an independent test dataset should be
applied.
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A change in the relative contribution of the environmental variables is also observed
in paper Il when changing the design of the pseudo-absence observations and, notably, the
range of environmental variation spanned by presence and pseudo-absence observations.
These findings correspond to the results of VanDerWal et al. (2009) who find that fine-
scaled environmental predictors are suppressed and coarsely varying climate factors
become dominant when the environmental space for sampling pseudo-absences is
enlarged. Although the contribution of each environmental variable is not quantified in
paper Il, the effect of varying the background design is visualized by observing the changes
in FOP and PRFP curves in relation to the temperature gradient. With the BTG approach
large parts of the gradients left side are excluded. The BTG-FOP- and BTG-PRFP curves with
respect to the temperature gradient are hence closer to uniform than the UB-FOP- and UB-
PRFP curves. Accordingly temperature contributes less to explaining the distribution of the
species in the BTG approach.

(b)

Figure 7. (a) Sicus ferrugineus (paper V) and (b) Rhagium mordax (paper Il and 1V)

(Photo: Karsten Sund).
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6.1.3. The assessment of effects of sampling bias on species distribution models (the

statistical model)

Paper Il and Il show that the choice of background data (paper Il) and pseudo-absence
data (paper Ill) strongly influence the outcome of the modeling exercise, in terms of AUC
(paper 1l and Il1), the shape of the FOP curve, and hence the PRFP curve (paper ll), the
relative importance of environmental variables (paper Ill) and the size of the area with
high predicted degree of presence. In paper lll, the random and fixed grid sampling designs
always give similar results, while the results obtained by BTG sampling design are deviating.

It is important that effects of sampling bias and effects of shortcomings in the
modeling method are kept separate (Papers | and Il). A group-discriminative distribution
modeling method should be considered as good if it reproduces a FOP curve as detailed as
required by the purpose of the study (Halvorsen 2012), regardless of the FOP curve being
realistic or not. The fact that most of the differences between model results in paper Il are
observed between models trained with different background (or pseudo-absence) data and
not between models parameterized in different ways, shows that the data quality, rather

than the modeling method, is the limiting factor for SDM performance.

One means for mitigating sampling bias is to avoid overfitting the model to the data.
The extent to which a model is overfit is, however, related to the modeling purpose. An
SPM model is overfit when it is closely fit to irregularities in the training data (resulting from
sampling bias), but not when fit to ‘irregularities’ (compared to theoretical response curves)
caused by factors such as biotic interactions, metapopulation dynamics or the influence
by complex-gradients other than those used for modelling. In practice, it is more or less
impossible to separate these causes of irregularities by their appearance on FOP curves. An
ERM model, on the other hand, is overfit when it reflects patterns other than the response
of the modelled target to anything else than the environmental variables (complex-
gradients) applied in the modeling. Halvorsen (2012) recognizes three types of overfitting:
(1) that a more complex model has lower predictive performance on independent data
than a simpler model; (2) that a more complex model is similar in predictive performance
on independent data than a simpler model; and (3) that a more complex model with higher
predictive performance on independent data than a simpler model fails to fit realistic
overall ecological response curves. ERM models are considered to be overfit by all three
types of overfitting, while SPM models are, however, only considered to be overfit in the
first case. This leads to the conclusion that overfitting is much easier to mitigate in an ERM
model. From inspection of FOP patterns it can, however, not be decided with absolute
certainty whether sampling bias is present or whether deviant curves represent real

properties of the modeled species, even when the modeling purpose is ERM.
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The PRFP curves produced in paper Il do, in most cases, resemble the shapes of the
FOP curves, both from the ERM and SPM perspectives. For the species with the most
distinctly unimodal FOP curves, the MaxEnt models predict unimodal responses to the
bioclimatic gradients, in which unsystematic variation is effectively smoothed out. For the
species with FOP curves showing clearer examples of under- or over-sampling, these are
in most cases reflected also in the MaxEnt PRFP curves. SPM models are more closely fit to
the data than ERM models only for a few species (judged by visual inspection of the FOP
and PRFP curves).

The largest difference between ERM- and SPM models is the number of derived
predictor variables used to parameterize the models. For SPM models, this number is
significantly higher than for ERM models, while AUC values are not significantly higher for
SPM models than for ERM models. Complex SPM models often result from inclusion of
many threshold- and hinge-type variables (Phillips and Dudik 2008) in order to make PRFP
curves fit FOP curves more closely. Nevertheless, the PRFP curves for the two models are
often very similar. This shows that simple models with very few parameters (variables)
can be as good as more complex models in representing (relatively) general features of
FOP curves. We hence support previous advises against building very complicated SPM
models, which seem neither to assist understanding of the focal species’ relationship to the
environment nor to enhance predictive power (Anderson and Gonzalez 2011, Halvorsen
2013, Syfert et al. 2013). It is also important to keep in mind that not all modeling methods
are appropriate choices both for ERM and SPM. MaxEnt and BRT are listed as two of the
best in several papers comparing the predicitive ability of SDM methods (Elith et al. 2006,
Hirzel et al. 2006, Franklin 2009). These comparisons do, however, refer to models fit
with the SPM purpose of modeling, as only SPM models can be evaluated by predictive
performance in geographical space. An ERM model on the other hand must be judged by
its ability to express the overall ecological response of the modeled target to the selected
environmental variables in ecological space (Halvorsen 2012). This is usually done by fitting
simple and smooth functions and can be accomplished using methods like generalized
linear models (GLM), generalized additive models (GAM) or other functions by maximum
likelihood methods (Austin et al. 1994, Oksanen 1997, Jansen & Oksanen 2013). ERM
models have to be explicitly parameterized, i.e., the relationship between predictor and
response variables has to be given by a parameterized mathematical function (Austin
et al. 1994, Oksanen 1997, Jansen and Oksanen 2013). Machine-learning methods like
boosted regression trees (BRT), and other ensemble forecasting methods (e.g., BIOMOD),
which are not explicitly parameterized, are therefore not appropriate for ERM. MaxEnt,

which has been described alternatively as a machine-learning method (Phillips 2008,
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Phillips and Dudik 2008) and as a statistical learning method (Elith et al. 2011), but which
can alternatively be explained by strict application of the maximum likelihood principle
(Halvorsen 2013), is therefore appropriate both for ERM and SPM (Halvorsen 2012).

6.2. How does the data quantity affect the species distribution models?

6.2.1. Presence datasets

Scarcity of presence data is a major obstacle for modeling species distributions (Lim
et al. 2002, Papes and Gaubert 2007, Feeley and Silman 2011b, Feeley and Silman 20113,
Kamino et al. 2012). The effect of sample size on species distribution models and the
existence of a minimum presence sample size needed to generate reliable models are
widely debated. There exists a general agreement that the models’ accuracy increases
when sample size increases (Cumming 2000, Pearce and Ferrier 2000, Stockwell and
Peterson 2002, Reese et al. 2005, Hernandez et al. 2006, Wisz et al. 2008), but a general
consensus regarding the amount of presence data needed to reliably predict a species’
distribution is lacking. Recommendations span from 5—-10 observations (Hernandez et al.
2006, Pearson et al. 2007) via 10-30 (Stockwell and Peterson 2002, Pearson et al. 2007,
Wisz et al. 2008, Mateo et al. 2010b) to more than 200 (Hanberry et al. 2012) presence
observations being needed. The contrasting conclusions from these studies may result
from differences with respect to characteristics of the study areas, resolution and extent of
the study area (Loe et al. 2012), modeling method (Dupin et al. 2011) and environmental
variables used in the modeling (Syphard and Franklin 2009), as well as from different
criteria for determining what constitutes an acceptable distribution model (Hanberry et al.
2012).

Differences in species characteristics, such as distribution patterns, are reported to be
of importance for the predictability of species’ distributions by DM methods (Hernandez
et al. 2006, Guisan et al. 2007, Mateo et al. 2010b, Stokland et al. 2011). In these studies
specialist species, i.e., species with a narrow distribution in environmental variables space
and restricted distributions in geographical space, are found to be easier targets for SDM
than generalist species, i.e., species with a broader distribution in the two conceptual
spaces (geographical and environmental). Accordingly, fewer presences are needed to
obtain acceptable distribution models for the former. The argument underpinning this
view is that generalists have broader ecological requirements and that more presences are
needed to represent the entire range of suitable environmental conditions for such species.

In paper IV we assess the minimum number of presences required to obtain non-
random distribution models. In order to make non-arbitrary and verifiable conclusions
about an eventual critical sample size (CSS), we determine thresholds based on
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comparisons with randomly generated models. The idea behind this choice is that a model
performing better than random (i.e., the model is more similar to the reference model than

a randomly generated model) provides useful information about the modeled species.

We find that models based on subsamples become more and more similar to the
corresponding reference models as presence sample size increases; however, nonrandom
models are in most cases obtained from datasets with very few presences For the
30 species there are no significant correlations between CSS and the species’ relative
ecological range, the number of presences in the full dataset or taxonomic order. This
suggests that our generally low CSS estimate is a robust result, of general validity.

The results from paper IV should be understood in the light of the knowledge gained
from the two papers discussing sampling bias (papers | and IlI). Removing presences from a
dataset resembles the situation of sampling bias in the sense that stochasticity (sampling
bias type 4 from paper I) may be introduced. This is because every FOP value is calculated
from a smaller number of presences and is hence infested with an increased degree of
uncertainty. The low CSS obtained in paper IV confirm that MaxEnt models, even if they are
complex, are able to effectively smooth out stochasticity in the data.

6.2.2. Pseudo-absence/background datasets

In paper Il we show that the number of pseudo-absence observations has a large
effect on the relative predicted probability of presence, which in turn has a strong effect
on the resulting binary distribution map. When following the advice of Cramer (1999) to
set the threshold equal to the prevalence, however, the distribution maps generated by

different amounts of pseudo-absences, in most cases, become very similar.

Although the main aims of paper Il concern sampling bias, the results also opens up
for a discussion on background dataset sample size. Larger datasets lead to more robust
estimates of FOP and reduce stochasticity bias. For some of the species the BTG datasets
are quite small. To our knowledge, the number of observations needed to form a robust
BTG dataset has so far not been addressed. Stokland et al. (2011) do, however, find that the
effect of varying the number of pseudo-absence observations in BRT (boosted regression
trees) models from 64 to over 4000 records is small compared to that of sampling design
and properties of the focused species. Moreover, Mateo et al. (2010a) claim that SDMs may
be improved by use of BTG datasets consisting of as few as 15 observations. Our results, as
well as theoretical reasoning, give reasons to seriously question this claim. However, the
problem attached to BTG is not primarily the size of the dataset, but rather the distribution
of the BTG observations along the gradient. With smaller datasets, more stochasticity bias

will be introduced.
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6.3. Potential limitations

6.3.1. The lack of an independent test dataset

In paper | we emphasize that the eventual existence of sampling bias cannot normally
be conclusively confirmed without access to a reliable test dataset of independent
presence/absence data for the species in the study area. A limitation of all the three
subsequent papers of this thesis (papers Il, Il and IV) is the lack of an independent test
dataset. Irregularities in the FOP curves may not always indicate sampling bias (as discussed
in paper I) and the final answer to the question if such irregularities result from sampling
bias or other sources, such as biotic interactions, the absence of species in habitable sites
or the presence of sink populations in unhabitable sites, are likely to be found by evaluating
the model on an independent dataset. Such data makes possible generating an empirical
frequency-of-presence (EFP) curve, as outlined in paper I. | therefore, in all possible cases,
strongly recommend evaluating the model using an independent test dataset. Nevertheless,
even though irregularities in the FOP curve do not provide indisputable evidence for bias in
presence datasets, a relatively smooth and unimodal FOP curve is a useful indication that a

sample of presences for the modelled target is unbiased.

In paper lll, the effects of combinations of pseudo-absence designs and sample sizes
on SDM results are compared. Many of the conclusions in paper Il are based on AUC
values. AUC is here used to measure the ability of a model to correctly predict presences
and to predict absence for pseudo-absences used to train the model. If an independent
dataset had been applied for model evaluation, AUC would most likely have been lower.
Given that the BTG approach generated realistic models, it is also possible, in theory, that
the difference between AUC values for the BTG design and the random and fixed designs
would have been levelled out, due to more false absences, and hence a decrease in AUC, in
the random and fixed designs.

In paper IV the models based on the full datasets for the species are used as reference
models, with which models based on subsamples are compared. As no independent
datasets are available for evaluating these reference models, we cannot claim that they
represent the true distributions of the species. This study therefore shows how the
predicted distribution changes with decreasing presence sample size, not in relation to
the true distribution, but in relation to a reference distribution, which may or may not be

imperfectly sampled.
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6.3.2. The inclusion of only two environmental variables

It can be argued that a limitation of the thesis is that only two environmental
variables, oceanicity-continentality and temperature, are applied in the modeling exercises
of paper Il and IV. However, gradient analytic theory predicts that species do not respond
to single environmental gradients, but to environmental complex-gradients, i.e., sets of
correlated environmental variables (Whittaker 1967). Furthermore, only a few major
complex-gradients normally account for most of the variation in species’ composition that
can be explained environmentally. The step-less oceanicity-continentality gradient and
the step-less temperature gradient summarize the co-variation of several topographical,
hydrological, geological and climatic variables (Bakkestuen et al. 2008) and correspond
to the two main bioclimatic gradients used in expert classifications of Norway into
biogeographical regions: vegetation sections and vegetation zones (Moen 1999).

In paper Il a candidate set of 12 environmental predictor variables is used as the
starting point for variable selection, of which six of these are selected (by the criterion that
no predictor should have a Pearson’s product-moment correlation coefficient higher than
0.7 with any other selected predictor). Of these six, only two or three variables are found to
contribute strongly (about 80% of the variation explained by all variables) to the resulting
models. The oceanicity-continentality and the temperature gradients themselves, or
variables strongly related to these, were always among the strongly contributing variables.
This indicates that the oceanicity-continentality and temperature gradients are the most
appropriate choices for a reduced set of environmental predictor variables for distribution
modeling at a fine regional scale in Norway.

In paper Il we use data for variation at the fine regional scale (1 km x 1 km) to judge
the performance of the bias assessment and bias effects frameworks proposed in paper I.
Performance of the frameworks should also be judged on broader (coarse regional—global)
and finer (local-micro) scales. On a broader scales, distributions are expected to be limited
by geophysical processes such as (historical) continental plate movements, sea-level
changes, mountain-chain upfoldings, and glacial cycles, over very wide time spans (Willis
and Whittaker 2002). On finer scales, as outlined in the theory chapter, the influence of
biotic interactions and metapopulation dynamics on observed distributions are expected
to increase. A shift from unimodal to polymodal or irregular curve shapes may occur when
these factors are important, but a decrease or increase in the tolerance of a species, or a
decrease or increase in the abundance of the species within the species’ tolerance limits, is

expected to be observed more commonly, even in these cases (Halvorsen 2012).
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7. Perspectives and conclusive remarks

In paper | we define a set of presence observations for a modeled target to contain
sampling bias if the frequency distribution of presence observations along major
environmental complex-gradients deviates from the frequency distribution of the modeled
target’s true presence in the environmental space. From this | conclude that small presence
datasets (paper IV), the lack of absence data (paper Ill) and the choice of pseudo-absence/
background data (paper Il and Ill) all relate to the issue of sampling bias and the distribution
of frequency-of-presence along environmental gradients (paper I). One or both of the
presence- and background/pseudo-absence datasets will be biased if these two, together,
fail to reflect the true frequency ratio of the model target as a function of position along the
gradient. | therefore recommend beginning the modeling exercise by plotting the FOP along
major complex gradients of importance to the species. If the presence datasets are too
small and/or biased, or if the selected background is not suitable for revealing the species-
environment relationship, this will be evident by the FOP curve deviating from the expected
smooth and unimodal shape.

The comparison between theoretical response curves and species’ FOP curves is found
to be a promising procedure for encountering indications of sampling bias in presence data
in paper Il. Interestingly the BTG approach, which is applied in SDM as a way of correcting
for sampling bias, is found to give rise to complex, often ecological meaningless FOP
curves, essentially modeling the relationship between ecological conditions found in sites
where the focal species has been sampled and the ecological conditions in sites where
taxonomically related species have been sampled (paper Il). The BTG approach is also
addressed in paper lll, where it was contrasted against a fixed background design and a
random background design. While the random and fixed designs produce almost identical
model results, the BTG models deviate from the other two. In paper Ill we conclude that
when the main purpose of a study is to produce broad-scale distribution maps, pseudo-
absences should include environmental conditions from areas where a species does not
occur to obtain complete map coverage. When the purpose is to investigate effects of
environmental conditions within the distribution area, however, one should not include
pseudo-absences from environmental conditions far outside the ecological tolerance of a
species; as environmental factors working on a broader scale will tend to mask the effect
of other, more local ecological factors. A prerequisite in the last scenario is that the species
tolerance limits along the gradient are contained in the area covered by pseudo-absences

(or background data). If not the FOP curve may become monotonous and non-informative.
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In addition to addressing sampling bias and choice of background for SDM, this thesis
addresses the presence sample size question. Paper IV shows that nonrandom models in
most cases are obtained with very few presences available. Only 3 out of the 30 modeled
species require more than 10 presences to obtain a nonrandom model, and more than 15
presences are required for only 1 out of 30 species. Nonrandom models can be interpreted
as ‘useful’ in the sense that they add to the information available prior to modeling and,
accordingly, may serve as valuable starting points for further studies of poorly known
species with few known presence records. Generally, with small presence (or pseudo-
absence/background) datasets, a high occurrence of the fourth type of sampling bias;
unsystematic variation or stochasticity (paper 1) is expected.

This thesis indicates that SDM can be useful for practical purposes. In paper IV we
demonstrate that although predictions get poorer with smaller presence sample sizes,
useful predictions can be obtained with very few presence observations. Moreover, paper
I and Il outline a procedure for evaluating whether or not presence and pseudo-absence/
background datasets contain sampling bias and further, if they are suitable for generating
informative species distribution models. In a practical SDM perspective it is essential to
ensure that the modeling exercise does not result in suboptimal models. | recommend
plotting the FOP curve prior to modeling. Moreover, test datasets, when available, should
be used to evaluate the models. In paper IV we briefly address whether SDM can be used
for assessment of red-list status. | conclude that SDM should not be used alone as an
assessment method. The distribution is often conditioned on other factors than availability
of suitable environment. These factors are rarely known and can hence not be accounted
for in the modeling process. Nevertheless, | do consider SDM to be a useful indirect aid
in identifying sites suitable for the species in question and hence guide further fieldwork.
It may also be useful for other management purposes, such as predicting the distribution
of invasive species, predicting species distributions in a future climate regime or finding
habitats suitable for the reintroduction of species. For these purposes it is important to
keep in mind that a model transferable in space and time is needed. Such models should
not be too closely fit to idiosyncrasies in the dataset caused by sampling bias, idiosyncrasies
specific to the study area etc. Papers | and Il demonstrate that, in some cases, complex
models overfit to irregularities in the presence data, and that simpler models fit the more
general responses to the environmental variables, without significantly loosing predictive
power in terms of AUC. These are the models required for projecting into other areas or
future climates.

The development of SDM methods has opened up for numerous possibilities within
applied ecology and conservation biology. These methods have been seen as ‘shortcuts’
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for inferring past, present and future species distributions, as well as exploring species-
environment relationships and dealing with phylogenetic questions with the click of a
button. This thesis shows that the shortcut may not be as short as hoped to be. In cases
where the data quality is poor or data are sparse the shortcut may turn out to be a detour.
A firm foothold in ecological theory, good understanding of how the modeling methods
work, how the data are handled, and how models are to be interpreted are all essential
for obtaining a good understanding of when these shortcomings are obstacles for making
reliable distribution models.

I thank Rune Halvorsen, Eirik Rindal, Trine Bekkby, Sabrina Mazzoni, Niklaus E.
Zimmerman and Alberto Jimenéz-Valverde for helpful comments on the introduction
of this thesis. | would also like to thank Eirik Rindal for valuable help formatting the final
manuscript.
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