

Developing Model-
Driven Software

Product Lines
Doctoral Dissertation by

Xiaorui Zhang

Submitted to the Faculty of Mathematics and Natural Sciences at the
University of Oslo in partial fulfillment of the requirements for the degree

Philosophiae Doctor (PhD) in Computer Science

© Xiaorui Zhang, 2014

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1463

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AIT Oslo AS.

Produced in co-operation with Akademika Publishing.
The thesis is produced by Akademika Publishing merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

1

Abstract

This thesis focuses on model-driven software product line development, which is the
combination of the following two software development paradigms: (1) Model-
Driven Engineering (MDE), which focuses on modeling software products and
automating code generation from product models. In particular, Domain-Specific
Modeling (DSM), as a technique in the arena of MDE, is about defining a Domain-
Specific Language (DSL) and creating software product models using the language.
(2) Software Product Line Engineering (SPLE), is a means to produce similar
software products, by consolidating those into product lines to enable managed reuse.
In a model-driven Software Product Line (SPL) which adopts DSM technique,
products are represented as product models defined in a DSL. The variability (and
commonality) of all intended products is specified in a product line model, typically
using a variability modeling language. Based on the variability specified in the
product line model, reusable model fragments specified using the base DSL, serving
as the core assets of the product line, will be reused to derive all intended product
models. This thesis provides methods for developing model-driven software product
lines, in terms of development methodology, automated assistance and SPL evolution
support.

Firstly, this thesis presents two results on the methodology for developing a model-
driven SPL: (1) A generic and separate variability modeling language, which can be
used to specify a product line model defining how intended product models can vary
from each other, both at the domain conceptual level and the realization level (model
object level). (2) Guidelines on how to define a DSL that is suitable to serve as the
base language for a model-driven SPL, if the base language of the product line does
not exist yet.

Secondly, this thesis reports on two results in providing automated tool support for
model-driven product line development: (1) A method for synthesizing a product line
model from a set of existing product models when the product line is not built from
scratch. (2) A method for ensuring that all the product models that can be derived
from the product line model are intended.

Thirdly, this thesis reports on three results in providing support for evolving
model-driven SPLs: (1) A method for augmenting the existing product line model
when new product models need to be included. (2) A method for suggesting
automatic update to the product line model when the core assets of the product line
have been changed. (3) A method for calculating semantic difference between two
model-driven SPLs.

We illustrate the application of our approaches in various case studies in different
domains, provided by both industry and academia. Different phases of SPL
development and evolution can require substantial amount of manual efforts, of which
productivity can be improved by adopting our automatic tool support. We show that

2

by following our approaches, model-driven SPLs can be developed and evolved in a
systematic and efficient manner.

3

To Andreas, thank you for accompanying me to the park in

that sunny afternoon, where everything started.

4

Acknowledgement

The work presented in this thesis has been performed in the context of the MoSiS
project (Model-driven development of highly configurable embedded Software-
intensive Systems), and has been funded by the Norwegian Research Counsil (project
number 180110/I40).

First of all I would like to thank my two supervisors Øystein Haugen and Birger
Møller-Pedersen for their invaluable guidance through my entire PhD process. I
would also like to extend my gratitude toward the other researchers in the MoSiS
project at SINTEF, Andreas Svendsen, Franck Fleurey and Gøran K. Olsen, for their
support and collaboration.

I would like to thank Bjørn Skjellaug, my research director at SINTEF ICT, for
giving me the opportunity to write this thesis. In addition I thank my other colleagues
at SINTEF for providing the most pleasant, inspiring and professional work
environment.

I really appreciate the cooperation with ABB Corporate Research and Agresso, for
their collaboration in problem identification, prototype design and evaluation. Their
willingness to try out model-driven software product line development has been an
inspiration for my work.

I would like to thank my in-laws, Kari, Rolf, Lisa, Anne-Elisabeth and Arne, for
giving me encouragement, love and sometimes free dinners during my PhD study.
I am also very grateful to my friends, Yun, Jie and Haowen, for supporting me all the
way in terms of both encouragement and good home-made food

I would like to express my deep gratitude to my parents and (late) grandparents, for
being good people that I can look up to, and for their guidance during my personal
development.

Most of all, I am sincerely grateful to Andreas Svendsen, who has been my
colleague, my husband and my best friend over the years. We worked together, travel
together and live together. When I was sad, he cheered me up; when I was happy, he
felt happy for me; when I wanted to give up, he encouraged me; when I prolonged my
PhD without funding, he supported me. Without him, this thesis would never be made
possible.

5

Table of Contents

Abstract ... 1

Acknowledgement .. 4

Table of Contents .. 5

1 Introduction .. 7

1.1 Overview of the Contributions ... 9
1.2 Structure of the Thesis ... 12

2 Background .. 15

2.1 Model-Driven Engineering and Domain-Specific Modeling 15
2.2 Variability Modeling and Model-Driven SPL Development 17
2.3 Evolving Model-Driven SPLs .. 20
2.4 Alloy .. 20
2.5 EMF Compare ... 21

3 Research Topics ... 23

3.1 Research Topic 1: A Generic Approach for Developing Executable
Model-Driven SPLs (RT1) .. 23

3.2 Research Topic 2: Automatic Assistance in Model-Driven SPL
Development (RT2) .. 24

3.3 Research Topic 3: Evolving Model-Driven SPLs (RT3) 25
4 Research Method .. 27

4.1 The Technology Research Method .. 27
4.2 How We have Applied the Research Method .. 28

5 State-of-the-Art .. 33

6

5.1 Variability Modeling and Software Product Line Engineering.............. 33
5.2 Evolving Model-Driven SPLs .. 46

6 Contributions .. 55

6.1 RT1: A Generic Approach for Developing Executable Model-Driven
SPLs ... 56

6.2 RT2: Automatic Assistance in Model-Driven SPL Development 70
6.3 RT3: Evolving Model-Driven SPLs .. 81

7 Discussions... 93

7.1 An Extended CVL Methodology for Model-Driven SPL
Development and Evolution .. 93

8 Conclusions and Future Work .. 97

8.1 Research Topic 1: A Generic Approach for Developing Executable
Model-Driven SPLs (RT1) .. 97

8.2 Research Topic 2: Automatic Assistance in Model-Driven SPL
Development (RT2) ... 98

8.3 Research Topic 3: Evolving Model-driven SPLs (RT3) 100
Bibliography ... 103

Appendix I .. 115

Appendix II ... 117

Appendix III ... 119

Appendix IV ... 121

Appendix V .. 123

Appendix VI ... 125

Appendix VII .. 126

7

1 Introduction

A Software Product Line (SPL) is a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a
prescribed way [40]. Software Product Line Engineering (SPLE), emerging as a
viable software development paradigm, enables the reduction of time-to-market for
similar software products through managed reuse of core assets.

As another software development paradigm, Model-Driven Engineering (MDE)
focuses on creating software models and automating code generation from the models
[42]. Software models can be specified using either general-purpose modeling
languages (e.g., UML) or Domain-Specific Languages (DSLs). A DSL is a custom-
made language for a specific domain [76]. Typically the language constructs and rules
of a DSL only capture the essential concepts of the domain. Therefore, a DSL allows
domain experts to model systems using familiar domain-specific terms, without
having extensive modeling experience.

Model-driven SPL development combines the SPLE and MDE paradigm. In
model-driven SPLs, core assets are reusable software model fragments instead of
reusable code snippets. Therefore, products of model-driven SPLs are in the form of
models (we call them "product models"), from which the code for the software
products can be further generated through model-to-text transformations.

Fig.1. Thesis contribution overview

As illustrated in Fig.1, the objective of our thesis is to provide methods to facilitate
effective and efficient development of model-driven SPLs. In particular, we address
how to develop model-driven SPLs for different domains in a separate and generic
way, how to improve the productivity of model-driven SPL development by

Developing model-driven SPLs
Automatic assistance in model-

driven SPL development

Evolving Model-driven SPLs

A separate and generic approach for
developing model-driven SPLs

8

automatic means, and how to improve the productivity in evolving model-driven
SPLs.

In a model-driven SPL, instead of creating similar software product models
individually, the product models are derived from the product line model. The product
line model, often in the form of a variability model, is created to specify the
variability (and commonality) of all the intended product models. There are two
strategies for specifying a product line model [66]:

(1) The amalgamated approach is to extend the base language (either a general-
purpose modeling language or a DSL) of the product line with variability modeling
concepts. However, changing the definition of the base language and its tool support
(e.g., editors and code generators) to facilitate variability modeling may not always be
feasible.

(2) The separate approach is to describe the variability of the product line using a
dedicated variability modeling language. For example, feature modeling techniques,
first proposed by Kang et al. [71] for domain analysis purposes, belongs to this
category. In a feature model (product line model), the variability (and commonality)
of the product line are represented as features that are hierarchically organized. In
order to derive a product model, the developer does not only need to choose all the
required features from the product line model, but also need to define
feature/variability realization - how the chosen features should be realized by reusing
the core assets (reusable model fragments) during product derivation (model-to-model
transformations) [14].

However, including feature modeling, most of the separate variability modeling
techniques [71, 99] do not include language concepts to specify how features should
be realized at the (model) object level. Furthermore, it is a challenge to define feature
realization in a separate and generic way for product lines in various domains with
product models specified using different base DSLs.

In this thesis we provide a separate and generic approach for developing model-
driven SPLs (see Section 6.1.1), which allows the developer to define both features
and their realizations holistically in a product line model.

When a DSL is chosen to be the base language for a model-driven SPL, all the core
assets and intended products will be specified in this language. Moreover, if this DSL
does not exist yet, to create it will become one of the prerequisites prior to the actual
SPL development.

In this thesis we report on experience in developing a base DSL that is suited for
building model-driven SPLs afterwards (see Section 6.1.2). We show that a properly
defined DSL, together with well-planned SPLs, can improve the productivity for
developing software products [144].

Providing automatic assistance to model-driven SPL development can increase
productivity in the production of software products beyond current human labor
levels. Numerous automatic tools have been developed to support model-driven SPL
development. However, there is still a lack of automatic assistance for many specific
needs in various contexts at each development phase.

In this thesis we provide a set of automatic methods to improve the productivity in
identifying variability (see Section 6.2.1) and defining variability/feature realization
(see Section 6.2.2) for SPLs.

9

Software product lines often evolve over time [120]. Many existing automatic
techniques in SPL evolution have their focus on managing and understanding product
line evolutions (e.g., version control systems and differencing tools [6]). Very few of
them target on suggesting evolution steps automatically based on new requirements,
such as augmenting an SPL with new products [141].

In addition, there is also a lack of automatic methods in supporting SPL co-
evolution, such as suggesting necessary update to the product line model after the
core assets have been changed.

Furthermore, most of the differencing tools being used to understand the impact of
an SPL evolution are either syntax-based, which has its limitation in revealing
added/removed products during an evolution, or semantic-based which only compares
two SPLs at the feature/variability specification level without considering the
feature/variability realization that might have been changed.

In this thesis we provide a set of automatic methods to improve the productivity in
SPL evolution, in terms of augmenting an SPL with new products (see Section 6.3.1),
co-evolving the product line model when the core assets are changed (see Section
6.3.2), and differencing two SPLs semantically by taking both features and their
realizations into account (see Section 6.3.3).

This thesis work has been performed in the context of the MoSiS1 project. MoSiS
is an industrial-driven research project with focus on developing and standardizing a
generic variability modeling language, as well as promoting the model-driven SPL
paradigm to industry.

There is no silver bullet for software engineering problems [32]. Thus, rather than
searching for the silver bullet for model-driven SPL development, in this thesis we
make our research efforts in contributing to a technology box with specialized tools
and methods tailored for specific needs.

1.1 Overview of the Contributions

As illustrated in Fig.1, our work on developing model-driven SPLs is addressed
through the following areas:

 A separate and generic approach for developing model-driven SPLs in
different domains.

 Automatic assistance in model-driven SPL development.
 Evolving model-driven SPLs.

In the following we give a detailed description of the challenges in these areas.

1.1.1 A Generic Approach for Developing Model-Driven SPLs

Defining variability specification and realization in a generic way (see Section
6.1.1). There are two challenges that we address in proposing a separate and generic
approach for developing model-driven SPLs:

1 http://www.itea2.org/project/index/view?project=200

10

(1) One challenge is that, few separate and generic model-driven approaches (e.g.,
feature modeling) support defining both the domain-level variability (features) and
their realizations at the model (object) level holistically in the same product line
model.

(2) The other challenge is how to represent feature/variability realization (model
editing operations) in a generic way. The approach should provide means to describe
arbitrary edits to any model specified in any base DSL.

In order to address these challenges, we propose a separate and generic variability
modeling language, the Common Variability Language (CVL) and the CVL
methodology for SPL development. The CVL language provides capabilities in
defining both variability/feature specification and realization in the same product line
model. Furthermore, the CVL language categorizes arbitrary model edits into value,
reference and fragment substitutions, which can describe any value and structural
changes in any model specified in any MOF-based modeling language. Since the
CVL language is the core of this approach, we refer to this approach as "CVL" in the
rest of this thesis.

Defining a Base DSL that is Suitable for Building Model-Driven SPLs (see
Section 6.1.2). DSM/MDE and model-driven SPL are both new paradigms for most
developers in industry. Very often a base DSL needs to be developed together with
model-driven SPLs, which raises the question: how to develop a base DSL that is
suitable for building model-driven SPLs that are based on separate variability
modeling approaches?

We report our experience in developing a base DSL and SPLs for the payroll
reporting domain. We show that: (1) If the language concepts of the base DSL is fully
domain-specific without any variability modeling concepts, it will be more intuitive
and conceptually clearer to build SPLs that are based on separate variability modeling
approaches. (2) How the productivity of traditional software development can be
improved by model-driven SPL techniques. Since the experience was collected during
the development of the Agresso Payroll Reporting Language (APRiL), we refer to this
contribution as "APRiL" in the rest of our thesis

1.1.2 Automatic Assistance in Model-Driven SPL Development

Synthesizing an SPL from a set of existing products (see Section 6.2.1). As a new
software development paradigm, SPLE is not always adopted from scratch in practice.
For example, when an organization shifts from traditional software development to
product line development, the developer often needs to include existing products in a
product line and further enhance it to introduce new products [142]. For product line
development in this context, we see the potential in providing automatic assistance to
identify variability (and commonality) of an SPL. We show in this thesis how to
synthesize a set of existing product models into a preliminary product line model
specified in our generic variability modeling language, through an automated
procedure. This preliminary product line model can serve as the base line for manual
enhancement. Since this approach is built based on CVL and model comparison
techniques, we refer to this approach as "CVL Compare" in the rest of this thesis.

11

Ensuring that the variability realization will only yield intended products (see
Section 6.2.2). In order to derive product models from a product line model, the
developer does not only need to specify the variability of the product line, but also
needs to define how the variability (features) can be realized by reusing the core
assets (reusable model fragments) and applying necessary model editing operations.
However, specifying variability/feature realization is often an error-prone process
since it requires the developer to have a good understanding of both the core assets
and intended product models at the model object level. In particular, there are two
challenges that we focus on in this thesis:

(1) With most existing techniques, the developer does not have immediate
feedback on his/her specification changes to the variability/feature realization at
design time. Therefore the more complex the variability/feature realization is at the
model object level, the more difficult it will be for the developer, without proper tool
support, to ensure that the current definition of the variability realization will only
yield intended products.

We address this challenge by providing a generic variability realization simulator,
which can be evoked at design time to simulate the execution of the variability
realization and provide a preview of the resulting model excerpt. The simulator, if
properly used in an iterative "define-preview-improve" manner, can provide an
immediate feedback on whether the current definition of the variability realization
will yield intended model changes in the final product models.

(2) Most variability/feature modeling techniques provide means to specify domain-
level constraints that govern dependencies between features [22, 45]. For example,
feature A implies feature B, indicates that these two features should always coexist in
a product. However, if both the realizations of feature A and B require to change the
same model object/reference, but in two different ways, then an inconsistency
between the feature specification level and the feature realization level occurs. During
the derivation of products with feature A and B, this inconsistency can cause errors
because the realizations of feature A and B contradict with each other.

We address this challenge by categorizing such inconsistencies and proposing a
consistency checker to search for unwanted inconsistencies that may halt the product
derivation or yield unintended products. In the rest of the thesis, we refer to this
approach as "Automatic assistance in defining variability realization" in the rest of
this thesis.

1.1.3 Evolving Model-Driven SPLs

Augmenting an SPL with new products (see Section 6.3.1). Product lines are often
subject to changes over time [120]. Augmenting an existing product line to include
new products is a typical product line evolution scenario in practice and it has been so
far mostly a manual process [141]. This process does not only require the developer to
perform an extensive comparison of the new and existing products, but also to have a
comprehensive understanding of the impact of each change to the existing product
line.

In this thesis we show how a product line model specified in the Common
Variability Language (CVL), which is our generic variability modeling language,

12

can be augmented with new product models, through a series of automatic routines,
resulting in a tentative augmented product line model for manual enhancement [141].
We refer to this approach as "Augmenting an SPL" in the rest of this thesis.

Co-evolving the product line model when the base model is changed (see
Section 6.3.2). For a model-driven SPL, all its product models can be derived by
reusing and changing the reusable model fragments (core assets of the SPL).
However, core assets can undergo maintenance for various reasons. Therefore a series
of questions arise: Will the product line model still derive the intended product
models from the core assets that have been changed? If not, how the product line
model should be updated to ensure that the product derivation remains unaffected?

We address this challenge by proposing an approach for co-evolving the product
line model (developed in our CVL language) when the base model (part of the core
assets) is evolved. In particular, the approach detects the inconsistencies in the
original product line model caused by the changes to the base model, and
automatically suggests an evolved product line model which has all the
inconsistencies resolved. We refer to this approach as "Co-evolving an SPL" in the
rest of this thesis.

Semantic Differencing for SPLs (see Section 6.3.3). In order to understand the
impact of an SPL evolution which has taken place over time, it is common for the
developer to compare the original and the evolved product line. When it comes to
applicable differencing techniques, syntax-based approaches have their limitations in
situations when syntactical similar models have very different semantics, which has
been observed in feature models [6]. It would be helpful for the developer to gain an
understanding of the semantic impact of an SPL evolution (e.g., in terms of
added/removed products). Nevertheless, existing semantic differencing techniques for
feature models only compare domain-level features without taking the actual feature
realizations into consideration, resulting in an incomplete picture of the SPL
evolution.

We address this challenge by proposing an approach for semantic differencing for
SPLs. The approach is built based on the definitions of two semantic differencing
operators, which take both feature/variability specification and feature realization into
account during the SPL differencing process. We refer to this approach "Semantic
Differencing for SPLs" in the rest of the thesis.

1.2 Structure of the Thesis

This thesis is presented as a collection of research papers with an accompanying
overview. It is divided into two parts: Part I contains the overview, which gives the
motivation, background and overview of the contributions. Part II is the main
contribution in the form of a set of papers.

In addition to the introductory chapter, the remainder of Part I is organized as
follows:

 In Chapter 2, we give an overview of the background of the thesis work.
 In Chapter 3, we elaborate the problem area and define research topics

investigated in the thesis work.

13

 In Chapter 4, we describe the research methods applied in the course of the
thesis work.

 In Chapter 5, we give a review of the literature and state-of-the-art.
 In Chapter 6, we give an overview of our contributions and research papers.
 In Chapter 7, we discuss and evaluate the accomplished work towards the

research topics.
 In Chapter 8, we conclude and propose some directions for future work.

Part II contains seven papers in Appendix I - VII, which define the main
contribution of the thesis.

15

2 Background

In this section, we give an introduction on the definition of the research topics that
this thesis covers.

2.1 Model-Driven Engineering and Domain-Specific Modeling

Model-Driven Engineering (MDE) raises the abstraction level of typical software
development, by shifting the focus from programming to modeling and automating
code generation from the models. Software models can be specified using either
general-purpose modeling languages (e.g., UML or Domain-Specific Languages
(DSLs)). Domain-Specific Modeling (DSM) techniques allow domain experts to
develop software applications of the domain without having extensive modeling and
programming experience. For example, instead of coding a software system directly,
domain experts can specify models of the system using domain-specific language
concepts provided by a DSL. Subsequently, the models can be transformed into the
code of the system by automatic code generators.

For example, as reported in [121], Train Control Language (TCL) is a DSL for
specifying train control systems equipped at train stations. TCL with its tool support
(i.e., TCL graphical editor and TCL code generator) is developed by SINTEF2 in
cooperation with ABB, Norway3. Traditionally train control experts at ABB need to
develop train control systems for different station drawings received from the national
railway authority. Such system development involves much coding for Programmable
Logic Circuits (PLCs) using low-level programming languages, which can often be an
error-prone and time-consuming process. TCL was developed to address this
challenge. With the TCL graphical editor, train control experts can specify station
models using the language constructs that graphically resemble the building blocks in
the station drawings. Code for on-station PLCs can be generated from TCL station
models through the TCL code generator.

Applying DSM techniques can improve the productivity in developing domain-
specific software applications. However, the improvement also comes with an
overhead, including the development of the DSL itself, DSL model editors and code
generators.

2 http://www.sintef.no/
3 http://new.abb.com/no

16

There are two popular approaches for developing DSLs: (1) Extending the standard
UML language with domain-specific concepts using UML profiles4. (2) Creating
DSLs from scratch using metamodeling techniques. Our thesis work focuses on the
latter approach.

Defining a DSL using metamodeling techniques includes three parts:
Abstract syntax, which is a set of rules about how language concepts can be used

during the modeling process, defined in a metamodel. A DSL editor enforces the
abstract syntax of the language so that only models conforming to the metamodel are
allowed in the editor. As illustrated in Fig.2, in a TCL station model LineSegment(s)
and Switch(es) can only be connected by Endpoint(s), which conforms to the abstract
syntax of the TCL language.

Fig.2. Basic TCL concepts in the graphical editor with annotations

Concrete syntax, which is a set of rules that define the way models look like to the
modeler (domain expert), i.e. textual/graphical notation of the language concepts. It is
important that the concrete syntax of a DSL resembles the counterpart of the domain
visually, so that it may be easier for domain experts to comprehend the notations of
this DSL. A DSL editor, either textual or graphical, is built based on the concrete
syntax of the language. As illustrated in Fig.2, the concrete syntax of the TCL
language is very domain-specific, which resembles the look-and-feel of the station
drawings received from the authority.

Semantics, define what language concepts (and compositions of language
concepts) mean, making it possible to understand models specified in this language
precisely. As illustrated in Fig.2, the round-angled rectangles and the square-angled
rectangles represent TrainRoute(s) and TrackCircuit(s) respectively. The semantics of
a TrainRouteis a route between two MainSignal(s) in the same direction. The
semantics of a TrackCircuit is the shortest segment where the presence of a train can
be detected.

There are several tools for metamodeling DSLs and building DSL editors (e.g.,
Eclipse Modeling Framework core (EMF core)5 for creating metamodels, Graphical

4 http://www.omg.org/spec/
5 http://www.eclipse.org/modeling/emf/

EndPoint

CombinedMainSignal

TrackCircuit(s)

TrainRoute(s)

MainSignal

Switch

TrainRoute

TrackCircuit

LineSegment

17

Modeling framework (GMF) 6 for building graphical editors and EMFText 7 for
building textual editors). Take the TCL language for example, the TCL metamodel is
developed using EMF, and the TCL graphical editor is developed using GMF. We
also use EMF and GMF in the prototype development of our thesis work, which will
be elaborated later in Section 6.

Code generators are responsible for transforming models specified in the DSL
editor into code. In particular, a code generator is written as a transformation script,
which reads in models, traverses model elements and transforms models into texts.
Code generators can be developed using general-purpose programming languages
(e.g., Java) or model transformation tools (e.g., QVT8 and MOFScript9). We use
MOFScript, a tool for model-to-text transformation, to develop the code generators in
our thesis work.

2.2 Variability Modeling and Model-Driven SPL Development

Developing similar software products is a common software development scenario in
practice. For example, in mobile phone industry, software systems for different phone
models are quite similar to each other, since all of them need to support mandatory
features such as calling and SMS. However, they also vary from each other by
supporting different optional features. For example, a higher-end phone may be
equipped with features like GPS, camera while a lower-end one may only have
camera but not GPS. In order to reduce time-to-market when developing similar
software products, ad-hoc code reuse (e.g., copy & paste) is often applied by
developers. However, unplanned and unmanaged code reuse can introduce potential
errors into the code and does not always maximize the benefits of reuse. In order to
address these challenges, Software Product Line Engineering (SPLE) has been
introduced to enable planned and managed reuse in the development of similar
software products. Instead of developing similar software products individually,
SPLE paradigm focuses on building a Software Product Line (SPL) from them. An
SPL captures the variability and commonality of all its intended products. A set of
core assets (reusable artifacts, such as code libraries, software components and etc.)
serve as the base for an SPL, which will be reused to derive all intended products.

Model-driven SPL development is a combined paradigm of MDE and SPLE. In a
model-driven software product line, core assets are reusable model fragments
specified in a base language (e.g., UML or a DSL) instead of actual code snippets. All
products are represented as models specified in the base language as well. The
development of a model-driven SPL consists of the following phases:

Variability Identification. This phase focuses on capturing the variability and
commonality of all intended product models of the product line. Variability
identification has been mostly a manual process and the majority of contributing

6 http://www.eclipse.org/modeling/gmp/
7 http://www.emftext.org/index.php/EMFText
8 http://www.omg.org/spec/QVT/1.1/
9 http://marketplace.eclipse.org/content/mofscript-model-transformation-tool#.UpTAcdJIJvA

18

methods are directive guidelines. As the first domain analysis methodology, FODA
[71] suggests to identify the variability of a domain by conducting surveys/interviews
towards domain experts/end-users, as well as inspecting relevant documents and
applications. Many other research works suggest similar methods for variability
identification in SPL development, such as in FORM [72], FAST [132], PuLSE [23]
and KobrA [18].

Variability Specification. In this phase, the developer specifies a product line
model to describe the variability and commonality of the product line. There are two
strategies to specify a product line model:

The amalgamated approach, which is to extend the base language (e.g., UML or a
DSL) with variability modeling language concepts. However, it may not be always
feasible to change the definition of the base language and its tool support (editors,
code generators and etc.). Or the developer may prefer to keep the scope of the base
language more domain-specific without offering variability modeling capability.
Furthermore, with the amalgamated approach, the developer needs to repeat the work
of extending the base language with variability modeling concepts when he/she starts
building a product line with a new base language.

The separate approach, which is to specify the variability of a product line in a
separate variability model using a generic variability modeling language. The
variability modeling language is defined beyond the base language of the product line.

Feature modeling, first proposed by Kang [71], has been widely used to specify
product line models. In feature modeling, a "feature" is defined as a "prominent or
distinctive user-visible aspect, quality, or characteristic of a software system or
system" [71]. The variability and commonality of a product line can be represented as
hierarchically organized features in a feature model.

Fig.3. Feature model of the train control product line specified using FeatureIDE

Variability Realization. In order to develop an executable product line, it is not
adequate to only identify the variability (features) of the product line and specify it in
a product line model. In addition, the developer also needs to define how
features/domain-level variability should be realized at the model (object) level by
reusing the core assets (reusable model fragments) of the product line. For example,
in order to realize a specific feature, it may be necessary to edit a specific model

19

fragment (part of the core assets) slightly, assemble several model fragments together
or take away some part from a model fragment.

Going back to the train control example: The train control experts see that many
station drawings that they receive from the authority are very similar. Therefore they
decide to develop train control product lines instead of specifying every TCL station
model individually [123]. Fig.3 shows the feature model of a train control product
line, which specifies the domain-level variability (features) of the product line using
FeatureIDE, which is a popular feature diagram editor [74]. As shown in Fig.3,
stations are categorized into Urban and Rural ones depending on their location. Urban
stations can have one AdditionalTrack compared to rural stations. Urban stations can
also have a LeftParkingTrack and/or a TopParkingTrack. Rural stations can choose to
have an optional RightParkingTrack.

As illustrated in Fig.3, features are distinguished as abstract and concrete features.
Thüm et al. [125] define abstract features as those that are "only used to structure the
model and selecting or eliminating them does not make any difference in the
generated variant code". As in this train control product line, feature RegionalStation,
Urban, Rural and ParkingTrack are regarded as abstract features for their only use in
creating hierarchies and facilitating better domain-specific understanding.

Fig.4. Core assets of the train control product line (including the base model and library model)

On the contrary, each concrete feature such as AdditonalTrack, LeftParkingTrack,
TopParkingTrack and RightParkingTrack is supposed to be realized at the model
(object) level by reusing/customizing the core assets of the product line. Fig.4
illustrates the core assets of this product line. In order to realize the feature
TopParkingTrack, a possible model editing operation is to substitute the endpoint

ParkingTrack

Base Model

Library Model

EndPoint
TCE4

Core Assets (Reusable Model Fragments)

20

TCE4 with the parking track (see Fig.4). Therefore the developer needs to explicitly
specify this substitution in the definition of the realization for the feature
TopParkingTrack.

When the development of a model-driven SPL is completed, the product line is
ready for product configuration and product derivation. In order to derive a specific
product model from the product line, the developer needs to choose a set of its
required features (with associated realizations) from the product line model. This set
of choices is called a "product configuration". During product derivation, realizations
of a product configuration are executed through model-to-model transformations, to
apply the feature realizations chosen in the product configuration process.

2.3 Evolving Model-Driven SPLs

Software product lines are often subject to changes to meet new requirements over
time. Evolution in product lines can be identified into different categories depending
on what the new requirements are. For a model-driven SPL, typical reasons for
evolving a product line model include the following:

The core assets (reusable model fragments) are changed. Core assets are
essential part of a product line and therefore can undergo frequent evolution (e.g.,
bug-fixes, refactoring, adding/deleting functionalities and etc. [119]).

Domain-level variability of a product line needs to be realized at the model (object)
level. Furthermore, the specification of feature/variability realization should describe
how to reuse/edit the core assets (e.g., in terms of a set of model editing operations).
Therefore, variability realization also needs to be updated if it is affected by the
changes in the core assets.

The metamodel of the base modeling language is changed. The core assets are
reusable model fragments specified using the base language, therefore they may
require changes in order to conform to the new metamodel. Subsequently the
specification of variability realization may require changes as well.

New Product models need to be included in the product line. As a typical
evolution scenario [26], augmenting a product line model to include new products has
been mostly a manual process. It requires the developer to have a comprehensive
understanding of the impact of every change to the existing product line model, so
that both the new and the existing products can be derived from the augmented
product line model.

2.4 Alloy

As elaborated in Section 6.2.2, one of our approaches in providing automatic
assistance in defining variability realization, contributes to ensuring that the SPL will
only yield intended products. As elaborated in Section 6.3.3, another approach of ours
provides a semantic differencing technique for SPLs. In the feasibility evaluations of
these two approaches, we used the Alloy language [67] and its tool support in the
prototype implementation, for the formal analysis capability that Alloy provides.

21

Alloy [67] is a structural modeling language based on first-order logic for
expressing structural constraints and behaviors. An Alloy module can consist of
signatures, fields, facts, functions, predicates and assertions. Signatures denote sets of
atoms. Fields belong to signatures and denote global relations between signatures.
Relations are interpreted as tuples of atoms. Facts define global constraints. A
predicate defines parameterized constraints, which will evaluate to true if all the
contained constraints evaluate to true. A predicate can be regarded as an Alloy
function whose return type is Boolean. An assertion is a claim that the contained
constraints must hold.

The Alloy Analyzer [67] provides fully automated constraint solving for Alloy
modules. All the modules are translated from first-order logic to propositional logic,
which is analyzed by the Alloy Analyzer's embedded SAT solvers. The user needs to
define a scope of the search space for the solver, namely a positive integer which
limits the number of atoms for each signature that the solver should analyze.

Analysis in Alloy is based on the small scope hypothesis, which means that if there
is a solution to a request, this solution will be in a scope of small size [10]. The Alloy
Analyzer provides two types of analysis, one is to check if an assertion is valid, and
the other is to find instances that satisfy a predicate, both in the user-defined scope.

2.5 EMF Compare

As elaborated in Section 6.2.1, we provide an automatic approach for synthesizing a
product line from a set of existing products. The approach is built based on the CVL
language and model comparison techniques. In order to evaluate the feasibility of the
approach, we implemented a prototype tool, where EMF Compare10 is used for its
generic model differencing capability.

EMF Compare is a generic model differencing tool that can be applied to any
two/three models specified in the same language which is defined in EMF. EMF is
composed of the MatchService and the DiffService. During a model differencing
process using EMF Compare, models are first interpreted into typed attribute graphs,
and then fed into the match engine to identify matching model elements based on the
overall score of four similarity metrics regarding the name, type, relations and content
of the model element [33]. The match engine will output an .emfmatch model which
lists all the matching model elements in the models under comparison. The .emfmatch
model is further fed into the diff engine. The diff engine will go through the
.emfmatch model and calculate the model difference based on it, outputting the
differencing result in an .emfdiff model.

For example, for a two-way model comparison between a Left Hand Side (LHS)
and a Right Hand Side (RHS) model, the .emfdiff model contains unmatchedElements
(left/right) which represent the model elements that exist in the LHS/RHS model but
not in the RHS/LHS model. The .emfdiff model also contains the subDiffElements of
type ReferenceOrderChange, UpdateReference and UpdateAttribute, which represent

10 http://www.eclipse.org/emf/compare/

22

the difference in reference order, reference and attribute value between two models
respectively.

23

3 Research Topics

In the field of software engineering, there is a constant need for improved
development tools and methods to support developing software systems of increased
complexity. Model-Driven SPL development, combining MDE and SPLE, has
emerged as a new paradigm for developing similar software systems.

Model-driven SPL development has inherited benefits from both MDE and SPLE
paradigms. On one hand, model-driven SPL development raises the abstraction level
from code to models; On the other hand, model-driven SPL development enables
planned and managed reuse to improve the productivity of software development.

In order to maximize the benefits of model-driven SPL development, the developer
should apply proper methods in all development phases. However, it is not always
sufficient to "borrow" existing methods from MDE and SPLE paradigms. There is a
need for methods and tools addressing problems that are specific to model-driven SPL
development.

This thesis work has been funded by the MoSiS (Model-driven development of
highly configurable embedded Software-intensive Systems) project. The goal of the
MoSiS project includes: (1) Developing and standardizing a generic variability
modeling language, and (2) Exploring whether the combination of MDE/DSM and
SPLE can improve the existing software development process at industrial partners.
The goal of this thesis work is based on the goal of the project and therefore focuses
on contributing to the development of model-driven software product lines.

In particular, we identify the following research topics to improve the existing
model-driven SPL development techniques, which are to be addressed in our thesis
work:

3.1 Research Topic 1: A Generic Approach for Developing Executable Model-
Driven SPLs (RT1)

A methodology is usually a guideline system for solving a problem. A methodology
for model-driven SPL development should contain the study and description of a set
of processes/guidelines for developing model-driven product lines. Many research
works have proposed methods and tools for model-driven SPL development, such as
variability/feature modeling techniques [109]. In contrast, only a few methodologies
in this discipline have been proposed. Furthermore, we have identified several issues
with the existing methodologies:

Few methodologies cover guidelines for the variability realization phase. The
variability realization phase is an indispensable part of a complete product line
development cycle. Without specifying how domain-level variability (features) should

24

be realized at the model (object) level, no product models can be finally derived.
However, most existing methodologies for model-driven SPL development do not
include guidelines for specifying variability realization for product lines.

Few methodologies cover guidelines for the DSM phase. The developer cannot
build a model-driven SPL without a base DSL and the core assets specified in this
DSL. However, very few existing model-driven SPL methodologies include
guidelines/processes for the DSM phase, which can be applied when a base DSL
needs to be developed first.

Based on the issues stated above, we further detail this research topic by proposing
the following research questions:

 RT1.1: How to define variability specification and realization in a generic way

for model-driven SPLs in different domains?

 RT1.2: How to develop a base DSL suited for building model-driven SPLs?

3.2 Research Topic 2: Automatic Assistance in Model-Driven SPL
Development (RT2)

Automation is the use of machines, control systems and information technologies to
optimize productivity in the production of goods and delivery of services. In
particular, providing automatic assistance to model-driven SPL development can
increase productivity in the production of software products. Various tools have been
developed to provide automatic assistance in different phases of SPL development,
however, the following issues are still not fully addressed:

Lack of automatic assistance in the variability identification phase. In order to
define a product line, the developer needs to start with identifying the variability (and
commonality) of all intended products of this product line. We learned from literature
review that most existing techniques for variability identification are
guidelines/methodologies without automatic tool support, such as how to survey
domain experts/users (e.g., domain analysis [71]) and how to document/analyze
variability from survey results (e.g., product map used in PuLSE [23]).

Lack of automatic assistance in the variability realization phase. The definition
of variability realization directly affects the final product derivation. Therefore, it is
crucial to ensure that variability realization will only yield intended products. From
literature review, we see that, in the first place, most existing SPL development
techniques do not cover the phase of variability realization, let alone providing
automated assistance in specifying variability realization to ensure only intended
product derivation.

Based on the issues stated above, we further detail this research topic by proposing
the following research questions:

 RT2.1: How to improve the productivity of variability identification in model-

driven SPL development by means of automatic assistance?

25

 RT2.2: How to ensure that variability realization will only yield intended
products?

3.3 Research Topic 3: Evolving Model-Driven SPLs (RT3)

Software product lines are often subject to changes over time. From literature review,
we have identified the following issues that are not fully addressed by the existing
techniques for SPL evolution:

Lack of automatic tools for suggesting and performing SPL evolution from
new requirements. Many existing automatic techniques in SPL evolution have their
focus on managing and understanding product line evolutions, such as version control
systems, program analysis and differencing tools. However, very few tools target on
automatically suggesting and performing product line evolution based on new
requirements from stakeholders.

Lack of automatic tools for SPL co-evolution. A model-driven SPL involves
with several artifacts: the metamodel of the base DSL, the core assets which are
reusable model fragments specified in the base DSL and the product line model. All
these artifacts depend upon each other and all of them can subject to changes during
product line evolution. Therefore, it can become necessary to co-evolve some of the
other artifacts when one of them evolves.

For example, core assets is an essential part of a product line and therefore can
undergo frequent evolution. Evolving the core assets of a product line may require co-
evolving the definition of the product line model to ensure intended product
derivation. Furthermore, when the metamodel of the base DSL evolves, the core
assets may also require co-evolution in order to conform to the new metamodel. This
may also subsequently bring the need to co-evolve the variability specification of the
product line. However, very few existing techniques focus on providing automatic
assistance in inducing and performing SPL co-evolution.

Lack of semantic differencing techniques to aid SPL evolution. It is common
practice for the developer to compare the original and the evolved product line, in
order to understand the impact of an SPL evolution. For this purpose, syntax-based
differencing approaches have their limitations in situations when models of similar
syntactical representation have very different semantics, which has been observed in
feature models [6].

Small changes to a product line can result in big semantic difference in terms of
derivable products. Therefore, it is crucial for the developer to gain an understanding
on the semantic impact of product line evolution, in terms of which products have
been added and removed in the evolved product line [3, 88, 99]. However, only a few
approaches focus on semantic differencing for feature models.

Based on the issues stated above, we further detail this research topic by proposing
the following research questions:

 RT3.1: How to improve the productivity in inducing SPL evolution steps from

new requirements?

26

 RT3.2: How to improve the productivity of SPL co-evolution?

 RT3.3: How to assist the developer to gain a comprehensive understanding of
the impact of an SPL evolution?

27

4 Research Method

This chapter gives a review of our technology research method and evaluation
strategies. In addition, we also give a discussion on why we chose the method and
evaluation strategies and how we have applied those in our thesis work.

4.1 The Technology Research Method

Solheim et al. [115] give the following definitions of technology and technology
research:

"Technology is the knowledge of artifacts emphasizing their manufacturing".
"Technology research is research for the purpose of producing new and better

artifacts".
We label our thesis as technology research, which is conducted by following the

technology research method proposed by Solheim et al. [115].
The technology researcher focuses on seeking ideas for improving existing

technologies and producing new and better artifacts. Solheim et al. [115] define
technology research as a process iterating over the three steps:

Problem Analysis. In this step the researcher identifies and collects requirements
for potential improvement to the existing technologies/artifacts, by means of literature
review, surveying practitioners and etc. The requirements will serve as the goals for
the manufacturing of a new and better artifact in the innovation step.

Innovation. In this step, the researcher starts to make an artifact which is supposed
to satisfy the requirements collected from the problem analysis step [115].

Evaluation. In this step, the new artifact needs to be evaluated to see if the
requirements for improvement have been satisfied, e.g. "H: The new artifact improves
the efficiency of the current development process" [115]. However, since such
hypotheses cannot be tested in straight-forward way, the researcher needs to
formulate falsifiable predictions based on the requirements, e.g. "P: With the help of
the new artifact, the programmer spends less time on the same task " [115].
Predictions are statements about what will happen if the hypothesis is true [115], e.g.
if H is true, then also P will be true. Hence if investigations show that P is false, then
the hypothesis H is rejected; if P is shown to be true, then H is confirmed.

However, in many cases, predicates cannot be falsified in a straight-forward way,
such as in our example, we need to measure if less time is spent on the same task with
the aid of the new artifact. Hence, the developer needs to carefully choose and apply
the appropriate strategy for evaluation.

It is common for technology research to produce so-called functional prototype for
evaluation [115]. If the prototype appears to be promising during the evaluation, it can

28

be later elaborated/refactored to a product of commercial quality, which is typically
performed by developers other than researchers.

4.2 How We have Applied the Research Method

The research method applied in this thesis work is based on the technology research
method described in Section 4.1. The thesis work has been performed as an iterative
process in which the artifacts and the requirements have been changed as we gained
new inputs during the process.

Section 3 analyzes the purpose of this thesis work and further identifies the three
research topics with the associated research questions. In the following, we describe
in detail, in order to answer the research questions, how we follow the technology
research method in identifying requirements for new artifacts, manufacturing and
evaluation.

4.2.1 Problem Analysis

Literature review. This thesis work has been funded by the MoSiS project. The
project goal is to explore and promote the combination of the DSM and SPLE
paradigm. This overall goal has clarified the scope of our literature review.

We started the thesis work by conducting a state-of-the-art study on the subjects of
DSM/metamodeling, variability modeling/SPLE and model-driven SPL development
(see Section 5.1). During the literature review, we paid special attention to the areas in
which our industrial partners had challenges to see whether those challenges can be
addressed by existing artifacts (technologies) or not. If not, we further identified the
requirements for new/better artifacts based on the need of our industrial partners and
an in-depth analysis of the existing artifacts.

Surveys and Exploratory case studies. In the thesis work, we performed surveys
and exploratory case studies for problem identification:

(1) Surveys. Survey research is used for identifying characteristics of a population
of individuals [19]. It can be conducted by questionnaires, interviews or data logging
techniques. A major challenge in survey research is the selection of a representative
sample from a well-defined population, so that the results can be generalized from the
sample to the entire target population [19]. It can be even more challenging to design
survey questions in a way that can lead to useful and valid data. It can be difficult to
ensure that all survey participants understand the questions in the same way.
Moreover, participants may not answer the questions as they actually do if they do not
introspect reliably on their common practices.

Survey research is less controlled and therefore lacks precision. Also if the
sampling bias is not effectively controlled in a survey, the realism of the survey can
be weakened. Moreover, if the participants for a survey are representative for the
target population, the results of this survey can show high degree of generality.

During the span of the MoSiS project, we had frequent meetings with our industrial
partners in different fields. During the meetings, we helped the industrial partners to

29

identify problems in their daily software development and analyzed whether the
problems can be addressed by means of model-driven SPL development.

(2) Exploratory Case Studies. Yin [138] defines case study as "an empirical inquiry
that investigates a contemporary phenomenon within its real-life context, especially
when the boundaries between phenomenon and context are not clearly evident". Case
studies are able to provide an in-depth understanding of why and how phenomena
occur. In particular, case studies can be categorized into exploratory case studies
and confirmatory case studies. Exploratory case studies are used for investigating
phenomena to derive hypotheses and build theories, while confirmatory case studies
are used to test hypotheses during evaluation.

In practice, we identified several candidate problems in the initial rounds of the
meetings, and further investigated through exploratory case studies. We chose the
method of exploratory case studies because it allowed us to gain an in-depth
understanding on why and how the problems occur in real-life context at our
industrial partners. During our exploratory case studies, we observed and interviewed
at our partners on how the problems occur in their daily software development
activities, as our means to collect data for further analysis.

For example, we had meetings with one of our industrial partners, Agresso, an ERP
solution provider, to investigate whether their current development process can be
improved from adopting the DSM paradigm. During meetings, we explained the
concept of DSM to the developers from Agresso and discussed with them which part
of their development can potentially be accelerated by applying DSM techniques.
Developers from Agresso presented us with their problems on how to customize
payroll reports for different customers efficiently. We performed case studies around
this problem and concluded that such customization can be partially automated by
applying DSM technologies, which results in our 2nd artifact ("APRiL") presented in
Paper II [144] (Appendix II).

4.2.2 Innovation

In this phase, we developed new artifacts to address the challenges identified from
problem analysis. The new artifacts aim to fulfill the requirements which existing
technologies (artifacts) failed to satisfy. Our innovation efforts resulted in seven
artifacts described by the papers in Appendices I-VII.

4.2.3 Evaluation

It is impossible in practice to choose an evaluation strategy that scores high on
precision, realism and generality. According to Solheim et al. [115], the researcher
needs to decide over the following factors when choosing evaluation strategies:

"Is the strategy feasible?" Time, cost and the availability of target participants
are three important constraints when it comes to selecting an evaluation strategy.
Therefore the researcher has to consider the feasibility of carrying out an evaluation
study with respect to those three constraints.

30

"How to ensure that a measurement really measures the property it is
supposed to measure?" It is critical to select an evaluation strategy which can be
possible to isolate the property to be measured. In addition, the researcher also needs
to account for all possible factors that might influence the result.

"What is needed to falsify the prediction?" It is not worthwhile to conduct an
evaluation if it is not possible to falsify a result. Therefore the researcher needs to
choose the evaluation strategy which is most likely to falsify the result, even though it
would imply that the new artifact does not satisfy the need.

We have evaluated our artifacts through prototypes, confirmatory case-studies,
examples, action research and formal analysis. The following gives a brief
introduction on how we applied several evaluation strategies in our thesis work.

Prototypes and Confirmatory case studies. Our thesis work has been supported
by several prototypes to evaluate the feasibility of concepts. The prototypes were
further applied in confirmatory case studies to evaluate the validity of the new
artifacts.

There are two critical steps in the design of case studies. Firstly, a precise study
proposition needs to be formulated, which states the intention of the study and guides
the selection of the cases and the collection of the data. Secondly, it is essential that
the selected cases need to be the most relevant to the study proposition. Sometimes a
single case is sufficient [138]: if the theory holds for a critical case, then it is likely to
be true for many others; from an extreme/unique case, the researcher can gain insights
on what happens in extreme situations; from a typical case, more insights into
common situations can be gained. Nevertheless, a case study with multiple cases
usually offer greater validity [138], either each case is expected to show the same
result, or each case is expected to show contrasting results for predictable reasons.

Case studies are often applied where the context plays a role in the phenomena, or
where the effects range widely or take long time to appear [138]. Case studies score
high in realism because of its natural setting. However, because mostly qualitative
data is collected during case study research which is susceptible to interpretation bias,
case studies score low with respect to precision. When it comes to the concern of
generality, case studies can score high if typical cases are used.

For the 2nd artifact ("APRiL"), DSL editors & code generators were developed for
the APRiL language that we defined. Further we identified representative case-studies
with the developers at Agresso and evaluated the prototype with the cases. In this way
the developers at Agresso were able to try out our prototype in a natural work setting.
The evaluation result was based on the observations and feedbacks collected from the
case studies.

For the 1st artifact ("CVL") which is a generic and separate variability modeling
language and the CVL methodology for SPL development, we developed an Eclipse
plug-in as its prototype. This prototype has been distributed in both academia and
industry, and has been validated against several examples in various domains. For
example, we have applied the prototype on case studies at our industrial partners in
the domain of train control, electrical drives, payroll reporting and etc.

The prototypes of our artifacts have been applied to various case studies (e.g.,
UML, TCL and APRiL) for evaluating the feasibility, performance and limitations of
the approaches.

31

Action Research. In action research, the researchers attempt to solve a real-world
problem while simultaneously studying the experience of solving the problem [135].
Different from just attempting to observe the world as it is, action researchers
intervene in the studied situation with the purpose of also improving the situation. As
a relatively new empirical method, it has been pioneered in the field of education and
has been applied in software engineering on the studies of process/system
improvement. For example, in order to evaluate the benefits of using UML in a
professional software development environment, an action research can be conducted
like this: if the researcher has professional programming competence, he/she can
initiate a project to work with other programmers using UML and at the same time
record the experience.

With him/herself also participating in the study, the researcher may gain more in-
depth understanding of the studied situation. However, the generality of the results
can be compromised if the researcher is not well-trained in collecting and analyzing
data objectively.

Action researchers attempt to solve a real-world problem while simultaneously
studying the experience of solving the problem. When applied in software
engineering, action research is suitable for studying process/system improvement and
introducing new development paradigms.

A prerequisite for conducting action research is that the researcher needs to have
similar competence as other participants, so that the researcher will be able to
participate in improving the situation while collecting experience at the same time.
Since we have competence in both research and software development, we were able
to apply action research method in our research. For example, in order to evaluate the
benefits of adopting new paradigms (e.g., DSM and model-driven SPL development)
in a professional software development environment, we worked with developers at
our industrial partners using the prototypes of our new artifacts and at the same time
recorded the experience. We carefully collected and analyzed the data to ensure the
objectiveness and generality of our results. We were able to gain a in-depth
understanding on if our new artifacts satisfy the needs in practice.

Formal analysis. Formal analysis is based on formal methods. Formal methods are
mathematically based techniques for the specification, development and verification
of software and hardware systems [38]. It is widely acknowledged that appropriate
formal analysis can contribute to the reliability of a design. Formal analysis, as an
evaluation strategy, scores high in generality and lacks realism and precision.

Formal analysis is based on the application of a variety of theoretical computer
science fundamentals, such as logic calculi, formal languages, automata theory,
program semantics and etc. For both our 4th artifact ("Automatic assistance in
defining variability") and 7th artifact ("Semantic differencing for SPLs") (Appendix
IV and VII), we utilized a formal language Alloy and the Alloy Analyzer (see Section
2.4) in the implementation of the prototypes. The Alloy Analyzer provides formal
analysis based on first-order logic and embedded SAT solvers, which contributes to
the reliability of our prototypes.

Potential weaknesses. When it comes to case studies, we used cases/examples
provided by our industrial partners to ensure realism of our evaluation. However, the
external validity of our case studies can still be potentially jeopardized by several
factors.

32

For example, our cases/examples can be too narrow to cover all potential
shortcomings, which may lead to biased conclusions. In order to address this problem,
we tried to use representative cases/examples in various domains to ensure the
generality of the results. However, this is limited to the availability of such cases for
us. It was easier for us to access real cases from our industrial partners. Our major
case studies in this thesis work have been performed with our industrial partners. In
addition, our cases are typically small to medium-sized examples, and no industrial-
sized examples have been used. This is also due to several factors: the availability of
suitable industrial-sized examples, the time/cost limit to use such cases, and also the
nature of the research – industrial-sized product lines as study candidates can be
difficult to establish.

In order to ensure the validity of our case studies, on one hand, we focused on the
representativeness when selecting cases/examples; on the other hand, we also applied
our prototypes to cases/examples that have been widely used in academia. The
validity of our research may be further strengthened by applying more
quantitative/qualitative methods to collect statistical/descriptive data that can support
our research claims.

Although it is possible to strengthen the validity of our evaluation, our main
artifacts have been subject to evaluation as described in the corresponding research
papers. In addition, the papers have also been evaluated by peer reviews where the
soundness of the approaches has been considered. We have carefully considered the
comments from the reviewers and improved our work accordingly.

33

5 State-of-the-Art

In this section we address the research works that are influential and related to what
has been achieved in this thesis. In particular, we focus on Domain-Specific Modeling
(DSM), variability modeling and model-driven SPL development, and evolving
model-driven SPLs. Each area will be presented in the following manner: first we
give a literature review of relevant research work, then elaborate on how we are
motivated to improve the existing technologies in this area in regard to our research
topics.

5.1 Variability Modeling and Software Product Line Engineering

In this section we discuss important work in the area of Software Product Line
Engineering (SPLE) and how this is realized through variability modeling.

5.1.1 Developing DSLs suitable for Building SPLs

There are two strategies to specify a product line model:
The amalgamated approach, which is to extend the base language (e.g., UML or a

DSL) with variability modeling language concepts.
The separate approach, which is to specify the variability of a product line in a

separate variability model using a generic variability modeling language. The
variability modeling language is defined beyond the base language of the product line.

Hence, when it comes to developing a DSL that is suitable for building product
lines, the developer can either choose to have a more domain-specific DSL without
variability modeling capability and leave that work to separate variability modeling
approaches, or a DSL with both domain-specific and variability modeling concepts.

Including Variability into DSL Definition
Cengarle et al. [34] present a taxonomy of the variability mechanisms offered by
modeling languages. As variability can be of presentation, syntactic and semantic
nature, Cengarle et al. only talk about semantic variability. Furthermore, they propose
a framework to explicitly document and manage variation points and variants
specified in a variability modeling language. The framework facilitates systematic
study of different kinds of variability and their dependencies. Moreover, it enables
methodological customization of a language to a specific domain.

Morin et al. [91] propose to regard variability as an independent aspect to be
woven into the DSL in order to introduce variability modeling capabilities. The

34

approach is validated through the weaving of variability into two different
metamodels: Ecore and SmartAdapter (an aspect model weaver [80]).

Ziadi et al. [148] extend the UML metamodel to include features for modeling
variability. This work proposes extensions to model product line variability in UML
class diagrams (the static aspect) and sequence diagrams (the behavioral aspect).
Furthermore, this work also gives a formalization of product derivation using a UML
model transformation.

Developing DSLs without Variability Modeling Capabilities
Paige et al. [97] provide a set of guidelines and recommendations to metamodellers
and DSL designers in terms of factors that they should consider when constructing
metamodels. One observation from this work is that a more expressive metamodel
should not always be preferred over a less expressive one. The developer may need to
make trade-offs between completeness and automation & usability of a DSL,
depending on how the metamodel will be used in different tasks.

Karsai et al. [73] give a set of general guidelines to improve design and usability of
DSLs. 26 guidelines has been proposed in this work, divided into five categories:
Language Purpose, Language Realization, Language Content, Concrete Syntax and
Abstract Syntax. Similar to Paige et al., they emphasize the importance of keeping the
language definition simple and domain-specific, conveyed in the following three
guidelines: “Reflect only necessary domain concepts”, “Keep it simple”, “Avoid
unnecessary generality” and “Limit the number of language elements”.

Kelly et al. [75] present guidelines for avoiding bad practices when developing
DSLs. The guidelines emphasize the need for a comprehensive understanding of the
domain in order to decide the correct level of abstraction and the correct scope for the
DSL. They have analyzed numerous problem domains and metamodels. Based on this
experience they give a set of general guidelines for DSL development. These
guidelines emphasize the need for detailed knowledge of the domain. Their
experience shows that it can be more challenging to extend an already existing
language instead of creating a metamodel from scratch.

Wile [136] discusses experience from the development of two industry DSLs,
including both success and failure factors. Based on this experience, twelve lessons
have been given in what should be taken into consideration during DSL development.
In particular, this work discusses the importance of using a notation that domain
experts are already familiar with, and the need for develop a DSL closely with domain
experts.

Motivation for Improvement
Based on the literature review, we see that there is potential to improve the state-of-
the-art in relation to the research question RT1.2 (How to develop a base DSL suited
for building model-driven SPLs?). With most DSL development guidelines being
rather general, there is a lack of guidelines for developing DSLs that are suitable for
building product lines. However, we are still inspired by several general guidelines,
especially when it comes to deciding whether the language should have variability
modeling capabilities.

35

As pointed out by Paige et al. [97], Karsai et al. [73] and Kelly et al. [75], the
developer should keep the language definition simple, domain-specific and just
expressive enough to fulfill the current needs.

We also see that even with techniques to include variability into the DSL language
definition, it may still have the following limitations in practice: (1) It may not be
always feasible to change the definition of the base language and its tool support
(editors, code generators and etc.). (2) The developer may prefer to keep the scope of
the base language more domain-specific without offering variability modeling
capabilities. (3) The developer needs repeat the work of extending the base language
with variability modeling concepts when he/she starts building a product line with a
new base DSL.

5.1.2 SPLE and Variability Modeling Approaches

Feature Modeling and Feature-Oriented Software Development
Software Product Line Engineering (SPLE) is an approach to produce the variability
and commonality in a family of software systems sharing a common set of features
[40]. A feature is regarded as "a distinguishable characteristic of a concept that is
relevant to some stakeholder of the concept" [43], e.g., additional functionalities for
an existing base system [109].

Feature modeling has been widely used to capture and define the commonality and
variability of systems in a SPL [45]. A Feature Model (FM) is represented by a
Feature Diagram (FD) as a hierarchically organized set of features based on
relationships among features [24].

Since the term "feature model" was first introduce by Kang et al. in the FODA case
study [71], several extensions to the original FODA FM notation have been proposed
in various studies [109]. We give a brief introduction on the basic and the extended
feature modeling concepts in the following:

In the basic notation of feature modeling, features are hierarchically arranged based
on the following relationships among them:

Mandatory. A child feature with a mandatory relationship to its parent feature is
included in all the products which include its parent feature.

Optional. A child feature with an optional relationship to its parent feature can be
included/excluded in all the products which include its parent feature.

OR. For a set of child features with an OR relationship to their parent feature, one
or more of them can be included in the product which includes their parent feature.

XOR. For a set of child features with an XOR relationship to their parent feature,
only one of them can be included in the product which includes their parent feature.

Implies. A feature implies another feature means that these two features must
coexist in the same product.

Excludes. A feature excludes another feature means that these two features must
not be chosen in the same product.

Over the years basic feature modeling concepts have been extended in the
following aspects:

Feature cardinality. Czarnecki et al. [45] propose the concept of feature
cardinality. A feature cardinality, denoted as [n..m] with n as lower bound and m as

36

upper bound, indicates that minimum n and maximum m instances of this feature can
be included in a product. Mandatory and optional features can be considered as
special cases of features with cardinality [1..1] and [0..1] respectively.

Group cardinality. A feature group cardinality, denoted as denoted as <n..m> with
n as lower bound and m as upper bound, indicates that minimum n and maximum m
child features of this feature can be included in a product. Group cardinality can be
regarded as the generalization of OR and XOR in the basic feature model notation.

Attributes. Attributes were introduced by Czarnecki et al. [43] into feature
modeling as a way to represent a choice of a value from a large or infinite domain. It
allows a feature to be associated with type, such as integer or string. A collection of
attributes can be modeled as a number of sub features, where each is associated with
the desired type.

Relationships. Several authors [61, 127] propose to extend feature models with
different kinds of relationships such as consists-of or is-generalization-of.

Feature categories and annotations. FODA [71] distinguishes among context,
representation and operational features. Griss et al. [61] propose functional,
architectural and implementation feature categories. In FODA, additional information
in terms of feature annotations includes descriptions, constraints, binding time and
rationales. Feature annotations can also be priorities, stakeholders, default selections,
open-or-closed-for-extensions attribute and exemplar systems [44].

Modularization. A feature diagram may contain one or more special leaf nodes as
feature-model references, with each representing a separate feature diagram [45]. This
mechanism allows breaking up large diagrams into smaller ones and reusing common
parts in several places. Modularization is important for feature models which become
too large to be considered in their entirety.

The definition of a feature has evolved over the years [14], from only representing
abstract concepts of base domain, to concepts that need to be implemented in order to
satisfy requirements [17, 20, 139]. Feature-Oriented Software Development (FOSD)
favors systematic application of the feature concept in all phases of an SPL
development life cycle [14]. FOSD makes the connection between specifying the
product line in the problem space using feature modeling, and implementing the
product line in the solution space [43].

The FOSD paradigm and the model-driven SPL development paradigm share
several similarities. An FOSD lifecycle contains the following phases [14]:

Domain Analysis. This phase corresponds to the "variability identification" and
"variability specification" phase in model-driven SPL development. At this phase,
commonality and variability of the product line is identified and specified using
feature modeling.

Domain Design and Specification. This phase corresponds to the phase of
developing core assets of the product line (reusable model fragments) in model-driven
SPL development. At this phase, essential structural and behavioral properties of the
features are specified using a formal/informal specification and/or modeling language.

Domain Implementation. This phase corresponds to the "variability realization"
phase in model-driven SPL development. In model-driven SPL development, feature
realizations/implementations are defined as instructions for reusing the core assets
(reusable model fragments). However, in the context of FOSD, mappings need to be
established between features and source code. Several feature-oriented programming

37

languages have been developed to address this requirement in FOSD, i.e. Jak [21],
Feature C++ [15] and Xak [11] as feature-oriented extensions to Java, C++ and XML.

Product Configuration and Generation. This phase corresponds to the phase of
configuring and deriving product models in model-driven SPL development. The
difference is, at this phase in FOSD, source code of products instead of product
models is generated. Furthermore, for FOSD, it is important to ensure the code
correctness in the following aspect: 1) Syntactical-correct, namely that the generated
code conforms to the syntax of the programming language. 2) Type-safe, namely that
the generated code is well-typed according to the programming language's type
system. 3) Behavioral-correct, namely that the generated system shows only intended
behaviors.

Kastner et al. [74] presents Feature IDE, which is an open source framework for an
Integrated Development Environment (IDE) for feature-oriented sofware product line
development. Feature IDE provides support for the entire life cycle of a software
product line, covering domain analysis, feature modeling, implementation and
maintenance. Feature IDE supports a set of different feature/aspect-oriented
programming tools including AHEAD [21], FeatureC++ [15], FeatureHouse [13] and
CIDE [78], and thus provides support for many languages, including Java, C++,
Haskell, C, C#, JavaCC and XML [74].

The work of FeatureIDE is close to OpenArchitectureWare
(http://openarchitectureware.org), which provides an Eclipse-based open framework
for developing model-driven software development solutions and DSLs [74].

Commercial solutions such as Pure::variants (http://www.pure-systems.com/) and
Gears (http://www.biglever.com/) also provide support for software product line
development, however, with more focus on domain analysis and less on variability
implementation/realization.

Delta Modeling
Delta modeling is a language-independent approach for modeling system variability.
In a delta-oriented SPL, a set of products can be represented as a core model and a set
of model deltas [37, 63, 64, 107] . The core model represents a product for some
valid feature configuration. The model deltas specify modifications required to apply
to the core model in order to realize other features of the product line. The
modifications include adding/removing/replacing model elements. Moreover, the
model deltas contain application conditions which specify under which feature
configuration the modifications should be carried out. The concept of application
condition fulfills the need for establishing mappings between features and their
realizations in SPL development. During delta application, a product model can be
obtained by applying the model modifications contained in the chosen model deltas to
the core model.

Orthogonal Variability Model (OVM).
Klaus Pohl et al. [99] propose Orthogonal Variability Model (OVM) approach to
document variability across all software development artifacts/domain artifacts,
including requirements, design, realization and test. With the OVM approach, the
variability of a product line is documented explicitly in an OVM model, which is

38

orthogonal to all domain artifacts. The following gives a brief introduction on the
central concepts of the OVM approach:

Variation Subject. "A variation subject is a variable item of the real world or a
variable property of such an item." and it answers the question of "why does vary?
[99]" For example, "color" can be regarded as a variability subject which identifies a
property of real-world items.

Variability Object. "A variability object is a particular instance of a variability
subject. [99]" Examples of variability objects for the variability subject "color" can be
red, black and grey.

Variation Point. "A variation point is a representation of a variability subject
within domain artifacts enriched by contextual information. [99]" An example of a
variation point can be the "color of a car" in the context of an automotive product line.

Variant. "A variant is a representation of a variability object within domain
artefacts. [99]" "Red (cars)", "black (cars)" and "grey (cars)" can be considered as
variants for the variation point "color of a car".

Variability Dependency. A variability dependency is the relation between variation
points and variants. Each variation point must be associated with at least one variant.
Each variant must be associated with at least one variation point. A variation point
can have more than one variant. A variant can be associated with different variation
points.

Optional Variability Dependency. The optional variability dependency indicates
that the variant can be but does not have to be in a particular product if its associating
variation point is resolved in this product.

Mandatory Variability Dependency. A mandatory variability dependency states
that the variant must be part of a particular product if its associating variation point is
resolved in this product.

Alternative Choice. "The alternative choice groups a set of variants that are related
through an optional variability to the same variation point and defines the range for
the amount of optional variants to be selected for this group." The min and max
attribute of an alternative choice define the minimum and maximum number of
variants that are allowed to be selected from this alternative choice group. For
example, "red", "black" and "grey" is governed by an alternative choice with the min
of value "1" and the max of value "1", namely that cars can only be in one of these
three colors.

Variability Constraints. In an OVM model, the developer can define "excludes"
and "requires" constraints between two variants, two variation points as well as one
variant and one variation point.

Traceability between OVM model and domain artifacts. Domain artifacts (e.g.,
requirements, design models, code and tests) can be related to the variability defined
in an OVM model by means of the following two types of dependency: (1) Artifact
Dependency between variant and development artifact. A development artifact can
but does not have to be associated with one or more variants. A variant must be
related to at least one or more than one development artifact. (2) VP Artifact
Dependency between variation point and development artifact. A development
artifact can but does not have to be associated with one or more variation points. A
variation point can but does not have to be related to one or several development
artifacts.

39

Amalgamated Variability Modeling and SPLE using UML Techniques
The Unified Modeling Language (UML) 11 is a visual language for specifying,
constructing, and documenting the artifacts of software-intensive systems. UML has
become the de factor standard for modeling object-oriented systems.

Variability modeling techniques can be categorized into amalgamated and separate
approaches. In the amalgamated approaches, the base language of the underlying
domain, either a general purpose language like UML, or a DSL, is extended with
variability modeling language concepts. In particular, UML can be extended with
additional language concepts by introducing UML profiles for different purposes. The
developer can specify variability in his/her UML models by annotating them with the
terms provided by UML profiles for variability modeling purposes. Around the idea
of applying UML for system design and variability modeling, a large body of UML-
based SPLE approaches has been proposed [30, 31, 34, 55, 59-61, 82, 100, 147].

In particular, PLUS (Product-Line UML-Based Software Engineering) [59] is a
SPL development method based on UML. The PLUS method puts together a UML
profile to extend UML-based methods for designing single systems to handle software
product lines, which cover the following processes:

SPL Requirements Modeling
 Use case modeling. With the UML profile provided by PLUS, the developer can

annotate kernel, optional, alternative use cases and variation points for use cases
in the UML use case model.

 Feature modeling. PLUS provides an approach for modeling and representing
features in the UML notation, as well as a method to derive the feature model
from the annotated use case model.

SPL Analysis Modeling
 Static modeling. In this step, a product line information model is specified to

determine kernel, optional and alternative entity classes.
 Dynamic interaction modeling. In this step, interaction diagrams are specified to

realize kernel, optional and alternative use cases.
 Dynamic state machine modeling. In the step, the developer specifies kernel,

optional and alternative state machines.
 Feature/class dependency modeling. In this step, the developer determines the

dependencies/mappings between features and kernel/optional/variant classes.

SPL Design Modeling
 Software architecture patterns. In this step, the developer determines the

architectural structure and communication patterns for the product line.
 Component-based software design. In this step, the developer applies component-

based software design methods to develop kernel/optional/variant components
ports/interfaces and interconnections between components.

11 http://www.uml.org/

40

Software Application Engineering
 In this step, first the required features for a product need to be chosen from the

feature model, and then the application architecture of the product can be derived
from the product line architecture and reusable components.

Bragança [31] presents MoDeLine, a methodological approach for model-driven

development of software product lines. The MoDeLine approach is evolved from the
4SRS (4-Step Rule Set) method, which is a model transformational technique for
obtaining system architectures from functional requirements specified as UML use
cases for single systems. Based on 4SRS, the MoDeLine approach proposes the
following adaptations for product line development:

(1) The approach extends the UML 2.0 metamodel and adopts activities to specify
use case behaviors, so that each use case behavior can be specified using an activity
diagram in MoDeLine. Furthermore, MoDeLine enables automated creation of use
case realizations in the form of system architectural models (class/component
diagrams), from functional requirements in the form of use cases and activity
diagrams.

(2) The approach extends the UML-F profile [55, 100], a UML profile for
frameworks, to include support for requirements and analysis models.

(3) The approach follows the notation for feature diagrams proposed by Van
Deursen et al. [126]. In MoDeLine, the initial feature model can be automatically
constructed from the use case model.

Motivation for Improvement
Based on the literature review, we see that there is lack of SPL development
approaches which are based on separate variability modeling as well as allow the
explicit definition of variability realization. Furthermore, in relation to our research
question RT1.1 (How to define both variability specification and realization in a
generic way for model-driven SPLs in different domains?), we have been inspired by
several existing works:

As pointed out by Bosch et al. [29], one issue in SPLE approaches is the lack of
clear dependencies between features and the base model. Also we are enlightened by
how choices and multiplicities are expressed in cardinality-based feature modeling.

When it comes to Orthogonal Variability Modeling (OVM) [99], we see the
following limitations of the approach:

(1) In an OVM model, the developer can only define the dependencies between the
variability of the product line and the development artifacts. The approach does not
provide fine-grained model operations stating how development artifacts (models)
should be modified in order to realize the selected variant.

(2) OVM only contains excludes and requires constraints. We see the need for
supporting the specification of arbitrary variability constraints in a variability
modeling language.

(3) OVM does not support specifying multiple instantiations of the same variant,
which is covered by cardinality-based feature modeling.

When it comes to delta modeling [65], the modifications contained in the model
deltas are limited to adding, removing, changing and replacing singular model
elements. Delta modeling provides no flexibility to define the

41

addition/removal/changing/replacement of an arbitrary set of model elements, which
we see the need to provide in our work.

5.1.3 Variability Identification in SPL Development

Variability identification, as an integral part of SPL development, focuses on
identifying the commonality and variability among all intended products of a product
line before the actual building process. In this section we give a summary of the most
related work in this area, as well as an analysis of how our thesis work was motivated
by the state-of-the-art back in time.

Scoping Approaches in Product Line Planning
“Scoping can be defined as the process of deciding in which parts of an
organization’s products, features and domains’ systematic reuse is economically
useful” [70]. Scoping methods have been proposed in a number of SPL development
methodologies:

Bayer et al. [23] present PuLSE (Product Line Software Engineering) as a product-
centric and customizable methodology for the conception and deployment of software
product lines within a large variety of enterprise contexts. As the scoping method for
the PuLSE methodology, PuLSE-Eco proposes to use product maps, characteristic
lists and benefit functions to assist decision-making at the scoping phase. Similar
scoping approaches include: a commonality analysis technique proposed by Weiss
[131], a commonality and variability analysis technique proposed by Chastek et al.
[35], a product line potential analysis technique proposed by Fritsch et al. [56], a
scoping method based on a decision-making framework [77], a collaborative
approach for agile product line planning [95] and etc.

In the survey presented by John et al. [70], existing scoping approaches in the past
years are identified and characterized with the goal of deriving open research
questions. A few new research questions have been proposed, such as "What is the
influence of scoping on other software development phases?", "How is the connection
between scoping and RE?" and "How is the connection between scoping and
architecture?"

Variability Extraction from Various Sources
As a new software development paradigm, SPL development has been increasingly
adopted in practice. However, instead of building a product line from scratch, the
organization often needs to build it based on existing products. In such scenarios, the
product line should first include all existing products, and then possibly introduce new
products. With the purpose of improving the productivity of variability identification
in existing products, a large number of automatic/semi-automatic techniques have
been proposed for extracting variability from existing artifacts (e.g., functional
requirements, software models, source code, software architecture, product
descriptions and formal descriptions).

42

Variability Extraction from Functional Requirements
Niu et al. [94] present a clustering framework for analyzing the functional
requirements in an SPL. The framework provides automatic support during the
variability extraction and clustering processes.

Weston et al. [134] present ARBORCRAFT, a framework for guided creation of
feature models from requirements documents using natural language processing
techniques. The ARBORCRAFT framework is developed based on an approach
proposed in a previous feasibility study [8]. With ARBORCRAFT, the similarity of
requirements will be measured and compared using the LSA (Latent Similarity
Analysis) tool [116]. A feature tree will be created based on the results of the previous
stage using a variant of HAC [36] technique for feature clustering. The EA-Miner
[104] tool will be applied to detect variability in requirements to further refine only
mandatory features into sub-features with dependencies if necessary. The resulting
candidate feature model is subject to user input based on the user's domain knowledge
and understanding of the requirement documents.

Variability Extraction from Software Architecture
Acher et al. [1] present a tool-supported approach to extract and manage the evolution
of software variability from an architectural perspective in plugin-based systems. One
of the focuses of the approach is automatic variability extraction from the software
architecture of plugin-based systems.

The extraction process takes in the software architecture model, the plug-in
dependencies and software architecture knowledge as input. The software architecture
model consists of the set of elements needed to reason about the software system and
the hierarchical relations among them. The plugin dependencies specify variation
points and their logical dependencies supported by the architecture. The software
architect knowledge can introduce accidental complexity and does not necessarily
reflect how the software architecture is actually implemented.

On one hand, fmArch150 is extracted from a 150% architecture of the system, which
consists of the composition of the architecture fragments of all the system plugins.
The variability represented by fmArch150 is extracted by exploiting optional references
in the architecture model.

On the other hand, fmPlug is extracted from the plugin dependencies. The developer
needs to specify a bidirectional mapping from fmArch150 and fmPlug to show not only
which plugin provides a given architecture feature, but also which architecture
features are provided by a given plugin. In order to derive different fmArch which are
feature models representing different set of configurations, firstly fmPlug and fmArch150
are aggregated under a synthetic root in fmFull, which also contains the mapping
information between fmPlug and fmArch150, then the subset of configurations of fmFull are
projected onto fmArch150 using a slicing operation.

Variability Extraction from Product Models
Lora-Michiels et al. [85] present an approach that integrates statistical techniques to
identify commonality and variability in a collection of a non-predefined number of
product models, which results in a automatically constructed product line model. The
method consists of four steps:

43

(1) Preparation. In this step, a derivate matrix of feature occurrence in a collection
of product models needs to be prepared. Features can be extracted from repositories
by means of clustering techniques.

(2) Structural analysis. Step a) Firstly the collection of product models and the
feature occurrence matrix are examined to identify structural patterns such as bundles,
parents and sons, as well as a feature binary matrix. Step b) Once the feature binary
matrix is built, the association rules data mining tool based on Apriori algorithm is
executed to explore the association rules in the collection of product models. Step c)
Identify mandatory relationships using association rules. The relationship is
considered mandatory if at least one of the two association rules (high frequent
feature and bidirectional rules) is fulfilled between a parent and child feature. Step d)
Once mandatory relationships are identified, the remaining relationships between a
parent and child feature may be classified as optional.

(3) Based on the feature binary matrix and parental relationships discovered from
previous steps, a cross tabulation analysis and an independence test are performed to
identify strong relationships, such as excludes and requires.

(4) Grouped cardinality analysis by means of identifying all possible feature sets
for each bundle, and counting feature's occurrence in each product model.

Variability Extraction from Source Code/Legacy Systems
Ziadi et al. [146] propose an approach to automate feature identification from the
source code of a set of product variants. With the approach, the input products are
first abstracted as sets of construction primitives. Then feature candidates will be
identified by means of an algorithm. In the end the set of candidates will be
undergone manual edits to produce the final set of features of the product line.

Liu et al. [81] present a re-modularization approach for optimizing the synthesis of
product families. The approach provides automatic support in: (1) Identifying shared
files among products and extracting them into a common package. (2) Merging
isomorphic class inheritance hierarchies into a single hierarchy.

Savage et al. [106] present FLAT3, a tool suite for feature location. FLAT3 allows
the developer to locate features both textually and dynamically (monitor execution
traces), as well as to visualize the dispersion of features or search results throughout a
project.

Variability Extraction from Formal Descriptions of Product Lines
Gruler et al. [62] present an approach to model product lines in a formal manner. The
approach allows computing the common parts of a product line (an entire PL-CCS
program) in a well-defined way, and therefore facilitates matching components of the
algebraic model with existing implementation artifacts.

Czarnecki et al. [47] present an approach for synthesizing feature diagrams from
logical formulas, which produces a non-standard feature model with DAG structure.
She et al. [114] improve the work by proposing a set of procedures for reverse
engineering feature models based on a crucial heuristic for identifying parents, which
is regarded as the major challenge for this task.

Andersen et al. [9] show that the problem of automatic synthesis of feature models
from propositional constraints is NP-hard. In addition, this work also proposes a set of

44

efficient techniques for improving the performance of synthesizing feature models
from CNF and DNF formulas respectively.

Variability Extraction from Product Line Descriptions
Acher et al. [2] propose a semi-automatic process for extracting variability from a set
of product descriptions organized in tabular forms. The approach provides automatic
support in synthesizing a feature model by merging a set of products’ descriptions.

Dumitru et al. [51] propose a system that models and recommends product features
for a given domain. The approach mines product descriptions using a text mining and
incremental clustering algorithm, in order to identify domain-specific features.

Variability Extraction using Formal Concept Analysis
Ryssel et al. [102] present a formal concept analysis-based approach for automatically
constructing feature models from product variants that are given in the form of an
incidence matrix.

The authors later propose another work based on OWL-based reasoning and formal
concept analysis in [103]. This work allows the automatic verification of the feature
mapping, as well as the automatic feature model synthesis for derived features which
dependencies are not defined explicitly (e.g., Simulink variant objects).

Variability Extraction from Linux Kernel
Researchers have also worked on extracting variability from realistic examples, with
the purpose of using realistic SPLs for benchmarking SPL approaches. She et al.
[113] present the characteristics of the variability model of the Linux kernel, which
can be extracted automatically from the Linux kernel configuration file. Dietrich et al.
[50] present an approach for extracting variability from the Linux build system based
on the make files.

Motivations for Improvement
Based on the literature review, we see that the existing technologies in variability
identification have the following limitations, which correspond to our research
question RT2.1: (1) Methodology/guidelines-based approaches lack automation
support. (2) The applicability of some approaches is limited to specific languages
such as UML. (3) It may not always be impractical in practice to build a product line
from scratch. Therefore it is equally important to provide technologies for developing
SPLs from existing products.

5.1.4 Variability Realization in SPL Development

During the variability realization phase of a SPL development, how the domain-level
variability (features) of the product line should be realized/implemented during
product derivation is specified. Variability realization can be carried out by various
means (e.g., component-based software development [27], service-oriented
implementation [128], feature-oriented code composition [13, 15, 22, 74, 78],
composition/editing of domain models [31, 46, 59]).

45

Bosch et al., in [28], give a summary of different variability
implementation/realization techniques from a high-level point of view. They suggest
that the selection of a preferred variability realization technique should be driven by
the binding time at which variants to be bound. Furthermore, the selection process
should also take the following three factors into account, which are the mapping to the
domain-level variability, the need for late-stage openness, and the expected system
evolution.

Consistency Checking between Variability Realization and Variability
Specification (Domain-Level Variability)
Since variability specification (domain-level variability) and variability realization
reflect the problem space and solution space respectively, it is crucial to ensure that
variability specification and realization are consistent with each other in the product
line [46]. There are several research works which are intended for addressing this
challenge.

Mussbacher et al. [92] propose an approach for detecting semantic interactions
between aspect-oriented scenarios. In the process of semantic interaction detection,
the approach applies critical pair analysis to semantic annotation in aspect models. In
terms of tool support, the approach provides tool implementations for UML sequence
diagrams and GRL goal models.

Ghanam et al. [57] present an approach to provide traceability links between the
feature model and code artifacts to ensure the consistency between them. Executable
acceptance tests are used as traceability links between features and code artifacts. A
group of executable acceptance tests describe stories expected from a given feature of
the system. Therefore the executable acceptance tests associated with a particular
feature can be run through to see whether the current code artifacts (variability
realization) have realized the domain-level feature.

Mohalik et al. [90] propose a formal semantics for SPLs using elementary set
theory. This semantics makes it possible to give precise and unambiguous definitions
to the traceability between variability specification and variability realization. Similar
research efforts have been reported in [105], [39] and [41]. Satyananda et al. [105]
propose an formal approach based on the PVS theorem prover for the verification of
consistency between feature model and software architecture in the SPL; while
Classen et al. [39] and Cordy et al. [41] focus on symbolic and non-boolean model
checking of SPLs respectively.

Safe Composition
For compositional approaches, safe composition is the guarantee that all the
programs, which can be composed based on an SPL’s feature model, are type safe,
i.e., without undefined references to classes, methods or fields [22, 83]. Safe
composition is based on Czarnecki et al.’s observation that variability realization
should reflect variability specification (domain-level variability) in an SPL [46]. Most
research works in this area focus on the safe composition of source code [22, 79],
while there is an increasing interest shown on the safe composition of software
models [46, 84, 101] in the research community.

Thaker et al. [22] point out that, in a product line, low-level implementation of one
feature can reference elements in the implementation of another feature. They present

46

an approach for verifying if all the programs in a product line are type safe. Features
are formalized into propositional formulas and the feature realizations (program
segments) are analyzed to identify their dependencies between each other.

Czarnecki et al. [46] propose an approach for verifying feature-based model
templates against well-formedness OCL constraints. Feature-based model template
is an approach for model-driven SPL development. A feature-based template consists
of a feature model and an annotated model that conforms to the metamodel of the
base language. In the annotated model, variability of the product line is described in
annotations (e.g., indicating that a specific model element can be optional in certain
product models). With the feature-based model template approach, all possible
product models can be derived by applying different changes to the annotated model,
such as removing a model element which is annotated as "optional". The purpose of
this approach is to verify that both the feature model and the annotated model are
well-constrained so that all possible product models will conform to the metamodel
and the constraints of the base language.

Kästner et al. [79] formally discuss a product-line-aware type system which is
implemented with annotations on a common code base. Similar to Czarnecki et al.'s
work [46], instead of checking all possible products of a product line in isolation, this
approach checks the product line itself and ensure that all products from a well-typed
product line are well-typed.

Motivation for Improvement
Based on the literature review, we see the following two challenges against deriving
only products that are intended (see research question RT2.2):

(1) How to provide immediate feedback on the specification of variability
realization at design time. Specifying variability realization is an error-prone process
due to the complexity of the underlying domain. However, most existing SPLE tools
do not provide the developer with immediate feedback on his/her specification
changes at design time.

(2) How to ensure the consistency between the domain-level features/variability
and their realizations. Domain-level constraints that govern the compatibility of
features are often well captured in the product line model during feature specification,
e.g., feature A implies B, indicating that these two features need to be included in the
same product. However, the realizations of these two features may change the same
base model element in different ways so that including the two features in the same
product configuration will lead to conflicts during product derivation. We see the
need for approaches detect such inconsistencies at design time.

5.2 Evolving Model-Driven SPLs

SPLs evolves over time to fulfill new requirements, e.g., to add/remove
functionalities/products, to synchronize with the core assets/base modeling language
of the product line that has been changed. In this section we give a brief summary of
the most related work that has been reported in addressing challenges in SPL

47

evolution, as well as an analysis on how our thesis work was motivated by those
works.

5.2.1 Categorization of SPL Evolution

Svahnberg et al. [118] report on a case study of product line architecture evolution.
Based on the case study, categorizations are proposed for the evolution of
requirements, product line architecture and product line architecture components. In
particular, to add products to a product line is categorized as one of the common
requirements initiating an SPL evolution; while changed framework implementation
is regarded as one of the common reasons for product line architecture component
evolution.

Bosch et al. [27] report on a case study investigating the experience of component-
based software development when product line architecture is presented. Based on the
case study, the article discusses the difference between the academic and industrial
view on software components, as well as the problems in using reusable components
in product line architectures in industrial settings.

In particular, Bosch et al. [27] point out that, while reusable components are
usually considered as black-boxes in research works, in real industrial cases they are
often large pieces of software with a complex internal structure and no enforced
encapsulation boundary, such as object-oriented frameworks. Also, while in research
works components are often supposed to have narrow interface through a single point
of access, in industry the component interface is often provided through entities (e.g.,
classes) which have no explicit difference compared to non-interface entities.

Elsner et al. [52] present an overview of approaches addressing “variability in
time” which are time-related aspects in variability. The article identifies three types of
“variability in time”, which are: variability of linear change over time
(maintenance/evolution), multiple versions at a point in time (configuration
management), and binding over time (product derivation). The types are validated by
using them to describe complex product line evolution scenarios where they exhibit
expressive and discriminatory power.

Schmid et al. [108] present a taxonomy of requirements-based SPL evolution. The
requirements-based SPL evolution is categorized into three levels: requirements level
change, product level change and product line level change.

5.2.2 Augmenting Software Product Lines

Augmenting a product line has been so far mostly a manual process [4, 5, 16, 109,
111]. First, the product line developer checks if any of the new products are already
included in the existing product line. If not, the developer is challenged to augment
the existing product line in an optimal way so that: (1) The new products are
incorporated, (2) The production of the existing products is not affected, (3) The
changes to the product line are minimal. This requires the developer not only to
perform an extensive comparison of the new and the existing products, but also to
have a comprehensive understanding of the impact of any change during the

48

augmentation process. Several research works can be applied to assist augmenting a
product line with new products, which fall into the following categories:

Domain Analysis
Most of the domain analysis methodologies [23, 71, 72, 133] suggest a set of
analytical means for the developer to manually identify the commonality and
variability of the product line domain. In principle, those methods can be applied to
analyze the commonality and variability between the new products and the existing
products. However, since this requires extensive manual effort, the correctness of the
augmented product line can be jeopardized if the domain analytical guidelines are not
practiced diligently.

Merging Multiple Feature Models
Several works attempt to address the issue of merging multiple feature models
(product lines) into one [4, 5, 16, 109] in the context of merger or cross-organizational
cooperation. Those works mainly focus on defining the semantics of the merging
operations.

Acher et al. [4] propose two operators for composing feature models. The insert
operator allows inserting features from a crosscutting feature model to a base feature
model. The merge operator enables the developer to merge features from two feature
models which does not clearly crosscut with each other. When applying the
insert/merge operators to compose large scale feature models, the developer is made
aware of whether the current operation preserves the original semantics (set of
product configurations) of the base feature model or not.

Apel et al. [16] present an algebra for features and feature composition. In this
approach, the basic structure of a feature is modeled as a tree, called Feature Structure
Tree (FST), which organizes the feature's structural elements such as classes, fields or
methods hierarchically. Features are represented as FSTs and feature composition is
expressed by tree superimposition and tree walks. Furthermore, a framework for
feature composition has been implemented, which is fully independent of a concrete
language.

To meet the need that a growing number of organizations produce and maintain
multiple SPLs, Acher et al. [5] propose a compositional approach for managing
multiple SPLs that involves automatically merging feature models across SPLs. The
approach can be used not only to create feature models with certain product sets from
multiple SPLs, but also to combine features from different SPLs to form products.

Segura et al. [111] propose an automated technique for merging feature models
using graph transformations. In particular, the approach defines a set of visual rules to
describe how to merge feature models and illustrates how those rules can be validated
through tool support. Furthermore, the approach supports merging feature models
with feature attributes and cross-tree constraints.

Automated Feature Model Construction
Research in this category focuses on how to suggest a feature model automatically
from existing products, as summarized in Section 5.1.3. Other than automated feature
model construction, those technologies can also be used to augment a product line
with new products. First all the products of the existing product line need to be

49

generated, and then automated feature model construction techniques can be applied
to these existing products together with the new products to synthesize a new product
line model.

Motivation for Improvement
Based on the literature review, we see the following limitations in applying those
merging techniques to augment a product line with new products: (1) It is not always
practical to build a "delta" feature model from the new products first, and then merge
it with the existing feature model. (2) The main stream merging techniques only
support merger between two parent-compatible feature models. Two feature models
are parent-incompatible if they contain features with identical names but differently
named parent features. (3) Semantics of the merging operations only describe the set
of properties that the merged feature model should have. Most of the works do not
provide a mechanizable basis on how merging operations can be realized to automate
the merging of feature models.

When it comes to apply automated feature model construction techniques to
augment an SPL with new products, there are two drawbacks: (1) The amount of the
existing products can be potentially high, thus it is not always practical to produce all
the products from the existing product line for the synthesization of the augmented
product line. (2) Manual work spent on the development of the existing product line
may have to be discarded, e.g., the new product line may not preserve the overall
hierarchy of the existing product line, which has been specified/inspected based on
domain knowledge manually.

5.2.3 SPL Evolution Management

Domain Evolution in SPL
Adding new requirements to model-driven product lines often requires modifications
to the product line’s core assets (reusable model fragments) and base language to
reflect these new requirements. Since these modifications can involve much effort,
automatic assistance is needed in deducing and performing such modifications.

Deng et al. [48] argue that when it comes to domain evolution in model-driven
product line architectures, a layered and compositional architecture is needed to
modularize system concerns and reduce the effort associated with domain evolution.
Based on a case study, they illustrate that: (1) Structure-based model transformations
can help maintain the stability of domain evolution by automatically transforming
domain models. (2) Aspect-oriented model transformations can help to reduce human
efforts by capturing model-based structural concerns.

Safe SPL Evolution
To safely evolve an SPL, it is important to assure behavior preservation of the original
product line. Borba et al. [25] present a language-independent theory for product line
refinement. The theory establishes refinement properties that justify stepwise and
compositional SPL evolution. Similarly, Schulze et al. [110] extend the traditional
definition of software refactoring to SPLs and propose the concept of variant-
preserving refactoring of SPLs which are implemented using feature-oriented

50

programming languages. According to this new definition, all variants of an SPL
should remain valid after refactoring.

Neves et al. [93] discover and analyze concrete product line evolution scenarios.
Based on the findings, a number of templates for safe product line evolution have
been proposed, covering the evolution needs for splitting asset, refining asset, adding
new optional feature, adding new mandatory feature and replacing feature expression.

Vierhauser et al. [130] report on their experience with a tool-supported approach
for incremental and scalable inconsistency checking on variability models. They
categorize inconsistencies within the problem space (i.e. feature models), solution
space (i.e. UML models, domain models specified in base DSLs) and code space, as
well as in between the spaces that may result from SPL evolution. The approach is
extensive as new consistency constraints can be added. Furthermore, the approach is
not limited to variability models but also applies to SPLs with concrete
implementation, i.e. SPLs with underlying code base.

SPL Co-Evolution
A model-driven SPL deals with the following model artifacts which depend upon
each other: the metamodel of the base DSL, the core assets which are reusable model
fragments specified in the base DSL, and the product line model. These three types of
model artifacts depend upon each other and together decide what product models can
be derived from the product line. As the metamodel of the base DSL and core assets
of the SPL are subject to evolution over time, it is crucial to ensure that product
models can still be derived as intended. It may become necessary to co-evolve some
other artifacts when one of them evolves. For example, evolving the core assets of a
product line may require co-evolving the product line model to ensure intended
product derivation. An effective model-driven SPL development cycle should provide
support for SPL co-evolution [49].

Dhungana et al. [49] present an approach for supporting SPL evolution by
organizing variability models of large scale product lines as a set of interrelated model
fragments defining the variability of different aspects of the system. In addition to
allow semi-automatic merging fragments into complete variability models, the
approach also provides a metamodel change propagator which allows updating the
existing variability models after changes made to the metamodel of the base DSL.

Seidl et al. [112] present the conceptual basis of a system for supporting the
evolution of model-based SPLs, which maintains consistency between models and
feature mapping from features to core assets. As part of their work, the authors
introduce a classification of SPL evolutions based on the potential to harm the
mapping of an SPL. Furthermore, with the purpose of co-evolving the feature
mapping, several remapping operators have been proposed to rectify the negative
side-effects of evolutions.

SPL Evolution Traceability
Passos et al. [98] have envisioned a feature-oriented project management and system
development platform. As part of their vision, the platform supports traceability
between features and the associated implementation artifacts. In addition, they believe
that “organizing software evolution around features, supported by tracing, analyses

51

and recommendations will address many of the challenges in understanding and
managing change.”

Mitschke et al. [89] propose a versioning model which enables traceability between
features, artifacts (core assets) for feature implementation, and products in the context
of software product line evolution. Serving as a basis for SPL evolution
management, the approach provides traceability information that can ensure the
consistency and maintainability of software product lines.

Jirapanthong et al. [68] present a rule-based approach to support automatic
generation of traceability relations between feature-based object-oriented documents.
In particular, the approach defines a traceability reference model with nine types of
traceability relations (e.g., refinement and implement relation) for eight types of SPL
artifacts (e.g., feature models, use cases and class diagrams). Furthermore, the eight
types of SPL artifacts need to be specified in the document formats proposed by the
FORM methodology [72], which in turn limits the applicability of this approach.

Anquetil et al. [12] present a model-driven traceability framework for software
product lines. The approach identifies four orthogonal traceability dimensions in SPL
development. The time dimension describes how an SPL artifact changes during
evolution, which can be used to revert the changes caused by an evolution.

Motivation for Improvement
Based on the literature review, we see that the importance of providing automatic tool
support for SPL co-evolution has been increasingly recognized. In particular, as
pointed out by Seidl et al. [112] and Dhungana et al. [49], challenges may arise on
how to update (co-evolve) a separate variability model (product line model) when its
underlying core assets evolve over time. How can we ensure that the variability model
is still valid? Updating the variability model according to the changed base model
(core assets) can be a tedious task. However, there have been relatively few
approaches which provide automatic co-evolution support in relation to variability
model and core assets.

5.2.4 Semantic Differencing for Product Lines

Product lines evolve over time, and even small changes to a product line model can
result in big semantic difference. It is vital for the developer to: (1) Identify the added
and removed products in the evolved product line. (2) Check if all the products that
the product line needs to offer to the customer are fully covered. (3) Document all the
products that are supported by the product line, including those which are not offered
to the customer yet [3, 88, 99].

Syntax-based differencing approaches have their limitations in situations when
models of similar syntactical representation have very different semantics, which has
been observed in feature models [24]. It becomes increasingly recognized that
semantic differencing approaches can be more useful for certain purposes [6, 86, 87]
such as understanding the impact of product line evolution.

52

Formal Semantics of Feature Models
Alves et al. [7] present a set of sound refactoring scenarios for feature models. As part
of this work, the semantics of a feature model is formalized, which is defined as a set
of product configurations that satisfy all the modeled constraints. Furthermore, the
semantics is encoded using the Prototype Verification System (PVS) [96], which is a
formal specification language.

Gheyi et al. [58] propose a theory for feature models in Alloy, which can be used
to check a number of properties in the Alloy Analyzer [67]. As part of this work, the
semantics of a feature model, which is specified in Alloy, is also defined as all the
valid configurations that satisfy all the modeled constraints. Furthermore, the work
also shows how to yield all valid configurations of a feature model in the Alloy
Analyzer.

Similar work has been reported by Sun et al. [117], where the semantics of a
feature model is specified using the first-order logic in Z [137]. The correctness of the
semantics definition is validated using the Z/EVES theorem prover [124].
Furthermore, the semantics is also encoded in the Alloy analyzer for verifying the
consistency of a given feature model. Our Alloy definition of the feature specification
layer is mainly motivated by the definition of feature models in [58].

Semantic Differencing Techniques for Models
Fahrenberg et al. [53] present a formal approach for defining semantic difference
between models. In the vision of this work, the difference between two models should
be a model. In particular, a framework has been proposed for defining well-formed
difference operators on model semantics as adjoints of model combinators, such as
conjunction, disjunction and structural composition.

Archer et al. [6] present a set of differencing techniques for feature models, which
render both syntactical and semantic mechanisms. The semantic difference between
two feature models, represented as a semantic diff feature model, can be computed
based on implication and exclusion graphs using SAT solvers.

Maoz et al. report their work on semantic differencing class diagram in [87] and
activity diagram in [86]. They argue that the semantic difference should be a set of
"diff witnesses", for instance, the diff witnesses of two class diagrams should be a set
of object diagrams defined by the first class diagram but not the second.

Motivation for Improvement
Based on the literature review, we see the potential to improve the state-of-the-art in
semantic differencing for product lines. In particular, existing semantic differencing
techniques for feature models do not compare variability realizations of two feature
models, which are considered crucial for final product derivation. Imagine the
scenarios when the realization of a feature has evolved while the feature at the
specification level remains the same, and vice versa. Semantic differencing for feature
models fails to provide a complete picture of the impact of the evolution in this
context.

Furthermore, we are also enlightened by Maoz et al.’s claim [87] [86] that the
semantic difference should be a set of "diff witnesses". The concept of “diff
witnesses”, if adapted to the context of product lines, can be well-suited for

53

representing the semantic difference between two product lines in terms of derivable
product configurations.

55

6 Contributions

The contribution of this thesis is manifested by seven artifacts developed by us (see
Fig.5). Our artifacts are all concerned with model-driven SPL development, and
mainly target on our three research topics. In this chapter we give an overview of the
contributions, and we refer to Paper I - VII [122, 123, 141-145] (Appendix I - VII) for
more detailed descriptions of the artifacts.

56

Fig.5. The overview of contributions

6.1 RT1: A Generic Approach for Developing Executable Model-Driven SPLs

In order to develop "a generic approach for developing executable model-driven SPLs
(see RT1 in Fig.5)", we focus on the following aspects:

(1) "Generic" and "executable" require that, with this approach, the developer may
not only define variability specification but also variability realization for SPLs in
different domains, in a generic way. This requirement is addressed by our 1st, 3rd and

”CVL” ”Automatic assistance in defining
variability realization”

RT1.1: How to define both variability specification and realization in a generic way for model-
driven SPLs in different domains?

”Augmenting an SPL”

”CVL Compare”

RT1.2: How to develop a base DSL suited for building model-driven SPLs?

”APRiL”

”CVL”

RT3.1: How to improve the productivity in inducing SPL evolution steps from new
requirements?

”CVL Compare”

”Co-evolving an SPL” ”CVL”

RT3.2: How to improve the productivity of SPL co-evolution?

”CVL Compare”

”CVL”

RT3.3: How to assist the developer to gain a comprehensive understanding of the impact of
an SPL evolution?

”Semantic Differencing for SPLs”

”CVL”

RT2.1: How to improve the productivity of variability identification in model-driven SPL
development?

”Automatic assistance in defining variability realization”

RT2.2: How to ensure that the variability realization will only yield intended products?

RT1: A generic approach for developing executable model-driven SPLs

RT2: Automatic assistance in model-driven SPL development

RT3: Evolving model-driven SPLs

Artifact 1 (Paper I): CVL: a generic variability modeling language
Artifact 2 (Paper II): APRiL: a payroll reporting DSL
Artifact 3 (Paper III): CVL Compare: an approach to synthesize an SPL from products
Artifact 4 (Paper IV): An automatic approach to assist in defining variability realization
Artifact 5 (Paper V): An approach for augmenting an SPL with new products
Artifact 6 (Paper VI): An approach for co-evolving an SPL when the base model is change
Artifact 7 (Paper VII): A semantic differencing approach for SPLs

”CVL Compare”

”CVL”

57

4th artifact (see Fig.5), which propose the Common Variability Language (CVL) and
CVL-based methodology & automatic assistance for SPL development.

(2) As explained in RT1.2 in Fig.5, the developer needs guidelines on, when there
is no base DSL yet, how to develop one that is suitable for building model-driven
SPLs on top. We address this requirement by reporting our experience on developing
both the base DSL and SPLs for the payroll reporting domain in the 2nd artifact
("APRiL").

6.1.1 RT1.1: How to define both variability specification and realization in a
generic way for model-driven SPLs in different domains?

The Common Variability Language (CVL) is a separate and generic variability
modeling language. CVL provides capabilities for defining both variability
specification and realization in a generic way for SPLs in different domains, which
contributes to RT1.1.

The initial results of the CVL language have been reported by Haugen et al. in
[66]. We further developed the language and reported the new results in [54] and
Paper I [123]. In Paper I we give a detailed introduction on the CVL language, and
present a CVL-based methodology for SPL development through a realistic case
study. In the following, we introduce the CVL language essentials in Section 6.1.1.1
and the CVL methodology in Section 6.1.1.2. We refer to Section 2.2 for explanations
to the product line-related terms used in the following sections.

6.1.1.1 CVL Language Essentials
As a separate variability modeling language, CVL can be applied to models created in
any DSL that is defined based on Meta Object Facility (MOF)12. When using CVL to
develop product lines, the developer needs to deal with the following models (see
Fig.6):

Base Model. A base model is a product model created in the base DSL. During
product derivation, product models can be derived by applying feature realizations to
the base model. The base model can be viewed as part of the product line's core assets
(reusable model fragments).

CVL Model. A CVL model consists of the variability model and the resolution
model:

 Variability Model. This variability model serves as the product line model,
in which the SPL developer specifies the variability of the product line in
this model. The term "variability model" is analogous to "feature model" in
feature modeling.

 Resolution Model. A resolution model has one-sided relation to a variability
model. Thus a variability model can have several resolution models. The
developer can resolve the variability of the product line differently in several
resolution models. Resolution models can be regarded as product
configurations. The CVL generic transformation will take the base model

12 http://www.omg.org/mof/

58

(and the library models if applicable), the variability model and the
resolution models as input to generate resolved models, which can be
regarded as the product derivation process. A "resolution model" is
analogous to a "product configuration" in feature modeling.

Fig.6. Models in the CVL approach

In the variability model, the developer can specify the variability of the product
line in two layers (see Fig.6):

Feature Specification Layer
Specify domain-level variability in terms of features
Subsume the feature diagram notation

Product Realization Layer
Define how features should be realized at the model (object)
level in terms of CVL substitutions
CVL substitutions can express arbitrary model changes

 Variability Model

Resolution Model
Also called ”product configuration”
Resolves variability for a specific product

 CVL Model

Base Model
Created in any MOF-based DSL
Core assets of the SPL, can contain separate library models
CVL substitutions will be applied to the base model to generate
product models

EObject (URI)

Resolved Model
Also called
”product model”

Generic CVL Transformations
(”product derivation”)

59

Feature Specification Layer. The developer specifies domain-level features in
this layer. CVL provides language constructs to specify features, relationships
between features, multiplicity and choices over features. The specification in this
layer can be regarded as a feature model.

In particular, the CVL language concept CompositeVariability can be used for
modeling features in the feature specification layer of a CVL model. A
CompositeVariability can also be further specialized into an Iterator, which can be
used to model multiplicity and choices over features. Iterator has three properties:
upperLimit, lowerLimit and isUnique. The first two properties specify the maximal
and minimal number of features that are allowed to be chosen by this iterator. The
property isUnique specifies if the same feature can be chosen more than once.

Product Realization Layer. This layer is not covered by the traditional feature
modeling notation. In this layer, the developer defines how the features should be
realized at the model (object) level in terms of CVL-specific model editing
operations. These operations, called substitutions in CVL terms, can apply arbitrary
changes of attribute value and structure to the base model to derive new product
models during product derivation.

A CVL-specific substitution can be further specialized into the following
substitutions:

ValueSubstitution, which changes the value of an attribute of a model element
(PlacementValue) to another value (ReplacementValue) (see Fig.7).

ReferenceSubstitution, which redirects a reference from one model element
(PlacementObject) to another one (ReplacementObject) (see Fig.7).

FragmentSubstitution, which substitutes an arbitrary set of model elements
(PlacementFragment) with another set of model elements (ReplacementFragment)
created in the same DSL. A ReplacementFragment can be defined either in the same
base model or in separate library models.

Any arbitrary model fragment can be defined using BoundaryElement(s).
Boundary elements are used for recording all references to and from the model
fragment. As illustrated in Fig.7, ToP, FrP1 and FrP2 define a PlacementFragment,
whereas ToR, FrR1 and FrR2 define a ReplacementFragment. During a
FragmentSubstitution, the boundary elements representing the ReplacementFragment
need to be bound to the ones representing the PlacementFragment.

The developer needs to bind the boundary elements explicitly. Two boundary
elements can only be bound if their recorded references are of the same type (the
references point to the same type of model elements). For example, ToR is allowed to
bind to ToP since both of their recorded references are of type A. Similar pairs include
FrR1 with FrP1 and FrR2 with FrP2. As illustrated in Fig.7, these three Bindings are
the only legal choices; however, one boundary element can be eligible to bind to
several as long as the typing rule is followed. The CVL tool can suggest default
Binding candidates for each boundary element which are type-compatible.
Nevertheless, with more than one eligible boundary element, it is up to the developer
to decide on the final binding since only he/she knows how the resulting product
model should look like.

An advanced CVL mechanism is to use configurable replacement fragment in
substitutions. For example, the developer can define the value "f" of the attribute
"name" of f:F (see Fig.7) as a PlacementValue. This variation point will be kept open

60

after the FragmentSubstitution is executed. The developer can choose to assign a
ReplacementValue in a ValueSubstitution to rename f: F at any point. A configurable
replacement fragment can also have PlacementObject(s) and placement fragments
inside.

Fig.7. CVL substitutions

Based on the CVL language definition, we have developed a prototype to evaluate
the feasibility of this artifact. The CVL metamodel is defined in EMF, from which a
tree-view CVL editor is generated out-of-the-box. We have also developed CVL
graphical editor (using GMF), a fragment substitution binding editor, a select-and-
generate resolution model generator, a configuration validator and a generic CVL
transformation (using MOFScript).

Furthermore, CVL provides a set of APIs for integrating different base DSL editors
with the CVL editor. With a CVL-enabled base DSL editor, the developer can create

a1 : A

b : B

c : C1
1 1

111

ii11 : : IIi1 : I

1

1

ee :: EEe : E

dd11 :: DDd1 : D

1
1

1

1

a2 : A

f : F

g : G
11

1
1

1
1

ii1 1 :: IIi1 : I

1

1

ee :: EEe : E

dd1 1 :: DDd1 : D

1

1

1

1

h : H

Placement Fragment
ToP

FrP1

FrP2

11

Base Model

Resolved Model

a2 : A

f : F

g : G
11

11

1
1

ii22 : : IIi2 : I

1

1

k k :: KKk : K

dd22 : : DDd2 : D

1 1

11

h : H

11

Replacement Fragment

FrR2

ToR

FrR1

Library model

Fragment
Substitution

Fragment Substitution

Value Substitution

attribute1 = "PlacementValue"
x1 : X

attribute1 = "ReplacementValue"
x1 : X

Value Substitution

Reference Substitution

a1 : A

PlacementObject : B

1

1 a1 : A

ReplacementObject : C

PlacementObject : B

ReplacementObject : C

1

1

Reference
Substitution

61

placement/replacement fragments in the CVL editor automatically from the selection
in the CVL-enabled base DSL editor, and boundary elements will be calculated
automatically. Model elements involved in a substitution will be highlighted in the
CVL-enabled base DSL editor when they are selected in the CVL editor.

6.1.1.2 CVL Methodology for SPL Development
In this section we walk through the process of creating the train control product line
as described in Section 2.2 using the CVL methodology. The whole development
process is illustrated in Fig.8. We refer to Paper I (Appendix I) for an industrial case
study in developing a realistic train control product line, which all the products are
real stations in use or under development in Norway.

Fig.8. CVL methodology for SPL Development

Step 1: Prepare Product Line
This step can be regarded as the variability identification phase in model-driven SPL
development. The focus of this step is to capture the variability and commonality of
all intended product models of the product line. In this step, there are different
strategies for identifying variability depending on the context of the development:

CVL Methodology for SPL Development

pep

S
te

p
66:

D

er
iv

D
ee

du
P

ro
du

ct
s

c

S
te

p
6:

D

er
iv

e
P

ro
du

ct
s

ep
S

te
p

77::
V

al
id

V
a

at
e

at
e

du
P

ro
du

ct
s

c

S
te

p
7:

V

al
id

at
e

P
ro

du
ct

s

ep

S
te

ppp
22:

oo

s
C

ho
as

e
B

as
e

ho
os

C
ho

s
B

as
e

B
a

ee
od

el
M

od
e

S
te

p
2:

C

ho
os

e
B

as
e

M
od

el

ep

S
te

p
33:

ea
t

C
re

a
b

e
Li

b
ar

y
ra

ry

ra
ry

od

el
M

od
e

S
te

p
3:

C

re
at

e
Li

br
ar

y
M

od
el

S
te

p
S

te
4:

 C
re

at
C

re
at

C
r

e e
V

L
M

C
V

L
od

el
S

te
p

4:
 C

re
at

e
C

V
L

M
od

el
ep

S

te
p

55:
C

on
fi

C
o

ur
e

gu
re

od

u
P

ro
du

ct
s

c

S
te

p
5:

C

on
fig

ur
e

P
ro

du
ct

s

ep

S
te

p
11:

P

re
pa

P
r

rere

u
P

ro
du

ct
 L

i
ct

ne

S
te

p
1:

P

re
pa

re

P
ro

du
ct

 L
in

e

Comparing Existing Product
Models

Starting with a Base Model and using CVL to Help
Sketch Intended Products

ded
M

od
M

Maximum Base Model
+ Subtractive Strategy

Minimum Base Model
+ Additive Strategy

Intermediate Base Model
+ Subtractive & Additive Strategy

ddod
M

o
MM Complete Models Model Fragments

Define Feature
Specification Layer

Define Product Realization Layer

Create Resolution Models
for Products

Our 4th artifact provides automatic assistance
in:
1. Simulating variability realization at design
time
2. Checking the consistency between feature
specification and product realization layer

Our 3rd artifact provides automatic
assistance in identifying variability from

a set of products and suggesting a
preliminary CVL model

Validate the Derived
Products using Domain-

Specific Methods

Execute CVL Description
through CVL

Transformations

62

When the product line needs to include existing products, it would be suitable
to compare existing products to identify variability between them.

Our train control product line falls into this category. With the TCL language, the
station drawings received from the Norwegian railway authorities can be re-created
by train experts from ABB in terms of TCL models, from which source code for on-
site signaling controllers can be generated. With the purpose of building a product
line to include existing TCL (station) models, it is appropriate to start with comparing
those station models which have been well-defined and validated.

The comparison results in the following understandings: stations can be either
Urban or Rural ones depending on their location. Urban stations can have one
AdditionalTrack compared to rural stations. Urban stations can also have a
LeftParkingTrack and/or a TopParkingTrack. Rural stations can choose to have an
optional RightParkingTrack.

Note that variability identification has been mostly a manual process. Our 3rd
artifact ("CVL") aims to provide automatic assistance in the variability identification
phase, which will be elaborated in Section 6.2.1.

When the product line is developed from scratch, the developer can start with
choosing/specifying the base model (see Step 2). While defining the CVL model (see
Step 4), the developer can then decide, relative to the base model, how the intended
product models should vary from each other.

Very often a product line does not only need to include existing products, but
also needs to introduce new products. We see that in this kind of scenarios, a
combination of the two strategies mentioned above, namely that starting with
comparing existing products, and further generalizing the product line to support
more products, can be beneficial.

Step 2: Choose Base Model
The CVL model describes how the intended product models can vary from each other
relative to the base model. During product derivation, feature realizations in terms of
CVL substitutions will be applied to the base model to generate resolved/configured
product models. There are different strategies for choosing/defining the base model
for a CVL model (product line model):

Subtractive strategy. In this category the base model includes sufficient model
elements to cover all features of the product line. With a maximum base model,
subtractive strategy will be applied while defining feature realizations. In other words,
CVL substitutions will be solely removing elements from the base model while
deriving product models. In this case, core assets for this product line only contain
this base model.

Additive strategy. In this category the base model contains the minimum set of
features, and other reusable model fragments are defined in separate library models
(see Step 3). Then core assets for this product line will contain both the base model
and library models. With a minimum base model, additive strategy will be applied
while defining feature realizations (substitutions). Thus product models will be
generated by adding features to the base model.

Combined strategy. In this category the base model is neither maximum nor
minimum, but somewhere in between. This base model can be some model that is the
most similar to the majority of all intended product models, or some model that is

63

considered as a typical starting point for product development in industry. Then both
subtractive and additive strategies will be applied while defining the feature
realizations. CVL substitutions will be both removing and adding elements to the base
model in order to generate product models.

How do we choose an appropriate strategy? In principle, no matter which
strategy is applied in choosing/specifying the base model, as long as the CVL
substitutions are defined correctly, the production of the SPL will be guaranteed. In
addition, the product realization and feature specification layer of a CVL model is
independent of each other. Therefore the production of the SPL will not be affected if
naming of features does not quite reflect the purposes of their realizations.

However, different choices of the strategy may affect some non-functional factors,
such as the readability, maintainability of the resulting CVL model, and how difficult
it is to assign bindings of boundary elements while defining fragment substitutions.

Fig.9. The base model and library model of the train control product line (with annotations)

As illustrated in Fig.9, we choose an intermediate base model for our train control
product line. This station model has been created manually in the TCL graphical
editor. We chose this station as the base model for the product line for two reasons,
one is that it is the most similar one compared to all intended products; the other is
that to the train experts at ABB, this station is a conventional starting point for station
development in practice.

Step 3: Create Library Models
The CVL transformations derive a product model by making a copy of the base model
and applying selected substitutions (feature realization) to it. When a model fragment
in the base model is replaced by another model fragment in the library model, a copy
is also made of the replacement fragment. Therefore the replacement fragment can

Placement for
AdditionalTrack - Track 2

Left Placement
for ParkingTrack - TCE2

Replacement Fragment ParkingTrack

Base Model

Library Model

Right Placement
for ParkingTrack - TCE7

Top Placement
for ParkingTrack

- TCE4

Replacement Fragment Two-track

64

either be taken from separate library models or the base model itself. When a
minimum base model is used, separate library models may be needed in which some
other reusable model fragments can be found.

With the TCL language, it is not possible to explicitly define model fragments such
as ParkingTrack and Two-track (see Fig.9). However, while specifying the CVL
model in the next step, the developer is able to define any arbitrary model fragment in
the base and library model using boundary elements.

A library model can consist of either complete models where certain model
fragments can be extracted, or only several model fragments. We recommend having
library model fragments to be put in a more complete context (model). We notice that
with some immediate context, when the replacement fragment is "cut off and taken"
from its context (conceptually), the CVL fragment binding editor can be of more
assistance in suggesting binding candidates that are type-compatible, and in turn
might make it easier for the developer to decide on the bindings.

In our train control product line, we choose to have a separate library model with
two model fragments ParkingTrack and Two-track (see Fig.9). This is due to the lack
of existing complete models with these two required fragments.

Step 4: Create CVL Model
In this step the developer creates a CVL model (product line model) to specify the
variability and commonality of the product line. In the feature specification layer,
domain-level variability in terms of features is defined, while how the features should
be realized in terms of substitutions is defined in the product realization layer.

As illustrated in Fig.10, a CVL model has similar notations as feature models with
extensions and customizations. In the feature specification layer,
CompositeVariability is used to model features such as AdditionalTrack and
ParkingTrack, while Iterator is used to model choices over features, such as
optionality, XOR and OR. In the product realization layer, fragment substitutions are
used to realize the features. As illustrated in Fig.9 and Fig.10, feature AdditionalTrack
can be realized by the fragment substitution which replaces Track2 with Two-track;
the feature LeftParkingTrack or RightParkingTrack or TopParkingTrack can be
realized by replacing TCE2 or TCE7 or TCE4 with ParkingTrack.

CVL provides a set of APIs for integrating with any base DSL editor. With a CVL-
enabled base DSL editor, placement/replacement fragments can be created
automatically in the CVL editor by selecting them in the CVL-enabled base DSL
editor, boundary elements can be calculated automatically, and elements involved in
fragment substitutions can be highlighted in different colors. As illustrated in Fig.11,
the placement fragment Track2 is highlighted in red (see the top right pane), while the
replacement fragment Two-track is highlighted in blue (see the bottom pane). In
addition, the elements that are referred from/to Track2/Two-track are highlighted in
yellow and green respectively.

We see the need to ensure the correctness of the product realization layer in order
to guarantee the derivation of all intended products in the later step. Our 4th artifact
("Automatic assistance in defining variability realization") provides automatic
assistance in the creation of CVL models to ensure only intended product derivation,
which will be elaborated in Section 6.2.2.

65

Fig.10. The CVL model for the train control product line (with annotations)13

Step 5: Configure Products
In this step the developer needs to create product configurations in terms of resolution
models in CVL. Each resolution model specifies a set of features required for each
product. A select-and-generated resolution model generator has been developed with
CVL to automate the creation of resolution models. By selecting the required features
directly from the CVL model, a resolution model representing a station with an
additional track and a left parking track can be generated automatically. In addition,
the CVL editor also supports highlighting any existing product configuration in green
when requested.

Step 6: Derive Products
In this step the CVL model, the base and library model are input into the CVL
transformations for product derivation. The following describes how a product model
is derived during the transformations:

First a copy of the base model is made. Then the variability model is executed
recursively by starting with executing the ExecutablePrimitives contained in the root
CompositeVariability. If another CompositeVariability is contained in the current
CompositeVariability, then ExecutablePrimitives contained in this
CompositeVariability will be executed subsequently.

When the execution encounters an Iterator, it will stop, look up for the resolution
of this choice in the resolution model, and continue again. When the execution
encounters a fragment substitution, it will first remove the placement fragment from
the copy of the base model, make a copy of the replacement fragment, and then place
it into the "hole" in the copy of the base model following the definition of the
boundary element bindings.

13 The TCL terms "Side Track" and "Parking Track" are used interchangeably in this thesis.

CompositeVariability

XOR(Iterator)
Iterator

Fragment
Substitution

InsertNewTrack

Placement
Fragment
Track2

Replacement
Fragment
Two-track OR(Iterator)

66

Fig.11. Fragment substitution for inserting an additional track (involved elements highlighted
in the CVL-enabled TCL graphical editor)

Step 7: Validate Products
Since the generic CVL transformation is oblivious to the semantics of any base DSL,
it is possible to generate semantically wrong products if the developer does not define
feature realizations correctly. Therefore the derived products need to be validated
using domain-specific methods, such as DSL editors, model validators and code
generators.

When it comes to our train control product line, source code for on-site signaling
controllers is automatically generated from all the derived station models, which is
inspected against safety guidelines, and then executed on the simulator at ABB. If the
source code goes through the simulation, then it confirms the validity of the derived
stations.

6.1.2 RT1.2: How to Develop a base DSL Suited for Building Model-Driven
SPLs?

In paper II (Appendix II), we have reported our experience on developing a base DSL
and SPLs for the payroll reporting domain, in order to exemplify: (1) How to develop
a base DSL that is suited for building model-driven SPLs (see RT1.2 in Fig.5). (2)
How software development process can be simplified and improved by adopting the
model-driven SPL paradigm.

We have developed the Agresso Payroll Reporting Language (APRiL) for the
payroll reporting module of Agresso Business World © (ABW, an ERP system from
Agresso, Norway). Payment & Deduction (P&D) is the basic payroll term in the
ABW system, which is defined with codes by users. Typical P&Ds include
FixedSalary, OvertimePay, Bonus, Tax. The value of each P&D can be calculated
through ABW payroll transactions. The payroll of each employee can be calculated
by summing up his/her P&D values.

For payroll reporting, users are often more interested in producing different views
of payroll information instead of retrieving P&D values. For example, an employee

67

may be interested in his/her actual or predicted salary for a certain period, while a
manager may be interested in the human resource cost or average salary of a certain
group of employees. However, it proved challenging for Agresso to provide a
standard way to customize payroll reports in the ABW system, due to the following
reasons:

Fig.12. The traditional process of payroll reporting customization for ABW users

(1) Payroll schemes can vary across roles in a company, and payroll schemes for
the same role can also vary across companies. For example, payroll for a sales
representative often includes commission while payroll for a secretary may not; an
engineer may have bonus in one company but not in the other one.

(2) In order to customize advanced payroll reporting queries, the user needs to
manipulate table columns and relationships in the ABW database directly using joins
and filters. Since table relationships in the ABW database are not optimized for
reporting purposes, it can be rather difficult for the user to create a complex reporting
query in a short time. Normally in such situations, the user would seek help from the
Agresso consultants who are supposed to have profound knowledge about
manipulating the ABW database. As illustrated in Fig.12, the Agresso consultants
need to manually produce SQL scripts for customized reporting queries, which can
often be a time-consuming and error-prone process.

Fig.13. The APRiL process of payroll reporting customization for ABW users

The APRiL language and tools have been developed using Eclipse technologies to
address the challenges mentioned above. The metamodel of the language has been
defined in Eclipse Modeling Framework (EMF), while the APRiL graphical editor
has been developed using Graphical Modeling Framework (GMF) and the APRiL
code generator has been developed using MOFScript. As illustrated in Fig.13, with

ABW User

ABW Payroll Reporting Module ABW Database

Agresso Consultant

Request for Customizing Advanced
Payroll Reporting Queries

Database-Table-Oriented Data
Manipulation

SQL
Scripts

Traditional Process of Payroll Reporting Customization for ABW Users

Customized Payroll Reports

ABW User

ABW Payroll Reporting Module ABW Database SQL
Scripts

APRiL Process of Payroll Reporting Customization for ABW Users

Customized Payroll Reports

APRiL Graphical Editor Payroll Reporting
Structures Specified in

APRiL Models

APRiL Code Generator

68

APRiL, the user is able to specify how a payroll report should be composed by P&Ds
in the graphical editor, and the corresponding SQL script can be produced
automatically from the code generator.

Note that the APRiL language can be used for expressing arbitrary payroll
compositions. Moreover, the language is fully domain-specific and does not include
any variability modeling concepts.

Fig.14. A payroll reporting structure specified in the APRiL graphical editor (with annotations)

In the APRiL language definition, PaymentDeduction (P&D) is the main concept
in the payroll reporting domain. A P&D can be either a PrimitivePD or a PDGroup.
Each PrimitivePD is defined independent of other P&Ds and associated with a unique
identifier in the ABW database. As shown in Fig.14, FixedMonthlySalar,
OvertimePay, Tax and UnionDeduction_GPMU are all defined as PrimitivePDs with
their unique IDs 1100, 2020, 8910 and 5024.

PDGroup is a type of P&D that is defined dependent on other P&Ds. A PDGroup
can consist of PrimitivePDs as well as other PDGroups, such as YearlySalary and
MonthlySalary in the example. PDGroups are not defined in ABW database, but only
used for aggregation purposes in payroll reporting. The hierarchies across
PrimitivePDs and PDGroups make it possible to model payroll reporting structures in
a more conceptual and intuitive manner.

With APRiL, relationships between P&Ds can be modeled explicitly using
PDGroupLink. Moreover, the user can set the properties ChildPDOperator,
ChildPDOperand and ParentPDOperator to each PDGroupLink to specify detailed
composition of each P&D. Each ChildPDOperator and ParentPDOperator can be
PLUS, MINUS, MULTIPLY and DIVIDE. As illustrated in Fig.14, MonthlySalary is
the sum of FixedMonthlySalary, OvertimePay and Tax (P&D value is negative),
while YearlySalary is calculated by multiplying MonthlySalary with 12 and adding it
to UnionDeduction_GPMU (P&D value is negative).

PDGroup PrimitivePD

ChildOperand

Parent
Operator

Child
Operator

YearlySalary=FixedMonthlySalary*12+OvertimePay+Tax+UnionDeduction_GPMU

69

Fig.15. Base model, library model and resolved model for a payroll reporting example (with

annotations)

In Paper II, we also illustrate how to add CVL-based variability handling to APRiL
to further improve the productivity of the payroll reporting customization for ABW
users. As illustrated in Fig.15 and Fig.16 , for a new payroll reporting structure
similar to an existing one, instead of specifying the new structure from scratch, the
developer can add separate variability handling (CVL-based) to the existing payroll
reporting structure and generate the new one.

In order to evaluate the APRiL and APRiL+CVL approach, we have validated the
generated script by comparing to the one that is manually developed by the Agresso
consultants. Furthermore, we evaluated the use of APRiL on arbitrary payroll
reporting structures provided by Agresso. Without knowing how to create advanced
reporting queries in the ABW database using SQL, just like most users of the ABW
system, we were able to create various payroll reporting structures using
APRiL/APRiL+CVL approach in a short time. The generated SQL scripts were first

Base Model

Library Model

Resolved Model

ReplacementFragment

PlacementFragment

Add ”MobilePhone” by FragmentSubstitution
Change ”UnionDeduction_GPMU (5024)” to ”Bonus (8208)” by ValueSubstitution

70

inspected by the Agresso consultants, and then executed to see if those queries return
the expected results.

We have learned the following lessons from this experience: (1) DSM and model-
driven SPL paradigms have big potential in improving the productivity of software
development by shifting certain responsibilities from the developer to the domain
expert. (2) In order to adopt model-driven SPL development with separate variability
handling, it would be ideal that the base DSL is made to be fully domain-specific
without any variability modeling concept.

Fig.16. The APRiL+CVL process of payroll reporting customization for ABW users

6.2 RT2: Automatic Assistance in Model-Driven SPL Development

There is a lack of methods providing automatic assistance at the variability
identification and variability realization phase of model-driven SPL development. In
Section 6.2.1 and Section 6.2.2 we summarize how our artifacts contribute to RT2.1
and RT2.2.

6.2.1 RT2.1: How to improve the productivity of variability identification in
model-driven SPL development by means of automatic assistance?

The life cycle of SPL development usually starts with identifying the variability (and
commonality) of a product line's all intended products. We learned from literature
review that most existing techniques for variability identification are
guidelines/methodologies without automatic tool support.

We also noticed that in practice not all product lines are developed from scratch.
Often the developer needs to include existing products in a product line and further
introduces new products on top of that. Based on these observations, we identified the
requirement for synthesizing a product line from a set of existing products
automatically. We presented our initial ideas at a PhD symposium session (ICSE 2009
[140]), where we received positive feedback from experts in the field. Based on the
comments, we have realized the idea and developed our 3rd artifact – CVL Compare.

ABW User

ABW Payroll Reporting Module ABW Database SQL
Scripts

APRiL+CVL Process of Payroll Reporting Customization for ABW Users

Customized Payroll Reports

CVL Editor

New Payroll Reporting
Structures Specified in

APRiL Models

APRiL Code GeneratorReusable Payroll Reporting
Structures specified in APRiL

Models

Generate

71

CVL Compare [142] is an approach for synthesizing a product line model from a
set of existing product models. It has been developed based on the CVL technology
and a generic model differencing tool – EMF Compare. The CVL Compare tool
enables the automation of variability identification phase. It is able to identify the
variability and commonality of the product line and suggest a preliminary product line
model automatically. The preliminary product line model can serve as a baseline for
further manual enhancement.

Fig.17. The process of the CVL Compare approach

Fig.17 illustrates the process of the CVL Compare approach, which will be walked
through in the following using an example in the train control domain. The purpose of
the example is to build a train control product line based on four existing TCL station
models as illustrated in Fig.18. Note that the following is a simplified summary of the
whole process. We refer to paper III (Appendix III) for a detailed description of the
approach.

Step 1: Choose the Base Model for Comparison

In this step the developer needs to choose the base model for the CVL Compare
process. The base model can either be chosen from the given set of existing product
models, or a product model different from all of them. The chosen product model will
also serve as the base model for the preliminary product line model (CVL model).
Therefore the developer can follow the same strategies for choosing the base model as
described in Section 6.1.1.2. When it comes to our example, we choose S1 (see
Fig.18) as the base model.

Choose the Base
Model for Comparison

Existing Product
Models

First-Order
Comparisons

Two-Way Comparison
Result Models Higher-Order

Comparisons

Preliminary Product Line
Model (CVL Model)

Enhance Preliminary
Product Line Model

Final Product Line Model
(CVL Model) Executing the CVL

Description

Intended Product Models

72

Fig.18. First-order comparison between four TCL models

Step 2: First-Order Comparisons

In this step the CVL Compare tool utilizes EMF Compare (see Section 2.5) to
perform a set of two-way comparisons between the base model and other existing
product models. As illustrated in Fig.18, S2, S3, S4 are compared with S1
respectively, which result in three difference models in the form of .emfdiff #1,
.emfdiff#2 and .emfdiff#3.

In an .emfdiff model, unmatchedElements (left/right) are the model elements that
only exist in the left-hand-side (LHS)/right-hand-side (RHS) model but not in the
RHS/LHS model. As illustrated in Fig.18, the second track exists in S1 but not in S2,
and the two-track structure exists in S2 but not in S1. This result is used by the CVL
Compare tool for the following CVL-specific interpretation:

(1) The RHS model can be obtained from the LHS model by replacing the
unmatchedElements (left) with the unmatchedElements (right). Therefore the second
track and the two-track structure can be regarded as a placement/replacement
fragment respectively.

(2) An .emfdiff model consists of subDiffElements of type ReferenceOrderChange
and UpdateReference, which can be regarded as the reference changes due to the
bindings of boundary elements in a fragment substitution.

S1 (Base model)

S2

S3

S4

.emfdiff model #1

.emfdiff model #3

unmatchedEle
ments (right)

unmatchedEle
ments (left)

.emfdiff model #2
unmatchedEle
ments (right)

unmatchedEle
ments (left)

EMPTY

unmatchedEleme
nts (right)

unmatched
Elements
(left)

73

(3) An .emfdiff model consists of subDiffElements of type UpdateAttribute, which
can be regarded as value substitutions in CVL.

Step 3: Higher-Order Comparisons

Fig.19. Higher-order comparison between for Station S2 and S3

In this step all .emfdiff models resulted from the first-order comparisons are compared
with each other, which are called higher-order comparisons. A preliminary product
line model (CVL model) will be generated based on the result of higher-order
comparisons at the end of this step.

First of all, an empty CVL model is created with its base model as the one chosen
in Step 1. Then this CVL model will be updated based on a set of rules as the higher-
order comparisons continue. We refer to Paper III (Appendix III) for a detailed
description of the rules.

S1 (Base model)

S2

S3

.emfdiff model #1

unmatchedEle
ments (right)

unmatchedEle
ments (left)

Preliminary Product Model

.emfdiff model #2

unmatchedEle
ments (left)
Empty

unmatchedEle
ments (right)ments (rigggght)

74

Fig.20. Higher-order comparison between for Station S2 and S4

Fig.19 illustrates how the CVL Compare tool performs the comparison between
.emfdiff#1 and .emfdiff#2. The CVL Compare tool first compares the
unmatchedElements (left) in both models. It is found out that the unmatchedElements
(left) in the .emfdiff model #1 is a structure of second-track, and there are no
unmatchedElements (left) in the .emfdiff model #2. Since this implies a potential
distinctive variation point, two features are created on the same hierarchy of the CVL
model (see Fig.22). At the same time, in the product realization layer, two placement
fragments are created from the base model elements which are referred by the
unmatchedElements (left) in both models. Similarly, two corresponding replacement
fragments, which contain a two-track structure and a parking track respectively, are
created from the unmatchedElements (right) in both models. In addition, two
corresponding fragment substitutions InsertNewTrack and InsertParkingTrack are
created14 and the bindings of boundary elements are decided automatically.

As illustrated in Fig.20, when .emfdiff#1 and .emfdiff#3 are compared, these two
models are found out to contain the same variation point, represented by the second
track. This variation point is already identified in the comparison of .emfdiff#1 and
.emfdiff#2.

14 The fragment substitutions are created with automatically-generated names by the CVL
Compare tool. We refer to them as InsertNewTrack and InsertParkingTrack for presentation
purposes.

S1 (Base model)

S2

S4

.emfdiff model #1

.emfdiff model #3

unmatchedEle
ments (right)

unmatchedEle
ments (left)

unmatchedEleme
nts (right)

unmatched
Elements
(left)

delta

unmatchedEleme
nts (right)

unmatched
Elements
(left)
EMPTY

75

The unmatchedElements (left/right) in both models are compared which results in a
delta. The current CVL model is searched through to see if the delta suggests any
existing placement/replacement fragment.

The comparisons also show that the parking track and the two-track structure can
coexist in the same station model, suggesting a possible OR over the two features that
they represent.

Fig.21. Higher-order comparison between for Station S3 and S4

As illustrated in Fig.21., .emfdiff#2 and .emfdiff#3 are compared in a similar way.
After all the higher-order comparisons, the resulting CVL model serves as the
preliminary product line model as illustrated in Fig.22. This CVL model only defines
the variability based on the given four station models, which is: a station can either
only have two tracks, or with an additional and/or parking track.

Step 4: Enhance the Preliminary Product Line Model
In this step the preliminary product line model is enhanced manually by the
developer. Typical enhancements include renaming features, restructuring and adding
new features to introduce new products.

In paper III we also discussed the challenge of identifying compound variability in
our approach. With CVL Compare, the difference between two product models is
represented as a fragment substitution with necessary value substitutions. The
placement/replacement fragment contains all the elements that exist in one model but
not in the other one and vice versa. Nevertheless, the placement fragment may suggest
more than one variation point that we cannot identify by only comparing two models
without having any additional information.

S1 (Base model)

S3

S4

.emfdiff model #3

.emfdiff model #2
unmatchedEle
ments (right)

unmatchedEle
ments (left)

EMPTY

unmatchedEleme
nts (right)

unmatched
Elements
(left)

delta
unmatchedEleme
nts (right)

unmatched
Elements
(left)

76

One possible solution is to incorporate the semantics of the base domain in the
CVL Compare tool so that some multiple variation points might be identified based
on both comparisons and domain knowledge.

Fig.22. The preliminary product line model suggested by CVL Compare and the manually

enhanced product line model

6.2.2 RT2.2: How to ensure that variability realization will only yield intended
products?

The definition of variability realization directly affects product derivation. Therefore,
it is crucial to ensure that variability realization is properly defined so that it only
yields intended products during product derivation (RT2.2).

Our 4th artifact (Appendix IV) contains two methods with automatic tool support
for the variability realization phase in SPL development to ensure intended product
derivation. We summarize how the two methods contribute to RT2.2 in Section
6.2.2.1 and 6.2.2.2.

6.2.2.1 Providing Immediate Feedback on the Definition of Variability
Realization at Design Time

In a CVL-based product line, variability realization is defined in the product
realization layer in terms of CVL substitutions. For a CVL fragment substitution,
default bindings of boundary elements which are type-compatible can be
automatically suggested by the CVL tool. Based on that, the developer still needs to
decide on the final bindings explicitly, since only he/she knows how the resulting
model should look like after applying the substitution. However, the developer does
not necessarily have an accurate mental picture at design time on how the current
definition of the substitution (bindings) will change the base model at the model
(object) level. We saw that defining variability realization can be an error-prone
process and there was a lack of immediate feedback for the definition of variability
realization at design time.

Preliminary Product Line Model

Enhanced Product Line Model

Manual
Enhancement

77

In Paper IV (the 4th artifact), we addressed this challenge by extending the CVL
editor with a simulator, which can simulate the execution of a single CVL substitution
at design time. The result of the simulation is visualized as the abstract syntax of the
resulting model excerpt (with only related model elements).

The simulator is developed based on CVL and Zest15. It is generic so that it can be
applied to models created in any MOF-based DSL. However, the generality does
come with a cost. With no knowledge about the concrete syntax of the base DSL
beforehand, it is impossible for the simulator to represent the resulting model excerpt
in the domain-specific form. Therefore, we chose to represent the preview of the
simulation result in the abstract syntax model with additional domain-specific
information, such as name/type of model elements/references/attributes.

Fig.23. Fragment substitution "Insert new track" shown in the CVL-enabled TCL editor and

fragment substitution binding editor

In the following we illustrate how to define a fragment substitution with the help of
the simulator through the example described in Section 6.1.1.2 (see Fig.23). While
defining the substitution Insert new track, the following process can be followed with
the help of the simulator:

Run the simulation of the substitution with the default bindings. The default
bindings are suggested automatically between any type-compatible boundary element.
As part of the CVL methodology, we recommend the developer to start with
inspecting and improving the default bindings instead of starting from scratch. By
simulating the substitution with default bindings, the developer may obtain clues on
how to improve the bindings based on the visualized simulation result.

Fig.24 gives a preview of the resulting model excerpt of Insert new track with
default bindings. The rectangles representing the newly added elements (replacement
fragment) are colored in blue. The dark yellow rectangles represent the elements that
are directly related to the newly added elements in the resulting model excerpt.

Each rectangle consists of an icon which is the same one used in the base DSL
graphical editor, the type of the element, and the name of the element. For example, in
the rectangle representing the line segment FLS3 (see Fig.24), the same icon is used
in the TCL editor for line segments, followed by its type and name.

15 http://www.eclipse.org/gef/zest/

Replacement Two-track

Placement Track 2

CVL-enabled TCL editor Fragment substitution binding editor

Placement
boundary element

Replacement
boundary element

78

By selecting a rectangle, the color will turn to light yellow in the preview. At the
same time, the actual model element in the base model or library models will be
highlighted in the CVL-enabled base DSL editor. For example, as illustrated in
Fig.24, by selecting a newly added element RemoteSwitch.V4(F), its color changes in
the preview, and the switch V4 is highlighted in blue in the CVL-enabled TCL editor.

Fig.24. Preview of the resulting model excerpt of the fragment substitution Insert new track

with default bindings

In the preview all the elements with missing references (due to unbound boundary
elements) will be marked with a warning sign. A warning message with the type
information of the unbound reference also pops up when the element is selected in the
preview, which should be inspected manually to rule out unintentional missing
references. As illustrated in Fig.24, it is warned that a boundary element recording a
reference to the remote switch V4 is left unbound, which requires closer inspection
from the developer to see whether this reference is unbound intentionally.

Run the simulation of the substitution with default bindings. In this step the
developer improves the default bindings based on the preview of the simulation result.
The simulator can be invoked iteratively on newer versions of the binding definition
until the resulting model excerpt fulfills the intention of the developer.

79

6.2.2.2 Checking the Consistency between Variability Specification and
Variability Realization

Fig.25. Element inconsistency detected by the consistency checker

As stated in [21, 22], ensuring the consistency between variability specification and
realization is a big underrated challenge in SPL development. Imagine that in a
product line, the variability specification allows the coexistence of feature A and B in
products, but the realization of feature A and B involves changing the same model
object in two different ways. If this inconsistency between variability specification
and realization is not detected and rectified at design time, it will cause errors during
product derivation.

Fig.26. Border inconsistency detected by the consistency checker

In order to address this challenge, we have developed a consistency checker based
on CVL and Alloy [67] formal analysis (see Section 2.4). The consistency checker
checks the consistency between the feature specification and product realization layer
of a CVL model. The consistency checker is built to detect the following types of
inconsistencies:

Placement for
Additional Track - Track 2

Base Model

Placement
for Top Parking Track

- TCE4

TrainRoute

Placement fragment
for Parking Track-

TCE1
(inconsistency detected)

Train route start

Placement fragment
for Parking Track-
TCE2 (inconsistency resolved)

Base Model

80

Fig.27. How the consistency checker works internally

Element inconsistency occurs when one model element in the base model is to be
replaced in two substitutions, and both substitutions coexist in the same product
configuration (resolution model) (see Fig.25). By executing a product configuration
with element inconsistencies, the substitution executed later in time will overwrite the
changes applied to the "conflicting" element by another substitution earlier.

Border inconsistency occurs when two model elements in the base model are
directly connected, included in the placement fragments of two different substitutions,
and both the substitutions are selected in the same product configuration (resolution
model) (see Fig.26). By executing a product configuration with border
inconsistencies, either the CVL transformation may halt if an exception is thrown, or
the reference(s) at the "border" may be incorrectly set to null instead of the intended
model element(s).

As illustrated in Fig.27, when the consistency checker is invoked, it first traverses
every newly added/edited fragment substitution to search for pairs of substitutions
with element/border inconsistencies. For each pair of fragment substitutions with
inconsistencies, the consistency checker renders the alloy analyzer to see if the

81

features that contain these two substitutions can coexist in any valid product
configuration. If so, then there are element/border inconsistencies between the feature
specification and realization layer of this CVL model. For resolving element/border
inconsistencies, Anatoly has continued our work and suggested categorized solutions
in [129].

6.3 RT3: Evolving Model-Driven SPLs

There is a lack of automatic assistance in supporting the evolution of model-driven
SPLs. In Section 6.3.1, 6.3.2 and 6.3.3 we describe how our artifacts can contribute to
RT3.1, RT3.2 and RT3.3.

6.3.1 RT3.1: How to improve the productivity in inducing SPL evolution steps
from new requirements?

Fig.28. The scenario of augmenting a station product line with two new station products

When it comes to the evolution of product lines, augmenting an existing product line
with new products is a typical scenario. As reported in [121] and [123], train experts
from ABB, Norway specify station models and station product lines based on the
station drawings received from Norwegian railway authorities. As illustrated in
Fig.28, with newly received drawings, it would be useful for the train experts to
understand if and how the new station products can fit into the existing product line.
We learned from literature review that this has been mostly a manual process, and we
identified the requirement for providing automatic assistance to the developer in
product line augmentation (see RT3.1), which resulted in our 5th artifact
("Augmenting an SPL") (Appendix V).

In Paper V, we proposed an approach for augmenting product lines with new
products. The approach has the following characteristics:

Original Product Line Model

New Product Models

82

Fig.29. Pseudo-code for the overview of the SPL augmentation algorithm

Generic. This approach is built based on CVL (the 1st artifact) and CVL Compare
(the 3rd artifact). Therefore it can be applied to any CVL-based product line with any
MOF-based base modeling language.

Automated. This approach provides an automatic procedure for product line
augmentation. First it takes an existing product line model (a CVL model) and a set of
new product models defined in the same base language as input, and then the
following routines will be invoked to : (1) Check if the new products can already be
derived from the existing product line model. (2) If not, augment the existing product
line model with necessary variability realization accordingly. The output of the
procedure will be a tentative augmented product line model, which can serve as a
baseline for manual enhancement using other CVL tools.

As illustrated in Fig.29, the existing product line is augmented with one new
product each time until all the new products are incorporated. We refer to Paper V
(Appendix V) for a detailed description of the augmentation algorithm. In the
following we give a simplified description of a single augmentation procedure (see
Fig.30):
1) Compare the base model of the current product line model PL with the new

product model P using CVL Compare (the 3rd artifact). The comparison will
result in a CVL model PL.
a) If PL does not contain any fragment substitution, then the new product

model P is equivalent to the base model of PL. The new product P is already
included in the current product line PL.

b) If PL does contain a fragment substitution S (PF, RF) with PF and
RF as its placement and replacement fragment, then the new product model

P can be obtained by applying S (PF, RF) to the base model of the
current product line model. Subsequently we need to check if the current
product line model PL already includes a fragment substitution S(PF, RF)
that is equivalent to S (PF, RF), starting from Step 2).

2) Search the current product line model PL to see if it includes an existing
placement fragment PF that is equivalent to PF.
a) If so, then proceed with Step 3).
b) If not, then the new product P is not included in the current product line PL.

The augmentation routine is invoked to add the placement fragment PF,
replacement fragment RF and the new fragment substitution S (PF,

RF) to the current product line model.

83

Fig.30. The simplified procedure of augmenting an SPL with a new product

3) Check if PF's corresponding replacement fragment RF is equivalent to RF
or can be configured to RF. As described in Section 6.1.1.1, with CVL, the
developer is capable of further customizing/configuring a replacement fragment
by defining placements inside it. Therefore the routine of this step does not only
check if RF is equivalent to RF, but also check if RF can be configured to RF
through any placement inside it.
a) If PF's corresponding replacement fragment RF is equivalent to RF or can

be configured to RF, then the current product line model PL already
includes a fragment substitution S(PF, RF) that is equivalent to S (PF,

RF). Therefore the current product line model PL can already derive the
new product model P and does not need augmentation.

b) If PF's corresponding replacement fragment RF is neither equivalent to RF
nor can be configured to RF, then the new product P is not included in the
current product line PL. The augmentation routine is invoked to configure
RF into RF and add corresponding substitutions accordingly.

84

Fig.31. The four products of the original product line

As described above, the new product P is first compared with the base model of the
current product line PL using CVL Compare. The resulting CVL model contains
only one fragment substitution . This fragment substitution shows how
to obtain the new product P from the base model by substituting with .
However, the placement fragment may suggest more than one variation point
which we cannot identify by only comparing P with the base model without
additional information.

Fig.32. The new station M5

Suppose that we need to augment the station product line with another new station
M6 (see Fig.35) after M5 (see Fig.32) is incorporated into the original product line
(see Fig.31).

M2

M4

M3

M1 (Base model)

M5

85

Fig.33. Compare M5 with M1 (base model) using CVL Compare

We compare M1 (base model) with M6 using CVL Compare. The resulting CVL
model contains the fragment substitution . The placement fragment

refers to a model fragment with disjoint parts 1 and 2 (annotated in M1
in Fig.36). As annotated in M6 in Fig.36, the replacement fragment also refers to
a model fragment with disjoint parts 1 2 and 3 .

We further search in the current product line (see Fig.34) for a node with the scope
of and fail to find one. Thus will be regarded as a new variation point to be
added into the current product line. However, we can notice that 1 , as a subset of

, coincides with (see Fig.33). It would be ideal that the equivalence of 1
and is detected, so that will be regarded as two features with the scope of

1 and 2 . 1 will then be synthesized into the current feature Parking (see
Fig.34) with the scope of . In addition, a new feature will be created with the scope
of 2 . Nevertheless, our current algorithm does not yet support cases like detecting
and splitting a compound variability.

M1 (Base model)

M5

Placement Fragment PF

Replacement Fragment RF

PL

86

Fig.34. The product line model augmented by M5 (after manual enhancement)

A possible solution to detect compound variability is to provide the developer with
some automatic assistance, such as comparing placements/replacements, in
synthesizing, refactoring and optimizing newly added features after all the new
products are incorporated into the current product line model. Another possible
solution is to apply some domain-specific semantic information of the product models
to identify a compound variability.

Fig.35. The new station M6

Replacement Fragment
RemoteSwitch

Fragment Substitution
InsertRemoteSwitch

Augmented Product Line After Manual Enhancement (Excerpt shown in the CVL
Tree and Graphical Editor)

Placement Fragment
ManualSwitch

M6

87

Fig.36. Compare M6 with M1 (base model) using CVL Compare

6.3.2 RT3.2: How to improve the productivity of SPL co-evolution?

As discussed in RT3.2, for a model-driven SPL, the metamodel of the base DSL, the
core assets (base & library model), the product line model and all the intended
product models depend upon each other. All of them can subject to changes during
product line evolution. Therefore, it can become necessary to co-evolve some others
when some of them them evolves.

As illustrated in Fig.37, one of the common scenarios for SPL co-evolution occurs
when the core assets of a product line are changed but its product derivation needs to
remain unaffected. In order to ensure that, does the developer need to update the
product line model? If so, how? We identified the requirement for a method for co-
evolution of core assets and product line model, which resulted in our 6th artifact
("Co-evolving an SPL") (Appendix VI).

Replacement Fragment Constituent RF’2

M1 (Base model)

M6

Placement Fragment
PF’= PF’1+ PF’2

Replacement Fragment RF’ = RF’1+ RF’2 + RF’3

PL’

Placement Fragment
Constituent PF’1

Placement Fragment
Constituent PF’2

Replacement Fragment Constituent RF’1

Replacement Fragment
Constituent RF’2

Replacement Fragment
Constituent RF’3

88

Fig.37. The scenario of evolving an SPL when the base model is changed

In Paper VI (Appendix VI), we proposed an approach for co-evolving the product
line model (CVL model) when the base model is evolved. The approach has the
following characteristics:

Fig.38. The automatic process of evolving an SPL when the base model is changed

Generic. The approach is built based on CVL (the 1st artifact) and CVL Compare
(the 3rd artifact), and can be applied to any CVL-based product line and MOF-based
base DSL.

Automated. The approach provides an automatic procedure, which takes the
original base model, the evolved base model and the original CVL model as input.

Separate variability modelBase model

Evolve variability
model manually?

Changed base model

89

With the input models, the following routines will be invoked to: (1) Check if the
changes to the original base model will affect product derivation. (2) If not, then there
is no need to co-evolve the original CVL model. (3) If so, then the changes to the
original base model have caused element/border inconsistencies. The inconsistencies
need to be resolved by co-evolving the original CVL model. Based on a combined
analysis of the original CVL model and the changes to the original base model, an
evolved CVL model will be induced and suggested to the developer. Note that the
automatic procedure may require human intervention when it comes to non-
deterministic decisions.

In the following we give a simplified description of the automatic procedure (see
Fig.38). We refer to Paper VI (Appendix VI) for a detailed description of the
approach.
1) Apply CVL Compare to the original base model and the evolved base model.

This step results in a CVL model "the evolution CVL model". The evolved base
model can be obtained by applying the only fragment substitution in the
evolution CVL model to the original base model. As illustrated in Fig.38, a two-
track station (the original base model) and a three-track station (the evolved base
model) is compared using CVL Compare. The resulting evolution CVL model
summarizes the changes that have been done to the original base model, which is
to substitute the second track with a two-track structure.

2) Check if there is any element/border inconsistency between the original and
the evolution CVL model. In this step the routine will check if there is any
element/border inconsistency (see Section 6.2.2.2) between any placement
fragment in the original CVL model and the only placement fragment in the
evolution CVL model. As the example illustrated in Fig.38, the placement
fragment in the evolution CVL model, which is the second track, starts with an
endpoint on the left. The same endpoint is also included in a placement fragment
in the original CVL model and these two placement fragments may exist in the
same product, which causes an element inconsistency.
a) If not, then the evolved base model will yield the same products as the

original one, thus there is no need to co-evolve the original CVL model.
b) If so, then proceed with Step 3) for inconsistency resolution.

3) Resolve element/border inconsistencies. The routine will perform the following
to resolve an element/border inconsistency:
a) Fetch the model elements from the replacement fragment (in the evolution

CVL model) that are bound to the common endpoint E1.
b) Check if the model elements obtained from the last step have the same

context (references to/from the same elements).
i) If there is only one model element E2 fulfills the requirement, then the

element inconsistency can be automatically resolved. The resolution is
performed by replacing the model element E1 that causes the
inconsistency by the model element E2 in the original CVL model,
which results in an evolved CVL model. In our example (see Fig.38),
only the second left-most endpoint on the bottom track (from the
replacement fragment in the evolution CVL model) has the same context
as the common endpoint that causes the inconsistency.

90

ii) If there are more than model elements which fulfill the requirement
(have the same type and context), then the developer will be asked to
make the decision. In Paper VI, we also discussed the possibility to
improve the automatic decision-making by taking the semantics of the
base DSL into account.

6.3.3 RT3.3: How to assist the developer to gain a comprehensive understanding
of the impact of an SPL evolution?

As discussed in RT 3.3, there is an emerging need for differencing techniques for
product lines, which can be very useful for helping understand the impact of evolution
by comparing the original and the evolved product line [6]. Most existing differencing
techniques for product lines are dedicated to comparing feature models. The majority
of those techniques are syntax-based, namely that they will only produce syntactical
difference between the original and the evolved feature models [6]. On the other hand,
the minority of existing feature model differencing techniques focus on semantic
differencing, namely that the difference between the original and the evolved feature
model will be represented in terms of added and removed products [6, 117]. However,
semantic differencing techniques for feature models cannot always accommodate the
need for differencing product lines, e.g., not feature model but variability (feature)
realization has been changed during evolution. We identified the requirement for
proposing a semantic differencing technique for product lines covering both
variability specification and realization, which resulted in our 7th artifact ("Semantic
differencing for SPLs") (Appendix VII).

In Paper VII (our 7th artifact), we proposed semantic differencing approach for
product line. The approach aims to provide the developer with a comprehensive
picture of the semantic impact of an evolution. Therefore it does not only take
variability (feature) specification but also variability (feature) realization into account
in the differencing process. We illustrated our approach on CVL-based product lines,
which is one of the very few techniques that allow specifying both features and their
realizations in a holistic product line model.

In particular, we proposed the following two semantic differencing operators, one
for differencing the feature specification layer and the other for differencing the
feature realization part of the original and the evolved product line model (CVL
model):

FSDiff ("Differencing Feature Specification"). The semantic of the feature
specification layer of a CVL model is all the valid configurations allowed by this
layer, which we call "feature configurations". A feature configuration contains a set of
features. Two feature configurations are regarded different if they contain different
sets of features. As illustrated in Fig.39, by applying FSDiff to the original and the
evolved product line PL and , feature configurations that are newly added into the
evolved product line will be output as a set of FSDiff_Witnesses. Each
FSDiff_Witness represents a newly added feature configuration to the evolved product
line. A diff CVL model FSDIff_CVL can be generated which only allows
FSDiff_Witnesses.

91

Fig.39. Apply FSDiff and FRDiff to analyze the semantic impact of an evolution

FRDiff ("Differencing Feature Realization"). Feature realizations in a CVL
model are usually contained by features. Therefore the semantic of the feature
(product) realization layer of a CVL model is all the valid configurations allowed by
both the feature specification and feature realization layer, which we call "product
configurations". A product configuration contains a set of features and their
realizations. Since only feature realizations are executed during product derivation,
we only consider two product configurations different if they contain different sets of
feature realizations. As illustrated in Fig.39, by applying FRDiff to the original and
the evolved product line PL and , product configurations that are newly added into
the evolved product line will be output as a set of FRDiff_Witnesses. Each
FRDiff_Witness represents a newly added product configuration to the evolved
product line. A diff CVL model FRDIff_CVL can be generated which only allows
FRDiff_Witnesses.

Formal definitions of FSDiff and FRDiff are given in Paper VII. In order to
evaluate the feasibility of the approach, we also implemented the approach using
Alloy (see Section 2.4). In particular, we performed the following tasks: (1) Define a
simplified CVL metamodel using Alloy language. (2) Translate any CVL model into
Alloy language. (3) Define FSDiff and FRDiff in Alloy language.

Differencing feature specification
layers of the original

and evolved CVL model

FSDiff (PL, PL’)

Differencing feature realization
layer of the original

and evolved CVL model

FRDiff (PL, PL’)

New sets of features (”feature
configurations”) added in PL’

FSDiff_Witnesses

New sets of feature realizations
(”product configurations”)

added in PL’

FRDiff_Witnesses

Synthesize FSDiff_Witnesses into a
diff model (a CVL model)

FSDiff_CVL

Synthesize FRDiff_Witnesses into a
diff model (a CVL model)

FRDiff_CVL

A comprehensive understanding of
the semantic impact of the evolution

93

7 Discussions

In our thesis work we have addressed the research topics defined in Section 3 through
artifacts manifested by our research papers. In this section we discuss how our
artifacts can serve different roles in an extended CVL methodology for model-driven
SPL development and evolution, which subsumes the methodology described in
Section 6.1.1.2.

7.1 An Extended CVL Methodology for Model-Driven SPL Development and
Evolution

In the following we walk through the extended CVL methodology as illustrated in
Fig.40:

Develop the Base DSL
We observed at our industrial partners that in order to promote model-driven SPL
development, we often needed to help them to adopt stand-alone model-driven
software development first, namely that developing a base DSL with its tool support.
Our 2nd artifact ("APRiL") is applicable in such contexts that, there is no existing DSL
for the base domain of the SPL, or the current DSL is not suitable to serve as the base
language for the SPL to be built.

During the development of a base DSL, the developer may benefit from the
guidelines and lessons learned given in the 2nd artifact, such as keeping language
definition simple, fully domain-specific without variability modeling concepts and
etc.

Variability Identification
During variability identification, the developer needs to identify the variability and
commonality of all intended products of the product line. We provide different
strategies for identifying variability depending on the context of the SPL
development:

(1) When the product line needs to include existing products, it would be
suitable to compare existing products to identify variability between them.

 If existing product models specified in the base DSL are available, the
developer can apply the CVL Compare tool provided in the 3rd artifact to
synthesize a preliminary product line model from the existing product
models automatically. Subsequently the preliminary product line model
can be further enhanced by the developer manually by following the
guidelines provided by the 1st artifact.

94

 If not, the developer can follow the step described in the 1st artifact to
identify the variability of the SPL manually.

(2) When the product line is developed from scratch, the developer can start
with choosing/specifying the base model. While defining the CVL model, the
developer can then decide, how the intended product models should vary from each
other relative to the base model.

(3) Very often a product line does not only need to include existing products,
but also needs to introduce new products. In this context, the developer may need
to apply a combination of the two strategies, by starting with comparing existing
products, and further generalizing the product line to support new products.

Variability Specification
During variability specification, the developer needs to specify the high-level
variability (domain-specific features) of the product line in the product line definition.
Using the CVL language and tools provided by our 1st artifact, the developer can
specify the high-level variability at the feature specification layer of a separate
variability model, regardless of which base DSL is in use.

Variability Realization
During variability realization, the developer needs to define how the domain-level
features of the product line should be realized at the model object level.

The CVL language (the 1st artifact) provides capabilities to define variability
realization holistically with variability specification, by means of defining CVL-
specific model editing model operations (substitutions) at the product realization layer
of a CVL model.

In order to ensure that the product line model only yields intended product models,
the developer can apply the two tools provided by our 4th artifact: the fragment
substitution simulator to preview results of CVL substitutions, and the consistency
checker to search for inconsistencies between the feature specification and product
realization layer of a CVL model that may affect the intended product derivation.

Product Configuration
With the language and tool support provided by our 1st artifact, the developer can
either use the standard CVL editor to create product configurations (resolution models
in CVL terms), or render automatic tool support from the CVL “select (the features)-
and-generate” resolution model generator.

Product Derivation
By running the CVL description through the generic CVL transformation (see the 1st
artifact), product models can be derived from the product line model and the core
assets of the product line.

95

Fig.40. The extended CVL methodology for Model-Driven SPL development and Evolution

The Extended CVL Methodology for SPL Development and Evolution
PLSP

L
vo

l
Ev

o
ut

io
nn

SP
L

Ev
ol

ut
io

n
PLSP

L
C

o-
Ev

ol
E

io
ut

io
nn

SP
L

C
o-

Ev
ol

ut
io

n
d

Pr
od

P
ctuc
t

u
ri

D
er

va
tio

non
Pr

od
uc

t
D

er
iv

at
io

n

e
U

nd
e

U
st

a
rs

ta
r

dnd
he

th

e
pa

Im
pa

ct
 o

ct
 o

ff
an

 S
an

LPL

l
Ev

ol
ut

io
ut

n

U
nd

er
st

an
d

th
e

Im
pa

ct
 o

f
an

 S
PL

Ev

ol
ut

io
n

Va
ri

bi
l

ab
il

tyity

t
de

n
Id

en
tif

ic
at

i
non

Va
ria

bi
lit

y
Id

en
tif

ic
at

io
n

Va
ri

V
l

bi
l

ab
ili

ty

ity

ec
Sp

ec
ifi

c
io

at
io

nn
Va

ria
bi

lit
y

Sp
ec

ifi
ca

tio
n

ar
i

Va
ria

bi
l

a
ity

al

R
ea

l
t

iz
at

iz
at

io
n

io
n

Va
ria

bi
lit

y
R

ea
liz

at
io

n
d

Pr
od

P
ctuc

t
u

CCCCC
nf

C
on

fig
ur

ig
tioat
io

nn
C

Pr
od

uc
t

C
on

fig
ur

at
io

n
e

D
ev

e
p

lo
p

lo
p

heth
e

ba
se

SL
D

SL
D

ev
el

op
th

e
ba

se
 D

SL

Create product configurations
(resolution models) for products

Understand the semantic
impact of an SPL evolution

Execute CVL description through
the generic CVL transformations

Automatically update the
product line model when the

base model is changed

Augment the existing SPL
with new products

Yes
Use

the existing base DSL

Develop the base DSL
No

”APRiL”

The base
DSL exists?

No

Yes

Existing
product models

available?

Manually identify the variability and
commonality of the product line

Automatically synthesize
the existing products into

a preliminary product line model

”CVL”

”CVL
Compare”

Specify the high-level variability (features) of
the product line using the CVL language ”CVL”

”CVL”

Define how the high-level variability should be realized
in terms of CVL substitutions

Simulate CVL substitutions
at design time

Check the consistency between
the variability specification

and realization

”Automatic assistance in defining variability
realization”

”CVL”

”CVL”

”CVL
Comapre””Augmenting

an SPL”

”Co-evolving
an SPL”

”CVL”

”CVL Compare”
”CVL”

”Semantic differencing
for SPLs”

”CVL”

96

SPL Evolution
Augmenting an existing product line with new products is a common SPL evolution
requirement. The developer can choose to perform the augmentation by the following
three means:

 Feed the automatic tool provided by our 5th artifact ("Augmenting an SPL")
with the existing product line model and new product models. The tool will
first check if the existing product line already includes the new products, and
if not, the tool will update the product line model automatically.
Subsequently the augmented product line model that is automatically
suggested can be further enhanced by the developer manually by following
the guidelines provided by the 1st artifact.

 Feed the new product models and all product models to the CVL Compare
tool provided by our 3rd artifact. The CVL Compare will automatically
synthesize an augmented product line model which includes all those
products. However, it is not always practical to obtain all the product models
of the existing product model.

 Follow the guidelines provided by our 1st artifact and augment the existing
product line model manually.

SPL Co-Evolution
When the base model of a product line changes, the developer may need to update the
product line model so that the current product derivation is not affected. In this
context, the developer can apply the tool support provided by our 6th artifact, which
will perform an automatic update of the product line model if necessary.

Understand the Impact of an SPL Evolution
In order to gain a comprehensive understanding of the semantic impact of an SPL
evolution, the developer can use the two semantic differencing operators for product
lines that we propose in the 7th artifact, one for differencing the feature specification
layer of the original and the evolved CVL model, the other one for comparing the
product realization layer of them.

97

8 Conclusions and Future Work

In our thesis work we have addressed the research topics defined in Section 3 through
artifacts reflected by our research papers. In the following we revisit the research
topics, which we conclude to what extent our artifacts have contributed to them, and
propose potential directions for future work.

8.1 Research Topic 1: A Generic Approach for Developing Executable Model-
Driven SPLs (RT1)

RT1 addressed how to develop executable model-driven SPLs in a generic way. This
was decomposed into two sub-topics: how to define variability specification and
realization in a generic way for model-driven SPLs in different domains (RT1.1), and
how to develop a base DSL suited for building model-driven SPLs (RT1.2).

8.1.1 RT1.1: How to Define Variability Specification and Realization in a
Generic Way for Model-Driven SPLs in Different Domains?

The 1st ("CVL"), 3rd ("CVL Compare") and 4th ("Automatic assistance in defining
variability realization") artifact contribute to solving the research topic RT1.1 wherein
we provide a separate and generic variability modeling language, the Common
Variability Language (CVL), the CVL methodology and automatic support for model-
driven SPL development.

While there are already several generic model-driven approaches for specifying
domain-level variability in a separate product line model (e.g., feature modeling), few
of them also support defining how the variability/features should be realized at the
model (object) level in terms of model editing operations in the same product line
model. The CVL approach is innovative in this aspect by introducing an additional
product realization layer into the product line model. Therefore the developer can
define both features and their realizations holistically in a single product line model
which is fully executable.

Another key challenge was how to represent feature realization (model editing
operations) in a generic way, such that it can describe arbitrary edits to any model
specified in any base DSL. This is addressed in our CVL approach by generalizing
arbitrary model editing operations into value, reference and fragment substitutions,
which can describe arbitrary value and structural changes in any model.

98

Furthermore, the CVL methodology for SPL development provides guidelines on
how the developer can manually develop a CVL-based SPL from scratch, and at
which phases automatic support can be rendered to improve the productivity.

In summary, our artifacts have directly contributed to RT1.1 and the results have
been validated through industrial and academia case studies. In order to contribute to
RT1.1 further, the following directions can be explored in the future work of our
proposed approach: (1) Propose more guidelines for CVL-based SPL development
based on rigorous empirical studies. For example, as described in Section 6.1.1.2, the
developer needs to make informed decisions in choosing the optimal base/library
model for a product line, and the current descriptive guidelines can benefit from an
update of quantitative metrics. (2) Propose new automatic support to cover all phases
of CVL-based SPL development and update the guidelines accordingly, e.g.,
providing automatic support in choosing the optimal base/library model.

8.1.2 RT1.2: How to Develop a Base DSL Suited for Building Model-Driven
SPLs?

The context of RT1.2 is to develop model-driven SPLs for a base domain when there
is no base DSL yet. We observed at our industrial partners that instead of promoting
model-driven SPL development to them alone, very often we also needed to help
them to develop a base DSL first.

Our research design was decided by the nature of the challenge posed by RT1.2.
Instead of trying to propose a new approach, we focus our research on developing
base DSLs & model-driven SPLs for real industrial domains and summarizing
guidelines based on the lessons learned. In paper II, we reported our experience in
developing a base DSL and SPLs for the payroll reporting domain. Through the
report, we showed: (1) It can be potentially beneficial if the language concepts of the
base DSL is fully domain-specific without any variability modeling concept. This
characteristic of the base DSL will make it more intuitive and conceptually clearer to
build SPLs that are based on separate variability modeling approaches. (2) How the
productivity of software development can be improved by the DSM paradigm and
then even further elevated by model-driven SPL development.

In summary, our artifact has contributed to RT1.2 directly considering the
empirical nature of this research topic. In order to strength the external validity of our
study, the practice of "DSM+SPL" needs to be introduced to various industrial
domains for empirical analysis from a broader spectrum.

8.2 Research Topic 2: Automatic Assistance in Model-Driven SPL
Development (RT2)

RT2 addressed providing automatic assistance in model-driven SPL development. In
particular, we focus on two sub-topics: how to improve the productivity of variability
identification in model-driven SPL development (RT2.1), and how to ensure that
variability realization will only yield intended products (RT2.2).

99

8.2.1 RT2.1: How to Improve the Productivity of Variability Identification in
Model-Driven SPL Development?

During the variability identification phase of SPL development, the variability and
commonality of all intended products of the product line need to be identified, which
has been mostly a manual and time-consuming process. Instead of addressing RT2.1
for SPL development in all contexts, we narrowed our problem area down to a more
specific but still quite common niche, which is - how to improve the productivity of
variability identification when an SPL needs to include some existing products. Often
in practice an SPL is not built from scratch. The product line needs to derive existing
products, and on top of that, may further introduce new products. In this context, our
CVL Compare approach (the 3rd artifact, together with the 1st one), provides
automatic assistance to improve the productivity of variability identification.

In particular, the CVL Compare approach provides an automatic procedure to
synthesize a CVL-based SPL from a set of existing product models defined in any
MOF-based DSL. The CVL Compare tool takes in a set of existing product models,
identifies the variability among them, and then outputs a preliminary product line
model for manual enhancement.

In summary, the CVL Compare approach has partially contributed to RT2.1.
However, the following aspects can be explored in future work: (1) The current
approach can already induce simple feature dependencies such as co-existence. It will
be useful to further improve the approach so that it can identify more complex feature
dependencies and constraints based on the comparisons. (2) The current approach
suggests the preliminary product line model that is rather flat. This is due to the lack
of domain-specific semantic information in the generic approach. Potential extensions
can be explored to allow human intervention in separating single features from
compound features [142].

8.2.2 RT2.2: How to Ensure that Variability Realization will Only Yield
Intended Products?

Defining variability realization is a critical step of an SPL development since it
directly affects how the derived products will look like. Therefore the variability
realization layer of a product line model (CVL model) should only yield intended
products (RT2.2). However, it can be rather challenging to define variability
realization when it involves much model (object) level details in a complex base
domain. In the thesis work, we narrowed down the big problem into two specific
areas: one is to provide immediate feedback on the definition of variability realization
at design time; the other is to check the consistency between the variability realization
and specification in the same product line model.

Firstly we proposed a fragment substitution simulator, which can be executed at
design time and provide a preview of the resulting model excerpt. The simulator, if
properly used in an iterative "define-preview-improve" manner, can provide an
immediate feedback on whether the current definition of substitution will yield
intended model changes. Secondly we proposed a consistency checker to search for

100

unwanted element/border inconsistencies in the product line model, which may halt
the product derivation or yield unintended products.

In summary, our approach has contributed directly to RT2.2 in two sub-areas.
Future work can be performed in the following directions: (1) Applying pairwise
testing techniques [69] to improve the scalability of the consistency checker. (2)
Extending the consistency checker so that it can also verify additional rules of the
base DSL (e.g., OCL constraints). (3) Suggest improvements to the product line
model automatically from both the simulator and consistency checker.

8.3 Research Topic 3: Evolving Model-driven SPLs (RT3)

RT3 addressed approaches in evolving model-driven SPLs. In particular, we focused
on three topics: how to improve the productivity in inducing SPL evolution steps from
new requirements (RT3.1), how to improve the productivity of SPL co-evolution
(RT3.2), and how to assist the developer to gain a comprehensive understanding of
the impact of an SPL evolution (RT3.3).

8.3.1 RT3.1: How to Improve the Productivity in Inducing SPL Evolution Steps
from New Requirements?

We narrowed down the scope of the problem to the following specific scenario: how
to improve the productivity in augmenting an SPL when there is a need to include
new products? We addressed this problem by providing an automatic procedure to
augment a CVL-based product line with new product models. The approach takes in
the current CVL model and the new product models as input, and outputs a tentative
augmented CVL model for manual enhancement.

In summary, the proposed approach has directly contributed to a sub-area of
RT3.1. However, we also observed an issue during the development of this approach,
which is the identification compound variability as described in Section 6.3.1. The
approach can benefit from future work in the following directions: (1) Evaluation
using different examples in various domains. (2) The optimal strategy to identify
compound variability. Can it be automated with comparison assistance? Can it be
automated if the semantics of the base language of the product line is taken into
account? (2) How to update feature dependencies and constraints based on the
comparisons in the augmented product line model.

8.3.2 RT3.2: How to Improve the Productivity of SPL Co-evolution?

We narrowed down the scope of the problem to one of the most common SPL co-
evolution scenario: evolving an SPL when the base model is changed. In order to
address the challenge, we provided an approach to evolve the product line model
automatically if necessary when the base model is changed. In particular, the
approach applies CVL to record the changes to the base model, detect and resolve the

101

element/boundary inconsistencies in the original product line model caused by the
changes to the base model.

However, the automatically suggested evolved product line model with
inconsistencies resolved is only syntactically correct and can be semantically invalid.
This is because our approach cannot obtain the semantic information of the base DSL
due to its generic nature. In potential extensions of this approach, we can consider to
allow human intervention for decisions that cannot be made deterministically only
based on the syntax of the base DSL. Furthermore, we may also focus on another
common SPL co-evolution scenario, evolving the product line when the base DSL is
changed, in our future work.

8.3.3 RT3.3: How to Assist the Developer to Gain a Comprehensive
Understanding of the Impact of an SPL Evolution?

As discussed in Section 3.3, it is essential for the developer to gain a comprehensive
understanding on the added/removed products after an SPL evolution, which calls for
semantic differencing approaches for SPLs. We also saw that the traditional semantic
differencing techniques for feature models cannot cater the need to differencing SPLs
where the variability realization should also be taken in to account. In order to address
this challenge, we proposed a semantic differencing approach for CVL-based SPLs
which take both variability specification and variability realization into account. In
particular, we defined and implemented (in Alloy) two semantic differencing
operators for comparing the feature specification layer and the product realization
layer of two CVL models. We illustrated the application on industrial case studies.

In summary, our approach has directly contributed to helping the developer to gain
a comprehensive overview of the semantic impact of an SPL evolution. Furthermore,
it can be extended in the following directions: (1) Improve the performance of the
analysis by applying Alloy optimization techniques. (2) Integrate the approach with
syntax-based differencing techniques for better performance and an even more
complete understanding of an SPL evolution.

103

Bibliography

1. Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., and Lahire, P.: Extraction and
Evolution of Architectural Variability Models in Plugin-Based Systems. Software &
Systems Modeling. 1-28 (2013)

2. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P., and Lahire, P.,
“On Extracting Feature Models from Product Descriptions,” Proceedings of the Sixth
International Workshop on Variability Modeling of Software-Intensive Systems, pp. 45-54,
(2012)

3. Acher, M., Collet, P., Gaignard, A., Lahire, P., Montagnat, J., and France, R.B.: Composing
Multiple Variability Artifacts to Assemble Coherent Workflows. Software Quality Control.
20, 689-734 (2012)

4. Acher, M., Collet, P., Lahire, P., and France, R., “Composing Feature Models,” Proceedings
of the Second international conference on Software Language Engineering, pp. 62-81,
(2010)

5. Acher, M., Collet, P., Lahire, P., and France, R.: Managing Multiple Software Product Lines
Using Merging Techniques. France: UniversityofNiceSophiaAntipolis. TechnicalReport,
ISRN I3S/RR. 6 (2010)

6. Acher, M., Heymans, P., Collet, P., Quinton, C., Lahire, P., and Merle, P., “Feature Model
Differences,” Proceedings of the 24th international conference on Advanced Information
Systems Engineering, pp. 629-645, (2012)

7. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., and Lucena, C., “Refactoring
Product Lines,” Proceedings of the 5th international conference on Generative programming
and component engineering, pp. 201-210, (2006)

8. Alves, V., Matos, P., Cole, L., Borba, P., and Ramalho, G., “Extracting and Evolving Mobile
Games Product Lines,” Proceedings of the 9th international conference on Software Product
Lines, pp. 70-81, (2005)

Models,” Proceedings of the 16th International Software Product Line Conference - Volume
1, pp. 106-115, (2012)

10. Andoni, A., Daniliuc, D., Khurshid, S., and Marinov, D.: Evaluating the “Small Scope
Hypothesis”. Unpublished. (2003)

11. Anfurrutia, F.I., Diaz, O., and Trujillo, S.: On Refining Xml Artifacts. In: Web
Engineering, pp. 473-478. Springer (2007)

104

12. Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.-C., Rummler, A., and Sousa,
A.: A Model-Driven Traceability Framework for Software Product Lines. Software &
Systems Modeling. 9, 427-451 (2010)

13. Apel, S., Kastner, C., and Lengauer, C., “Featurehouse: Language-Independent, Automated
Software Composition,” Proceedings of the 31st International Conference on Software
Engineering, pp. 221-231, (2009)

14. Apel, S. and Kästner, C.: An Overview of Feature-Oriented Software Development. Journal
of Object Technology. 8, 49-84 (2009)

15. Apel, S., Leich, T., Rosenmüller, M., and Saake, G., “Featurec++: On the Symbiosis of
Feature-Oriented and Aspect-Oriented Programming,” Proceedings of the 4th international
conference on Generative Programming and Component Engineering, pp. 125-140, (2005)

16. Apel, S., Lengauer, C., Batory, D., Möller, B., and Kästner, C.: An Algebra for Feature-
Oriented Software Development. University of Passau, MIP-0706. (2007)

17. Apel, S., Lengauer, C., Möller, B., and Kästner, C., “An Algebra for Features and Feature
Composition,” Proceedings of the 12th international conference on Algebraic Methodology
and Software Technology, pp. 36-50, (2008)

18. Atkinson, C., Bayer, J., and Muthig, D.: Component-Based Product Line Development: The
Kobra Approach. In: Software Product Lines, pp. 289-309. Springer (2000)

19. Babbie, E.R. and others: Survey Research Methods. Wadsworth Publishing Company
Belmont, CA, (1990)

20. Batory, D., “Feature Models, Grammars, and Propositional Formulas,” Proceedings of the
9th international conference on Software Product Lines, pp. 7-20, (2005)

21. Batory, D., Sarvela, J.N., and Rauschmayer, A.: Scaling Step-Wise Refinement. Software
Engineering, IEEE Transactions on. 30, 355-371 (2004)

22. Batory, D. and Thaker, S.: Towards Safe Composition of Product Lines. Computer Science
Department, University of Texas at Austin, (2006)

23. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., and
DeBaud, J.-M., “Pulse: A Methodology to Develop Software Product Lines,” Proceedings of
the 1999 symposium on Software reusability, pp. 122-131, (1999)

24. Benavides, D., Segura, S., and Ruiz-Cortés, A.: Automated Analysis of Feature Models 20
Years Later: A Literature Review. Inf. Syst. 35, 615-636 (2010)

25. Borba, P., Teixeira, L., and Gheyi, R.: A Theory of Software Product Line Refinement.
Theoretical Computer Science. 455, 2-30 (2012)

26. Bosch, J., “Maturity and Evolution in Software Product Lines: Approaches, Artefacts and
Organization,” Proceedings of the Second International Conference on Software Product
Lines, pp. 257-271, (2002)

105

27. Bosch, J. and Bengtsson, P., “Component Evolution in Product-Line Architectures,”
Proceedings of International Workshop on Component Based Software Engineering, (1999)

28. Bosch, J. and Capilla, R.: Variability Implementation. In: Systems and Software Variability
Management, pp. 75-86. Springer (2013)

29. Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J.H., and Pohl, K.: Variability
Issues in Software Product Lines. In: Software Product-Family Engineering, pp. 13-21.
Springer (2002)

30. Bragança, A. and Machado, R.J., “Automating Mappings between Use Case Diagrams and
Feature Models for Software Product Lines,” Software Product Line Conference, 2007.
SPLC 2007. 11th International, pp. 3-12, (2007)

31. Bragança, A.M.T.: Methodological Approaches and Techniques for Model Driven
Development of Software Product Lines. (2008)

32. Brooks Jr, F.P.: No Silver Bullet-Essence and Accidents of Software Engineering. IEEE
computer. 20, 10-19 (1987)

33. Brun, C. and Pierantonio, A.: Model Differences in the Eclipse Modeling Framework.
UPGRADE, The European Journal for the Informatics Professional. 9, 29-34 (2008)

34. Cengarle, M.V., Grönniger, H., and Rumpe, B., “Variability within Modeling Language
Definitions,” Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems, pp. 670-684, (2009)

35. Chastek, G., Donohoe, P., Kang, K.C., and Thiel, S., “Product Line Analysis: A Practical
Introduction,” (2001)

36. Chen, K., Zhang, W., Zhao, H., and Mei, H., “An Approach to Constructing Feature
Models Based on Requirements Clustering,” Proceedings of the 13th IEEE International
Conference on Requirements Engineering, pp. 31-40, (2005)

37. Clarke, D., Helvensteijn, M., and Schaefer, I., “Abstract Delta Modeling,” ACM Sigplan
Notices, pp. 13-22, (2010)

38. Clarke, E.M. and Wing, J.M.: Formal Methods: State of the Art and Future Directions.
ACM Computing Surveys (CSUR). 28, 626-643 (1996)

39. Classen, A., Heymans, P., Schobbens, P.-Y., and Legay, A., “Symbolic Model Checking of
Software Product Lines,” Proceedings of the 33rd International Conference on Software
Engineering, pp. 321-330, (2011)

40. Clements, P. and Northrop, L.: Software Product Lines. Addison-Wesley Boston, (2002)

41. Cordy, M., Schobbens, P.-Y., Heymans, P., and Legay, A., “Beyond Boolean Product-Line
Model Checking: Dealing with Feature Attributes and Multi-Features,” Proceedings of the
2013 International Conference on Software Engineering, pp. 472-481, (2013)

106

42. Czarnecki, K., Antkiewicz, M., Kim, C.H.P., Lau, S., and Pietroszek, K., “Model-Driven
Software Product Lines,” Companion to the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pp. 126-127, (2005)

43. Czarnecki, K. and Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., (2000)

44. Czarnecki, K. and Helsen, S.: Feature Modeling. Generative Programming. 82-130 (1998)

45. Czarnecki, K., Helsen, S., and Eisenecker, U.: Staged Configuration through Specialization
and Multilevel Configuration of Feature Models. Software Process: Improvement and
Practice. 10, 143-169 (2005)

46. Czarnecki, K. and Pietroszek, K., “Verifying Feature-Based Model Templates against Well-
Formedness Ocl Constraints,” Proceedings of the 5th international conference on Generative
programming and component engineering, pp. 211-220, (2006)

47. Czarnecki, K. and Wasowski, A., “Feature Diagrams and Logics: There and Back Again,”
Proceedings of the11th International Software Product Line Conference, pp. 23-34, (2007),
(2007)

48. Deng, G., Lenz, G., and Schmidt, D.C., “Addressing Domain Evolution Challenges in
Model-Driven Software Product-Line Architectures,” Proceedings of the ACE/MODELS
2005 workshop on MDD for Software Product-Line Architectures, Jamaica, (2005)

49. Dhungana, D., Neumayer, T., Grunbacher, P., and Rabiser, R., “Supporting Evolution in
Model-Based Product Line Engineering,” Proceedings of the 2008 12th International
Software Product Line Conference, pp. 319-328, (2008)

50. Dietrich, C., Tartler, R., Schröder-Preikschat, W., and Lohmann, D., “A Robust Approach
for Variability Extraction from the Linux Build System,” Proceedings of the 16th
International Software Product Line Conference - Volume 1, pp. 21-30, (2012)

51. Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J., Mobasher, B., Castro-Herrera, C.,
and Mirakhorli, M., “On-Demand Feature Recommendations Derived from Mining Public
Product Descriptions,” Proceedings of the 33rd International Conference on Software
Engineering, pp. 181-190, (2011)

52. Elsner, C., Botterweck, G., Lohmann, D., and Schröder-Preikschat, W., “Variability in
Time - Product Line Variability and Evolution Revisited,” VaMoS, pp. 131-137, (2010)

53. Fahrenberg, U., Legay, A., and Wasowski, A., “Vision Paper: Make a Difference!
(Semantically),” Proceedings of the 14th international conference on Model driven
engineering languages and systems, pp. 490-500, (2011)

54. Fleurey, F., Haugen, Ø., Møller-Pedersen, B., Olsen, G.K., Svendsen, A., and Zhang, X.: A
Generic Language and Tool for Variability Modeling. SINTEF, Oslo. (2009)

55. Fontoura, M., Pree, W., and Rumpe, B.: The Uml Profile for Framework Architectures.
Addison-Wesley Longman Publishing Co., Inc., (2000)

107

56. Fritsch, C. and Hahn, R.: Product Line Potential Analysis. In: Software Product Lines, pp.
228-237. Springer (2004)

57. Ghanam, Y. and Maurer, F., “Linking Feature Models to Code Artifacts Using Executable
Acceptance Tests,” Proceedings of the 14th international conference on Software product
lines: going beyond, pp. 211-225, (2010)

58. Gheyi, R., Massoni, T., and Borba, P., “A Theory for Feature Models in Alloy,” First alloy
workshop, pp. 71-80, (2006)

59. Gomaa, H.: Designing Software Product Lines with Uml. Addison-Wesley Boston, USA;,
(2004)

60. Gomaa, H. and Saleh, M., “Software Product Line Engineering for Web Services and Uml,”
Proceedings of the ACS/IEEE 2005 International Conference on Computer Systems and
Applications, pp. 110-vii, (2005)

61. Griss, M.L., Favaro, J., and d'Alessandro, M., “Integrating Feature Modeling with the
Rseb,” Proceedings of the Fifth International Conference on Software Reuse, pp. 76-85,
(1998), (1998)

62. Gruler, A., Leucker, M., and Scheidemann, K., “Calculating and Modeling Common Parts
of Software Product Lines,” Proceedings of the 2008 12th International Software Product
Line Conference, pp. 203-212, (2008)

63. Haber, A., Hölldobler, K., Kolassa, C., Look, M., Rumpe, B., Müller, K., and Schaefer, I.,
“Engineering Delta Modeling Languages,” Proceedings of the 17th International Software
Product Line Conference, pp. 22-31, (2013)

64. Haber, A., Kutz, T., Rendel, H., Rumpe, B., and Schaefer, I., “Delta-Oriented Architectural
Variability Using Monticore,” Proceedings of the 5th European Conference on Software
Architecture: Companion Volume, pp. 6-6, (2011)

65. Haber, A., Rendel, H., Rumpe, B., and Schaefer, I., “Delta Modeling for Software
Architectures,” MBEES, pp. 1-10, (2011)

66. Haugen, O., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., and Svendsen, A., “Adding
Standardized Variability to Domain Specific Languages,” Proceedings of the 2008 12th
International Software Product Line Conference, pp. 139-148, (2008)

67. Jackson, D.: Alloy: A Lightweight Object Modelling Notation. ACM Trans. Softw. Eng.
Methodol. 11, 256-290 (2002)

68. Jirapanthong, W. and Zisman, A.: Xtraque: Traceability for Product Line Systems.
Software & Systems Modeling. 8, 117-144 (2009)

69. Johansen, M.F., Haugen, O., Fleurey, F., Eldegard, A.G., and Syversen, T., “Generating
Better Partial Covering Arrays by Modeling Weights on Sub-Product Lines,” Proceedings of
the 15th international conference on Model Driven Engineering Languages and Systems, pp.
269-284, (2012)

108

70. John, I. and Eisenbarth, M., “A Decade of Scoping: A Survey,” Proceedings of the 13th
International Software Product Line Conference, pp. 31-40, (2009)

71. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., and Peterson, A.S., “Feature-Oriented
Domain Analysis (Foda) Feasibility Study,” (1990)

72. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M.: Form: A Feature-Oriented
Reuse Method with Domain-Specific Reference Architectures. Annals of Software
Engineering. 5, 143-168 (1998)

73. Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., and Völkel, S., “Design
Guidelines for Domain Specific Languages,” The 9th OOPSLA workshop on domain-
specific modeling, pp. 7-13, (2009)

74. Kastner, C., Thum, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F., and Apel, S.,
“Featureide: A Tool Framework for Feature-Oriented Software Development,” Proceedings
of the 31st International Conference on Software Engineering, pp. 611-614, (2009)

75. Kelly, S. and Pohjonen, R.: Worst Practices for Domain-Specific Modeling. Software,
IEEE. 26, 22-29 (2009)

76. Kelly, S. and Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Generation.
Wiley. com, (2008)

77. Kishi, T., Noda, N., and Katayama, T., “A Method for Product Line Scoping Based on a
Decision-Making Framework,” Proceedings of the Second International Conference on
Software Product Lines, pp. 348-365, (2002)

78. Kästner, C., Apel, S., and Kuhlemann, M., “Granularity in Software Product Lines,”
Proceedings of the 30th international conference on Software engineering, pp. 311-320,
(2008)

79. Kästner, C., Apel, S., Thüm, T., and Saake, G.: Type Checking Annotation-Based Product
Lines. ACM Trans. Softw. Eng. Methodol. 21, 14:1-14:39 (2012)

80. Lahire, P., Morin, B., Vanwormhoudt, G., Gaignard, A., Barais, O., and Jézéquel, J.-M.:
Introducing Variability into Aspect-Oriented Modeling Approaches. In: Model Driven
Engineering Languages and Systems, pp. 498-513. Springer (2007)

81. Liu, J. and Batory, D., “Automatic Remodularization and Optimized Synthesis of Product-
Families,” Generative Programming and Component Engineering, pp. 379-395, (2004)

82. Lopez-Herrejon, R.E., “Language and Uml Support for Features: Two Research
Challenges,” VaMoS, pp. 97-100, (2007)

83. Lopez-Herrejon, R.E. and Egyed, A., “Towards Fixing Inconsistencies in Models with
Variability,” Proceedings of the Sixth International Workshop on Variability Modeling of
Software-Intensive Systems, pp. 93-100, (2012)

109

84. Lopez-Herrejon, R.E., Egyed, A., Trujillo, S., de Sosa, J., and Azanza, M., “Using
Incremental Consistency Management for Conformance Checking in Feature-Oriented
Model-Driven Engineering,” VaMoS, pp. 93-100, (2010)

85. Lora-Michiels, A., Salinesi, C., and Mazo, R., “A Method Based on Association Rules to
Construct Product Line Models,” VaMoS, pp. 147-150, (2010)

86. Maoz, S., Ringert, J.O., and Rumpe, B., “Addiff: Semantic Differencing for Activity
Diagrams,” Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, pp. 179-189, (2011)

87. Maoz, S., Ringert, J.O., and Rumpe, B., “Cddiff: Semantic Differencing for Class
Diagrams,” Proceedings of the 25th European conference on Object-oriented programming,
pp. 230-254, (2011)

88. Metzger, A., Heymans, P., Pohl, K., Schobbens, P.Y., and Saval, G., “Disambiguating the
Documentation of Variability in Software Product Lines: A Separation of Concerns,
Formalization and Automated Analysis,” Requirements Engineering Conference, 2007.
RE'07. 15th IEEE International, pp. 243-253, (2007)

89. Mitschke, R. and Eichberg, M., “Supporting the Evolution of Software Product Lines,”
ECMDA Traceability Workshop (ECMDA-TW), pp. 87-96, (2008)

90. Mohalik, S., Ramesh, S., Millo, J.-V., Krishna, S.N., and Narwane, G.K., “Tracing Spls
Precisely and Efficiently,” Proceedings of the 16th International Software Product Line
Conference - Volume 1, pp. 186-195, (2012)

91. Morin, B., Perrouin, G., Lahire, P., Barais, O., Vanwormhoudt, G., and Jézéquel, J.-M.,
“Weaving Variability into Domain Metamodels,” Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems, pp. 690-705, (2009)

92. Mussbacher, G., Whittle, J., and Amyot, D., “Semantic-Based Interaction Detection in
Aspect-Oriented Scenarios,” Proceedings of the 2009 17th IEEE International Requirements
Engineering Conference, RE, pp. 203-212, (2009)

93. Neves, L., Teixeira, L., Sena, D., Alves, V., Kulezsa, U., and Borba, P., “Investigating the
Safe Evolution of Software Product Lines,” ACM SIGPLAN Notices, pp. 33-42, (2011)

94. Niu, N. and Easterbrook, S., “On-Demand Cluster Analysis for Product Line Functional
Requirements,” Proceedings of the 2008 12th International Software Product Line
Conference, pp. 87-96, (2008)

95. Noor, M.A., Rabiser, R., and Grünbacher, P.: Agile Product Line Planning: A Collaborative
Approach and a Case Study. Journal of Systems and Software. 81, 868-882 (2008)

96. Owre, S., Rushby, J.M., Shankar, N., and Stringer-Calvert, D.W.J.: Pvs: An Experience
Report. In: Applied Formal Methods—Fm-Trends 98, pp. 338-345. Springer (1999)

110

97. Paige, R.F., Brooke, P.J., and Ostroff, J.S.: Metamodel-Based Model Conformance and
Multiview Consistency Checking. ACM Transactions on Software Engineering and
Methodology (TOSEM). 16, 11-11 (2007)

-
Oriented Software Evolution,” Proceedings of the Seventh International Workshop on
Variability Modelling of Software-intensive Systems, pp. 17:1-17:8, (2013)

99. Pohl, K., Böckle, G., and Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, (2005)

100. Pree, W., Fontoura, M., and Rumpe, B., “Product Line Annotations with Uml-F,”
Proceedings of the Second International Conference on Software Product Lines, pp. 188-
197, (2002)

101. Reder, A. and Egyed, A., “Incremental Consistency Checking for Complex Design Rules
and Larger Model Changes,” Proceedings of the 15th international conference on Model
Driven Engineering Languages and Systems, pp. 202-218, (2012)

102. Ryssel, U., Ploennigs, J., and Kabitzsch, K., “Extraction of Feature Models from Formal
Contexts,” Proceedings of the 15th International Software Product Line Conference,
Volume 2, pp. 4:1-4:8, (2011)

103. Ryssel, U., Ploennigs, J., and Kabitzsch, K., “Reasoning of Feature Models from Derived
Features,” Proceedings of the 11th International Conference on Generative Programming
and Component Engineering, pp. 21-30, (2012)

104. Sampaio, A., Rashid, A., Chitchyan, R., and Rayson, P.: Transactions on Aspect-Oriented
Software Development Iii. In, A. Rashid and M. Aksit, (eds.), pp. 4-39. Springer-Verlag
(2007)

105. Satyananda, T.K., Lee, D., and Kang, S., “Formal Verification of Consistency between
Feature Model and Software Architecture in Software Product Line,” Proceedings of the
International Conference on Software Engineering Advances, pp. 10---10, (2007)

106. Savage, T., Revelle, M., and Poshyvanyk, D., “Flat3: Feature Location and Textual
Tracing Tool,” Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2, pp. 255-258, (2010)

107. Schaefer, I., Bettini, L., Damiani, F., and Tanzarella, N., “Delta-Oriented Programming of
Software Product Lines,” Proceedings of the 14th international conference on Software
product lines: going beyond, pp. 77-91, (2010)

108. Schmid, K. and Eichelberger, H.: A Requirements-Based Taxonomy of Software Product
Line Evolution. Electronic Communications of the EASST. 8 (2008)

109. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., and Bontemps, Y.: Generic Semantics of
Feature Diagrams. Comput. Netw. 51, 456-479 (2007)

111

110. Schulze, S., Thüm, T., Kuhlemann, M., and Saake, G., “Variant-Preserving Refactoring in
Feature-Oriented Software Product Lines,” Proceedings of the Sixth International Workshop
on Variability Modeling of Software-Intensive Systems, pp. 73-81, (2012)

111. Segura, S., Benavides, D., Ruiz-Cortés, A., and Trinidad, P.: Automated Merging of
Feature Models Using Graph Transformations. In: Generative and Transformational
Techniques in Software Engineering Ii, pp. 489-505. Springer (2008)

112. Seidl, C., Heidenreich, F., and Uwe, A., “Co-Evolution of Models and Feature Mapping in
Software Product Lines,” Proceedings of the 16th International Software Product Line
Conference - Volume 1, pp. 76-85, (2012)

113. She, S., Lotufo, R., Berger, T., Wasowski, A., and Czarnecki, K., “The Variability Model
of the Linux Kernel,” VaMoS, pp. 45-51, (2010)

114. She, S., Lotu
Feature Models,” Proceedings of the 33rd International Conference on Software
Engineering, pp. 461-470, (2011)

115. Solheim, I. and Stølen, K., “Technology Research Explained, Technical Report A313,”
(2007)

116. Stone, A. and Sawyer, P.: Identifying Tacit Knowledge-Based Requirements. IEE
Proceedings-Software. 153, 211-218 (2006)

117. Sun, J., Zhang, H., Fang, Y., and Wang, L.H., “Formal Semantics and Verification for
Feature Modeling,” Proceedings of the 10th IEEE International Conference on Engineering
of Complex Computer Systems, pp. 303-312, (2005)

118. Svahnberg, M. and Bosch, J., “A Case Study on Product Line Architecture Evolution,”
Proceedings of the Second Nordic Workshop on Software Architecture (NOSA’99), (1999)

119. Svahnberg, M. and Bosch, J., “Characterizing Evolution in Product Line Architectures,”
Proceedings of the 3rd annual IASTED International Conference on Software Engineering
and Applications, pp. 92-97, (1999)

120. Svahnberg, M. and Bosch, J.: Evolution in Software Product Lines: Two Cases. Journal of
Software Maintenance: Research and Practice. 11, 391-422 (1999)

121. Svendsen, A., Olsen, G.K., Endresen, J., Moen, T., Carlson, E., Alme, K.-J., and Haugen,
O., “The Future of Train Signaling,” Proceedings of the 11th international conference on
Model Driven Engineering Languages and Systems, pp. 128-142, (2008)

122. Svendsen, A., Zhang, X., Haugen, O., and Møller-Pedersen, B., “Towards Evolution of
Generic Variability Models,” Proceedings of the 14th international conference on Models in
Software Engineering, pp. 53-67, (2012)

123. Svendsen, A., Zhang, X., Lind-Tviberg, R., Fleurey, F., Haugen, O., Møller-Pedersen, B.,
and Olsen, G.K., “Developing a Software Product Line for Train Control: A Case Study of

112

Cvl,” Proceedings of the 14th international conference on Software product lines: going
beyond, pp. 106-120, (2010)

124. Saaltink, M.: The Z/Eves System. In: Zum'97: The Z Formal Specification Notation, pp.
72-85. Springer (1997)

125. Thum, T., Kastner, C., Erdweg, S., and Siegmund, N., “Abstract Features in Feature
Modeling,” Proceedings of the 15th International Software Product Line Conference, pp.
191-200, (2011)

126. Van Deursen, A. and Klint, P.: Domain-Specific Language Design Requires Feature
Descriptions. Journal of Computing and Information Technology. 10, 1-17 (2002)

127. Van Gurp, J., Bosch, J., and Svahnberg, M., “On the Notion of Variability in Software
Product Lines,” Proceedings of the Working IEEE/IFIP Conference on Software
Architecture, pp. 45-54, (2001)

128. van Gurp, J. and Savolainen, J., “Service Grid Variability Realization,” Proceedings of the
10th International on Software Product Line Conference, pp. 85-94, (2006)

129. Vasilevskiy, A., “Conquering Overlapping Fragments in Cvl”, University of Oslo, (2013)

130. Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., and Heider, W., “Flexible and
Scalable Consistency Checking on Product Line Variability Models,” Proceedings of the
IEEE/ACM international conference on Automated software engineering, pp. 63-72, (2010)

131. Weiss, D.M., “Commonality Analysis: A Systematic Process for Defining Families,”
Proceedings of the Second International ESPRIT ARES Workshop on Development and
Evolution of Software Architectures for Product Families, pp. 214-222, (1998)

132. Weiss, D.M., “Family-Oriented Abstraction Specification and Translation: The Fast
Process,” Proceedings of the 11th Annual Conference on Computer Assurance
(COMPASS), Gaithersburg, Maryland, pp. 14-22, (1996)

133. Weiss, D.M. and others: Software Product-Line Engineering: A Family-Based Software
Development Process. (1999)

134. Weston, N., Chitchyan, R., and Rashid, A., “A Framework for Constructing Semantically
Composable Feature Models from Natural Language Requirements,” Proceedings of the
13th International Software Product Line Conference, pp. 211-220, (2009)

135. Whyte, W.F.E.: Participatory Action Research. Sage Publications, Inc, (1991)

136. Wile, D., “Lessons Learned from Real Dsl Experiments,” Proceedings of the 36th Annual
Hawaii International Conference on System Sciences, pp. 10-pp, (2003)

137. Woodcock, J. and Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-
Hall, Inc., (1996)

138. Yin, R.K.: Case Study Research: Design and Methods. Sage, (2009)

113

139. Zave, P.: An Experiment in Feature Engineering. In: Programming Methodology, pp. 353-
377. Springer (2003)

140. Zhang, X., “Synthesize Software Product Line,” Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, pp. 341-342, (2010)

141. Zhang, X., Haugen, O., and Moller-Pedersen, B., “Augmenting Product Lines,”
Proceedings of the 2012 19th Asia-Pacific Software Engineering Conference - Volume 01,
pp. 766-771, (2012)

142. Zhang, X., Haugen, O., and Moller-Pedersen, B., “Model Comparison to Synthesize a
Model-Driven Software Product Line,” Proceedings of the 2011 15th International Software
Product Line Conference, pp. 90-99, (2011)

143. Zhang, X., Haugen, Ø., and Møller-Pedersen, B., “Semantic Differencing for Product Line
Evolution,” SINTEF A25398 ISBN 978-82-14-05332-6 (2013)

144. Zhang, X., Lin, Y., and Haugen, Ø., “April: A Dsl for Payroll Reporting,” The 1st
International Workshop on Future trends of Model-Driven Development in conjunction with
the 11th International Conference on Enterprise Information Systems, Milan, Italy, (2009)

145. Zhang, X. and Møller-Pedersen, B., “Towards Correct Product Derivation in Model-
Driven Product Lines,” Proceedings of the 7th international conference on System Analysis
and Modeling: theory and practice, pp. 179-197, (2013)

146. Ziadi, T., Frias, L., da Silva, M.A.A., and Ziane, M., “Feature Identification from the
Source Code of Product Variants,” Proceedings of the 2012 16th European Conference on
Software Maintenance and Reengineering, pp. 417-422, (2012)

147. Ziadi, T., Hélouët, L., and Jézéquel, J.-M.: Towards a Uml Profile for Software Product
Lines. In: Software Product-Family Engineering, pp. 129-139. Springer (2004)

148. Ziadi, T. and Jézéquel, J.-M.: Software Product Line Engineering with the Uml: Deriving
Products. In: Software Product Lines, pp. 557-588. Springer (2006)

115

Appendix I

Paper I: Developing a Software Product Line for Train Control: A
Case Study of CVL

Authors: Andreas Svendsen, Xiaorui Zhang, Roy Lind-Tviberg et al.

Journal: Proceedings of the 14th international conference on Software
product lines: going beyond, Springer-Verlag, 2010, 106-120.

Author contribution: Xiaorui Zhang is one of the main contributors of
this paper, and has contributed to all parts of it (tool implementation,
case study design & execution and paper-writing), responsible for 40%
of the work.

117

Appendix II

Paper II: APRiL: A DSL for Payroll Reporting

Authors: Xiaorui Zhang, Yun Lin and Øystein Haugen

Journal: The 1st International Workshop on Future trends of Model-
Driven Development in conjunction with the 11th International
Conference on Enterprise Information Systems, Milan, Italy, 2009

Author contribution: Xiaorui Zhang is the main contributors of this
paper, and has contributed to all parts of it (tool implementation, case
study design & execution and paper-writing), responsible for 90% of
the work.

119

Appendix III

Paper III: Model Comparison to Synthesize a Model-Driven Software
Product Line

Authors: Xiaorui Zhang, Øystein Haugen and Birger Møller-Pedersen

Journal: Proceedings of the 15th International Software Product Line
Conference, IEEE Computer Society, 2011, 90-99

Author contribution: Xiaorui Zhang is the main contributor of this
paper, and has contributed to all parts of it (ideas, tool implementation,
paper-writing and all topics of the paper), responsible for 90% of the
work.

121

Appendix IV

Paper IV: Towards Correct Product Derivation in Model-Driven
Product Lines

Authors: Xiaorui Zhang and Birger Møller-Pedersen

Journal: Proceedings of the 7th international conference on System
Analysis and Modeling: theory and practice, Springer-Verlag, 2013,
179-197.

Author contribution: Xiaorui Zhang is the main contributor of this
paper, and has contributed to all parts of it (ideas, tool implementation,
paper-writing and all topics of the paper), responsible for 90% of the
work.

123

Appendix V

Paper V: Augmenting Product Lines

Authors: Xiaorui Zhang, Øystein Haugen and Birger Møller-Pedersen

Journal: Proceedings of the 2012 19th Asia-Pacific Software
Engineering Conference - Volume 01, IEEE Computer Society, 2012,
766-771.

Author contribution: Xiaorui Zhang is the main contributor of this
paper, and has contributed to all parts of it (ideas, tool implementation,
paper-writing and all topics of the paper), responsible for 90% of the
work.

125

Appendix VI

Paper VI: Towards Evolution of Generic Variability Models

Authors: Andreas Svendsen, Xiaorui Zhang, Øystein Haugen and
Birger Møller-Pedersen

Journal: Proceedings of the 14th international conference on Models
in Software Engineering, Springer-Verlag, 2012, 53-67.

Author contribution: Xiaorui Zhang is one of the main contributors of
this paper, and has contributed to all parts of it (ideas, tool
implementation, paper-writing and all topics of the paper), responsible
for 45% of the work.

127

Appendix VII

Paper VII: Semantic Differencing for Product Line Evolution

Authors: Xiaorui Zhang, Øystein Haugen and Birger Møller-Pedersen

Journal: SINTEF Report A25398, ISBN 978-82-14-05332-6

Author contribution: Xiaorui Zhang is the main contributor of this
paper, and has contributed to all parts of it (ideas, tool implementation,
paper-writing and all topics of the paper), responsible for 90% of the
work.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

