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1 Introduction  

1.1 Background 
Statistical methods are continuously developed and improved upon, but the application of this 

growing body of methodological knowledge in medical research is often slow. Modern 

challenges, like the analysis of large data sets or longitudinal data with complex correlation 

structures, continue to be met by traditional and simple statistical methods, or ad hoc 

amendments to these. While simplifications of data structures and application of traditional 

statistical methods may in some cases work well, such approaches may also fail to reveal 

interesting information, or worse, simplify the analysis to the extent that results no longer 

reflect the research question. Methods targeted to solve specific problems, including modern 

statistical methods, are needed when studying problems of physiological and clinical interest 

in data with complex structures.  

To understand physiological mechanisms, it is often necessary to disentangle and 

specify pathways that link an exposure to an outcome. The effect might be direct, or indirect 

through an intermediate variable, a so-called mediator. A mediator is a variable on the causal 

pathway between the exposure and the outcome (1;2). In medical research, a common 

approach to analyse the role of possible mediators, so-called mediation analysis, is to use 

standard regression models to estimate the effect of the exposure without adjusting for the 

mediator, and compare it with the estimated effect after adjusting for the mediator. Given 

specific conditions this approach may be justified and work well in problems with a simple 

structure (2). However, such an approach does not generally hold (2). In the field of 

metabolism and foetal growth, mediation and intermediate mechanisms are often presented 

by even simpler or unclear analyses (3-5). Significant pathways thus remain undetermined. 

Mediation is also often discussed on a principal level, without formal statistical analysis or 

comparison of effect estimates (6-8).  

Path analysis, a special case of structural equation modelling, is a formal way of 

approaching mediation analysis (9;10). In a path analysis, the first step is to draw a path 

diagram, often called a directed acyclic graph (DAG) (1). Based on this path diagram, 

regression equations are linked in order to estimate the composite or indirect effect of 

mediators. The use of structural equation modelling and path analysis is widespread in the 

social sciences, and is increasingly used in medical research (11-14). Also, the last decades’ 



4 

 

developments in the field of causality have increased the attention to causal pathways and 

DAGs (15-17). 

Metabolic regulation is comprised of inherently continuous and temporal processes in 

the body. Some processes develop relatively slowly, like the increasing insulin resistance and 

low-grade systemic inflammation that follows from obesity (18). Other processes are fast, 

like the pulsatility of insulin secretion (19). While such temporal information is characteristic 

of the process, temporal information from metabolic processes is often discarded in clinical 

studies, and analyses are based on measurements of features that are relatively stable over 

time, like body mass index (BMI), or measurements from a stable part of the dynamic 

process, like fasting glucose or fasting insulin (20). Studies that incorporate temporal features 

often express such information by simple summary measures, like area under the curve 

(AUC) (21), a difference between two curve points, or the maximum amplitude (22).   

However, temporal measurements can hold important information that is not revealed 

by such traditional summary measures. Functional data analysis (FDA) is a collection of 

statistical techniques specifically developed to analyse curve data, for example the result of 

temporal measurements of an underlying continuous process (23-26). When applying FDA, 

the entire curve is used as the basic unit of information, instead of single measurements at 

specific time points, or simple summary measures. FDA has given novel insights of clinical 

importance in several research areas (27-31), and a recent review advocates wider application 

of FDA (32). 

1.2 Obesity 
The prevalence of overweight and obesity is often assessed by BMI, defined as the weight in 

kg divided by the square of the height in meters (kg/m2) (33). BMI is accepted as an indicator 

of body fat also in pregnant women, particularly in early pregnancy (34;35). The World 

Health Organization (WHO) classification for BMI is underweight (<18.5 kg/m2), normal 

weight (18.5-25 kg/m2), overweight (25-30 kg/m2) and obese (≥30 kg/m2) (33). These cut-off 

values are common benchmarks for assessment of prevalence of obesity, but the risks of 

disease or adverse pregnancy outcomes can increase from BMI values lower than the cut-off 

values for obesity or overweight.  

Obesity has reached epidemic proportions globally (33;36), and obesity rates have 

risen also among pregnant women (37-39). The rising epidemic reflects the profound changes 
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in society and in behavioural patterns of communities over recent decades, especially the 

increased consumption of energy-dense foods and reduced physical activity (36).  

Obesity implies profound metabolic changes that cause insulin resistance, high blood 

pressure and high levels of cholesterol and triglycerides, and is a major risk factor for serious 

diseases in the non-pregnant population, including diabetes mellitus (DM), cardiovascular 

diseases and certain forms of cancer (33;40). The adverse effects of obesity, particularly 

increased insulin resistance, are also observed in pregnancy.  

Obesity in pregnancy is associated with increased risks of short-term and long-term 

outcomes for the woman. The short term ones include gestational diabetes mellitus (GDM), 

preeclampsia and caesarean section. In long term, obese women have increased risk of 

subsequent type 2 DM (34;39;41;42). Obesity is also an established risk factor for a long list 

of adverse outcomes for the foetus, including overgrowth, macrosomia, unfavourable 

neonatal body composition, and neonatal hypoglycaemia (37;39;41;42). Macrosomic 

neonates further have increased risk for obesity in adulthood (37), and a vicious circle of 

obesity across generations have been found (43). Children of obese mothers have also been 

found to have increased risk of cardiovascular diseases (44).  

 

Obesity and inflammation 

One of the well-documented effects of obesity is a systemic low-grade inflammatory state 

(18;45). This inflammatory state has been postulated to play a role in the progression of 

insulin resistance, DM and coronary heart diseases (18). The elevated levels of inflammatory 

markers in obese, pregnant women have also been suggested to play a role in the 

development of GDM (46) and adverse pregnancy outcomes, such as preeclampsia (11). 

Inflammation might also affect foetal growth, partly by modifying the glucose levels through 

increased insulin resistance (46;47), and partly by other processes, like affecting the placental 

transfer (48). The role of inflammation in the association between BMI and birth weight 

needs further study.  

The research field of inflammation is large, and selecting the appropriate 

inflammatory markers is challenging. The adipose tissue has been found to secrete a large 

variety of proteins, including cytokines. Many of these have both immune-modulatory 

functions and act as systemic or auto-/paracrine regulators of metabolism, and may provide a 

mechanistic link between obesity and the associated complications (49). A wide range of 

cytokines can be considered, e.g. the interleukines IL-1Ra, IL-6, IL-10, monocyte 
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chemoattractant protein-1 (MCP-1), C-reactive protein (CRP) and the tumor necrosis factor 

TNF- RII (49). The interleukins IL-1Ra and IL-6 are known to be pro-inflammatory 

cytokines and are produced by both the placenta and adipose tissue. In addition, these 

markers are associated with obesity and their metabolic effects have gained extensive 

attention (45;50). In the present thesis, it was considered important to avoid a too complex 

path diagram, and the focus was restricted to the interleukins IL-1Ra and IL-6.  

1.3 Glucose metabolism during pregnancy and GDM 
During pregnancy, the mother substantially adapts her metabolism of carbohydrates, amino 

acids, lipids and vitamins to ensure supply of nutrients to the foetus and to meet the placental 

and maternal demands of late gestation and lactation (51;52). In normal pregnancy, there is a 

decrease in fasting glucose levels during the first trimester, before gestational week 12 (53). 

No consistent results have been found regarding a further decrease (or increase) in fasting 

glucose during the second or third trimester (53). Deterioration of glucose tolerance, i.e. 

insulin resistance, occurs normally during pregnancy, especially in the third trimester (52;54). 

The mechanisms of increased insulin resistance and secretion in pregnancy have been subject 

to many studies, and can be partially related to the metabolic effects of several placentally 

derived hormones and cytokines that are elevated in the maternal circulation during 

pregnancy (6;52).  

 

Glucose measurements 

There are many different approaches to measuring blood glucose, both in terms of 

biochemical equipment, what substance to measure, and how to conduct blood samples. 

Biochemical analyses of blood samples are preferably done at a certified laboratory, 

but can also be done with simpler point-of-care devices (55). In either case, structured quality 

control should be performed to avoid analytical artefacts like time-dependent trends caused 

by the equipment, and to ensure comparability of the measurements (56). 

Fasting glucose reflects the blood glucose level at glucose homeostasis after many 

hours of fasting (20), whereas glycosylated haemoglobin (HbA1c) reflects the average blood 

sugar over the past 1-3 months (57). Fasting glucose and HbA1c require a single blood 

sample only, are simple to make, and are used both diagnostically and as risk factors for a 

variety of disorders. However, neither captures the regulation of blood glucose after food 
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intake. The intravenous clamp technique, oral glucose tolerance tests (OGTTs) and 

continuous glucose monitoring provides data about glucose regulation.  

The intravenous clamp procedures are considered to be the “gold-standard” in 

assessment of insulin resistance (58), but they are time-consuming, invasive and labour 

intensive. Although the use of OGTTs is debated (59), it is the simplest and most frequently 

used test procedure for large groups of people. In an OGTT, the response to orally consumed 

glucose is measured by repeated blood samples. Before the test begins, fasting glucose is 

measured. The amount of sugar (e.g. 50g, 75g, 100g), frequency of blood sampling (e.g. 

every 30 minute, every hour), and length of the test (1-3 hours) vary between different 

OGTTs. Other substances, e.g. insulin, may be measured in addition to blood glucose. 

Glucose measurements from OGTTs in pregnant women have shown elevated postprandial 

values and a delayed postprandial peak with increasing gestational age (60-64). 

 

Categorisation of glucose measurements 

Blood glucose regulation consists of continuous processes. However, few attempts have been 

made to analyse glucose curve characteristics formally (65-68).  Clinical classification and 

diagnostic criteria are based on discrete glucose measurements (e.g. the fasting, 1-h and 2-h 

values), and categorization of these into terms like DM, impaired glucose tolerance, impaired 

fasting glycaemia or GDM (69).  

 

GDM criteria prior to the Hyperglycaemia and Adverse Pregnancy Outcome (HAPO) study 

GDM is defined as carbohydrate intolerance resulting in hyperglycaemia of variable severity 

with onset or first recognition during pregnancy (69). Several GDM criteria have been 

formulated. The pioneering O’Sullivan and Mahan GDM criteria from 1964 (70) were based 

on statistical identification of the upper limits of glycaemic normality during pregnancy 

(mean plus 2 SD). The cut-off values for fasting glucose, 1-h, 2-h and 3-h values after a 100 g 

OGTT were validated for their predictive value for subsequent development of type 2 DM in 

the mother (70-72). These criteria became the recommendations from the American Diabetes 

Association and the standard in medical care in the North America for almost 40 years 

(54;72;73).  

Many other countries used the GDM criteria recommended by the WHO, which were based 

on cut-off values for fasting glucose and the 2-h value from a 75g OGTT (74;75). These cut-

off values were updated in 1999, based on cut-off values for DM and impaired  
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Table 1.1. Most commonly used guidelines for the diagnosis of GDM. Table from World 
Health Organization (74).  
 

Organisation 
 
 

Fasting 
Plasma 
glucose 

Glucose 
Challenge 
 

1-h 
plasma 
glucose 

2-h 
plasma 
glucose 

3-h 
plasma 
glucose 

WHO 1999* 
 

≥ 7.0 
 

75g OGTT 
 

Not 
required 

≥ 7.8 
 

Not 
required 

American Congress of 
Obstetricians and Gynecologists** 

≥ 5.3 
 

100g OGTT 
 

≥ 10.0 
 

≥ 8.6 
 

≥ 7.8 
 

Canadian Diabetes Association*** 
 

≥ 5.3 
 

75g OGTT 
 

≥ 10.6 
 

≥ 8.9 
 

Not 
required 

IADPSG**** 
 

≥ 5.1 
 

75g OGTT 
 

≥ 10.0 
 

≥ 8.5 
 

Not 
required 

* one value is sufficient for diagnosis 
**  two or more values are required for diagnosis 
***  two or more values required for diagnosis 
****  one value is sufficient for diagnosis  

 

glucose tolerance in a non-pregnant population (Table 1.1) (54;69). Some institutions used 

only the cut-off for the 2-h value to define GDM, i.e. a single glucose measurement, as they 

considered the cut-off for the fasting value to be too high (74). Despite obvious disadvantages 

of having different GDM definitions across countries, no international consensus was found, 

and this motivated the HAPO study.  

 

Maternal glucose and neonatal size: The Pedersen hypothesis, the HAPO study and new 

GDM criteria 

Comparison of foetal growth and size of new-borns of pregnant women with DM and healthy 

pregnant women, led to the Pedersen hypothesis (76); that abundant glucose exposure for 

offspring of mothers with DM caused excess foetal insulin production which was the key in 

promoting foetal overgrowth and large neonates (Figure 1.1). Exposure to maternal DM was 

later also found to be associated with long-term effects for the offspring, e.g. type 2 DM and 

obesity (77). 

The HAPO study (78) sought to clarify the risk of adverse pregnancy outcomes 

associated with glucose intolerance less than DM during pregnancy (78;79), and the study 

was expected to provide sufficient data as a basis for a more rational definition of GDM (80). 

The study sample of 25,505 pregnant women was impressive. Glucose tolerance was  
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MATERNAL 

PL
AC

EN
TA

 

FETAL   
 

Decreased insulin sensitivity 
 

Macrosomia 
  

Maternal hyperglycaemia  
→ Fetal hyperglycemia 
→ Fetal hyperinsulinemia 
→ Excess fetal fat 

↓ ↑  
Impaired glucose metabolism Hyperinsulinemia  

↓ ↑  
Hyperglycemia Hyperglycemia  

 

Figure 1.1. The Pedersen hypothesis 

 

measured by a 75-g 2-h OGTT at 28 weeks of gestation, and the participating women, 

caregivers and HAPO staff were blinded to glucose tolerance values, except when predefined 

thresholds were met. The first findings were linear increases in risk of several pregnancy 

outcomes (e.g. macrosomia, cord C-peptide and neonatal percentage body fat) for increasing 

glucose levels below thresholds for DM (79;81). The HAPO study thus extended the 

Pedersen hypothesis: Maternal glycaemia, also in the normal range, affect the foetus (51). 

The continuously increasing risks, with no obvious thresholds at which risk increased more 

rapidly, were found for the fasting, 1-h and 2-h glucose values. Therefore, a consensus 

between clinicians and researchers was required to translate the results into clinical practice 

and a new GDM diagnosis.   

In 2010, the International Association of the Diabetes and Pregnancy Study Groups 

(IADPSG) suggested that the new GDM criteria should be based on the fasting glucose and 

the 1-h and 2-h values from a 75 g OGTT (82). New cut-off values were based on the risk of 

adverse pregnancy outcomes (for mother and child), rather than cut-off values for non-

pregnant people, or women’s long-term risk of developing DM. Due to the linear increase in 

the risk found in the HAPO study, the cut-off values were chosen so that the odds ratio (OR) 

for the outcomes at the specified values were 1.75, relative to the mean glucose values. It was 

also decided that it was sufficient to exceed one of the cut-off values to be classified with 

GDM. The IADPSG criteria (Table 1.1) became the recommendations of the American 

Diabetes Association from 2011 (83), and the WHO from 2013 (74). 

The prevalence of GDM in different populations around the world, using the criteria 

prior to the IADPSG, varies from 0.6% to 15% (51;84;85). It is generally accepted that the 

prevalence of GDM is higher with the IADPSG criteria. For instance, the HAPO researchers 

estimated that 17.8% of the HAPO participants would be classified with GDM with the 
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IADPSG criteria (80). Critics point to a practically inacceptable high prevalence of GDM and 

resources being spent on the wrong target group.  

 

Did HAPO give the final answer? 

Although recommended by influential institutions, the IADPSG criteria are subject to debate 

and controversy (80;86-88), and the American Congress of Obstetricians and Gynecologists 

is one of the organizations that do not recommend their use (Table 1.1). However, all present 

GDM criteria are based on three or more OGTT glucose measurements, in contrast to the 

WHO 1999 criteria, which were based on two, and in some institutions only one, glucose 

measurement. This implies that with the IADPSG criteria, the OGTT curve trajectory 

indirectly has gained attention, compared with the WHO 1999 criteria.  

In summary, the HAPO study has provided essential knowledge about glucose 

metabolism in pregnancy, but has also given rise to new questions that need to be 

approached. There is still need for more knowledge that can enhance the understanding of the 

mechanisms involved in pathophysiology and adverse outcomes.  

1.4 Birth weight and neonatal body composition  
Birth weight and neonatal body composition are assumed to reflect foetal growth and the 

intrauterine environment, and are therefore important pregnancy outcomes (79;81;89-91). 

Excessive birth weight is associated with maternal birth complications, e.g. caesarean section, 

and shoulder dystocia. Prediction of birth weight and intervention to reduce risk factors for 

high birth weight are therefore the topics of many studies (92).  

Birth weight is measured directly after birth and is often compared to the expected 

birth weight at a given gestational age, and transformed into a z-score, or categorised, e.g. 

into small for gestational age (SGA), large for gestational age (LGA) or macrosomia  (79;89). 

Birth weight is a crude measure of neonatal body composition, but more information is 

obtained by skinfold caliper measurements or dual-energy X-ray absorptiometry (DXA) 

(81;93).   

In Norway, the mean birth weight and proportion of macrosomic new-borns (defined 

as birth weight above 4000g or 4500g) have increased during the late decades of the 20th 

century, reaching a peak around the year 2000 (Figure 1.2) (94). Similar observations have 

been reported in several countries worldwide (95-98).  
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Figure 1.2. Percentage of macrosomic new-borns in Norway1980-2012. Source: Medical 
Birth Registry of Norway (94). 
 

Birth weight has been widely used to predict future health outcomes, in particular 

coronary heart disease, overweight and DM (99-101), and has also been associated with brain 

development (102). Forsdal was the first to notice high rates of adult heart disease in areas of 

poor early life environment (103). Barker later found significant associations between low 

birth weight and atherosclerotic cardiovascular disease (CVD), hypertension, type 2 DM and 

insulin resistance, and this gave rise to the Barker hypothesis, also called the thrifty 

phenotype hypothesis (Figure 1.3) (103-106). The increased risk of adult disease for offspring 

with a poor intrauterine environment is increased further if those born small show rapid 

weight gain in childhood or become obese. The hypothesis is that CVD is “programmed” by 

under-nutrition during critical periods of early development and that a poor early life 

environment creates a permanent vulnerability to these diseases (104;107). It is assumed that 

there are different developmental windows for the programming of the hypothalamus, in 

which exposures like diet, physical activity and an impaired glucose regulation are more 

important (108). The concept of foetal programming through epigenetic mechanisms is the 

cornerstone in the concept of Developmental Origins of Health and Disease (DOHaD), and is 

not limited to effects of low birth weight (107;109).  

Maternal BMI and glucose are modifiable variables that have consistently been found 

to affect neonatal size, i.e. birth weight and neonatal body composition (39;41;79;81;90;110), 

and are pointed out as targets for prevention of foetal overgrowth (90).  The effect of 

maternal BMI on neonatal size can be divided into genetic factors, and factors influencing the 

intrauterine environment, such as placental function and nutritional supply to the foetus 

(111). The mediating role of inflammation has yet to be elucidated.  
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Figure 1.3 The thrifty phenotype hypothesis. From Walker and Ho (112). 

 

Glucose is the primary energy source for the foetus, and the placental transport of 

glucose is higher than any other substrate (51). The alterations in the maternal metabolism in 

obesity, particularly the increased insulin resistance, cause elevated glucose levels in the 

maternal circulation. The placental transport of glucose is dependent of the maternal-foetal 

gradient across the placenta (113), and the extended Pedersen hypothesis (Figure 1.1) 

postulate that maternal glycaemia affects foetal growth mainly through increased insulin 

production in the foetus, thereby contributing to foetal hyperinsulinemia, as reflected in high 

levels of neonatal C-peptide, and various aspects of diabetic foetopathy, including foetal 

overgrowth, large neonates and deposition of body fat (81). The HAPO researchers noticed 

that no single glucose measurement was clearly superior to the others in terms of associations 

with outcomes. This was based on analyses of single glucose measurements from a single 

OGTT in gestational week 28. Longitudinal OGTT data from the pregnancy was not 

available, and no analyses explored the potential information in entire OGTT curves. The 

intense debate concerning the new GDM criteria is a powerful argument for searching for 

new information inherent in entire glucose curves, instead of single glucose measurements, 

also when exploring the effect on neonatal outcomes.  
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2 Aims of the thesis 
The overall aim was to use path analysis to analyse mediation, and FDA to analyse OGTT 

data, to extract more information from a large cohort of pregnant women than can be done 

with simple, commonly used methods, and show that this gives more insight into 

physiological and clinical problems under study. An important additional aim was to 

facilitate the description of the methods and the presentation of the results, to illustrate the 

advantages and make the methods available to a wider audience.  

More specifically, the aims were  

 To study whether the interleukins IL-6 and IL-1Ra have mediating roles in the 

association between early pregnancy BMI and birth weight, using path analysis.  

 To investigate whether an unexpected trend in the glucose measurements during the 

inclusion period was of biological or analytical origin, and, if not biological, to 

remove the trend by regression analysis.  

 To study the usefulness of FDA in the analysis of OGTT glucose curves from one 

time point in pregnancy by comparing shape information extracted by FDA with 

standard simple summary measures. Furthermore, to analyse the shape information 

inherent in OGTT glucose curves from early pregnancy in relation to early pregnancy 

BMI categories and GDM later in pregnancy. 

 To use multilevel FDA to study the shape inherent in OGTT glucose curves from two 

visits during pregnancy and to analyse the effect of such information on the neonatal 

outcomes birth weight, percentage fat and C-peptide in cord blood. 
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3 Material and Methods 

3.1 The STORK study 
Participants 

The STORK (“STORe barn og Komplikasjoner”; “Big babies and complications”) study is a 

prospective cohort of 1031 healthy women of Scandinavian heritage who registered for 

obstetric care at Oslo University Hospital Rikshospitalet from 2001 to 2008. Exclusion 

criteria were multiple pregnancies, known pre-gestational type 1 or type 2 DM, and severe 

chronic diseases (pulmonary, cardiac, gastrointestinal or renal). The overall aim of the study 

was to gain insights into maternal metabolic syndrome and determinants of foetal 

macrosomia (114).  

The data collection was done at the Division of Obstetrics and Gynaecology and the 

Section of Specialised Endocrinology. Due to funding and logistics, two teams of 

investigators did the data collection at the obstetrics unit. Data from the first 553 women 

recruited to STORK during 2001-2005 formed basis for the first publications from the study 

(110;114-116). Data from the following 478 women were collected during 2005-2008 by the 

same routines. A bio-bank from the study contains frozen blood samples from the cohort for 

future use. 

 

Data collection 

Data were collected at five time points: at gestational weeks 14-16 (inclusion), 22-24, 30-32, 

36-38 and birth. Data from inclusion, weeks 30-32 and birth were used in this thesis.  

Gestational age at inclusion was estimated according to Naegele’s rule (117). Routine 

ultrasound data at gestational weeks 17-19 were used to estimate gestational age at 

subsequent visits and at birth.  

Blood samples at all visits during pregnancy were drawn in the morning, between 

0730 and 0830 after an overnight fast, and were obtained from veni-puncture in tubes 

containing Ethylenediaminetetraacetic acid (EDTA). Blood samples were immediately put on 

ice, plasma isolated and stored at -80°C until analysed.  

Age, height, parity, education and smoking and were registered at inclusion. Data on 

preeclampsia and hypertension were obtained from hospital records.  
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BMI (articles I-IV)  

Maternal weight was measured at each visit. Early pregnancy BMI was calculated as weight 

at inclusion (kg), divided by self-reported height (m) squared.  

 

Glucose (articles I-IV)  

Fasting glucose and results from a 75 g OGTT were recorded at gestational weeks 14-16 and 

30-32. Plasma glucose was measured immediately in a drop of fresh, whole EDTA blood. 

During the OGTT, blood samples were taken every 30 minute for two hours. Glucose 

measurements during the study period were done primarily by the Accu-Chek Sensor (ACS) 

glucometer (Roche Diagnostics GmbH, Mannheim, Germany). Inter-assay coefficient of 

variation was <10%.  

Three different ACS electronic metres were used during the study period. Independent 

ACS quality control solutions in the low (hypoglycaemic) and high (hyperglycaemic) range 

were used and registered every time a new vial of glucose strips was opened, approximately 

once a week during the study period.  

After the end of the inclusion period, we unexpectedly detected an increasing trend in 

the fasting glucose levels at inclusion, and in the ACS quality controls in the low and high 

range. To investigate this further, randomly sampled glucose values from the whole study 

period (2001-2008) were analysed by the hexokinase method at an accredited laboratory at 

Oslo University Hospital in 2011. The hexokinase data (n=170) were based on frozen serum 

from the 90 min OGTT at gestational weeks 30-32 and analysed by a Hitachi Modular P 

chemistry analyser with reagents from Roche. As a consequence of these and other 

investigations, all glucose measurements were de-trended prior to the analyses in articles III 

and IV, as described in detail in article II.  

Classification of GDM in article III was based on the WHO recommendations at the 

time of publication, with a cut-off value for the 2-h value of 7.8 mmol/l.   

 

Insulin (articles II and IV) 

Measurements of insulin were obtained for the whole cohort from frozen blood serum at the 

end of the recruitment period (2007-2008). The insulin samples were assayed in duplicate by 

Radio Immuno Assay (Siemens Medical Solutions Diagnostics, CA, USA), and the means of 

the two measurements were used in analyses.  
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Inflammatory markers (article I) 

IL-6 (high sensitivity) and IL-l Ra were measured by ELISA using commercially available 

kits (BIOSOURCE, Invitrogen Corporation). CRP was measured as described by Wu et al. 

(119). All samples were measured in duplicate and serial samples from a given individual 

were analysed at the same time to minimize the run-to-run variability. Intra-and inter-assay 

coefficients of variation were < 10% for all assays.  

 

Neonatal outcomes (articles I and IV) 

Birth weight (g) was measured with a calibrated scale within two hours after the birth. 

Umbilical cord blood was collected into EDTA tubes by the midwife, centrifuged for plasma 

separation and placed at -20 ºC for less than a month and stored long term at -80 ºC. 

The percentage of neonatal body fat was measured by DXA scanning within 4 days 

postpartum, as described in detail in (93). Briefly, the neonates were scanned for 

approximately 6 minutes during sleep. DXA was primarily developed for the assessment of 

bone mass, but it also provides information on total fat mass and fat-free mass, as well as the 

tissue distribution in the trunk and extremities. Lunar Prodigy software (version 12.10) was 

developed especially for infant DXA and was used to analyse all scans (93).  

Plasma levels of C-peptide in cord blood samples were measured using a RIA from 

Millipore (Corporation, Billerica, MA, USA) (120). Assays were performed according to the 

manufacturer’s instructions. The intra- and inter-assay coefficients of variation were < 10% 

for all assays.  

3.2 Study samples 
Article I 

Inflammatory markers were obtained from 240 women from the first part of the study, due to 

the limited resources for biochemical analyses. The subsample was based on women enrolled 

in the cohort during 2001-2005 and restricted to those who gave birth to a baby with a birth 

weight above the 10th birth weight percentile of the cohort. Stratified random sampling based 

on birth weight below or above 4200 g was used to ensure that women with macrosomic 

babies were included in the subsample. Women with possible infections at the time of 

sampling, indicated by a CRP value above 10 mg/l, extreme values on IL-l Ra or IL-6, or 

missing data of any variable in the analyses were excluded, and the final study sample 

consisted of 208 women (Figure 3.1).  
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Article II 

The entire STORK cohort was used in article II.  

 

Article III 

The 974 (94%) women with complete OGTT data at inclusion in gestational weeks 14-16 

constituted the study sample for the FDA (left column in Figure 3.2). Regression analyses 

were restricted to women with complete data of all variables in the analyses: 966 women in 

the analysis of early pregnancy BMI, and 922 women in the analysis of the categorised 2-h 

glucose value at weeks 30-32. 

 

Article IV 

The 884 (86%) women with complete OGTT data at gestational weeks 14-16 and 30-32 

constituted the study sample for the FDA (right column in Figure 3.2). DXA scanning data 

and cord blood C-peptide were obtained for 207 neonates from the last part of the STORK 

study. Regression analyses were restricted to women with complete data of all variables in 

the analyses of birth weight (n=868), neonatal percentage fat (n=185) and cord blood C-

peptide (n=134). 

3.3 Ethical considerations 
The study was approved by the Regional Committee for Medical Research Ethics, Southern 

Norway, Oslo, Norway (reference number S-01191), and performed according to the 

Declaration of Helsinki. All participating women provided written informed consent.  

3.4 Statistical analyses 
The main method in article I was Bayesian path analysis. The analyses of changes over time 

in article II included use of statistical process control and linear and local linear regression 

models. Articles III and IV applied various FDA methods. Functional principal component 

analysis (FPCA), functional analysis of variance (FANOVA) and traditional nominal logistic 

regression analysis were used in article III. The main method in article IV was multilevel 

Bayesian FDA, including FPCA, as well as traditional linear regression analysis. The 

analyses are described in more detail below.  
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Figure 3.1. Flow-chart for article I. 
 

 

 

Flow chart, article III Flow chart, article IV 

 

 
 

Figure 3.2. Flow charts for articles III and IV. 

Birth weight: 884 
Percentage fat: 187 
c-peptide, cord blood: 137 

Total cohort: 1031 

Premature: 57 

Born at term: 974 
Incomplete OGTT data 
- at wks 14-16 only: 38 
- at wks 30-32 only: 37 
- at both visits:        15 

Study sample: 884 

BMI, wks 14-16: 966 
2-h OGTT value at  
wks 30-32: 922 

Total cohort: 1031 

Incomplete 
OGTT data 

at wks  
14-16: 57 

Study sample: 974 
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Data description (articles I-IV) 

Descriptive statistics were presented as mean, standard deviation (SD) and range, or 

frequency and percentage (%), or as median and quartiles. In article I, independent samples t-

tests were used to compare the study sample (n=208) and the remaining eligible women in 

the STORK cohort included during the same time period (n=258). The study samples in 

articles III and IV, and women with incomplete OGTT data were compared by two-sample t 

tests or χ2 tests where applicable. 

 

Simple summary measures of OGTT (articles III and IV)  

In article III, simple summary measures of OGTT included the fasting value, 2-h value, AUC 

(trapezoidal rule) and the most cited simple shape index, defined by Tschritter et al.  (66). 

This index is defined as the 2-h value minus the 90-min value for curves classified as 

“monophasic” or “biphasic”, and the 90-min value minus the 60-min value for curves 

classified as “triphasic”. The classification of curves, i.e. the determination of the number of 

phases within a curve is based on an empirically chosen glucose threshold of 0.25 mmol/l 

(66). Curves that did not meet the criteria for classification into either mono-, bi- or triphasic 

were labelled “unclassified” and left out of the analyses. In article IV, only AUC was used in 

addition to FDA.  

 

Categorisation of variables (article III) 

Early pregnancy BMI was categorised according to the WHO classification (underweight 

(<18.5 kg/m2), normal weight (18.5-25 kg/m2), overweight (25-30 kg/m2) and obese (≥30 

kg/m2)) (33). As described in section 1.3, the discussion about the GDM criteria was not 

settled in WHO when article III was published, but the 2-h OGTT cut-off of 7.8 mmol/l 

(Table 1.1) was important in clinical practice. To visually demonstrate the clinical usefulness 

of the curve shape information, the 2-h values at weeks 30-32 were grouped into seven 

categories and used as the outcome in analyses of curve shape information. The 2-h value 

categories were based on the diagnostic criterion for GDM and on assessments of group size 

and percentiles in the sample: <3.27 (2.5th percentile), [3.27, 3.89) (2.5th-10th percentile), 

[3.89, 6.39) (10th-75th percentile; reference category), [6.39, 6.90) (75th-85th percentile), [6.90, 

7.8) (85th percentile to diagnostic cut-off for GDM) [7.8, 8.84) (GDM diagnosis to 98th 

percentile) and ≥8.84 mmol/l.  
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3.4.1 Path analysis (article I) 
Path analysis is a multivariable statistical methodology, linking a series of regression 

equations together (9), with the aim of estimating the composite or indirect effect of both 

explanatory variables and mediators. Within this system of equations, some of the variables 

can be considered both as outcome variables and as explanatory variables. Path analysis is a 

special case of structural equation modelling, in which all hypothesized dependencies 

between the variables are specified in a model and depicted in a path diagram prior to the 

analysis. The arrows in the path diagram represent dependencies between variables, and 

absence of an arrow between two variables indicates that these variables are considered to be 

conditionally independent (121). The effect of an exposure that acts on the outcome through a 

mediator is termed an indirect effect, while the effect of an exposure on the outcome that is 

not explained by a mediator is termed a direct effect. All indirect and direct relations among 

measured variables can be read off the diagram.  

Based on the literature we constructed a path diagram, including early pregnancy 

BMI, birth weight, and the inflammatory markers IL-6 and IL-1Ra and fasting glucose in 

weeks 30-32 (Figure 3.3). All variables were entered into the analysis as standardized 

variables in order to quantify the relative importance of factors within the study. Indirect 

effects were calculated by multiplication of the standardized regression coefficients along a 

given path, and total effects were found by summing all direct and indirect effects between 

two variables. 

The path analysis was performed using Bayesian estimation procedures. The Bayesian 

analysis gives estimates of regression coefficients and corresponding credibility intervals 

(CrIs), which are comparable with frequentistic confidence intervals (CIs). Considerations of 

statistical significance can be based on the coverage of the CrIs. Comparison of path models 

was carried out by comparing values of the deviance information criterion (DIC); models 

with lower values of DIC are preferable. 
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Figure 3.3: The path model  
Path diagram showing a decomposition of the hypothesized effect of early pregnancy BMI 
on birth weight. The indirect pathways between BMI and birth weight were hypothesized 
to be mediated by fasting glucose (nutrient availability), the interleukins IL-1Ra or IL-6 or a 
combination of these. BMI was measured at inclusion, fasting glucose and interleukins at 
weeks 30–32 and gestational age at birth. Arrows represent dependencies between 
variables. Absence of an arrow between two variables indicates that the variables are 
considered to be statistically independent in the model. 
 

3.4.2 Trend in time series data (article II) 
Processes measured repeatedly over time generate time series data. A long-term movement in 

such a time series is called a trend (1), and an essential feature of a trend is a consistent 

change over the whole time interval under study. Statistical process control (SPC) procedures 

provide useful tools such as control charts, to monitor process behaviour over time, and to 

detect and prevent errors or bias in measurement procedures (122). The control chart called 

“X-chart” displays the time series data as well as the mean and so-called control limits, often 

also alarm limits, based on the variability in the data, i.e. 3 SDs and 2 SDs, respectively 

(122). A variety of rules have been developed to detect whether a process is stable or 

changing, both mathematical and more pragmatic ones. For simple practical use, detection 

rules are often reduced to a few rules-of-thumb (122). The simplest and most common rules 

are  

 A single data point outside a control limit 
 Two out of three successive values outside the same alarm limit  
 Eight or more successive values on the same side of the mean 
 Six or more values in a row steadily increasing or decreasing.  
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Using regression to de-trend time series  

De-trending refers to the mathematical operation of removing a trend from a time series 

(123), and is often applied to remove a feature assumed to distort or obscure the 

measurements or relationships of interest. A linear trend in the mean can be removed by 

subtracting a least-squares-fit straight line from a linear regression analysis. Less 

straightforward trends might require more advanced procedures. Local regression lines (124) 

can be an alternative when nothing is known about the underlying reasons for the change 

over time. De-trending procedures can be based on intrinsic structures in the data, or on an 

external sample assumed to validate the data, like independent control samples at a 

laboratory.    

Time-dependent trends were explored by scatter plots and linear regression analyses, 

local polynomial regression analyses (124) and X-charts (56). Linear regression gave 

estimates for the average increase per time unit, under the assumption of a linear increase 

during the entire period. De-trended glucose values were estimated by a weighted average of 

the regression coefficients from the independent low and high control solution values (124), 

with weights chosen as the inverse distance from the measured to the predicted glucose value 

for the low and high controls, and scaled to sum to one. Thus, a woman’s de-trended 

(adjusted) glucose level was expressed as  

ihighilowiiadji twwyy ˆ)1(ˆ
, ,   (1)  

where iy  is the observed fasting glucose for the ith woman, i=1, 2,..., n. The time from start 

of the study is it and 7,0it  years. Further, low
ˆ   and high

ˆ  are the slope estimates from the 

linear regression analyses of glucose on time in the low and high controls, respectively. The 
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where lowiy ,ˆ and highiy ,ˆ  are the predicted values from the linear regression analyses in high and 

low controls.  
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3.4.3 Functional data analysis (FDA, articles III and IV) 
In FDA the basic units of information is not a single data point, but entire curves, varying 

smoothly over a continuum. The continuum is often time, like in our applications. FDA 

makes it possible to extract information from a temporal process as a whole, instead of 

merely point-by-point. In a sample of curves, the mean curve is used descriptively, as in 

traditional statistical analyses, and with proper modifications, most standard statistical 

methods can be phrased in the framework of FDA.  
Functional data may represent both long and short-term time processes, with OGTT 

glucose values as an example of the latter. If such data are collected repeatedly over time as 

in the STORK study, a multilevel functional model must be applied. 

 

Fitting continuous and individually smoothed curves 

The OGTT glucose measurements were converted into continuous, smoothed glucose curves 

by subject-specific spline smoothing with B-splines basis functions, as described by Ramsay 

and Silverman (Appendix A, articles III and IV) (23-25). These individually fitted curves 

formed the basis for the subsequent FDA. In article III, the five OGTT measurements from 

weeks 14-16 for the 974 women in the study sample resulted in 974 corresponding glucose 

curves. In article IV, the OGTT measurements for the 884 women at two visits were 

converted into 884 glucose curves from weeks 14-16, and 884 glucose curves from weeks 30-

32.  

 

Functional principal component analysis (FPCA) 

FPCA was used to study the temporal variation in the fitted glucose curves. FPCA extracts 

functional principal component (FPC) curves that describe the main modes of temporal 

variation in the sample of glucose curves (Appendix B in article III and Appendix A in article 

IV) (24). The FPC curves represent independent parts of the overall variability between the 

glucose curves and are given in descending order according to the proportion of explained 

variance. The FPCA also yields individual FPC scores for each glucose curve. The score 

variables are constructed to be uncorrelated, and the variation within the scores of an FPC 

quantifies the magnitude of the total variance explained by this FPC. A woman’s FPC score 

for an FPC curve reflects to what extent her individual curve trajectory corresponds to the 

general temporal feature expressed by this FPC curve. Applying FPCA it is thus possible to 

study how glucose curve trajectories vary between women. As in traditional principal 
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component analysis, FPCs may be interpreted and labelled according to the information they 

exhibit, which in turn can potentially be related to conventional physiological or clinical 

theories. 

 In article III, the FPC curves and FPC scores were estimated simultaneously 

(Appendix B). In article IV, we first used a multilevel functional model to decompose the 

curves into subject- and visit-specific contributions to the overall mean. We then used the 

corresponding covariance matrices to estimate the FPC curves, and finally a Bayesian 

analysis to estimate the FPC scores. This analysis is outlined below, and details are given in 

Appendix A in article IV.  

 

The functional multilevel model and multilevel FPCA (article IV)  

A multilevel model for functional data was used for the analysis of glucose curves from two 

visits (125;126). Assume that the individual, true blood glucose curve iv t  for woman 

1, , 884i , 884  at visit 1, 2v  in the continuous time span from 0 to 120 minutes, 0,120t , 

can be decomposed into fixed and random effects curves (Figure 3.4A), and expressed as  

 .iv v i ivt t t X t U t   (1) 

Here the fixed effects curves are the overall mean glucose curve t  (Figure 3.4Ai), and the 

mean visit-specific deviation from the overall mean curve, v t  (Figure 3.4Aii). Together, 

these terms constitute the visit-specific mean curve, vt t . The random effects curves 

are iX t , the subject-specific deviation from the visit-specific mean curve, and ivU t , the 

subject- and visit-specific deviation from the subject-specific mean curve. The curves iX t   

in expression (1) are unknown until they are estimated by a linear combination of the first 

FPC curves of iX t , ,X
a t  1, 2a  (Figure 3.4B), and corresponding, estimated 

individual score variables, giving ˆ
iX t , 1, ..., 884i  (Figure 3.4Ciii). Likewise, the curves 

ivU t  in expression (1) are unknown until they are estimated by a linear combination of the 

first FPC curves of ivU t , ,U
b t  1, 2, 3b  (Figure 3.4B), and corresponding, estimated 

individual score variables, giving ˆ
ivU t , 1, ..., 884i  and 1, 2v  (Figure 3.4Civ). Details of 

the FPCA are given in Appendix A in article IV.  
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A The functional multilevel model 
 
Glucose curves = Fixed effects curves + Random effects curves 

 = 
Overall  

mean curve + 
Visit-specific 

deviations from the 
overall mean 

+ 
Subject-specific  

deviations from the  
visit-specific mean 

+ 
Subject- and visit-specific 

deviations from the subject-
specific mean 

         

 

= 

 

+ 

 

+ 

Unknown until they are 
estimated by a linear 

combination of FPCs, based on 
the estimated covariance of 

iX t  and estimated, 
individual score variables 

+ 

Unknown until they are 
estimated by a linear 

combination of FPCs, based on 
the estimated covariance of 

ivU t  and estimated, 
individual score variables 

iv t  = t  + v t  + iX t  + ivU t  

 
B Functional principal component curves for iX t  and ivU t  
 

      ,X
a t  1, 2a   ,U

b t  1, 2, 3b  

         
 
C Estimated random effects curves based on estimated score variables and X

a t , U
b t  

         

      

 

 

 
      ˆ

iX t   ˆ
ivU t  

D Estimated glucose curves 

 

≈ 

 

+ 

 

+ 

 

+ 

 

iv tiv t  = t  + v t  + ˆ
iX t  + ˆ

ivU t  
 

Figure 3.4. The functional multilevel model. In all plots, the horizontal axis is time during 
the 2-h OGTT, and the vertical axis is blood glucose, with range from -2 to 12.5 mmol/l. 

The horizontal, grey line is 0 mmol/l. iv t  is the glucose curve from 0 to 120 min for 

woman 1, , 884i , 884  at visit 1, 2v . ˆ
iX t  and ˆ

ivU t  are the estimates of iX t and 

ivU t , using the first two subject-specific FPCs and the first three subject- and visit-

specific FPCs, respectively. iv tiv t  is the estimated glucose curve, using ˆ
iX t  and ˆ

ivU t . 

               i       ii                              iii                        iv 

               i       ii        iii                    iv 

                                 iii                    iv 
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A woman’s scores for the FPC curves of iX t  quantify her subject-specific 

deviation from the visit-specific mean curve, i.e. the important characteristics of her glucose 

curves across visits (Figure 3.4Ciii and 3.4Diii). Her scores for the FPC curves of ivU t  

quantify her subject- and visit-specific deviation from her subject-specific mean curve, i.e. 

the characteristics of the residual variation within a visit (Figure 3.4Civ and 3.4Div). 

By combining equation (1) with the FPC curves and corresponding estimated FPC 

scores, an individual glucose curve can be expressed as the sum of the visit-specific mean, 

,vt t  and a linear combination of a small number of the FPC curves for iX t  and 

ivU t  (Figure 3.4D and equation (3) in Appendix A in article IV).  

 

FDA vs simple summary measures  

The Pearson correlation coefficient (r) was used to assess the associations between FPC 

scores, original glucose measurements and the simple summary measures of OGTT: Between 

fasting value, 2-h value, AUC and the shape index in article III, and between FPC scores, 

glucose measurements and AUCs in article IV. In article III, the simple summary measures 

were compared across categories of early pregnancy BMI using traditional ANOVA, with 

Bonferroni corrected post hoc tests. These results were then compared with the FANOVA 

results. 

 

Functional analysis of variance (FANOVA) (article III)   

FANOVA, the functional counterpart of traditional analysis of variance (ANOVA), was used 

to compare the shape of glucose curves across categories of early pregnancy BMI 

(underweight, normal weight, overweight and obese). BMI was entered as an explanatory 

variable, and the fitted curves were the functional outcome. The analysis was based on the 

shape of the mean curve in each BMI category, and the temporal differences between these 

mean curves (Appendix C). Functional 95% CIs and p curves were obtained for the 

difference between two mean curves. Overall p values for the differences between two BMI 

categories can be obtained from the maximum value of the test-statistic used to compare 

curves, and these are also presented.  
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Curve shape information in regression analyses 

In article III, the impact of the curve shape in early pregnancy on glucose intolerance later in 

pregnancy was assessed by regression analyses, using the FPC scores at weeks 14-16 as 

explanatory variables, and the categorised 2-h glucose value at weeks 30-32 as the outcome. 

Five different models were fitted. Model 1 included early pregnancy BMI and the three 

independent FPC score variables from weeks 14-16 as covariates, while models 2-5 included 

BMI and either the fasting value, the 2-h value, the AUC or the shape index, all from weeks 

14-16, as covariates. These simple measures were included one at a time in models 2-5, due 

to colinearity. All covariates were continuous. 

In article IV, the impact of glucose curve characteristics on the neonatal outcomes 

birth weight, percentage fat and C-peptide in cord blood were estimated using linear 

regression with FPC scores from the multilevel FPCA as explanatory variables. The 

interpretation of the effect estimates is based on the physiological interpretation of the FPC 

scores. Adjusted effect estimates were found by multiple linear regression analyses with most 

FPC scores (the first subject- and visit-specific score at weeks 14-16 was left out due to 

colinearity issues), early pregnancy BMI, age and parity as explanatory variables. The 

multivariable analyses involved stepwise variable selection procedures based on Akaike’s 

information criterion, analyses of several models considered to be of importance, and 

considerations of physiological importance of the findings. The final multiple models include 

only the variables identified by these procedures. Model diagnostics were thoroughly checked 

during the analysis. 

Software  
SPSS 19 was used for the STORK data base, and for simple statistical analyses in all articles. 

The Bayesian analyses in articles I and IV were done in WinBUGS, using the R package 

R2WinBUGS which provides functions to call WinBUGS from R (127;128). The control 

charts for article II were made in Excel. All other analyses were done in R (129). The R 

program code, including the WinBUGS model files, is provided as supplementary material to 

articles I, III and IV. 
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4 Summary of results 
 

Article I: The interleukins IL-6 and IL-1Ra: a mediating role in the associations 
between BMI and birth weight? 
 

Means (SDs) for early pregnancy BMI and birth weight were 24.9 kg/m2 (4.2) and 3748 g 

(454), respectively. The direct effects on birth weight of BMI and fasting glucose expressed 

by standardised regression coefficients (95% CrI) were 0.16 (0.00, 0.32) and 0.14 (0.01, 

0.27), respectively. The direct effect of IL-1Ra on birth weight was not statistically 

significant (0.06 (-0.10,0.21)), but significant effects of BMI on IL-1Ra (0.61 (0.51, 0.72)), of 

IL-1Ra on fasting glucose (0.17 (0.01, 0.34)) and of fasting glucose on birth weight (0.14 

(0.01, 0.27)) implied an indirect pathway from BMI via IL-1Ra on birth weight.  

The total effect of BMI on birth weight was 0.24 (0.12, 0.36) (Figure 4.1: 

0.16+(<0.001)+0.02+0.03+0.02). The estimated effect of BMI involving IL-1Ra was 0.05  

(-0.05, 0.15), i.e. approximately 20% (0.05/0.24) of the effect of BMI on birth weight was 

mediated through IL-1Ra. For IL-6, only a negligible percentage was found (<0.001/0.24). 

The remaining 67% (0.16/0.24) of the BMI effect represent effects not explained by variables 

or structures in our model. 

 

 
Figure 4.1. The figure shows the decomposition of the total effect of maternal BMI on 
birth weight. The total effect is the sum of all arrows, that is, the direct and indirect 
effects. The arrow widths represent the relative proportions of the total effect through a 
specific pathway. 
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Article II: Correction of an unexpected increasing trend in glucose measurements 
during 7years recruitment to a cohort study.  
 

After the end of the inclusion period, we unexpectedly detected an increasing trend in the 

fasting glucose levels at inclusion. Mean (SD) fasting glucose measured by ACS increased 

from 4.0 (0.4) mmol/l for the first 100 women (2001-2002) to 4.6 (0.4) mmol/l for the last 

100 women (2007-2008). The yearly trend was ˆ 0.11 , 95% CI (0.09, 0.12) mmol/l, 

p<0.001. Significantly increasing trends were also found for OGTT measurements at 30, 60, 

90 and 120 minutes at inclusion in weeks 14-16, and 0, 30, 60 and 90 minutes at weeks 30-32 

(Figure 1 in the Appendix), and for the low and high controls: ˆ 
low 0.06  (0.04, 0.08) 

mmol/l, p<0.001, and ˆ 0.49high  (0.42, 0.55) mmol/l, p<0.001, respectively. In contrast, the 

yearly trends for age, early pregnancy BMI and fasting insulin at inclusion were 09.0ˆ
age  

years (p=0.20), 17.0ˆ
BMI  kg/m2 (p=0.01) and 08.0ˆ

ins  mmol/l (p=0.07), 

respectively, and local regression lines indicated weak negative curvatures in these trends. An 

overall non-significantly decreasing trend ( 12.0ˆ
hex mmol/l, p=0.10) with negative 

curvature was also found for the 170 hexokinase data.  The differences between the 

hexokinase data and the original 90 min OGTT measurements (weeks 30-32) increased 

significantly during the study period: 24.0ˆ
diff  mmol/l (p<0.001). Accordingly, glucose 

measurements became increasingly biased upwards as time passed.  

The shift in the low and high controls would have been detected during the inclusion 

period if continuous use of control charts with fixed mean and control limits based on the first 

30 measurements had been applied (Figure 2 in the Appendix).  

The increasing trend in the fasting glucose measurements at inclusion was 

successfully removed by subtracting a weighted average of the linear regression results from 

the independent control solutions.  

The OGTT measurements at 30, 60, 90 and 120 minutes in weeks 14-16, and 0, 30, 60, 90 

and 120 minutes in weeks 30-32 were also de-trended using the same technique (Figure 1 in 

the Appendix). This was not described in article II.   
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Article III: Shape information from glucose curves: Functional data analysis compared 
with traditional summary measures.  
 

The smoothed glucose curves at gestational weeks 14-16 showed large variation between the 

individual curves.  Over 99% of this variation was expressed by the first three FPCs, 

interpreted as “general level” (FPC1, 88.1%), “time to peak” (FPC2, 8.6%) and “oscillations” 

(FPC3, 2.4%).  

The 2-h value was positively associated with all three FPC scores (0.37≤r≤0.79), in 

contrast to the fasting value (-0.12≤r≤0.47). AUC was highly correlated with the FPC1 scores 

(r=0.999) but not with the FPC2 and FPC3 scores (r=−0.01 and r=0.05, respectively). The 

shape index was most strongly associated with the FPC3 score (r=0.67), the principal 

component explaining the smallest part of the total variation.  

The means of the glucose curves at weeks 14-16 differed between the four BMI 

categories in early pregnancy: While the curvature was similar, the levels of the mean curves 

for normal weight, overweight and obese women were significantly different (p<0.001). No 

significant difference was found between underweight and normal weight women (p=0.26).  

The means of the fitted glucose curves at weeks 14-16 for the seven pre-defined 

categories of 2-h values at weeks 30-32 showed that the general glucose levels at weeks 14-

16 were different in the 5 lowest categories, and that the mean curves in the two upper 

categories (from women diagnosed with GDM at weeks 30-32, n=51), displayed different 

pathophysiology at weeks 14-16. This was confirmed in multinomial logistic regression 

analyses with the seven categories of 2-h values at weeks 30-32 as the outcome: The FPC1 

scores and the AUC yielded nearly identical results and were significantly different in the 

five lowest groups (p≤0.02), whereas no significant difference was found between the two 

subgroups with GDM (p=0.40), or between the two closest GDM and non-GDM groups 

(p=0.59). Also, no significant differences were found for the fasting value, 2-h value or shape 

index in the three upper categories (0.07≤p≤0.92), i.e. between subgroups of women with and 

without GDM. In contrast, mean FPC2 scores were significantly different between women 

who did and did not develop GDM, and between subgroups of women diagnosed with GDM 

later in pregnancy (p=0.01 and p=0.02), respectively. Also, FPC3 scores between the two 

GDM categories were significantly different (p=0.05).  Thus, the extracted shape information 

differed significantly between women who did and did not develop GDM, and between 

subgroups of women diagnosed with GDM later in pregnancy, while the simple summary 

measures did not.  
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Article IV: Shape information in repeated glucose curves during pregnancy provided 
significant physiological information for neonatal outcomes. 
 

The smoothed glucose curves at gestational weeks 14-16 and 30-32 showed large variation 

between the women at both visits. Glucose values were higher, and peaked later in third 

trimester than in early pregnancy.  

In the multilevel FPCA, the first two subject-specific FPCs explained 98% of the 

variation across visits, and the first three subject- and visit-specific FPCs explained 92% of 

the residual variation within visits. Further analyses were restricted to these FPC curves and 

the corresponding FPC scores (FPC1subj and FPC2subj, and FPC114-16, FPC214-16, FPC314-16, 

FPC130-32, FPC230-32 and FPC330-32, respectively). The dominating curve characteristic for the 

variation across visits (FPC1subj) was “general glucose level”, which accounted for 91% of 

this variation. The second most important curve characteristic across visits (FPC2subj) was 

“timing of postprandial peak”. The dominating curve characteristic for the residual variation 

within visits (accounting for 72% of this variation), was “general glucose level within visits”, 

i.e. the general glucose level not accounted for by the general glucose level across visits. The 

second and third most important curve characteristics for the variation within visits were 

“timing of postprandial peak within visits” and “oscillating glucose within visits”, 

respectively. These two characteristics accounted for a larger part of the variation within 

visits (15% and 8%), than across visits (7% and <2%). 

There were strong correlations between FPC1subj scores and AUC at weeks 14-16 

(AUC14-16) and weeks 30-32 (AUC30-32) (r=0.86 and 0.90, respectively), between FPC114-16 

and AUC14-16 (r=0.73), and between FPC130-32 and AUC30-32 (r=0.87). All FPC1 scores were 

positively correlated with early pregnancy BMI (0.12≤r≤0.35).  

Late postprandial peaks and/or high third trimester glucose levels had significant, 

positive effects on birth weight (p<0.05). Generally high glucose levels had a significant, 

positive impact on neonatal percentage fat (p=0.04). In addition, women with generally late 

glucose peaks gave birth to neonates with a somewhat higher percentage fat. High glucose 

level in third trimester had a significant, positive impact on cord blood C-peptide (p=0.004). 

In addition, neonates of women with oscillating glucose curves had somewhat lower C-

peptide levels than those with one glucose peak during the OGTT. 



32 

 

5 Discussion 
The quality of a study is often considered in terms of the precision, and the validity of the 

estimated effects (17). Whereas precision refers to random error, validity is often separated 

into internal validity, whether the effect estimates are biased due to the way the data is 

collected, analysed and interpreted, and external validity, whether the results from the study 

may apply or be generalized to populations or groups outside the study sample (1). Bias is 

defined as systematic deviations from the true effects (1), and is present when the association 

between exposure and outcome is not in its entirety the result of the causal effect of exposure 

on outcome (130).  In the following, we discuss the internal validity of our study in terms of 

selection bias, information bias and confounding (sections 5.1-5.3), the statistical methods 

(section 5.4), the findings in the articles (section 5.5) and finally, the external validity (section 

5.6). 

5.1 Selection bias 
Selection bias is present if the estimated association among those selected for the analysis 

differ from the association among those eligible (130). Bias caused by differential selection 

into the study sample are often referred to as selection bias (17), although it may in some 

instances be considered a bias due to unmeasured confounders that are not controlled for in 

the analysis. Selection bias and confounding may therefore be considered as partially 

overlapping concepts (17). It has been suggested to use DAGs to differentiate confounding, 

i.e. common causes of exposure and outcome, from a more specific definition of selection 

bias, i.e. bias resulting from conditioning on common effects (130). Volunteer bias and 

missing data bias, i.e. the bias that is present if the study is restricted to those who 

volunteered to participate, or the analysis is restricted to subjects with complete data,  fall 

within the latter definition (130).  

Approximately two thousand women registered for obstetric care at Rikshospitalet 

each year during the study period (114). Women who were invited to participate were chosen 

on basis of a Scandinavian name, and excluded if they had multiparous pregnancies or one of 

the diseases in the list of exclusion criteria (Figure 5.1). Due to logistics at the clinics 

involved in the study, not all the eligible women could be invited or included in the study. 

Approximately one third of the women accepted the invitation, and about five women were 

included every week. It is unlikely that this caused a selection bias, as the restrictions in 

invitations and inclusions were solely based on practical implementation of the study. 
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Figure 5.1 Overview of pregnant women and the exclusion and inclusion to the study. The 
grey area represents the exclusion criteria. The dotted grey lines show subgroups within 
healthy, pregnant women with singleton pregnancies.  
 

Restricting the cohort to women of Scandinavian origin was done to avoid 

participants who could not understand the information that was given in the study, as this was 

only available in Norwegian. This reduced bias from unmeasured confounding due to genetic 

or epigenetic variation.  

Volunteer bias may be present. For instance, a family history of DM may increase 

health awareness and affect the wish to participate in a study with close follow-up. 

Furthermore, the study’s focus on big babies and birth complications may give a study 

sample with higher BMI values than in the eligible group. Then, as a family history of DM 

will possibly increase the risk of GDM, one may speculate whether the estimated association 

between BMI and GDM is slightly exaggerated in this thesis.  

Furthermore, the recruitment to the cohort lasted for several years, and changes in the 

population characteristics during this period may have affected the volunteer bias unequally 

throughout the inclusion. For instance, repeated headlines in the media concerning the obesity 

epidemic, risk of type 2 DM or popular diets like the low-carb diet, may affect the pregnant 

population’s behaviour and the motivation to participate in a study like the STORK study. 

However, it is not easy to evaluate the presence of such volunteer bias, or its impact on our 

estimates. 

The analyses in articles I, III and IV were restricted to those with complete data. The 

sampling procedure to the sub-sample with inflammation data in article I included 

stratification and exclusion criteria based on birth weight, which was also the outcome in the 
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path analysis. The stratification is not likely to have caused selection bias. The exclusion was 

done to make sure that neonates with a deviating pathology should cause confounding, and 

can therefore be justified. In retrospect, it would have been better to use gestational age (less 

than 37 weeks) as the exclusion criterion, instead of birth weight. The FDA in article III was 

restricted to the 974 women (94%) with complete OGTT data from weeks 14-16, and the 

regression analysis with third trimester 2-h glucose as the outcome, to the 922 women (89%)  

who also had compete data on this and on early pregnancy BMI. Comparisons of the glucose 

values and BMI for women with incomplete OGTTs and/or missing BMI at weeks 14-16 and 

the study sample  gave no statistically significant differences between the groups, although 

the mean values among the excluded were consequently slightly lower (not shown). It is 

therefore possible that the true values of the missing data also would have been in the lower 

range. The high proportion of complete data makes it is less likely that this would have an 

important impact on the results.  

In article IV, the regression analysis of birth weight was restricted to the 868 women 

(84%) with term births and complete data on early pregnancy BMI, parity and OGTT data 

from weeks 14-16 and 30-32. Among those born at term, we found no statistically significant 

differences between those with complete data, and the registered data from those with 

incomplete data (results not shown), but these results may be obscured by the lack of 

information about the missing data. Again, the high proportion of complete data makes it is 

less likely the results for birth weight should be substantially biased. The regression analyses 

of neonatal percentage fat and cord blood C-peptide were done within participants with DXA 

data. C-peptide was not available from all neonates in this sub-sample, due to the amount of 

frozen cord blood. However, this was not related to the variables under study. Participants 

were recruited to DXA scanning during the study period, opening for an additional volunteer 

bias. The women in this sub-sample had a significantly lower BMI than the other women 

with term births in the STORK cohort (23.8 kg/m2 vs 24.7 kg/m2), and several significantly 

lower mean glucose values at weeks 14-16 and 30-32 (mean differences between the groups 

were in the range -0.1 mmol/l to 0.4 mmol/l). No significant difference in birth weight was 

found. The impact of these differences on the curve shape information extracted by FDA is 

difficult to assess. Also, the comparable birth weights make it less likely that this had an 

important impact on the results. This is supported by the results of the additional regression 

analyses of birth weight in the DXA sample, which gave similar results as in the large 

sample.   
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5.2 Information bias 
Information bias occurs when the variables of interest, i.e. the main exposure, covariates and 

the outcome, are measured with measurement error. Measurement error in a categorical 

variable is often referred to as misclassification (121).  Measurement error may be due to 

instrument error, i.e. the error related to measuring a specific quantity like blood glucose, at a 

specific point in time, and/or sampling error, i.e. errors occurring due to the process of 

obtaining the “true value” through sampling over time and/or space, like extracting glucose 

curve shape information from five discrete glucose measurements (121).  

Measurements can have both random and systematic measurement error (1), and both 

may cause biased effect estimates (17;121). Random error may be heterogeneous, and has no 

apparent connection to another measurement or variable. Random error may be 

heterogeneous. Systematic error is error that is consistently wrong in a particular direction, 

and often has a recognisable source (1). Non-differential measurement error is error that does 

not depend on the outcome or other variables in the analysis, whereas differential 

measurement error is error that depends on the other variables in the analysis (17). 

Categorisation of a variable measured with random, non-differential error, will often give 

differential misclassification (131). 

In the following, we will discuss measurement errors in the main exposures, 

mediators and outcomes. Measurement errors in covariates may also have contributed to 

information bias, but this is not discussed in detail. 

 

De-trending of glucose values 

We chose to use a point-of-care glucometer instead of a central laboratory to measure 

glucose, even though the glucometer was mainly recommended for screening purposes. There 

is always a trade-off between expenses and logistics, and the scientific accuracy and gold 

standard procedures. The glucometer had been used in various clinical settings at the hospital 

and several informal validations against the accredited laboratory had been found adequate 

(data not shown). However, there were no reports on the accuracy of the glucometer during 

long-term use. The unexpected trend in fasting glucose with a mean yearly increase of  0.11 

mmol/l over seven years and the lack of a corresponding increase in the hexokinase data, the 

women’s early pregnancy BMI, insulin or age, made it less likely that the observed trend in 

blood glucose values should have a biological cause, or be due to selection bias. Thus, 

glucose measurements were de-trended as described in article II.  
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Even though the error over time in fasting glucose measurements at inclusion was 

removed by the de-trending, there were still significant trends in the de-trended 2-h glucose 

values at inclusion, and in the fasting, 30 min and 2-h values at weeks 30-32 (Figure 1 in the 

Appendix). This may be a consequence of erroneous de-trending. However, the glucose 

measurements at inclusion were least likely to be affected by behavioural changes during 

pregnancy, and except from the 2-h values, all these measurements were successfully de-

trended. We therefore trust the de-trending procedure to be adequate. The trends in the data 

from weeks 30-32 may represent a change in the population towards healthier glucose values 

during pregnancy, e.g. as a consequence of the increased focus on metabolic disorders, 

macrosomia and media focus on low-carb diets, or reflect selection bias, e.g. that an 

increasing proportion of the women included have a particularly healthy life style.  

 

Categorisation of the 2-h glucose value in weeks 30-32 

The measurement error in the de-trended 2-h glucose measurements at weeks 30-32, may 

cause differential misclassification in the categorised variable, which is difficult to evaluate. 

Misclassification due to random error, i.e. the instrumental error, often attenuate effect 

estimates (131).  

 

Glucose curves 

The individual curve fitting in articles III and IV was based on a measurement model with 

homogenous measurement error over the 2 hour time span, and smoothing with a roughness 

penalty. The degree of smoothing was based on an estimated, generalised cross-validation 

criterion, and the smoothing is assumed to reduce measurement error. Measurement error in 

glucose measurements may however be higher for high glucose values than for low, as 

indicated in the control chart in Figure 1 in the Appendix. The assumption of uniform 

measurement error may therefore be wrong. This issue was discussed during the analyses. 

However, as documentation and references for measurement errors are hard to find from the 

producers, and even harder to interpret in a clinical setting, we chose to keep the assumption. 

This is a non-differential measurement error. This may influence the smoothing of curves, 

and the smoothing procedure, e.g. more smoothing of higher values and less for lower values, 

may affect other results. The impact of the smoothing is discussed in the next paragraph.  
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FPC scores 

The fitted curves were the basis for the FPCA, resulting in FPC curves and FPC scores. We 

found that FPCA of minimally smoothed curves gave FPC curves with a more wavy 

appearance, and a larger proportion of variance explained by FPC2 and FPC3 scores (results 

not shown). Hence, the smoothing of the curves did influence the information in the FPCs. In 

addition, in article IV, it is possible that the methods of covariance matrix estimation did not 

perfectly separate the across and within variances, and that the corresponding information 

extracted by the FPCA was slightly biased. Furthermore, leaving out the FPCs which 

explained the smallest part of the variation, i.e. those with the waviest appearance might have 

given a conservative estimate of the amount of curvature in the individual curves, which 

again could have caused bias in the FPC scores. This may affect the regression results, by 

giving a too high impact of the first FPCs (“general level”) at the expense of the other FPCs 

(“timing of postprandial peak” and “oscillating curves”). It may also affect the variable 

selection in article IV by influencing the colinearity between the FPC scores. 

  

BMI 

Early pregnancy BMI was used as a surrogate for the women’s general, non-pregnant body 

composition, as the latter was based on self-reported data. In weeks 14-16, the pregnancy 

may already have led to weight change: weight gain, or weight loss due to nausea and/or 

vomiting. It can also be discussed whether an assessment of the women’s body composition 

in early pregnancy should have been done by the waist-hip ratio, but the same objections 

about changes in the women’s constitution holds for these measurements. BMI was 

calculated from weight measured at inclusion and self-reported height. In retrospect, we 

regret that height was not measured, as self-reported height tend to be overestimated 

(132;133), leading to a systematic underestimation of BMI and differential misclassification 

of BMI categories. Differential measurement errors may also have occurred if those who gain 

less weight during the first weeks also overestimate their height most. However, we have 

little information in our data to investigate such possibilities, and it is difficult to predict the 

direction of the bias in the effect estimates.   

 

Inflammatory markers 

The validity of the inflammatory markers depends on whether we have measured the correct 

variables in the large and complex field of inflammation. If this were a psychometric study, 
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this issue would be part of the content validity, i.e. are the correct questions asked? Although 

a multi-disciplinary expertise participated in choosing inflammatory markers, the complexity 

of the topic makes it impossible to say with certainty that our study covered the inflammatory 

markers that represent the obesity-related markers of importance to pregnancy outcomes, or if 

the markers in article I are surrogate variables.  

Measurements of inflammatory markers in blood samples are known to display large 

random variability, and infections at the time of measurement may affect the measurements. 

We therefore excluded women with a CRP above 10 mg/l. The dichotomisation of CRP may 

give differential misclassification. Women with high inflammatory response due to obesity 

and pregnancy may have been erroneously excluded due to infections, whereas women with 

lower inflammatory response may have been kept in the sample despite of infections that may 

have biased the measurements of both inflammation and glucose. The first error may lead to 

attenuated effect estimates. It is, however, difficult to evaluate the impact of measurement 

error on the estimates in the path model.  

 

The neonatal outcomes birth weight, percentage fat and cord blood C-peptide 

The measurement error of birth weight was reduced by using a calibrated weight, measuring 

the neonates shortly after birth. 

DXA is being used increasingly as a reference method, and is considered the “gold 

standard” in body composition studies (93). It has, however, been demonstrated that error in 

DXA measurements is largest for the smallest subjects (134). It is less likely that this 

heterogeneous, non-differential measurement error will bias the results in our study, as all the 

neonates in the study sample were above 2315 g. 

5.3 Confounding 
Confounding is bias of the estimated effect of an exposure on an outcome due to the presence 

of a common cause of the exposure and the outcome (1). Confounding is an important issue 

in observational designs, and may lead to underestimation, overestimation, or even change 

the sign of the estimated effect (17). A confounder is a variable that is associated with the 

outcome (either as a cause or a proxy for a cause, but not as an effect of the disease), 

associated with the exposure, and not an effect of the exposure (17;121). The definition of 

confounding may also include bias due to baseline differences in exposure groups in the risk 

factor for the outcome, although this may be considered as selection bias (1), as in this thesis.  
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Confounding can be reduced by proper adjustment. Exploring data is not sufficient to 

identify whether a variable is a confounder, and such evaluation of confounding may lead to 

bias (1;15;17). Other evidence like pathophysiological and clinical knowledge and external 

data is needed. DAGs are useful tools when considering confounding variables (15;17).   

 

Residual confounding 

Confounding variables may be poorly measured or surrogate confounders, and others may be 

unmeasured. Also, the functional form of a regression model may be sub-optimal. The bias 

that remains after unsuccessful adjustment for confounders is called residual confounding 

(1;17). Residual confounding can never be ruled out in observational studies.  

 

Mediators 

In contrast to the confounder, a mediator represents a step in the causal pathway between the 

exposure and the outcome (1;17). Such a variable will also be associated with both the 

exposure and the outcome.  

 

Confounding in articles I, III and IV 

In article I, confounding and mediation were considered simultaneously. Even the simplified 

path model in Figure 3.3 included four regression equations (one for each of the outcome 

variables birth weight, fasting glucose, IL-1Ra and IL-6), and every arrow in the figure 

represents an effect that should be estimated without bias. Pregnancy complications may 

affect both the physiology of the mother during pregnancy, prematurity and birth weight of 

the child, and may thus be confounding variables. Our data included little information about 

pregnancy complications. We excluded those with a birth weight below the 10th percentile, 

thereby indirectly adjusting for several pregnancy complications. Women with infections 

(CRP>10 mg/l) at weeks 30-32 were also excluded, as altered levels of IL-6, IL-1Ra and 

fasting glucose in these women could be activated by other mechanisms than those related to 

BMI. This would therefore reduce bias from short-term infections at the time of the visit. 

 One can debate whether more variables representing common causes of the variables 

already in our model should have been added. For instance, life style factors, genetic factors, 

maternal age, parity, smoking, other cytokines, leptin, or changes in these values prior to 

weeks 30-32 may all potentially affect some of the variables in our model. Life style and 

genetic factors were unmeasured and cannot be adjusted for. It is, however, difficult to 
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evaluate the magnitude of this potential bias. Further, extending the model with variables that 

are measured requires causal knowledge, and implies specifications and biological 

justifications of all new hypothesized pathways. An extended model including more 

variables, both confounders and mediators, and with more detailed information about the 

hypothesized paths, may reduce residual confounding. As the literature is scarce concerning 

potential effects of variables like maternal age, smoking and parity on inflammatory markers 

during pregnancy, we chose to present a model without additional variables. We did 

additional adjustment for maternal age and smoking (only 5 women smoked) in the 

regression model for birth weight, but the results were similar (results not shown). Similar 

results were also found if gestational age was left out from the model (results not shown). 

In article III, we estimated the effect of BMI category in early pregnancy on glucose 

curves in weeks 14-16 (by FANOVA), and the effect of glucose curves or simple OGTT 

summary measures in weeks 14-16 on the categorised 2-h glucose value in weeks 30-32 (by 

nominal logistic regression analysis). The FANOVA was performed without adjustment for 

covariates. As in article I, unmeasured life style and genetic factors may have influenced the 

results, but could not be adjusted for. It was decided to leave parity and maternal age out of 

the analyses for simplicity. Lack of adjustment for these variables or other potential 

confounders may have biased the results. Due to the degree of homogeneity of the study 

sample, the magnitude of such bias is likely to be small. Also, misclassification of BMI into 

categories (see section 5.2) may give bias due to residual confounding. We adjusted for early 

pregnancy BMI (continuous) in the nominal logistic regression analyses. Other covariates 

were not included, since it was beyond the scope of the article to build an extensive 

prediction model or to adjust for variables possibly on the causal pathway to the outcome. 

Curve shape information was incorporated in the multinomial logistic regression analysis by 

entering the independent FPC score variables in the analyses. Hence, as much as possible of 

the curve shape information was exploited in this analysis. The simple summary measures, on 

the other hand, contain less of the total information, and were included one at a time in the 

regression models, due to colinearity.  

In article IV, early pregnancy BMI, parity and maternal age were included in the 

linear regression analysis of the effect of curve shape information on the neonatal outcomes 

birth weight, percentage fat and cord blood C-peptide. Weight gain may be on the causal 

pathway between the subject-specific glucose characteristics and birth weight, and was not 

included in the analyses. Again, unmeasured life style and genetic factors may have biased 
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the results, but the bias is likely of small magnitude due to the homogeneity of the study 

sample.  

5.4 Discussion of statistical methods 
The overall aim in this thesis was to use path analysis to analyse mediation, and FDA to 

analyse OGTT data, to better exploit important physiological information in the STORK data. 

Below we discuss possible improvements and alternative approaches. 

Path analysis (article I) 

The hypothesized path diagram, in which early pregnancy BMI leads to increased 

inflammation with secondary effects on glucose regulation and fetal growth, is a simplified 

model of the complete process. Integrative physiology is much more complex, and studies of 

larger, and other, models should be performed. For instance, TNF α might play a role in 

insulin resistance in pregnancy (47). However, results are partly conflicting concerning its 

association with BMI (135), and TNF α was not included in our analysis. Further, MCP-1 

may also play a role in metabolism. A biological justification of pathways for MCP-1 in a 

path model together with IL-6 and IL-1Ra was not found in the literature, and a simplified 

model without MCP-1 was implemented. While there are certain pitfalls that can cause 

flawed conclusions in a path analysis, this method can be justified in problems with a simple 

structure and linear relations between variables (2). We used standardized variables and 

focused on comparing the relative importance of variables in our data. Using the original 

variables instead may ease interpretation when comparing our results with other studies.  

 

The Bayesian model 

Effect estimates in this study could have been obtained with a frequentistic analysis, which is 

the dominant analytical approach in clinical research, but we chose a Bayesian approach. In a 

frequentistic analysis, parameters are assumed to be fixed, but unknown quantities, and must 

be estimated from the data. Potential prior knowledge is treated informally in the 

interpretation of the results. In Bayesian analysis, in contrast, all parameters are assumed to 

be stochastic variables, and effect estimates and corresponding CrIs are derived from 

estimated probability distributions. It is therefore necessary to specify the a priori knowledge 

of the situation and the parameters in terms of a statistical distribution of the parameters 

under study.  
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Frequentistic analyses are based on normality assumptions and central limit theory, 

whereas Bayesian analyses rely on prior assumptions and simulation techniques. Bayesian 

analysis is computation heavy, and technically more complicated, but the WinBUGS 

software has made Bayesian methods available, also to clinical researchers (128;136). 

Bayesian models have the strength that they can handle non-normality and non-linearity more 

easily than traditional analyses, and they are also flexible with respect to several types of 

variables (128;136). In studies of complex biological mechanisms, where samples will 

typically be small due to the costs and restraints in data collecting, data tend to be skewed and 

where there are non-linear relations (137-139), Bayesian methods represent a valuable tool  

 

De-trending (article II) 

The glucose data from the observational period was de-trended based on a weighted average 

of the results from two linear regression analyses, i.e. assuming a globally applicable model.  

 Figure 1 in the article (left, upper plot, as well as Figure 1 in the Appendix) indicate 

changes in the hyperglycaemic controls after approximately 2.5, 4, and 6 years (between 

observations 101 and 151 in Figure 1 in the Appendix ) that may be interpreted as shifts, not 

trends (122). Such shifts were not equally apparent in the hypoglycaemic control. An 

important question was whether these shifts were actually due to reagent strip lot changes or 

control lot changes, i.e. alterations of the measurement process caused by the study group. 

The study records showed that mainly four different lots of glucose strips were used during 

the observational period, and these were changed approximately 1.2, 3.0, and 6.0 years after 

study start. In the period 1.1-1.3 years after study start, strips from three different lots were 

used. That is, except from the change at 6.0 years, lots of glucose strips changed at different 

times than the apparent shifts in the data in Figure 1. Information on changes in control lots 

was unfortunately only available for the last part of the study period, and not from the period 

where a shift was most pronounced, i.e. after 2.5 years.  

 In summary, the available dates for change in strips or controls could not explain 

the observed shifts or trends. Shifts were not identified consecutively during the study period, 

and underlying reason(s) for shifts could not be identified retrospectively. We therefore chose 

to de-trend the data by an overall procedure.  
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Categorisation of continuous variables (article III)  

In order to ease the presentation of FDA for a non-technical audience, we categorised early 

pregnancy BMI for the FANOVA, and used the categorised 2-h OGTT value in weeks 30-32 

as the outcome in nominal logistic regression. From a statistical point of view, such 

categorization is not usually recommended (140;141), and functional regression with BMI as 

a continuous explanatory variable, and linear or non-linear regression analysis with the 2-h 

value as a continuous outcome, would be preferable.  

  

FDA (articles III and IV) 

In the literature, visualisations of “mean glucose curves” are usually presented as means at 

selected time points with interpolation lines, and variability is usually quantified by SDs or 

standard errors at the same time points (142-144). While previous studies of shape 

information from glucose curves have focused on either simple shape indices or advanced 

parametric modelling (65-68), we have used statistical tools developed specifically for 

analysing curve data.  

The scarce sampling of glucose during the OGTT is likely to obscure the extraction 

and interpretation of the curve characteristics. More physiologically interesting temporal 

details and better discriminating abilities of the FPCs may be expected in a more 

heterogeneous population than in our study sample, and from OGTT curves over more than 2 

hours or with a more frequent OGTT sampling (68). With more measurements per OGTT, it 

is also possible to apply alternative smoothing strategies (125;126).  

Consistent with results from other studies, AUC was much better than the widely used 

fasting glucose or 2-h value in capturing the essential temporal information of OGTT glucose 

curves (145-147). 

In article III, the strongest association between the shape index defined in (66) and the 

FPC scores was found for FPC3 scores which explained the smallest proportion of the total 

variance. These scores should be interpreted with caution in our study, but might explain a 

larger part of the total variation in studies with more frequent sampling. The continuous 

FPC3 score variable provided quantification of curvature, which is preferable in order to 

retain both temporal information and statistical power (140). The shape index defined in (66), 

in contrast, is based on an a priori classification of curves into the categories “biphasic”, 

“monophasic” or “unclassified”, and involves several ad hoc thresholds for the categorisation 

(66). Many curves (27%) failed to meet the classification criteria and were left out of the 
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analyses, resulting in a severe reduction of power and a biased representation of metabolic 

profiles in the study sample. Another, recently suggested shape index (67) is based on a 

rough approximation of the mean of the second order derivatives in the intervals between the 

measurements during the OGTT, giving a rough approximation of the total curvature. Our 

results showed that curvature is better extracted by FDA.  

Parametric modelling based on differential equation models of physiological 

mechanisms is an alternative approach to the analysis of full glucose curves (68;148-150). A 

major disadvantage of parametric models is that estimating each person’s individual 

parameters requires many measurements, often based on intravenous test procedures (151). 

The OGTT is the simplest and most frequently used test procedure in larger studies because 

intravenous procedures such as the euglycaemic clamp (58) are time-consuming, invasive and 

labour intensive. The data-driven approach of FDA is well-suited for the analysis of glucose 

regulation in larger studies.  

Longitudinal data analysis with five repeated measurements per OGTT, and random 

effect of woman and modelling of the covariance structure is an alternative approach. It is 

also possible to use ordinary PCA scores based on the five glucose variables from weeks 14-

16 as input to the regression analysis of glucose tolerance later in pregnancy, instead of 

scores from FPCA. With only five measurements per curve and measurements taken at the 

same time points for each woman, such traditional multivariate methods would be expected 

to extract similar information as the FDA. However, all these methods are similar in the sense 

that they approach the curve data only indirectly, by applying techniques originally 

developed for other types of data. FDA has its strength in being developed for analysing such 

data directly, and, in addition to being a more intuitively applicable methodology, it 

emphasizes the basic assumption about continuity of the underlying process, is easier to apply 

in situations with more frequent sampling and sampling at unequal time points.  

The impact of the smoothing procedure on the results was mentioned in section 5.2. 

The multilevel models described in (125;126) explain how FPCA of smoothed covariance 

surfaces can be used as the first step in the analysis. This means that the B-spline smoothing 

described in (24), is replaced with smoothing of covariance surfaces (126). In our data, due to 

the few measurements, such a smoothing procedure failed to give realistic estimates (results 

not shown), and we therefore chose individual curve B-spline smoothing in article IV. For 

first-time users of FDA, the approach with smoothed covariance surfaces is not as 
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immediately intuitive as the curve-fit approach, and we therefore consider the latter to be an 

advantage in the communication with clinical researchers.  

5.5 Discussion of findings 
Inflammatory markers as mediating variables in the relation between early pregnancy BMI 

and birth weight (article I) 

The hypothesized associations were partly confirmed in our data. According to the results 

from our simplified model, about 20% of the effect of early pregnancy BMI on birth weight 

was mediated through paths involving IL-1Ra.  However, IL-1Ra is a dual marker; it is an 

anti-inflammatory cytokine, binding to IL-1 receptor without inducing an effect, but at the 

same time reflects an activation of the IL-1 system and is also a marker of inflammation in 

general (49;152).  Based on this, we cannot rule out that the measured effect of IL-1Ra 

reflects the action of IL-1β. Although results from observational studies must be interpreted 

with caution concerning causality, our results indicate a substantial role for the interleukin  

1-system in the deranged glucose metabolism associated with high maternal BMI during 

pregnancy and consequently an important role for interleukins as mediators between maternal 

fat-mass, glucose and birth weight.  

The use of birth weight as a marker of fetal growth might explain why our results 

were not in accordance with the previously reported association between maternal IL-6 and 

prenatal growth reflected by neonatal fatmass (153).  

Despite the large sample size, we did not find significant direct effects of the 

interleukins on birth weight, possibly because IL-6 and IL-1Ra do not play an important role 

in regulating fetal growth through changing placental properties. The result may also be due 

to the fact that cytokines display pleiotropic effects and show considerable biological 

variation (154). Furthermore, moderate effect estimates were anticipated. As basis for 

comparison, maternal BMI, one of the major determinants of birth weight, accounts for less 

than 15% of the variation in birth weight in other studies (13;155;156). Our BMI result was 

similar, and borderline significant, possibly due to the homogeneity of our study sample and a 

lack of power to detect small effects. Based on these considerations, we reported our model 

with all the original arrows present, and indirect effects were estimated with significant and 

non-significant direct effects included although not all the direct effects were significant.  

We chose two markers as representatives of the inflammatory status in obese women, 

being aware that other markers may be important as mediators in the association between 
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BMI and birth weight. In addition, effects of cytokines on birth weight are probably not an 

effect of a single mediator, but rather the result of the interactions of several and in 

combinations (154;157). Therefore, we cannot rule out that cytokines in combinations may 

have a direct effect on placental properties and birth weight even if we were not able to find 

such an effect.  

 

Shape information inherent in glucose curves in pregnancy (articles III and IV) 

The mean glucose curve obtained from FDA corresponded well with the familiar shape of 

glucose curves (142-144). Individual glucose curves have been presented in several 

publications (68;144;158), but the variability in curve trajectories is highly under-reported, 

and thus largely unknown. The information indicated by the shape of glucose curves is 

therefore rarely used in clinical practice, and only occasionally in research. Our findings 

emphasise the large variability in glucose curves, even though the study sample was 

relatively homogenous, and provide a reference for glucose curves in healthy, pregnant 

women.  

The interpretation of FPC curves is essential for the usefulness of FPCA. Current 

insight into metabolism supported the interpretations of the FPCs (“general glucose level”, 

“timing of postprandial peak” and “oscillations”) as plausible and important physiological 

features. The identification of the general glucose levels as the most dominant characteristics 

of individual glucose curves was supported by the strong associations between FPC1 scores 

and the AUCs, and the positive association with early pregnancy BMI. The association with 

BMI is in accordance with physiological knowledge of obesity and insulin resistance 

(51;159). The importance of the general glucose level is also in accordance with numerous 

studies focusing on the importance of elevated glucose of various types, e.g. fasting, 1-h, 2-h 

or HbA1c values, in diabetes research (51;69;79).  

In article IV, we found that the general glucose level accounted for a larger part of the 

variation across, than within visits, whereas the timing of the peak was more important for 

the variation within, than across visits. This is not surprising, as FPC2 represent more 

curvature than FPC1, and some of the curvature may be averaged out at the subject-specific 

level.  

The elevated postprandial levels in third trimester, the small increase in fasting 

glucose, and the large increase in fasting insulin and prevalence of GDM from inclusion to 

weeks 30-32, are in accordance with an expected progressive insulin resistance among 
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pregnant women, and supports the finding of timing of postprandial peak as the second most 

important curve characteristic (51). The increase in postprandial values during pregnancy, 

and corresponding delay in postprandial peak, is also supported by several earlier studies (60-

62;64;160). Many studies have found a decline in fasting glucose during the first trimester of 

pregnancy (53), but an overview of longitudinal studies during pregnancy showed conflicting 

results concerning later pregnancy fasting glucose (53). This justifies our findings of a small 

increase in fasting glucose from weeks 14-16, to 30-32.  

The interpretation of FPC3s as “oscillations” was chosen on basis of physiological 

theories and studies with more frequent sampling during OGTTs (68;161). 

In article III, the FPC1 scores, 2-h values and AUC at weeks 14-16 differed 

significantly between groups of women without a GDM diagnosis at weeks 30-32. However, 

only FPC2 scores at weeks 14-16 were significantly different between women with and 

without GDM at weeks 30-32 and only FPC2 and FPC3 scores differed significantly between 

diabetic women with the highest and second highest 2-h values in the third trimester. Thus, at 

weeks 14-16, FPC1 or AUC alone did not capture all of the essential information about the 

differences in glucose metabolism. To distinguish curve trajectories reflecting deviating 

glucose tolerance from those considered normal, the information from FPC2 and FPC3 was 

necessary. A study of type 1 DM patients with islet transplantations found that increased 

glucose AUC and time to peak C-peptide after metabolic testing were metabolic markers of 

islet allograft dysfunction (162), supporting the physiological importance of both FPC1 and 

FPC2 scores. The timing of the peak C-peptide was also found to be predictive of progression 

to type 1 DM in the Diabetes Prevention Trial (163).  

The HAPO study findings include significantly higher odds ratios for high birth 

weight, cord-blood serum C-peptide level and percentage body fat (above their respective 

90th percentiles), for high fasting, 1-hour and 2-hour glucose levels (79;81), which supports 

our findings of important impact of FPC1 scores, interpreted as “general glucose level”, on 

these outcomes. Other studies with a similar scope, but smaller sample sizes are also in 

accordance with these findings (164-168). However, none of these studies addressed the 

impact of the dynamic regulation of the blood glucose, which is embedded in the FPC2 and 

FPC3 scores. Some studies have commented on the postprandial peak and birth outcomes 

(61;169;170), but to our knowledge, our study is the first to formally investigate the impact of 

the timing of the postprandial peak. The extension of the Pedersen hypothesis to the normal-

glycaemic range (79), and the new GDM criteria which takes into account both the fasting, 1-
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h and 2-h OGTT values (171) indirectly also supports the findings of an important role of 

dynamics in the curves.  

5.6 External validity 
Inclusion and exclusion criteria make the population of eligible subjects relatively 

homogenous and make it easier to argue for good internal validity, as the lack of distinct sub-

groups, e.g. due to genetic or epigenetic variation, is likely to reduce the number of 

confounders. On the other hand, results from a strongly selected sample may be difficult to 

generalise to subjects outside the study sample. Restricting the cohort to women of 

Scandinavian origin (Figure 5.1) makes the study sample less representative for the total 

population in Norway, and especially in Oslo, where there is a relatively large proportion 

(approximately 20%) of non-Scandinavian immigrants (172).  

The overall aim of the STORK study was to gain insights into maternal metabolic 

syndrome and determinants of foetal macrosomia (114). It can be argued that the general 

physiological mechanisms studied in our articles will be similar in all healthy pregnant 

women. However, variation between populations has been found, i.e. for the associations 

between pre-pregnancy BMI and the risk of GDM (46), and for the associations between 

maternal obesity and pregnancy outcomes (39). Also, glucose values and the prevalence of 

DM and GDM vary substantially between populations (74;75). This may be a consequence of 

genetic, social or life style factors. Such factors are not measured in our study, but due to the 

selection procedure, they may be expected to vary less in our study samples than among 

pregnant women in general. Hence, it cannot be ruled out that some of our results will be 

different in other populations. Future studies are needed to validate our findings and to 

evaluate the extent of this difference, and whether associations are weaker or stronger in 

other populations. 

Participation in the study might lead to behavioural change during pregnancy, and 

make the results from late pregnancy less generalizable to pregnant women outside the study. 

A comparable study of pregnant women found that there was a significant reduction in 

smoking, alcohol consumption and intake of caffeinated drinks, but little change in fruit and 

vegetable intake (173). Thus, behavioural changes are not likely to be substantial, and the 

data from weeks 30-32 are as generalizable as the early pregnancy data.  
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6 Conclusions 
We have used path analysis and FDA to gain physiological insight into problems of clinical 

interest in a cohort of pregnant women. Path analysis is particularly suited for the analysis of 

mediation. Although it is far from being a modern statistical method, it is under-utilised in 

some areas of clinical research, and our contribution is therefore important. FDA and 

multilevel functional models represent novel approach to the analysis of glucose 

measurements, and for analysing functional data at several visits in relation to an outcome. 

We have facilitated the presentation of the analyses and results, to make such analyses 

available to applied statisticians and clinical researchers.  

More specifically, we found that 

 The use of path analysis in combination with current biological concepts added to the 

knowledge of the adipose tissue-derived inflammatory factors IL-6 and IL-1Ra as 

mediators in the association between early pregnancy BMI and birth weight. Even 

though the metabolic pathways are complex, simplified path models like the one in 

article I may be useful.  

 The unexpected trend during long-term use of a glucose measurement system most 

likely originated from the measurement system. We successfully removed the trend 

by a weighted average of regression estimates based on independent control solutions. 

 FDA of glucose curves in early pregnancy was superior to traditional analyses of 

OGTT data in terms of providing physiologically interpretable and important 

temporal information, specifically in terms of differentiating between women who did 

and did not develop GDM later in pregnancy.  

 The shape information from glucose curve data from two time points during 

pregnancy had significant impact on birth weight, neonatal percentage of fat, and C-

peptide in cord blood, demonstrating physiological relevance of a late postprandial 

glucose peak, generally high glucose levels during pregnancy, and high third trimester 

glucose levels. Shape information inherent in entire glucose curves is important for 

several outcomes, and may contribute to the understanding of the metabolic changes 

during pregnancy.  
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7 Clinical implications and future perspectives 
The topics of observational clinical studies often include problems with complex structures, 

and statistical methods other than those traditionally applied in clinical research may be 

necessary to answer the research questions. For instance, path analyses, and recently also 

FDA, are methods that are well known from other research fields, but such analyses are still 

not common knowledge or common tools in clinical studies. As an example, one of the 

reviewers of article I commented the lack of p values. To statisticians, Bayesian inference 

based on estimates and CrIs is a matter of convenience, but clinical readers may find the 

interpretation of the results challenging. Applied biostatisticians should take on this task. 

The results from article I imply that there is a need for experimental studies to assess 

the molecular mechanisms of inflammation in relation to obesity and pregnancy. 

We found that a point-of-care glucose device may give erroneous results when used 

over a long time period. Our results should be taken into consideration when such devices are 

developed, produced and used. The results in article II emphasise the importance of quality 

control of measurement procedures. Health care workers and researchers must be aware of 

the need to perform regular quality controls, including the use of control charts and regularly 

sampled blood tests, analysed at an accredited laboratory (56;122). Such procedures will 

unmask trends or shifts during the study period and make it possible to search for underlying 

reasons, like changes in reagent strip lots or control lots.  

We recommend the FDA approach for the analysis of glucose data sampled repeatedly 

during glucose tolerance testing, or continuous glucose monitoring, to capitalize on important 

information that would otherwise be lost. Continuous glucose monitoring might increasingly 

be used in future studies and in individual patient care to obtain OGTT measurements and 

measurements of glucose profiles in daily life. Currently, many studies of data from 

continuous glucose monitoring devices restrict the analyses to simple summary measures like 

the mean glucose (63;174). Such data should be analysed by FDA. Challenges in the analysis 

of data from daily life glucose profiles will include curve alignment (26), which was not a 

topic in our analyses.  

Furthermore, comparison of curve shape information from individuals with insulin 

resistance or beta cell failure might reveal whether curve features can distinguish between 

these two main processes that lead to the development of diabetes.  

The AUC was strongly correlated with FPC scores that provided information about 

the general glucose level during the OGTT, but not with scores providing information about 
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timing of postprandial peak or oscillations, nor with the fasting or 2-h values. Our 

recommendation is therefore to use AUC values rather than the fasting values or 2-h values, 

if FDA is not applied.  

The presented techniques should also be explored in studies in non-pregnant 

populations. Examples include studies of metabolic disorders, metabolic changes during or 

after meals or after physical exercise, and diurnal measurements of hormone regulation. This 

is in accordance with a recent review (32).  

Shape information inherent in glucose curves can contribute to a better understanding 

of the different stages in the development of unhealthy glucose metabolism, and to a more 

precise prediction of women at risk for maternal or foetal complications. Then, interventions 

targeted to modify glucose curves could be initiated before a GDM diagnosis is given, or 

treatment for it is necessary. Such interventions have been studied in pregnant and non-

pregnant study samples (175-177). Future studies should investigate whether such 

interventions also may affect pregnancy outcomes, and have positive long-term effects on 

maternal health.  
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Figure 2. Control charts (X-charts) for the high and low quality control samples described 
in Article 1. The light grey horizontal line in each plot is the mean of the 30 first 
registrations, extended throughout the period. In each plot, the dark grey and black lines 
are the alarm limits, defined as mean  2SD of the first 30 consecutive data points, and 
the control limits, defined as mean  3SD of the first 30 consecutive data points, 
respectively. 
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The interleukins IL-6 and IL-1Ra: a mediating role in
the associations between BMI and birth weight?
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The biological mechanisms in the association between maternal body mass index (BMI) and birth weight are not well understood, but are likely
to involve maternal plasma glucose levels and nutrient transport across the placenta, both important modulators of fetal growth. Adipose tissue
contributes to circulating levels of interleukins that may affect glucose metabolism and possibly also placental transport of nutrients. We
investigated possible mediating roles of Interleukin 6 (IL-6) and Interleukin 1 Receptor antagonist (IL-1Ra) in 208 pregnant women. Known
and hypothesized dependencies between BMI in early pregnancy and fasting glucose, IL-1Ra and IL-6 at gestational weeks 30–32, and birth
weight were specified in a path diagram. Standardized regression coefficients, expressing direct, indirect and total effects, were estimated by
Bayesian path analysis. Mean (S.D.) BMI was 24.9 kg/m2 (4.2) and mean (S.D.) birth weight 3748 g (454). The total effect of BMI on birth
weight was 0.24 (95% credibility interval (CrI) [0.12, 0.36]). The direct effect of IL-1Ra on birth weight was not statistically significant, but
significant effects of BMI on IL-1Ra (0.61, 95% CrI [0.51, 0.72]), of IL-1Ra on fasting glucose (0.17, 95% CrI [0.01, 0.34]) and of fasting
glucose on birth weight (0.14, 95% CrI [0.01, 0.27]) implied an indirect pathway from BMI via IL-1Ra on birth weight. Approximately 20%
of the effect of BMI on birth weight was mediated through IL-1Ra. For IL-6, no such effects were found. Our results indicate that IL-1Ra may
be a mediator in the association between BMI and birth weight.
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Introduction

Birth weight is a result of a complex interaction between
maternal, placental and fetal factors. Of the maternal factors,
maternal body mass index (BMI) is a strong, independent and
modifiable predictor of birth weight and has been estimated
to account for roughly 10–20% of the variance in birth
weight.1–4 While numerous studies have shown an association
between maternal BMI and birth weight, fewer studies have
addressed the issue of biological mediators in this associa-
tion.5,6 Considering the increasing prevalence of maternal
obesity and the long-term implications of birth weight on
later health and disease, an understanding of how excess fat
exerts effects on birth weight is important.7 There are at least
two ways in which maternal BMI may affect fetal growth,
by modifying nutrient availability or by modifying placental
nutrient transport. Traditionally, the link between maternal

BMI and birth weight has been attributed in large to maternal
hyperglycemia and partly to other metabolic alterations
associated with obesity, that is, changes in nutrient avail-
ability.8,9 However, the fact that BMI remains a significant
determinant of birth weight, after correcting for glucose in
traditional regression analysis and also in studies of glucose-
tolerant women, indicates that other factors associated with
maternal obesity are likely to play a role in fetal growth.9–12

Studies of non-pregnant populations as well as animal
experiments suggest a role of adipose tissue-derived inflam-
matory factors like interleukins (IL-6 and IL-1Ra), tumor
necrosis factor (TNF) and other adipocytokines as molecular
links between excess adipose tissue and deranged glucose
metabolism, including increased insulin resistance.13–15 The
few studies concerning inflammatory factors and insulin
resistance in pregnancy indicate that at least some of the same
mechanisms are present during gestation.16

Direct effects of adipose tissue-derived factors on placental
properties have also been suggested. There is evidence of
maternal obesity affecting placental size and inflammatory
properties17 and preliminary data suggest that placental nutrient
transport capacity may be directly affected by interleukins like
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IL-6.18 Thus, adipokines may have a role as mediators in the
associations between maternal fat mass, maternal glucose levels,
placental properties and birth weight.
We studied whether the interleukins IL-6 and IL-1Ra had

mediating roles in the association between BMI and birth
weight. There are conflicting data about the association
between TNF and BMI.19 We therefore chose not to include
TNF as a potential mediator. Known and hypothesized
dependencies between the chosen variables were depicted in a
path diagram. Effect sizes were estimated by path analysis,
which is a method where several multiple regression equations
are combined to obtain estimates of direct and indirect
effects.20 We used data from healthy pregnant women with-
out infections, sampled from a Norwegian cohort study.21 To
our knowledge, previous studies have not used path analysis
in testing for inflammatory factors as mediators in the asso-
ciation between maternal BMI and birth weight.

Methods

The present work was performed in a subsample of the
STORK study.21 STORK is a prospective cohort study of
healthy women of Scandinavian heritage who registered for
obstetric care at Oslo University hospital Rikshospitalet from
2002 to 2008 (n5 1030). Exclusion criteria were multiple
pregnancies, known pre-gestational diabetes and severe
chronic diseases (lung, cardiac, gastrointestinal or renal). The
women were scheduled for four examinations at gestational
weeks 14–16, 22–24, 30–32 and 36–38. Maternal height was
measured at the first visit and weight at each visit. Fasting
glucose was measured at weeks 14–16 and 30–32. Data on

age, parity, educational level, smoking status and pregestational
BMI were registered. Gestational age was based on ultrasound
measures made at weeks 17–19. Data on preeclampsia and
hypertension were obtained from hospital records. Birth weight
was measured with a calibrated scale.
The present subsample included 240 women from the first

part of the STORK cohort (n5553), enrolled during the period
2002–2005 (Fig. 1). Inflammatory markers were obtained from
fasting blood samples at all four visits. A subsample was chosen
due to the limited resources for cytokine and other biochemical
analyses. Placental insufficiency may be associated with inflam-
matory changes,22,23 and the subsample was therefore restricted
to women giving birth to a baby above the 10th birth weight
percentile (2962 g) of the cohort. Stratified random sampling
based on birth weight below or above 4200 g was used to ensure
that women with macrosomic babies were included. Women
with possible infections indicated by a C-reactive protein (CRP)
value above 10mg/l,24–26 extreme values on IL-1Ra or IL-6
(values beyond 3 S.D. in log scale), or missing data of any variable
in the path analysis were excluded from the analyses. The final
study sample comprised 208 women (Fig. 1).
The study was approved by the Regional Committees for

Medical Research Ethics and all women gave their written
informed consent.

Blood sampling and biochemical measurements

The blood samples were drawn in the morning, between 0730
and 0830 after an overnight fast, and were obtained from vein
puncture in tubes containing ethylenediaminetetraacetic acid
(EDTA). Plasma glucose was measured immediately in EDTA
blood by Accu Chek Glucose Test strips (Roche Diagnostics,

Fig. 1. Flow-chart showing the sampling procedure and the resulting study sample in this study.
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Basel, Switzerland). The samples were immediately put on
ice and plasma isolated, and stored at –808C until analyzed.
IL-6 (high sensitivity) and IL-1Ra were measured by ELISA
using commercially available kits (BIOSOURCE, Invitrogen
Corporation). CRP was measured as described by Wu et al.24

All samples were measured in duplicate and serial samples
from a given individual were analyzed at the same time to
minimize the run-to-run variability. Intra- and inter-assay
coefficients of variation were ,10% for all assays.

Statistical methods

Descriptive statistics are presented as mean and standard
deviation (S.D.), frequency and percentage (%) or as median and
quartiles. Independent samples t-tests were used to compare the
study sample (n5 208) and the remaining eligible women in
the STORK cohort (n5 258, Fig. 1). Descriptive analyses and
t-tests were performed by SPSS version 15.
Analytical methods in clinical research often rely on multiple

regression models with one main outcome variable and
explanatory variables treated on equal terms. Path analysis, in
contrast, is a multivariable method based on a model with
several linked regression equations.20 Within this system of
equations, some of the variables can be considered both as
outcome variables and as explanatory variables. Path analysis is
a form of structural equation modeling that requires that all
hypothesized dependencies between the variables are specified
in a model and depicted in a path diagram, prior to the ana-
lysis. Arrows in a path diagram represent dependencies between
variables, and absence of an arrow between two variables
indicates that these variables are considered statistically inde-
pendent in the model. All direct and indirect relations among
measured variables can be read off the path diagram.
Based on the literature, we constructed a path diagram for

this study, which specified the hypothesized biological path-
ways between BMI in early pregnancy (weeks 14–16) and
fasting glucose, IL-1Ra and IL-6 at weeks 30–32 (Fig. 2).
The effect of BMI on birth weight was decomposed into a
direct effect and indirect effects. The indirect pathways were
hypothesized to be mediated by fasting glucose, the inter-
leukins IL-1Ra or IL-6 or a combination of these, whereas the
direct pathway incorporated other biological mechanisms and
indirect pathways than those considered in this study. The
path diagram formed the basis for the path analysis, in which
we obtained direct and indirect effect estimates by combining
four linear regression equations; one with birth weight as the
outcome, one with fasting glucose as the outcome, one with
IL-1Ra as the outcome and one with IL-6 as the outcome.
In order to assess the validity of the underlying assumption of
linearity in the separate linear regressions, generalized additive
models27 were used previous to the path analysis. All variables
were entered into the analysis as standardized variables, and
hence all effect estimates presented are standardized regression
coefficients. Indirect effects can then be found by multi-
plication of the regression coefficients along a given path, and

total effects can be found by summing all direct and indirect
effects between two variables.
Path analyses were performed using Bayesian estimation

procedures,28 with the R2WinBUGS package,29 that runs
WinBUGS30 from the statistical software R. Bayesian esti-
mation gives estimates of regression coefficients and corre-
sponding credibility intervals (CrIs), which are comparable
with frequentistic confidence intervals. Considerations of
statistical significance were based on the coverage of the
credibility intervals. Comparison of models was carried out
by the deviance information criterion (DIC); lower numbers
of DIC are preferable.31 Further details of the Bayesian model
specification and model fitting can be found in Appendix A.

Results

Characteristics of the study sample are shown in Table 1. The
study sample was not statistically different from those not
selected to the present substudy (0.08< P< 0.95), except
from a significantly lower gestational age at visit 3 in the
study sample (means 30.8 and 31.0 weeks, respectively,
P5 0.05). Gestational age at birth ranged from 37.0 to 42.1
weeks. No significant bivariate correlations between gesta-
tional age at birth and BMI, fasting glucose, IL-1Ra or IL-6
were found in our study sample (results not shown).
Path analysis estimates of the model shown in Fig. 2,

expressed as standardized regression coefficients and CrIs, are
shown in Table 2. Gestational age at birth, maternal BMI in
the early second trimester and fasting glucose in late preg-
nancy all had significant direct effects on birth weight. The
strongest of these, with a standardized regression coefficient of
0.40 (95% CrI [0.28, 0.52]), was found for gestational age.
This value implies that an increase of 1 S.D. in gestational age
(1.2 weeks) gives a mean increase of 0.40 S.D. in birth weight
(182 g). An alternative interpretation is that gestational age

Fig. 2. Path diagram showing a decomposition of the
hypothesized effect of maternal BMI on birth weight. The indirect
pathways between BMI and birth weight were hypothesized to be
mediated by fasting glucose (nutrient availability), the interleukins
IL-1Ra or IL-6 or a combination of these. BMI was measured in
the first trimester, fasting glucose and interleukins at weeks 30–32
and gestational age at birth. Arrows represent dependencies
between variables. Absence of an arrow between two variables
indicates that the variables are considered to be statistically
independent in the model.
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Table 1. Sample characteristics

Sample characteristic Study sample (n5 208a)
STORK cohort BW> 2962 g, not

selected for present substudy (n5 258b)

Pre-gestational
BMI (kg/m2; self-reported) 23.6 (3.7) 23.7 (3.9)
Para 0 98 (47%) 136 (53%)
University education 172 (83%) 219 (85%)

Visit 1 (weeks 14–16)
Gestational age (weeks) 15.7 (1.4) 15.7 (1.4)
Daily smokersc 5 (2%) 11 (4%)
Age of mother (years) 31.3 (3.9) 31.2 (4.2)
BMI (kg/m2) 24.9 (4.2) 25.0 (4.2)
Fasting glucose (mmol/l) 4.2 (0.5) 4.2 (0.5)

Visit 3 (weeks 30–32)
Gestational age (weeks) 30.8 (1.2) 31.0 (1.1)
Fasting glucose (mmol/l) 4.4 (0.5) 4.5 (0.5)
IL-1Ra (pg/ml; median) [Q1,Q3] 165 [136, 212] NA
IL-6 (pg/ml; median) [Q1,Q3] 0.18 [0.10, 0.33] NA
Preeclampsia 4 (2%) 10 (4%)
Hypertension 4 (2%) 4 (2%)

Birth
Gestational age (weeks) 39.8 (1.2) 39.9 (1.4)
BW (g) 3748 (454) 3730 (451)
Boys 114 (55%) 138 (53%)

BW, birth weight; BMI, body mass index.
Selected characteristics of the study sample (n5 208) and 258 women from the STORK cohort who were not selected

for this study. The numbers are mean (S.D.) or frequency (%) unless otherwise stated.
a Complete data on BMI at visit 1, fasting glucose, IL-1Ra and IL-6 at visit 3 and BW and gestational age at birth. Other

numbers may vary due to missing values.
b Complete data on BW and gestational age at birth. Other numbers may vary due to missing values.
cMore than 1 cigarette/day.

Table 2. Path analysis

Standardized regression coefficients

Outcome variablea Effect B 95% CrI

BW Direct effect gestational age - BW 0.40 0.28 0.52
Direct effect BMI - BW 0.16 0.00 0.32
Direct effect glucose - BW 0.14 0.01 0.27
Direct effect IL-1Ra - BW 0.06 20.10 0.21
Direct effect IL-6 - BW 20.02 20.14 0.11

Fasting glucose Direct effect BMI - fasting glucose 0.22 0.05 0.39
Direct effect IL-1Ra - fasting glucose 0.17 0.01 0.34

IL-1Ra Direct effect BMI - IL-1Ra 0.61 0.51 0.72
Direct effect IL-6 - IL-1Ra 0.10 20.01 0.21

IL-6 Direct effect BMI - IL-6 0.17 0.03 0.31

BW, birth weight; BMI, body mass index; CrI, credibility intervals.
Results from the path analysis illustrated in Figure 2. The table shows direct effects with corresponding CrI for the paths

depicted in the figure, as well as the total effect of BMI on BW.
a BMI was measured in first trimester, fasting glucose and interleukins at weeks 30–32, and gestational age at birth.
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accounts for 40% of the total variation in birth weight. The
estimated direct effects for BMI and fasting glucose were
0.16 (95% CrI [0.00, 0.32]) and 0.14 (95% CrI [0.01, 0.27]),
respectively.
The estimated direct effect of BMI on fasting glucose

was also significant (0.22, 95% CrI [0.05, 0.39]), implying an
indirect effect of BMI on birth weight mediated through
glucose. An estimate of this indirect effect can be calculated
from the direct effects of BMI on fasting glucose and fasting
glucose on birth weight: 0.22 ? 0.145 0.03.
There was no significant direct effect of IL-1Ra on birth

weight. The effect of IL-1Ra on fasting glucose, however, was
significant (0.17, 95% CrI [0.01, 0.34]), implying an indirect
effect of IL-1Ra on birth weight. An estimate of this indirect
effect can be calculated from the direct effects involved:
0.17 ? 0.145 0.02. Hence, the effect of BMI on birth weight
mediated through IL-1Ra was split into one path involving
IL-1Ra only (estimated effect 0.61 ? 0.065 0.03) and one
path via IL-1Ra and fasting glucose (estimated effect
0.61 ? 0.17 ? 0.145 0.02). In total, the estimated effect of
BMI involving IL-1Ra was 0.05 (95% CrI [20.05, 0.15]).
No significant direct effect of IL-6 on birth weight was

found. In addition, the effect of IL-6 on IL-1Ra was not
significant, indicating neither direct nor indirect effect of
IL-6 on birth weight. The direct effect of BMI on IL-6 was
significant (0.17, 95% CrI [0.03, 0.31]), but the indirect
effect of BMI via IL-6 on birth weight was negligible in
comparison to the other effects estimated in the model
(,0.01, calculations not shown).
The total effect of maternal BMI on birth weight was

estimated to be 0.24 (95% CrI [0.12, 0.36]). The total effect
is the sum of the direct effect (0.16) and indirect effects via
glucose only, via IL-1Ra only, via IL-1Ra and glucose and
via IL-6 (Fig. 2), calculated above to be 0.03, 0.03, 0.02
and ,0.01, respectively. The decomposition of the total
effect of BMI on birth weight is emphasized in Fig. 3. The
figure shows the relative percentages of the total BMI effect,
through the different pathways in the model. Approximately
20% (0.05/0.24) of the total BMI effect worked through

paths involving IL-1Ra, whereas a negligible percentage
(,1%) involved IL-6. Approximately 13% (0.03/0.24) of the
effect worked through glucose without involving IL-1Ra. The
remaining 67% (0.16/0.24) of the BMI effect represent
effects not explained by variables or structures in our model.
Considering the above results, a reduced model without

IL-6 was formulated and the corresponding effects estimated
(results not shown). DIC decreased substantially (from 2193
to 1603). The large reduction was mostly attributable to the
weak association between BMI and IL-6, as the predictive
capabilities of the model as a whole improves when leaving
IL-6 out of the model. The effect of IL-1Ra on fasting glucose
was not affected by the changes in the model. The direct
effect of IL-1Ra on birth weight was still not significant, and
the proportion of the total effect of BMI mediated through
IL-1Ra was still approximately 20%.

Discussion

There are numerous reports on the effect of maternal BMI on
birth weight,4,6,9,11,21 but the biological mechanisms behind
this association still remain to be elucidated. We have studied
the possible mediating role of interleukins (IL-6 and IL-1Ra)
in the association between BMI and birth weight. Path analysis
indicated a mediating role of IL-1Ra, but less impact of IL-6.
The use of path diagrams and analysis of structural models

is expanding in the field of epidemiology, including studies of
pregnancy outcome,6,32–34 and there is a need for biological
understanding.9,35 The crucial task in path analysis is to
formulate a plausible path diagram based on existing evidence
and current biological concepts. Maternal BMI may modify
both nutrient availability and nutrient transport. Maternal
BMI is a strong determinant of glucose plasma levels, and
might thus indirectly affect birth weight through increasing
nutrient availability for fetal growth.36 We chose to include
fasting glucose in the path diagram as some studies, including
ours, indicate fasting glucose to correlate more strongly
with both BMI and birth weight than the 2 h glucose
value.9,12,21,37,38 Late gestation glucose levels were included
in the diagram, that is, when fetal growth is at its maximum.
In recent years, a growing body of literature has established

a relation between BMI and low-grade systemic inflamma-
tion.39 There is increasing evidence that the same relation
is present during pregnancy.40–42 Adipose tissue-derived
inflammatory factors, including interleukins, have received
considerable attention as potential mediators in the link
between excess fat and the dysregulation of glucose metabo-
lism including increased insulin resistance in obesity.39,43 Our
selection of potential inflammatory mediators was based on
several considerations. In general, data from the non-pregnant
population indicate that IL-6 and IL-1Ra are both central
interleukins and interact with each other.44 They are
upstream markers of inflammation,45 which are both elevated
in obesity and have been implicated in glucose regulation in

Fig. 3. The figure visualizes the decomposition of the total effect
of maternal BMI on birth weight. The total effect is the sum of
all arrows, that is, the direct and indirect effects. The arrow widths
represent the relative proportions of the total effect through a
specific pathway.
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epidemiological and experimental studies.46–49 Furthermore,
IL-6 has been found to be elevated in obese pregnant
women.40 Data are lacking for IL-1Ra and maternal obesity,
but IL-1Ra is one of the most consistent markers of obesity in
the non-pregnant population.50

Fetal growth is also dependent on nutrient transport across
the placenta. Maternal obesity has been found to affect pla-
cental size, structure and function.17 Inflammatory molecules
do not easily pass the placenta and maternal inflammation
does not seem to be associated with umbilical cord inflam-
mation.51,52 Thus, an effect of adipokines on birth weight
will expectedly work through altered placental transport
capacity or function. Indeed, preliminary data show an effect
on transport proteins in the placenta after exposure to IL-6.18

IL-6 may also act on the placenta and regulate fetal growth
through upregulating leptin, which in turn regulates placental
growth, nutrient transfer and fetal fat accretion.53 Finally,
experimental studies have demonstrated increased litter fat
mass after prenatal exposure to IL-654 and one study has
linked maternal IL-6 levels directly to neonatal fat mass.55

Thus, the literature suggests a biological role for interleukins
in the association between maternal BMI and birth weight.
The hypothesized associations were partly confirmed in our

data. About 20% of the effect of BMI on birth weight was
mediated through paths involving IL-1Ra. However, IL-1Ra
is a dual marker; it is an anti-inflammatory cytokine, binding
to IL-1 receptor without inducing an effect, but at the same
time reflects an activation of the IL-1 system and is also a
marker of inflammation in general.50,56 Based on this, we
cannot rule out that the measured effect of IL-1Ra reflects the
action of IL-1b. This emphasizes the need for experimental
studies to assess molecular mechanisms and also emphasizes
the importance of interpreting results from observational
studies with caution concerning causality. However, this
result indicates a substantial role for the interleukin 1-system
in the deranged glucose metabolism associated with higher
maternal BMI during pregnancy and consequently an
important role for interleukins as mediators between maternal
fat mass, glucose and birth weight. We did not find sig-
nificant direct effects of the interleukins on birth weight.
There might be several explanations for this finding. It may
be that interleukins like IL-6 and IL-1Ra do not play an
important role in regulating fetal growth through changing
placental properties. The result may however also be due to
the fact that cytokines display pleiotrophic effects and show
considerable biological variation. We chose two markers as
representative of the inflammatory status in obese women,
being aware that other markers may be important as media-
tors in the association between BMI and birth weight. In
addition, effects of cytokines on birth weight are probably not
an effect of a single mediator, but rather the result of the
interactions of several and in combinations.57,58 Therefore,
we cannot rule out that cytokines in combinations may have a
direct effect on placental properties and birth weight even if
we were not able to find such an effect.

We recognize that the hypothesized path diagram (Fig. 1),
in which maternal BMI leads to increased inflammation with
secondary downstream effects on glucose regulation and fetal
growth, has limitations. Integrative physiology is much more
complex than reflected in this simplified model. For example,
fetal growth relies primarily on glucose as an energy substrate;
however lipids and amino acids are also nutrient substrates for
fetal growth.59 An expansion of the model to include lipids
would be interesting.
Nevertheless, the analyses based on our simplified path diagram

support the notion that inflammatory mediators are involved in
the association between maternal BMI and birth weight.
BMI and birth weight are both surrogate markers of fat

mass. We used BMI at early gestation in the path diagram, as
maternal BMI and fat mass have been shown to correlate
more strongly in early than in late pregnancy.60 Glucose and
inflammatory markers were analyzed at gestational weeks
30–32 but there is evidence that the inflammatory and
metabolic derangements associated with pregravid maternal
obesity are sustained throughout pregnancy.41 The use of
birth weight as a marker of fetal growth might explain why
our results were not in accordance with the previously
reported association between maternal IL-6 and prenatal
growth reflected by neonatal fat mass.55

Bayesian methods have been used to a limited extent in
clinical research, but the WinBUGS software has made
Bayesian methods available.28,61 Traditional frequentistic ana-
lyses are based on normality assumptions and central limit
theory, whereas the WinBUGS analyses are based on prior
assumptions and simulation techniques. For both approaches,
the linearity of the regression equations should be explored.27

Frequentistic path analysis is sensitive to violations of normality
assumptions in small samples and non-linearity or combina-
tions of different types of variables can be difficult to handle. In
Bayesian models, in contrast, non-normality and non-linearity
are more easily dealt with. Such methods are also flexible with
respect to several types of variables.28,61 In studies of complex
biological mechanisms, the samples will typically be small due
to the costs and restraints in collecting the data. In addition,
inflammatory biological markers tend to be skewed, and
sometimes display non-linear relations.16,62 Therefore, Bayesian
methods represent a valuable tool in such studies.
The representativity of the STORK cohort, considering

voluntarily participation and a closer follow-up than in usual
obstetric care in Norway, has been described earlier.63 As our
study focused on general physiological mechanisms, pre-
sumably similar in all healthy pregnant women, neither close
follow-up nor self-selection effects would be likely to affect
our results substantially.
We wanted to avoid confounding from other biological pro-

cesses than those studied. Women with low infant birth weight
were not included in this study because fetal growth restriction
may be associated with placental inflammatory changes.22,23 No
formal definition of fetal growth restriction exists, and the use of
the 10th birth weight percentile as an exclusion criterion was in
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accordance with a pragmatic tradition. We used a CRP value
above 10mg/l to exclude women with possible infections,24–26

thereby adjusting for confounding caused by infections.
Unmeasured lifestyle factors (like diet or physical activity),
genetic factors or biological factors might confound with the
relations we studied, and thereby either attenuate or increase
effects. However, it is hard to tell in what direction the effect sizes
would be affected.64 Gestational age at birth was modeled as
a potential confounder of the direct effects on birth weight, but
not on the causal pathway to birth weight. Our estimates would
be strongly affected if this was the case.65,66 However, no
significant bivariate correlations between gestational age and
the other variables were found in our study sample.
This study is based on a relatively large sample with mea-

surements of inflammatory markers, which is a strength due to
substantial biological variance of such markers.57 Furthermore,
moderate effect estimates were anticipated. As a basis for
comparison, maternal BMI, one of the major determinants
of birth weight, accounts for approximately 10–20% of the
variation in birth weight.1–4 Our result was similar, but only
borderline significant, possibly due to the homogeneity of our
study sample and a lack of power to detect small effects. Based
on these considerations, we reported our model with all the
original arrows present, although not all the direct effects were
significant. Correspondingly, indirect effects were estimated
with significant and non-significant direct effects included.
We conclude that the results of our study, combining

current biological concepts and empirical data, suggest that
adipose tissue-derived inflammatory factors may be mediators
in the association between BMI and birth weight. Mechanisms
like metabolic pathways are complex, yet simplified models like
the current one may still be useful.
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Appendix A

All path estimates presented in this paper are based on
MCMC samples from the joint posterior distribution of
the parameters given in the data. We used three parallel
MCMC chains in our calculations, each based on 30,000
iterations from which the first 10,000 were discarded as a
‘burn-in’ to achieve convergence, and a thinning factor of
five to avoid autocorrelation in the samples. Inference was
based on the remaining 12,000 iterations. Convergence of

the MCMC series was confirmed using several plots
and diagnostics available in the coda-package,29 includ-
ing density plots, trace plots, autocorrelation plots, the
Gelman-Rubin diagnostic and the Raftery-Lewis diag-
nostic.28 Vague prior probability distributions were used
for all parameters.28 Different parameter specifications
of the priors were tried to check for the influence of
choice of priors. Computing code used to implement the
models is available as supplementary material at the journal
website (S1).
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##### Model1.bug ##### 
 
model { 
 for (j in 1:J)  
 { 
 fvsd[j] ~ dnorm(mu.fv[j], tau.fv) 
 mu.fv[j] <- a.0 + a.gest*gestsd[j] + a.bmi*bmisd[j] + a.g03*g03sd[j] + 
      a.il1ra3*il1ra3sd[j] + a.il63*il63sd[j] 
 
 g03sd[j] ~ dnorm(mu.g03[j], tau.g03) 
 mu.g03[j] <- b.0 + b.bmi*bmisd[j] + b.il1ra3*il1ra3sd[j] 
 
 il1ra3sd[j] ~ dnorm(mu.il1ra3[j], tau.il1ra3) 
 mu.il1ra3[j] <- c.0 + c.bmi*bmisd[j] + c.il63*il63sd[j] 
 
 il63sd[j] ~ dnorm(mu.il63[j], tau.il63) 
 mu.il63[j] <- d.0 + d.bmi*bmisd[j] 
 } 
 
 a.0  ~ dnorm(0,0.01) 
 a.gest  ~ dnorm(0,0.01) 
 a.bmi  ~ dnorm(0,0.01) 
 a.g03  ~ dnorm(0,0.01) 
 a.il1ra3 ~ dnorm(0,0.01) 
 a.il63  ~ dnorm(0,0.01) 
 
 b.0  ~ dnorm(0,0.01) 
 b.bmi  ~ dnorm(0,0.01) 
 b.il1ra3 ~ dnorm(0,0.01) 
 
 c.0  ~ dnorm(0,0.01) 
 c.bmi  ~ dnorm(0,0.01) 
 c.il63  ~ dnorm(0,0.01) 
 
 d.0  ~ dnorm(0,0.01) 
 d.bmi  ~ dnorm(0,0.01) 
 
 tau.fv  ~ dgamma(0.5,0.5) 
 sigma.fv <- 1/tau.fv 
 tau.g03 ~ dgamma(0.5,0.5) 
 sigma.g03 <- 1/tau.g03 
 tau.il1ra3 ~ dgamma(0.5,0.5) 
 sigma.il1ra3 <- 1/tau.il1ra3 
 tau.il63 ~ dgamma(0.5,0.5) 
 sigma.il63 <- 1/tau.il63 
  
 il1ra3tot <- a.il1ra3 + b.il1ra3*a.g03 
 il63tot <- c.il63*b.il1ra3*a.g03 + c.il63*a.il1ra3 + a.il63 
 
 bmitot  <- d.bmi*(c.il63*b.il1ra3*a.g03 + c.il63*a.il1ra3 + a.il63)+ 
      c.bmi*(b.il1ra3*a.g03 + a.il1ra3 )+ 
      b.bmi*a.g03 +  
      a.bmi 
 bmiviainf <- d.bmi*(c.il63*b.il1ra3*a.g03 + c.il63*a.il1ra3 + a.il63)+ 
      c.bmi*(b.il1ra3*a.g03 + a.il1ra3 ) 

} 
 



##### Path_analysis.R ##### 
 
library(R2WinBUGS)  
library("coda") 
 
bwsd.frame  <- data.frame(cbind(fvsd,bmisd,gestsd,g03sd,il1ra3sd,il63sd)) 
attach(bwsd.frame) 
 
J  <- length(fvsd) 
data  <- list("J","fvsd","gestsd","bmisd","g03sd","il1ra3sd","il63sd") 
 
inits  <- function(){ 
   list( a.0     =rnorm(1,0,1), 
    a.gest  =rnorm(1,0,1), 
    a.bmi   =rnorm(1,0,1), 
    a.g03   =rnorm(1,0,1), 
    a.il1ra3  =rnorm(1,0,1), 
    a.il63  =rnorm(1,0,1), 
    b.0     =rnorm(1,0,1), 
    b.bmi   =rnorm(1,0,1), 
    b.il1ra3  =rnorm(1,0,1), 
    c.0     =rnorm(1,0,1), 
    c.bmi   =rnorm(1,0,1), 
    c.il63  =rnorm(1,0,1), 
    d.0     =rnorm(1,0,1), 
    d.bmi   =rnorm(1,0,1))} 
 
Model.sim <- bugs(data,inits,model.file="Model1.bug", 

parameters.to.save=c("a.0","a.gest","a.bmi","a.g03","a.il1ra3", 
"a.il63","b.0","b.bmi","b.il1ra3","c.0","c.bmi","c.il63", 
"d.0","d.bmi","il1ra3tot","il63tot","bmitot","bmiviainf", 

   "sigma.fv","sigma.g03","sigma.il1ra3","sigma.il63"), 
   n.chains=3, 

n.iter=30000, 
n.burnin=10000, 

   n.thin=5, 
#   codaPkg=TRUE,  # For convergence diagnostics 
#        debug=TRUE,        # For log file display 
   bugs.directory="C:/Program Files/WinBUGS14") 
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Abstract

Background: Plasma glucose levels are important measures in medical care and research, and are often obtained
from oral glucose tolerance tests (OGTT) with repeated measurements over 2–3 hours. It is common practice to use
simple summary measures of OGTT curves. However, different OGTT curves can yield similar summary measures,
and information of physiological or clinical interest may be lost. Our mean aim was to extract information inherent
in the shape of OGTT glucose curves, compare it with the information from simple summary measures, and explore
the clinical usefulness of such information.

Methods: OGTTs with five glucose measurements over two hours were recorded for 974 healthy pregnant women
in their first trimester. For each woman, the five measurements were transformed into smooth OGTT glucose curves
by functional data analysis (FDA), a collection of statistical methods developed specifically to analyse curve data.
The essential modes of temporal variation between OGTT glucose curves were extracted by functional principal
component analysis. The resultant functional principal component (FPC) scores were compared with commonly
used simple summary measures: fasting and two-hour (2-h) values, area under the curve (AUC) and simple shape
index (2-h minus 90-min values, or 90-min minus 60-min values). Clinical usefulness of FDA was explored by
regression analyses of glucose tolerance later in pregnancy.

Results: Over 99% of the variation between individually fitted curves was expressed in the first three FPCs,
interpreted physiologically as “general level” (FPC1), “time to peak” (FPC2) and “oscillations” (FPC3). FPC1 scores
correlated strongly with AUC (r=0.999), but less with the other simple summary measures (−0.42≤r≤0.79). FPC2
scores gave shape information not captured by simple summary measures (−0.12≤r≤0.40). FPC2 scores, but not
FPC1 nor the simple summary measures, discriminated between women who did and did not develop gestational
diabetes later in pregnancy.

Conclusions: FDA of OGTT glucose curves in early pregnancy extracted shape information that was not identified
by commonly used simple summary measures. This information discriminated between women with and without
gestational diabetes later in pregnancy.
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Background
Plasma glucose level is one of the most commonly used
metabolic measures, both in research and in clinical set-
tings [1-4]. In persons with normal glucose tolerance
and metabolism, glucose levels rise after a dietary intake,
and usually return to normal, postprandial levels after
2–3 hours [5,6]. For practical purposes, oral glucose tol-
erance test (OGTT) is used to define glucose tolerance
[5,7,8]. Numerous studies have shown that high OGTT
values are associated with an increased risk of adverse
health outcomes [2-4,9], but there is no general agree-
ment with respect to time points for glucose sampling
during OGTT, cut-off values or test duration [1,2,4,10].
OGTT values are discrete, ordered measurements

from an underlying, continuous process; i.e. an indivi-
dual’s glucose regulation. Temporal OGTT measure-
ments are often used to illustrate the underlying glucose
curves, but the information inherent in the shape of
these curves has been the subject of few studies [11-14].
It is common practice to use simple summary measures,
such as fasting value, two-hour (2-h) value or area under
the curve (AUC) to obtain information about an indivi-
dual’s glucose tolerance. Simple summary measures are
also frequently used in studies with continuous glucose
monitoring [15,16]. To gain more information from
OGTT glucose curves, simple shape summaries (shape
indices), have been suggested [11-13]. However, different
OGTT glucose curve trajectories can yield similar simple
summary measures, and information of physiological or
clinical interest may consequently be lost.
Functional data analysis (FDA) is a collection of statis-

tical techniques specifically developed to analyse curve
data [17-19]. When applying FDA, the entire curve is
used as the basic unit of information, instead of the
OGTT measurements at specific time points. FDA has
been applied in some research disciplines during the last
couple of decades, and has yielded novel insights of clin-
ical importance in neuroscience [20], nephrology [21]
and studies of gait [22,23]. An important FDA technique
is functional principal component analysis (FPCA),
which is used to extract the common temporal charac-
teristics of a set of curves [18].
The main aim was to study the usefulness of FDA in

the analysis of OGTT glucose curve trajectories. FDA,
and in particular FPCA, was used to analyse OGTT data
in a Norwegian prospective cohort study of healthy
pregnant women [24]. We extracted temporal infor-
mation from the shape of OGTT glucose curves and
compared this to the information obtained from
standard simple summary measures. By regression
analyses we studied the OGTT glucose curves in re-
lation to body mass index (BMI) categories in early
pregnancy and gestational diabetes mellitus (GDM)
later in pregnancy.

Methods
Participants and data
The STORK study is a prospective cohort of 1031
healthy pregnant women of Scandinavian heritage who
registered for obstetric care at the Oslo University Hos-
pital Rikshospitalet from 2001 to 2008 [25]. Exclusion
criteria were multiple pregnancy, known history of type
1 or type 2 diabetes mellitus, and severe chronic diseases
(pulmonary, cardiac, gastrointestinal, or renal). The
overall aim of the STORK study was to gain insights into
maternal metabolic syndrome and the determinants of
foetal macrosomia [25]. Results of a 75 g OGTT, age,
height and weight were recorded at inclusion at gesta-
tional weeks 14–16. Fifty-seven women (5.5%) with in-
complete OGTT data were excluded, yielding a study
sample of 974 women. During follow-up, 2-h glucose
values at gestational weeks 30–32 were available for 930
(95%) women.
Venous blood samples were collected for OGTT in

tubes containing Ethylenediaminetetraacetic acid
(EDTA) between 07:30 and 08:30 after an overnight fast.
Fasting glucose was measured immediately in a drop of
fresh, whole EDTA blood, and further blood samples
were taken every 30 minutes for 2 h, for a total of five
OGTT measurements per woman. Glucose measure-
ments were done by the Accu-Chek Sensor glucometer
(Roche Diagnostics, Mannheim, Germany). Inter-assay
coefficient of variation was <10%. Due to an unexpected
increasing trend in fasting glucose values over the 7 years
of participant recruitment, all glucose measurements
were de-trended prior to the present analyses, as previ-
ously described in detail [26].
The study was approved by the Regional Committee

for Medical Research Ethics, Southern Norway, Oslo,
Norway (reference number S-01191), and performed
according to the Declaration of Helsinki. All participat-
ing women provided written informed consent.

Data description
Descriptive statistics were mean, standard deviation (SD)
and range, or frequency and percentage. The study sam-
ple and women with incomplete OGTT data were com-
pared by two-sample t tests or χ2 tests.

Functional data analysis
FDA is a common term for statistical techniques specif-
ically developed for analysing curve data [17-19]. In
FDA a temporal set of observations is transformed into
a single, functional object, and statistical analysis is then
performed on this continuous function, rather than on
the original discrete data points. This makes it possible
to extract information from the temporal process as a
whole, instead of merely point-by-point. In a sample of
curves, the mean curve is used descriptively, as in
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traditional statistical analyses, and with proper modifica-
tion, most standard statistical methods can be phrased
in the framework of FDA. The principles of the analyses
are explained hereafter, and technical details are given in
the appendices.

Curve fitting
The five OGTT measurements for the 974 participating
woman were converted into 974 continuous, smooth
curves by subject-specific spline smoothing with B-
splines basis functions [17,19] (Appendix A). These indi-
vidually fitted curves formed the basis for the subse-
quent FDA.

Functional principal component analysis
FPCA was used to study the temporal variation in the
974 fitted curves. FPCA extracts a limited number of
FPC curves that describe the temporal patterns asso-
ciated with the largest proportions of the variation in the
individual, fitted curves [17-19] (Appendix B). The FPC
curves represent independent parts of the overall vari-
ability between the individual, fitted curves. The FPCA
also yield individual FPC scores for each curve. The
score variables are per definition independent, and the
variation within the scores of an FPC quantifies the
magnitude of the total variance explained by this FPC. A
woman’s FPC score for an FPC curve reflects how her
individual curve trajectory corresponds to the general
temporal feature expressed by this FPC curve. By FPCA
it is thus possible to study how OGTT glucose curve tra-
jectories vary from woman to woman. FPC curves are
often illustrated by plots showing how an individual
curve differs from the mean curve if the FPC scores are
high or low, rather than plots of the FPC curves directly
[17-19]. As in traditional principal component analysis,
FPCs may be interpreted and labelled according to the
information they exhibit, which in turn can be related to
more conventional physiological or clinical theories.

Functional principal component scores vs simple
summary measures
The Pearson correlation coefficient (r) was used to as-
sess the associations between FPC scores, original glu-
cose measurements and several simple summary
measures of OGTT: fasting value, 2-h value, AUC and a
simple shape index. We used the most cited simple
shape index for OGTT [12], defined as the 2-h value
minus the 90-min value for curves classified as “mono-
phasic” or “biphasic”, and the 90-min value minus the
60-min value for curves classified as “triphasic”. The clas-
sification of curves, i.e. the determination of the number
of phases within a curve involves an empirically chosen
glucose threshold of 0.25 mmol/l [12]. Curves that did
not meet the criteria for classification into mono-, bi- or

triphasic were labelled “unclassified” and left out of the
analyses.

Functional analysis of variance
The relation between BMI and simple summary mea-
sures of glucose values is well-known [27]. Functional
analysis of variance (FANOVA), the functional counter-
part of traditional analysis of variance (ANOVA), was
used to analyse the effect of BMI on the shape of OGTT
glucose curves [18], using the fitted curves as responses.
The WHO classification for BMI was utilised (under-
weight (<18.5 kg/m2), normal weight (18.5-25 kg/m2,
reference category), overweight (25–30 kg/m2) and obese
(≥30 kg/m2) [27]) and BMI was entered as a categorical
explanatory variable. The analysis was based on the
shape of the mean curve in each BMI category, and the
temporal differences between these curves (Appendix C).
In FANOVA, the effect estimates are themselves curves
over the same time span as the curves under study, i.e.
OGTT glucose curves. Functional 95% confidence inter-
vals (CIs) and p curves were obtained for the difference
between two mean curves. The FANOVA also gives an
overall p value for the difference between two BMI
categories.

FANOVA vs ANOVA of simple summary measures
The simple summary measures described previously
were compared across the BMI categories using trad-
itional ANOVA, with Bonferroni corrected post hoc
tests.

Curve shape information in regression analyses
There is an on-going discussion about the diagnostic cri-
terion for GDM [28,29]. However, as a new international
consensus has yet to be established, we have kept the
GDM definition which at present is recommended by
the WHO: a 2-h OGTT value of 7.8 mmol/l or higher
[1]. Consequently, the 2-h value is important in current
clinical practice. The impact of the curve shape in early
pregnancy on glucose intolerance later in pregnancy, i.e.
the 2-h value at gestational weeks 30–32, was assessed
by regression analyses, using the FPC scores at gesta-
tional weeks 14–16 as explanatory variables.
To visualise the clinical usefulness of the curve shape

information more clearly, and to account for potential
non-linear relations between variables, the 2-h values at
gestational weeks 30–32 were grouped into seven cat-
egories and multinomial logistic regression was per-
formed [30] using this categorised variable as the
response. The categories were based on the diagnostic
criterion for GDM and on assessments of group size and
percentiles in the sample: <3.27 (2.5th percentile), [3.27,
3.89) (2.5th-10th percentile), [3.89, 6.39) (10th-75th per-
centile; reference category), [6.39, 6.90) (75th-85th
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percentile), [6.90, 7.8) (85th percentile to diagnostic cut-
off for GDM) [7.8, 8.84) (GDM diagnosis to 98th per-
centile) and ≥8.84 mmol/l.
Five different models were fitted. Model 1 included

BMI and the three independent FPC score variables
from gestational weeks 14–16 as covariates, while mod-
els 2–5 included BMI and either the fasting value, the 2-h
value, the AUC or the shape index, all from gestational
weeks 14–16, as covariates. These simple measures were
included one at a time in models 2–5, due to colinearity.
Other covariates were not included in the models. It is
beyond the scope of the article to build an extensive
prediction model or to adjust for variables possibly on
the causal pathway to the outcome. All covariates were
continuous.

Software
FDA, i.e. curve fitting, FPCA and FANOVA, were per-
formed using the fda package in R 2.13.0 [31]. The
multinomial regression was done by the mlogit package
in R 2.13.0 [31]. The R script is available as supplemen-
tary material [see Additional file 1]. All other analyses
were performed in SPSS 19.

Results
Data description
Characteristics of the study sample at gestational weeks
14–16 are shown in Table 1. The women in the study
sample were not significantly different from those with
incomplete OGTT data (0.11≤p≤0.94). The number of
women with a GDM diagnosis increased from 3 (0.3%)
at gestational weeks 14–16 to 51 (5.5%) at gestational
weeks 30–32 (Table 1).

Curve fitting
The individually fitted, smooth OGTT glucose curves at
gestational weeks 14–16 showed large variations be-
tween the individual curves (Figure 1).

Functional principal component analysis
The essential modes of temporal variation between the
fitted curves were extracted by FPCA (Figure 2). The
first FPC (FPC1, Figure 2a) explained 88.1% of the vari-
ation between the fitted curves, the second FPC (FPC2,
Figure 2b) 8.6% and the third FPC (FPC3, Figure 2c)
2.4%, respectively. The corresponding physiological
interpretations were the general glucose level (FPC1,
“general level”), the time to peak for glucose (FPC2,

Table 1 Sample characteristics

Characteristic Study sample, n=974a Excludedb, n=57a Total cohort, n=1031a

Range

Gestational weeks 15.8 (1.3) 12.1-22.0 16.0 (1.4) 15.8 (1.3)

Age 31 (4) 19-42 31 (4) 31 (4)

Para 0 517 (54%) 28 (50%) 545 (53%)

Daily smokerc 27 (3%) 1 (2%) 28 (3%)

Height (cm) 169 (6) 150-184 169 (6) 169 (6)

Weight (kg) 69.9 (12.0) 44.6-123.1 68.2 (12.5) 69.8 (12.0)

BMI (kg/m2) 24.5 (3.9) 17.2-44.0 23.4 (3.8) 24.5 (3.9)

Birth weightd (g) 3588 (570) 600-5420 3554 (671) 3586 (576)

Blood glucose (mmol/l), first trimester

Fasting 4.0 (0.4) 2.6-5.3 4.0 (0.4)

30 min 5.7 (1.2) 2.5-9.7 5.7 (1.2)

60 min 5.0 (1.4) 2.0-10.9 4.9 (1.4)

90 min 4.5 (1.2) 2.0-10.1 4.5 (1.2)

2 h 4.1 (1.1) 1.2-7.8 4.1 (1.1)

GDMe: 2-h value≥7.8 mmol/l 3 (0.3%) 3 (0.3%)

Blood glucose (mmol/l), third trimester

2 h 5.5 (1.3) 1.9-10.3 5.5 (1.3)

GDMe: 2-h value≥7.8 mmol/l 51 (5.5%) 54 (5.5%)

Data are mean (SD) or frequency (%).
a Numbers may not add up to total due to missing data for some variables.
b Women excluded due to incomplete OGTT data.
c ≥1 cigarette/day.
d Birth weight of offspring.
e Gestational diabetes mellitus.

Frøslie et al. BMC Medical Research Methodology 2013, 13:6 Page 4 of 15
http://www.biomedcentral.com/1471-2288/13/6



Figure 1 Observed OGTT data and individually fitted curves at gestational weeks 14–16. a shows the observed OGTT data (light grey)
and individually fitted curves (dark grey) for the first five women in the study. The straight lines indicate measurements from the same woman.
b shows the 974 individually fitted curves (grey) and the mean of these curves (black).

Figure 2 Results from the FPCA. a-c shows the mean of the fitted curves (solid line) and how the shape of an individual curve differs from the
mean curve if a multiplum of the principal component curve (not shown) is added to (+ +) or subtracted from (− −) the mean curve. The
multiplums correspond to one SD of the FPC1, FPC2 and FPC3 scores, respectively. d-f shows the mean of the fitted curves (black), and the
individual curves for the five women with the highest positive scores (dark grey) and the five with the lowest negative scores (light grey) for each
of the three FPCs.
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“time to peak”) and the oscillations in OGTT glucose
curves (FPC3 “oscillations”), respectively. Women with
high FPC1 scores had generally high glucose levels com-
pared with the mean glucose level (Figure 2a). Women
with high FPC2 scores had a longer than average time to
peak, and it took longer for their glucose levels to return
to normal postprandial levels (Figure 2b). Women with
high FPC3 scores had curves that oscillated faster than
the mean (Figure 2c). The plots of the five women with
the highest and lowest scores for each of the FPCs
(Figure 2d-f ) highlighted these physiological interpreta-
tions. In sum, more than 99% of the total variation be-
tween the individual curves was explained by the first
three FPCs, and further analyses were therefore
restricted to these three FPCs.
For the majority of the women (89%), the entire OGTT

glucose curve was between 2.5 and 7.8 mmol/l, while 6%
had hypoglycaemic levels (values <2.5 mmol/l [32]) and
three women were diagnosed with GDM. The 974 individ-
ual, fitted curves are grouped according to the lower and
upper quartiles of the FPC1 and FPC2 scores in Figure 3.
Women with high scores for both FPC1 and FPC2 had
the highest glucose levels (Figure 3c), and these included
the three women with GDM. Several women had OGTT
glucose curve trajectories similar to those of the three
GDM cases, but their curves descended below the GDM
diagnosis threshold just before 2 h (Figure 3c).

Functional principal component scores vs simple
summary measures
The FPCA transformed the five correlated OGTT mea-
surements (0.40≤r≤0.84) into three uncorrelated FPC
scores reflecting three distinct temporal features (Table 2).
In contrast to fasting value, the 2-h value was positively
associated with all three FPC scores (0.37≤r≤0.79). AUC
was highly correlated with the FPC1 scores (r=0.999) but
not with the FPC2 and FPC3 scores (r=−0.01 and r=0.05,
respectively). The shape index was calculated as the 2-h
value minus the 90-min value for 587 (60%) women, and
as the 90-min value minus the 60-min value for 124 (13%)
women. A total of 263 (27%) curves failed to meet the
classification criteria of the shape index and were left out
of these analyses. The shape index was most strongly asso-
ciated with the FPC3 score (r=0.67). Pairwise scatter plots
of these bivariate associations (not shown) showed that
the three women classified as having GDM did not exhibit
unusual FPC scores. Their FPC1 and FPC2 scores were
high, but 33 other women had FPC1 scores in the same
range, and 12 of them also had FPC2 scores above the
upper quartile.

Functional analysis of variance
The means of the fitted curves differed between the four
BMI categories (Figure 4a). While the curvature was

similar, there were clear vertical shifts between the mean
curves for normal weight, overweight and obese women.
The functional CIs for the differences between under-
weight, overweight and obese women, as compared to
normal weight women, are shown in Figure 4b. Pairwise
comparisons of BMI categories showed the time periods
of OGTT where the mean curves differed, as illustrated
by the p curves in Figure 5. We found overall statistically
significant differences between obese and overweight
women (p<0.001), obese and normal weight women
(p<0.001) and overweight and normal weight women
(p<0.001). No statistically significant difference was
found between underweight and normal weight women
(p=0.26).

FANOVA vs ANOVA of simple summary measures
The results from ordinary ANOVA comparing the BMI
categories in regard to fasting value, 2-h value or AUC
were similar to those of the FANOVA comparisons. How-
ever, the shape index was only significantly different be-
tween obese and normal weight women (data not shown).

Multinomial regression with FPC scores
The means of the fitted curves at gestational weeks 14–16
for the seven pre-defined categories of 2-h values at gesta-
tional weeks 30–32 are shown in Figure 6. The women in
the two upper categories (n=51) were all diagnosed with
GDM at gestational weeks 30–32, but the mean curves in
these two subgroups displayed different pathophysiology
at gestational weeks 14–16. All women in the five lowest
categories had a 2-h value below 7.8 mmol/l at gestational
weeks 30–32, and were thus not diagnosed with GDM,
but there were clear vertical shifts between their mean
OGTT glucose curves at gestational weeks 14–16.
The results of the multinomial logistic regression ana-

lyses are shown in Table 3. The FPC1 scores and the AUC
(Models 1 and 4, respectively) yielded nearly identical
results, thus the results for AUC are not shown. We found
that the mean FPC1 scores (and AUC) in the reference
category were significantly different from the mean FPC1
scores in all other categories (all p<0.001), but that the
mean FPC1 scores in subgroups of women with GDM
were not significantly different (p=0.40). Also, the mean
FPC1 scores in the lowest GDM category were not signifi-
cantly different from the mean FPC1 scores in the closest
non-GDM category (p=0.59). Similarly, no significant dif-
ferences were found for fasting value, 2-h value or shape
index in the three upper categories, i.e. between subgroups
of women with and without GDM. In contrast, FPC2
scores discriminated between women who did and did not
develop GDM, and between subgroups of women diag-
nosed with GDM later in pregnancy. The means of the
FPC2 scores were significantly different between the three
upper categories, p=0.01 and p=0.02, respectively. We also
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found a difference in the FPC3 scores between the two
GDM categories (p=0.05) (Table 3).

Discussion
The present study demonstrated how information inher-
ent in the shape of OGTT glucose curves can be
extracted. The FDA approach yielded quantifiable shape

entities with physiologically interpretable information
that was not contained in the traditional simple sum-
mary measures. The extracted shape information dif-
fered significantly between women who did and did not
develop GDM, and between subgroups of women diag-
nosed with GDM later in pregnancy, while various sim-
ple summary measures did not.

Figure 3 Individual curves. The figure shows the 974 individual, fitted curves classified according to the lower (Q1) and upper (Q3) quartiles of
the FPC1 and FPC2 scores. The bold black curve is the overall mean of the fitted curves. Higher panels indicate higher FPC1 scores, and panels to
the right represent higher FPC2 scores. The magnitudes of the FPC3 scores are represented using shades of grey: the lighter shades indicate
higher FPC3 scores. The lower dashed line is 2.5 mmol/l, one possible cut-off for hypoglycaemia [32], and the upper dashed line is the diagnostic
threshold for gestational diabetes, i.e. a 2-h value of 7.8 mmol/l [1]. The three women diagnosed with gestational diabetes are outlined with bold,
grey lines in Figure 3c.
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The challenge of extracting shape information from
glucose curves has been addressed by others [11-14], but
these studies have focused on either simple shape indices
or advanced parametric modelling. The present study is
the first to use statistical tools and corresponding avail-
able software developed specifically for curves, to ana-
lyse OGTT data.
Our results were based on a large and relatively

homogenous sample of healthy, pregnant women, but on
a small number of glucose measurements per woman, as
compared to those of an intravenous glucose tolerance
test. One might expect to find even more physiologically
interesting details and discriminating features of OGTT
glucose curves, e.g. a larger number of FPCs with a sub-
stantial percentage of explained variability and more tem-
poral details in the FPCs, in a more heterogeneous
population with a more frequent OGTT sampling. For in-
stance, our fitted curves could not reveal more than two
peaks, but curves based on more densely sampled mea-
surements over a longer time period than 2 h would likely
show decreasingly oscillating curves rather than purely bi-
phasic trajectories [14]. We therefore proposed the term
“oscillating” as a qualitative description of OGTT glucose

curves with more than one peak rather than using the
term “biphasic”, which has been used by others [12,14].
Furthermore, the classification of OGTT glucose curves as
“biphasic”, “monophasic” or “unclassified”, involves several
ad hoc conditions [12]. In the present study, we used FPC
scores as continuous variables, as per general statistical
recommendations, as this is the first choice of analysis in
order to retain information and statistical power [33].
The mean of the fitted curves obtained from FDA

(Figures 1, 2, 3) corresponded well with the familiar gen-
eral shape of OGTT glucose curves [6,34,35]. In the lit-
erature in general, figures and analyses are usually based
on the means at selected time points, with variability
quantified by the SD or SE at the same time points, e.g.
when comparing glucose responses [6]. In general, as
seen in Figures 1, 2 and 3, the temporal mean under-
communicates the temporal variability. Although indi-
vidual glucose curves have been presented in several
publications [14,35,36], the variability in curve trajector-
ies is highly under-reported, and thus largely unknown.
As a result, the information indicated by the shape of
OGTT glucose curves is rarely used in clinical practice,
and only occasionally in research, although the standard

Table 2 Pearson correlation coefficients for OGTT measurements, FPC scores and simple summary measures (n=974)

OGTT OGTT FPC scores

Fasting 30 min 60 min 90 min 2 h FPC1: “General level” FPC2: “Time to peak” FPC3: “Oscillation”

Fasting 1.00 0.44 0.40 0.41 0.42 0.47 −0.12 0.42

30 min 1.00 0.77 0.66 0.55 0.85 −0.47 0.19

60 min 1.00 0.84 0.70 0.96 −0.04 −0.22

90 min 1.00 0.80 0.93 0.31 −0.01

2 h 1.00 0.79 0.40 0.37

AUC 0.50 0.86 0.95 0.92 0.81 0.999 −0.01 0.05

Simple shape indexa −0.10 −0.34 −0.49 −0.41 0.12 −0.42 0.21 0.67
a n=711. Calculated as 2-h value minus 90-min value, or 90-min minus 60-min value [12].
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Figure 4 Results of the FANOVA. a shows the means of the fitted glucose curves for the BMI categories underweight (n=17, light grey curve),
normal weight (n=588, bold grey curve), overweight (n=274, dark grey curve) and obese (n=87, black curve). b shows the estimated functional
regression coefficients with corresponding CIs (shaded) and with normal weight as the reference category.
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practice of taking repeated blood samples during OGTT
suggests a focus on the curve. We have presented the in-
dividual, fitted curves in order to emphasise the hetero-
geneity between our study women and to provide a
reference for OGTT glucose curves in healthy, pregnant
women.
While a FPCA will decompose the variation between

individual curves into a set of uncorrelated, temporal
features, the clinical usefulness of this analysis depends
on how the FPCs are interpreted. In this study, current
insight into metabolism supported the interpretations of
the FPCs as plausible and important physiological fea-
tures. FPC1, which represented the general level and was
the most important temporal feature of the curves, was
almost perfectly correlated with AUC, and was signifi-
cantly higher in women with high BMI. The fasting
value and the 2-h value were also correlated with FPC1,
but not as strongly as AUC. This is to be expected as a
single measurement from a temporal phenomenon
rarely describes the most essential temporal feature of
the corresponding curve satisfactorily. Moreover, AUC is
much better than the widely used fasting, or 2-h value in

capturing the essential temporal information of OGTT
glucose curves, which is consistent with results from
previous studies [37-39]. The strongest association be-
tween the shape index and the FPC scores was found for
FPC3 scores, which explained the smallest proportion of
the total variance. This proportion was so small that
FPC3 could have been left out of the analyses. We chose
to include FPC3 for the comparison of FDA with the
shape index. The shape index is based on an a priori
classification of curves, involving an ad hoc set threshold
for change. Many curves (27%) failed to meet the classi-
fication criteria and were left out of the analyses, res-
ulting in a severe reduction of power and a biased
representation of metabolic profiles in the study sample.
Another, recently suggested shape index [13] is based on
a rough approximation of the mean of the second order
derivatives in the intervals between the measurements
during the OGTT, giving a rough approximation of the
total curvature. In the present study, FPC3 scores, repre-
senting the smallest proportion of the variance, quanti-
fied the amount of curvature. The shape feature of FPC3
was however less clear than for the first two
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components, and although it is possible that the third
component might explain a larger part of the total vari-
ation if the sampling was more frequent and over a
longer time period, this component should be used and
interpreted with caution.
Glucose tolerance early in pregnancy has been found

to predict glucose tolerance later in pregnancy [40]. The
FPC1 scores, 2-h values and AUC differed significantly
between groups of women without a GDM diagnosis at
gestational weeks 30–32. However, only FPC2 scores
were significantly different between women with and
without GDM and only FPC2 and FPC3 scores differed
significantly between diabetic women with the highest
and second highest 2-h values in the third trimester.
Thus, FPC1 or AUC alone did not capture all of the es-
sential information about the differences in glucose me-
tabolism. To distinguish curve trajectories reflecting
deviating glucose tolerance from those considered nor-
mal, the information from FPC2 and FPC3 was neces-
sary. A study of type 1 diabetes mellitus patients with
islet transplantations showed that increased glucose
AUC and time to peak C-peptide after metabolic testing
were metabolic markers of islet allograft dysfunction [41],
supporting the physiological importance of both FPC1
and FPC2 scores. The timing of the peak C-peptide was
also found to be predictive of progression to type 1 dia-
betes mellitus in the Diabetes Prevention Trial [42].
The alternative to data-driven approaches such as

FPCA for analysing full glucose curves is parametric
modelling based on differential equation models of

physiological mechanisms. Current concepts of blood
glucose dynamics have been summarised in such models
[14,43-45]. For instance, blood glucose levels and, hence,
the shapes of glucose curves are affected by a number of
key organs and physiologic processes that regulate the
entry and removal of glucose from the blood [12,46]. A
major disadvantage of parametric models is that estimat-
ing each person’s individual parameters requires many
measurements, often based on intravenous test proce-
dures [47]. Although the use of OGTTs is debated [48],
it is the simplest and most frequently used test proced-
ure in larger studies because “gold-standard” intravenous
procedures such as the euglycaemic clamp [49] are time-
consuming, invasive and labour intensive.
Another important issue with parametric models of

blood glucose regulation is the “closed loop” assumption,
which can be hard to justify when modelling biological
processes in the body because such processes are usually
also susceptible to external influences. Diet, physical ac-
tivity, obesity, changes in weight or visceral fat deposits,
smoking and stress have all been shown to affect blood
glucose levels [35] and external factors can have long-
term effects on metabolism [50]. The genetic disposition
of each individual adds to this complexity [51]. Finally,
pregnancy causes alterations in a wide range of variables,
including hormonal changes, insulin resistance and
alterations in daily life habits. Nevertheless, parametric
models seldom adjust for confounding by external vari-
ables [14,44,45]. Hence, even when parametric models
seem to fit the data well, the error term for fit can in-
clude structural information not addressed in the pre-
defined model, including information on the long-term
effects of diet and the endocrine changes caused by
pregnancy itself. This can make it difficult to validate the
physiological theories underlying parametric models.
Although FDA or parametric modelling are the most

natural approaches to glucose data for the study of glu-
cose curves as single entities, there are alternatives to
these analyses for the data presented in this article. For
instance, the relation between BMI and glucose values
could have been examined with a classical longitudinal
data analysis with five repeated measurements per
woman, with random effect of woman and modelling of
the covariance structure. Also, instead of scores from
FPCA, ordinary PCA scores based on the five glucose
variables could be used as input to the regression ana-
lysis of glucose tolerance later in pregnancy. With only
five measurements per curve, and measurements taken
at the same time points for each woman, such traditional
multivariate methods would be expected to extract simi-
lar information as the FDA. However, FDA is easier to
apply in situations with more frequent sampling, sam-
pling at unequal time points and missing data. In
addition, FDA emphasizes the basic assumption about

Figure 6 Means of glucose curves in first trimester, for different
glucose categories later in pregnancy. The figure shows the
means of the fitted glucose curves at gestational weeks 14–16, for
different categories of 2-h values at gestational weeks 30–32. Darker
lines indicate higher 2-h values. The 2-h glucose categories are <3.27,
[3.27, 3.89), [3.89, 6.39), [6.39, 6.90), [6.90, 7.8), [7.8, 8.84) and ≥8.84 mmol/l.
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continuity of the underlying process and its derivatives,
and opens for analysis of the derivatives of the curves.
Contrary to general statistical advice [33], we have cate-

gorised two continuous variables in the analyses. An important
aim of the present work was to introduce FDA and its benefits
to a clinical audience. To ease the presentation of FDA, we
chose to categorise BMI and the 2-h glucose at gestational
weeks 30–32, based on the use of these variables in clinical
practice. Different BMI categories are assumed to represent
different risk groups [27], and BMI categories are frequently
reported in clinical literature. The categorised BMI variable
was therefore used in the analyses, although functional regres-
sion with BMI as a continuous variable would be preferable
from a statistical point of view [33], especially as there were
no obvious signs of nonlinearity (Figure 4a). The categorisa-
tion of the 2-h glucose value at gestational weeks 30–32, in
contrast, revealed important non-linear relations (Figure 6). As
an alternative to the multinomial logistic regression model, a
regression model with the 2-h value as a continuous response
variable could have been used.
The women in the cohort underwent two OGTTs, but

only one was considered functional in the present work. We
chose the 2-h value in third trimester as the main outcome
instead of the entire curve in third trimester, due to the clin-
ical relevance of this value in pregnancy care. As glucose
curves are not commonly used, inference about the 2-h value
would better illustrate the usefulness of information from
FDA for a maternal pregnancy outcome in clinical practice.
Continuous glucose monitoring devices allow for more

frequent glucose sampling over longer periods and
might increasingly be used in future studies and in indi-
vidual patient care to obtain OGTT measurements and
measurements of glucose profiles in daily life. An in-
creasing use of continuous glucose monitoring advocates
the use of statistical tools that can properly analyse the
continuous stream of data by providing curves that may
be subjected to FDA as illustrated in the current work.
Furthermore, comparison of curve shape information

from individuals with insulin resistance or beta cell fail-
ure might reveal whether curve features can distinguish
between these two main processes that lead to the devel-
opment of diabetes. Also, the curve shape information
as obtained by FPCA in early pregnancy has the poten-
tial to predict complications in later pregnancy better
than simple summary measures.
Our work shows that the FDA approach worked well,

despite the very limited number of measurements for
each participant. Dynamic, physiological processes will
often be represented by scarcely sampled measurements,
especially when repeated blood samples are required. In
addition to glucose regulation, other examples where an
FDA approach can be valuable include diurnal measure-
ments of hormone regulation, metabolic changes during
or after meals, or after physical exercise. The presented

techniques should therefore also be explored in studies
of metabolic disorders in non-pregnant populations.

Conclusions
In conclusion, the FDA approach was superior to trad-
itional analyses of OGTT data in terms of providing
physiologically interpretable and important temporal in-
formation, and in terms of differentiating between women
who did and did not develop GDM during pregnancy. We
recommend the FDA approach for the analysis of glucose
data sampled repeatedly during glucose tolerance testing,
or continuous glucose monitoring, to capitalise on import-
ant information that would otherwise be lost.

Appendix A
A.1. Curve fitting in functional data analysis
Let yi(tj) be the measurement from individual i at time
tj, i = 1,…, n and j = 1,…, J. In our OGTT data, n = 974
and J = 5. To each individual set of observations, yi(tj),
j = 1,…, J, we fit a continuous, smooth function xi(t),
spanning the observed time range. In our OGTT data,
t ∈ [0, 120]. The estimation of the continuous curves xi(t)
from data points yi(tj) is based on the measurement
model

yi tj
� � ¼ xi tj

� �þ εij; ð1Þ
where xi(tj) is xi evaluated at time tj and εij ~N(0, σ2) is
an error term. It can be shown that a smooth curve is
well approximated by a linear combination of a set of
smooth basis functions ϕk(t), k = 1,…, K,

xi tð Þ≈ ∑
K

k¼1
ckiϕk tð Þ ¼ ci

Tϕ tð Þ; ð2Þ

where cki is the coefficient for the kth basis function,
ci = (c1i,…, cKi), and ϕ(t) = (ϕ1(t),…, ϕK(t)). We apply
B-spline basis functions, placing a knot at each of the
J time points. With ϕk(tj) denoting the kth basis func-
tion evaluated at time tj, substituting (2) into (1) yields

y1 t1ð Þ ⋯ yn t1ð Þ
⋮ ⋮

y1 tJð Þ ⋯ yn tJð Þ

2
4

3
5 ¼

ϕ1 t1ð Þ ⋯ ϕK t1ð Þ
⋮ ⋮

ϕ1 tJð Þ ⋯ ϕK tJð Þ

2
4

3
5

c11 ⋯ c1n
⋮ ⋮

cK1 ⋯ cKn

2
4

3
5

þ
ε11 ⋯ ε1n
⋮ ⋮

εK1 ⋯ εKn

2
4

3
5;

ð3Þ
which in matrix notation reads

Y ¼ ΦCþ Ε;

with Y, Φ, C and Ε defined from (3). Here Y is the
J × n matrix of observed blood glucose measurements;
Φ is the J × K matrix of the values of the K basis func-
tions evaluated at times tj, and Ε the J × n matrix of
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error terms. Finally, C is the K × n matrix of unknown
linear coefficients cki, which we estimate by minimising
the penalised least squares expression

Y−ΦCð ÞT Y−ΦCð Þ þ λCTRC:

The penalty term, λCTRC, where λ is a smoothing par-
ameter that defines the degree of regularisation, is added
to compensate for random error, and is based on the
total curvature of the fitted curve,

R ¼ ∫D2ϕ sð ÞD2ϕT sð Þds;
where D2ϕ(s) is the second derivative of the vector of
basis functions ϕ(t). The smoothing parameter λ ∈ [0,∞)
is estimated by optimising a generalised cross-validation
criterion. For more detail, see publications by Ramsay
et al [17,18].

Appendix B
B.1. Functional principal component analysis
Functional principal component analysis (FPCA) can be
viewed as rotating functional data to optimal empirical
continuous basis functions, referred to as functional
principal component (FPC) curves [17,18]. Associated
with each FPC curve are individual FPC scores. These
quantify how much the individual, fitted curves differ
from the mean curve, in terms of the temporal pattern
described by each FPC curve.
An FPC curve ξκ(t) and its corresponding FPC scores

zκi, κ = 1,…, Κ, for individuals i = 1,…, n, are estimated
simultaneously by finding a weight function ξ(t) defined
over the same range of t as the functional data xi(t),
maximising the variance of the corresponding individual
FPC scores zi, given by zi = ∫ ξ(t)xi(t)dt, subject to con-
straints. The first FPC, ξ1(t), is found by maximising the
variance of the principal component scores z1i subject to
the constraint∫ ξ1(t)

2dt = 1. Consecutive FPCs are
defined similarly under the additional constraint of being
orthogonal to the already extracted FPCs. For more de-
tail, see publications by Ramsay et al [17,18].

Appendix C
C.1. Functional analysis of variance
Functional analysis of variance (FANOVA) is a method
for studying the difference between the functional means
of fitted curves in mutually exclusive subgroups of the
study sample.
Consider a categorisation of the study sample into

g = 1,…,G categories, e.g. BMI categories. Let Lg be
the sample size in category g. We model the lth OGTT
glucose curve, l = 1,…, Lg in the gth category, xlg(t), as

xlg tð Þ ¼ βref tð Þ þ βg tð Þ þ εlg tð Þ:

Here βref(t) is the mean of the fitted curves in the
reference category, βg(t) the difference between the mean
curve in the gth category and the reference category, and
εig(t) the individual residual curve. The estimated group

mean curve differences β̂ g tð Þ; g ¼ 1;…;G; called the

FANOVA coefficients, are based on the fitted curves
described in Appendix A. They are also functions over
the same t range.
Differences between categories can be evaluated by

functional CIs for the FANOVA coefficients, corre-
sponding p(t) curves and overall p values from permuta-
tion F tests. The presented permutation tests are based
on 1000 permutations of the fitted curves in two differ-
ent categories. The CIs and p(t) curves are calculated
point-wise over the t range, using the estimated F-ratio

FR tð Þ ¼ MRS tð Þ
MSE tð Þ ; calculated as the ratio of residual vari-

ance, MRS(t), to predicted variance, MSE(t). The permu-
tation distribution is found for the point-wise F-statistic,
giving CIs and p(t) curves over the t range, and for the
maximal value of the point-wise F-statistic, giving an
overall p value. For more detail, see publications by
Ramsay et al [17,18].

Additional file

Additional file 1: R script for functional data analysis of glucose
curves.
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ve
s 
on
ly
; 
a 
se
pa
ra
te
 p
lo
t 
fo
r 
th
e 
re
fe
re
nc
e 
cu
rv
e 
an
d 
an
 e
xt
ra
 f
or
 t
he
 d
is
cr
ep
an
ci
es
 (
cf
 F
ig
. 
4 
b)

 
 pl
ot
(m
1.
fa
no
va
$b
et
ae
st
li
st
$c
on
st
,m
ai
n=
"c
on
st
")
 

pl
ot
(m
1.
fa
no
va
$b
et
ae
st
li
st
$b
mi
.c
ut
.3
,m
ai
n=
"b
mi
 2
5-
30
",
yl
im
=c
(-
1,
1.
5)
,c
ol
="
re
d"
) 

pl
ot
(m
1.
fa
no
va
$b
et
ae
st
li
st
$b
mi
.c
ut
.4
,m
ai
n=
"b
mi
 o
ve
r 
30
",
co
l=
"m
ag
en
ta
",
ad
d=
TR
UE
) 

pl
ot
(m
1.
fa
no
va
$b
et
ae
st
li
st
$b
mi
.c
ut
.6
,m
ai
n=
"b
mi
 u
nd
er
 1
8.
5"
,c
ol
="
cy
an
",
ad
d=
TR
UE
) 

  
# 
Pl
ot
 o
f 
es
ti
ma
te
d 
be
ta
 c
ur
ve
s 
wi
th
 f
un
ct
io
na
l 
co
nf
id
en
ce
 i
nt
er
va
ls
 (
ed
it
in
g 
no
t 
po
ss
ib
le
)
 

 bm
i.
sm
oo
th
.y
2c
Ma
p 
 

<-
 b
mi
.s
mo
ot
h$
y2
cM
ap
 

m1
.f
an
ov
a.
yh
at
  

<-
 m
1.
fa
no
va
$y
ha
tf
do
bj
$f
d 

m1
.E
rr
ma
t 

 
<-
 t
(g
.b
mi
)-
ev
al
.f
d(
br
ea
ks
us
e,
m1
.f
an
ov
a.
yh
at
) 

m1
.S
ig
ma
E2
 

 
<-
 c
ov
(t
(m
1.
Er
rm
at
))
 

m1
.f
an
ov
a.
st
d 

 
<-
 f
Re
gr
es
s.
st
de
rr
(m
1.
fa
no
va
,b
mi
.s
mo
ot
h.
y2
cM
ap
,m
1.
Si
gm
aE
2)
 

 pl
ot
be
ta
(m
1.
fa
no
va
$b
et
ae
st
li
st
,m
1.
fa
no
va
.s
td
$b
et
as
td
er
rl
is
t)
 

  
# 
To
 m
ak
e 
a 
pl
ot
 l
ik
e 
th
e 
on
e 
in
 F
ig
. 
4 
b,
 y
ou
 n
ee
d 
to
 m
ak
e 
a 
mo
di
fi
ed
 v
er
si
on
 o
f 
th
e 
fu
nc
ti
on
 p
lo
tb
et
a(
);
 e
.g
. 
my
pl
ot
be
ta
1(
) 

 
# 
Sa
ve
 i
t 
as
 a
n 
R 
sc
ri
pt
: 
my
pl
ot
be
ta
1.
R,
 a
nd
 l
oa
d 
it
 b
y 

 so
ur
ce
("
M:
/A
rt
ic
le
FD
A/
my
pl
ot
be
ta
1.
R"
) 

my
pl
ot
be
ta
1(
m1
.f
an
ov
a$
be
ta
es
tl
is
t,
m1
.f
an
ov
a.
st
d$
be
ta
st
de
rr
li
st
)
 

# 
(F
ig
ur
e 
4 
b)
 

  
# 
Pl
ot
s 
of
 d
ic
re
pa
nc
ie
s 
be
tw
ee
n 
fi
tt
ed
 c
ur
ve
s 
an
d 
cu
rv
es
 e
st
im
at
ed
 f
ro
m 
th
e 
mo
de
l,
 a
s 
we
ll
 a
s 
re
si
du
al
s 

 pa
r(
mf
ro
w=
c(
2,
2)
) 

pl
ot
(c
ur
ve
s.
bm
i,
co
l=
as
.n
um
er
ic
(b
mi
.c
ut
)+
2,
lt
y=
1)
 

pl
ot
(m
1.
fa
no
va
$y
ha
t$
fd
, 
lw
=3
,c
ol
="
bl
ac
k"
,l
ty
=1
,a
dd
=T
RU
E)
 

yh
at
fd
 
 

 
<-
 m
1.
fa
no
va
$y
ha
t$
fd
 

pl
ot
(c
ur
ve
s.
bm
i-
yh
at
fd
,c
ol
=a
s.
nu
me
ri
c(
bm
i.
cu
t)
+2
,l
ty
=1
) 

re
s.
ma
tr
ix
 

 
<-
 e
va
l.
fd
(b
re
ak
su
se
,c
ur
ve
s.
bm
i)
-e
va
l.
fd
(b
re
ak
su
se
,y
ha
tf
d)
 

bo
xp
lo
t(
t(
re
s.
ma
tr
ix
))
 

  
# 
Pe
rm
ut
at
io
n 
F 
te
st
s 
fo
r 
pa
ir
wi
se
 c
om
pa
ri
so
ns
 o
f 
BM
I 
gr
ou
ps
 (
Gi
ve
 t
he
 p
lo
ts
 i
n 
Fi
g.
 5
) 

 
# 
Un
de
rw
ei
gh
t 
vs
 n
or
ma
l 
we
ig
ht
: 
gr
ou
p 
6 
(b
mi
 u
nd
er
 1
8.
5)
 v
s 
gr
ou
p 
2 
(N
or
ma
l,
 b
mi
 1
8.
5-
25
) 
 

 bm
i.
26
 
 

<-
 b
mi
.c
ut
[(
bm
i.
cu
t=
=2
|b
mi
.c
ut
==
6)
] 

cu
rv
es
.b
mi
26
 

<-
 c
ur
ve
s.
bm
i[
(b
mi
.c
ut
==
2|
bm
i.
cu
t=
=6
)]
 

ta
bl
e(
bm
i.
26
) 

 cb
as
is
 
  

<-
 c
re
at
e.
co
ns
ta
nt
.b
as
is
(c
(0
,1
20
))
 

# 
Ma
ke
 a
 c
on
st
an
t 
ba
si
s 

bm
i.
26
 
 

<-
 a
s.
nu
me
ri
c(
bm
i.
26
)-
1 

 
# 
Re
co
de
 f
ac
to
rs
 "
2"
 a
nd
 "
6"
 t
o 
th
e 
nu
mb
er
s 
1 
an
d 
4;
 s
ub
tr
ac
t 
1 
an
d 
ge
t 
0 
an
d 
3 

bm
i.
26
[b
mi
.2
6=
=3
] 
<-
1 

 
 

 
 

# 
Re
co
de
 3
 t
o 
1,
 i
.e
. 
0 
is
 t
he
 r
ef
er
en
ce
 c
at
eg
or
y 
an
d 
1 
is
 t
he
 c
at
eg
or
y 
of
 i
nt
er
es
t 
 

 



co
ns
tf
d 
 

<-
 f
d(
 m
at
ri
x(
1,
1,
le
ng
th
(b
mi
.2
6)
),
cb
as
is
) 

bm
i2
6f
d 
 

<-
 f
d(
 m
at
ri
x(
bm
i.
26
,1
,l
en
gt
h(
bm
i.
26
))
,c
ba
si
s)
 

xf
dl
is
t 
 

<-
 l
is
t(
co
ns
tf
d,
bm
i2
6f
d 
) 

be
ta
li
st
  

<-
 l
is
t(
fd
Pa
ro
bj
.o
pt
,f
dP
ar
ob
j.
op
t)
 

 Fr
es
12
 
  

<-
 F
pe
rm
.f
d(
cu
rv
es
.b
mi
26
,x
fd
li
st
,b
et
al
is
t,
np
er
m=
10
00
) 

# 
np
er
m 
sh
ou
ld
 b
e 
la
rg
e 
en
ou
gh
 (
he
re
: 
10
00
) 
to
 v
is
ua
li
se
 t
he
 d
et
ai
ls
  
 

 
 

 
 

 
 

 
 

 
 

# 
NB
: 
Fp
er
m.
fd
 
gi
ve
s 
au
to
ma
ti
ca
ll
y 
a 
Pe
rm
ut
at
io
n 
F 
Te
st
 p
lo
t 

Fr
es
12
$p
va
l 

pl
ot
(F
re
s1
2$
ar
gv
al
s,
Fr
es
12
$p
va
ls
.p
ts
, 
ty
pe
="
l"
)
 

  
# 
Ov
er
we
ig
ht
 v
s 
no
rm
al
: 
gr
ou
p 
3 
(b
mi
 2
5-
30
) 
vs
 g
ro
up
 2
 (
bm
i 
18
.5
-2
5)
  

 bm
i.
23
 
 

<-
 b
mi
.c
ut
[(
bm
i.
cu
t=
=2
|b
mi
.c
ut
==
3)
] 

cu
rv
es
.b
mi
23
 

<-
 c
ur
ve
s.
bm
i[
(b
mi
.c
ut
==
2|
bm
i.
cu
t=
=3
)]
 

ta
bl
e(
bm
i.
23
) 

bm
i.
23
 
 

<-
 a
s.
nu
me
ri
c(
bm
i.
23
)-
1 

 co
ns
tf
d 
 

<-
 f
d(
 m
at
ri
x(
1,
1,
le
ng
th
(b
mi
.2
3)
),
cb
as
is
) 

bm
i2
3f
d 
 

<-
 f
d(
 m
at
ri
x(
bm
i.
23
,1
,l
en
gt
h(
bm
i.
23
))
,c
ba
si
s)
 

xf
dl
is
t 
 

<-
 l
is
t(
co
ns
tf
d,
bm
i2
3f
d 
) 

be
ta
li
st
  

<-
 l
is
t(
fd
Pa
ro
bj
.o
pt
,f
dP
ar
ob
j.
op
t)
 

 Fr
es
23
 
  

<-
 F
pe
rm
.f
d(
cu
rv
es
.b
mi
23
,x
fd
li
st
,b
et
al
is
t,
np
er
m=
10
00
) 
 

Fr
es
23
$p
va
l 

pl
ot
(F
re
s2
3$
ar
gv
al
s,
Fr
es
23
$p
va
ls
.p
ts
, 
ty
pe
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l"
)
 

  
# 
Ob
es
e 
vs
 n
or
ma
l:
 g
ro
up
 4
 v
s 
gr
ou
p 
2 
 

 bm
i.
24
 
 

<-
 b
mi
.c
ut
[(
bm
i.
cu
t=
=2
|b
mi
.c
ut
==
4)
] 

cu
rv
es
.b
mi
24
 

<-
 c
ur
ve
s.
bm
i[
(b
mi
.c
ut
==
2|
bm
i.
cu
t=
=4
)]
 

ta
bl
e(
bm
i.
24
) 

bm
i.
24
 
<-
 a
s.
nu
me
ri
c(
bm
i.
24
)-
1 

bm
i.
24
[b
mi
.2
4=
=2
] 
<-
1 

 co
ns
tf
d 
 

<-
 f
d(
 m
at
ri
x(
1,
1,
le
ng
th
(b
mi
.2
4)
),
cb
as
is
) 

bm
i2
4f
d 
 

<-
 f
d(
 m
at
ri
x(
bm
i.
24
,1
,l
en
gt
h(
bm
i.
24
))
,c
ba
si
s)
 

xf
dl
is
t 
 

<-
 l
is
t(
co
ns
tf
d,
bm
i2
4f
d 
) 

be
ta
li
st
  

<-
 l
is
t(
fd
Pa
ro
bj
.o
pt
,f
dP
ar
ob
j.
op
t)
 

 Fr
es
24
 
  

<-
 F
pe
rm
.f
d(
cu
rv
es
.b
mi
24
,x
fd
li
st
,b
et
al
is
t,
np
er
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10
00
) 

 
Fr
es
24
$p
va
l 

pl
ot
(F
re
s2
4$
ar
gv
al
s,
Fr
es
24
$p
va
ls
.p
ts
, 
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pe
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l"
)
 

  
# 
Ov
er
we
ig
ht
 v
s 
ob
es
e:
 g
ro
up
 3
 v
s 
gr
ou
p 
4 
 

 bm
i.
34
 
 

<-
 b
mi
.c
ut
[(
bm
i.
cu
t=
=3
|b
mi
.c
ut
==
4)
] 

cu
rv
es
.b
mi
34
 

<-
 c
ur
ve
s.
bm
i[
(b
mi
.c
ut
==
3|
bm
i.
cu
t=
=4
)]
 

ta
bl
e(
bm
i.
34
) 

bm
i.
34
 
<-
 a
s.
nu
me
ri
c(
bm
i.
34
)-
2 
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ns
tf
d 
 

<-
 f
d(
 m
at
ri
x(
1,
1,
le
ng
th
(b
mi
.3
4)
),
cb
as
is
) 

bm
i3
4f
d 
 

<-
 f
d(
 m
at
ri
x(
bm
i.
34
,1
,l
en
gt
h(
bm
i.
34
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,c
ba
si
s)
 

xf
dl
is
t 
 

<-
 l
is
t(
co
ns
tf
d,
bm
i3
4f
d 
) 

be
ta
li
st
  

<-
 l
is
t(
fd
Pa
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bj
.o
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j.
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 Fr
es
34
 
  

<-
 F
pe
rm
.f
d(
cu
rv
es
.b
mi
34
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et
al
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np
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) 

Fr
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l 
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(F
re
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)
 

  
# 
An
al
ys
in
g 
th
e 
ef
fe
ct
 o
f 
fi
rs
t 
tr
im
es
te
r 
gl
uc
os
e 
cu
rv
es
 o
n 
th
e 
2-
h 
va
lu
e 
at
 w
ks
 3
0-
32
 b
y 
mu
lt
in
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ia
l 
re
gr
es
si
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# 
Da
ta
 p
re
pa
ra
ti
on
 (
re
mo
ve
 m
is
si
ng
) 

 da
ta
 

<-
 s
ps
sd
at
a[
 

!i
s.
na
(s
ps
sd
at
a$
g0
m)
& 

!i
s.
na
(s
ps
sd
at
a$
g3
0m
)&
 

!i
s.
na
(s
ps
sd
at
a$
g6
0m
)&
 

!i
s.
na
(s
ps
sd
at
a$
g9
0m
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!i
s.
na
(s
ps
sd
at
a$
g2
h)
& 

!i
s.
na
(s
ps
sd
at
a$
bm
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& 

!i
s.
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(s
ps
sd
at
a$
g2
hw
k3
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,]
 

 
# 
Ca
te
go
ri
se
 i
nt
o 
7 
ca
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go
ri
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 g.
g2
hw
k3
0 

 
<-
 c
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nd
(d
at
a$
g0
m,
da
ta
$g
30
m,
da
ta
$g
60
m,
da
ta
$g
90
m,
da
ta
$g
2h
,d
at
a$
bm
i,
 d
at
a$
g2
hw
k3
0)
 

g2
hw
k3
0.
cu
t 

 
<-
 c
ut
(d
at
a$
g2
hw
k3
0,
br
ea
ks
=c
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,3
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7,
3.
89
,6
.3
9,
6.
90
,7
.8
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.8
4,
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, 
la
be
ls
=F
AL
SE
, 
in
cl
ud
e.
lo
we
st
=T
RU
E,
 r
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ht
=F
AL
SE
)
 

 
ta
bl
e(
g2
hw
k3
0.
cu
t)
 

 g.
g2
hw
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0.
sm
oo
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<-
 s
mo
ot
h.
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si
s(
br
ea
ks
us
e,
t(
g.
g2
hw
k3
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6,
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dP
ar
ob
j.
op
t)
 

cu
rv
es
.g
.g
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wk
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<-
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wk
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# 
Me
an
 g
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se
 c
ur
ve
s 
fo
r 
gr
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ps
 o
f 
wo
me
n 
in
 d
if
fe
re
nt
 g
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 c
at
eg
or
ie
s 
at
 g
es
ta
ti
on
al
 w
ee
ks
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0-
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Fi
g.
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) 
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ot
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n.
fd
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.g
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.s
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,y
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2.
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ay
(0
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ab
="
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ot
(m
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fd
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.g
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.s
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ut
==
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3.
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ot
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.g
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pl
ot
(m
ea
n.
fd
(g
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9,
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ot
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n.
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30
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=4
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c(
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) 
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ot
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n.
fd
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.s
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h$
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lw
=4
,y
li
m=
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3.
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4)
, 
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l=
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),
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d=
TR
UE
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pl
ot
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n.
fd
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2h
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lw
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9,
6.
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d=
TR
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# 
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 o
f 
th
e 
re
du
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d 
da
ta
 s
et
 

 g.
g2
hw
k3
0.
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<-
 p
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.f
d(
g.
g2
hw
k3
0.
sm
oo
th
$f
d,
nh
ar
m=
3)
 

 
pl
ot
.p
ca
.f
d(
g.
g2
hw
k3
0.
pc
a)
 

pl
ot
(g
.g
2h
wk
30
.p
ca
$h
ar
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ni
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) 

g.
g2
hw
k3
0.
pc
a$
va
lu
es
 

ro
un
d(
g.
g2
hw
k3
0.
pc
a$
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2h
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.p
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ue
s)
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) 

 mn
da
ta
 
 

 
<-
 a
s.
da
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.f
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it
(c
bi
nd
(g
.g
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hw
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0.
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t,
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hw
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) 
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(m
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<-
 c
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i"
) 
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2h
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t 

<-
 a
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hw
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# 
Mu
lt
in
om
ia
l 
lo
gi
st
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 r
eg
re
ss
io
n 

 li
br
ar
y(
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og
it
) 

li
br
ar
y(
Ep
i)
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da
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<-
 m
lo
gi
t.
da
ta
(m
nd
at
a,
 v
ar
yi
ng
=N
UL
L,
 c
ho
ic
e=
"g
2h
wk
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ka
t"
, 
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ap
e=
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e"
) 
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ef
 

 
<-
 m
lo
gi
t(
g2
hw
k3
0k
at
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1+
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pc
3+
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i,
 d
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ta
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re
fl
ev
el
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) 
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y(
mr
ef
) 

ex
p(
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ef
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f)
) 
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ef
 

 
<-
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lo
gi
t(
g2
hw
k3
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at
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1+
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c2
+f
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3+
bm
i,
 d
at
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= 
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) 
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mm
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y(
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ef
) 

mr
ef
 

 
<-
 m
lo
gi
t(
g2
hw
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at
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c2
+f
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3+
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 d
at
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= 
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el
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) 

su
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ar
y(
mr
ef
) 

mr
ef
 

 
<-
 m
lo
gi
t(
g2
hw
k3
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1+
fp
c2
+f
pc
3+
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 d
at
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= 
ml
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ta
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ev
el
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) 
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mm
ar
y(
mr
ef
) 

mr
ef
 

 
<-
 m
lo
gi
t(
g2
hw
k3
0k
at
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1+
fp
c2
+f
pc
3+
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 d
at
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= 
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da
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) 
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mm
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Abstract  

Objective: To use multilevel functional principal component analysis to exploit the 

information inherent in the shape of longitudinally sampled glucose curves during pregnancy, 

and to analyse the impact of glucose curve characteristics on neonatal birth weight, 

percentage fat and cord blood C-peptide.  

Study Design and Setting: A cohort study of healthy, pregnant women (n=884). They 

underwent two oral glucose tolerance tests (gestational weeks 14-16 and 30-32), which gave 

two glucose curves per woman. 

Results: Glucose values were higher, and peaked later in third trimester than in early 

pregnancy. The curve characteristic “general glucose level” accounted for 91% of the 

variation across visits, and 72% within visits. The curve characteristics “timing of 

postprandial peak”, and “oscillating glucose levels” accounted for a larger part of the 

variation within visits (15% and 8%), than across visits (7% and <2%). A late postprandial 

peak during pregnancy, and high general glucose levels in third trimester had significant, 

positive effects on birth weight (p<0.05). Generally high glucose levels during pregnancy had 

a significant, positive impact on neonatal percentage fat (p=0.04). High general glucose level 

in third trimester had a significant, positive impact on cord blood C-peptide (p=0.004).  

Conclusion: Shape information in entire OGTT curves provides significant physiological 

information of importance for several outcomes, and may contribute to the understanding of 

the metabolic changes during pregnancy.
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Introduction 

High maternal glucose levels in pregnancy have adverse short-term and long-term health 

effects for both the mother and the child [1–5]. The Hyperglycemia and Adverse Pregnancy 

Outcomes (HAPO) study investigated glucose intolerance less severe than that in overt 

diabetes mellitus, and demonstrated effects on the risk of adverse pregnancy outcomes [1]: 

Positive, linear effects were found for the fasting, one-hour (1-h) and two-hour (2-h) values 

from oral glucose tolerance tests (OGTTs). Other studies reporting associations between high 

maternal glucose levels and adverse pregnancy outcomes have used a variety of simple 

glucose measures, e.g. the fasting value, the 2-h value, impaired fasting glucose, gestational 

diabetes (GDM) diagnosis or HbA1c [6–12].  

Changes in glucose metabolism during pregnancy include increasing insulin resistance 

and increasing gluconeogenesis in the liver [13]. Counterintuitive to this, longitudinal studies 

have reported a decrease in fasting glucose levels during pregnancy, particularly during the 

first trimester [13–15]. However, concomitantly with the decrease in fasting glucose, elevated 

postprandial levels during pregnancy have been reported [9,16,17]. Some studies have 

described glucose curves or glucose data at different gestational ages and longitudinal 

changes in these curves and data during pregnancy [9,16,18,19]. Few studies have analysed 

the impact of information in the shape of entire OGTT glucose curves [20], and except from 

one study [16],we are not aware of statistical analysis of longitudinal change in glucose curves 

during pregnancy. Also, few have studied the impact of change in glucose levels during 

pregnancy on neonatal outcomes [21,22]. 

Functional data analysis (FDA) is a collection of statistical methods developed to 

analyse curve data [23,24]. In FDA a set of temporal observations is treated as a single, 

functional object. The statistical analysis is based on this continuous function (curve), rather 

than on the original discrete data points. Information from the curve as a whole is extracted. 

We have demonstrated that glucose curves from OGTT at one time point in pregnancy 

(gestational weeks 14-16) extracted physiologically interpretable and clinically interesting 

characteristics of the glucose response that would otherwise be missed [20]. We now extend 

the analysis to study the shape inherent in glucose curves from two visits during pregnancy. 

To our knowledge, this is the first study to use all information in longitudinally collected 

glucose curves, and to analyse the effect of such information on neonatal outcomes. 

The STORK study, a Norwegian prospective cohort study of 1031 healthy, pregnant 

women, provided OGTT data from gestational weeks 14-16 and 30-32 [25]. Using FDA 

methodology developed by Di et al [26] and Crainiceanu and Goldsmith [27], we performed a 
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multilevel FDA of the OGTT data, and extracted essential characteristics of the OGTT 

glucose curves from gestational weeks 14-16 and 30-32. We then studied the effect of these 

characteristics on the neonatal outcomes birth weight, percentage fat and C-peptide in cord 

blood. 
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Methods 

Ethics Statement 

The study was approved by the Regional Committee for Medical Research Ethics, Southern 

Norway, Oslo, Norway (reference number S-01191), and performed according to the 

Declaration of Helsinki. All participating women provided written informed consent.  

 

Participants and data  

The STORK study is a prospective cohort of 1031 healthy, Norwegian women of 

Scandinavian heritage who registered for obstetric care at Oslo University Hospital 

Rikshospitalet from 2001 to 2008. The overall aim of the study was to extend insights into 

maternal metabolic syndrome and determinants of foetal macrosomia [28]. Exclusion criteria 

were multiple pregnancies, known pre-gestational diabetes, and severe chronic diseases 

(pulmonary, cardiac, gastrointestinal or renal). Gestational age at inclusion was based on the 

Naegele’s rule, and gestational ages at the other visits and at birth were based on routine 

ultrasound at weeks 17-19. Age, parity, smoking habits, height, weight, fasting insulin and a 

75g OGTT were recorded at inclusion at weeks 14-16. Weight, fasting insulin and OGTT 

were also recorded at weeks 30-32.  

Blood samples were drawn in the morning, between 0730 and 0830 after an overnight 

fast, and were obtained from veni-puncture in tubes containing Ethylenediaminetetraacetic 

acid (EDTA). Plasma glucose was measured immediately in a drop of fresh, whole EDTA 

blood. During the OGTT, blood samples were taken every 30 minute for 2 hours. Glucose 

measurements were done by the Accu-Chek Sensor (ACS) glucometer (Roche Diagnostics 

GmbH, Mannheim, Germany). Due to an unexpected increasing trend in the fasting glucose 

measurements over the 7 years of recruitment, all glucose measurements were de-trended 

prior to the analyses [29]. The umbilical cord blood was collected into EDTA tubes by the 

midwife, centrifuged for plasma separation and placed at -20 ºC for less than a month and 

stored long term at -80 ºC. 

Women with premature births or non-complete OGTT data were excluded, giving a 

study sample of 884 women and their neonates (Figure 1). 

Birth weight was recorded within two hours after the birth. In a subsample of the 

cohort, the percentage of neonatal body fat was measured by Dual-energy X-ray 

absorptiometry (DXA) scanning, and C-peptide in cord blood from the time of birth was 

measured (Figure 1) [30,31]. 
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Data description  

Descriptive statistics of registered data are presented as mean, standard deviation (SD) and 

range, or frequency and percentage (%).  

 

Fitting continuous and individually smoothed curves 

The OGTT measurements from the two visits were converted into 884 continuous, smooth 

OGTT glucose curves (hereafter called glucose curves), from gestational weeks 14-16, and 

884 continuous, smooth glucose curves from gestational weeks 30-32. The curve fitting 

procedure was based on B-splines basis functions and is described in Appendix A.  

 

The functional multilevel model  

When functional data like glucose curves are observed on two or more occasions for each 

individual, we apply a multilevel model for functional data to extract information [26,27], as 

described below. See Appendix A for details.  

Assume that the individual, true blood glucose curve iv t  for woman 1, ,884i ,884  at 

visit 1,2v  in the continuous time span from 0 to 120 minutes, 0,120t , can be 

decomposed into fixed and random effects curves (Figure 2A), and expressed as a multilevel 

model of functional data  

 .iv v i ivt t t X t U t   (1) 

Here the fixed effects curves are the overall mean glucose curve t  (Figure 2Ai), and the 

mean visit-specific deviation from the overall mean curve, v t  (Figure 2Aii). Together, 

these terms constitute the visit-specific mean curve, vt t  (Figure 2Cii). The random 

effects curves are iX t , the subject-specific deviation from the visit-specific mean curve 

(Figure 2Aiii), and ivU t , the subject- and visit-specific deviation from the subject-specific 

mean curve (Figure 2Aiv).  

 

Extracting common temporal characteristics: functional principal component (FPC) curves  

An important task in FDA is to quantify the common characteristics of a set of curves. The 

common characteristics of the curves iX t ,  1,...,884i  and of the curves ivU t , 

1,...,884i  and 1,2v  in expression (1) (Figure 2Aiii and 2Aiv) are found by functional 
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principal component analysis (FPCA). FPCA extracts FPC curves that describe characteristics 

associated with the largest proportions of the variation in the curves. See Appendix A for 

details. The FPC curves estimated in the multilevel FPCA may be interpreted and labelled 

according to the physiological information they exhibit.  

 

Estimating FPC scores 

In order to quantify each individual glucose curve’s characteristics, we estimate individual 

scores for each FPC curve. A woman’s FPC scores reflect how her individual curve 

trajectories at the two visits correspond to the common characteristics expressed by the FPC 

curves. Then we can study how glucose curve characteristics vary from woman to woman, 

and from visit to visit. 

A woman’s scores for the FPC curves of iX t  quantify her subject-specific deviation 

from the visit-specific mean curve, i.e. the important characteristics of her glucose curves 

across visits (Figure 2Biii and 2Ciii). Her scores for the FPC curves of ivU t  quantify her 

subject- and visit-specific deviation from her subject-specific mean curve, i.e. the 

characteristics of the residual variation within a visit (Figure 2Biv and 2Civ). 

By combining equation (1) with the FPC curves and corresponding estimated FPC 

scores, an individual glucose curve can be expressed as the sum of the visit-specific mean, 

,vt t  and a linear combination of a small number of the FPC curves for iX t  and 

ivU t  (Equation (3) in the Appendix [26,27].  

FPC curves are often illustrated by plots showing how an individual curve differs from 

the mean curve if the FPC scores are high or low, rather than plots of the FPC curves directly.  

 

Correlation between FPC scores and traditional “area under the curve” (AUC) 

The traditional, simple summary measure AUC was calculated directly from the de-trended 

glucose measurements by the trapezoid method. Pearson’s correlation coefficients (r) were 

used to compare AUC with FPC scores. 

 

Functional information in regression analyses 

The impact of glucose curve characteristics on the neonatal outcomes birth weight, percentage 

fat and C-peptide in cord blood were estimated using linear regression with FPC scores from 

the multilevel FPCA as explanatory variables. The interpretation of the effect estimates is 
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based on the physiological interpretation of the FPC scores. Adjusted effect estimates were 

found by multiple linear regression analyses with most FPC scores (the first subject- and visit-

specific score at gestational weeks 14-16 was left out due to colinearity issues), early 

pregnancy BMI, age and parity as explanatory variables. The multivariable analyses involved 

stepwise variable selection procedures based on Akaike’s information criterion (AIC), 

analyses of several models considered to be of importance, and considerations of 

physiological importance of the findings. Model diagnostics were thoroughly checked during 

the analysis. The final multiple models presented in the results section include only the 

variables identified by these procedures. 

In supplementary analyses, we did additional adjustment for weight gain between 

weeks 14-16 and 30-32, and repeated the analyses of birth weight for the reduced samples 

where percentage fat and C-peptide were available.  

 

Software  

All analyses were performed in R 3.0.0. The estimation of FPC scores was done by the 

R2WinBUGS package that runs WinBUGS from R [32]. The technical details are given in 

Appendix A, and the implementation is given in the program code, which is available as 

supporting information SI1.  
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Results 

Data description  

Characteristics of the study sample at inclusion at gestational weeks 14-16, at gestational 

weeks 30-32 and at birth are shown in Table 1. Except from a significantly lower proportion 

of smokers in the study sample (p=0.01), no significant differences were found between the 

women and the neonates in the study sample, and those who were excluded (0.41≤p≤1.00). 

There was a small increase in fasting glucose and a large increase in fasting insulin from 

inclusion to weeks 30-32. The 2-h glucose levels were elevated in third trimester, and the 

prevalence of GDM increased from 0.3% at inclusion to 6% in third trimester. 

 

Fitted curves 

The smoothed glucose curves at gestational weeks 14-16 (Figure 3A) and 30-32 (Figure 3B) 

showed large variations between the women at both visits. Glucose values were higher, and it 

took longer time for postprandial glucose levels to get back to fasting levels at gestational 

weeks 30-32 than at weeks 14-16.  

 

Common temporal characteristics: FPC curves and FPC scores 

In the multilevel FPCA, the first two subject-specific FPCs explained 98% of the variation 

across visits, and the first three subject- and visit-specific FPCs explained 92% of the residual 

variation within visits. Further analyses were restricted to these FPC curves and the 

corresponding FPC scores (FPC1subj and FPC2subj, and FPC114-16, FPC214-16, FPC314-16, 

FPC130-32, FPC230-32 and FPC330-32, respectively). The FPC1 and FPC2 curves had very 

similar temporal appearances across and within visits. 

Figure 3C-J show how individual curves differ from the overall and visit-specific 

mean curves if the FPCsubj, FPC14-16 and FPC30-32 scores are high or low. The dominating 

curve characteristic for the variation across visits, FPC1subj, accounting for 91% of this 

variation, was given the interpretation “general glucose level”. Women with high FPC1subj 

scores had glucose curves above the overall mean, and a somewhat later postprandial peak, 

whereas women with low FPC1subj scores had glucose curves below the overall mean (Figure 

3C).  

The second most important curve characteristic across visits (FPC2subj) was “timing of 

postprandial peak”. Women with low FPC2subj scores had a clear early peak and low glucose 

values at the end of the OGTTs (Figure 3D). Women with high FPC2subj scores had a later 



Page 10 of 30 
 

postprandial peak and high glucose values at the end of the OGTTs. This was seen in plots of 

individual curves from women with the lowest and highest FPC2subj scores (plots not shown). 

The dominating curve characteristic for the residual variation within visits (accounting 

for 72% of this variation), was “general glucose level within visits”, i.e. the general glucose 

level not accounted for by the general glucose level across visits. A woman with a high 

subject- and visit-specific FPC114-16 (FPC130-32) score had a glucose curve above the subject-

specific mean at weeks 14-16 (30-32) (Figure 3E and 3H). An example of this is the upper 

curve in Figure 2Biv and 2Civ. Similarly, a woman with a low FPC114-16 (FPC130-32) score 

had a glucose curve below the subject-specific mean at weeks 14-16 (30-32). An example of 

this is the lower curve in Figure 2Biv and 2Civ.  

The second most important curve characteristic for the variation within visits was 

“timing of postprandial peak within visits”. A woman with a low FPC214-16 (FPC230-32) score 

had a clear early peak, and low glucose values at the end of this OGTT (Figure 3F and 3I). A 

woman with a high FPC214-16 (FPC230-32) score at weeks 14-16 (30-32) had a later 

postprandial peak, with high glucose values at the end of this OGTT (plots of individual 

curves not shown).  

The third most important curve characteristic for the variation within visits was 

“oscillating glucose within visits”. The glucose curves of women with high FPC314-16 or 

FPC330-32 scores had two postprandial peaks during the corresponding OGTT, whereas 

women with low FPC314-16 or FPC330-32 scores had only one glucose peak during the OGTT 

(Figure 3G and 3J). The characteristics “peak” and “oscillations” accounted for a smaller part 

of the variation across visits (7% and less than 2%), than within visits (15% and 8%).  

Figure 4 exemplifies the relation between individual glucose curves and corresponding 

FPC scores. The cyan, blue and black curves are glucose curves from three women in the 

study with curves above the mean (grey curve) at both visits. Consequently, the FPC1subj 

scores were high. The women with the green, red and purple curves, had low FPC1subj scores. 

The woman with cyan curves and generally high glucose levels on both OGTTs, had a curve 

that was high above the mean at gestational weeks 14-16, but less so at gestational weeks 30-

32. Thus, her FPC114-16 score was high, and her FPC130-32 score low.  

There were strong correlations between FPC1subj scores and AUC at weeks 14-16 and 

weeks 30-32 (r = 0.86 and 0.90, respectively), between. FPC114-16 and AUC14-16 (r =0.73), 

and between FPC130-32 and AUC30-32 ( r= 0.87). See supporting information SI2 for a table of 

correlations. All FPC1 scores were positively correlated with BMI (0.12 ≤r≤0.35).  
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Regression analyses 

Crude analyses showed significant positive effects on the three neonatal outcomes of the 

general glucose level across visits (FPC1subj), and of the subject- and visit-specific general 

glucose level at weeks 30-32 (FPC130-32) (Table 2). There was also a significant effect of a 

subject-specific late peak (FPC2subj) on birth weight.  

In multivariable analyses of birth weight, only FPC2suband FPC130-32 scores remained 

significant (Table 2): Women with late postprandial peaks (low FPC2subj scores) would be 

expected to have babies with higher birth weight than women with early postprandial peaks 

(high FPC2subj scores), and women with the highest residual glucose levels in third trimester 

(high FPC130-32 scores) would be expected to have babies with higher birth weight than 

women with low residual glucose levels in third trimester (low FPC130-32 scores). 

In multivariable analyses of neonatal percentage of fat, the effect of the FPC1subj 

scores remained significant (Table 2): Women with generally high glucose levels during their 

OGTTs (high FPC1subj scores) would be expected to have babies with a higher percentage of 

fat than women with generally low glucose levels during their OGTTs (low FPC1subj scores). 

According to AIC, FPC2subj scores also held information important for this outcome, although 

not statistically significant in the final model: Low FPC2subj scores, implying late glucose 

peaks, corresponded with high values of neonatal percentage fat.  

In multivariable analyses of C-peptide in cord blood, the effect of FPC130-32 scores 

remained significant (Table 2): Women with high FPC130-32 scores gave birth to babies with 

higher mean C-peptide than women with low FPC130-32 scores. According to AIC, FPC314-16 

scores also held important information, although not statistically significant: The neonates of 

women with oscillating glucose curves (high FPC314-16 scores) had somewhat lower C-peptide 

levels than those with one glucose peak during the OGTT (low FPC314-16 scores). 

Supplementary analyses showed that alternative models chosen due to physiological 

theories, and to explore the effects of colinearity, gave the same results for all three outcomes. 

Additional adjustment for weight gain between the two visits did not change the final model 

for percentage fat or C-peptide, but replaced FPC2subj in the model for birth weight. Analyses 

of birth weight in reduced samples where percentage fat or C-peptide was available showed 

significant effects of FPC1subj in both subsamples, of FPC214-16 in the percentage fat 

subsample, and a non-significant contribution of FPC230-32 in the C-peptide subsample. 
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Discussion 

The present study successfully used multilevel FDA to analyse changes in longitudinally 

observed glucose curves during pregnancy. The general glucose levels, in particular 

postprandial glucose, increased from early pregnancy to gestational weeks 30-32, and 

postprandial glucose peaked later in gestational weeks 30-32. The glucose characteristics 

extracted by FPCA had significant impact of glucose curve characteristics on birth weight, 

neonatal percentage of fat, and C-peptide in cord blood, demonstrating physiological 

relevance.  

The physiological interpretation of FPC curves is essential for the usefulness of FPCA. 

The identification of the general glucose levels as the most dominant characteristics of 

individual glucose curves was supported by the strong associations between FPC1 scores and 

the AUCs. The elevated postprandial levels in third trimester, the small increase in fasting 

glucose, and the large increase in fasting insulin and prevalence of GDM from inclusion to 

weeks 30-32 (Table 1), are in accordance with an expected progressive insulin resistance 

among pregnant women [13]. This supports the finding of timing of postprandial peak as the 

second most important curve characteristic. The general glucose level accounted for a larger 

part of the variation across, than within visits, whereas the timing of the peak was more 

important for the variation within, than across visits. This is not surprising, as FPC2 represent 

more curvature than FPC1, and some of the curvature may be averaged out at the subject-

specific level. The FPC3 curve was interpreted as “oscillating glucose within visits”, although 

the scarcely sampled glucose measurements at each OGTT could only reveal two glucose 

peaks. The term “oscillations” was chosen due to physiological theories [33,34].  

 The regression results for birth weight in Table 2 were strengthened by the consistency 

of the results from alternative models. The lack of significant effect of FPC2subj after 

additional adjustment for weight gain is a questionable result, as weight gain may be on the 

causal pathway between the subject-specific glucose characteristics and birth weight, i.e. be 

an intermediate factor by which the mechanisms work [35]. This finding is therefore presented 

as a supplementary analysis in the text, but the main focus is on the results in Table 2. The 

different results for birth weight in the subsamples with percentage fat or cord blood C-

peptide may be a consequence of colinearity issues in combination with the reduced sample 

size. Notably, in all these analyses, both a “general level” and a “timing of peak” 

characteristic were identified as important for birth weight.  

The sample size in the present study was substantial, but the women were healthy and 

relatively homogenous. This may have caused less variation in the individual glucose curves 
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and made it more difficult to extract important discriminating curve characteristics. Also, the 

scarce sampling of glucose during the OGTT is likely to obscure the extraction and 

interpretation of the curve characteristics. More physiologically interesting temporal details 

and better discriminating abilities of the FPCs may be expected in a more heterogeneous 

population, and from OGTT curves over more than 2 hours or with a more frequent OGTT 

sampling. With more measurements per OGTT, it is also possible to apply alternative 

smoothing strategies [27]. In this study, the smoothing involved both a roughness penalty 

when fitting individual curves, and leaving out the FPCs which explained the smallest part of 

the variation, i.e. those with the waviest appearance. This might have given a too conservative 

estimate of the amount of curvature in the individual curves, which again could have caused 

bias in the FPC scores and thereby affected the regression results. It is also possible that the 

methods of covariance matrix estimation did not perfectly separate the across and within 

variances, influencing the colinearity, and thereby the variable selection.  

Compared to studies presenting intravenous glucose tolerance tests [36], the glucose 

measurements per woman per OGTT in our study were few. They were, nevertheless, samples 

from an underlying, continuous and temporal process, and this made FDA a natural choice of 

analysis [24]. Alternative analyses include ordinary principal component analysis (PCA) of 

the five glucose measurements, and using these PCA scores as input in the regression analyses 

instead of FPCA scores. With only five measurements per curve, and measurements taken at 

the same time points for each woman, this would be expected to extract similar information as 

the FDA. However, FDA emphasizes the basic assumption about continuity of the underlying 

process, provides interpretations of curve features in this context, and opens for analysis of 

the derivatives of the curves [24]. FDA is also easier to apply in situations with more frequent 

sampling, sampling at unequal time points, and missing data.  

The finding of the general glucose level as the most important glucose curve 

characteristic is in accordance with the numerous studies focusing on elevated glucose of 

various types, e.g. fasting, 1-h, 2-h or HbA1c values, in diabetes research  [1,13,37]. Also, the 

increase in postprandial values during pregnancy, and corresponding delay in postprandial 

peak, found in the present study, is supported by several earlier studies [9,14,16,18,38]. FPC1 

scores were positively associated with BMI, indicating that higher BMI leads to generally 

higher glucose levels. This is also in accordance with physiological knowledge of obesity and 

insulin resistance [13,39] and our recent findings [20]. Many studies have found a decline in 

fasting glucose during the first trimester of pregnancy [15], but an overview of longitudinal 

studies during pregnancy showed conflicting results concerning later pregnancy fasting 
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glucose [15]. This justifies our findings of a small increase in fasting glucose from weeks 14-

16, to 30-32. Hence, current knowledge of metabolic changes during pregnancy supports the 

interpretations of the FPCs as plausible and potentially important physiological 

characteristics. 

The HAPO study is a reference study for the impact of maternal blood glucose levels 

on pregnancy outcomes, and has found statistically significant higher odds ratios for high 

birth weight, cord-blood serum C-peptide level and percentage body fat (above their 

respective 90th percentiles), for high fasting, 1-hour and 2-hour glucose levels [1,40]. This 

supports our findings of important impact of FPC1 scores, interpreted as “general glucose 

level”, on these outcomes. Other studies with a similar scope, but smaller sample sizes are 

also in accordance with these findings [2,4,6–8]. However, none of these studies addressed 

the impact of the dynamic regulation of the blood glucose, which is embedded in the FPC2 

and FPC3 scores. Some studies have commented on the postprandial peak and birth outcomes 

[9,22,41], but to our knowledge, our previous study [20] is the only study that has formally 

investigated the impact of the timing of the postprandial peak.  

We earlier found that for glucose curves from early pregnancy, the AUC was strongly 

correlated with FPC scores that provided information about the general glucose level during 

the OGTT, but not with scores providing information about timing of postprandial peak or 

oscillations, nor with the fasting or 2-h values [20]. This was also found in the present study 

(Supporting information SI2). Our recommendation is therefore to use AUC values rather 

than the fasting values or 2-h values, if FDA is not applied.  

An important application of FDA techniques concerns research and clinical settings 

where continuous glucose monitoring devices are used [42]. Currently, many such studies 

restrict the analyses to simple summary measures like the mean glucose [17,43], resulting in 

loss of potentially important information, as demonstrated in [20]. With the increased use of 

continuous glucose monitoring, there is a strong need for methods that can extract important 

information from curve data.  

The HAPO study extended the Pedersen hypothesis about how maternal 

hyperglycemia affects the foetus [13] to the normal-glycaemic range, thereby giving rise to a 

comprehensive debate about the GDM diagnosis [11,44–48]. In contrast to the WHO GDM 

criterion based on the fasting and  2-h value only [37], the new criteria suggested by the 

International Association of Diabetes and Pregnancy Study Group takes into consideration 

both the fasting, 1-h and 2-h OGTT values, with cut-off values based on risk estimates for 

adverse outcomes [48]. This implies that the new criteria indirectly address the dynamics in 
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the curves. We have shown that modern statistical analysis can extract curve information 

reflecting glucose dynamics that is important for both maternal [20] and neonatal outcomes. 

This can contribute to a better understanding of the different stages in the development of 

unhealthy glucose metabolism, and to a more precise prediction of women at risk for maternal 

or foetal complications. Then, interventions targeted to modify glucose curves could be 

initiated before a GDM diagnosis is given, or treatment for it is necessary. Such interventions 

have been studied in pregnant and non-pregnant study samples [49–51]. Future studies should 

investigate whether such interventions also may affect pregnancy outcomes, and have positive 

long-term effects on maternal health.  

In conclusion, the physiologically interpretable glucose curve characteristics extracted 

by FDA in the present analysis, and their statistically significant effects of on birth weight, 

neonatal percentage fat, and cord blood C-peptide, show that shape information inherent in 

entire glucose curves is important for several outcomes, and may contribute to the 

understanding of the metabolic changes during pregnancy. FDA techniques can also be used 

to capture important curve information from more frequently sampled glucose curves, such as 

the increasingly used continuous glucose monitoring devices.  
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Appendix A: Multilevel functional data analysis (FDA) 
The multilevel FDA was based on the works of Ramsay and Silverman [24], Di et al [26] and 

Crainiceanu and Goldsmith [27]. 

 

Fitting individually smoothed  continuous curves 

Let iv t  be the underlying, true continuous and smooth glucose curve for woman 

1, ,i N, N,  at visit 1, , .v V, .,  In our data, 884N , 2V  and 0,120 .t  The estimation of 

individual curves îv t  from the observed discrete data points iv jy t , 1, , ,j J, ,,  is based 

on the measurement model iv j iv j ivjy t t , where iv jt  is iv  evaluated at time jt  

and 2~N 0,ivj  is an error term. In our data, 5.J  The individual curve estimates îv t  

are found by subject-specific spline smoothing with B-splines basis functions and a roughness 

penalty [24].  

 

The functional multilevel model   

Assume that the individual continuous blood glucose curve iv t  can be decomposed 

according to the model  

 .iv v i ivt t t X t U t   (2) 

Here, t  is the overall mean curve and v t  the mean visit-specific deviation from the 

overall mean curve, both assumed to be fixed effects curves. iX t  and ivU t  are assumed 

to be uncorrelated mean-zero stochastic processes, where iX t  represent the subject-specific 

deviation from the visit-specific mean curve, ,vt t  and ivU t  the subject- and visit-

specific deviation from the subject-specific mean curve at visit v, .v it t X t   

Due to the large sample size, we assume that t  can be estimated with negligible 

error by averaging the individual curve estimate îv t  over all subjects i and visits v,  

 
,

1 ˆˆ .iv
i v

t t
N V

  

Similarly, we estimate the mean visit-specific deviation from the overall mean for visit v   by 

 1ˆ ˆ ˆ .v iv
i

t t t
N
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Extracting common temporal characteristics: functional principal component (FPC) curves  

The common temporal characteristics for the stochastic processes iX t  and ivU t  can be 

found by functional principal component analysis (FPCA) of their temporal covariance 

surfaces XK  and UK , for 0,120t  and 0,120s ,   

, cov ,X i iK t s X t X s  

and 

, cov , .U iv ivK t s U t U s  

To obtain estimates of XK  and UK , we first subtract the estimated visit-specific mean curve, 

,vt t  from (2), giving  

 ,iv i ivW t X t U t    

i.e. the combined subject-specific, and subject- and visit-specific stochastic process. Let 

,WK t s  be the covariance surface of ivW t . Since iX t  and ivU t  are assumed to be 

uncorrelated this is simply 

, cov , , ,W iv iv X UK t s W t W s K t s K t s . 

Estimates of the covariance surfaces for iX t  and ivU t  can thus be based on ,WK t s . 

The only contribution to the between-visits covariance, , cov , ,
v vW iv ivK t s W t W s

v v , is the subject-specific variation from  iX t , since , cov , 0U iv ivK t s U t U s  

for v v  when assuming cov , 0i ivX t U s . Hence, for v v , 

, cov , cov , ,
v vW iv iv i i XK t s W t W s X t X s K t s . 

That is, for v v , ,XK t s  can be estimated using a methods of moments estimator of 

,WK t s . We  denote this ˆ ,XK t s . Consequently, for v v , ,UK t s  can be estimated by a 

corresponding methods of moments estimator 

ˆ ˆ ˆ, , ,
v vU W XK t s K t s K t s . 

Once ˆ ,XK t s  and ˆ ,UK t s  are available, the common temporal characteristics of  iX t  

and ivU t  can be estimated by principal component analysis of ˆ ,XK t s  and ˆ ,UK t s  as 

described in [26] and [27], extracting their corresponding functional principal component 
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(FPC) curves X
a t , 1, ,a A, A,  and U

b t , 1, , .b B, .,   The FPC curves  X
a t , 

1, ,a A, A,  represent independent parts of the subject-specific temporal variability, and the 

FPC curves U
b t , 1, ,b B, B,  represent independent parts of the subject- and visit-specific 

temporal variability.  

 

Estimating FPC scores 

The individual stochastic process ivW t  can be expressed as linear combination of the FPC 

curves for  iX t  and ,ivU t  by estimation of corresponding FPC scores. By retaining to the 

first A  principal component curves for iX t , and the first B  principal component curves 

for ivU t , the functional model for the joint stochastic process ivW t  can be expressed as 

 
1 1

;
A B

X U
iv ia a ivb b w

a b
W t t t t   (3) 

~ 0,  ;X
ia aN  ~ 0,  ;U

ivb bN  2~ 0,  w wN ,   

where ia  are the scores for ,X
a t  1, ,a A, A, , ivb  are the scores for ,U

b t  1, ,b B, B, , 

X
a  is the eigenvalue of ,X

a t  U
b  is the eigenvalue of U

b t , and w  is an error term. 

 

Implementation 

The model in equation (3) can be implemented in WinBUGS to obtain estimates and 

corresponding estimation error, i.e. posterior distributions, of ia and ivb  [27]. To completely 

specify the Bayesian model in WinBUGS, it is necessary to provide priors for all model 

parameters. Independent gamma priors with large dispersion were chosen as priors for all 

dispersion parameters in the model. The program code is available as supporting information 

SI1. The matrix notation needed for the implementation can be found in [26,27]. 

 

Individual curve estimates expressed by FPC curves and FPC scores 

Combining equations (2) and (3) with estimated FPC scores îa  and îvb , an individual 

glucose curve estimate iv tiv t  can be given as  

 
1 1

ˆ ˆˆˆ .
A B

X U
iv v ia a ivb b

a b
t t t t tˆiv ˆiv t ˆ   (4) 
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The glucose curve estimates îv t from the penalised B-splines smoothing, and iv tiv t  from 

(4), will be similar, but not identical, as the linear combination in (4) is restricted to the first 

( , )A B  FPC curves and scores. This restriction constitutes an additional smoothing of the 

observed glucose measurements. 
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Figure legends 

Figure 1: Flow chart 

Figure 2: The functional multilevel model. 

In all plots in the figure, the horizontal axis is time during the 2 hour oral glucose tolerance 

test, and the vertical axis is blood glucose, with range from -2 to 12.5 mmol/l. The horizontal, 

grey line is 0 mmol/l. iv t  is the glucose curve from 0 to 120 min for woman 1, ,884i ,884  

at visit 1,2v ; t  is the overall mean glucose curve; v t  is the visit-specific deviation 

from the overall mean curve; iX t  is the subject-specific deviation from the visit-specific 

mean curve; and ivU t  is the subject- and visit-specific deviation from the subject-specific 

mean curve. 

Figure 3: Smoothed glucose curves and results from the multilevel FPCA.  

Plots A and B show individually smoothed curves from gestational weeks 14-16 and 30-32 

(black lines) and the visit-specific mean curves (grey lines).  

Plots C and D show the overall mean of the fitted curves (grey lines) and how the shape of an 

individual curve differs from the overall mean if a multiplum of the subject-specific FPC 

curves is added to (+) or subtracted from (-) the mean curve.  

Plots E-G and H-J show the visit-specific means at gestational weeks 14-16 and 30-32, 

respectively (grey lines), and how the shape of an individual curve differs from the visit-

specific mean if a multiplum of the subject- and visit-specific FPC curves is added to (+) or 

subtracted from (-) this mean.  

The multiplums correspond to 2 SDs of the corresponding FPC scores.  

Figure 4: Examples of individual curves and corresponding scores. 

The upper, left plot shows the individual glucose curves from 6 women at gestational weeks 

14-16, and the upper, right plot shows the glucose curves from the same 6 women at 

gestational weeks 30-32. The lower plot shows the FPC scores for the same 6 women. The 

grey curves in the upper plots are the mean glucose curves at gestational weeks 14-16 (left) 

and 30-32 (right). Correspondingly, the grey line in the lower plot is zero.   
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Table 1: Sample characteristics. 

  Study sample, n=884* Excluded, n=90* 
   Range  
 Maternal age (years) 31 (4) 19 – 42 31 (4) 
 Para 0  461 (52%)  43 (48%) 
 Daily smoker†  15 (2%)  6 (7%) 
 Height (cm) 169 (6) 150 – 184 169 (6) 
Inclusion Gestational weeks 15.8 (1.3) 12.1 – 22.0  15.8 (1.4) 
 Weight (kg) 69.8 (12.1) 44.6 – 123.1 70.3 (11.4) 
 Body mass index (kg/m2) 24.5 (4.0) 17.2 – 44.0 24.4 (3.5) 
 Fasting blood glucose (mmol/l) 4.0 (0.4) 2.6 – 5.3  
 120 min blood glucose (mmol/l) 4.1 (1.1) 1.2 – 7.8  
 Fasting insulin (pmol/l) median (Q1,Q3) 27 (18, 39) 8 – 305  
 GDM‡ 3 (0.3%)   
Third trimester Gestational week 31.2 (1.0) 26.0 – 35.4  31.2 (0.8) 
 Weight gain from inclusion 7.7 (2.6) -2 – 22 7.8 (2.1) 
 Fasting blood glucose (mmol/l) 4.1 (0.5) 3.0 – 6.2  
 120 min blood glucose (mmol/l) 5.5 (1.3) 1.9 – 10.3  
 Fasting insulin (pmol/l) median (Q1,Q3) 41 (26, 61) 8 – 989  
 GDM‡  50 (6%)   
Birth Gestational week 40.2 (1.2) 37.0 – 43.1  40.1 (1.2) 
 Birth weight child (g) 3654 (481) 2315 – 5420 3697 (527) 
 Total % fat§ (n=187) 13.6 (2.4) 8 – 20 13.2 (2.1) 
 C-peptide in cord blood (ng/ml) (n=137) 1.1 (0.7) 0.1 – 5.0 1.1 (0.9) 
 

Characteristics of the study sample and those excluded due to incomplete OGTT data. Results 

are presented as means (SDs) for continuous variables and frequencies (%) for categorical 

variables, unless otherwise stated. 
* n may vary due to missing values. 
† More than 1 cigarette/day. 
‡ GDM; gestational diabetes: 120 min glucose at or above 7.8 mmol/l 
§ Percentage fat estimated by DXA scan 
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ve
[i
la
m]
 

 
 

<-
 s
mo
ot
hl
is
t$
df
 

gc
vs
av
e[
il
am
] 

 
 

<-
 s
um
(s
mo
ot
hl
is
t$
gc
v)
 

}   
# 
Op
ti
ma
l 
va
lu
e 
of
 l
am
bd
a:
 

 la
mb
da
op
t 

 
 

<-
 1
0^
lo
gl
am
[g
cv
sa
ve
==
mi
n(
gc
vs
av
e)
] 

# 
la
mb
da
op
t 
<-
 7
07
.9
45
8 

  
# 
Pl
ot
s 
sh
ow
in
g 
ho
w 
gc
v 
va
ry
 w
it
h 
lo
gl
am
bd
a.
  

# 
(T
o 
en
su
te
 t
ha
t 
th
e 
op
ti
ma
l 
va
lu
e 
is
 n
ot
 a
 l
oc
al
 m
in
im
um
. 
If
 s
o,
 c
ho
os
e 
an
 a
lt
er
na
ti
v 
ra
ng
e 
fo
r 
la
mb
da
 (
se
e 
ab
ov
e)
 
) 
  

 X1
1(
) 

pa
r(
mf
ro
w=
c(
2,
3)
) 

pl
ot
(l
og
la
m,
gc
vs
av
e,
ty
pe
="
l"
) 

pl
ot
(l
og
la
m,
gc
vs
av
e,
ty
pe
="
l"
,y
li
m=
c(
22
00
,4
00
0)
,x
li
m=
c(
0,
5)
)
 

pl
ot
(l
og
la
m,
gc
vs
av
e,
ty
pe
="
l"
,y
li
m=
c(
23
00
,2
40
0)
,x
li
m=
c(
2.
5,
3.
2)
)
 

ab
li
ne
(h
=m
in
(g
cv
sa
ve
),
lt
y=
2)
 

pl
ot
(l
og
la
m,
gc
vs
av
e,
ty
pe
="
l"
,y
li
m=
c(
23
40
,2
36
0)
,x
li
m=
c
(2
.7
,3
.1
))
 

ab
li
ne
(h
=m
in
(g
cv
sa
ve
),
lt
y=
2)
 

  
# 
Op
ti
ma
l 
sm
oo
th
in
g 
of
 i
nd
iv
id
ua
l 
gl
uc
os
e 
cu
rv
es
, 
ac
co
rd
in
g 
to
 g
cv
 c
ri
te
ri
on
 

 fd
Pa
ro
bj
.o
pt
 
 
 

 
<-
 f
dP
ar
(m
yb
as
is
,2
,l
am
bd
ao
pt
) 
 

 
 

 
 

# 
Sm
oo
th
ed
, 
in
di
vi
du
al
 c
ur
ve
s 
(t
he
 b
as
ic
 u
ni
ts
 i
n 
fu
rt
he
r 
FD
A)
, 
an
d 
co
rr
es
po
nd
in
g 
ev
al
ua
te
d 
fu
nc
ti
on
 v
al
ue
s 

 
g1
.s
mo
ot
h 

 
 

<-
 s
mo
ot
h.
ba
si
s(
c(
0,
30
,6
0,
90
,1
20
),
t(
g1
),
fd
Pa
ro
bj
.o
pt
) 

# 
Th
es
e 
ar
e 
th
e 
co
rr
ec
t 
cu
rv
es
 a
nd
 g
lu
co
se
 v
al
ue
s 
  

g3
.s
mo
ot
h 

 
 

<-
 s
mo
ot
h.
ba
si
s(
c(
0,
30
,6
0,
90
,1
20
),
t(
g3
),
fd
Pa
ro
bj
.o
pt
) 

# 
fo
r 
fu
rt
he
r 
an
al
ys
is
 

ev
al
.g
1 
 

 
 

<-
 t
(e
va
l.
fd
(c
(0
,3
0,
60
,9
0,
12
0)
,g
1.
sm
oo
th
$f
d)
) 

ev
al
.g
3 
 

 
 

<-
 t
(e
va
l.
fd
(c
(0
,3
0,
60
,9
0,
12
0)
,g
3.
sm
oo
th
$f
d)
) 

ev
al
.g
 
 

 
 

<-
 r
bi
nd
(e
va
l.
g1
,e
va
l.
g3
) 

ev
al
.e
rr
or
 

 
 

<-
 g
-e
va
l.
g 

 
# 
Me
an
s 
of
 s
mo
ot
he
d 
fu
nc
ti
on
 v
al
ue
s 

 
ov
er
al
lm
ea
n.
ev
al
 

 
<-
 c
ol
Me
an
s(
ev
al
.g
 
 

,n
a.
rm
=T
RU
E)
 

vi
si
ts
pe
ci
fi
cm
ea
n1
.e
va
l 

<-
 c
ol
Me
an
s(
ev
al
.g
1 

,n
a.
rm
=T
RU
E)
 

vi
si
ts
pe
ci
fi
cm
ea
n3
.e
va
l 

<-
 c
ol
Me
an
s(
ev
al
.g
3 

,n
a.
rm
=T
RU
E)
 

 



 
# 
Mi
ni
ma
l 
sm
oo
th
in
g 
of
 m
ea
n 
cu
rv
es
 (
me
an
s 
of
 s
mo
ot
he
d 
fu
nc
ti
on
 v
al
ue
s)
, 
to
 o
pt
ai
n 
co
nt
in
uo
us
 m
ea
n 
cu
rv
es
  

 fd
Pa
ro
bj
.m
 
 

 
 

 
<-
 f
dP
ar
(m
yb
as
is
,2
,1
) 

 
 

 
 

 
 

ov
er
al
lm
ea
n.
ev
al
.s
mo
ot
h 

 
<-
 s
mo
ot
h.
ba
si
s(
c(
0,
30
,6
0,
90
,1
20
),
ov
er
al
lm
ea
n.
ev
al
,f
dP
ar
ob
j.
m 
)
 

vi
si
ts
pe
ci
fi
cm
ea
n1
.e
va
l.
sm
oo
th
 

<-
 s
mo
ot
h.
ba
si
s(
c(
0,
30
,6
0,
90
,1
20
),
vi
si
ts
pe
ci
fi
cm
ea
n1
.e
va
l,
fd
Pa
ro
bj
.m
 )
 

vi
si
ts
pe
ci
fi
cm
ea
n3
.e
va
l.
sm
oo
th
 

<-
 s
mo
ot
h.
ba
si
s(
c(
0,
30
,6
0,
90
,1
20
),
vi
si
ts
pe
ci
fi
cm
ea
n3
.e
va
l,
fd
Pa
ro
bj
.m
 )
 

   
# 
Pl
ot
s 

X1
1(
) 

bo
xp
lo
t(
ev
al
.e
rr
or
,n
am
es
=c
("
0"
,"
30
",
"6
0"
,"
90
",
"1
20
")
,y
li
m=
c(
-5
.5
,5
.5
),
xa
xt
='
n'
, 
ya
xt
='
n'
,a
nn
=F
AL
SE
) 

X1
1(
) 

 
 

 
pa
r(
mf
ro
w=
c(
1,
2)
) 

pl
ot
(g
1.
sm
oo
th
,l
ty
=1
,c
ol
="
bl
ac
k"
,y
li
m=
c(
1,
12
),
xl
ab
="
Ti
me
 
(m
in
)"
,y
la
b=
"G
lu
co

se
 (
mm
ol
/l
)"
,m
ai
n=
"S
mo
ot
h
ed
 O
GT
T 
gl
uc
os
e
 c
ur
ve
s,
 
\
n 

ge
st
at
io
na
l 
wk
s
 1
4-
16
")

 
pl
ot
(v
is
it
sp
ec
if
ic
me
an
1.
ev
al
.s
mo
ot
h,
lt
y=
1,
co
l=
"g
re
y"
,l
w=
2,
ad
d=
TR
UE
)
 

pl
ot
(g
3.
sm
oo
th
,l
ty
=1
,c
ol
="
bl
ac
k"
,y
li
m=
c(
1,
12
),
xl
ab
="
Ti
me
 
(m
in
)"
,y
la
b=
"G
lu
co

se
 (
mm
ol
/l
)"
,m
ai
n=
"S
mo
ot
h
ed
 O
GT
T 
gl
uc
os
e
 c
ur
ve
s,
 \

n 
ge
st
at
io
na
l 
wk
s
 3
0-
32
")

 
pl
ot
(v
is
it
sp
ec
if
ic
me
an
3.
ev
al
.s
mo
ot
h,
lt
y=
1,
co
l=
"g
re
y"
,l
w=
2,
ad
d=
TR
UE
) 

  
# 
Ne
xt
 s
te
p:
 C
en
te
r 
th
e 
es
ti
ma
te
d 
vi
si
t 
1 
an
d 
3 
fu
nc
ti
on
al
 v
al
ue
s 
on
 t
he
 v
is
it
-s
pe
ci
fi
c 
me
an
 

 
 

 
  
  

g1
.d
em
ea
ne
d 

 
 

 
<-
 e
va
l.
g1
 
- 
ma
tr
ix
(r
ep
(c
ol
Me
an
s(
ev
al
.g
1,
na
.r
m=
TR
UE
),
nr
ow
(e
va
l.
g1
))
,n
ro
w=
nr
ow
(e
va
l.
g1
),
by
ro
w=
TR
UE
)
 

g3
.d
em
ea
ne
d 

 
 

 
<-
 e
va
l.
g3
 
- 
ma
tr
ix
(r
ep
(c
ol
Me
an
s(
ev
al
.g
3,
na
.r
m=
TR
UE
),
nr
ow
(e
va
l.
g3
))
,n
ro
w=
nr
ow
(e
va
l.
g3
),
by
ro
w=
TR
UE
)
 

  
# 
Co
mb
in
e 
th
e 
de
-m
ea
ne
d 
va
lu
es
 i
n 
on
e 
ma
tr
ix
  

 
 

 
 

  
 

g1
an
d3
.d
em
ea
ne
d 

 
 

<-
 c
bi
nd
(g
1.
de
me
an
ed
,g
3.
de
me
an
ed
) 

 
 

 
# 
Ca
lc
ul
at
e 
th
e 
co
va
ri
an
ce
 m
at
ri
x 
of
 t
he
 d
at
a 
ce
nt
er
ed
 a
t 
th
e 
vi
si
t-
sp
ec
if
ic
 m
ea
ns
. 
 

 
 

 
 

 
  
 

bi
g_
co
va
ri
an
ce
_v
1a
nd
3 

 
 

<-
 c
ov
(g
1a
nd
3.
de
me
an
ed
,u
se
="
pa
ir
wi
se
.c
om
pl
et
e.
ob
s"
)
 

ro
un
d(
bi
g_
co
va
ri
an
ce
_v
1a
nd
3,
2)
 

bi
g_
co
rr
el
at
io
n_
v1
an
d3
  

 
<-
 c
or
(g
1a
nd
3.
de
me
an
ed
,u
se
="
pa
ir
wi
se
.c
om
pl
et
e.
ob
s"
)
 

ro
un
d(
bi
g_
co
rr
el
at
io
n_
v1
an
d3
,2
) 

  
# 
Mu
lt
il
ev
el
 a
na
ly
si
s 

 
Gt
: 
Gt
ot
al
 

Gb
: 
Gb
et
we
en
 

Gw
: 
Gw
it
hi
n 

N 
 

 
 

<-
 N
_o
bs
 

Gt
 

 
 

 
<-
 (
bi
g_
co
va
ri
an
ce
_v
1a
nd
3[
1:
N 
,1
: 
N]
+b
ig
_c
ov
ar
ia
nc
e_
v1
an
d3
[(
N+
1)
: 
(2
*N
),
(N
+1
):
 (
2*
N)
])
/2
 

Gb
 

 
 

 
<-
 (
bi
g_
co
va
ri
an
ce
_v
1a
nd
3[
1:
N 
,(
N+
1)
: 
(2
*N
)]
+b
ig
_c
ov
ar
ia
nc
e_
v1
an
d3
[(
N+
1)
: 
(2
*N
),
1:
 N
])
/2
 #
 T
hi
s 
is
 t
he
 e
st
im
at
ed
 K
x 
 

Gw
 

 
 

 
<-
 G
t-
Gb
 

 
 

 
 

 
 

 
 

 
 

# 
Th
is
 i
s 
th
e 
es
ti
ma
te
d 
Ku
 
 

  
# 
Re
ma
rk
: 
No
 c
ov
ar
ia
nc
es
 n
ee
d 
he
re
 t
o 
be
 s
mo
ot
he
d 
(a
s 
co
mp
ar
ed
 t
o 
th
e 
wo
rk
s 
of
 C
ra
in
ic
ea
nu
 a
nd
 D
i)
, 
 

# 
as
 w
e 
ha
ve
 s
mo
ot
he
d 
th
e 
cu
rv
es
 a
s 
ou
r 
da
ta
 p
re
pa
ra
ti
on
 s
te
p.
 

   
# 
Pl
ot
s 
of
 t
he
 e
st
im
at
ed
 K
u 
an
d 
Kx
 s
ur
fa
ce
s 

X1
1(
) 

pa
r(
mf
ro
w=
c(
1,
2)
) 

co
nt
ou
r(
se
q(
0,
12
0,
30
),
se
q(
0,
12
0,
30
),
ma
tr
ix
(G
w,
nr
ow
=5
,b
yr
ow
=T
RU
E)
,m
ai
n=
"G
wd
s 
(O
ri
gi
na
l 
Gt
 m
at
ri
x 
wi
th
 G
b 
su
bt
r 
fr
om
 a
ll
 e
le
me
nt
s
.)
")
 

co
nt
ou
r(
se
q(
0,
12
0,
30
),
se
q(
0,
12
0,
30
),
ma
tr
ix
(G
b,
nr
ow
=5
,b
yr
ow
=T
RU
E)
 

,m
ai
n=
"G
b 
(O
ri
gi
na
l 
Gb
 m
at
ri
x 
wi
th
 K
x)
")
 

  
 



 
# 
PC
A 
of
 t
he
 s
ub
je
ct
-s
pe
ci
fi
c 
le
ve
l 
(G
b:
 G
be
tw
ee
n)
 a
nd
 o
f 
th
e 
su
bj
ec
t-
 a
nd
 v
is
it
-s
pe
ci
fi
c 
le
ve
l 
(G
w:
 G
wi
th
in
):
  

 ei
ge
n(
Gb
) 

ei
ge
n(
Gw
) 

 
# 
De
ci
de
 t
he
 n
um
be
r 
of
 c
om
po
ne
nt
s 
th
at
 a
re
 k
ep
t 
at
 l
ev
el
 1
 a
nd
 2
. 
A 
ge
ne
ra
l 
ru
le
 i
s 
to
 s
to
p 
at
 t
he
 c
om
po
ne
nt
 w
he
re
  

# 
th
e 
cu
mu
la
ti
ve
 p
er
ce
nt
ag
e 
of
 v
ar
ia
nc
e 
ex
pl
ai
ne
d 
is
 g
re
at
er
 t
ha
n 
90
% 
an
d 
th
e 
va
ri
an
ce
 e
xp
la
in
ed
 b
y 
an
y 
si
ng
le
 c
om
po
ne
nt
 

# 
af
te
r 
is
 l
es
s 
th
an
 1
/N
. 
Th
e 
nu
mb
er
 o
f 
co
mp
on
en
ts
 a
re
 a
ls
o 
no
 l
es
s 
th
an
 t
he
 p
re
-d
et
er
mi
ne
d 
mi
ni
mu
m 
va
lu
es
 f
or
 K
1 
(1
) 
or
 K
2 
(1
)
. 

 Gb
ps
t 

 
 

 
 

<-
 e
ig
en
(G
b)
$v
al
ue
s/
su
m(
ei
ge
n(
Gb
)$
va
lu
es
[1
:4
])
  
 

Gw
ps
t 

 
 

 
 

<-
 e
ig
en
(G
w)
$v
al
ue
s/
su
m(
ei
ge
n(
Gw
)$
va
lu
es
) 

K1
  

 
 

 
 

<-
 m
ax
( 
wh
ic
h(
cu
ms
um
(G
bp
st
) 
< 
0.
9 
| 
Gb
ps
t 
> 
1/
N 
) 
+ 
1,
 1
 )
 #
 K
1 
= 
2 

K2
  

 
 

 
 

<-
 m
ax
( 
wh
ic
h(
cu
ms
um
(G
wp
st
) 
< 
0.
9 
| 
Gw
ps
t 
> 
1/
N 
) 
+ 
1,
 1
 )
 #
 K
2 
= 
3 

 
# 
Ob
ta
in
 t
he
 r
es
tr
ic
te
d 
nu
mb
er
 o
f 
le
ve
l 
1 
an
d 
2 
ei
ge
nf
un
ct
io
ns
 f
or
 G
w 
an
d 
 G
b 
(s
om
e 
ar
e 
fl
ip
pe
d 
du
e 
to
 t
he
 p
hy
si
ol
og
ic
al
 i
nt
er
p
re
ta
ti
on
) 

 di
m.
sp
ac
e_
b 

 
 

 
<-
 2
 

# 
le
ve
l 
1 
(s
ub
je
ct
-s
pe
ci
fi
c)
 

ps
i_
1 

 
 

 
 

<-
 c
bi
nd
(-
ei
ge
n(
Gb
)$
ve
ct
or
s[
,1
],
-e
ig
en
(G
b)
$v
ec
to
rs
[,
2]
) 

 
 di
m.
sp
ac
e_
w 

 
 

 
<-
  
3 
 
# 
le
ve
l 
2 
(s
ub
je
ct
/v
is
it
-s
pe
ci
fi
c)
 

ps
i_
2 

 
 

 
 

<-
 c
bi
nd
(-
ei
ge
n(
Gw
)$
ve
ct
or
s[
,1
],
-e
ig
en
(G
w)
$v
ec
to
rs
[,
2]
,e
ig
en
(G
w)
$v
ec
to
rs
[,
3]
) 

 
 

 
 

# 
Pl
ot
s 
of
 t
he
 F
PC
 h
ar
mo
ni
cs
  

X1
1(
) 

pa
r(
mf
ro
w=
c(
1,
2)
) 

pl
ot
(s
eq
(0
,1
20
,3
0)
,p
si
_1
[,
1]
,t
yp
e=
"l
",
yl
im
=c
(
-0
.7
,0
.8
),
co
l=
"d
ar
k 
bl
ue
" 

, 
 

 
ma
in
=p
as
te
("
Su
bj
 F
PC
",
1:
di
m.
sp
ac
e_
b,
",
 b
as
ed
 o
n 
Gb
, 
% 
va
ri
an
ce
:"
,r
ou
nd
(G
bp
st
[1
:d
im
.s
pa
ce
_b
],
2)
),
yl
ab
="
",
xl
ab
="
")

 
li
ne
s(
se
q(
0,
12
0,
30
),
ps
i_
1[
,1
],
ty
pe
="
l"
,y
li
m=
c(
-1
,1
),
lw
=1
2,
co
l=
"d
ar
k 
bl
ue
")
 

li
ne
s(
se
q(
0,
12
0,
30
),
ps
i_
1[
,2
],
lw
=6
,c
ol
="
bl
ue
")
 

X1
1(
) 

pl
ot
(s
eq
(0
,1
20
,3
0)
,p
si
_2
[,
1]
,t
yp
e=
"l
",
yl
im
=c
(-
0.
7,
0.
8)
,c
ol
="
da
rk
 b
lu
e"
 

, 
 

 
ma
in
=p
as
te
("
Su
bj
/v
is
it
 F
PC
",
1:
di
m.
sp
ac
e_
w,
",
 b
as
ed
 o
n 
Gw
, 
% 
va
ri
an
ce
:"
,r
ou
nd
(G
wp
st
[1
:d
im
.s
pa
ce
_w
],
2)
),
yl
ab
="
",
xl
ab
="
")

 
li
ne
s(
se
q(
0,
12
0,
30
),
ps
i_
2[
,1
],
ty
pe
="
l"
,y
li
m=
c(
-1
,1
),
lw
=1
2,
co
l=
"d
ar
k 
bl
ue
")
 

li
ne
s(
se
q(
0,
12
0,
30
),
ps
i_
2[
,2
],
lw
=6
,c
ol
="
bl
ue
")
 

li
ne
s(
se
q(
0,
12
0,
30
),
ps
i_
2[
,3
],
lw
=2
,c
ol
="
li
gh
t 
bl
ue
")
 

 ps
i_
su
bj
 

 
 

 
<-
 p
si
_1
 

 
 

 
 

 
 

 
 

 
  

ps
i_
su
bv
is
_w
 

 
 

 
<-
 p
si
_2
 

 
 

 
 

 
 

 
 

 
   

# 
Mi
ni
ma
l 
sm
oo
th
in
g 
of
 F
PC
 v
ec
to
rs
, 
to
 o
pt
ai
n 
co
nt
in
uo
us
 F
PC
 c
ur
ve
s 
in
 t
he
 p
lo
ts
  

# 
(N
ec
es
sa
ry
 d
ue
 t
o 
th
e 
sm
al
l 
nu
mb
er
 o
f 
gl
uc
os
e 
me
as
ur
em
en
ts
 p
er
 w
om
an
) 
 

 ps
i.
su
bj
.s
mo
ot
h 

 
 

<-
 s
mo
ot
h.
ba
si
s(
c(
0,
30
,6
0,
90
,1
20
),
ps
i_
su
bj
,f
dP
ar
ob
j.
m 
)
 

ps
i.
su
bv
is
.s
mo
ot
h.
w 

 
 

<-
 s
mo
ot
h.
ba
si
s(
c(
0,
30
,6
0,
90
,1
20
),
ps
i_
su
bv
is
_w
,f
dP
ar
ob
j.
m 
)
 

 
# 
Pl
ot
s 
of
 t
he
 (
mi
ni
ma
ll
y 
sm
oo
th
ed
) 
FP
C 
ha
rm
on
ic
s 
 

X1
1(
) 

pa
r(
mf
ro
w=
c(
1,
2)
) 

pl
ot
(p
si
.s
ub
j.
sm
oo
th
) 

 
 

 
 

 
 

# 
Em
pi
ri
ca
l 
ba
si
s 
fu
nc
ti
on
s,
 s
ub
je
ct
 l
ev
el
 

pl
ot
(p
si
.s
ub
vi
s.
sm
oo
th
.w
) 

 
 

 
 

 
# 
Em
pi
ri
ca
l 
ba
si
s 
fu
nc
ti
on
s,
 s
ub
j/
vi
si
t 
le
ve
l 

 
 



 
# 
Pl
ot
 o
f 
me
an
 c
ur
ve
s 
+ 
or
 –
 2
*S
D 
of
 F
PC
s 
 

X1
1(
) 

pa
r(
mf
ro
w=
c(
3,
3)
) 

ev
b 

 
 

 
<-
 e
ig
en
(G
b)
$v
al
ue
s/
su
m(
ei
ge
n(
Gb
)$
va
lu
es
[1
:4
])
 

ev
gw
 

 
 

 
<-
 e
ig
en
(G
w)
$v
al
ue
s/
su
m(
ei
ge
n(
Gw
)$
va
lu
es
[1
:5
])
 

fo
r(
i 
in
 1
:d
im
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 p
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ra
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 b
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 m
ea
n(
me
an
(W
_1
,n
a.
rm
=T
RU
E)
) 

 in
it
s.
W_
2 

 
 

<-
 m
at
ri
x(
re
p(
NA
,N
_s
ub
j*
N_
ob
s)
,n
co
l=
N_
ob
s)
 

in
it
s.
W_
2[
is
.n
a(
W_
2)
] 

 
<-
 m
ea
n(
me
an
(W
_2
,n
a.
rm
=T
RU
E)
) 

 in
it
s.
ll
_b
 

 
 

<-
 r
ep
(0
.0
1,
di
m.
sp
ac
e_
b)
 

in
it
s.
ll
_w
 

 
 

<-
 r
ep
(0
.0
1,
di
m.
sp
ac
e_
w)
 

 in
it
s 

 
 

 
<-
fu
nc
ti
on
()
{l
is
t(
xi
=m
at
ri
x(
re
p(
0,
N_
su
bj
*d
im
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ra
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ra
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 p
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 m
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ra
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 d
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 l
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 m
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at
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