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Abstract 

This thesis focuses on model-driven software product line development, which is the 
combination of the following two software development paradigms: (1) Model-
Driven Engineering (MDE), which focuses on modeling software products and 
automating code generation from product models. In particular, Domain-Specific 
Modeling (DSM), as a technique in the arena of MDE, is about defining a Domain-
Specific Language (DSL) and creating software product models using the language. 
(2) Software Product Line Engineering (SPLE), is a means to produce similar 
software products, by consolidating those into product lines to enable managed reuse. 
In a model-driven Software Product Line (SPL) which adopts DSM technique, 
products are represented as product models defined in a DSL. The variability (and 
commonality) of all intended products is specified in a product line model, typically 
using a variability modeling language. Based on the variability specified in the 
product line model, reusable model fragments specified using the base DSL, serving 
as the core assets of the product line, will be reused to derive all intended product 
models. This thesis provides methods for developing model-driven software product 
lines, in terms of development methodology, automated assistance and SPL evolution 
support.  

Firstly, this thesis presents two results on the methodology for developing a model-
driven SPL: (1) A generic and separate variability modeling language, which can be 
used to specify a product line model defining how intended product models can vary 
from each other, both at the domain conceptual level and the realization level (model 
object level). (2) Guidelines on how to define a DSL that is suitable to serve as the 
base language for a model-driven SPL, if the base language of the product line does 
not exist yet.  

Secondly, this thesis reports on two results in providing automated tool support for 
model-driven product line development: (1) A method for synthesizing a product line 
model from a set of existing product models when the product line is not built from 
scratch. (2) A method for ensuring that all the product models that can be derived 
from the product line model are intended.  

Thirdly, this thesis reports on three results in providing support for evolving 
model-driven SPLs: (1) A method for augmenting the existing product line model 
when new product models need to be included. (2) A method for suggesting 
automatic update to the product line model when the core assets of the product line 
have been changed. (3) A method for calculating semantic difference between two 
model-driven SPLs. 

We illustrate the application of our approaches in various case studies in different 
domains, provided by both industry and academia. Different phases of SPL 
development and evolution can require substantial amount of manual efforts, of which 
productivity can be improved by adopting our automatic tool support. We show that 
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by following our approaches, model-driven SPLs can be developed and evolved in a 
systematic and efficient manner.  
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1 Introduction 

A Software Product Line (SPL) is a set of software-intensive systems that share a 
common, managed set of features satisfying the specific needs of a particular market 
segment or mission and that are developed from a common set of core assets in a 
prescribed way [40]. Software Product Line Engineering (SPLE), emerging as a 
viable software development paradigm, enables the reduction of time-to-market for 
similar software products through managed reuse of core assets. 

As another software development paradigm, Model-Driven Engineering (MDE) 
focuses on creating software models and automating code generation from the models 
[42]. Software models can be specified using either general-purpose modeling 
languages (e.g., UML) or Domain-Specific Languages (DSLs). A DSL is a custom-
made language for a specific domain [76]. Typically the language constructs and rules 
of a DSL only capture the essential concepts of the domain. Therefore, a DSL allows 
domain experts to model systems using familiar domain-specific terms, without 
having extensive modeling experience. 

Model-driven SPL development combines the SPLE and MDE paradigm. In 
model-driven SPLs, core assets are reusable software model fragments instead of 
reusable code snippets. Therefore, products of model-driven SPLs are in the form of 
models (we call them "product models"), from which the code for the software 
products can be further generated through model-to-text transformations. 

 

 
Fig.1. Thesis contribution overview 

As illustrated in Fig.1, the objective of our thesis is to provide methods to facilitate 
effective and efficient development of model-driven SPLs. In particular, we address 
how to develop model-driven SPLs for different domains in a separate and generic 
way, how to improve the productivity of model-driven SPL development by 

Developing model-driven SPLs
Automatic assistance in model-

driven SPL development

Evolving Model-driven SPLs

A separate and generic approach for 
developing model-driven SPLs



8 
 
 

automatic means, and how to improve the productivity in evolving model-driven 
SPLs. 

In a model-driven SPL, instead of creating similar software product models 
individually, the product models are derived from the product line model. The product 
line model, often in the form of a variability model, is created to specify the 
variability (and commonality) of all the intended product models. There are two 
strategies for specifying a product line model [66]: 

(1) The amalgamated approach is to extend the base language (either a general-
purpose modeling language or a DSL) of the product line with variability modeling 
concepts. However, changing the definition of the base language and its tool support 
(e.g., editors and code generators) to facilitate variability modeling may not always be 
feasible. 

(2) The separate approach is to describe the variability of the product line using a 
dedicated variability modeling language. For example, feature modeling techniques, 
first proposed by Kang et al. [71] for domain analysis purposes, belongs to this 
category. In a feature model (product line model), the variability (and commonality) 
of the product line are represented as features that are hierarchically organized. In 
order to derive a product model, the developer does not only need to choose all the 
required features from the product line model, but also need to define 
feature/variability realization - how the chosen features should be realized by reusing 
the core assets (reusable model fragments) during product derivation (model-to-model 
transformations) [14]. 

However, including feature modeling, most of the separate variability modeling 
techniques [71, 99] do not include language concepts to specify how features should 
be realized at the (model) object level. Furthermore, it is a challenge to define feature 
realization in a separate and generic way for product lines in various domains with 
product models specified using different base DSLs. 

In this thesis we provide a separate and generic approach for developing model-
driven SPLs (see Section 6.1.1), which allows the developer to define both features 
and their realizations holistically in a product line model. 

When a DSL is chosen to be the base language for a model-driven SPL, all the core 
assets and intended products will be specified in this language. Moreover, if this DSL 
does not exist yet, to create it will become one of the prerequisites prior to the actual 
SPL development. 

In this thesis we report on experience in developing a base DSL that is suited for 
building model-driven SPLs afterwards (see Section 6.1.2). We show that a properly 
defined DSL, together with well-planned SPLs, can improve the productivity for 
developing software products [144]. 

Providing automatic assistance to model-driven SPL development can increase 
productivity in the production of software products beyond current human labor 
levels. Numerous automatic tools have been developed to support model-driven SPL 
development. However, there is still a lack of automatic assistance for many specific 
needs in various contexts at each development phase. 

In this thesis we provide a set of automatic methods to improve the productivity in 
identifying variability (see Section 6.2.1) and defining variability/feature realization 
(see Section 6.2.2) for SPLs. 
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Software product lines often evolve over time [120]. Many existing automatic 
techniques in SPL evolution have their focus on managing and understanding product 
line evolutions (e.g., version control systems and differencing tools [6]). Very few of 
them target on suggesting evolution steps automatically based on new requirements, 
such as augmenting an SPL with new products [141].  

In addition, there is also a lack of automatic methods in supporting SPL co-
evolution, such as suggesting necessary update to the product line model after the 
core assets have been changed. 

Furthermore, most of the differencing tools being used to understand the impact of 
an SPL evolution are either syntax-based, which has its limitation in revealing 
added/removed products during an evolution, or semantic-based which only compares 
two SPLs at the feature/variability specification level without considering the 
feature/variability realization that might have been changed. 

In this thesis we provide a set of automatic methods to improve the productivity in 
SPL evolution, in terms of augmenting an SPL with new products (see Section 6.3.1), 
co-evolving the product line model when the core assets are changed (see Section 
6.3.2), and differencing two SPLs semantically by taking both features and their 
realizations into account (see Section 6.3.3). 

This thesis work has been performed in the context of the MoSiS1 project. MoSiS 
is an industrial-driven research project with focus on developing and standardizing a 
generic variability modeling language, as well as promoting the model-driven SPL 
paradigm to industry. 

There is no silver bullet for software engineering problems [32]. Thus, rather than 
searching for the silver bullet for model-driven SPL development, in this thesis we 
make our research efforts in contributing to a technology box with specialized tools 
and methods tailored for specific needs. 

1.1 Overview of the Contributions 

As illustrated in Fig.1, our work on developing model-driven SPLs is addressed 
through the following areas: 

 A separate and generic approach for developing model-driven SPLs in 
different domains. 

 Automatic assistance in model-driven SPL development. 
 Evolving model-driven SPLs. 

In the following we give a detailed description of the challenges in these areas. 

1.1.1 A Generic Approach for Developing Model-Driven SPLs 

Defining variability specification and realization in a generic way (see Section 
6.1.1). There are two challenges that we address in proposing a separate and generic 
approach for developing model-driven SPLs: 

                                                           
 

1 http://www.itea2.org/project/index/view?project=200 
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(1) One challenge is that, few separate and generic model-driven approaches (e.g., 
feature modeling) support defining both the domain-level variability (features) and 
their realizations at the model (object) level holistically in the same product line 
model.   

(2) The other challenge is how to represent feature/variability realization (model 
editing operations) in a generic way. The approach should provide means to describe 
arbitrary edits to any model specified in any base DSL. 

In order to address these challenges, we propose a separate and generic variability 
modeling language, the Common Variability Language (CVL) and the CVL 
methodology for SPL development. The CVL language provides capabilities in 
defining both variability/feature specification and realization in the same product line 
model. Furthermore, the CVL language categorizes arbitrary model edits into value, 
reference and fragment substitutions, which can describe any value and structural 
changes in any model specified in any MOF-based modeling language. Since the 
CVL language is the core of this approach, we refer to this approach as "CVL" in the 
rest of this thesis. 

Defining a Base DSL that is Suitable for Building Model-Driven SPLs (see 
Section 6.1.2). DSM/MDE and model-driven SPL are both new paradigms for most 
developers in industry. Very often a base DSL needs to be developed together with 
model-driven SPLs, which raises the question: how to develop a base DSL that is 
suitable for building model-driven SPLs that are based on separate variability 
modeling approaches? 

We report our experience in developing a base DSL and SPLs for the payroll 
reporting domain. We show that: (1) If the language concepts of the base DSL is fully 
domain-specific without any variability modeling concepts, it will be more intuitive 
and conceptually clearer to build SPLs that are based on separate variability modeling 
approaches. (2) How the productivity of traditional software development can be 
improved by model-driven SPL techniques. Since the experience was collected during 
the development of the Agresso Payroll Reporting Language (APRiL), we refer to this 
contribution as "APRiL" in the rest of our thesis 

1.1.2 Automatic Assistance in Model-Driven SPL Development 

Synthesizing an SPL from a set of existing products (see Section 6.2.1). As a new 
software development paradigm, SPLE is not always adopted from scratch in practice. 
For example, when an organization shifts from traditional software development to 
product line development, the developer often needs to include existing products in a 
product line and further enhance it to introduce new products [142]. For product line 
development in this context, we see the potential in providing automatic assistance to 
identify variability (and commonality) of an SPL. We show in this thesis how to 
synthesize a set of existing product models into a preliminary product line model 
specified in our generic variability modeling language, through an automated 
procedure. This preliminary product line model can serve as the base line for manual 
enhancement. Since this approach is built based on CVL and model comparison 
techniques, we refer to this approach as "CVL Compare" in the rest of this thesis. 
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Ensuring that the variability realization will only yield intended products (see 
Section 6.2.2). In order to derive product models from a product line model, the 
developer does not only need to specify the variability of the product line, but also 
needs to define how the variability (features) can be realized by reusing the core 
assets (reusable model fragments) and applying necessary model editing operations. 
However, specifying variability/feature realization is often an error-prone process 
since it requires the developer to have a good understanding of both the core assets 
and intended product models at the model object level. In particular, there are two 
challenges that we focus on in this thesis: 

(1) With most existing techniques, the developer does not have immediate 
feedback on his/her specification changes to the variability/feature realization at 
design time. Therefore the more complex the variability/feature realization is at the 
model object level, the more difficult it will be for the developer, without proper tool 
support, to ensure that the current definition of the variability realization will only 
yield intended products. 

We address this challenge by providing a generic variability realization simulator, 
which can be evoked at design time to simulate the execution of the variability 
realization and provide a preview of the resulting model excerpt. The simulator, if 
properly used in an iterative "define-preview-improve" manner, can provide an 
immediate feedback on whether the current definition of the variability realization 
will yield intended model changes in the final product models. 

(2) Most variability/feature modeling techniques provide means to specify domain-
level constraints that govern dependencies between features [22, 45]. For example, 
feature A implies feature B, indicates that these two features should always coexist in 
a product. However, if both the realizations of feature A and B require to change the 
same model object/reference, but in two different ways, then an inconsistency 
between the feature specification level and the feature realization level occurs. During 
the derivation of products with feature A and B, this inconsistency can cause errors 
because the realizations of feature A and B contradict with each other. 

We address this challenge by categorizing such inconsistencies and proposing a 
consistency checker to search for unwanted inconsistencies that may halt the product 
derivation or yield unintended products. In the rest of the thesis, we refer to this 
approach as "Automatic assistance in defining variability realization" in the rest of 
this thesis. 

1.1.3 Evolving Model-Driven SPLs 

Augmenting an SPL with new products (see Section 6.3.1). Product lines are often 
subject to changes over time [120]. Augmenting an existing product line to include 
new products is a typical product line evolution scenario in practice and it has been so 
far mostly a manual process [141]. This process does not only require the developer to 
perform an extensive comparison of the new and existing products, but also to have a 
comprehensive understanding of the impact of each change to the existing product 
line. 

In this thesis we show how a product line model specified in the Common 
Variability Language (CVL), which is our generic variability modeling language,  
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can be augmented with new product models, through a series of automatic routines, 
resulting in a tentative augmented product line model for manual enhancement [141]. 
We refer to this approach as "Augmenting an SPL" in the rest of this thesis. 

Co-evolving the product line model when the base model is changed (see 
Section 6.3.2). For a model-driven SPL, all its product models can be derived by 
reusing and changing the reusable model fragments (core assets of the SPL). 
However, core assets can undergo maintenance for various reasons. Therefore a series 
of questions arise: Will the product line model still derive the intended product 
models from the core assets that have been changed? If not, how the product line 
model should be updated to ensure that the product derivation remains unaffected? 

We address this challenge by proposing an approach for co-evolving the product 
line model (developed in our CVL language) when the base model (part of the core 
assets) is evolved. In particular, the approach detects the inconsistencies in the 
original product line model caused by the changes to the base model, and 
automatically suggests an evolved product line model which has all the 
inconsistencies resolved. We refer to this approach as "Co-evolving an SPL" in the 
rest of this thesis. 

Semantic Differencing for SPLs (see Section 6.3.3). In order to understand the 
impact of an SPL evolution which has taken place over time, it is common for the 
developer to compare the original and the evolved product line. When it comes to 
applicable differencing techniques, syntax-based approaches have their limitations in 
situations when syntactical similar models have very different semantics, which has 
been observed in feature models [6]. It would be helpful for the developer to gain an 
understanding of the semantic impact of an SPL evolution (e.g., in terms of 
added/removed products). Nevertheless, existing semantic differencing techniques for 
feature models only compare domain-level features without taking the actual feature 
realizations into consideration, resulting in an incomplete picture of the SPL 
evolution.  

We address this challenge by proposing an approach for semantic differencing for 
SPLs. The approach is built based on the definitions of two semantic differencing 
operators, which take both feature/variability specification and feature realization into 
account during the SPL differencing process. We refer to this approach "Semantic 
Differencing for SPLs" in the rest of the thesis. 

1.2 Structure of the Thesis 

This thesis is presented as a collection of research papers with an accompanying 
overview. It is divided into two parts: Part I contains the overview, which gives the 
motivation, background and overview of the contributions. Part II is the main 
contribution in the form of a set of papers. 

In addition to the introductory chapter, the remainder of Part I is organized as 
follows: 

 In Chapter 2, we give an overview of the background of the thesis work. 
 In Chapter 3, we elaborate the problem area and define research topics 

investigated in the thesis work. 
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 In Chapter 4, we describe the research methods applied in the course of the 
thesis work. 

 In Chapter 5, we give a review of the literature and state-of-the-art. 
 In Chapter 6, we give an overview of our contributions and research papers. 
 In Chapter 7, we discuss and evaluate the accomplished work towards the 

research topics. 
 In Chapter 8, we conclude and propose some directions for future work. 

Part II contains seven papers in Appendix I - VII, which define the main 
contribution of the thesis. 
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2 Background 

In this section, we give an introduction on the definition of the research topics that 
this thesis covers.  

2.1 Model-Driven Engineering and Domain-Specific Modeling 

Model-Driven Engineering (MDE) raises the abstraction level of typical software 
development, by shifting the focus from programming to modeling and automating 
code generation from the models. Software models can be specified using either 
general-purpose modeling languages (e.g., UML or Domain-Specific Languages 
(DSLs)). Domain-Specific Modeling (DSM) techniques allow domain experts to 
develop software applications of the domain without having extensive modeling and 
programming experience. For example, instead of coding a software system directly, 
domain experts can specify models of the system using domain-specific language 
concepts provided by a DSL. Subsequently, the models can be transformed into the 
code of the system by automatic code generators. 

For example, as reported in [121], Train Control Language (TCL) is a DSL for 
specifying train control systems equipped at train stations. TCL with its tool support 
(i.e., TCL graphical editor and TCL code generator) is developed by SINTEF2 in 
cooperation with ABB, Norway3. Traditionally train control experts at ABB need to 
develop train control systems for different station drawings received from the national 
railway authority. Such system development involves much coding for Programmable 
Logic Circuits (PLCs) using low-level programming languages, which can often be an 
error-prone and time-consuming process. TCL was developed to address this 
challenge. With the TCL graphical editor, train control experts can specify station 
models using the language constructs that graphically resemble the building blocks in 
the station drawings. Code for on-station PLCs can be generated from TCL station 
models through the TCL code generator. 

Applying DSM techniques can improve the productivity in developing domain-
specific software applications. However, the improvement also comes with an 
overhead, including the development of the DSL itself, DSL model editors and code 
generators. 

                                                           
 

2 http://www.sintef.no/ 
3 http://new.abb.com/no 
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There are two popular approaches for developing DSLs: (1) Extending the standard 
UML language with domain-specific concepts using UML profiles4. (2) Creating 
DSLs from scratch using metamodeling techniques. Our thesis work focuses on the 
latter approach.  

Defining a DSL using metamodeling techniques includes three parts: 
Abstract syntax, which is a set of rules about how language concepts can be used 

during the modeling process, defined in a metamodel. A DSL editor enforces the 
abstract syntax of the language so that only models conforming to the metamodel are 
allowed in the editor. As illustrated in Fig.2, in a TCL station model LineSegment(s) 
and Switch(es) can only be connected by Endpoint(s), which conforms to the abstract 
syntax of the TCL language. 

 

 
Fig.2. Basic TCL concepts in the graphical editor with annotations 

Concrete syntax, which is a set of rules that define the way models look like to the 
modeler (domain expert), i.e. textual/graphical notation of the language concepts. It is 
important that the concrete syntax of a DSL resembles the counterpart of the domain 
visually, so that it may be easier for domain experts to comprehend the notations of 
this DSL. A DSL editor, either textual or graphical, is built based on the concrete 
syntax of the language. As illustrated in Fig.2, the concrete syntax of the TCL 
language is very domain-specific, which resembles the look-and-feel of the station 
drawings received from the authority. 

Semantics, define what language concepts (and compositions of language 
concepts) mean, making it possible to understand models specified in this language 
precisely. As illustrated in Fig.2, the round-angled rectangles and the square-angled 
rectangles represent TrainRoute(s) and TrackCircuit(s) respectively. The semantics of 
a TrainRouteis a route between two MainSignal(s) in the same direction. The 
semantics of a TrackCircuit is the shortest segment where the presence of a train can 
be detected. 

There are several tools for metamodeling DSLs and building DSL editors (e.g., 
Eclipse Modeling Framework core (EMF core)5 for creating metamodels, Graphical 

                                                           
 

4 http://www.omg.org/spec/ 
5 http://www.eclipse.org/modeling/emf/ 
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Modeling framework (GMF) 6 for building graphical editors and EMFText 7 for 
building textual editors). Take the TCL language for example, the TCL metamodel is 
developed using EMF, and the TCL graphical editor is developed using GMF. We 
also use EMF and GMF in the prototype development of our thesis work, which will 
be elaborated later in Section 6. 

Code generators are responsible for transforming models specified in the DSL 
editor into code. In particular, a code generator is written as a transformation script, 
which reads in models, traverses model elements and transforms models into texts. 
Code generators can be developed using general-purpose programming languages 
(e.g., Java) or model transformation tools (e.g., QVT8 and MOFScript9). We use 
MOFScript, a tool for model-to-text transformation, to develop the code generators in 
our thesis work. 

2.2 Variability Modeling and Model-Driven SPL Development 

Developing similar software products is a common software development scenario in 
practice. For example, in mobile phone industry, software systems for different phone 
models are quite similar to each other, since all of them need to support mandatory 
features such as calling and SMS. However, they also vary from each other by 
supporting different optional features. For example, a higher-end phone may be 
equipped with features like GPS, camera while a lower-end one may only have 
camera but not GPS. In order to reduce time-to-market when developing similar 
software products, ad-hoc code reuse (e.g., copy & paste) is often applied by 
developers. However, unplanned and unmanaged code reuse can introduce potential 
errors into the code and does not always maximize the benefits of reuse. In order to 
address these challenges, Software Product Line Engineering (SPLE) has been 
introduced to enable planned and managed reuse in the development of similar 
software products. Instead of developing similar software products individually, 
SPLE paradigm focuses on building a Software Product Line (SPL) from them. An 
SPL captures the variability and commonality of all its intended products. A set of 
core assets (reusable artifacts, such as code libraries, software components and etc.) 
serve as the base for an SPL, which will be reused to derive all intended products. 

Model-driven SPL development is a combined paradigm of MDE and SPLE. In a 
model-driven software product line, core assets are reusable model fragments 
specified in a base language (e.g., UML or a DSL) instead of actual code snippets. All 
products are represented as models specified in the base language as well. The 
development of a model-driven SPL consists of the following phases: 

Variability Identification. This phase focuses on capturing the variability and 
commonality of all intended product models of the product line. Variability 
identification has been mostly a manual process and the majority of contributing 

                                                           
 

6 http://www.eclipse.org/modeling/gmp/ 
7 http://www.emftext.org/index.php/EMFText 
8 http://www.omg.org/spec/QVT/1.1/ 
9 http://marketplace.eclipse.org/content/mofscript-model-transformation-tool#.UpTAcdJIJvA 
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methods are directive guidelines. As the first domain analysis methodology, FODA 
[71] suggests to identify the variability of a domain by conducting surveys/interviews 
towards domain experts/end-users, as well as inspecting relevant documents and 
applications. Many other research works suggest similar methods for variability 
identification in SPL development, such as in FORM [72], FAST [132], PuLSE [23] 
and KobrA [18]. 

Variability Specification. In this phase, the developer specifies a product line 
model to describe the variability and commonality of the product line. There are two 
strategies to specify a product line model:  

The amalgamated approach, which is to extend the base language (e.g., UML or a 
DSL) with variability modeling language concepts. However, it may not be always 
feasible to change the definition of the base language and its tool support (editors, 
code generators and etc.). Or the developer may prefer to keep the scope of the base 
language more domain-specific without offering variability modeling capability. 
Furthermore, with the amalgamated approach, the developer needs to repeat the work 
of extending the base language with variability modeling concepts when he/she starts 
building a product line with a new base language.  

The separate approach, which is to specify the variability of a product line in a 
separate variability model using a generic variability modeling language. The 
variability modeling language is defined beyond the base language of the product line. 

Feature modeling, first proposed by Kang [71], has been widely used to specify 
product line models. In feature modeling, a "feature" is defined as a "prominent or 
distinctive user-visible aspect, quality, or characteristic of a software system or 
system" [71]. The variability and commonality of a product line can be represented as 
hierarchically organized features in a feature model. 

 

 
Fig.3. Feature model of the train control product line specified using FeatureIDE 

Variability Realization. In order to develop an executable product line, it is not 
adequate to only identify the variability (features) of the product line and specify it in 
a product line model. In addition, the developer also needs to define how 
features/domain-level variability should be realized at the model (object) level by 
reusing the core assets (reusable model fragments) of the product line. For example, 
in order to realize a specific feature, it may be necessary to edit a specific model 
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fragment (part of the core assets) slightly, assemble several model fragments together 
or take away some part from a model fragment. 

Going back to the train control example: The train control experts see that many 
station drawings that they receive from the authority are very similar. Therefore they 
decide to develop train control product lines instead of specifying every TCL station 
model individually [123]. Fig.3 shows the feature model of a train control product 
line, which specifies the domain-level variability (features) of the product line using 
FeatureIDE, which is a popular feature diagram editor [74]. As shown in Fig.3, 
stations are categorized into Urban and Rural ones depending on their location. Urban 
stations can have one AdditionalTrack compared to rural stations. Urban stations can 
also have a LeftParkingTrack and/or a TopParkingTrack. Rural stations can choose to 
have an optional RightParkingTrack.  

As illustrated in Fig.3, features are distinguished as abstract and concrete features. 
Thüm et al. [125] define abstract features as those that are "only used to structure the 
model and selecting or eliminating them does not make any difference in the 
generated variant code". As in this train control product line, feature RegionalStation, 
Urban, Rural and ParkingTrack are regarded as abstract features for their only use in 
creating hierarchies and facilitating better domain-specific understanding. 

 

 
Fig.4. Core assets of the train control product line (including the base model and library model) 

On the contrary, each concrete feature such as AdditonalTrack, LeftParkingTrack, 
TopParkingTrack and RightParkingTrack is supposed to be realized at the model 
(object) level by reusing/customizing the core assets of the product line. Fig.4 
illustrates the core assets of this product line. In order to realize the feature 
TopParkingTrack, a possible model editing operation is to substitute the endpoint 

ParkingTrack

Base Model

Library Model

EndPoint
TCE4

Core Assets (Reusable Model Fragments)
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TCE4 with the parking track (see Fig.4). Therefore the developer needs to explicitly 
specify this substitution in the definition of the realization for the feature 
TopParkingTrack. 

When the development of a model-driven SPL is completed, the product line is 
ready for product configuration and product derivation. In order to derive a specific 
product model from the product line, the developer needs to choose a set of its 
required features (with associated realizations) from the product line model. This set 
of choices is called a "product configuration". During product derivation, realizations 
of a product configuration are executed through model-to-model transformations, to 
apply the feature realizations chosen in the product configuration process. 

2.3 Evolving Model-Driven SPLs 

Software product lines are often subject to changes to meet new requirements over 
time. Evolution in product lines can be identified into different categories depending 
on what the new requirements are. For a model-driven SPL, typical reasons for 
evolving a product line model include the following:  

The core assets (reusable model fragments) are changed. Core assets are 
essential part of a product line and therefore can undergo frequent evolution (e.g., 
bug-fixes, refactoring, adding/deleting functionalities and etc. [119]). 

Domain-level variability of a product line needs to be realized at the model (object) 
level. Furthermore, the specification of feature/variability realization should describe 
how to reuse/edit the core assets (e.g., in terms of a set of model editing operations). 
Therefore, variability realization also needs to be updated if it is affected by the 
changes in the core assets. 

The metamodel of the base modeling language is changed. The core assets are 
reusable model fragments specified using the base language, therefore they may 
require changes in order to conform to the new metamodel. Subsequently the 
specification of variability realization may require changes as well. 

New Product models need to be included in the product line. As a typical 
evolution scenario [26], augmenting a product line model to include new products has 
been mostly a manual process. It requires the developer to have a comprehensive 
understanding of the impact of every change to the existing product line model, so 
that both the new and the existing products can be derived from the augmented 
product line model. 

2.4 Alloy 

As elaborated in Section 6.2.2, one of our approaches in providing automatic 
assistance in defining variability realization, contributes to ensuring that the SPL will 
only yield intended products. As elaborated in Section 6.3.3, another approach of ours 
provides a semantic differencing technique for SPLs. In the feasibility evaluations of 
these two approaches, we used the Alloy language [67] and its tool support in the 
prototype implementation, for the formal analysis capability that Alloy provides. 
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Alloy [67] is a structural modeling language based on first-order logic for 
expressing structural constraints and behaviors. An Alloy module can consist of 
signatures, fields, facts, functions, predicates and assertions. Signatures denote sets of 
atoms. Fields belong to signatures and denote global relations between signatures. 
Relations are interpreted as tuples of atoms. Facts define global constraints. A 
predicate defines parameterized constraints, which will evaluate to true if all the 
contained constraints evaluate to true. A predicate can be regarded as an Alloy 
function whose return type is Boolean. An assertion is a claim that the contained 
constraints must hold. 

The Alloy Analyzer [67] provides fully automated constraint solving for Alloy 
modules. All the modules are translated from first-order logic to propositional logic, 
which is analyzed by the Alloy Analyzer's embedded SAT solvers. The user needs to 
define a scope of the search space for the solver, namely a positive integer which 
limits the number of atoms for each signature that the solver should analyze. 

Analysis in Alloy is based on the small scope hypothesis, which means that if there 
is a solution to a request, this solution will be in a scope of small size [10]. The Alloy 
Analyzer provides two types of analysis, one is to check if an assertion is valid, and 
the other is to find instances that satisfy a predicate, both in the user-defined scope. 

2.5 EMF Compare 

As elaborated in Section 6.2.1, we provide an automatic approach for synthesizing a 
product line from a set of existing products. The approach is built based on the CVL 
language and model comparison techniques. In order to evaluate the feasibility of the 
approach, we implemented a prototype tool, where EMF Compare10 is used for its 
generic model differencing capability. 

EMF Compare is a generic model differencing tool that can be applied to any 
two/three models specified in the same language which is defined in EMF. EMF is 
composed of the MatchService and the DiffService. During a model differencing 
process using EMF Compare, models are first interpreted into typed attribute graphs, 
and then fed into the match engine to identify matching model elements based on the 
overall score of four similarity metrics regarding the name, type, relations and content 
of the model element [33]. The match engine will output an .emfmatch model which 
lists all the matching model elements in the models under comparison. The .emfmatch 
model is further fed into the diff engine. The diff engine will go through the 
.emfmatch model and calculate the model difference based on it, outputting the 
differencing result in an .emfdiff model.  

For example, for a two-way model comparison between a Left Hand Side (LHS) 
and a Right Hand Side (RHS) model, the .emfdiff model contains unmatchedElements 
(left/right) which represent the model elements that exist in the LHS/RHS model but 
not in the RHS/LHS model. The .emfdiff model also contains the subDiffElements of 
type ReferenceOrderChange, UpdateReference and UpdateAttribute, which represent 

                                                           
 

10 http://www.eclipse.org/emf/compare/ 
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the difference in reference order, reference and attribute value between two models 
respectively. 
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3 Research Topics 

In the field of software engineering, there is a constant need for improved 
development tools and methods to support developing software systems of increased 
complexity. Model-Driven SPL development, combining MDE and SPLE, has 
emerged as a new paradigm for developing similar software systems. 

Model-driven SPL development has inherited benefits from both MDE and SPLE 
paradigms. On one hand, model-driven SPL development raises the abstraction level 
from code to models; On the other hand, model-driven SPL development enables 
planned and managed reuse to improve the productivity of software development. 

In order to maximize the benefits of model-driven SPL development, the developer 
should apply proper methods in all development phases. However, it is not always 
sufficient to "borrow" existing methods from MDE and SPLE paradigms. There is a 
need for methods and tools addressing problems that are specific to model-driven SPL 
development. 

This thesis work has been funded by the MoSiS (Model-driven development of 
highly configurable embedded Software-intensive Systems) project. The goal of the 
MoSiS project includes: (1) Developing and standardizing a generic variability 
modeling language, and (2) Exploring whether the combination of MDE/DSM and 
SPLE can improve the existing software development process at industrial partners. 
The goal of this thesis work is based on the goal of the project and therefore focuses 
on contributing to the development of model-driven software product lines. 

In particular, we identify the following research topics to improve the existing 
model-driven SPL development techniques, which are to be addressed in our thesis 
work: 

3.1 Research Topic 1: A Generic Approach for Developing Executable Model-
Driven SPLs (RT1) 

A methodology is usually a guideline system for solving a problem. A methodology 
for model-driven SPL development should contain the study and description of a set 
of processes/guidelines for developing model-driven product lines. Many research 
works have proposed methods and tools for model-driven SPL development, such as 
variability/feature modeling techniques [109]. In contrast, only a few methodologies 
in this discipline have been proposed. Furthermore, we have identified several issues 
with the existing methodologies: 

Few methodologies cover guidelines for the variability realization phase. The 
variability realization phase is an indispensable part of a complete product line 
development cycle. Without specifying how domain-level variability (features) should 
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be realized at the model (object) level, no product models can be finally derived. 
However, most existing methodologies for model-driven SPL development do not 
include guidelines for specifying variability realization for product lines. 

Few methodologies cover guidelines for the DSM phase. The developer cannot 
build a model-driven SPL without a base DSL and the core assets specified in this 
DSL. However, very few existing model-driven SPL methodologies include 
guidelines/processes for the DSM phase, which can be applied when a base DSL 
needs to be developed first.  

Based on the issues stated above, we further detail this research topic by proposing 
the following research questions: 

 
 RT1.1: How to define variability specification and realization in a generic way 

for model-driven SPLs in different domains? 
 

 RT1.2: How to develop a base DSL suited for building model-driven SPLs? 

3.2 Research Topic 2: Automatic Assistance in Model-Driven SPL 
Development (RT2) 

Automation is the use of machines, control systems and information technologies to 
optimize productivity in the production of goods and delivery of services. In 
particular, providing automatic assistance to model-driven SPL development can 
increase productivity in the production of software products. Various tools have been 
developed to provide automatic assistance in different phases of SPL development, 
however, the following issues are still not fully addressed: 

Lack of automatic assistance in the variability identification phase. In order to 
define a product line, the developer needs to start with identifying the variability (and 
commonality) of all intended products of this product line. We learned from literature 
review that most existing techniques for variability identification are 
guidelines/methodologies without automatic tool support, such as how to survey 
domain experts/users (e.g., domain analysis [71]) and how to document/analyze 
variability from survey results (e.g., product map used in PuLSE [23]).  

Lack of automatic assistance in the variability realization phase. The definition 
of variability realization directly affects the final product derivation. Therefore, it is 
crucial to ensure that variability realization will only yield intended products. From 
literature review, we see that, in the first place, most existing SPL development 
techniques do not cover the phase of variability realization, let alone providing 
automated assistance in specifying variability realization to ensure only intended 
product derivation. 

Based on the issues stated above, we further detail this research topic by proposing 
the following research questions: 

 
 RT2.1: How to improve the productivity of variability identification in model-

driven SPL development by means of automatic assistance? 
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 RT2.2: How to ensure that variability realization will only yield intended 
products? 

3.3 Research Topic 3: Evolving Model-Driven SPLs (RT3) 

Software product lines are often subject to changes over time. From literature review, 
we have identified the following issues that are not fully addressed by the existing 
techniques for SPL evolution: 

Lack of automatic tools for suggesting and performing SPL evolution from 
new requirements. Many existing automatic techniques in SPL evolution have their 
focus on managing and understanding product line evolutions, such as version control 
systems, program analysis and differencing tools. However, very few tools target on 
automatically suggesting and performing product line evolution based on new 
requirements from stakeholders.  

Lack of automatic tools for SPL co-evolution. A model-driven SPL involves 
with several artifacts: the metamodel of the base DSL, the core assets which are 
reusable model fragments specified in the base DSL and the product line model. All 
these artifacts depend upon each other and all of them can subject to changes during 
product line evolution. Therefore, it can become necessary to co-evolve some of the 
other artifacts when one of them evolves. 

For example, core assets is an essential part of a product line and therefore can 
undergo frequent evolution. Evolving the core assets of a product line may require co-
evolving the definition of the product line model to ensure intended product 
derivation. Furthermore, when the metamodel of the base DSL evolves, the core 
assets may also require co-evolution in order to conform to the new metamodel. This 
may also subsequently bring the need to co-evolve the variability specification of the 
product line. However, very few existing techniques focus on providing automatic 
assistance in inducing and performing SPL co-evolution. 

Lack of semantic differencing techniques to aid SPL evolution. It is common 
practice for the developer to compare the original and the evolved product line, in 
order to understand the impact of an SPL evolution. For this purpose, syntax-based 
differencing approaches have their limitations in situations when models of similar 
syntactical representation have very different semantics, which has been observed in 
feature models [6].  

Small changes to a product line can result in big semantic difference in terms of 
derivable products. Therefore, it is crucial for the developer to gain an understanding 
on the semantic impact of product line evolution, in terms of which products have 
been added and removed in the evolved product line [3, 88, 99]. However, only a few 
approaches focus on semantic differencing for feature models. 

Based on the issues stated above, we further detail this research topic by proposing 
the following research questions: 

 
 RT3.1: How to improve the productivity in inducing SPL evolution steps from 

new requirements? 
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 RT3.2: How to improve the productivity of SPL co-evolution? 
  

 RT3.3: How to assist the developer to gain a comprehensive understanding of 
the impact of an SPL evolution? 
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4 Research Method 

This chapter gives a review of our technology research method and evaluation 
strategies. In addition, we also give a discussion on why we chose the method and 
evaluation strategies and how we have applied those in our thesis work.  

4.1 The Technology Research Method 

Solheim et al. [115] give the following definitions of technology and technology 
research: 

"Technology is the knowledge of artifacts emphasizing their manufacturing". 
"Technology research is research for the purpose of producing new and better 

artifacts". 
We label our thesis as technology research, which is conducted by following the 

technology research method proposed by Solheim et al. [115]. 
The technology researcher focuses on seeking ideas for improving existing 

technologies and producing new and better artifacts. Solheim et al. [115] define 
technology research as a process iterating over the three steps: 

Problem Analysis. In this step the researcher identifies and collects requirements 
for potential improvement to the existing technologies/artifacts, by means of literature 
review, surveying practitioners and etc. The requirements will serve as the goals for 
the manufacturing of a new and better artifact in the innovation step. 

Innovation. In this step, the researcher starts to make an artifact which is supposed 
to satisfy the requirements collected from the problem analysis step [115].  

Evaluation. In this step, the new artifact needs to be evaluated to see if the 
requirements for improvement have been satisfied, e.g. "H: The new artifact improves 
the efficiency of the current development process" [115]. However, since such 
hypotheses cannot be tested in straight-forward way, the researcher needs to 
formulate falsifiable predictions based on the requirements, e.g. "P: With the help of 
the new artifact, the programmer spends less time on the same task " [115]. 
Predictions are statements about what will happen if the hypothesis is true [115], e.g. 
if H is true, then also P will be true. Hence if investigations show that P is false, then 
the hypothesis H is rejected; if P is shown to be true, then H is confirmed. 

However, in many cases, predicates cannot be falsified in a straight-forward way, 
such as in our example, we need to measure if less time is spent on the same task with 
the aid of the new artifact. Hence, the developer needs to carefully choose and apply 
the appropriate strategy for evaluation. 

It is common for technology research to produce so-called functional prototype for 
evaluation [115]. If the prototype appears to be promising during the evaluation, it can 
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be later elaborated/refactored to a product of commercial quality, which is typically 
performed by developers other than researchers. 

4.2 How We have Applied the Research Method 

The research method applied in this thesis work is based on the technology research 
method described in Section 4.1. The thesis work has been performed as an iterative 
process in which the artifacts and the requirements have been changed as we gained 
new inputs during the process. 

Section 3 analyzes the purpose of this thesis work and further identifies the three 
research topics with the associated research questions. In the following, we describe 
in detail, in order to answer the research questions, how we follow the technology 
research method in identifying requirements for new artifacts, manufacturing and 
evaluation. 

4.2.1 Problem Analysis 

Literature review. This thesis work has been funded by the MoSiS project. The 
project goal is to explore and promote the combination of the DSM and SPLE 
paradigm. This overall goal has clarified the scope of our literature review.  

We started the thesis work by conducting a state-of-the-art study on the subjects of 
DSM/metamodeling, variability modeling/SPLE and model-driven SPL development 
(see Section 5.1). During the literature review, we paid special attention to the areas in 
which our industrial partners had challenges to see whether those challenges can be 
addressed by existing artifacts (technologies) or not. If not, we further identified the 
requirements for new/better artifacts based on the need of our industrial partners and 
an in-depth analysis of the existing artifacts. 

Surveys and Exploratory case studies. In the thesis work, we performed surveys 
and exploratory case studies for problem identification: 

(1) Surveys. Survey research is used for identifying characteristics of a population 
of individuals [19]. It can be conducted by questionnaires, interviews or data logging 
techniques. A major challenge in survey research is the selection of a representative 
sample from a well-defined population, so that the results can be generalized from the 
sample to the entire target population [19]. It can be even more challenging to design 
survey questions in a way that can lead to useful and valid data. It can be difficult to 
ensure that all survey participants understand the questions in the same way. 
Moreover, participants may not answer the questions as they actually do if they do not 
introspect reliably on their common practices.  

Survey research is less controlled and therefore lacks precision. Also if the 
sampling bias is not effectively controlled in a survey, the realism of the survey can 
be weakened. Moreover, if the participants for a survey are representative for the 
target population, the results of this survey can show high degree of generality. 

During the span of the MoSiS project, we had frequent meetings with our industrial 
partners in different fields. During the meetings, we helped the industrial partners to 
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identify problems in their daily software development and analyzed whether the 
problems can be addressed by means of model-driven SPL development.  

(2) Exploratory Case Studies. Yin [138] defines case study as "an empirical inquiry 
that investigates a contemporary phenomenon within its real-life context, especially 
when the boundaries between phenomenon and context are not clearly evident". Case 
studies are able to provide an in-depth understanding of why and how phenomena 
occur.  In particular, case studies can be categorized into exploratory case studies 
and confirmatory case studies. Exploratory case studies are used for investigating 
phenomena to derive hypotheses and build theories, while confirmatory case studies 
are used to test hypotheses during evaluation. 

In practice, we identified several candidate problems in the initial rounds of the 
meetings, and further investigated through exploratory case studies. We chose the 
method of exploratory case studies because it allowed us to gain an in-depth 
understanding on why and how the problems occur in real-life context at our 
industrial partners. During our exploratory case studies, we observed and interviewed 
at our partners on how the problems occur in their daily software development 
activities, as our means to collect data for further analysis.  

For example, we had meetings with one of our industrial partners, Agresso, an ERP 
solution provider, to investigate whether their current development process can be 
improved from adopting the DSM paradigm. During meetings, we explained the 
concept of DSM to the developers from Agresso and discussed with them which part 
of their development can potentially be accelerated by applying DSM techniques. 
Developers from Agresso presented us with their problems on how to customize 
payroll reports for different customers efficiently. We performed case studies around 
this problem and concluded that such customization can be partially automated by 
applying DSM technologies, which results in our 2nd artifact ("APRiL") presented in 
Paper II [144] (Appendix II). 

4.2.2 Innovation 

In this phase, we developed new artifacts to address the challenges identified from 
problem analysis. The new artifacts aim to fulfill the requirements which existing 
technologies (artifacts) failed to satisfy. Our innovation efforts resulted in seven 
artifacts described by the papers in Appendices I-VII. 

4.2.3 Evaluation 

It is impossible in practice to choose an evaluation strategy that scores high on 
precision, realism and generality. According to Solheim et al. [115], the researcher 
needs to decide over the following factors when choosing evaluation strategies:  

"Is the strategy feasible?" Time, cost and the availability of target participants 
are three important constraints when it comes to selecting an evaluation strategy. 
Therefore the researcher has to consider the feasibility of carrying out an evaluation 
study with respect to those three constraints.  
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"How to ensure that a measurement really measures the property it is 
supposed to measure?" It is critical to select an evaluation strategy which can be 
possible to isolate the property to be measured. In addition, the researcher also needs 
to account for all possible factors that might influence the result.  

"What is needed to falsify the prediction?" It is not worthwhile to conduct an 
evaluation if it is not possible to falsify a result. Therefore the researcher needs to 
choose the evaluation strategy which is most likely to falsify the result, even though it 
would imply that the new artifact does not satisfy the need. 

We have evaluated our artifacts through prototypes, confirmatory case-studies, 
examples, action research and formal analysis. The following gives a brief 
introduction on how we applied several evaluation strategies in our thesis work. 

Prototypes and Confirmatory case studies. Our thesis work has been supported 
by several prototypes to evaluate the feasibility of concepts. The prototypes were 
further applied in confirmatory case studies to evaluate the validity of the new 
artifacts. 

There are two critical steps in the design of case studies. Firstly, a precise study 
proposition needs to be formulated, which states the intention of the study and guides 
the selection of the cases and the collection of the data. Secondly, it is essential that 
the selected cases need to be the most relevant to the study proposition. Sometimes a 
single case is sufficient [138]: if the theory holds for a critical case, then it is likely to 
be true for many others; from an extreme/unique case, the researcher can gain insights 
on what happens in extreme situations; from a typical case, more insights into 
common situations can be gained. Nevertheless, a case study with multiple cases 
usually offer greater validity [138], either each case is expected to show the same 
result, or each case is expected to show contrasting results for predictable reasons. 

Case studies are often applied where the context plays a role in the phenomena, or 
where the effects range widely or take long time to appear [138]. Case studies score 
high in realism because of its natural setting. However, because mostly qualitative 
data is collected during case study research which is susceptible to interpretation bias, 
case studies score low with respect to precision. When it comes to the concern of 
generality, case studies can score high if typical cases are used. 

For the 2nd artifact ("APRiL"), DSL editors & code generators were developed for 
the APRiL language that we defined. Further we identified representative case-studies 
with the developers at Agresso and evaluated the prototype with the cases. In this way 
the developers at Agresso were able to try out our prototype in a natural work setting. 
The evaluation result was based on the observations and feedbacks collected from the 
case studies. 

For the 1st artifact ("CVL") which is a generic and separate variability modeling 
language and the CVL methodology for SPL development, we developed an Eclipse 
plug-in as its prototype. This prototype has been distributed in both academia and 
industry, and has been validated against several examples in various domains. For 
example, we have applied the prototype on case studies at our industrial partners in 
the domain of train control, electrical drives, payroll reporting and etc. 

The prototypes of our artifacts have been applied to various case studies (e.g., 
UML, TCL and APRiL) for evaluating the feasibility, performance and limitations of 
the approaches. 
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Action Research. In action research, the researchers attempt to solve a real-world 
problem while simultaneously studying the experience of solving the problem [135]. 
Different from just attempting to observe the world as it is, action researchers 
intervene in the studied situation with the purpose of also improving the situation. As 
a relatively new empirical method, it has been pioneered in the field of education and 
has been applied in software engineering on the studies of process/system 
improvement. For example, in order to evaluate the benefits of using UML in a 
professional software development environment, an action research can be conducted 
like this: if the researcher has professional programming competence, he/she can 
initiate a project to work with other programmers using UML and at the same time 
record the experience. 

With him/herself also participating in the study, the researcher may gain more in-
depth understanding of the studied situation. However, the generality of the results 
can be compromised if the researcher is not well-trained in collecting and analyzing 
data objectively. 

Action researchers attempt to solve a real-world problem while simultaneously 
studying the experience of solving the problem. When applied in software 
engineering, action research is suitable for studying process/system improvement and 
introducing new development paradigms. 

A prerequisite for conducting action research is that the researcher needs to have 
similar competence as other participants, so that the researcher will be able to 
participate in improving the situation while collecting experience at the same time. 
Since we have competence in both research and software development, we were able 
to apply action research method in our research. For example, in order to evaluate the 
benefits of adopting new paradigms (e.g., DSM and model-driven SPL development) 
in a professional software development environment, we worked with developers at 
our industrial partners using the prototypes of our new artifacts and at the same time 
recorded the experience. We carefully collected and analyzed the data to ensure the 
objectiveness and generality of our results. We were able to gain a in-depth 
understanding on if our new artifacts satisfy the needs in practice. 

Formal analysis. Formal analysis is based on formal methods. Formal methods are 
mathematically based techniques for the specification, development and verification 
of software and hardware systems [38]. It is widely acknowledged that appropriate 
formal analysis can contribute to the reliability of a design. Formal analysis, as an 
evaluation strategy, scores high in generality and lacks realism and precision. 

Formal analysis is based on the application of a variety of theoretical computer 
science fundamentals, such as logic calculi, formal languages, automata theory, 
program semantics and etc. For both our 4th artifact ("Automatic assistance in 
defining variability") and 7th artifact ("Semantic differencing for SPLs") (Appendix 
IV and VII), we utilized a formal language Alloy and the Alloy Analyzer (see Section 
2.4) in the implementation of the prototypes. The Alloy Analyzer provides formal 
analysis based on first-order logic and embedded SAT solvers, which contributes to 
the reliability of our prototypes. 

Potential weaknesses. When it comes to case studies, we used cases/examples 
provided by our industrial partners to ensure realism of our evaluation. However, the 
external validity of our case studies can still be potentially jeopardized by several 
factors.  
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For example, our cases/examples can be too narrow to cover all potential 
shortcomings, which may lead to biased conclusions. In order to address this problem, 
we tried to use representative cases/examples in various domains to ensure the 
generality of the results. However, this is limited to the availability of such cases for 
us. It was easier for us to access real cases from our industrial partners. Our major 
case studies in this thesis work have been performed with our industrial partners. In 
addition, our cases are typically small to medium-sized examples, and no industrial-
sized examples have been used. This is also due to several factors: the availability of 
suitable industrial-sized examples, the time/cost limit to use such cases, and also the 
nature of the research – industrial-sized product lines as study candidates can be 
difficult to establish. 

In order to ensure the validity of our case studies, on one hand, we focused on the 
representativeness when selecting cases/examples; on the other hand, we also applied 
our prototypes to cases/examples that have been widely used in academia. The 
validity of our research may be further strengthened by applying more 
quantitative/qualitative methods to collect statistical/descriptive data that can support 
our research claims. 

Although it is possible to strengthen the validity of our evaluation, our main 
artifacts have been subject to evaluation as described in the corresponding research 
papers. In addition, the papers have also been evaluated by peer reviews where the 
soundness of the approaches has been considered. We have carefully considered the 
comments from the reviewers and improved our work accordingly. 
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5 State-of-the-Art 

In this section we address the research works that are influential and related to what 
has been achieved in this thesis. In particular, we focus on Domain-Specific Modeling 
(DSM), variability modeling and model-driven SPL development, and evolving 
model-driven SPLs. Each area will be presented in the following manner: first we 
give a literature review of relevant research work, then elaborate on how we are 
motivated to improve the existing technologies in this area in regard to our research 
topics. 

5.1 Variability Modeling and Software Product Line Engineering 

In this section we discuss important work in the area of Software Product Line 
Engineering (SPLE) and how this is realized through variability modeling. 

5.1.1 Developing DSLs suitable for Building SPLs 

There are two strategies to specify a product line model: 
The amalgamated approach, which is to extend the base language (e.g., UML or a 

DSL) with variability modeling language concepts.  
The separate approach, which is to specify the variability of a product line in a 

separate variability model using a generic variability modeling language. The 
variability modeling language is defined beyond the base language of the product line. 

Hence, when it comes to developing a DSL that is suitable for building product 
lines, the developer can either choose to have a more domain-specific DSL without 
variability modeling capability and leave that work to separate variability modeling 
approaches, or a DSL with both domain-specific and variability modeling concepts. 
 
Including Variability into DSL Definition 
Cengarle et al. [34] present a taxonomy of the variability mechanisms offered by 
modeling languages. As variability can be of presentation, syntactic and semantic 
nature, Cengarle et al. only talk about semantic variability. Furthermore, they propose 
a framework to explicitly document and manage variation points and variants 
specified in a variability modeling language. The framework facilitates systematic 
study of different kinds of variability and their dependencies. Moreover, it enables 
methodological customization of a language to a specific domain. 

Morin et al. [91] propose to regard variability as an independent aspect to be 
woven into the DSL in order to introduce variability modeling capabilities. The 
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approach is validated through the weaving of variability into two different 
metamodels: Ecore and SmartAdapter (an aspect model weaver [80]). 

Ziadi et al. [148] extend the UML metamodel to include features for modeling 
variability. This work proposes extensions to model product line variability in UML 
class diagrams (the static aspect) and sequence diagrams (the behavioral aspect). 
Furthermore, this work also gives a formalization of product derivation using a UML 
model transformation. 
 
Developing DSLs without Variability Modeling Capabilities  
Paige et al. [97] provide a set of guidelines and recommendations to metamodellers 
and DSL designers in terms of factors that they should consider when constructing 
metamodels. One observation from this work is that a more expressive metamodel 
should not always be preferred over a less expressive one. The developer may need to 
make trade-offs between completeness and automation & usability of a DSL, 
depending on how the metamodel will be used in different tasks. 

Karsai et al. [73] give a set of general guidelines to improve design and usability of 
DSLs. 26 guidelines has been proposed in this work, divided into five categories: 
Language Purpose, Language Realization, Language Content, Concrete Syntax and 
Abstract Syntax. Similar to Paige et al., they emphasize the importance of keeping the 
language definition simple and domain-specific, conveyed in the following three 
guidelines: “Reflect only necessary domain concepts”, “Keep it simple”, “Avoid 
unnecessary generality” and “Limit the number of language elements”. 

Kelly et al. [75] present guidelines for avoiding bad practices when developing 
DSLs. The guidelines emphasize the need for a comprehensive understanding of the 
domain in order to decide the correct level of abstraction and the correct scope for the 
DSL. They have analyzed numerous problem domains and metamodels. Based on this 
experience they give a set of general guidelines for DSL development. These 
guidelines emphasize the need for detailed knowledge of the domain. Their 
experience shows that it can be more challenging to extend an already existing 
language instead of creating a metamodel from scratch. 

Wile [136] discusses experience from the development of two industry DSLs, 
including both success and failure factors. Based on this experience, twelve lessons 
have been given in what should be taken into consideration during DSL development. 
In particular, this work discusses the importance of using a notation that domain 
experts are already familiar with, and the need for develop a DSL closely with domain 
experts. 
 
Motivation for Improvement  
Based on the literature review, we see that there is potential to improve the state-of-
the-art in relation to the research question RT1.2 (How to develop a base DSL suited 
for building model-driven SPLs?). With most DSL development guidelines being 
rather general, there is a lack of guidelines for developing DSLs that are suitable for 
building product lines. However, we are still inspired by several general guidelines, 
especially when it comes to deciding whether the language should have variability 
modeling capabilities. 
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As pointed out by Paige et al. [97], Karsai et al. [73] and Kelly et al. [75], the 
developer should keep the language definition simple, domain-specific and just 
expressive enough to fulfill the current needs. 

We also see that even with techniques to include variability into the DSL language 
definition, it may still have the following limitations in practice: (1) It may not be 
always feasible to change the definition of the base language and its tool support 
(editors, code generators and etc.). (2) The developer may prefer to keep the scope of 
the base language more domain-specific without offering variability modeling 
capabilities. (3) The developer needs repeat the work of extending the base language 
with variability modeling concepts when he/she starts building a product line with a 
new base DSL. 

5.1.2 SPLE and Variability Modeling Approaches 

Feature Modeling and Feature-Oriented Software Development 
Software Product Line Engineering (SPLE) is an approach to produce the variability 
and commonality in a family of software systems sharing a common set of features 
[40]. A feature is regarded as "a distinguishable characteristic of a concept that is 
relevant to some stakeholder of the concept" [43], e.g., additional functionalities for 
an existing base system [109].  

Feature modeling has been widely used to capture and define the commonality and 
variability of systems in a SPL [45]. A Feature Model (FM) is represented by a 
Feature Diagram (FD) as a hierarchically organized set of features based on 
relationships among features [24]. 

Since the term "feature model" was first introduce by Kang et al. in the FODA case 
study [71], several extensions to the original FODA FM notation have been proposed 
in various studies [109]. We give a brief introduction on the basic and the extended 
feature modeling concepts in the following: 

In the basic notation of feature modeling, features are hierarchically arranged based 
on the following relationships among them: 

Mandatory. A child feature with a mandatory relationship to its parent feature is 
included in all the products which include its parent feature.  

Optional. A child feature with an optional relationship to its parent feature can be 
included/excluded in all the products which include its parent feature.  

OR. For a set of child features with an OR relationship to their parent feature, one 
or more of them can be included in the product which includes their parent feature.  

XOR. For a set of child features with an XOR relationship to their parent feature, 
only one of them can be included in the product which includes their parent feature.  

Implies. A feature implies another feature means that these two features must 
coexist in the same product.  

Excludes. A feature excludes another feature means that these two features must 
not be chosen in the same product. 

Over the years basic feature modeling concepts have been extended in the 
following aspects: 

Feature cardinality. Czarnecki et al. [45] propose the concept of feature 
cardinality. A feature cardinality, denoted as [n..m] with n as lower bound and m as 
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upper bound, indicates that minimum n and maximum m instances of this feature can 
be included in a product. Mandatory and optional features can be considered as 
special cases of features with cardinality [1..1] and [0..1] respectively.  

Group cardinality. A feature group cardinality, denoted as denoted as <n..m> with 
n as lower bound and m as upper bound, indicates that minimum n and maximum m 
child features of this feature can be included in a product. Group cardinality can be 
regarded as the generalization of OR and XOR in the basic feature model notation. 

Attributes. Attributes were introduced by Czarnecki et al. [43] into feature 
modeling as a way to represent a choice of a value from a large or infinite domain. It 
allows a feature to be associated with type, such as integer or string. A collection of 
attributes can be modeled as a number of sub features, where each is associated with 
the desired type. 

Relationships. Several authors [61, 127] propose to extend feature models with 
different kinds of relationships such as consists-of or is-generalization-of. 

Feature categories and annotations. FODA [71] distinguishes among context, 
representation and operational features. Griss et al. [61] propose functional, 
architectural and implementation feature categories. In FODA, additional information 
in terms of feature annotations includes descriptions, constraints, binding time and 
rationales. Feature annotations can also be priorities, stakeholders, default selections, 
open-or-closed-for-extensions attribute and exemplar systems [44]. 

Modularization. A feature diagram may contain one or more special leaf nodes as 
feature-model references, with each representing a separate feature diagram [45]. This 
mechanism allows breaking up large diagrams into smaller ones and reusing common 
parts in several places. Modularization is important for feature models which become 
too large to be considered in their entirety. 

The definition of a feature has evolved over the years [14], from only representing 
abstract concepts of base domain, to concepts that need to be implemented in order to 
satisfy requirements [17, 20, 139]. Feature-Oriented Software Development (FOSD) 
favors systematic application of the feature concept in all phases of an SPL 
development life cycle [14]. FOSD makes the connection between specifying the 
product line in the problem space using feature modeling, and implementing the 
product line in the solution space [43]. 

The FOSD paradigm and the model-driven SPL development paradigm share 
several similarities. An FOSD lifecycle contains the following phases [14]: 

Domain Analysis. This phase corresponds to the "variability identification" and 
"variability specification" phase in model-driven SPL development. At this phase, 
commonality and variability of the product line is identified and specified using 
feature modeling. 

Domain Design and Specification. This phase corresponds to the phase of 
developing core assets of the product line (reusable model fragments) in model-driven 
SPL development. At this phase, essential structural and behavioral properties of the 
features are specified using a formal/informal specification and/or modeling language.  

Domain Implementation. This phase corresponds to the "variability realization" 
phase in model-driven SPL development. In model-driven SPL development, feature 
realizations/implementations are defined as instructions for reusing the core assets 
(reusable model fragments). However, in the context of FOSD, mappings need to be 
established between features and source code. Several feature-oriented programming 
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languages have been developed to address this requirement in FOSD, i.e. Jak [21], 
Feature C++ [15] and Xak [11] as feature-oriented extensions to Java, C++ and XML. 

Product Configuration and Generation. This phase corresponds to the phase of 
configuring and deriving product models in model-driven SPL development. The 
difference is, at this phase in FOSD, source code of products instead of product 
models is generated. Furthermore, for FOSD, it is important to ensure the code 
correctness in the following aspect: 1) Syntactical-correct, namely that the generated 
code conforms to the syntax of the programming language. 2) Type-safe, namely that 
the generated code is well-typed according to the programming language's type 
system. 3) Behavioral-correct, namely that the generated system shows only intended 
behaviors. 

Kastner et al. [74] presents Feature IDE, which is an open source framework for an 
Integrated Development Environment (IDE) for feature-oriented sofware product line 
development. Feature IDE provides support for the entire life cycle of a software 
product line, covering domain analysis, feature modeling, implementation and 
maintenance. Feature IDE supports a set of different feature/aspect-oriented 
programming tools including AHEAD [21], FeatureC++ [15], FeatureHouse [13] and 
CIDE [78], and thus provides support for many languages, including Java, C++, 
Haskell, C, C#, JavaCC and XML [74]. 

The work of FeatureIDE is close to OpenArchitectureWare 
(http://openarchitectureware.org), which provides an Eclipse-based open framework 
for developing model-driven software development solutions and DSLs [74]. 

Commercial solutions such as Pure::variants (http://www.pure-systems.com/) and 
Gears (http://www.biglever.com/) also provide support for software product line 
development, however, with more focus on domain analysis and less on variability 
implementation/realization. 
 
Delta Modeling 
Delta modeling is a language-independent approach for modeling system variability. 
In a delta-oriented SPL, a set of products can be represented as a core model and a set 
of model deltas [37, 63, 64, 107] .  The core model represents a product for some 
valid feature configuration. The model deltas specify modifications required to apply 
to the core model in order to realize other features of the product line. The 
modifications include adding/removing/replacing model elements. Moreover, the 
model deltas contain application conditions which specify under which feature 
configuration the modifications should be carried out. The concept of application 
condition fulfills the need for establishing mappings between features and their 
realizations in SPL development. During delta application, a product model can be 
obtained by applying the model modifications contained in the chosen model deltas to 
the core model.  
 
Orthogonal Variability Model (OVM). 
Klaus Pohl et al. [99] propose Orthogonal Variability Model (OVM) approach to 
document variability across all software development artifacts/domain artifacts, 
including requirements, design, realization and test. With the OVM approach, the 
variability of a product line is documented explicitly in an OVM model, which is 
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orthogonal to all domain artifacts. The following gives a brief introduction on the 
central concepts of the OVM approach: 

Variation Subject. "A variation subject is a variable item of the real world or a 
variable property of such an item." and it answers the question of "why does vary? 
[99]" For example, "color" can be regarded as a variability subject which identifies a 
property of real-world items. 

Variability Object. "A variability object is a particular instance of a variability 
subject. [99]" Examples of variability objects for the variability subject "color" can be 
red, black and grey. 

Variation Point. "A variation point is a representation of a variability subject 
within domain artifacts enriched by contextual information. [99]" An example of a 
variation point can be the "color of a car" in the context of an automotive product line. 

Variant. "A variant is a representation of a variability object within domain 
artefacts. [99]" "Red (cars)", "black (cars)" and "grey (cars)" can be considered as 
variants for the variation point "color of a car".  

Variability Dependency. A variability dependency is the relation between variation 
points and variants. Each variation point must be associated with at least one variant. 
Each variant must be associated with at least one variation point. A variation point 
can have more than one variant. A variant can be associated with different variation 
points. 

Optional Variability Dependency. The optional variability dependency indicates 
that the variant can be but does not have to be in a particular product if its associating 
variation point is resolved in this product. 

Mandatory Variability Dependency. A mandatory variability dependency states 
that the variant must be part of a particular product if its associating variation point is 
resolved in this product. 

Alternative Choice. "The alternative choice groups a set of variants that are related 
through an optional variability to the same variation point and defines the range for 
the amount of optional variants to be selected for this group." The min and max 
attribute of an alternative choice define the minimum and maximum number of 
variants that are allowed to be selected from this alternative choice group. For 
example, "red", "black" and "grey" is governed by an alternative choice with the min 
of value "1" and the max of value "1", namely that cars can only be in one of these 
three colors. 

Variability Constraints. In an OVM model, the developer can define "excludes" 
and "requires" constraints between two variants, two variation points as well as one 
variant and one variation point. 

Traceability between OVM model and domain artifacts. Domain artifacts (e.g.,  
requirements, design models, code and tests) can be related to the variability defined 
in an OVM model by means of the following two types of dependency: (1) Artifact 
Dependency between variant and development artifact. A development artifact can 
but does not have to be associated with one or more variants. A variant must be 
related to at least one or more than one development artifact. (2) VP Artifact 
Dependency between variation point and development artifact. A development 
artifact can but does not have to be associated with one or more variation points. A 
variation point can but does not have to be related to one or several development 
artifacts. 
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Amalgamated Variability Modeling and SPLE using UML Techniques 
The Unified Modeling Language (UML) 11 is a visual language for specifying, 
constructing, and documenting the artifacts of software-intensive systems. UML has 
become the de factor standard for modeling object-oriented systems. 

Variability modeling techniques can be categorized into amalgamated and separate 
approaches. In the amalgamated approaches, the base language of the underlying 
domain, either a general purpose language like UML, or a DSL, is extended with 
variability modeling language concepts. In particular, UML can be extended with 
additional language concepts by introducing UML profiles for different purposes. The 
developer can specify variability in his/her UML models by annotating them with the 
terms provided by UML profiles for variability modeling purposes. Around the idea 
of applying UML for system design and variability modeling, a large body of UML-
based SPLE approaches has been proposed [30, 31, 34, 55, 59-61, 82, 100, 147]. 

In particular, PLUS (Product-Line UML-Based Software Engineering) [59] is a 
SPL development method based on UML. The PLUS method puts together a UML 
profile to extend UML-based methods for designing single systems to handle software 
product lines, which cover the following processes: 

 
SPL Requirements Modeling 
 Use case modeling. With the UML profile provided by PLUS, the developer can 

annotate kernel, optional, alternative use cases and variation points for use cases 
in the UML use case model.  

 Feature modeling. PLUS provides an approach for modeling and representing 
features in the UML notation, as well as a method to derive the feature model 
from the annotated use case model. 

 
SPL Analysis Modeling 
 Static modeling. In this step, a product line information model is specified to 

determine kernel, optional and alternative entity classes. 
 Dynamic interaction modeling. In this step, interaction diagrams are specified to 

realize kernel, optional and alternative use cases. 
 Dynamic state machine modeling. In the step, the developer specifies kernel, 

optional and alternative state machines. 
 Feature/class dependency modeling. In this step, the developer determines the 

dependencies/mappings between features and kernel/optional/variant classes. 
 

SPL Design Modeling 
 Software architecture patterns. In this step, the developer determines the 

architectural structure and communication patterns for the product line. 
 Component-based software design. In this step, the developer applies component-

based software design methods to develop kernel/optional/variant components 
ports/interfaces and interconnections between components. 
 
 

                                                           
 

11 http://www.uml.org/ 
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Software Application Engineering 
 In this step, first the required features for a product need to be chosen from the 

feature model, and then the application architecture of the product can be derived 
from the product line architecture and reusable components. 

 
Bragança [31] presents MoDeLine, a methodological approach for model-driven 

development of software product lines. The MoDeLine approach is evolved from the 
4SRS (4-Step Rule Set) method, which is a model transformational technique for 
obtaining system architectures from functional requirements specified as UML use 
cases for single systems. Based on 4SRS, the MoDeLine approach proposes the 
following adaptations for product line development: 

(1) The approach extends the UML 2.0 metamodel and adopts activities to specify 
use case behaviors, so that each use case behavior can be specified using an activity 
diagram in MoDeLine. Furthermore, MoDeLine enables automated creation of use 
case realizations in the form of system architectural models (class/component 
diagrams), from functional requirements in the form of use cases and activity 
diagrams. 

(2) The approach extends the UML-F profile [55, 100], a UML profile for 
frameworks, to include support for requirements and analysis models. 

(3) The approach follows the notation for feature diagrams proposed by Van 
Deursen et al. [126]. In MoDeLine, the initial feature model can be automatically 
constructed from the use case model. 
 
Motivation for Improvement 
Based on the literature review, we see that there is lack of SPL development 
approaches which are based on separate variability modeling as well as allow the 
explicit definition of variability realization. Furthermore, in relation to our research 
question RT1.1 (How to define both variability specification and realization in a 
generic way for model-driven SPLs in different domains?), we have been inspired by 
several existing works: 

As pointed out by Bosch et al. [29], one issue in SPLE approaches is the lack of 
clear dependencies between features and the base model. Also we are enlightened by 
how choices and multiplicities are expressed in cardinality-based feature modeling. 

When it comes to Orthogonal Variability Modeling (OVM) [99], we see the 
following limitations of the approach:  

(1) In an OVM model, the developer can only define the dependencies between the 
variability of the product line and the development artifacts. The approach does not 
provide fine-grained model operations stating how development artifacts (models) 
should be modified in order to realize the selected variant. 

(2) OVM only contains excludes and requires constraints. We see the need for 
supporting the specification of arbitrary variability constraints in a variability 
modeling language. 

(3) OVM does not support specifying multiple instantiations of the same variant, 
which is covered by cardinality-based feature modeling. 

When it comes to delta modeling [65], the modifications contained in the model 
deltas are limited to adding, removing, changing and replacing singular model 
elements. Delta modeling provides no flexibility to define the 
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addition/removal/changing/replacement of an arbitrary set of model elements, which 
we see the need to provide in our work. 

5.1.3 Variability Identification in SPL Development 

Variability identification, as an integral part of SPL development, focuses on 
identifying the commonality and variability among all intended products of a product 
line before the actual building process. In this section we give a summary of the most 
related work in this area, as well as an analysis of how our thesis work was motivated 
by the state-of-the-art back in time.  
 
Scoping Approaches in Product Line Planning 
“Scoping can be defined as the process of deciding in which parts of an 
organization’s products, features and domains’ systematic reuse is economically 
useful” [70]. Scoping methods have been proposed in a number of SPL development 
methodologies: 

Bayer et al. [23] present PuLSE (Product Line Software Engineering) as a product-
centric and customizable methodology for the conception and deployment of software 
product lines within a large variety of enterprise contexts. As the scoping method for 
the PuLSE methodology, PuLSE-Eco proposes to use product maps, characteristic 
lists and benefit functions to assist decision-making at the scoping phase. Similar 
scoping approaches include: a commonality analysis technique proposed by Weiss 
[131], a commonality and variability analysis technique proposed by Chastek et al. 
[35], a product line potential analysis technique proposed by Fritsch et al. [56], a 
scoping method based on a decision-making framework [77], a collaborative 
approach for agile product line planning [95] and etc.  

In the survey presented by John et al. [70], existing scoping approaches in the past 
years are identified and characterized with the goal of deriving open research 
questions. A few new research questions have been proposed, such as "What is the 
influence of scoping on other software development phases?", "How is the connection 
between scoping and RE?" and "How is the connection between scoping and 
architecture?" 
 
Variability Extraction from Various Sources 
As a new software development paradigm, SPL development has been increasingly 
adopted in practice. However, instead of building a product line from scratch, the 
organization often needs to build it based on existing products. In such scenarios, the 
product line should first include all existing products, and then possibly introduce new 
products. With the purpose of improving the productivity of variability identification 
in existing products, a large number of automatic/semi-automatic techniques have 
been proposed for extracting variability from existing artifacts (e.g., functional 
requirements, software models, source code, software architecture, product 
descriptions and formal descriptions). 
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Variability Extraction from Functional Requirements 
Niu et al. [94] present a clustering framework for analyzing the functional 
requirements in an SPL. The framework provides automatic support during the 
variability extraction and clustering processes. 

Weston et al. [134] present ARBORCRAFT, a framework for guided creation of 
feature models from requirements documents using natural language processing 
techniques. The ARBORCRAFT framework is developed based on an approach 
proposed in a previous feasibility study [8].  With ARBORCRAFT, the similarity of 
requirements will be measured and compared using the LSA (Latent Similarity 
Analysis) tool [116]. A feature tree will be created based on the results of the previous 
stage using a variant of HAC [36] technique for feature clustering. The EA-Miner 
[104] tool will be applied to detect variability in requirements to further refine only 
mandatory features into sub-features with dependencies if necessary. The resulting 
candidate feature model is subject to user input based on the user's domain knowledge 
and understanding of the requirement documents. 
 
Variability Extraction from Software Architecture 
Acher et al. [1] present a tool-supported approach to extract and manage the evolution 
of software variability from an architectural perspective in plugin-based systems. One 
of the focuses of the approach is automatic variability extraction from the software 
architecture of plugin-based systems. 

The extraction process takes in the software architecture model, the plug-in 
dependencies and software architecture knowledge as input. The software architecture 
model consists of the set of elements needed to reason about the software system and 
the hierarchical relations among them. The plugin dependencies specify variation 
points and their logical dependencies supported by the architecture. The software 
architect knowledge can introduce accidental complexity and does not necessarily 
reflect how the software architecture is actually implemented. 

On one hand, fmArch150 is extracted from a 150% architecture of the system, which 
consists of the composition of the architecture fragments of all the system plugins. 
The variability represented by fmArch150 is extracted by exploiting optional references 
in the architecture model. 

On the other hand, fmPlug is extracted from the plugin dependencies. The developer 
needs to specify a bidirectional mapping from fmArch150 and fmPlug to show not only 
which plugin provides a given architecture feature, but also which architecture 
features are provided by a given plugin. In order to derive different fmArch which are 
feature models representing different set of configurations, firstly fmPlug and fmArch150 
are aggregated under a synthetic root in fmFull, which also contains the mapping 
information between fmPlug and fmArch150, then the subset of configurations of fmFull are 
projected onto fmArch150 using a slicing operation. 
 
Variability Extraction from Product Models 
Lora-Michiels et al. [85] present an approach that integrates statistical techniques to 
identify commonality and variability in a collection of a non-predefined number of 
product models, which results in a automatically constructed product line model. The 
method consists of four steps: 
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(1) Preparation. In this step, a derivate matrix of feature occurrence in a collection 
of product models needs to be prepared. Features can be extracted from repositories 
by means of clustering techniques. 

(2) Structural analysis. Step a) Firstly the collection of product models and the 
feature occurrence matrix are examined to identify structural patterns such as bundles, 
parents and sons, as well as a feature binary matrix. Step b) Once the feature binary 
matrix is built, the association rules data mining tool based on Apriori algorithm is 
executed to explore the association rules in the collection of product models. Step c) 
Identify mandatory relationships using association rules. The relationship is 
considered mandatory if at least one of the two association rules (high frequent 
feature and bidirectional rules) is fulfilled between a parent and child feature. Step d) 
Once mandatory relationships are identified, the remaining relationships between a 
parent and child feature may be classified as optional. 

(3) Based on the feature binary matrix and parental relationships discovered from 
previous steps, a cross tabulation analysis and an independence test are performed to 
identify strong relationships, such as excludes and requires. 

(4) Grouped cardinality analysis by means of identifying all possible feature sets 
for each bundle, and counting feature's occurrence in each product model. 
 
Variability Extraction from Source Code/Legacy Systems 
Ziadi et al. [146] propose an approach to automate feature identification from the 
source code of a set of product variants. With the approach, the input products are 
first abstracted as sets of construction primitives. Then feature candidates will be 
identified by means of an algorithm. In the end the set of candidates will be 
undergone manual edits to produce the final set of features of the product line. 

Liu et al. [81] present a re-modularization approach for optimizing the synthesis of 
product families. The approach provides automatic support in: (1) Identifying shared 
files among products and extracting them into a common package. (2) Merging 
isomorphic class inheritance hierarchies into a single hierarchy. 

Savage et al. [106] present FLAT3, a tool suite for feature location. FLAT3 allows 
the developer to locate features both textually and dynamically (monitor execution 
traces), as well as to visualize the dispersion of features or search results throughout a 
project. 
 
Variability Extraction from Formal Descriptions of Product Lines 
Gruler et al. [62] present an approach to model product lines in a formal manner. The 
approach allows computing the common parts of a product line (an entire PL-CCS 
program) in a well-defined way, and therefore facilitates matching components of the 
algebraic model with existing implementation artifacts. 

Czarnecki et al. [47] present an approach for synthesizing feature diagrams from 
logical formulas, which produces a non-standard feature model with DAG structure. 
She et al. [114] improve the work by proposing a set of procedures for reverse 
engineering feature models based on a crucial heuristic for identifying parents, which 
is regarded as the major challenge for this task.  

Andersen et al. [9] show that the problem of automatic synthesis of feature models 
from propositional constraints is NP-hard. In addition, this work also proposes a set of 
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efficient techniques for improving the performance of synthesizing feature models 
from CNF and DNF formulas respectively.   
 
Variability Extraction from Product Line Descriptions 
Acher et al. [2] propose a semi-automatic process for extracting variability from a set 
of product descriptions organized in tabular forms. The approach provides automatic 
support in synthesizing a feature model by merging a set of products’ descriptions.  

Dumitru et al. [51] propose a system that models and recommends product features 
for a given domain. The approach mines product descriptions using a text mining and 
incremental clustering algorithm, in order to identify domain-specific features. 
 
Variability Extraction using Formal Concept Analysis 
Ryssel et al. [102] present a formal concept analysis-based approach for automatically 
constructing feature models from product variants that are given in the form of an 
incidence matrix. 

The authors later propose another work based on OWL-based reasoning and formal 
concept analysis in [103]. This work allows the automatic verification of the feature 
mapping, as well as the automatic feature model synthesis for derived features which 
dependencies are not defined explicitly (e.g., Simulink variant objects). 
 
Variability Extraction from Linux Kernel 
Researchers have also worked on extracting variability from realistic examples, with 
the purpose of using realistic SPLs for benchmarking SPL approaches. She et al. 
[113] present the characteristics of the variability model of the Linux kernel, which 
can be extracted automatically from the Linux kernel configuration file. Dietrich et al. 
[50] present an approach for extracting variability from the Linux build system based 
on the make files. 
 
Motivations for Improvement 
Based on the literature review, we see that the existing technologies in variability 
identification have the following limitations, which correspond to our research 
question RT2.1: (1) Methodology/guidelines-based approaches lack automation 
support. (2) The applicability of some approaches is limited to specific languages 
such as UML. (3) It may not always be impractical in practice to build a product line 
from scratch. Therefore it is equally important to provide technologies for developing 
SPLs from existing products. 

5.1.4 Variability Realization in SPL Development 

During the variability realization phase of a SPL development, how the domain-level 
variability (features) of the product line should be realized/implemented during 
product derivation is specified. Variability realization can be carried out by various 
means (e.g., component-based software development [27], service-oriented 
implementation [128], feature-oriented code composition [13, 15, 22, 74, 78], 
composition/editing of domain models [31, 46, 59]). 
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Bosch et al., in [28], give a summary of different variability 
implementation/realization techniques from a high-level point of view. They suggest 
that the selection of a preferred variability realization technique should be driven by 
the binding time at which variants to be bound. Furthermore, the selection process 
should also take the following three factors into account, which are the mapping to the 
domain-level variability, the need for late-stage openness, and the expected system 
evolution. 
 
Consistency Checking between Variability Realization and Variability 
Specification (Domain-Level Variability) 
Since variability specification (domain-level variability) and variability realization 
reflect the problem space and solution space respectively, it is crucial to ensure that 
variability specification and realization are consistent with each other in the product 
line [46]. There are several research works which are intended for addressing this 
challenge. 

Mussbacher et al. [92] propose an approach for detecting semantic interactions 
between aspect-oriented scenarios. In the process of semantic interaction detection, 
the approach applies critical pair analysis to semantic annotation in aspect models. In 
terms of tool support, the approach provides tool implementations for UML sequence 
diagrams and GRL goal models. 

Ghanam et al. [57] present an approach to provide traceability links between the 
feature model and code artifacts to ensure the consistency between them. Executable 
acceptance tests are used as traceability links between features and code artifacts. A 
group of executable acceptance tests describe stories expected from a given feature of 
the system. Therefore the executable acceptance tests associated with a particular 
feature can be run through to see whether the current code artifacts (variability 
realization) have realized the domain-level feature. 

Mohalik et al. [90] propose a formal semantics for SPLs using elementary set 
theory. This semantics makes it possible to give precise and unambiguous definitions 
to the traceability between variability specification and variability realization. Similar 
research efforts have been reported in [105], [39] and [41]. Satyananda et al. [105] 
propose an formal approach based on the PVS theorem prover for the verification of 
consistency between feature model and software architecture in the SPL; while 
Classen et al. [39] and Cordy et al. [41] focus on symbolic and non-boolean model 
checking of SPLs respectively.  

 
Safe Composition 
For compositional approaches, safe composition is the guarantee that all the 
programs, which can be composed based on an SPL’s feature model, are type safe, 
i.e., without undefined references to classes, methods or fields [22, 83]. Safe 
composition is based on Czarnecki et al.’s observation that variability realization 
should reflect variability specification (domain-level variability) in an SPL [46]. Most 
research works in this area focus on the safe composition of source code [22, 79], 
while there is an increasing interest shown on the safe composition of software 
models [46, 84, 101] in the research community. 

Thaker et al. [22] point out that, in a product line, low-level implementation of one 
feature can reference elements in the implementation of another feature. They present 
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an approach for verifying if all the programs in a product line are type safe. Features 
are formalized into propositional formulas and the feature realizations (program 
segments) are analyzed to identify their dependencies between each other. 

Czarnecki et al. [46] propose an approach for verifying feature-based model 
templates against well-formedness OCL constraints.  Feature-based model template 
is an approach for model-driven SPL development. A feature-based template consists 
of a feature model and an annotated model that conforms to the metamodel of the 
base language. In the annotated model, variability of the product line is described in 
annotations (e.g., indicating that a specific model element can be optional in certain 
product models). With the feature-based model template approach, all possible 
product models can be derived by applying different changes to the annotated model, 
such as removing a model element which is annotated as "optional". The purpose of 
this approach is to verify that both the feature model and the annotated model are 
well-constrained so that all possible product models will conform to the metamodel 
and the constraints of the base language.  

Kästner et al. [79] formally discuss a product-line-aware type system which is 
implemented with annotations on a common code base. Similar to Czarnecki et al.'s 
work [46], instead of checking all possible products of a product line in isolation, this 
approach checks the product line itself and ensure that all products from a well-typed 
product line are well-typed.  
 
Motivation for Improvement 
Based on the literature review, we see the following two challenges against deriving 
only products that are intended (see research question RT2.2): 

(1) How to provide immediate feedback on the specification of variability 
realization at design time. Specifying variability realization is an error-prone process 
due to the complexity of the underlying domain. However, most existing SPLE tools 
do not provide the developer with immediate feedback on his/her specification 
changes at design time. 

(2) How to ensure the consistency between the domain-level features/variability 
and their realizations. Domain-level constraints that govern the compatibility of 
features are often well captured in the product line model during feature specification, 
e.g., feature A implies B, indicating that these two features need to be included in the 
same product. However, the realizations of these two features may change the same 
base model element in different ways so that including the two features in the same 
product configuration will lead to conflicts during product derivation. We see the 
need for approaches detect such inconsistencies at design time. 

5.2 Evolving Model-Driven SPLs 

SPLs evolves over time to fulfill new requirements, e.g., to add/remove 
functionalities/products, to synchronize with the core assets/base modeling language 
of the product line that has been changed. In this section we give a brief summary of 
the most related work that has been reported in addressing challenges in SPL 
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evolution, as well as an analysis on how our thesis work was motivated by those 
works. 

5.2.1 Categorization of SPL Evolution 

Svahnberg et al. [118] report on a case study of product line architecture evolution. 
Based on the case study, categorizations are proposed for the evolution of 
requirements, product line architecture and product line architecture components. In 
particular, to add products to a product line is categorized as one of the common 
requirements initiating an SPL evolution; while changed framework implementation 
is regarded as one of the common reasons for product line architecture component 
evolution. 

Bosch et al. [27] report on a case study investigating the experience of component-
based software development when product line architecture is presented. Based on the 
case study, the article discusses the difference between the academic and industrial 
view on software components, as well as the problems in using reusable components 
in product line architectures in industrial settings. 

In particular, Bosch et al. [27] point out that, while reusable components are 
usually considered as black-boxes in research works, in real industrial cases they are 
often large pieces of software with a complex internal structure and no enforced 
encapsulation boundary, such as object-oriented frameworks. Also, while in research 
works components are often supposed to have narrow interface through a single point 
of access, in industry the component interface is often provided through entities (e.g., 
classes) which have no explicit difference compared to non-interface entities. 

Elsner et al. [52] present an overview of approaches addressing “variability in 
time” which are time-related aspects in variability. The article identifies three types of 
“variability in time”, which are: variability of linear change over time 
(maintenance/evolution), multiple versions at a point in time (configuration 
management), and binding over time (product derivation). The types are validated by 
using them to describe complex product line evolution scenarios where they exhibit 
expressive and discriminatory power. 

Schmid et al. [108] present a taxonomy of requirements-based SPL evolution. The 
requirements-based SPL evolution is categorized into three levels: requirements level 
change, product level change and product line level change. 

5.2.2 Augmenting Software Product Lines 

Augmenting a product line has been so far mostly a manual process [4, 5, 16, 109, 
111]. First, the product line developer checks if any of the new products are already 
included in the existing product line. If not, the developer is challenged to augment 
the existing product line in an optimal way so that: (1) The new products are 
incorporated, (2) The production of the existing products is not affected, (3) The 
changes to the product line are minimal. This requires the developer not only to 
perform an extensive comparison of the new and the existing products, but also to 
have a comprehensive understanding of the impact of any change during the 
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augmentation process. Several research works can be applied to assist augmenting a 
product line with new products, which fall into the following categories: 
 
Domain Analysis 
Most of the domain analysis methodologies [23, 71, 72, 133] suggest a set of 
analytical means for the developer to manually identify the commonality and 
variability of the product line domain. In principle, those methods can be applied to 
analyze the commonality and variability between the new products and the existing 
products. However, since this requires extensive manual effort, the correctness of the 
augmented product line can be jeopardized if the domain analytical guidelines are not 
practiced diligently. 
 
Merging Multiple Feature Models 
Several works attempt to address the issue of merging multiple feature models 
(product lines) into one [4, 5, 16, 109] in the context of merger or cross-organizational 
cooperation. Those works mainly focus on defining the semantics of the merging 
operations. 

Acher et al. [4] propose two operators for composing feature models. The insert 
operator allows inserting features from a crosscutting feature model to a base feature 
model. The merge operator enables the developer to merge features from two feature 
models which does not clearly crosscut with each other. When applying the 
insert/merge operators to compose large scale feature models, the developer is made 
aware of whether the current operation preserves the original semantics (set of 
product configurations) of the base feature model or not. 

Apel et al. [16] present an algebra for features and feature composition. In this 
approach, the basic structure of a feature is modeled as a tree, called Feature Structure 
Tree (FST), which organizes the feature's structural elements such as classes, fields or 
methods hierarchically. Features are represented as FSTs and feature composition is 
expressed by tree superimposition and tree walks. Furthermore, a framework for 
feature composition has been implemented, which is fully independent of a concrete 
language. 

To meet the need that a growing number of organizations produce and maintain 
multiple SPLs, Acher et al. [5] propose a compositional approach for managing 
multiple SPLs that involves automatically merging feature models across SPLs. The 
approach can be used not only to create feature models with certain product sets from 
multiple SPLs, but also to combine features from different SPLs to form products. 

Segura et al. [111] propose an automated technique for merging feature models 
using graph transformations. In particular, the approach defines a set of visual rules to 
describe how to merge feature models and illustrates how those rules can be validated 
through tool support. Furthermore, the approach supports merging feature models 
with feature attributes and cross-tree constraints. 
 
Automated Feature Model Construction 
Research in this category focuses on how to suggest a feature model automatically 
from existing products, as summarized in Section 5.1.3. Other than automated feature 
model construction, those technologies can also be used to augment a product line 
with new products. First all the products of the existing product line need to be 
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generated, and then automated feature model construction techniques can be applied 
to these existing products together with the new products to synthesize a new product 
line model.  
 
Motivation for Improvement 
Based on the literature review, we see the following limitations in applying those 
merging techniques to augment a product line with new products: (1) It is not always 
practical to build a "delta" feature model from the new products first, and then merge 
it with the existing feature model. (2) The main stream merging techniques only 
support merger between two parent-compatible feature models. Two feature models 
are parent-incompatible if they contain features with identical names but differently 
named parent features. (3) Semantics of the merging operations only describe the set 
of properties that the merged feature model should have. Most of the works do not 
provide a mechanizable basis on how merging operations can be realized to automate 
the merging of feature models. 

When it comes to apply automated feature model construction techniques to 
augment an SPL with new products, there are two drawbacks: (1) The amount of the 
existing products can be potentially high, thus it is not always practical to produce all 
the products from the existing product line for the synthesization of the augmented 
product line. (2) Manual work spent on the development of the existing product line 
may have to be discarded, e.g., the new product line may not preserve the overall 
hierarchy of the existing product line, which has been specified/inspected based on 
domain knowledge manually. 

5.2.3 SPL Evolution Management 

Domain Evolution in SPL 
Adding new requirements to model-driven product lines often requires modifications 
to the product line’s core assets (reusable model fragments) and base language to 
reflect these new requirements. Since these modifications can involve much effort, 
automatic assistance is needed in deducing and performing such modifications. 

Deng et al. [48] argue that when it comes to domain evolution in model-driven 
product line architectures, a layered and compositional architecture is needed to 
modularize system concerns and reduce the effort associated with domain evolution. 
Based on a case study, they illustrate that: (1) Structure-based model transformations 
can help maintain the stability of domain evolution by automatically transforming 
domain models. (2) Aspect-oriented model transformations can help to reduce human 
efforts by capturing model-based structural concerns. 
 
Safe SPL Evolution 
To safely evolve an SPL, it is important to assure behavior preservation of the original 
product line. Borba et al. [25] present a language-independent theory for product line 
refinement. The theory establishes refinement properties that justify stepwise and 
compositional SPL evolution. Similarly, Schulze et al. [110] extend the traditional 
definition of software refactoring to SPLs and propose the concept of variant-
preserving refactoring of SPLs which are implemented using feature-oriented 



50 
 
 

programming languages. According to this new definition, all variants of an SPL 
should remain valid after refactoring. 

Neves et al. [93] discover and analyze concrete product line evolution scenarios. 
Based on the findings, a number of templates for safe product line evolution have 
been proposed, covering the evolution needs for splitting asset, refining asset, adding 
new optional feature, adding new mandatory feature and replacing feature expression. 

Vierhauser et al. [130] report on their experience with a tool-supported approach 
for incremental and scalable inconsistency checking on variability models. They 
categorize inconsistencies within the problem space (i.e. feature models), solution 
space (i.e. UML models, domain models specified in base DSLs) and code space, as 
well as in between the spaces that may result from SPL evolution. The approach is 
extensive as new consistency constraints can be added. Furthermore, the approach is 
not limited to variability models but also applies to SPLs with concrete 
implementation, i.e. SPLs with underlying code base. 

 
SPL Co-Evolution 
A model-driven SPL deals with the following model artifacts which depend upon 
each other: the metamodel of the base DSL, the core assets which are reusable model 
fragments specified in the base DSL, and the product line model. These three types of 
model artifacts depend upon each other and together decide what product models can 
be derived from the product line. As the metamodel of the base DSL and core assets 
of the SPL are subject to evolution over time, it is crucial to ensure that product 
models can still be derived as intended. It may become necessary to co-evolve some 
other artifacts when one of them evolves. For example, evolving the core assets of a 
product line may require co-evolving the product line model to ensure intended 
product derivation. An effective model-driven SPL development cycle should provide 
support for SPL co-evolution [49]. 

Dhungana et al. [49] present an approach for supporting SPL evolution by 
organizing variability models of large scale product lines as a set of interrelated model 
fragments defining the variability of different aspects of the system. In addition to 
allow semi-automatic merging fragments into complete variability models, the 
approach also provides a metamodel change propagator which allows updating the 
existing variability models after changes made to the metamodel of the base DSL. 

Seidl et al. [112] present the conceptual basis of a system for supporting the 
evolution of model-based SPLs, which maintains consistency between models and 
feature mapping from features to core assets. As part of their work, the authors 
introduce a classification of SPL evolutions based on the potential to harm the 
mapping of an SPL. Furthermore, with the purpose of co-evolving the feature 
mapping, several remapping operators have been proposed to rectify the negative 
side-effects of evolutions. 
 
SPL Evolution Traceability 
Passos et al. [98] have envisioned a feature-oriented project management and system 
development platform. As part of their vision, the platform supports traceability 
between features and the associated implementation artifacts. In addition, they believe 
that “organizing software evolution around features, supported by tracing, analyses 
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and recommendations will address many of the challenges in understanding and 
managing change.” 

Mitschke et al. [89] propose a versioning model which enables traceability between 
features, artifacts (core assets) for feature implementation, and products in the context 
of software product line evolution.  Serving as a basis for SPL evolution 
management, the approach provides traceability information that can ensure the 
consistency and maintainability of software product lines. 

Jirapanthong et al. [68] present a rule-based approach to support automatic 
generation of traceability relations between feature-based object-oriented documents. 
In particular, the approach defines a traceability reference model with nine types of 
traceability relations (e.g., refinement and implement relation) for eight types of SPL 
artifacts (e.g., feature models, use cases and class diagrams). Furthermore, the eight 
types of SPL artifacts need to be specified in the document formats proposed by the 
FORM methodology [72], which in turn limits the applicability of this approach. 

Anquetil et al. [12] present a model-driven traceability framework for software 
product lines. The approach identifies four orthogonal traceability dimensions in SPL 
development. The time dimension describes how an SPL artifact changes during 
evolution, which can be used to revert the changes caused by an evolution. 
 
Motivation for Improvement 
Based on the literature review, we see that the importance of providing automatic tool 
support for SPL co-evolution has been increasingly recognized. In particular, as 
pointed out by Seidl et al. [112] and Dhungana et al. [49], challenges may arise on 
how to update (co-evolve) a separate variability model (product line model) when its 
underlying core assets evolve over time. How can we ensure that the variability model 
is still valid? Updating the variability model according to the changed base model 
(core assets) can be a tedious task. However, there have been relatively few 
approaches which provide automatic co-evolution support in relation to variability 
model and core assets. 

5.2.4 Semantic Differencing for Product Lines 

Product lines evolve over time, and even small changes to a product line model can 
result in big semantic difference. It is vital for the developer to: (1) Identify the added 
and removed products in the evolved product line. (2) Check if all the products that 
the product line needs to offer to the customer are fully covered. (3) Document all the 
products that are supported by the product line, including those which are not offered 
to the customer yet [3, 88, 99]. 

Syntax-based differencing approaches have their limitations in situations when 
models of similar syntactical representation have very different semantics, which has 
been observed in feature models [24]. It becomes increasingly recognized that 
semantic differencing approaches can be more useful for certain purposes [6, 86, 87] 
such as understanding the impact of product line evolution. 
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Formal Semantics of Feature Models 
Alves et al. [7] present a set of sound refactoring scenarios for feature models. As part 
of this work, the semantics of a feature model is formalized, which is defined as a set 
of product configurations that satisfy all the modeled constraints. Furthermore, the 
semantics is encoded using the Prototype Verification System (PVS) [96], which is a 
formal specification language. 

Gheyi et al. [58] propose a theory for feature models in Alloy, which can be used 
to check a number of properties in the Alloy Analyzer [67]. As part of this work, the 
semantics of a feature model, which is specified in Alloy, is also defined as all the 
valid configurations that satisfy all the modeled constraints. Furthermore, the work 
also shows how to yield all valid configurations of a feature model in the Alloy 
Analyzer. 

Similar work has been reported by Sun et al. [117], where the semantics of a 
feature model is specified using the first-order logic in Z [137]. The correctness of the 
semantics definition is validated using the Z/EVES theorem prover [124]. 
Furthermore, the semantics is also encoded in the Alloy analyzer for verifying the 
consistency of a given feature model. Our Alloy definition of the feature specification 
layer is mainly motivated by the definition of feature models in [58]. 

 
Semantic Differencing Techniques for Models 
Fahrenberg et al. [53] present a formal approach for defining semantic difference 
between models. In the vision of this work, the difference between two models should 
be a model. In particular, a framework has been proposed for defining well-formed 
difference operators on model semantics as adjoints of model combinators, such as 
conjunction, disjunction and structural composition. 

Archer et al. [6] present a set of differencing techniques for feature models, which 
render both syntactical and semantic mechanisms. The semantic difference between 
two feature models, represented as a semantic diff feature model, can be computed 
based on implication and exclusion graphs using SAT solvers. 

Maoz et al. report their work on semantic differencing class diagram in [87] and 
activity diagram in [86]. They argue that the semantic difference should be a set of 
"diff witnesses", for instance, the diff witnesses of two class diagrams should be a set 
of object diagrams defined by the first class diagram but not the second. 
 
Motivation for Improvement 
Based on the literature review, we see the potential to improve the state-of-the-art in 
semantic differencing for product lines. In particular, existing semantic differencing 
techniques for feature models do not compare variability realizations of two feature 
models, which are considered crucial for final product derivation. Imagine the 
scenarios when the realization of a feature has evolved while the feature at the 
specification level remains the same, and vice versa. Semantic differencing for feature 
models fails to provide a complete picture of the impact of the evolution in this 
context. 

Furthermore, we are also enlightened by Maoz et al.’s claim [87] [86] that the 
semantic difference should be a set of "diff witnesses". The concept of “diff 
witnesses”, if adapted to the context of product lines, can be well-suited for 
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representing the semantic difference between two product lines in terms of derivable 
product configurations. 
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6 Contributions 

The contribution of this thesis is manifested by seven artifacts developed by us (see 
Fig.5). Our artifacts are all concerned with model-driven SPL development, and 
mainly target on our three research topics. In this chapter we give an overview of the 
contributions, and we refer to Paper I - VII [122, 123, 141-145] (Appendix I - VII) for 
more detailed descriptions of the artifacts. 
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Fig.5. The overview of contributions 

6.1 RT1: A Generic Approach for Developing Executable Model-Driven SPLs 

In order to develop "a generic approach for developing executable model-driven SPLs 
(see RT1 in Fig.5)", we focus on the following aspects:  

(1) "Generic" and "executable" require that, with this approach, the developer may 
not only define variability specification but also variability realization for SPLs in 
different domains, in a generic way. This requirement is addressed by our 1st, 3rd and 

”CVL” ”Automatic assistance in defining 
variability realization”

RT1.1: How to define both variability specification and realization in a generic way for model-
driven SPLs in different domains?

”Augmenting an SPL”

”CVL Compare”

RT1.2: How to develop a base DSL suited for building model-driven SPLs?

”APRiL”

”CVL”

RT3.1: How to improve the productivity in inducing SPL evolution steps from new 
requirements?

”CVL Compare”

”Co-evolving an SPL” ”CVL”

RT3.2: How to improve the productivity of SPL co-evolution?

”CVL Compare”

”CVL”

RT3.3: How to assist the developer to gain a comprehensive understanding of the impact of 
an SPL evolution?

”Semantic Differencing for SPLs”

”CVL”

RT2.1: How to improve the productivity of variability identification in model-driven SPL 
development?

”Automatic assistance in defining variability realization”

RT2.2: How to ensure that the variability realization will only yield intended products?

RT1: A generic approach for developing executable model-driven SPLs

RT2: Automatic assistance in model-driven SPL development

RT3: Evolving model-driven SPLs

Artifact 1 (Paper I): CVL: a generic variability modeling language
Artifact 2 (Paper II): APRiL: a payroll reporting DSL
Artifact 3 (Paper III): CVL Compare: an approach to synthesize an SPL from products
Artifact 4 (Paper IV): An automatic approach to assist in defining variability realization
Artifact 5 (Paper V): An approach for augmenting an SPL with new products
Artifact 6 (Paper VI): An approach for co-evolving an SPL when the base model is change
Artifact 7 (Paper VII): A semantic differencing approach for SPLs

”CVL Compare”

”CVL”
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4th artifact (see Fig.5), which propose the Common Variability Language (CVL) and 
CVL-based methodology & automatic assistance for SPL development. 

(2) As explained in RT1.2 in Fig.5, the developer needs guidelines on, when there 
is no base DSL yet, how to develop one that is suitable for building model-driven 
SPLs on top. We address this requirement by reporting our experience on developing 
both the base DSL and SPLs for the payroll reporting domain in the 2nd artifact 
("APRiL"). 

6.1.1 RT1.1: How to define both variability specification and realization in a 
generic way for model-driven SPLs in different domains? 

The Common Variability Language (CVL) is a separate and generic variability 
modeling language. CVL provides capabilities for defining both variability 
specification and realization in a generic way for SPLs in different domains, which 
contributes to RT1.1. 

The initial results of the CVL language have been reported by Haugen et al. in 
[66]. We further developed the language and reported the new results in [54] and 
Paper I [123]. In Paper I we give a detailed introduction on the CVL language, and 
present a CVL-based methodology for SPL development through a realistic case 
study. In the following, we introduce the CVL language essentials in Section 6.1.1.1 
and the CVL methodology in Section 6.1.1.2. We refer to Section 2.2 for explanations 
to the product line-related terms used in the following sections. 

6.1.1.1 CVL Language Essentials 
As a separate variability modeling language, CVL can be applied to models created in 
any DSL that is defined based on Meta Object Facility (MOF)12. When using CVL to 
develop product lines, the developer needs to deal with the following models (see 
Fig.6): 

Base Model. A base model is a product model created in the base DSL. During 
product derivation, product models can be derived by applying feature realizations to 
the base model. The base model can be viewed as part of the product line's core assets 
(reusable model fragments). 

CVL Model. A CVL model consists of the variability model and the resolution 
model: 

 Variability Model. This variability model serves as the product line model, 
in which the SPL developer specifies the variability of the product line in 
this model. The term "variability model" is analogous to "feature model" in 
feature modeling. 

 Resolution Model. A resolution model has one-sided relation to a variability 
model. Thus a variability model can have several resolution models. The 
developer can resolve the variability of the product line differently in several 
resolution models. Resolution models can be regarded as product 
configurations. The CVL generic transformation will take the base model 

                                                           
 

12 http://www.omg.org/mof/ 
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(and the library models if applicable), the variability model and the 
resolution models as input to generate resolved models, which can be 
regarded as the product derivation process. A "resolution model" is 
analogous to a "product configuration" in feature modeling. 

 

 
Fig.6. Models in the CVL approach 

In the variability model, the developer can specify the variability of the product 
line in two layers (see Fig.6): 

Feature Specification Layer
Specify domain-level variability in terms of features
Subsume the feature diagram notation

Product Realization Layer
Define how features should be realized at the model (object) 
level in terms of CVL substitutions
CVL substitutions can express arbitrary model changes

 Variability Model

Resolution Model
Also called ”product configuration”
Resolves variability for a specific product

 CVL Model

Base Model
Created in any MOF-based DSL
Core assets of the SPL, can contain separate library models
CVL substitutions will be applied to the base model to generate 
product models

EObject (URI)

Resolved Model
Also called 
”product model”

Generic CVL Transformations 
(”product derivation”)
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Feature Specification Layer. The developer specifies domain-level features in 
this layer. CVL provides language constructs to specify features, relationships 
between features, multiplicity and choices over features. The specification in this 
layer can be regarded as a feature model. 

In particular, the CVL language concept CompositeVariability can be used for 
modeling features in the feature specification layer of a CVL model. A 
CompositeVariability can also be further specialized into an Iterator, which can be 
used to model multiplicity and choices over features. Iterator has three properties: 
upperLimit, lowerLimit and isUnique. The first two properties specify the maximal 
and minimal number of features that are allowed to be chosen by this iterator. The 
property isUnique specifies if the same feature can be chosen more than once. 

Product Realization Layer. This layer is not covered by the traditional feature 
modeling notation. In this layer, the developer defines how the features should be 
realized at the model (object) level in terms of CVL-specific model editing 
operations. These operations, called substitutions in CVL terms, can apply arbitrary 
changes of attribute value and structure to the base model to derive new product 
models during product derivation. 

A CVL-specific substitution can be further specialized into the following 
substitutions: 

ValueSubstitution, which changes the value of an attribute of a model element 
(PlacementValue) to another value (ReplacementValue) (see Fig.7). 

ReferenceSubstitution, which redirects a reference from one model element 
(PlacementObject) to another one (ReplacementObject) (see Fig.7). 

FragmentSubstitution, which substitutes an arbitrary set of model elements 
(PlacementFragment) with another set of model elements (ReplacementFragment) 
created in the same DSL. A ReplacementFragment can be defined either in the same 
base model or in separate library models. 

Any arbitrary model fragment can be defined using BoundaryElement(s).  
Boundary elements are used for recording all references to and from the model 
fragment. As illustrated in Fig.7, ToP, FrP1 and FrP2 define a PlacementFragment, 
whereas ToR, FrR1 and FrR2 define a ReplacementFragment. During a 
FragmentSubstitution, the boundary elements representing the ReplacementFragment 
need to be bound to the ones representing the PlacementFragment. 

The developer needs to bind the boundary elements explicitly. Two boundary 
elements can only be bound if their recorded references are of the same type (the 
references point to the same type of model elements). For example, ToR is allowed to 
bind to ToP since both of their recorded references are of type A. Similar pairs include 
FrR1 with FrP1 and FrR2 with FrP2. As illustrated in Fig.7, these three Bindings are 
the only legal choices; however, one boundary element can be eligible to bind to 
several as long as the typing rule is followed. The CVL tool can suggest default 
Binding candidates for each boundary element which are type-compatible. 
Nevertheless, with more than one eligible boundary element, it is up to the developer 
to decide on the final binding since only he/she knows how the resulting product 
model should look like. 

An advanced CVL mechanism is to use configurable replacement fragment in 
substitutions. For example, the developer can define the value "f" of the attribute 
"name" of f:F (see Fig.7) as a PlacementValue. This variation point will be kept open 
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after the FragmentSubstitution is executed. The developer can choose to assign a 
ReplacementValue in a ValueSubstitution to rename f: F at any point. A configurable 
replacement fragment can also have PlacementObject(s) and placement fragments 
inside. 

 

 
Fig.7. CVL substitutions 

Based on the CVL language definition, we have developed a prototype to evaluate 
the feasibility of this artifact. The CVL metamodel is defined in EMF, from which a 
tree-view CVL editor is generated out-of-the-box. We have also developed CVL 
graphical editor (using GMF), a fragment substitution binding editor, a select-and-
generate resolution model generator, a configuration validator and a generic CVL 
transformation (using MOFScript). 

Furthermore, CVL provides a set of APIs for integrating different base DSL editors 
with the CVL editor. With a CVL-enabled base DSL editor, the developer can create 
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placement/replacement fragments in the CVL editor automatically from the selection 
in the CVL-enabled base DSL editor, and boundary elements will be calculated 
automatically. Model elements involved in a substitution will be highlighted in the 
CVL-enabled base DSL editor when they are selected in the CVL editor.  

6.1.1.2 CVL Methodology for SPL Development 
In this section we walk through the process of creating the train control product line 
as described in Section 2.2 using the CVL methodology. The whole development 
process is illustrated in Fig.8. We refer to Paper I (Appendix I) for an industrial case 
study in developing a realistic train control product line, which all the products are 
real stations in use or under development in Norway. 
 

 
Fig.8. CVL methodology for SPL Development 

Step 1: Prepare Product Line 
This step can be regarded as the variability identification phase in model-driven SPL 
development. The focus of this step is to capture the variability and commonality of 
all intended product models of the product line. In this step, there are different 
strategies for identifying variability depending on the context of the development: 
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When the product line needs to include existing products, it would be suitable 
to compare existing products to identify variability between them. 

Our train control product line falls into this category. With the TCL language, the 
station drawings received from the Norwegian railway authorities can be re-created 
by train experts from ABB in terms of TCL models, from which source code for on-
site signaling controllers can be generated. With the purpose of building a product 
line to include existing TCL (station) models, it is appropriate to start with comparing 
those station models which have been well-defined and validated. 

The comparison results in the following understandings: stations can be either 
Urban or Rural ones depending on their location. Urban stations can have one 
AdditionalTrack compared to rural stations. Urban stations can also have a 
LeftParkingTrack and/or a TopParkingTrack. Rural stations can choose to have an 
optional RightParkingTrack. 

Note that variability identification has been mostly a manual process. Our 3rd 
artifact ("CVL") aims to provide automatic assistance in the variability identification 
phase, which will be elaborated in Section 6.2.1. 

When the product line is developed from scratch, the developer can start with 
choosing/specifying the base model (see Step 2). While defining the CVL model (see 
Step 4), the developer can then decide, relative to the base model, how the intended 
product models should vary from each other. 

Very often a product line does not only need to include existing products, but 
also needs to introduce new products. We see that in this kind of scenarios, a 
combination of the two strategies mentioned above, namely that starting with 
comparing existing products, and further generalizing the product line to support 
more products, can be beneficial. 
 
Step 2: Choose Base Model 
The CVL model describes how the intended product models can vary from each other 
relative to the base model. During product derivation, feature realizations in terms of 
CVL substitutions will be applied to the base model to generate resolved/configured 
product models. There are different strategies for choosing/defining the base model 
for a CVL model (product line model): 

Subtractive strategy. In this category the base model includes sufficient model 
elements to cover all features of the product line. With a maximum base model, 
subtractive strategy will be applied while defining feature realizations. In other words, 
CVL substitutions will be solely removing elements from the base model while 
deriving product models. In this case, core assets for this product line only contain 
this base model. 

Additive strategy. In this category the base model contains the minimum set of 
features, and other reusable model fragments are defined in separate library models 
(see Step 3). Then core assets for this product line will contain both the base model 
and library models. With a minimum base model, additive strategy will be applied 
while defining feature realizations (substitutions). Thus product models will be 
generated by adding features to the base model. 

Combined strategy. In this category the base model is neither maximum nor 
minimum, but somewhere in between. This base model can be some model that is the 
most similar to the majority of all intended product models, or some model that is 
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considered as a typical starting point for product development in industry. Then both 
subtractive and additive strategies will be applied while defining the feature 
realizations. CVL substitutions will be both removing and adding elements to the base 
model in order to generate product models. 

How do we choose an appropriate strategy? In principle, no matter which 
strategy is applied in choosing/specifying the base model, as long as the CVL 
substitutions are defined correctly, the production of the SPL will be guaranteed. In 
addition, the product realization and feature specification layer of a CVL model is 
independent of each other. Therefore the production of the SPL will not be affected if 
naming of features does not quite reflect the purposes of their realizations. 

However, different choices of the strategy may affect some non-functional factors, 
such as the readability, maintainability of the resulting CVL model, and how difficult 
it is to assign bindings of boundary elements while defining fragment substitutions. 
 

 
Fig.9. The base model and library model of the train control product line (with annotations) 

As illustrated in Fig.9, we choose an intermediate base model for our train control 
product line. This station model has been created manually in the TCL graphical 
editor. We chose this station as the base model for the product line for two reasons, 
one is that it is the most similar one compared to all intended products; the other is 
that to the train experts at ABB, this station is a conventional starting point for station 
development in practice. 
 
Step 3: Create Library Models 
The CVL transformations derive a product model by making a copy of the base model 
and applying selected substitutions (feature realization) to it. When a model fragment 
in the base model is replaced by another model fragment in the library model, a copy 
is also made of the replacement fragment. Therefore the replacement fragment can 
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either be taken from separate library models or the base model itself. When a 
minimum base model is used, separate library models may be needed in which some 
other reusable model fragments can be found. 

With the TCL language, it is not possible to explicitly define model fragments such 
as ParkingTrack and Two-track (see Fig.9). However, while specifying the CVL 
model in the next step, the developer is able to define any arbitrary model fragment in 
the base and library model using boundary elements. 

A library model can consist of either complete models where certain model 
fragments can be extracted, or only several model fragments. We recommend having 
library model fragments to be put in a more complete context (model). We notice that 
with some immediate context, when the replacement fragment is "cut off and taken" 
from its context (conceptually), the CVL fragment binding editor can be of more 
assistance in suggesting binding candidates that are type-compatible, and in turn 
might make it easier for the developer to decide on the bindings. 

In our train control product line, we choose to have a separate library model with 
two model fragments ParkingTrack and Two-track (see Fig.9). This is due to the lack 
of existing complete models with these two required fragments. 
  
Step 4: Create CVL Model 
In this step the developer creates a CVL model (product line model) to specify the 
variability and commonality of the product line. In the feature specification layer, 
domain-level variability in terms of features is defined, while how the features should 
be realized in terms of substitutions is defined in the product realization layer. 

As illustrated in Fig.10, a CVL model has similar notations as feature models with 
extensions and customizations. In the feature specification layer, 
CompositeVariability is used to model features such as AdditionalTrack and 
ParkingTrack, while Iterator is used to model choices over features, such as 
optionality, XOR and OR. In the product realization layer, fragment substitutions are 
used to realize the features. As illustrated in Fig.9 and Fig.10, feature AdditionalTrack 
can be realized by the fragment substitution which replaces Track2 with Two-track; 
the feature LeftParkingTrack or RightParkingTrack or TopParkingTrack can be 
realized by replacing TCE2 or TCE7 or TCE4 with ParkingTrack. 

CVL provides a set of APIs for integrating with any base DSL editor. With a CVL-
enabled base DSL editor, placement/replacement fragments can be created 
automatically in the CVL editor by selecting them in the CVL-enabled base DSL 
editor, boundary elements can be calculated automatically, and elements involved in 
fragment substitutions can be highlighted in different colors. As illustrated in Fig.11, 
the placement fragment Track2 is highlighted in red (see the top right pane), while the 
replacement fragment Two-track is highlighted in blue (see the bottom pane). In 
addition, the elements that are referred from/to Track2/Two-track are highlighted in 
yellow and green respectively. 

We see the need to ensure the correctness of the product realization layer in order 
to guarantee the derivation of all intended products in the later step. Our 4th artifact 
("Automatic assistance in defining variability realization") provides automatic 
assistance in the creation of CVL models to ensure only intended product derivation, 
which will be elaborated in Section 6.2.2. 
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Fig.10. The CVL model for the train control product line (with annotations)13 

Step 5: Configure Products 
In this step the developer needs to create product configurations in terms of resolution 
models in CVL. Each resolution model specifies a set of features required for each 
product. A select-and-generated resolution model generator has been developed with 
CVL to automate the creation of resolution models. By selecting the required features 
directly from the CVL model, a resolution model representing a station with an 
additional track and a left parking track can be generated automatically. In addition, 
the CVL editor also supports highlighting any existing product configuration in green 
when requested. 
 
Step 6: Derive Products 
In this step the CVL model, the base and library model are input into the CVL 
transformations for product derivation. The following describes how a product model 
is derived during the transformations: 

First a copy of the base model is made. Then the variability model is executed 
recursively by starting with executing the ExecutablePrimitives contained in the root 
CompositeVariability. If another CompositeVariability is contained in the current 
CompositeVariability, then ExecutablePrimitives contained in this 
CompositeVariability will be executed subsequently. 

When the execution encounters an Iterator, it will stop, look up for the resolution 
of this choice in the resolution model, and continue again. When the execution 
encounters a fragment substitution, it will first remove the placement fragment from 
the copy of the base model, make a copy of the replacement fragment, and then place 
it into the "hole" in the copy of the base model following the definition of the 
boundary element bindings. 

 
                                                           
 

13 The TCL terms "Side Track" and "Parking Track" are used interchangeably in this thesis. 
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Fig.11. Fragment substitution for inserting an additional track (involved elements highlighted 
in the CVL-enabled TCL graphical editor) 

Step 7: Validate Products 
Since the generic CVL transformation is oblivious to the semantics of any base DSL, 
it is possible to generate semantically wrong products if the developer does not define 
feature realizations correctly. Therefore the derived products need to be validated 
using domain-specific methods, such as DSL editors, model validators and code 
generators. 

When it comes to our train control product line, source code for on-site signaling 
controllers is automatically generated from all the derived station models, which is 
inspected against safety guidelines, and then executed on the simulator at ABB. If the 
source code goes through the simulation, then it confirms the validity of the derived 
stations. 

6.1.2 RT1.2: How to Develop a base DSL Suited for Building Model-Driven 
SPLs? 

In paper II (Appendix II), we have reported our experience on developing a base DSL 
and SPLs for the payroll reporting domain, in order to exemplify: (1) How to develop 
a base DSL that is suited for building model-driven SPLs (see RT1.2 in Fig.5). (2) 
How software development process can be simplified and improved by adopting the 
model-driven SPL paradigm. 

We have developed the Agresso Payroll Reporting Language (APRiL) for the 
payroll reporting module of Agresso Business World © (ABW, an ERP system from 
Agresso, Norway). Payment & Deduction (P&D) is the basic payroll term in the 
ABW system, which is defined with codes by users. Typical P&Ds include 
FixedSalary, OvertimePay, Bonus, Tax. The value of each P&D can be calculated 
through ABW payroll transactions. The payroll of each employee can be calculated 
by summing up his/her P&D values. 

For payroll reporting, users are often more interested in producing different views 
of payroll information instead of retrieving P&D values. For example, an employee 
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may be interested in his/her actual or predicted salary for a certain period, while a 
manager may be interested in the human resource cost or average salary of a certain 
group of employees. However, it proved challenging for Agresso to provide a 
standard way to customize payroll reports in the ABW system, due to the following 
reasons:  

 

 
Fig.12. The traditional process of payroll reporting customization for ABW users 

(1) Payroll schemes can vary across roles in a company, and payroll schemes for 
the same role can also vary across companies. For example, payroll for a sales 
representative often includes commission while payroll for a secretary may not; an 
engineer may have bonus in one company but not in the other one. 

(2) In order to customize advanced payroll reporting queries, the user needs to 
manipulate table columns and relationships in the ABW database directly using joins 
and filters. Since table relationships in the ABW database are not optimized for 
reporting purposes, it can be rather difficult for the user to create a complex reporting 
query in a short time. Normally in such situations, the user would seek help from the 
Agresso consultants who are supposed to have profound knowledge about 
manipulating the ABW database. As illustrated in Fig.12, the Agresso consultants 
need to manually produce SQL scripts for customized reporting queries, which can 
often be a time-consuming and error-prone process. 

 

 
Fig.13. The APRiL process of payroll reporting customization for ABW users 

The APRiL language and tools have been developed using Eclipse technologies to 
address the challenges mentioned above. The metamodel of the language has been 
defined in Eclipse Modeling Framework (EMF), while the APRiL graphical editor 
has been developed using Graphical Modeling Framework (GMF) and the APRiL 
code generator has been developed using MOFScript. As illustrated in Fig.13, with 
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APRiL, the user is able to specify how a payroll report should be composed by P&Ds 
in the graphical editor, and the corresponding SQL script can be produced 
automatically from the code generator. 

Note that the APRiL language can be used for expressing arbitrary payroll 
compositions. Moreover, the language is fully domain-specific and does not include 
any variability modeling concepts. 
 

 
Fig.14. A payroll reporting structure specified in the APRiL graphical editor (with annotations) 

In the APRiL language definition, PaymentDeduction (P&D) is the main concept 
in the payroll reporting domain. A P&D can be either a PrimitivePD or a PDGroup. 
Each PrimitivePD is defined independent of other P&Ds and associated with a unique 
identifier in the ABW database. As shown in Fig.14, FixedMonthlySalar, 
OvertimePay, Tax and UnionDeduction_GPMU are all defined as PrimitivePDs with 
their unique IDs 1100, 2020, 8910 and 5024. 

PDGroup is a type of P&D that is defined dependent on other P&Ds. A PDGroup 
can consist of PrimitivePDs as well as other PDGroups, such as YearlySalary and 
MonthlySalary in the example. PDGroups are not defined in ABW database, but only 
used for aggregation purposes in payroll reporting. The hierarchies across 
PrimitivePDs and PDGroups make it possible to model payroll reporting structures in 
a more conceptual and intuitive manner. 

With APRiL, relationships between P&Ds can be modeled explicitly using 
PDGroupLink. Moreover, the user can set the properties ChildPDOperator, 
ChildPDOperand and ParentPDOperator to each PDGroupLink to specify detailed 
composition of each P&D. Each ChildPDOperator and ParentPDOperator can be 
PLUS, MINUS, MULTIPLY and DIVIDE. As illustrated in Fig.14, MonthlySalary is 
the sum of FixedMonthlySalary, OvertimePay and Tax (P&D value is negative), 
while YearlySalary is calculated by multiplying MonthlySalary with 12 and adding it 
to UnionDeduction_GPMU (P&D value is negative). 

PDGroup PrimitivePD

ChildOperand

Parent
Operator

Child
Operator

YearlySalary=FixedMonthlySalary*12+OvertimePay+Tax+UnionDeduction_GPMU



69 
 

 

 
Fig.15. Base model, library model and resolved model for a payroll reporting example (with 

annotations) 

In Paper II, we also illustrate how to add CVL-based variability handling to APRiL 
to further improve the productivity of the payroll reporting customization for ABW 
users. As illustrated in Fig.15 and Fig.16 , for a new payroll reporting structure 
similar to an existing one, instead of specifying the new structure from scratch, the 
developer can add separate variability handling (CVL-based) to the existing payroll 
reporting structure and generate the new one. 

In order to evaluate the APRiL and APRiL+CVL approach, we have validated the 
generated script by comparing to the one that is manually developed by the Agresso 
consultants. Furthermore, we evaluated the use of APRiL on arbitrary payroll 
reporting structures provided by Agresso. Without knowing how to create advanced 
reporting queries in the ABW database using SQL, just like most users of the ABW 
system, we were able to create various payroll reporting structures using 
APRiL/APRiL+CVL approach in a short time. The generated SQL scripts were first 
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inspected by the Agresso consultants, and then executed to see if those queries return 
the expected results. 

We have learned the following lessons from this experience: (1) DSM and model-
driven SPL paradigms have big potential in improving the productivity of software 
development by shifting certain responsibilities from the developer to the domain 
expert. (2) In order to adopt model-driven SPL development with separate variability 
handling, it would be ideal that the base DSL is made to be fully domain-specific 
without any variability modeling concept.  

 

 
Fig.16. The APRiL+CVL process of payroll reporting customization for ABW users 

6.2 RT2: Automatic Assistance in Model-Driven SPL Development 

There is a lack of methods providing automatic assistance at the variability 
identification and variability realization phase of model-driven SPL development. In 
Section 6.2.1 and Section 6.2.2 we summarize how our artifacts contribute to RT2.1 
and RT2.2. 

6.2.1 RT2.1: How to improve the productivity of variability identification in 
model-driven SPL development by means of automatic assistance? 

The life cycle of SPL development usually starts with identifying the variability (and 
commonality) of a product line's all intended products. We learned from literature 
review that most existing techniques for variability identification are 
guidelines/methodologies without automatic tool support. 

We also noticed that in practice not all product lines are developed from scratch. 
Often the developer needs to include existing products in a product line and further 
introduces new products on top of that. Based on these observations, we identified the 
requirement for synthesizing a product line from a set of existing products 
automatically. We presented our initial ideas at a PhD symposium session (ICSE 2009 
[140]), where we received positive feedback from experts in the field. Based on the 
comments, we have realized the idea and developed our 3rd artifact – CVL Compare. 
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CVL Compare [142] is an approach for synthesizing a product line model from a 
set of existing product models. It has been developed based on the CVL technology 
and a generic model differencing tool – EMF Compare. The CVL Compare tool 
enables the automation of variability identification phase. It is able to identify the 
variability and commonality of the product line and suggest a preliminary product line 
model automatically. The preliminary product line model can serve as a baseline for 
further manual enhancement. 

 

 
Fig.17. The process of the CVL Compare approach 

Fig.17 illustrates the process of the CVL Compare approach, which will be walked 
through in the following using an example in the train control domain. The purpose of 
the example is to build a train control product line based on four existing TCL station 
models as illustrated in Fig.18. Note that the following is a simplified summary of the 
whole process. We refer to paper III (Appendix III) for a detailed description of the 
approach. 
 
Step 1: Choose the Base Model for Comparison 
 
In this step the developer needs to choose the base model for the CVL Compare 
process. The base model can either be chosen from the given set of existing product 
models, or a product model different from all of them. The chosen product model will 
also serve as the base model for the preliminary product line model (CVL model). 
Therefore the developer can follow the same strategies for choosing the base model as 
described in Section 6.1.1.2. When it comes to our example, we choose S1 (see 
Fig.18) as the base model. 
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Fig.18. First-order comparison between four TCL models 

Step 2: First-Order Comparisons 
 
In this step the CVL Compare tool utilizes EMF Compare (see Section 2.5) to 
perform a set of two-way comparisons between the base model and other existing 
product models. As illustrated in Fig.18, S2, S3, S4 are compared with S1 
respectively, which result in three difference models in the form of .emfdiff #1, 
.emfdiff#2 and .emfdiff#3. 

In an .emfdiff model, unmatchedElements (left/right) are the model elements that 
only exist in the left-hand-side (LHS)/right-hand-side (RHS) model but not in the 
RHS/LHS model. As illustrated in Fig.18, the second track exists in S1 but not in S2, 
and the two-track structure exists in S2 but not in S1. This result is used by the CVL 
Compare tool for the following CVL-specific interpretation: 

(1) The RHS model can be obtained from the LHS model by replacing the 
unmatchedElements (left) with the unmatchedElements (right). Therefore the second 
track and the two-track structure can be regarded as a placement/replacement 
fragment respectively. 

(2) An .emfdiff model consists of subDiffElements of type ReferenceOrderChange 
and UpdateReference, which can be regarded as the reference changes due to the 
bindings of boundary elements in a fragment substitution. 
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(3) An .emfdiff model consists of subDiffElements of type UpdateAttribute, which 
can be regarded as value substitutions in CVL. 

 
Step 3: Higher-Order Comparisons 
 

 

Fig.19. Higher-order comparison between for Station S2 and S3 

 
In this step all .emfdiff models resulted from the first-order comparisons are compared 
with each other, which are called higher-order comparisons. A preliminary product 
line model (CVL model) will be generated based on the result of higher-order 
comparisons at the end of this step. 

First of all, an empty CVL model is created with its base model as the one chosen 
in Step 1. Then this CVL model will be updated based on a set of rules as the higher-
order comparisons continue. We refer to Paper III (Appendix III) for a detailed 
description of the rules. 
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Fig.20. Higher-order comparison between for Station S2 and S4 

Fig.19 illustrates how the CVL Compare tool performs the comparison between 
.emfdiff#1 and .emfdiff#2. The CVL Compare tool first compares the 
unmatchedElements (left) in both models. It is found out that the unmatchedElements 
(left) in the .emfdiff model #1 is a structure of second-track, and there are no 
unmatchedElements (left) in the .emfdiff model #2. Since this implies a potential 
distinctive variation point, two features are created on the same hierarchy of the CVL 
model (see Fig.22). At the same time, in the product realization layer, two placement 
fragments are created from the base model elements which are referred by the 
unmatchedElements (left) in both models. Similarly, two corresponding replacement 
fragments, which contain a two-track structure and a parking track respectively, are 
created from the unmatchedElements (right) in both models. In addition, two 
corresponding fragment substitutions InsertNewTrack and InsertParkingTrack are 
created14 and the bindings of boundary elements are decided automatically. 

As illustrated in Fig.20, when .emfdiff#1 and .emfdiff#3 are compared, these two 
models are found out to contain the same variation point, represented by the second 
track. This variation point is already identified in the comparison of .emfdiff#1 and 
.emfdiff#2. 

                                                           
 

14 The fragment substitutions are created with automatically-generated names by the CVL 
Compare tool. We refer to them as InsertNewTrack and InsertParkingTrack for presentation 
purposes. 
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The unmatchedElements (left/right) in both models are compared which results in a 
delta. The current CVL model is searched through to see if the delta suggests any 
existing placement/replacement fragment. 

The comparisons also show that the parking track and the two-track structure can 
coexist in the same station model, suggesting a possible OR over the two features that 
they represent. 

 

 

Fig.21. Higher-order comparison between for Station S3 and S4 

As illustrated in Fig.21., .emfdiff#2 and .emfdiff#3 are compared in a similar way. 
After all the higher-order comparisons, the resulting CVL model serves as the 
preliminary product line model as illustrated in Fig.22. This CVL model only defines 
the variability based on the given four station models, which is: a station can either 
only have two tracks, or with an additional and/or parking track. 

 
Step 4: Enhance the Preliminary Product Line Model 
In this step the preliminary product line model is enhanced manually by the 
developer. Typical enhancements include renaming features, restructuring and adding 
new features to introduce new products. 

In paper III we also discussed the challenge of identifying compound variability in 
our approach. With CVL Compare, the difference between two product models is 
represented as a fragment substitution with necessary value substitutions. The 
placement/replacement fragment contains all the elements that exist in one model but 
not in the other one and vice versa. Nevertheless, the placement fragment may suggest 
more than one variation point that we cannot identify by only comparing two models 
without having any additional information. 

S1 (Base model)

S3

S4

.emfdiff model #3

.emfdiff model #2
unmatchedEle
ments (right)

unmatchedEle
ments (left)

EMPTY

unmatchedEleme
nts (right)

unmatched
Elements 
(left)

delta
unmatchedEleme
nts (right)

unmatched
Elements 
(left)



76
 
 

One possible solution is to incorporate the semantics of the base domain in the 
CVL Compare tool so that some multiple variation points might be identified based 
on both comparisons and domain knowledge. 

 

 
Fig.22. The preliminary product line model suggested by CVL Compare and the manually 

enhanced product line model 

6.2.2 RT2.2: How to ensure that variability realization will only yield intended 
products? 

The definition of variability realization directly affects product derivation. Therefore, 
it is crucial to ensure that variability realization is properly defined so that it only 
yields intended products during product derivation (RT2.2). 

Our 4th artifact (Appendix IV) contains two methods with automatic tool support 
for the variability realization phase in SPL development to ensure intended product 
derivation. We summarize how the two methods contribute to RT2.2 in Section 
6.2.2.1 and 6.2.2.2.  

6.2.2.1 Providing Immediate Feedback on the Definition of Variability 
Realization at Design Time 

In a CVL-based product line, variability realization is defined in the product 
realization layer in terms of CVL substitutions. For a CVL fragment substitution, 
default bindings of boundary elements which are type-compatible can be 
automatically suggested by the CVL tool. Based on that, the developer still needs to 
decide on the final bindings explicitly, since only he/she knows how the resulting 
model should look like after applying the substitution. However, the developer does 
not necessarily have an accurate mental picture at design time on how the current 
definition of the substitution (bindings) will change the base model at the model 
(object) level. We saw that defining variability realization can be an error-prone 
process and there was a lack of immediate feedback for the definition of variability 
realization at design time. 
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Enhanced Product Line Model

Manual 
Enhancement



77
 

 

In Paper IV (the 4th artifact), we addressed this challenge by extending the CVL 
editor with a simulator, which can simulate the execution of a single CVL substitution 
at design time. The result of the simulation is visualized as the abstract syntax of the 
resulting model excerpt (with only related model elements). 

The simulator is developed based on CVL and Zest15. It is generic so that it can be 
applied to models created in any MOF-based DSL. However, the generality does 
come with a cost. With no knowledge about the concrete syntax of the base DSL 
beforehand, it is impossible for the simulator to represent the resulting model excerpt 
in the domain-specific form. Therefore, we chose to represent the preview of the 
simulation result in the abstract syntax model with additional domain-specific 
information, such as name/type of model elements/references/attributes. 

 

 
Fig.23. Fragment substitution "Insert new track" shown in the CVL-enabled TCL editor and 

fragment substitution binding editor 

In the following we illustrate how to define a fragment substitution with the help of 
the simulator through the example described in Section 6.1.1.2 (see Fig.23). While 
defining the substitution Insert new track, the following process can be followed with 
the help of the simulator: 

Run the simulation of the substitution with the default bindings. The default 
bindings are suggested automatically between any type-compatible boundary element. 
As part of the CVL methodology, we recommend the developer to start with 
inspecting and improving the default bindings instead of starting from scratch. By 
simulating the substitution with default bindings, the developer may obtain clues on 
how to improve the bindings based on the visualized simulation result. 

Fig.24 gives a preview of the resulting model excerpt of Insert new track with 
default bindings. The rectangles representing the newly added elements (replacement 
fragment) are colored in blue. The dark yellow rectangles represent the elements that 
are directly related to the newly added elements in the resulting model excerpt. 

Each rectangle consists of an icon which is the same one used in the base DSL 
graphical editor, the type of the element, and the name of the element. For example, in 
the rectangle representing the line segment FLS3 (see Fig.24), the same icon is used 
in the TCL editor for line segments, followed by its type and name. 

                                                           
 

15 http://www.eclipse.org/gef/zest/ 
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By selecting a rectangle, the color will turn to light yellow in the preview. At the 
same time, the actual model element in the base model or library models will be 
highlighted in the CVL-enabled base DSL editor. For example, as illustrated in 
Fig.24, by selecting a newly added element RemoteSwitch.V4(F), its color changes in 
the preview, and the switch V4 is highlighted in blue in the CVL-enabled TCL editor. 

 

 
Fig.24. Preview of the resulting model excerpt of the fragment substitution Insert new track 

with default bindings 

In the preview all the elements with missing references (due to unbound boundary 
elements) will be marked with a warning sign. A warning message with the type 
information of the unbound reference also pops up when the element is selected in the 
preview, which should be inspected manually to rule out unintentional missing 
references. As illustrated in Fig.24, it is warned that a boundary element recording a 
reference to the remote switch V4 is left unbound, which requires closer inspection 
from the developer to see whether this reference is unbound intentionally. 

Run the simulation of the substitution with default bindings. In this step the 
developer improves the default bindings based on the preview of the simulation result. 
The simulator can be invoked iteratively on newer versions of the binding definition 
until the resulting model excerpt fulfills the intention of the developer. 
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6.2.2.2 Checking the Consistency between Variability Specification and 
Variability Realization 

 
Fig.25. Element inconsistency detected by the consistency checker 

As stated in [21, 22], ensuring the consistency between variability specification and 
realization is a big underrated challenge in SPL development. Imagine that in a 
product line, the variability specification allows the coexistence of feature A and B in 
products, but the realization of feature A and B involves changing the same model 
object in two different ways. If this inconsistency between variability specification 
and realization is not detected and rectified at design time, it will cause errors during 
product derivation. 

 

 
Fig.26. Border inconsistency detected by the consistency checker 

In order to address this challenge, we have developed a consistency checker based 
on CVL and Alloy [67] formal analysis (see Section 2.4). The consistency checker 
checks the consistency between the feature specification and product realization layer 
of a CVL model. The consistency checker is built to detect the following types of 
inconsistencies: 
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Fig.27. How the consistency checker works internally 

Element inconsistency occurs when one model element in the base model is to be 
replaced in two substitutions, and both substitutions coexist in the same product 
configuration (resolution model) (see Fig.25). By executing a product configuration 
with element inconsistencies, the substitution executed later in time will overwrite the 
changes applied to the "conflicting" element by another substitution earlier. 

Border inconsistency occurs when two model elements in the base model are 
directly connected, included in the placement fragments of two different substitutions, 
and both the substitutions are selected in the same product configuration (resolution 
model) (see Fig.26). By executing a product configuration with border 
inconsistencies, either the CVL transformation may halt if an exception is thrown, or 
the reference(s) at the "border" may be incorrectly set to null instead of the intended 
model element(s). 

As illustrated in Fig.27, when the consistency checker is invoked, it first traverses 
every newly added/edited fragment substitution to search for pairs of substitutions 
with element/border inconsistencies. For each pair of fragment substitutions with 
inconsistencies, the consistency checker renders the alloy analyzer to see if the 
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features that contain these two substitutions can coexist in any valid product 
configuration. If so, then there are element/border inconsistencies between the feature 
specification and realization layer of this CVL model. For resolving element/border 
inconsistencies, Anatoly has continued our work and suggested categorized solutions 
in [129]. 

6.3 RT3: Evolving Model-Driven SPLs 

There is a lack of automatic assistance in supporting the evolution of model-driven 
SPLs. In Section 6.3.1, 6.3.2 and 6.3.3 we describe how our artifacts can contribute to 
RT3.1, RT3.2 and RT3.3. 

6.3.1 RT3.1: How to improve the productivity in inducing SPL evolution steps 
from new requirements? 

 
Fig.28. The scenario of augmenting a station product line with two new station products 

When it comes to the evolution of product lines, augmenting an existing product line 
with new products is a typical scenario. As reported in [121] and [123], train experts 
from ABB, Norway specify station models and station product lines based on the 
station drawings received from Norwegian railway authorities. As illustrated in 
Fig.28, with newly received drawings, it would be useful for the train experts to 
understand if and how the new station products can fit into the existing product line. 
We learned from literature review that this has been mostly a manual process, and we 
identified the requirement for providing automatic assistance to the developer in 
product line augmentation (see RT3.1), which resulted in our 5th artifact 
("Augmenting an SPL") (Appendix V). 

In Paper V, we proposed an approach for augmenting product lines with new 
products. The approach has the following characteristics: 

Original Product Line Model

New Product Models
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Fig.29. Pseudo-code for the overview of the SPL augmentation algorithm 

Generic. This approach is built based on CVL (the 1st artifact) and CVL Compare 
(the 3rd artifact). Therefore it can be applied to any CVL-based product line with any 
MOF-based base modeling language. 

Automated. This approach provides an automatic procedure for product line 
augmentation. First it takes an existing product line model (a CVL model) and a set of 
new product models defined in the same base language as input, and then the 
following routines will be invoked to : (1) Check if the new products can already be 
derived from the existing product line model. (2) If not, augment the existing product 
line model with necessary variability realization accordingly. The output of the 
procedure will be a tentative augmented product line model, which can serve as a 
baseline for manual enhancement using other CVL tools. 

As illustrated in Fig.29, the existing product line is augmented with one new 
product each time until all the new products are incorporated. We refer to Paper V 
(Appendix V) for a detailed description of the augmentation algorithm. In the 
following we give a simplified description of a single augmentation procedure (see 
Fig.30): 
1) Compare the base model of the current product line model PL with the new 

product model P using CVL Compare (the 3rd artifact). The comparison will 
result in a CVL model PL. 
a) If PL does not contain any fragment substitution, then the new product 

model P is equivalent to the base model of PL. The new product P is already 
included in the current product line PL. 

b) If PL does contain a fragment substitution S ( PF, RF) with PF and 
RF as its placement and replacement fragment, then the new product model 

P can be obtained by applying S ( PF, RF) to the base model of the 
current product line model. Subsequently we need to check if the current 
product line model PL already includes a fragment substitution S(PF, RF) 
that is equivalent to S ( PF, RF), starting from Step 2). 

2) Search the current product line model PL to see if it includes an existing 
placement fragment PF that is equivalent to PF. 
a) If so, then proceed with Step 3). 
b) If not, then the new product P is not included in the current product line PL. 

The augmentation routine is invoked to add the placement fragment PF, 
replacement fragment RF and the new fragment substitution S ( PF, 

RF) to the current product line model. 
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Fig.30. The simplified procedure of augmenting an SPL with a new product 

3) Check if PF's corresponding replacement fragment RF is equivalent to RF 
or can be configured to RF. As described in Section 6.1.1.1, with CVL, the 
developer is capable of further customizing/configuring a replacement fragment 
by defining placements inside it. Therefore the routine of this step does not only 
check if RF is equivalent to RF, but also check if RF can be configured to RF 
through any placement inside it. 
a) If PF's corresponding replacement fragment RF is equivalent to RF or can 

be configured to RF, then the current product line model PL already 
includes a fragment substitution S(PF, RF) that is equivalent to S ( PF, 

RF). Therefore the current product line model PL can already derive the 
new product model P and does not need augmentation. 

b) If PF's corresponding replacement fragment RF is neither equivalent to RF 
nor can be configured to RF, then the new product P is not included in the 
current product line PL. The augmentation routine is invoked to configure 
RF into RF and add corresponding substitutions accordingly. 
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Fig.31. The four products of the original product line 

As described above, the new product P is first compared with the base model of the 
current product line PL using CVL Compare. The resulting CVL model  contains 
only one fragment substitution . This fragment substitution shows how 
to obtain the new product P from the base model by substituting  with . 
However, the placement fragment may suggest more than one variation point 
which we cannot identify by only comparing P with the base model without 
additional information. 

 

 
Fig.32. The new station M5 

Suppose that we need to augment the station product line with another new station 
M6 (see Fig.35) after M5 (see Fig.32) is incorporated into the original product line 
(see Fig.31). 
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Fig.33. Compare M5 with M1 (base model) using CVL Compare 

We compare M1 (base model) with M6 using CVL Compare. The resulting CVL 
model contains the fragment substitution . The placement fragment 

refers to a model fragment with disjoint parts 1  and 2  (annotated in M1 
in Fig.36). As annotated in M6 in Fig.36, the replacement fragment also refers to 
a model fragment with disjoint parts 1  2 and 3 . 

We further search in the current product line (see Fig.34) for a node with the scope 
of  and fail to find one. Thus will be regarded as a new variation point to be 
added into the current product line. However, we can notice that 1 , as a subset of 

, coincides with  (see Fig.33). It would be ideal that the equivalence of 1  
and  is detected, so that will be regarded as two features with the scope of 

1 and 2 .  1 will then be synthesized into the current feature Parking (see 
Fig.34) with the scope of . In addition, a new feature will be created with the scope 
of 2 .  Nevertheless, our current algorithm does not yet support cases like detecting 
and splitting a compound variability. 
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Fig.34. The product line model augmented by M5 (after manual enhancement) 

A possible solution to detect compound variability is to provide the developer with 
some automatic assistance, such as comparing placements/replacements, in 
synthesizing, refactoring and optimizing newly added features after all the new 
products are incorporated into the current product line model. Another possible 
solution is to apply some domain-specific semantic information of the product models 
to identify a compound variability. 

 

 
Fig.35. The new station M6 
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Fig.36. Compare M6 with M1 (base model) using CVL Compare 

6.3.2 RT3.2: How to improve the productivity of SPL co-evolution? 

As discussed in RT3.2, for a model-driven SPL, the metamodel of the base DSL, the 
core assets (base & library model), the product line model and all the intended 
product models depend upon each other. All of them can subject to changes during 
product line evolution. Therefore, it can become necessary to co-evolve some others 
when some of them them evolves. 

As illustrated in Fig.37, one of the common scenarios for SPL co-evolution occurs 
when the core assets of a product line are changed but its product derivation needs to 
remain unaffected. In order to ensure that, does the developer need to update the 
product line model? If so, how? We identified the requirement for a method for co-
evolution of core assets and product line model, which resulted in our 6th artifact 
("Co-evolving an SPL") (Appendix VI). 
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Fig.37. The scenario of evolving an SPL when the base model is changed 

In Paper VI (Appendix VI), we proposed an approach for co-evolving the product 
line model (CVL model) when the base model is evolved. The approach has the 
following characteristics: 

 

 
Fig.38. The automatic process of evolving an SPL when the base model is changed 

Generic. The approach is built based on CVL (the 1st artifact) and CVL Compare 
(the 3rd artifact), and can be applied to any CVL-based product line and MOF-based 
base DSL. 

Automated. The approach provides an automatic procedure, which takes the 
original base model, the evolved base model and the original CVL model as input. 
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With the input models, the following routines will be invoked to: (1) Check if the 
changes to the original base model will affect product derivation. (2) If not, then there 
is no need to co-evolve the original CVL model. (3) If so, then the changes to the 
original base model have caused element/border inconsistencies. The inconsistencies 
need to be resolved by co-evolving the original CVL model. Based on a combined 
analysis of the original CVL model and the changes to the original base model, an 
evolved CVL model will be induced and suggested to the developer. Note that the 
automatic procedure may require human intervention when it comes to non-
deterministic decisions. 

In the following we give a simplified description of the automatic procedure (see 
Fig.38). We refer to Paper VI (Appendix VI) for a detailed description of the 
approach. 
1) Apply CVL Compare to the original base model and the evolved base model. 

This step results in a CVL model "the evolution CVL model". The evolved base 
model can be obtained by applying the only fragment substitution in the 
evolution CVL model to the original base model. As illustrated in Fig.38, a two-
track station (the original base model) and a three-track station (the evolved base 
model) is compared using CVL Compare. The resulting evolution CVL model 
summarizes the changes that have been done to the original base model, which is 
to substitute the second track with a two-track structure. 

2) Check if there is any element/border inconsistency between the original and 
the evolution CVL model. In this step the routine will check if there is any 
element/border inconsistency (see Section 6.2.2.2) between any placement 
fragment in the original CVL model and the only placement fragment in the 
evolution CVL model. As the example illustrated in Fig.38, the placement 
fragment in the evolution CVL model, which is the second track, starts with an 
endpoint on the left. The same endpoint is also included in a placement fragment 
in the original CVL model and these two placement fragments may exist in the 
same product, which causes an element inconsistency. 
a) If not, then the evolved base model will yield the same products as the 

original one, thus there is no need to co-evolve the original CVL model. 
b) If so, then proceed with Step 3) for inconsistency resolution. 

3) Resolve element/border inconsistencies. The routine will perform the following 
to resolve an element/border inconsistency: 
a) Fetch the model elements from the replacement fragment (in the evolution 

CVL model) that are bound to the common endpoint E1. 
b) Check if the model elements obtained from the last step have the same 

context (references to/from the same elements). 
i) If there is only one model element E2 fulfills the requirement, then the 

element inconsistency can be automatically resolved. The resolution is 
performed by replacing the model element E1 that causes the 
inconsistency by the model element E2 in the original CVL model, 
which results in an evolved CVL model. In our example (see Fig.38), 
only the second left-most endpoint on the bottom track (from the 
replacement fragment in the evolution CVL model) has the same context 
as the common endpoint that causes the inconsistency. 
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ii) If there are more than model elements which fulfill the requirement 
(have the same type and context), then the developer will be asked to 
make the decision. In Paper VI, we also discussed the possibility to 
improve the automatic decision-making by taking the semantics of the 
base DSL into account.  

6.3.3 RT3.3: How to assist the developer to gain a comprehensive understanding 
of the impact of an SPL evolution? 

As discussed in RT 3.3, there is an emerging need for differencing techniques for 
product lines, which can be very useful for helping understand the impact of evolution 
by comparing the original and the evolved product line [6]. Most existing differencing 
techniques for product lines are dedicated to comparing feature models. The majority 
of those techniques are syntax-based, namely that they will only produce syntactical 
difference between the original and the evolved feature models [6]. On the other hand, 
the minority of existing feature model differencing techniques focus on semantic 
differencing, namely that the difference between the original and the evolved feature 
model will be represented in terms of added and removed products [6, 117]. However, 
semantic differencing techniques for feature models cannot always accommodate the 
need for differencing product lines, e.g., not feature model but variability (feature) 
realization has been changed during evolution. We identified the requirement for 
proposing a semantic differencing technique for product lines covering both 
variability specification and realization, which resulted in our 7th artifact ("Semantic 
differencing for SPLs") (Appendix VII). 

In Paper VII (our 7th artifact), we proposed semantic differencing approach for 
product line. The approach aims to provide the developer with a comprehensive 
picture of the semantic impact of an evolution. Therefore it does not only take 
variability (feature) specification but also variability (feature) realization into account 
in the differencing process. We illustrated our approach on CVL-based product lines, 
which is one of the very few techniques that allow specifying both features and their 
realizations in a holistic product line model. 

In particular, we proposed the following two semantic differencing operators, one 
for differencing the feature specification layer and the other for differencing the 
feature realization part of the original and the evolved product line model (CVL 
model): 

FSDiff ("Differencing Feature Specification"). The semantic of the feature 
specification layer of a CVL model is all the valid configurations allowed by this 
layer, which we call "feature configurations". A feature configuration contains a set of 
features. Two feature configurations are regarded different if they contain different 
sets of features. As illustrated in Fig.39, by applying FSDiff to the original and the 
evolved product line PL and , feature configurations that are newly added into the 
evolved product line will be output as a set of FSDiff_Witnesses. Each 
FSDiff_Witness represents a newly added feature configuration to the evolved product 
line. A diff CVL model FSDIff_CVL can be generated which only allows 
FSDiff_Witnesses. 
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Fig.39. Apply FSDiff and FRDiff to analyze the semantic impact of an evolution 

FRDiff ("Differencing Feature Realization"). Feature realizations in a CVL 
model are usually contained by features. Therefore the semantic of the feature 
(product) realization layer of a CVL model is all the valid configurations allowed by 
both the feature specification and feature realization layer, which we call "product 
configurations". A product configuration contains a set of features and their 
realizations. Since only feature realizations are executed during product derivation, 
we only consider two product configurations different if they contain different sets of 
feature realizations. As illustrated in Fig.39, by applying FRDiff to the original and 
the evolved product line PL and , product configurations that are newly added into 
the evolved product line will be output as a set of FRDiff_Witnesses. Each 
FRDiff_Witness represents a newly added product configuration to the evolved 
product line. A diff CVL model FRDIff_CVL can be generated which only allows 
FRDiff_Witnesses. 

Formal definitions of FSDiff and FRDiff are given in Paper VII. In order to 
evaluate the feasibility of the approach, we also implemented the approach using 
Alloy (see Section 2.4). In particular, we performed the following tasks: (1) Define a 
simplified CVL metamodel using Alloy language. (2) Translate any CVL model into 
Alloy language. (3) Define FSDiff and FRDiff in Alloy language. 

Differencing feature specification 
layers of the original 

and evolved CVL model

FSDiff (PL, PL’)

Differencing feature realization 
layer of the original 

and evolved CVL model

FRDiff (PL, PL’)
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diff model (a CVL model)

FSDiff_CVL
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A comprehensive understanding of 
the semantic impact of the evolution
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7 Discussions 

In our thesis work we have addressed the research topics defined in Section 3 through 
artifacts manifested by our research papers. In this section we discuss how our 
artifacts can serve different roles in an extended CVL methodology for model-driven 
SPL development and evolution, which subsumes the methodology described in 
Section 6.1.1.2. 

7.1 An Extended CVL Methodology for Model-Driven SPL Development and 
Evolution 

In the following we walk through the extended CVL methodology as illustrated in 
Fig.40: 
 
Develop the Base DSL 
We observed at our industrial partners that in order to promote model-driven SPL 
development, we often needed to help them to adopt stand-alone model-driven 
software development first, namely that developing a base DSL with its tool support. 
Our 2nd artifact ("APRiL") is applicable in such contexts that, there is no existing DSL 
for the base domain of the SPL, or the current DSL is not suitable to serve as the base 
language for the SPL to be built. 

During the development of a base DSL, the developer may benefit from the 
guidelines and lessons learned given in the 2nd artifact, such as keeping language 
definition simple, fully domain-specific without variability modeling concepts and 
etc.  
 
Variability Identification 
During variability identification, the developer needs to identify the variability and 
commonality of all intended products of the product line. We provide different 
strategies for identifying variability depending on the context of the SPL 
development: 

(1) When the product line needs to include existing products, it would be 
suitable to compare existing products to identify variability between them. 

 If existing product models specified in the base DSL are available, the 
developer can apply the CVL Compare tool provided in the 3rd artifact to 
synthesize a preliminary product line model from the existing product 
models automatically. Subsequently the preliminary product line model 
can be further enhanced by the developer manually by following the 
guidelines provided by the 1st artifact. 



94 
 
 

 If not, the developer can follow the step described in the 1st artifact to 
identify the variability of the SPL manually. 

(2) When the product line is developed from scratch, the developer can start 
with choosing/specifying the base model. While defining the CVL model, the 
developer can then decide, how the intended product models should vary from each 
other relative to the base model. 

(3) Very often a product line does not only need to include existing products, 
but also needs to introduce new products. In this context, the developer may need 
to apply a combination of the two strategies, by starting with comparing existing 
products, and further generalizing the product line to support new products. 

 
Variability Specification 
During variability specification, the developer needs to specify the high-level 
variability (domain-specific features) of the product line in the product line definition. 
Using the CVL language and tools provided by our 1st artifact, the developer can 
specify the high-level variability at the feature specification layer of a separate 
variability model, regardless of which base DSL is in use. 
 
Variability Realization 
During variability realization, the developer needs to define how the domain-level 
features of the product line should be realized at the model object level. 

The CVL language (the 1st artifact) provides capabilities to define variability 
realization holistically with variability specification, by means of defining CVL-
specific model editing model operations (substitutions) at the product realization layer 
of a CVL model. 

In order to ensure that the product line model only yields intended product models, 
the developer can apply the two tools provided by our 4th artifact: the fragment 
substitution simulator to preview results of CVL substitutions, and the consistency 
checker to search for inconsistencies between the feature specification and product 
realization layer of a CVL model that may affect the intended product derivation.  
 
Product Configuration 
With the language and tool support provided by our 1st artifact, the developer can 
either use the standard CVL editor to create product configurations (resolution models 
in CVL terms), or render automatic tool support from the CVL “select (the features)-
and-generate” resolution model generator. 
 
Product Derivation 
By running the CVL description through the generic CVL transformation (see the 1st 
artifact), product models can be derived from the product line model and the core 
assets of the product line. 
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Fig.40. The extended CVL methodology for Model-Driven SPL development and Evolution 

The Extended CVL Methodology for SPL Development and Evolution
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SPL Evolution 
Augmenting an existing product line with new products is a common SPL evolution 
requirement. The developer can choose to perform the augmentation by the following 
three means: 

 Feed the automatic tool provided by our 5th artifact ("Augmenting an SPL") 
with the existing product line model and new product models. The tool will 
first check if the existing product line already includes the new products, and 
if not, the tool will update the product line model automatically. 
Subsequently the augmented product line model that is automatically 
suggested can be further enhanced by the developer manually by following 
the guidelines provided by the 1st artifact. 

 Feed the new product models and all product models to the CVL Compare 
tool provided by our 3rd artifact. The CVL Compare will automatically 
synthesize an augmented product line model which includes all those 
products. However, it is not always practical to obtain all the product models 
of the existing product model. 

 Follow the guidelines provided by our 1st artifact and augment the existing 
product line model manually. 

 
SPL Co-Evolution 
When the base model of a product line changes, the developer may need to update the 
product line model so that the current product derivation is not affected. In this 
context, the developer can apply the tool support provided by our 6th artifact, which 
will perform an automatic update of the product line model if necessary. 
 
Understand the Impact of an SPL Evolution 
In order to gain a comprehensive understanding of the semantic impact of an SPL 
evolution, the developer can use the two semantic differencing operators for product 
lines that we propose in the 7th artifact, one for differencing the feature specification 
layer of the original and the evolved CVL model, the other one for comparing the 
product realization layer of them. 
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8 Conclusions and Future Work 

In our thesis work we have addressed the research topics defined in Section 3 through 
artifacts reflected by our research papers. In the following we revisit the research 
topics, which we conclude to what extent our artifacts have contributed to them, and 
propose potential directions for future work. 

8.1 Research Topic 1: A Generic Approach for Developing Executable Model-
Driven SPLs (RT1) 

RT1 addressed how to develop executable model-driven SPLs in a generic way. This 
was decomposed into two sub-topics: how to define variability specification and 
realization in a generic way for model-driven SPLs in different domains (RT1.1), and 
how to develop a base DSL suited for building model-driven SPLs (RT1.2). 

8.1.1 RT1.1: How to Define Variability Specification and Realization in a 
Generic Way for Model-Driven SPLs in Different Domains? 

The 1st ("CVL"), 3rd ("CVL Compare") and 4th ("Automatic assistance in defining 
variability realization") artifact contribute to solving the research topic RT1.1 wherein 
we provide a separate and generic variability modeling language, the Common 
Variability Language (CVL), the CVL methodology and automatic support for model-
driven SPL development. 

While there are already several generic model-driven approaches for specifying 
domain-level variability in a separate product line model (e.g., feature modeling), few 
of them also support defining how the variability/features should be realized at the 
model (object) level in terms of model editing operations in the same product line 
model. The CVL approach is innovative in this aspect by introducing an additional 
product realization layer into the product line model. Therefore the developer can 
define both features and their realizations holistically in a single product line model 
which is fully executable. 

Another key challenge was how to represent feature realization (model editing 
operations) in a generic way, such that it can describe arbitrary edits to any model 
specified in any base DSL. This is addressed in our CVL approach by generalizing 
arbitrary model editing operations into value, reference and fragment substitutions, 
which can describe arbitrary value and structural changes in any model. 
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Furthermore, the CVL methodology for SPL development provides guidelines on 
how the developer can manually develop a CVL-based SPL from scratch, and at 
which phases automatic support can be rendered to improve the productivity. 

In summary, our artifacts have directly contributed to RT1.1 and the results have 
been validated through industrial and academia case studies. In order to contribute to 
RT1.1 further, the following directions can be explored in the future work of our 
proposed approach: (1) Propose more guidelines for CVL-based SPL development 
based on rigorous empirical studies. For example, as described in Section 6.1.1.2, the 
developer needs to make informed decisions in choosing the optimal base/library 
model for a product line, and the current descriptive guidelines can benefit from an 
update of quantitative metrics. (2) Propose new automatic support to cover all phases 
of CVL-based SPL development and update the guidelines accordingly, e.g., 
providing automatic support in choosing the optimal base/library model. 

8.1.2 RT1.2: How to Develop a Base DSL Suited for Building Model-Driven 
SPLs? 

The context of RT1.2 is to develop model-driven SPLs for a base domain when there 
is no base DSL yet. We observed at our industrial partners that instead of promoting 
model-driven SPL development to them alone, very often we also needed to help 
them to develop a base DSL first. 

Our research design was decided by the nature of the challenge posed by RT1.2. 
Instead of trying to propose a new approach, we focus our research on developing 
base DSLs & model-driven SPLs for real industrial domains and summarizing 
guidelines based on the lessons learned. In paper II, we reported our experience in 
developing a base DSL and SPLs for the payroll reporting domain. Through the 
report, we showed: (1) It can be potentially beneficial if the language concepts of the 
base DSL is fully domain-specific without any variability modeling concept. This 
characteristic of the base DSL will make it more intuitive and conceptually clearer to 
build SPLs that are based on separate variability modeling approaches. (2) How the 
productivity of software development can be improved by the DSM paradigm and 
then even further elevated by model-driven SPL development. 

In summary, our artifact has contributed to RT1.2 directly considering the 
empirical nature of this research topic. In order to strength the external validity of our 
study, the practice of "DSM+SPL" needs to be introduced to various industrial 
domains for empirical analysis from a broader spectrum. 

8.2 Research Topic 2: Automatic Assistance in Model-Driven SPL 
Development (RT2) 

RT2 addressed providing automatic assistance in model-driven SPL development. In 
particular, we focus on two sub-topics: how to improve the productivity of variability 
identification in model-driven SPL development (RT2.1), and how to ensure that 
variability realization will only yield intended products (RT2.2). 
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8.2.1 RT2.1: How to Improve the Productivity of Variability Identification in 
Model-Driven SPL Development? 

During the variability identification phase of SPL development, the variability and 
commonality of all intended products of the product line need to be identified, which 
has been mostly a manual and time-consuming process. Instead of addressing RT2.1 
for SPL development in all contexts, we narrowed our problem area down to a more 
specific but still quite common niche, which is - how to improve the productivity of 
variability identification when an SPL needs to include some existing products. Often 
in practice an SPL is not built from scratch. The product line needs to derive existing 
products, and on top of that, may further introduce new products. In this context, our 
CVL Compare approach (the 3rd artifact, together with the 1st one), provides 
automatic assistance to improve the productivity of variability identification. 

In particular, the CVL Compare approach provides an automatic procedure to 
synthesize a CVL-based SPL from a set of existing product models defined in any 
MOF-based DSL. The CVL Compare tool takes in a set of existing product models, 
identifies the variability among them, and then outputs a preliminary product line 
model for manual enhancement. 

In summary, the CVL Compare approach has partially contributed to RT2.1. 
However, the following aspects can be explored in future work: (1) The current 
approach can already induce simple feature dependencies such as co-existence. It will 
be useful to further improve the approach so that it can identify more complex feature 
dependencies and constraints based on the comparisons. (2) The current approach 
suggests the preliminary product line model that is rather flat. This is due to the lack 
of domain-specific semantic information in the generic approach. Potential extensions 
can be explored to allow human intervention in separating single features from 
compound features [142]. 

8.2.2 RT2.2: How to Ensure that Variability Realization will Only Yield 
Intended Products? 

Defining variability realization is a critical step of an SPL development since it 
directly affects how the derived products will look like. Therefore the variability 
realization layer of a product line model (CVL model) should only yield intended 
products (RT2.2). However, it can be rather challenging to define variability 
realization when it involves much model (object) level details in a complex base 
domain. In the thesis work, we narrowed down the big problem into two specific 
areas: one is to provide immediate feedback on the definition of variability realization 
at design time; the other is to check the consistency between the variability realization 
and specification in the same product line model. 

Firstly we proposed a fragment substitution simulator, which can be executed at 
design time and provide a preview of the resulting model excerpt. The simulator, if 
properly used in an iterative "define-preview-improve" manner, can provide an 
immediate feedback on whether the current definition of substitution will yield 
intended model changes. Secondly we proposed a consistency checker to search for 
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unwanted element/border inconsistencies in the product line model, which may halt 
the product derivation or yield unintended products. 

In summary, our approach has contributed directly to RT2.2 in two sub-areas. 
Future work can be performed in the following directions: (1) Applying pairwise 
testing techniques [69] to improve the scalability of the consistency checker. (2) 
Extending the consistency checker so that it can also verify additional rules of the 
base DSL (e.g., OCL constraints). (3) Suggest improvements to the product line 
model automatically from both the simulator and consistency checker. 

8.3 Research Topic 3: Evolving Model-driven SPLs (RT3) 

RT3 addressed approaches in evolving model-driven SPLs. In particular, we focused 
on three topics: how to improve the productivity in inducing SPL evolution steps from 
new requirements (RT3.1), how to improve the productivity of SPL co-evolution 
(RT3.2), and how to assist the developer to gain a comprehensive understanding of 
the impact of an SPL evolution (RT3.3). 

8.3.1 RT3.1: How to Improve the Productivity in Inducing SPL Evolution Steps 
from New Requirements? 

We narrowed down the scope of the problem to the following specific scenario: how 
to improve the productivity in augmenting an SPL when there is a need to include 
new products? We addressed this problem by providing an automatic procedure to 
augment a CVL-based product line with new product models. The approach takes in 
the current CVL model and the new product models as input, and outputs a tentative 
augmented CVL model for manual enhancement. 

In summary, the proposed approach has directly contributed to a sub-area of 
RT3.1. However, we also observed an issue during the development of this approach, 
which is the identification compound variability as described in Section 6.3.1. The 
approach can benefit from future work in the following directions: (1) Evaluation 
using different examples in various domains. (2) The optimal strategy to identify 
compound variability. Can it be automated with comparison assistance? Can it be 
automated if the semantics of the base language of the product line is taken into 
account? (2) How to update feature dependencies and constraints based on the 
comparisons in the augmented product line model. 

8.3.2 RT3.2: How to Improve the Productivity of SPL Co-evolution? 

We narrowed down the scope of the problem to one of the most common SPL co-
evolution scenario: evolving an SPL when the base model is changed. In order to 
address the challenge, we provided an approach to evolve the product line model 
automatically if necessary when the base model is changed. In particular, the 
approach applies CVL to record the changes to the base model, detect and resolve the 
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element/boundary inconsistencies in the original product line model caused by the 
changes to the base model. 

However, the automatically suggested evolved product line model with 
inconsistencies resolved is only syntactically correct and can be semantically invalid. 
This is because our approach cannot obtain the semantic information of the base DSL 
due to its generic nature. In potential extensions of this approach, we can consider to 
allow human intervention for decisions that cannot be made deterministically only 
based on the syntax of the base DSL. Furthermore, we may also focus on another 
common SPL co-evolution scenario, evolving the product line when the base DSL is 
changed, in our future work. 

8.3.3 RT3.3: How to Assist the Developer to Gain a Comprehensive 
Understanding of the Impact of an SPL Evolution? 

As discussed in Section 3.3, it is essential for the developer to gain a comprehensive 
understanding on the added/removed products after an SPL evolution, which calls for 
semantic differencing approaches for SPLs. We also saw that the traditional semantic 
differencing techniques for feature models cannot cater the need to differencing SPLs 
where the variability realization should also be taken in to account. In order to address 
this challenge, we proposed a semantic differencing approach for CVL-based SPLs 
which take both variability specification and variability realization into account. In 
particular, we defined and implemented (in Alloy) two semantic differencing 
operators for comparing the feature specification layer and the product realization 
layer of two CVL models. We illustrated the application on industrial case studies. 

In summary, our approach has directly contributed to helping the developer to gain 
a comprehensive overview of the semantic impact of an SPL evolution. Furthermore, 
it can be extended in the following directions: (1) Improve the performance of the 
analysis by applying Alloy optimization techniques. (2) Integrate the approach with 
syntax-based differencing techniques for better performance and an even more 
complete understanding of an SPL evolution. 
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Product Line 
 
Authors: Xiaorui Zhang, Øystein Haugen and Birger Møller-Pedersen 
 
Journal: Proceedings of the 15th International Software Product Line 
Conference, IEEE Computer Society, 2011, 90-99  
 
Author contribution: Xiaorui Zhang is the main contributor of this 
paper, and has contributed to all parts of it (ideas, tool implementation, 
paper-writing and all topics of the paper), responsible for 90% of the 
work.  
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Appendix IV 

Paper IV: Towards Correct Product Derivation in Model-Driven 
Product Lines 
 
Authors: Xiaorui Zhang and Birger Møller-Pedersen 
 
Journal: Proceedings of the 7th international conference on System 
Analysis and Modeling: theory and practice, Springer-Verlag, 2013, 
179-197.  
 
Author contribution: Xiaorui Zhang is the main contributor of this 
paper, and has contributed to all parts of it (ideas, tool implementation, 
paper-writing and all topics of the paper), responsible for 90% of the 
work. 
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Appendix V 

Paper V: Augmenting Product Lines 
 
Authors: Xiaorui Zhang, Øystein Haugen and Birger Møller-Pedersen 
 
Journal: Proceedings of the 2012 19th Asia-Pacific Software 
Engineering Conference - Volume 01, IEEE Computer Society, 2012, 
766-771.  
 
Author contribution: Xiaorui Zhang is the main contributor of this 
paper, and has contributed to all parts of it (ideas, tool implementation, 
paper-writing and all topics of the paper), responsible for 90% of the 
work. 
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Appendix VI 

Paper VI: Towards Evolution of Generic Variability Models 
 
Authors: Andreas Svendsen, Xiaorui Zhang, Øystein Haugen and 
Birger Møller-Pedersen 
 
Journal: Proceedings of the 14th international conference on Models 
in Software Engineering, Springer-Verlag, 2012, 53-67.  
 
Author contribution: Xiaorui Zhang is one of the main contributors of 
this paper, and has contributed to all parts of it (ideas, tool 
implementation, paper-writing and all topics of the paper), responsible 
for 45% of the work. 
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Appendix VII 

Paper VII: Semantic Differencing for Product Line Evolution 
 
Authors: Xiaorui Zhang, Øystein Haugen and Birger Møller-Pedersen 
 
Journal: SINTEF Report A25398, ISBN 978-82-14-05332-6  
 
Author contribution: Xiaorui Zhang is the main contributor of this 
paper, and has contributed to all parts of it (ideas, tool implementation, 
paper-writing and all topics of the paper), responsible for 90% of the 
work. 
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