Measuring in vivo Regional Myocardial Function Using High-Field MRI
Development and application of high-resolution MR imaging of the beating heart

Emil Knut Stenersen Espe
Dissertation for the degree Philosophiae Doctor (Ph.D.)
University of Oslo
2014
ACKNOWLEDGEMENTS

The work presented in this thesis was done in 2010-2014 at the Institute for Experimental Medical Research (IEMR) at Oslo University Hospital Ullevål and University of Oslo. The work was done in collaboration with Department of Cardiovascular Medicine (University of Oxford, UK), Institutt for kirurgisk forskning (OUS Rikshospitalet), Center for Cardiological Innovation, (OUS/UiO), Department of Cardiology (OUS Rikshospitalet); Bjørknes College and Department of Thoracic Surgery (OUS Ullevål).

First and foremost, I wish to express my deepest gratitude to my main supervisor, Prof. Ivar Sjastad, and to my co-supervisors PhD Lili Zhang and Prof. Ole M. Sejersted. As my main supervisor, I think it is impossible to overestimate the importance of Ivar’s daily guidance during my PhD period. He possesses a vast bank of knowledge, and no matter whether tasks, small or large, are apparently straightforward or seemingly impossible, he never ceases to be positive and constructive. I am fascinated by his energy and ability to stay optimistic and realistic at the same time, and very thankful for the trust he has shown me. Furthermore, without our treasured “MR-wizard” Lili I would be very much lost in the rocky landscape of magnetic resonance (MR). She continues to impress with her deep theoretical and technical understanding of the system, and has been an important guide in the overwhelming scenery that is MR. Also, the overview and long-term guidance provided by Ole has been of great importance in my work. He retains a unique ability to combine his responsibility as head of IEMR with a keen eye for the details in the individual projects and an encouraging spirit. He continues to be an inspiration.

The present work is utterly a result of a combined effort. I am very grateful for the profound contributions from my colleagues at the MR facility; Kristine, Solveig and Vidar. In addition to having provided many interesting and fruitful discussions and important reflections, they generate the nicest social working environment anyone might ask for. Moreover, Magnus has been of great importance to me with both scientifically and socially, and I’ve enjoyed and learned a lot from our discussions. I am very thankful for all his help, although he continues to beat me at chess…

Overall, the unique working environment at IEMR is recognized by its skillful people with a large variety of backgrounds creating a truly synergic cross-discipline setting. I am very thankful to each and every one of my colleagues for contributing to the including atmosphere that recognizes IEMR. Special thanks to Michael, Bill, Åsmund, Biljana, Vigdis, Tore, Kristin and Guro with whom I’ve had the pleasure of working especially close with. Furthermore, I’ve enjoyed sharing offices with Ståle, Mathis, Nils, Pim, Karina, Ravinea, Tandekile, Terje and Jonas over the years, often-times resulting in unexpected and important discussions. Lisbeth, Jo-Ann and Ulla are instrumental and do a marvelous work in ensuring that IEMR continues to be a smooth-running machine. Per Andreas and Vidar provides unmatched expertise in making sure that everything communicating with ones and zeroes works properly. How they continue to do that every day, with a smile, is beyond me and nothing short of amazing. Roy’s skills in the technical department have also been of great importance to me and I am very thankful for his help.
Without the highly competent staff at the animal care facility, nothing of this work would be possible. I am very thankful for their continuous efforts for providing a safe and well-organized facility.

In the final stages of my PhD period, the crucial contributions of Dr. Morten Eriksen, Prof. Thor Edvardsen and Prof. Otto A. Smiseth at OUS Rikshospitalet have been very much treasured. In the last project, their roles were vital. Especially, my (nearly) daily contact with Morten in this stage has been of great importance to me, and he continues to baffle me with his seemingly never-ending knowledge.

I would also like to emphasize the important contributions from Dr. Jürgen Schneider at the University of Oxford, who is one of the primary authorities in the world on preclinical MR. He has provided insightful and constructive feedback throughout my work with this thesis. I am deeply thankful for his engagement.

Last but not the bit least, I wish to express my gratitude to my friends and family. I am very thankful for the love and support I have received from my parents, Bente and Erik. You have always been there for me! Also, my siblings Morten, Stine and Asbjørn and sister-in-law Ann-Marit, my sweet grandmothers Bjørg and Gudrun, and my family-in-law Maj-Britt, Trond, Elin, Ingrid, Magne and Karl all have stayed supportive and interested. One could not wish for a better family; you all mean a lot to me. On that note, I wish to emphasize the deep imprints on my life made by my late grandfathers, Erling and Ivar. They were always caring, supportive and involved. I miss you both deeply.

Throughout and after my studies at the Department of Physics at UiO, I’ve treasured my friendship with Erlend. We have shared ups and downs all the way from the somewhat murky Sophus Lie’s auditorium to the friendly corridors of the Biophysics group; and continue to share a common fascination for intricate medical equipment. Also, I wish to emphasize my good friend Ole, who has been my closest friend for over 10 years, and with whom I’ve probably had the most surprising, fascinating and meaningful discussions there ever was. Although there unfortunately can be a while between us seeing each other, I hold our friendship very high.

Finally, words cannot describe the importance to me of my lovely wife Sigrun and adorable sons Erlend Markus and Sebastian, who constitute the very fundament of my existence and keep reminding me of what really matters in life. For that, I will forever be grateful.

Emil Knut Stenersen Espe,
Ås, May 2014
SUPPORTED BY

Institute for Experimental Medical Research
South-Eastern Norwegian Regional Health Authority
Oslo University Hospital Ullevål
University of Oslo
The Research Council of Norway
KG Jebsen Cardiac Research Center
Center for Heart Failure Research
Anders Jahre’s Fund for the Promotion of Science
Familien Blix’ fond til fremme av medisinsk forskning
# Table of Contents

Abbreviations ................................................................................................................ 9  
1 List of Papers in Thesis ....................................................................................... 11  
2 Summary ................................................................................................................ 13  
3 Introduction .......................................................................................................... 15  
   3.1 Myocardial Mechanics ................................................................................. 15  
      3.1.1 Global and Regional Mechanical Function ..................................... 15  
      3.1.2 Motion, Deformation and Work ....................................................... 15  
      3.1.3 The Normal Heart ............................................................................... 15  
   3.2 Heart Failure ................................................................................................. 17  
      3.2.1 Evaluating Myocardial Function in Heart Failure ......................... 18  
      3.2.2 Animal Models in Heart Failure Research ....................................... 19  
   3.3 Methodology for Assessing Myocardial Function .................................. 19  
      3.3.1 Echocardiography ............................................................................... 21  
      3.3.2 Magnetic Resonance Imaging ............................................................ 22  
   3.4 Theory ........................................................................................................... 26  
      3.4.1 Phase Contrast MRI: a Primer .......................................................... 27  
      3.4.2 PC-MRI Signal Generation ............................................................. 30  
      3.4.3 Eddy Currents ...................................................................................... 35  
      3.4.4 Flow Artifacts and Gradient Moment Nulling ..................................... 38  
      3.4.5 Myocardial Strain ................................................................................. 39  
4 Main Aims ............................................................................................................. 41  
5 Methods ................................................................................................................. 42  
   5.1 Experimental Models .................................................................................. 42  
      5.1.1 Models Employed in This Work ....................................................... 42  
      5.1.2 Extrapolating Preclinical Findings to Humans .................................... 42  
      5.1.3 Anesthesia, Preparation and Monitoring ......................................... 43  
      5.1.4 Limitations of the Animal Models .................................................... 43  
   5.2 Magnetic Resonance Imaging .................................................................... 44  
      5.2.1 MRI Hardware and Software ............................................................. 44  
      5.2.2 ECG and Respiratory Gating ............................................................ 44  
      5.2.3 Cine MRI .............................................................................................. 45  
5.3 Phase Contrast MRI ....................................................................................... 45
### Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-STE</td>
<td>2D speckle-tracking echocardiography</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BP</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>cRMW&lt;sub&gt;L&lt;/sub&gt;</td>
<td>Circumferential regional myocardial work per unit (through-plane/long-axis) length</td>
</tr>
<tr>
<td>cRMW&lt;sub&gt;S&lt;/sub&gt;</td>
<td>Circumferential regional myocardial work per unit surface</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>DENSE</td>
<td>Displacement encoding with stimulated echos</td>
</tr>
<tr>
<td>ECC</td>
<td>Eddy current compensation</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiography</td>
</tr>
<tr>
<td>ECHO</td>
<td>Echocardiography/Ultrasound</td>
</tr>
<tr>
<td>EF</td>
<td>Ejection fraction</td>
</tr>
<tr>
<td>HARP</td>
<td>Harmonic phase</td>
</tr>
<tr>
<td>HF</td>
<td>Heart failure</td>
</tr>
<tr>
<td>LCA</td>
<td>Left coronary artery</td>
</tr>
<tr>
<td>LV</td>
<td>Left ventricle</td>
</tr>
<tr>
<td>LVP</td>
<td>LV intraventricular pressure</td>
</tr>
<tr>
<td>MI</td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>MR</td>
<td>Magnetic resonance</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>NA</td>
<td>Number of averages (signal averaging)</td>
</tr>
<tr>
<td>PC-MRI</td>
<td>Phase contrast magnetic resonance imaging</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>RF</td>
<td>Radio frequency</td>
</tr>
<tr>
<td>RV</td>
<td>Right ventricle</td>
</tr>
<tr>
<td>SA</td>
<td>Short axis</td>
</tr>
<tr>
<td>SENC MRI</td>
<td>Strain encoded MRI</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single-photon emission computed tomography</td>
</tr>
<tr>
<td>SV</td>
<td>Stroke volume</td>
</tr>
<tr>
<td>TDI</td>
<td>Tissue Doppler imaging</td>
</tr>
<tr>
<td>TE</td>
<td>MR echo time</td>
</tr>
<tr>
<td>TR</td>
<td>MR repetition time</td>
</tr>
<tr>
<td>VIPR</td>
<td>Vastly undersampled isotropic-voxel radial projection imaging</td>
</tr>
</tbody>
</table>


1 List of Papers in Thesis

Paper I
Improved MR phase contrast velocimetry utilizing a novel nine-point balanced motion encoding scheme with increased robustness to eddy current effects
Emil K. S. Espe, Jan Magnus Aronsen, Biljana Skrbic, Vidar Magne Skulberg, Jürgen E. Schneider, Ole M. Sejersted, Lili Zhang, Ivar Sjaastad

Paper II
Unwrapping eddy current compensation: Improved compensation of eddy current induced baseline shifts in high-resolution phase-contrast MRI at 9.4 T
Emil K. S. Espe, Lili Zhang, Ivar Sjaastad

Paper III
Novel insight into the detailed myocardial motion and deformation of the rodent heart using high-resolution phase contrast MRI
Emil K. S. Espe, Jan Magnus Aronsen, Kristine Skårdal, Jürgen E. Schneider, Lili Zhang, Ivar Sjaastad

Paper IV
Assessment of regional myocardial work in rats
Emil K. S. Espe, Jan Magnus Aronsen, Guro Soe Eriksen, Lili Zhang, Otto A. Smitseth, Thor Edvardsen, Ivar Sjaastad, Morten Eriksen
Submitted
2 SUMMARY

Heart failure (HF) is one of the major causes of mortality in the Western world, recognized by a compromised ability of the heart to supply the body with blood. The poor understanding of the disease mechanisms and lack of adequate therapy strategies are reflected in the grim prognosis of HF.

Great research efforts over the last decades have been aimed at revealing the factors responsible for the reduction in function the left ventricle (LV) of the heart. In this, small-animal models of cardiac disease plays an irreplaceable role, enabling isolation and identification of structural and functional alterations on cellular and/or subcellular level. However, to be able to relate findings on the microscopic scale to alterations in cardiac function, there is a great need for methodology, preferably non-invasive, that allows detailed assessment of in vivo regional myocardial function.

The hearts of mice and rats are more than two orders of magnitudes smaller than human hearts by weight, and beats up to ten times faster. Measurement of cardiac function in mice and rats thus understandably requires considerably higher resolution than in humans to offer comparable data yield.

Phase contrast magnetic resonance imaging (PC-MRI) is a well-established and versatile noninvasive imaging technique allowing measurement of time-resolved 3D motion. We have developed an improved PC-MRI technique able to measure myocardial motion in small animals with improved accuracy and resolution compared to earlier approaches (Paper I). A major consequence of pushing the limits of achievable spatiotemporal resolution in PC-MRI is increased generation of eddy currents in the systems, which introduces severe baseline shifts in the measured motion that may render the data unusable. This required further development of eddy current correction techniques (Paper II). We developed this imaging technique further and introduced and validated a protocol for calculating regional myocardial strain from PC-MRI velocity data. We applied this protocol, as a proof-of-concept, in normal and regionally dysfunctional rat hearts (Paper III). Finally, we incorporated a mathematical model allowing calculation of regional myocardial work from PC-MRI data, in combination with identification of the mitral and aortic valve events and a simple measurement of peak blood pressure. This protocol was also demonstrated in normal and dysfunctional rat hearts (Paper IV).

The work in this thesis demonstrates that PC-MRI allows noninvasive measurement of regional myocardial motion, strain and work in small-animal models of cardiac disease with high resolution. The results are readily extendable to human applications, ultimately allowing higher sensitivity and/or resolution and extended data yield in functional cardiac MRI.
3 INTRODUCTION

3.1 MYOCARDIAL MECHANICS

The most fundamental task of the heart is to circulate blood throughout the body. This is achieved through regular contraction of its ventricles, which involves a complex combined effort of thickening of the ventricular wall, decrease in circumference, shortening of the ventricles combined with a characteristic twisting motion of the whole organ. Evidently, contraction of the ventricles is a result of an intricate three-dimensional deformation of the muscle (1).

3.1.1 GLOBAL AND REGIONAL MECHANICAL FUNCTION

The mechanical function of the myocardium refers to its ability to consistently and properly contract and relax. Its basic mechanical function, both globally and regionally, is reflected in the three-dimensional pattern of ventricular motion and strain (2).

The global cardiac function is reflected in parameters like stroke volume (the volume ejected from the ventricle per cardiac cycle) and ejection fraction (the fraction of the total ventricular blood pool ejected per cardiac cycle). On the other hand, regional myocardial function involves motion, displacement, stress, strain, and force and energy usage in smaller regions of the myocardium (Figure 3.1). Regional function is determined by numerous factors; including local contractility and material properties as well as global aspects such as intraventricular pressure (3).

3.1.2 MOTION, DEFORMATION AND WORK

The motion or velocity of the myocardium (displacement per unit time) is a marker for both ventricular contractility and its ability to relax. The difference in displacement between two points represents a local stretch or compression, collectively referred to as deformation or strain (1) (Figure 3.2).

Even though mechanical parameters such as velocity, displacement or strain do provide important information of cardiac behavior and changes over time, it does not provide an adequate measure of myocardial work or oxygen/energy consumption since these factors are load dependent (4, 5). Methodology able to measure the actual physical work performed by the myocardium would thus convey more comprehensive information of myocardial function, as several studies have suggested that analysis of cardiac work provides significant insight into LV remodeling and dysfunction in general (6-8).

3.1.3 THE NORMAL HEART

The heart consists of two main chambers; the ventricles. During the ejection phase, the right and left ventricles contract and eject blood to the pulmonary and systemic circulation, respectively. The right ventricle (RV) pumps deoxygenated blood into the pulmonary circulation through the pulmonary valve, and the LV ejects oxygen-rich blood into the aorta and the systemic circulation through the aortic valve. During the filling phase, the right ventricle is filled with blood from the systemic circulation via

\[ \text{Likewise, spatial difference in velocity represents the rate of change in strain, namely strain rate.} \]
the right atrium through the tricuspid valve, and the LV receives oxygen-rich blood from the lungs via the left atrium through the mitral valve.

In this work, we will focus on the function of the left ventricle, responsible for providing the body with oxygenated blood.

The Cardiac Cycle

Shortly after its electrical activation (measurable by electrocardiography, ECG), the left ventricle starts to contract and the mitral valve closes (which creates the first acoustic heart tone). At this time, the pressure in the LV (LVP) is lower than the pressure in the aorta, both valves are closed and no blood leaves or enters the ventricle. This is the isovolumic contraction phase. As soon as the contraction of the LV has increased LVP to be higher than the pressure in the aorta, the aortic valve opens and blood flows from the LV into the aorta. This is the ejection phase. As the blood is ejected, the volume of the LV decreases and contraction completes, and LVP ultimately decreases. This causes the aortic valve to close (this creates the second heart tone), and the ventricle enters the isovolumic relaxation phase. As LVP falls below the atrial pressure, the mitral valve opens and blood flows from the left atrium to the LV. This is the filling phase.

There are different definitions of systole and diastole, but for our purposes, we shall define systole as the time between mitral valve closure and aortic valve closure (isovolumic contraction + ejection phase), and diastole as the time between aortic valve closure and mitral valve closure (isovolumic relaxation + filling phase).

Figure 3.1 Global and regional function of the left ventricle

Global function refers to the properties of the ventricle as a whole. Examples of global functional parameters are stroke volume, stroke work and ejection fraction. Regional function, on the other hand, considers the properties of smaller regions of the myocardium with different degree of detail. Examples of regional functional parameters are regional velocity, displacement, deformation and work. While global function reflects the cardiac function as a whole, analysis of regional function has the ability to reveal for instance small-scale contractile dysfunction that might be masked on a global scale due to compensatory mechanisms.
Normal Cardiac Mechanics

On the cellular level, a fine-tuned process (in which Ca$^{2+}$ ions plays a central role) converts an electrical depolarization of the cellular membrane to contraction of the cell. Regional function is related to the functionality of the cardiomyocytes in a limited region. A sophisticated network of conductive fibers throughout the heart ensures, under normal circumstances, optimal distribution of the electrical activation resulting in a well-synchronized contraction of the ventricles.

A healthy LV ejects about 60% of its content during each heartbeat. Although the whole LV myocardium contributes to the contraction, even healthy hearts exhibit regional heterogeneity in contraction (2, 9-13). Therefore, to be able to detect and quantify local perturbation in function in a given heart, it must be compared with the normal range of that region (2, 12).

The pumping performance of the ventricles are affected by, among other factors, the mechanical properties of the myocardium (14). The pronounced deformation of the heart during the cardiac cycle is due to active contraction of the cardiomyocytes along muscle fibers, and their relaxation (15). In the human heart, the ejection of blood is primarily achieved by radial inward motion and a descend of the base towards the apex (2). Contraction is typically greatest in the anterior and lateral walls (2, 13), is increasing towards the base (13), and has been shown to have been shown to decrease with age (1). Peak velocity in the endocardium exceeds the velocities in the epicardium, creating a transmural velocity gradient (1).

In this thesis, the hearts of mice and rats will serve as models for human cardiac disease. Despite considerable difference in dimensions and beating frequency, the hearts of small animals share many fundamental cardiac mechanical properties with their human counterpart, and the models have distinct transferrable value to human conditions (17). Several studies have evaluated LV function in small animals and found that the hearts in humans, rat and mice share many of the same properties, such as EF, intramyocardial strain and twist (18-20).

3.2 Heart Failure

Disruption in contractile function of the heart does, as expected, quickly evoke a serious problem. In heart failure, the ability of the heart to pump blood is compromised. HF is one of the major causes of death in the western world (21); no cure exists, and half of all patients die within 4 years of diagnosis (22). Its prevalence is increasing, and despite recent advances in HF therapy, mortality rate remains high.

In the last decades, a large research effort has been aiming at revealing the mechanisms responsible for reducing the contractility of the LV. While there is a general agreement that alterations on a sub-cellular level contribute to reduced pumping ability, the precise mechanisms for development of HF has yet to be described. The poor understanding of these mechanisms and lack of adequate therapies is reflected in the high morbidity and mortality.
Setting the tone for this thesis, there is a dire need for methodology able to increase the knowledge of disease mechanisms, as a better understanding of disease progression and the underlying driving factors could make HF a more manageable disease.

3.2.1 EVALUATING MYOCARDIAL FUNCTION IN HEART FAILURE

Research on HF may be done on several levels. Evaluation of whole-heart (global) function through classical parameters such as stroke volume (SV), myocardial mass and ejection fraction (EF) are widely acknowledged. However, although very well-established, the prognosis-predicting value of for instance EF in development of cardiovascular events has been disputed (23-25). Particularly, apparently normal properties on the whole-heart scale may mask early markers of cardiac pathology, such as alterations in regional function. Detailed knowledge of the complex motion of the healthy and diseased heart may lead to better understanding of disease progression and pathogenesis (21, 23). In ischemic heart disease, for example, even a small imbalance in oxygen supply leads to contractile dysfunction in the affected regions (26). On an even smaller scale, advanced cellular techniques allow comprehensive assessment of intracellular structure and function (e.g. t-tubules (27), Ca²⁺ homeostasis (28) and cellular contraction (29)).

By comparing findings on different levels, such as how localized cellular alterations manifest in regional and global function, novel insight into the mechanisms of HF may be gained. The work in this thesis focuses on methodology for evaluating

Figure 3.2 Three views on regional myocardial mechanics
Displacement is the distance travelled by individual material points over a certain time. Velocity is the rate of change in displacement, while deformation (strain) is identified as the spatial variation in displacement. See Figure 3.6 for the relationship between the formalisms. While mechanics and function oftentimes are equated, the notion that mechanical properties are load dependent and therefore does not reflect actual oxygen and energy consumption directly, is important. This cartoon is inspired by (16).
3.2.2 ANIMAL MODELS IN HEART FAILURE RESEARCH

For several decades, mice and rats have been a backbone of basal cardiovascular research (30), and are commonly used to study pathological processes on a structural, functional, metabolic and molecular level.

Rodents are attractive for comparative biomedical research due to small size, affordability and easier handling than larger animals (such as pigs) and its ability to model complex cardiac disorders. Advanced surgery techniques allow the creation of models representing for instance hypertension, aortic stenosis and myocardial infarction, and potential consequential heart failure (31-35). For example, the rat model on myocardial infarction (MI) has been shown to provide predictive value for cardiac remodeling after MI in humans (36, 37), and allows detailed monitoring of changes due to therapy or interventions (38).

Transgenic and knockout techniques models also provide a matchless opportunity to isolate the roles of individual components in cardiovascular development and cardiac disease (39-46). These approaches have advanced the understanding of the roles of individual genes and proteins considerably, both in normal cardiovascular development and in cardiac disease.

However, the vast majority of basal cardiovascular research relies on in vitro or invasive in vivo methods for phenotypic assessment (19). The accessibility of reliable, versatile noninvasive methods for quantification of in vivo physiology in experimental animals, such as regional myocardial mechanics and function (Figure 3.2), is therefore of great importance.

3.3 METHODOLOGY FOR ASSESSING MYOCARDIAL FUNCTION

A large library of techniques and protocols optimized for assessing global and regional myocardial function has been made available over the years. Continuous efforts are pushing the limits of available resolution, applicability, robustness, accuracy and availability.

There are two main approaches to assessing cardiac function. Evaluation of global cardiac function through parameters such as stroke volume and ejection fraction is the most widely used clinical evaluation tool for assessing cardiac health. These well-established parameters are well-standardized, known to have prognosis-predicting value and are relatively easily acquired. Assessing regional myocardial function refers to the evaluation of local properties of the myocardium, such as regional velocities, stretch, compression and energy usage. As noted above, the detection and quantification of disrupted regional function relies on comparison to the normal range of that region (2, 12).

Selected Methodology

Here, we present a selection of techniques allowing evaluation of myocardial function, culminating in comprehensive presentations of the two most widely applied...
methods for noninvasive evaluation of cardiac function, both in clinically and in pre-
clinical research; namely magnetic resonance imaging and echocardiography. A visual
comparison of the techniques treated here is found in Figure 3.3.

**Magnetic resonance imaging (MRI)** is widely considered the gold standard
for assessing cardiac morphology and physiology (23, 47-55). MRI is a noninvasive
non-ionizing imaging modality; it relies solely on magnetic fields and radio waves,
and the intrinsic properties of protons\(^2\) experiencing a magnetic field. Protons are
highly abundant in living tissue due to being the core of the hydrogen atom, which
makes up 2/3 of a water molecule.

**Echocardiography (ECHO)**, or ultrasound, is extensively used for assessing
myocardial function due to its efficiency, availability and portability, as well as rela-
tively low cost. ECHO provides 2D or 3D real-time imaging and data evaluation, and
is able to do measurements with very high temporal resolution.

**Sonomicrometry** refers to a technique where the relative displacement be-
tween two physical crystals is measured. By implanting ultrasonic crystals in the myo-
cardium, local one-dimensional strain is readily measured by connecting the crystals
to a sonomicrometer (56). While this is a very robust and sensitive technique, it is
invasive and only provides strain in one direction in a predefined region.

Cardiac **computed tomography (CT)** is an x-rays based technique with very
good spatial resolution (57), especially advantageous in evaluating structural abnor-
malities contributing to the development of HF. Recent advances have enabled anal-
ysis of myocardial function (23, 58). A drawback of CT is the usage of ionizing radia-
tion.

Single-photon emission computed tomography (SPECT) and positron emission
tomography (PET) are **nuclear imaging techniques** where regional metabolism can
be imaged, and may be employed to detect myocardial ischemia and viability. In pa-
tients with HF, myocardial perfusion imaging, evaluation of sympathetic innervations
and characterization of molecular processes are the main clinical applications (57).
Nuclear imaging techniques provide little anatomic information, and are therefore
routinely combined with a supplemental imaging technique, such as CT or MRI.

\(^2\) There are rare exceptions where nuclides other than the proton are measured in MRI, but the vast
majority of applications involve the proton. For magnetic resonance spectroscopy (MRS), however, a
wide selection of nuclides may be (and are) studied.
3.3.1 ECHOCARDIOGRAPHY

Echocardiography is a quick, affordable and available technique frequently used to characterize cardiac function in small animals. However, it suffers from relatively low reproducibility since it oftentimes relies on geometric assumptions to do volume calculations (60). Also, high spatial resolution may be difficult to achieve, and the shadowing by the sternum in transthoracic ECHO limits the geometric views available to the operator (60).

ECHO is able to evaluate global cardiac function through e.g. 2D imaging allowing determination of cardiac dimensions and EF, and blood flow Doppler.

Regional myocardial function can be evaluated employing Tissue Doppler imaging (TDI) which relies, not surprisingly, on the Doppler Effect, in that the frequency of a reflected wave is modulated depending on the motion of the reflective substance. Consequently, the frequency shift in the reflected ECHO signal allows determination of the instantaneous motion of the tissue that reflected it. TDI has potentially very high temporal resolution, allows calculation of strain from the velocity data, and has been validated by sonomicrometry (5). However, measurements may have low spatial resolution and are limited to retrieve velocity information only in the...
direction towards or away from the transducer (61, 62), and have been accused of being somewhat unreliable (63).

**Two-dimensional Speckle Tracking Echocardiography (2D-STE)** is another ECHO method (64) able to quantify regional myocardial deformation by tracking the displacement of the characteristic speckles in the images (due to interference in the myocardium) over time. 2D strain maps can be found from displacement analysis. 2D-STE has been validated by several methods (65, 66). It is widely available and used method, and speckle tracking has been applied, for instance, in demonstrating alterations after MI (67).

### 3.3.2 Magnetic Resonance Imaging

MRI is intrinsically a multifaceted modality for imaging of the heart, allowing evaluation of regional myocardial function in areas from the entire heart, with practically no limitation in geometry (23). Implementation and modification of different MR imaging protocols renders an MRI system exceptionally and incomparably versatile, able to measure a wide array of different biological properties (50). The reader is referred to the Theory section for details on the principles of MRI.

**A Selection of Techniques for Measuring Cardiac Function**

**Cine MRI** is arguably the most fundamental MRI tool for studying the beating heart in vivo. In this technique, a series of images in is acquired rapid succession, allowing creation of “videos” of the beating heart. It is widely used clinically due to high soft-tissue contrast, and is the gold standard for noninvasive quantification of cavity volumes, ejection fraction, cardiac output and myocardial thickening, volume and mass (3, 30, 68-71). Although technological advances in the recent years have allowed quantification of myocardial dyssynchrony from cine images (72-74), cine MRI is in general not suitable for complex deformation analysis since the myocardium appears near-homogenous in the images. It is thus suboptimal to evaluate wall motion abnormalities compared to dedicated strain analysis (75).

**MRI tagging** was introduced in the late 80’s (76, 77), and is an intuitive and robust technique for evaluating myocardial deformation. In tagging, patterns of dark bands are magnetically (and thus noninvasively) “carved” in the myocardium prior to a cine MRI acquisition, allowing tracking and time-resolved analysis of tissue displacement. This way, tagging overcomes the challenge in cine MRI of the myocardium appearing near-homogenously. Parameters such as twist, strain and strain rate can be derived (3, 18). Over the years, tagging and its derivatives (see below) have become the go-to technique for MRI-based quantification of myocardial deformation (21).

However, it suffers from low spatial resolution, suboptimal coverage of the cardiac cycle due to fading of the magnetization-induced patterns (typically affecting late diastole), and time-consuming data analysis. Furthermore, it only tracks in-plane deformation, limiting analysis to 2D tracking.

**Harmonic phase (HARP)** analysis is a technique allowing more rapid evaluation of tagged images (78), where the strain is calculated directly from the local spatial frequency of the tag lines. Clinically, HARP is the most widely used tool for measur-
ing regional myocardial mechanics, and has been developed to potentially reach very high spatial resolution (79).

**Displacement encoded MRI with stimulated echoes (DENSE)** (80) encodes tissue displacement over a certain time. DENSE involves a “spin prepping” step, typically applied immediately after the registration of an ECG trigger. A readout module is applied at a later time point, typically at end systole (81, 82). The tissue displacement between these events manifests as a phase shift in the readout signal. Multiphase DENSE refers to techniques where the displacement is measured at more than one time point throughout the cardiac cycle (83).

**Strain encoded (SENC) MRI** tags planes parallel to the imaging plane (84) as opposed to conventional tagging. Strain is calculated from images with different frequency modulation in the slice-selection direction. Thus, short-axis images deliver info on long-axis strain. SENC images are visually appealing and straightforwardly analyzed, as pixel intensity is directly related to strain. Integrating SENC with HARP (85) or DENSE (9) can produce 3D strain.

Despite their different historical origins and appearance; HARP, DENSE and SENC are mathematically very similar and in essence different implementations of the same principle of **phase displacement encoding** (3, 21, 86).

In **phase contrast MRI (PC-MRI)**, the motion of tissue or blood is systematically encoded into the signal phase, which becomes proportional to the velocity (87-89). PC-MRI is also called **velocity-encoded MRI** or, when used on tissue, **tissue phase mapping**. Compared to other phase displacement techniques, PC-MRI offers superior temporal resolution since the two displacement encoding events are executed back-to-back rather than at different time points within the cardiac cycle. This allows superior peak detection and sensitivity (90), and the ability to quantify subtle dysynchrony. In addition, temporal integration of the velocity allows tissue tracking and analysis of displacement and deformation (90-95) of the myocardium. PC-MRI therefore allows motion mapping with the same resolution as the underlying data matrix, and allows quantification of velocity, displacement and strain from the same raw data.

Other MR techniques with reported cardiac applications include **arterial spin labeling** for measurement of myocardial perfusion, **contrast-enhanced imaging** for MI quantification, and hydrogen and phosphorus **MR spectroscopy** for metabolism (19).

**Comparison of MRI Techniques**

The raw MRI signal is complex, in that it consists of both a magnitude and a phase component. In addition to superior spatial resolution, an advantage of PC-MRI over tagging is that the former encodes motion into the phase of the signal, leaving the magnitude images more or less undisturbed. Tagging, on the other hand, also disturbs the magnitude images.

DENSE and PC-MRI both use bipolar magnetic gradients (see Theory) that encode spin displacement into the phase of the signal; DENSE encode displacement over a long time (and uses multiple radio-wave (RF) excitations to circumvent T2* decay), while PC over a very short, typically a few hundred μs. Both methods have

---

5 T2* decay refers, in short, to the decay of measurable signal after an RF-excitation.
sufficient spatial resolution to measure transmural variation (21), but only PC-MRI can characterize the transmural variation of velocity (68). While recent developments of multiframe DENSE provide time-resolved displacement data, its temporal resolution is still inferior to PC-MRI (68). DENSE also requires suppression of unwanted signals due multiple RF excitations, which leads to increased acquisition time (81, 98, 99). On the other hand, DENSE avoids potential integration errors when large displacements are to be measured, and uses weaker gradients which reduces the generation of detrimental eddy currents. DENSE has intrinsically low signal-to-noise ratio (SNR) due to being based on stimulated echo, causing loss of 50% of the signal (3). Both HARP, DENSE and SENC are limited by T1 relaxation (21) which may render analysis of the whole cardiac cycle challenging. PC-MRI is not affected by this.

Very nice reviews by Tee et al. (23), Simpson et al. (21) and Wang et al. (3) treats all major MRI techniques for assessment of regional myocardial function.

**MRI vs. ECHO Velocimetry**

MRI and ECHO are fundamentally different techniques for evaluating myocardial function; each provides a bouquet of advantages and disadvantages compared to the other. The most commonly stated differences, although somewhat crude, are found in Figure 3.3.

ECHO is the go-to standard for fast, robust and high-temporal resolution assessment of in vivo cardiac function in small animals, including measurement of blood and myocardial motion, with minimal post-processing effort. However, high spatial resolution may be difficult to achieve, and it suffers from limitations due to restriction in available projections (acoustic windows) and difficulties in standardization of the geometry, which is an absolute requirement when assessing detailed function over time, for instance when evaluating disease progression. Moreover, ECHO exhibits a considerable inter-observer variability (23, 100), and current state-of-the-art ECHO machines for rodents cannot produce 3D velocity maps.

High-resolution ECHO Doppler velocimetry can only measure motion parallel to the ultrasound beam, thus angle correction must be incorporated if oblique motion is to be evaluated, which may reduce reproducibility and possible under-/ and overestimations of the motion. Blood flow measurements from PC-MRI are on several occasions found to be systematically higher than velocities measured using ECHO Doppler; this difference could be due to angle dependency in ECHO measurements (21, 101).

Jung et al. (102) compared TDI with myocardial PC-MRI in a single, precisely defined volume in the posterior wall, and the techniques demonstrate good correlation. However, the authors note that it is not obvious if good correlation would be found for the rest of the ventricle or in diseased hearts. Nowosielski et al. (103) concluded that MR was superior to ECHO in assessing myocardial function in the acute stages of MI. Also, some studies have suggested that the timing of radial and circumferential shortening may be more sensitive than longitudinal identifying dysfunction; however TDI is usually restricted to measuring the long-axis motion near the base for the ventricle (104). Still, long-axis motion correlates well between MR and TDI (61). In addition, MRI can not only measure global and regional cardiac function, it also allows evaluation of intramural motion patterns (105), which plays a key role in several diseases, for instance MI and cardiomyopathies.
MRI overcomes the geometrical limitations of ECHO, however at a cost of increased acquisition time and more cumbersome data analysis. But recent advances in real-time phase contrast MRI address this issue, with very interesting potentials (106, 107). Also, parallel imaging has been shown to reduce MRI acquisition times greatly without loss of accuracy (30, 108, 109).

Applications of Myocardial MRI: Humans

Myocardial MRI techniques can provide measurement of strain, strain-rate, torsion, twist and velocity, and have been shown to have potential clinical applications in e.g. coronary artery disease (110), MI (111), dilated cardiomyopathy (112, 113), hypertension (114), hypertrophic cardiomyopathy (115), LV hypertrophy (116), ventricular dyssynchrony (51) and diastolic dysfunction (117). One of the most important clinical applications of regional functional analysis is evaluation of reversibly injured yet viable myocardium in ischemic heart disease (118).

The application of myocardial PC-MRI has so far been limited mostly to research (basal and clinical), and has yet to enter the turf as a major player in clinical routine (119). Nevertheless, PC-MRI has been shown to be useful in several applications; including studies on normal heart motion (2, 101, 119-123), the effects on myocardial mechanics of age and gender (1, 124), MI (75, 90, 125, 126), heart failure (104), LV hypertrophy (127), ventricular dyssynchrony (104), hypertension, dilated cardiomyopathy and left bundle branch block (128, 129).

Applications of Myocardial MRI: Small Animals

The mice and rat hearts are two orders of magnitudes smaller than human hearts by weight (30, 130), and exhibit a resting heart rate up to ten times faster. Cardiac MRI in mice and rats thus understandably requires considerably higher resolution than in humans to offer comparable data yield; so high spatial and temporal resolution is of the essence when detailed regional myocardial function is to be evaluated (93, 105, 131-134). While field strengths of 1.5 or 3.0 T are most common in MR systems for human application, the majority of studies on small animals have been performed on higher-field systems, ranging from 4.7-17.6 T (19, 135). It is worth to note that successful small-animal experiments also have been performed on 1.5T, where loss of signal is to some extent compensated by dedicated coils (136, 137).

The myocardial mass of mice has been shown to be accurately determined by cine MRI (138-140). Cine MRI has been used for e.g. evaluating LV remodeling after MI (141) and the role of creatine in the heart (44). With ultra-high spatial resolution, myocardial fiber structure has been measured in isolated rat hearts (142-144).

MRI tagging has been used not only to investigate normal function in mice (69, 79), but also the roles of e.g. genes encoding for nitric oxide synthases in myocardial mechanics (145, 146) as well as altered contractile function after MI (147) and reperfused MI (148). Transmural myocardial strain has been calculated using HARP (79), as has 3D wall strain in mouse model of dilated cardiomyopathy (149). 2D multiframe DENSE has been employed in mice for the purpose of investigating the role of neuronal nitric oxide synthase in EC-coupling (150) and for evaluation of functional changes following MI (81, 82).
PC-MRI has been employed in normal mice (17), and in mice with mitochondrial and cytosolic creatine kinase knockout (151), with MI (105, 131, 132), and have been used to characterize transmural variation of motion after ischemia-reperfusion in mice (68).

**Limitations with PC-MRI**

PC-MRI has been designated to represent a unique asset of cardiovascular MRI (152). As already mentioned, it combines into one protocol the geometrical advantages of MRI with velocity, displacement and strain measurements. However, two of the main concerns with PC-MRI are 1) the need for optimal temporal resolution to ensure sufficient accuracy in detection of peak velocities, and 2) the challenge with eddy current induced baseline shifts. As we will see, these two issues are closely related.

In human applications, it has been recommended to cover the cardiac cycle with at least 60 frames (that is, 60 frames per cycle) to being able to accurately derive strain from velocity data or analyze strain-rate (25, 153). Detailed analysis of myocardial motion in humans with PC-MRI has been done at a temporal resolution 13.8 ms, corresponding to 60-70 frames per cycle, depending on heart rate (101). Accordingly, in small animal research, high spatiotemporal resolution is of the essence. Suboptimal temporal resolution attenuates high-frequency components of the velocity data, compromising for instance measurement of peak motion and displacement assessment from velocity data.

The first publication on myocardial PC-MRI in rodents was in 2003 (131), nearly 20 years after the method’s first description, and the research on optimization of preclinical PC-MRI has been limited since. At present, the highest temporal resolution in myocardial PC-MRI published in animal applications acquired just below 30 frames per cycle (17, 68). This challenge is reflected in the overarching theme of this thesis; namely to further develop myocardial PC-MRI, of which a central task is to improve temporal resolution, towards being a robust and versatile tool in cardiovascular research.

### 3.4 Theory

A majority of the results in this thesis is related to the optimization of phase contrast MRI for small-animal research. In this section, a short summary of the theory behind PC-MRI will be provided, along with its primary challenges and data yield.

Section 3.4.1 provides a rough qualitative description of MRI in general and PC-MRI in particular, as well as central applications. Section 3.4.2 is a tad more theoretical and introduces the central principles governing PC-MRI and provides the formal backdrop for the aims and results of the papers. The remaining sections treat the formalities behind some of the challenges and applications of PC-MRI; leading up to the main aims of this thesis in Section 4.
3.4.1 **Phase Contrast MRI: a Primer**

**MR: The Tango of Magnetism and Radio Waves**

Magnetic resonance (MR) is the umbrella term for a large collection of techniques relying on the quantum mechanical property of an atom known as *spin*, a directional quantity. Nuclides (atoms) that have an odd number of core particles (that is, protons and neutrons) are MR-active and may be studied using MR. Examples of such nuclides are isotopes of hydrogen ($^1$H), carbon ($^1$C), sodium ($^{23}$Na), fluorine ($^{19}$F) and phosphorus ($^{31}$P). In MR imaging, the vastly most studied nuclide is $^1$H, whose core consists of a single proton. The present work focuses solely on hydrogen.

In the presence of a magnetic field (strong or weak), MR-active nuclides (hereby referred to as *spins*) find themselves in their most stable state by aligning their spins parallel with the magnetic field. Unfortunately, spins of interest are generally not at absolute zero temperature, which means that thermic energy persistently and vigorously shakes them around. This energy, dictated by Boltzmann’s law, is far stronger than the energy each spin “saves” by aligning themselves along with the magnetic field. As a crude analogy, we may consider a bunch of compasses, which tend to point to north, but find themselves in a tumble dryer. If we were to observe a single compass, it would indeed not point to north most of the time. However, if we found some way to measure the orientation of a huge number of compasses, we would indeed expect to find a small tendency among them pointing towards north. Luckily, our bodies contain roughly 50,000,000,000,000,000,000,000 “compasses” per cubic centimeter (I never counted), which makes is possible to detect this tendency of pointing towards “north”.

The fundamentals of MR are oftentimes taken to be abstract and not easily accessible where one needs quantum mechanics to understand what happens. However, according to Hanson (154), MR experiments actually do not force the individual spins into their eigenstates—therefore single-particle quantum mechanics analysis is neither necessary nor appropriate. We may therefore consider instead how a bunch of spins behaves. Much like a spinning top will exhibit a precession when spinning in a gravity field (precession = the slow rotation of the rotation axis itself around the gravitational field lines); the spins will also show a similar behavior. Now, we are at the core of MR techniques, as described in a legendary paper from 1938 by Isidor Rabi et al (155). An MR-active nuclide will precess at a frequency proportional to the strength of the magnetic field it experiences, and it will be able to absorb and emit energy at the corresponding wavelength. Consequently, by imparting energy to the spins at just the right wavelength (this is known as RF excitation), they become excited and will soon reemit that energy in form of detectable radiation. This is the signal that is measured and used in MR.

**Magnetic Resonance Imaging**

Spatially encoded magnetic resonance applied for imaging is, to no surprise, termed magnetic resonance imaging (MRI). Spatial encoding is simply done by altering the magnetic field a tad (this is done by applying a magnetic gradient), which makes the

---

4 In fact, for a 9.4 T MR system in room temperature, there is on average about 32 spin per million that contribute to the MR signal.
resonance frequency a function of position. By measuring the frequency of the MR signal we can determine where the signal originates.

All radiation in MR is in the range of radio signals, and is thus non-ionizing. In a 9.4 T MR system, which has been used in the work in the present thesis, the radiation associated with protein/hydrogen imaging is about 400 MHz.

**Figure 3.4 Simplified concept of phase contrast MRI**

In PC-MRI, a given spin accumulate a phase (green arc) proportional to its velocity, that is, the distance it moves along the velocity-encoding gradient over a well-defined time (here, from A to B). This illustration is somewhat simplified; in that static spins in reality does not have zero phase over time (in a 9.4 T MR system, spins finish about 400.000 complete rotations per millisecond). In addition, even a minor variation in the magnetic field would affect the rotation speed, and thus phase accumulation, greatly. This is why PC-MRI requires several acquisitions with slightly different settings of the velocity encoding gradients, which are subtracted to remove the contribution of unknown/uncontrollable magnetic field inhomogenieties.

**Phase Contrast MRI**

Since we are talking about rotating spins with a direction, we can not only measure their abundance (magnitude of the MR signal), but also their orientation (phase of the MR signal). In other words, MR is, as opposed to i.e. CT, a phase sensitive technique. Yet, in the majority of clinical applications of MRI, the phase component is discarded and only the magnitude component is visualized and analyzed. The phase, however, can provide very useful information; such as magnetic field inhomogeneity or spin motion. In PC-MRI, the motion of the spins is systematically encoded into the phase of the MR data, in addition to the magnitude component that offers information on signal strength (which, again, is a function of spin density among other effects).

---

5 Non-ionizing radiation is traditionally used to denote electromagnetic radiation with energy (the inverse of wavelength) sufficient to damage DNA. Examples of non-ionizing radiation are radio waves, microwaves and visible light. Examples of ionizing radiation are x-rays and gamma rays.
As mentioned, spins in MR precess with a frequency proportional to the magnetic field at their location. In summary, PC-MRI encodes the average motion within a given volume into the MR signal of that particular volume in two steps; first, a magnetic gradient with a certain direction is applied over a short period to alter the precession frequency slightly as a function of position. After this gradient is turned off, the spins will have had a different precession frequency for a short time, and thus accumulated different phase which is dependent on their position. Then, a second gradient is applied with opposite polarity, rewinding the phase dispersion caused by the first gradient. A stationary spin will then experience two consecutive alterations in its local magnetic field, exactly cancelling each other out, and be left with zero net change in phase. However, if the position of a spin changes between the two gradients, the phase effects of the two gradients will not cancel, and the spin is left with a net accumulated phase. The accumulated phase is proportional to component of the distance travelled by the spin that is parallel to the direction of the gradients. As the time between the gradient is known to the operator, the average velocity in that time period is readily calculated. This concept (although simplified) is illustrated in Figure 3.4.

Stronger motion encoding gradients results in a larger accumulated phase for a given displacement, and therefore yields better sensitivity to low velocities. Since the phase can be unambiguously interpreted only within a $360^\circ/2\pi$ window, the maximum velocity that can be measured (the venc) is simultaneously lowered.

**Figure 3.5 Phase contrast MRI velocity**
Using three-directional PC-MRI, a 3D velocity vector (black) can be reconstructed in each pixel for each time point. This vector can subsequently be decomposed into a coordinate system defined by the in-slice center-of-mass of the left ventricle; with its radial (blue), tangential (red) and longitudinal (green) components. LV = left ventricular myocardium, RV = right ventricular myocardium.

**PC-MRI Data Yield**
The primary output data from a PC-MRI dataset are near-instantaneous pixel-wise time-resolved velocities (Figure 3.5). This allows evaluation of for instance peak motion, time-to-peak, myocardial twist directly. Furthermore, temporal integration of the velocity allows calculation of displacement (94, 95), which again can be spatially differentiated to find strain (90, 96, 97, 122). Analogously, the spatial differential of
velocity is the strain rate (88, 125). The mathematical relationships between motion, position, strain rate and strain are illustrated in Figure 3.6.

PC-MRI was first described in papers nearly as old as the author of this thesis (157, 158), and has since been developed to be a widely available standard sequence in clinical MR systems. In research, it is extensively used for blood flow analysis (87, 134, 159-173), but has in the last decade been revealed as a potent and versatile tool for assessing myocardial motion (1, 13, 14, 17, 68, 75, 90, 101, 102, 104, 105, 112, 114, 119-121, 124-129, 131, 134, 174). The latter is in general more challenging than the former, since 1) the signal intensity from the myocardium is typically lower than the signal from blood and 2) the velocity of the myocardium is substantially lower than that of blood, so higher velocity sensitivity is required. Nevertheless, intra- and interobserver variability in myocardial PC-MRI have been shown to be low (119).

3.4.2 PC-MRI SIGNAL GENERATION

The Larmor Equation

The precession frequency of an MR-active spin in a magnetic field \( B \) is governed by the Larmor equation:

\[
\omega = \gamma B
\]  

where \( \gamma \) is the gyromagnetic constant. In general, \( B \), and therefore \( \omega \), are functions of time and position. By integrating the Larmor equation, the accumulated phase after a time \( t \) at position \( \vec{x} \) can be determined:

\[
\phi(\vec{x}, t) = \int_{0}^{t} \omega(\vec{x}, \tau) \, d\tau = \gamma \int_{0}^{t} B(\vec{x}, \tau) \, d\tau. 
\]  

A linear gradient \( \vec{G} \) yields a local magnetic field at position \( \vec{x} \) equal to \( \vec{G} \cdot \vec{x} \). The contribution to the phase due to such a gradient is therefore
Expanding $\ddot{x}(t)$ around some time $t = 0$ yields

$$\ddot{x}(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2 + \cdots.$$  \[3.4\]

By combining Eqs. 3.3 and 3.4, we can find the total accumulated phase of a voxel whose spins have position $\mathbf{x}_0$ and velocity $\mathbf{v}_0$:

$$\phi = \mathbf{x}_0 \cdot \gamma \mathbf{M}_0 + \mathbf{v}_0 \cdot \gamma \mathbf{M}_1 + \phi_{\text{other}}$$  \[3.5\]

where $\mathbf{M}_0$ is the zeroth gradient moment ($\mathbf{M}_0 = \int_0^t \mathbf{G}(\tau) \, d\tau$), $\mathbf{M}_1$ is the first gradient moment ($\mathbf{M}_1 = \int_0^t \mathbf{G}(\tau) \, \tau \, d\tau$), and $\phi_{\text{other}}$ is the phase from other contributors, including acceleration and the main magnetic field.

The Math of Phase Contrast

A very nice overview of the theoretical foundation of PC-MRI is found in Chapter 9.2 in Bernstein’s Handbook of MRI Pulse Sequences (156). Here, we provide a short outline.

The concept behind phase contrast MRI is to employ a gradient complex whose zeroth moment is zero ($\mathbf{M}_0 = 0$ in Eq. 3.5; the time-amplitude area), but first moment ($\mathbf{M}_1$) is nonzero. The simplest example of this is a bipolar gradient (Figure 3.7). The velocity is determined from Eq. 3.5 by acquiring several datasets with different first moments, but all other imaging parameters are kept unchanged (175).

Since $\mathbf{M}_0 = 0$ and assuming that $\phi_{\text{other}}$ is independent on $\mathbf{M}_1$, the difference in phase ($\Delta \varphi$) between two such data sets is found simply from Eq. 3.5:

$$\Delta \varphi = \gamma \Delta \mathbf{M}_1 \cdot \mathbf{v}_0$$  \[3.6a\]

where $\Delta \mathbf{M}_1$ is the difference in first gradient moment between the datasets. Eq. 3.6a is the fundamental equation in phase contrast MRI. Note that the phase is proportional to the component of the velocity vector parallel to the direction of the encoding gradient. In this, the contribution to the phase of acceleration and higher-order terms of motion is neglected; which is not obviously correct, but has been shown to be a reasonable assumption in myocardial PC-MRI (105, 131, 176).

The velocity is reconstructed from this phase difference by reconfiguration of Eq. 3.6a:
Since the encoded phase in Eq. 3.6a is proportional to the component of $\vec{v}_0$ parallel to the encoding gradient, $v_0$ in Eq 3.6b is the reconstruction of this component. Accordingly, 3D velocity may be measured by acquiring several datasets where the direction of $M_1$ is varied. In general, the encoding (Eq. 3.6a) and reconstruction (Eq. 3.6b) can be written on matrix forms

$$\Delta \vec{\varphi} = A \cdot \vec{v}$$  \hspace{1cm} [3.7]$$

and

$$\vec{v} = A^* \cdot \Delta \vec{\varphi} .$$  \hspace{1cm} [3.8]$$

Here, $A$ is the acquisition matrix; it contains the values of $\gamma \Delta M_1$ used. $A^*$ is the Moore-Penrose pseudoinverse of $A$ (177, 178).
Figure 3.7 Bipolar gradient

a) A bipolar gradient with equal positive and negative lobes, as illustrated here, has zero 0th gradient moment but non-zero 1st gradient moment. Since the net area under the lobes is zero, the first moment is simply \( AT \) (independent of temporal origin), where \( A \) is the time-amplitude area of a single gradient lobe and \( T \) is the lobe separation. The reader is referred to Chapter 10.4, Gradient Moment Nulling, in Ref. (156) for more details.

b) The effect of a bipolar gradient (dashed line) on the accumulated phase of a spin (solid line), following Eq. 3.5; under no motion, constant velocity and constant acceleration. The unit on the y-axes is arbitrary. Here, \( \Phi_{\text{other}} \) is defined to be zero.
PC-MRI Encoding Strategies: The Architecture of the Acquisition Matrix

There are several approaches to recording 3D motion. They are described in Paper I and in Refs. (175, 177), and a short overview is provided here.

- **Six-point** method uses three pairs of gradients, each pair measuring the three Cartesian velocity components.
- **Referenced four-point** method utilized a common reference scan and three orthogonal encoded scans.
- **Balanced four-point** method utilizes four encoded scans, where the first moments are altered in pairs. Compared to referenced four-point, the variance is reduced at the cost of increased intricacy of dynamic range.
- **Balanced five-point** method utilized the same four encoded scans as balanced four-point, but adds a fifth reference scan. This ensures improved velocity-to-noise efficiency with less than 1% increase in scan time, as the resolution of the reference scan can be heavily reduced.

Perhaps the most intuitive way of recording three directional velocity is the referenced four-point method, where four datasets are acquired; in which three \( \gamma \vec{M}_1 \) is oriented in mutually orthogonal directions and a fourth dataset in which \( \vec{M}_1 = 0 \). In this case, \( \gamma \Delta \vec{M}_1 = \gamma \vec{M}_1 \) and the acquisition matrix and its pseudoinverse become

\[
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \gamma \vec{M}_1
\]

\[3.9a\]

\[
A^+ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot (\gamma \vec{M}_1)^{-1}.
\]

\[3.9b\]

**The Venc**

Phase information is only uniquely defined in the interval \((-\pi, \pi)\), and aliasing will occur if the acquisition generates data outside this range. The highest (positive or negative) velocity that can be measured without aliasing to occur, referred to as the venc, is found from Eq. 3.6b:

\[
venc = \frac{\pi}{\gamma \Delta \vec{M}_1}.
\]

\[3.10\]

The venc is an important quantity in PC-MRI, as it defines the upper threshold for unambiguous velocity quantification, as well as the sensitivity of the protocol to low velocities (Figure 3.8a). Specifically, myocardial PC-MRI demands lower venc values, typically by a factor of ten, than blood flow PC-MRI. From Eq. 3.10, we can see that this requires ten times higher values for \( \Delta \vec{M}_1 \).
3.4.3 Eddy Currents

Whenever a magnetic field $B$ changes in time, eddy currents build in nearby conductors. This is dictated by Faraday’s law:

$$\mathcal{E} = -\frac{\partial \Phi}{\partial t}$$  \hspace{1cm} \text{[3.11]}

where $\mathcal{E}$ is the electromotive force (basically a source of voltage) and $\Phi$ is the magnetic flux ($B$ per unit surface).

Nature loves symmetry, and Maxwell’s equations, that govern classical electrodynamics, has got a lot of it. So, just as a time-varying magnetic field creates a current, a time-varying current will create a magnetic field. Thus, the currents generated according to Eq. 3.11 will create new magnetic fields in addition to the original field, but with opposite sign (in accordance with Lenz’s law; hence the minus sign the equation). As magnetic resonance techniques relies on a fine-tuned and well-behaved magnetic environment, any perturbing magnetic fields will cause trouble (179).

To enhance SNR, reduce susceptibility artifacts and improve temporal resolution (105), short pulse sequences are desirable. On the other hand, to achieve high spatial resolution and velocity sensitivity, strong gradients are desirable. In sum, this requires stronger and/or more rapid gradients. Since the rate of buildup of eddy current is proportional to the slew rate of the magnetic gradients, stronger gradients creates stronger eddy currents (156). This renders high-field and high-resolution MRI particularly prone to eddy current induced artifacts.

Eddy Current Effects in PC-MRI

It is not an exaggeration to state that eddy currents plague the world of phase-based imaging (except, perhaps, for its ability to produce PhD theses). They are hardware-specific and practically impossible to predict (152, 180). Eddy current induced errors tend to increase with the distance from the center of the magnet, and may vary unpredictable with slice orientation and position as well as any other parameter that affect gradient waveforms and their timings. They generally vary with position, but are relatively stable in time if proper gating is employed (91, 165).

Being a phase-sensitive technique employing strong gradients, PC-MRI is particularly sensitive to artifacts originating from eddy current generated in the system.

Any eddy currents in the system will create perturbing magnetic fields, entering as a contributor to $\phi_{\text{other}}$ in Eq. 3.5. However, the eddy currents are in general not independent of gradient activity, and thus not constant under altered $\vec{M}_1$. Consequently, eddy current effects are not eliminated by the phase contrast calculation (156, 181), and will constitute a phase offset in the velocity-encoded datasets. This inevitably introduces spatially varying errors in velocity measurement (94, 162, 179, 182, 183) that must be corrected.

Another consequence of eddy current induced offsets in the baseline phase is alteration in the $\text{venc}$, that is, the highest velocity that can be measured unambiguously in the $2\pi$ window (see Figure 3.8a). In the presence of a shift in the baseline, the phase headroom in a given pixel will be altered, and become dependent on the
direction of the velocity (Figure 3.8b). However, the range of the “allowed” velocities within that pixel is unaffected (green arrows in Figure 3.8b), as the phase is readily windowed into the \([-\pi, \pi]\) range after phase correction (Figure 3.8c).

Eddy current induced errors enter Eq. 3.7 as a perturbing contributor:

\[
\Delta \phi = A \cdot \tilde{v} + \varphi_{EC} .
\]  

[3.12]

**Eddy Current Compensation**

As the name suggests, eddy current compensation (ECC) techniques aim to reduce the effect of eddy currents. Hardware ECC includes active gradient shielding and replacement to components with non-conductive materials (152). The adverse effects of eddy currents at signal readout can also be reduced by introducing a short delay (~200 μs) between the encoding gradients and the readout module (131), to allow for some decay of the currents. However, this does not reduce the effect of eddy currents produced at the time of flow encoding on the encoding itself.

Thus, ECC might, and in many cases must, also to be incorporated in post-processing of the PC-MRI data. These errors are not readily predicted analytically and thus not easy to correct by other means then numerical approaches (165, 181-184). A number of techniques have been described aiming to reduce the impact of eddy current induced errors in PC-MRI, most are based on the identification and removal of non-zero phase in static regions (in which the phase should be zero). This includes for instance placing a phantom within the FOV to measure static-region phase (68), or performing a separate scan of a large static phantom with identical acquisition parameters (162, 184). The drawbacks of these two methods are limited spatial information of the baseline shift (152) and increased acquisition time, respectively. Another approach circumvents these shortcomings through exploiting static tissue already present in the FOV (179), which in cardiac imaging typically is the chest wall.

Pixel-by-pixel windowing of the phase after any adaptation of ECC prior to velocity reconstruction is critical to avoid alterations in the venc. In post-processing, implementation of an ECC technique modifies Eq. 3.12 to

\[
\Delta \phi^* = A \cdot \tilde{v} + \varphi_{EC} - \varphi_{ECC} = A \cdot \tilde{v} + \epsilon
\]  

[3.13]

where \(\epsilon\) is the residual phase error, also referred to as fitting residual. These residuals originate from the inability of ECC to produce perfect correction maps, since EC-induced baseline shift maps typically have intricate spatial variance. The fitting residuals are scattered around zero if proper fitting is employed (185). In theory, increasing the number of encoding steps (that is, the rows of \(A\)) is expected to reduce the error in the reconstructed velocity following the concept of signal averaging. This led to the first aim of this thesis, namely to explore the impact of increasing the number of encoding steps in PC-MRI.
Figure 3.8 Alterations in venc due to baseline shift
If the baseline is shifted, the venc is skewed. The maximum and minimum velocities that can be measured without phase aliasing (a) is altered if the baseline of the phase is shifted (b). However, the range of velocities are unaffected, as the data is readily windowed into the $[-\pi, \pi]$ range after ECC (c).
Challenge with Conventional ECC

Whenever ECC exploits spatially-resolved static-region phase (being a phantom or static tissue within the imaging subject), baseline phase shifts are corrected by subtraction of a map determined by fitting a surface to the phase in static regions. In this, an assumption is made that the baseline shift is spatially continuous.

However, since phase is only defined in a $2\pi$ range, sufficiently strong eddy currents will cause the baseline phase shift to “wrap”. Since, in general, the shift in the baseline is spatially heterogeneous, this wrapping will cause discontinuities of $2\pi$ within static regions and cause the surface fitting to produce erroneous results. In this case, conventional ECC is insufficient. This motivated the second aim of this thesis, namely to develop an improved ECC technique able to handle wrapping in the baseline phase.

3.4.4 Flow Artifacts and Gradient Moment Nulling

Artifacts in the myocardium due to blood flow pose a problem since it greatly reduce the reproducibility of motion trajectories calculated from PC-MRI data (186). In general, flow artifacts originate from any uncorrected phase shifts due to motion (187, 188). If time-varying motion (periodic or non-periodic) occurs in the imaging volume (such as intraventricular blood motion), standard (Cartesian) MRI encoding will suffer from more or less detrimental displacement artifacts or ghosting with a particular directionally dependency$^6$ (156, 189, 190).

As noted above, a spin experiencing a gradient accumulates a certain phase. If the spin is moving, its phase is a function of its motion, the gradient design and time. Gradient moment nulling refers to the design of a gradient complex (and its gradient moments) to ensure no net phase shift.

- Zeroth-order nulling ($\bar{M}_0 = 0$) ensures that static spins are properly rephased, and is used in virtually all MRI pulse sequence designs. A bipolar gradient (Figure 3.7) may easily be designed to be zeroth-order nulled by keeping the net time-amplitude area zero.

- First-order nulling ($\bar{M}_1 = 0$) ensures that spins in constant motion are rephased; and is referred to as velocity compensation. It can be constructed from a minimum of three gradient lobes.

- Second-order nulling ensures that spins in constant acceleration are rephased; and is referred to as acceleration compensation. It can be constructed from a minimum of four gradient lobes.

And so the story goes. As the keen reader may have noticed, a PC-MRI sequence is necessary non-velocity compensated, since it deliberately imposes a phase shift to moving spins (i.e. not first-order nulled). Thus, PC-MRI is particularly sensitive to motion-related artifacts (94, 191). Since these artifacts manifest in a certain direction, we are left with a major challenge when regional analysis is to be performed.

$^6$ That is, in the phase-encoding direction
The major remedy to reduce this problem in PC-MRI is to reduce the blood signal by use of a black-blood technique (68, 186, 192). However, complete elimination of the blood signal is nearly impossible, rendering flow-related artifacts a challenge in myocardial PC-MRI, particularly in regional analysis. This challenge is an important part of the third aim of this thesis, concerning the establishment of an optimal acquisition protocol and dedicated post-processing tools for measuring and parameterizing regional myocardial motion.

3.4.5 MYOCARDIAL STRAIN

Strain represents relative deformation, and is defined as the fractional change in length of an object relative to its original length. An advantage of analyzing strain compared to motion is that the former is independent on bulk organ translation and rotation (14).

There are several ways to calculate myocardial strain from velocity or displacement data. Generalized one-dimensional Lagrangian strain, also known as material strain, is defined as

\[ \varepsilon_L(t) = \frac{L(t) - L(0)}{L(0)} \]

where \( L(t) \) is the length of the object at time \( t \), and \( L(0) \) is trivially constant over time. Lagrangian strain follows the tissue over time, i.e. it uses the myocardium itself as a reference system/coordinate system.

An alternative to the Lagrangian strain is the Eulerian strain, also known as natural strain. It is defined as

\[ \varepsilon_E(t) = \int_0^t \frac{L(\tau + d\tau) - L(\tau)}{L(\tau)} d\tau. \]

Eulerian strain describes the tissue strain at fixed points in space/the laboratory system.

In practice, this means that a positive Eulerian strain will be smaller than the Lagrangian equivalent, and a negative Eulerian strain will be larger than the Lagrangian equivalent. Comparing different techniques, it is important to assure that the strains compared are measured in the same coordinate system.

MR tagging is intrinsically a Lagrangian modality, while SENC is Eulerian. HARP, DENSE and PC-MRI can provide strain in both formalisms (21, 81, 193).

The Strain Tensor

Strain is in reality a 3D property. In a cardiopolar coordinate system, consisting of radial, circumferential and longitudinal components (defined in Section 5.3.3; see Figure 3.5), the myocardial strain tensor can be defined as (21)
\[
\text{strain tensor} = \begin{pmatrix}
\varepsilon_{RR} & \varepsilon_{RC} & \varepsilon_{RL} \\
\varepsilon_{CR} & \varepsilon_{CC} & \varepsilon_{CL} \\
\varepsilon_{LR} & \varepsilon_{LC} & \varepsilon_{LL}
\end{pmatrix}.
\]

The entries along the diagonal are referred to as normal strains. These are the parameters most commonly referred to; \(\varepsilon_{RR}\) (radial thickening), \(\varepsilon_{CC}\) (circumferential shortening) and \(\varepsilon_{LL}\) (longitudinal shortening). The strain tensor allows determination of principal axis of strain without any assumption on cardiac structure or direction of myocardial motion (14).

Oftentimes, one-dimensional strain, represented by a single entry in the strain matrix, is assessed and reported. The most straightforward measure of one-dimensional strain is myocardial thickening relative end-diastolic wall thickness, constituting an estimate of \(\varepsilon_{RR}\). In general, however, measurements of \(\varepsilon_{RR}\) is more prone to noise than \(\varepsilon_{CC}\) due to limited number of transmural data points. Consequently, many studies have focused on circumferential strain (85, 147, 194-197).

**PC-MRI Strain**

To the best of our knowledge, no study has evaluated myocardial strain in small animals using PC-MRI. This led to another important component of the third aim of this thesis; namely to calculate and parameterize regional myocardial strain in the rodent heart.

Though, as mentioned earlier, purely mechanical parameters (Figure 3.2) do not reflect oxygen/energy consumption which conveys more comprehensive information of myocardial function (4-8). No study has, to our awareness, evaluated in vivo regional work in the hearts of small animals. The fourth (and last) aim of this thesis was therefore to evaluate PC-MRI based assessment of regional work in the rodent heart.
4 MAIN AIMS

The overarching aim of this thesis is the following:

To develop, optimize and apply high-resolution MRI and analysis tools allowing assessment of regionally resolved in vivo myocardial motion, deformation and work in healthy and diseased small-animal hearts

We have divided this into four sub aims:

1. PC-MRI allows noninvasive time-resolved assessment of 3D in vivo motion. However, to evaluate global and regional function with high sensitivity and spatiotemporal resolution, strong motion encoding gradients are required. This renders this methodology particularly prone to artifacts induced by eddy currents. The first aim in this thesis was therefore to develop an optimized encoding strategy for PC-MRI, designed to be more accurate in the presence of strong and rapidly changing magnetic gradients, allowing measurements of myocardial motion with high resolution and sensitivity.

2. When the limits of the achievable resolution are further pushed, eddy currents generated in the system during acquisition may be sufficiently large to cause wrapping in the baseline phase. This renders conventional approaches to eddy current correction in post-processing inadequate. The second aim was therefore to develop an improved eddy current compensation technique able to handle wrapping in the baseline phase.

3. Possessing technology able to measure 3D motion with high resolution, optimal imaging parameters and post-processing tools are essential to gain novel insight into the complex motion and deformation of the rodent myocardium. The third aim in this thesis was therefore to establish optimal acquisition parameters for assessing the function of the rat myocardium, and develop suitable post-processing tools for analyzing PC-MRI data, including calculation of myocardial strain and parameterization of the regional function of LV.

4. Myocardial motion and strain are load dependent, and does therefore not represent the actual work done by the cardiomyocytes. The fourth aim in this thesis was therefore to implement a mathematical model allowing calculating of regional myocardial work based on noninvasive cine and PC-MRI data in combination with simple measurement of peak systemic blood pressure.
5 METHODS

This section presents the different methods used in the papers. For further details on the methods, the reader is referred to the individual papers.

5.1 EXPERIMENTAL MODELS

5.1.1 MODELS EMPLOYED IN THIS WORK

All animal experiments were performed according to National Institutes of Health guidelines (NIH publication no 85-23, revised 1996) and approved by the Norwegian National Animal Research Authority. In Paper I, C57BL/6 wild-type mice were imaged to demonstrate the improved efficiency of the proposed acquisition scheme in vivo. In Paper II-IV, male Wistar rats (~300 g) with and without coronary artery ligation were used to demonstrate improved eddy current compensation (Paper II; only sham-operated animals), calculation of regional strain (Paper III) and calculation of regional work (Paper IV).

Naturally, care was taken to honor the three R’s of animal experiments conduct; namely to reduce, replace and refine the usage of experimental animals.

As noted in the Introduction, the detection and quantification of disrupted regional function relies on comparison to the normal range of that region (2, 12). This stressed the need for control groups of normal animals representing baseline function.

5.1.2 EXTRAPOLATING PRECLINICAL FINDINGS TO HUMANS

The use of small animal models in cardiac research relies on assumptions that cardiac mechanics are comparable across spices, and that the disease models have distinct transferrable value to human conditions.

Most will appreciate the obvious phenotype differences between rodents and humans, such as fur, tail, ears, and size. The human LV is over 100 times the weight of the rat LV (130), and 200 times the weight of the mouse LV (30). Also, there are basic physiological differences, such as heart rate (5-10 times the heart rate of humans). Despite these distinctive differences, similarities in anatomy and fiber architecture suggest that fundamental cardiac mechanics may be similar between species.

Over the later years, a number of studies have evaluated regional and global LV function in small animals and found that the hearts in humans, rat and mice share many of the same systolic and diastolic properties, including EF, intramyocardial strain and twist (although myocardial torsion is very different, defined as twist per unit length, due to different heart lengths) (18-20). Although there are differences in e.g. regional motion patterns, cardiomyocyte properties (including force-frequency relationship) and resting heart rate between species that render findings in small animals in general not one-to-one transferable to human conditions (17), it is well-established that results from small-animal research can increase understanding of cardiac disease in humans. Also, the three species share homologs for the majority of their genes.
5.1.3 ANESTHESIA, PREPARATION AND MONITORING

Induction of Myocardial Infarction
To induce MI, the rats were anesthetized in an anesthesia chamber (64% N₂O, 32% O₂ and 4% isoflurane), and subsequently ventilated on a Zoovent ventilator through endotracheal intubation. Anesthesia was maintained by 65% N₂O, 32% O₂ and 2-3% isoflurane. Myocardial infarction was induced by left hemithoracotomy and ligation of the left coronary artery (LCA) by a 5.0 silk suture. The chest was closed and buprenorphine was given as postoperative analgesia. Sham operated rats underwent the same procedure except LCA-ligation.

ECHO and MRI Imaging
The animal preparation and monitoring procedures were the same in mice and rats during imaging. Anesthesia was induced in a chamber (ECHO: 64% N₂O, 32% O₂ and 4% isoflurane; MRI: 96% O₂ and 4% isoflurane), and maintained during imaging at 1-2% isoflurane in freely breathing animals.

During echocardiography, ECG was measured by electrodes embedded in the examination table. During MRI, ECG was monitored by subcutaneous electrodes in the front legs (rats) or in one front and one hind leg (mice). This signal was also used for triggering of the MRI acquisition.

Monitoring During MRI Examination
Since the animals were out-of-view for the operator during MRI experiments, respiration was monitored by placing an air pillow on the animal thorax (this was also used for gating of the acquisition to avoid respiration artifacts (198)). Also, temperature was monitored by a rectal probe, and body temperature was maintained by heated air using an automated feedback system.

Throughout all MRI experiments, these parameters were carefully monitored to ensure animal safety and depth of anesthesia. Due to lack of the opportunity for visual evaluation of animal welfare, this monitoring constituted a vital part of experimental procedure.

5.1.4 LIMITATIONS OF THE ANIMAL MODELS

Effect of Anesthesia
Animals were anesthetized during examination, using a mixture of oxygen and isoflurane in freely breathing animals. The level of isoflurane should always be carefully monitored and adjusted to provide an optimal depth of anesthesia. A standardized level of anesthesia is essential to reduce inter-animal variation that could otherwise mask important differences.

Light isoflurane anesthesia has been shown to provide stable sleep with minimal impact on cardiac function (199-202). However, during MRI experiments, which tended to be quite long-lasting, the potential cardiodepressive effect of isoflurane must be taken into account when analyzing results. As noted in the papers, the level of anesthesia was subject to small adjustment throughout experiments to keep the heart rate as constant as practically possible.
Anesthetized mice and rats rapidly lose body heat; and hypothermia compromises cardiac function. During MRI experiments, animal temperature was maintained using hot air, whose effect was controlled by a feedback system with a rectal probe measuring animal temperature. Nevertheless, during extended MRI acquisition there will be a pronounced variation in temperature, especially the first parts of acquisition until the body heat lost during preparation has been regained.

Other Limitations
In Paper III and IV, a rat model of MI was used. There are several limitations with this model:

- In the rats, coronary artery occlusion was performed in healthy young individuals, though in humans MI usually occurs in the elder.
- In the rats, the pericardium is compromised after surgery, causing a majority of the hearts to “stick” to the inside of the chest wall. Typically, this affects mainly the infarcted areas. If such an adhesion takes place, this inevitably alters the regional properties of the myocardium. Although this phenomenon also might occur in humans, it may limit the translational value of this model to the human condition of MI. This also highlights the importance of using control groups, which also have opened pericardium.
- The resulting infarct sizes vary and are difficult to predict, and increases intragroup variability.

Regardless of these limitations, however, important knowledge on the development of cardiac disease may still be gained from these models by carefully considering the implications of the above factors.

5.2 Magnetic Resonance Imaging

5.2.1 MRI Hardware and Software
All MRI experiments in this thesis were done on a 9.4T horizontal bore magnet (Agilent Technologies, Inc., USA) employing high-performance actively shielded gradient coils with optimized hardware eddy current compensation.

The MR system employed in the work with this thesis was very customizable. That is, the operator had little limits with respect to modification of the pulse sequences. In reality, this could be done by modifying the bread-and-butter sequences bundled with the MR system to accommodate the wishes and requirements defined by the operator.

5.2.2 ECG and Respiratory Gating
In cardiac MRI, synchronization of data acquisition to cardiac motion is essential (198). In all studies in this thesis, prospective cardiac triggering with respiration gating was employed. The R-peak of the ECG signal served as trigger for acquisition.

Respiratory gating was achieved by only allowing data acquired between respiration events to be recorded. Typically, respiratory motion occupied about 20-40% of the time available for acquisition, leading to an equivalent increase in experiment time.
5.2.3 CINE MRI

In Paper IV, LV volumes, infarct size and timing of valve events were quantified by use of cine MRI loops. The protocol used to acquire the data was identical to the PC-MRI protocol with the motion encoding gradients turned off, and with all gradient complexes first order nulled at the time of the readout echo (i.e. the sequence was flow compensated). Since the gradient requirement was less great than the equivalent motion encoded scans, the temporal resolution could be increased.

A stack of back-to-back slices were acquired covered the LV from base to apex. In post-processing, the LV endo- and epicardial borders were manually drawn in each slice at end systole and end diastole. LV intraventricular volumes at end diastole and end systole calculated from the epicardial masks and slice thickness. Likewise, LV myocardial volumes were found from endo- and epicardial masks.

An additional cine slice was oriented to visualize the mitral and aortic valve, allowing determination of the timing of their opening and closing relative the trigger signal.

Figure 5.1 Planning of short-axis slices

This displays a screenshot from the MRI acquisition software, during a planning protocol (following the procedure described by Schneider et al. (60)). As seen here, MRI provides complete freedom in planning the acquisition. This illustrates an infarcted heart.

(a) The left and right ventricle is visible, and thinning due to the infarction is visible in the lateral wall of the LV.

(b) A slice normal to a, where the LV with both its atrium and aortic outflow tract are visible. In addition to being a scouting scan, this is an example of an orientation allowing evaluation of the timing of LV valve events.

(c) The mid-ventricular short-axis slice planned from a and b. The characteristic doughnut shape of the LV, along with the half-moon RV is visible. Myocardial thinning due to the infarction is evident in the anterolateral wall of the LV.

Note that these images are not “black-blood” prepared, resulting in bright blood signal.

5.3 Phase Contrast MRI

5.3.1 PC-MRI Planning and Acquisition

After animal preparation and placement in the isocenter of the scanner, the RF system had to be tuned and matched. For details on this, the reader is referred to Ref. (156). To improve field homogeneity, e.g. to reduce susceptibility artifacts, every MRI session included a comprehensive, fully automated shimming procedure (105) prior to data acquisition.

In all studies in this thesis, one (Paper I, II and III) or three (Paper IV) short-axis slices were acquired. For details on planning slices for assessment for cardiac
function in mice (and rats), the reader is referred to Schneider et al. (60). A screen-shot of a planning situation is illustrated in Figure 5.1, clearly illustrating the inherent and appealing 3D nature of MRI.

The number of cine frames to be acquired after a trigger signal was detected was set by the operator, being a function of TR, heart rate and required cycle coverage.

5.3.2 SEGMENTATION

Semi-automated segmentation of the PC-MRI data is illustrated in Figure 5.2, and described in detail in the papers.

Suboptimal segmentation would affect the data greatly; this would either exclude important data points (if the masks were too conservative) or include highly disturbing blood flow signal (if the masks were too liberal). While black-blood preparation reduced the impact of flow artifacts overlapping regions of interest, the reduction of signal magnitude in blood (seen in Fig 5.2a-c, compared to Figure 5.1) does not reduce the phase. This is an intrinsic property of phase-based imaging; as the signal magnitude in a pixel drops to zero, its phase becomes uniformly distributed noise in the interval \([-\pi, \pi]\) (see Figure 5.3).

5.3.3 RECONSTRUCTION OF MYOCARDIAL VELOCITIES

In each pixel, the Cartesian components of the velocity were reconstructed as described by Eq. 3.8, producing a 3D velocity vector. Motion due to bulk heart movement was removed by subtraction of the mean myocardial velocity in the two orthogonal in-plane directions. The velocity was subsequently decomposed into the cardiopolar coordinate system, constituting of a radial (in-plane; towards the in-slice center-of-mass of the LV), a circumferential (in-plane; normal to the radial) and a longitudinal component (through-plane), see Figure 3.5.
5.3.4 MYOCARDIAL WORK

Paper IV involves calculation of myocardial work. The physical unit work is measured in Joules (J), and represents the transfer of mechanical energy from the muscle to the blood. Conversely, energy is the capacity for doing work. Physically, work is the product of force (newton) and distance (meter), hence the unit.

Global myocardial work, also referred to as stroke work, may be calculated from the area of the LV pressure-volume loop, which reflects total myocardial oxygen consumption (204, 205). Accordingly, regional myocardial work is reflected by the force-segment length loop (206). Unfortunately, measurement of myocardial force is challenging, but LVP has been shown to be a suitable substitute for force, and the area of the LVP-dimension loop thus provides an index of regional myocardial work (56). This index, however, does not take into account the effects of the variable local curvature of the myocardium, and is thus not suitable for comparison within non-circular hearts (such as post-infarction) or between hearts of different size.

Work per Unit Surface

Recently, an approach of noninvasive measurement of regional myocardial work was described which allows calculation of regional myocardial work from myocardial strain, local curvature and LVP (6). By approximating the myocardium as a thin membrane, the surface tension at time \( t \) in a given region of LV could be estimated from the Young-Laplace equation, which accounts for curvature:

\[ \text{Work per Unit Surface} \]

\[ \text{Figure 5.3 Effect of signal strength on phase noise} \]

The MR signal is complex, and consists of a real (Re) and imaginary (Im) component. Random noise in complex MR imaging occurs independently in the two dimensions (203). This results in a “circle of confusion” surrounding the unperturbed signal, whose angular extent is dependent on signal magnitude. For the same noise properties, a strong signal results in a smaller uncertainty in the phase (red arc) than a weak signal. In the extreme case where the signal is zero (not shown), a unique phase cannot be defined and will be uniformly distributed in the whole range \([-\pi, \pi]\).

7 Strictly speaking, the work is the product of the force and the distance acting in that very distance. So, if a force on an object is perpendicular to its motion, no work is done. For example, when you carry a heavy object horizontally at a constant speed, you actually do zero work on that object. If the motion and the force take place in opposite directions, the work is negative, such as when Superman stops a speeding subway train.

8 Note that even if the unit of work, J, is indistinguishable from Nm, this is not used since Nm (newton-meter) is reserved for torque, where the perpendicular components of force and distance is multiplied. For work, the parallel components are multiplied.
where LVP(t) is the intraventricular pressure (in units Pa) in LV and \( \kappa(t) \) is the myocardial curvature (in units m\(^{-1} \); the reciprocal of the often-cited radius of curvature) in the region in question, both at time \( t \). Note that Eq 5.1 only accounts for curvature in one direction, i.e. it assumes a cylindrical geometry; a simplification mirrored in Paper IV where only circumferential deformation is treated. In Ref. (6), LVP was found non-invasively by scaling a species-specific standard LVP curve to peak systemic pressure and the timing of the mitral and aortic valve events. Circumferential regional myocardial work per unit myocardial surface (in units J/m\(^2 \)) could then be found from the area of the surface tension-strain loop.

### Work per Unit Length and Volume

However, to compare the work done in regions within or between hearts with different sizes and geometries (such as the MI hearts), it is necessary to account for differences in surface area between regions of interest. This was achieved by multiplying the regional arc length at end-diastole\(^9 \) with circumferential regional work per unit surface, \( c_{RMW_S} \). Total work per unit length (where length refers to the through-plane/long-axis direction), labeled \( c_{RMW_L} \), could now be found. \( c_{RMW_L} \) equals the area of the surface tension-segment length loop. By summing \( c_{RMW_L} \) over well-defined anatomical regions in a given slice (such as the septum or the lateral wall), the work done per unit length could be compared between hearts.

Incorporating myocardial arc lengths allowed comparison of regional work between the MI hearts, whose geometry was very altered, with control animals.

### Limitations in Work Calculation

The work calculated in Paper IV only incorporates circumferential strain and curvature, and includes thus no contributions from long-axis (through-plane) contraction or curvature.

The method is made potentially noninvasive by the usage of standard LVP curves. However, this curve does not incorporate variation following compromised hemodynamics, and will introduce uncertainties, especially in diastole, where LVP typically is affected significantly.

Moreover, the usage of the Young-Laplace equation (Eq. 5.1) poses several limitations. Importantly, it approximates the myocardium as an infinite thin membrane without inner forces, and assumes that there are no external forces that act on the myocardium. This may be problematic when the pericardium is opened after sham- and MI surgery; a majority of the hearts seemed to “stick” to the inside of the chest wall and experience constrictions in motion, and they are thus exposed to external

---

\(^9\) The reason for multiplying with end-diastolic arc length rather than time-resolved arc length was that the temporal change in circumferential dimension already was accounted for by the inclusion of strain; i.e. end-diastolic arc length is the reference length for strain calculation. Thus, the difference becomes that \( c_{RMW_S} \) equals the surface tension-strain loop area, while \( c_{RMW_L} \) equals the surface tension-segment length loop area.
forces in certain regions. However, if regions subject to such “sticking” coincide with the infarction, the regional work done can be assumed to be zero, and thus allows such regions to be excluded from analysis. Another issue with the estimation of surface tension is that if the curvature approaches zero, which might happen e.g. in the septum in hemodynamically compromised hearts, the surface tension goes to infinity. So care must be taken if regions affected by these issues are to be analyzed.

Finally, valvular event timing, strain assessment and peak blood pressure measurements were done at different times (but within a few days). This is a potential major limitation with the study design employed; ideally all three recordings should have been collected concurrently. The consequence of this is two-fold:

- Any mismatch between valve and strain data due to variation in heart rate would potentially have large implications in work analysis since the timing of the valvular events was used to temporally normalize the standard LVP curve. Since LVP exhibits rapid variation in time, especially during isovolumic phases, a small offset of only a few milliseconds could create large errors in estimation of LVP. However, this error would only be in effect over a very short duration, and its overall impact is therefore expected to be small over the temporal integration. Nevertheless, as noted in the paper, an attempt to correct this was done by temporally fitting the datasets to exactly match the duration of the R-R-interval.

- The measurement of peak blood pressure is used for scaling the standard LVP curve, and mismatch here would over- or underestimate myocardial work.

5.3.5 SUMMARY OF LIMITATIONS AND CHALLENGES WITH PC-MRI

While PC-MRI might be a powerful and versatile technique, it is also shadowed by a bouquet of challenges, some of whom are already mentioned. We here provide a short summary.

Eddy current induced offsets in the phase pose a major challenge in phase-based imaging, with PC-MRI as no exception. The severity of their presence increases with field strength and spatiotemporal resolution. Paper I and II in this thesis focuses on the handling of eddy current induced errors. With the appropriate compensation techniques, these errors may be nearly completely eliminated.

Susceptibility artifacts such as loss of information in apex present another well-known issue in cardiac MRI. Due to abrupt change in magnetic susceptibility between the heart muscle and air, the local magnetic field is distorted which may lead to displacement artifacts or signal loss (90). Shimming and shorter pulse sequences reduces these artifacts (105).

Lengthy acquisition time is another concern in MRI. Compared to other imaging modalities like CT and echocardiography, MRI is very time-consuming. This limits the data yield obtainable during a single session, which in turn may limit the engagement of advanced MRI protocols in clinical routine due to the ever-present demand of high throughput. Additionally, since the acquisition of a given single dataset lasted for several minutes, variation in heart rate in the animals pose a problem, and is expected to cause artifacts in the images and low-pass filtering of the data. The
heart rate was continuously monitored, and level of anesthesia was subject to small adjustment throughout experiments to keep the heart rate as constant as practically possible. In practice, this was done with reasonable success; the intraanimal standard deviation in heart rate during the quite lengthy experiments in Paper III was less than 10 bpm. Slightly different R-R-duration between acquisitions in the same animal could be corrected by temporal normalization of the datasets in post-processing.

Flow artifacts may appear in several different ways. In myocardial PC-MRI, ghosting due to blood flow limits the reproducibility of myocardial velocities (68). The impact of this artefact may be reduced by using black-blood preparation (68, 186, 192) and/or, as presented in Paper III, a rotating FOV.

Suboptimal temporal resolution causes low pass filtering of the measured signal, attenuating high-frequency components of the velocity data. This is especially important when measurement of peak motion is to be done, and when the velocity fields are integrated to calculate displacement fields. In human applications, it has been recommended to cover the cardiac cycle with at least 60-70 frames to be able to accurately derive strain from velocity data or analyze strain-rate (25, 153). Until now, the highest temporal resolution in myocardial PC-MRI published in animal applications acquires about 25 frames per cycle. However, by incorporating the Fourier tracking technique, the effect of velocity low-pass filtering is greatly reduced in calculating tissue trajectories (92).

The quality of the PC-MRI data relies on precise and reproducible segmentation, which was done semi-automatically (Section 5.3.2). Care was taken when the endo- and epicardium were delineated, to not include blood or air pixels into the myocardial mask, and still include in the mask an as-large-as-possible fraction of myocardial pixels. To reduce possible blood signal contamination, an automated blood-signal suppression protocol was employed during post-processing. Here, the epi- and endocardial border zone pixels of the myocardial mask were analyzed one by one, and the pixel was removed from the myocardial mask (i.e. it was rebranded as non-myocardial) if its velocity deviated from the median of its myocardial neighbors by a user-set threshold. This was repeated iteratively until no more pixels were removed.

5.4 COMPUTER SIMULATIONS

In Paper I and II in this thesis, PC-MRI experiments of phantoms were simulated on a computer, using custom-written Matlab software (versions R2009b-R2012b). It served the purpose of demonstrating the theoretical foundation of the expected improvements presented in the two papers under idealized circumstances. It thus allowed examination of the impact of isolated factors on simulated PC-MRI acquisitions.

In both experiments, MRI acquisitions of phantoms were simulated (static cylinder in Paper I, rotating disk with static rim in Paper II). Also, eddy current induced baseline shifts played an important role in both simulations. An crude simplification in both these experiments was that this shift maps were randomly generated, obviously not corresponding to the actual situation, in which these maps are non-random functions of the gradient activity. However, we argued that the random maps fulfilled their purpose in 1) shifting the baseline phase with spatial heterogeneity (Paper I and
II), 2) being unique for each velocity encoding step (Paper I) and 3) producing fitting residuals after ECC (Paper I).

Nonetheless, computer simulations will always be a simplification of actual real-world experiments, so caution must be shown when interpreting results from such idealizations of the real world.

## 5.5 Echocardiography and Catheterization

### 5.5.1 Echocardiography

Echocardiography also played a vital role in the studies in this thesis. It was used to stratify the animals prior to MRI examination (31), and served as a method (namely 2D speckle-tracking) for validation of the PC-MRI-derived strain in Paper III.

Standardized recordings, as well as skilled and unbiased operators, are critical factors to achieve high data quality in ECHO. All ECHO recordings in this thesis were performed by highly skilled operators with extensive experience on a Vevo 2100 (Visual Sonics, Canada) preclinical scanner with a 24 MHz transducer. General advantages and challenges of ECHO are discussed in more detail in Section 3.3.

### 5.5.2 Blood Pressure Measurement

In all animals included in Paper IV, intraventricular and aortic blood pressures (BP) were measured. For the cohort of animals also examined by MRI, these measurements were done within a few days after imaging.

Anesthesia was induced in an anesthesia chamber (64% N\textsubscript{2}O, 32% O\textsubscript{2} and 4% isoflurane), and subsequently mask ventilated by a mixture of 98.5% O\textsubscript{2} and 1.5% isoflurane. A 1.4F Millar catheter was inserted retrogradely into the right common carotid artery and the LV cavity. Hemodynamic recordings of aortic and LV pressures were recorded at 1 kHz sampling rate. At a heart rate of 400 bpm, this resulted in about 150 data points covering the cardiac cycle.

**Concurrent Valve Event and BP Assessment**

In Paper IV, a standard LVP curve normalized to the length of the isovolumic phases was created through concurrent measurement of LVP and the timing of mitral and aortic valve events. Echocardiography combined with hemodynamic evaluation was performed six weeks after ligation of the left coronary artery. Concurrent with pressure readings, blood flow through the mitral and aortic valve was obtained by Doppler measurement. Aligned hemodynamic data, ECG and Doppler recordings were analyzed off-line.

**Challenges with BP Measurements**

The catheterization method may be subject to drift during experiment. Therefore, the baseline pressure was measured both prior to and after each recording, to assess potential drift during the session. Care was taken to minimize effects of temperature and depth of anesthesia (see also Section 5.1.4)
5.6 Statistics

In all four papers, either parametric (Student’s t-test, one-way ANOVA) or non-parametric (Mann-Whitney U-test) tests were used to describe differences between groups. In Paper I, improvement in accuracy of the proposed PC-MRI encoding strategy was compared to two existing techniques, by evaluating results from computer simulations, phantom experiments and in vivo data from mice hearts. In Paper II, the performance of conventional and improved eddy current compensation was compared. In Paper III and IV, physiological and functional parameters of rats with MI were compared to sham-operated controls.
6 Brief Summary of Main Results

This section briefly presents the main results of the individual papers, and that are important for the following discussion. The reader is referred to the individual papers for detailed results.

Paper I
Improved MR phase contrast velocimetry utilizing a novel nine-point balanced motion-encoding scheme with increased robustness to eddy current effects

The study reported in Paper I concerned the development of a novel approach to PC-MRI that allowed pushing the limits of achievable resolution in high-field MRI. The study proposed a new encoding strategy, labeled nine-point balanced encoding, designed to be more accurate than conventional methods in the presence of strong and rapidly changing magnetic gradients.

Computer simulations, phantom measurements and in vivo experiments demonstrated a significant improvement compared to conventional approaches in high-resolution application in mouse hearts. This study concluded that the nine-point balanced PC-MRI encoding strategy offers higher accuracy in velocity measurements due to increased robustness to eddy current effects, making it useful for settings where high spatiotemporal resolution is required.

Paper II
Unwrapping eddy current compensation: Improved compensation of eddy current induced baseline shifts in high-resolution phase-contrast MRI at 9.4 T

Paper II reports the second study in this thesis, and introduces an improved PC-MRI post-processing technique. When the gradient strengths are pushed to achieve optimal spatial and temporal resolution, eddy current generation can be so strong that the resulting phase shifts causes wrapping in the static-tissue (baseline) phase. Rendering conventional eddy current compensation inadequate, this study introduces an unwrapping ECC technique able to handle baseline phase discontinuities.

In high-resolution high-field PC-MRI, the presence of phase wrapping in static regions was demonstrated. Increasing the temporal resolution increased the presence of wrapping. The proposed unwrapping ECC technique was compared to conventional ECC, and performed significantly better by successfully eliminating phase discontinuities.

Paper III
Novel insight into the detailed myocardial motion and deformation of the rodent heart using high-resolution phase contrast MRI

In the third study in this thesis, reported in Paper III, the methodology presented in Paper I and Paper II is further developed and, as a proof-of-concept, applied in
normal and infarcted rat hearts. This study introduces the concept of a rotating field-of-view to reduce the impact of geometrically systematic artifacts.

Distinct alterations in global and regional function were demonstrated in the dysfunctional hearts, compared to control. This included reduced systolic peak motion, reduced global circumferential strain and increased heterogeneity in function as well as increased dyssynchrony. Intra- and interstudy variability were evaluated, and was low for both velocity and strain measurements (limits-of-agreement, radial motion: 0.01±0.32 cm/s and -0.06±0.75 cm/s; circumferential strain: -0.16±0.89 % strain and -0.71±1.67 % strain, for intra- and interstudy, respectively). Furthermore, strain derived from the PC-MRI data was validated against speckle tracking echocardiography, and found to be in excellent agreement ($r=0.95$, $p<0.001$; limits-of-agreement -0.02±3.92 % strain).

This study presents for the first time that PC-MRI enables high-resolution evaluation of in vivo myocardial strain in addition to myocardial motion and displacement in the rat heart.

**Paper IV**

**Assessment of regional myocardial work in rats**

In this fourth and last study of this thesis, a method for calculation of regional myocardial work, previously explored in large animals and humans using echocardiography, was adapted for use in small-animal research using MRI. In summary, measuring peak blood pressure and valvular events allows estimation of time-resolved LV pressure from a species-specific standard pressure curve, which again enables calculation of myocardial work from MRI-derived strain using the Young-Laplace equation. This study first establishes a standard LVP curve in rats, and subsequently applies the method to study alterations in circumferential regional myocardial work in the infarcted rat heart.

Myocardial work in infarcted regions was zero, as expected. However, stroke volume and stroke work was not decreased in the MI hearts. This suggested a compensatory increase in work performed by the viable myocardium. In the septum, work per unit length in the long-axis direction was indeed increased in MI animals compared to control (249.8 (46.7) vs 137.9 (14.3) mJ per unit long-axis length in a mid-ventricular slice; $p<0.001$). Work per unit mass was not different, so the increase in septal work was attributed to increased septal mass. Eccentric myocardial work during systole and isovolumic relaxation was also increased in the MI animals.

Paper IV demonstrated that PC-MRI constitutes, in combination with measurement of valvular events and peak blood pressure, a readily noninvasive technique for estimation of regional myocardial work.
7 RESULTS AND DISCUSSION

The availability of preclinical high-field MRI systems is in continuous growth, and will undeniably be a major contributor in studies employing e.g. small animal models of heart disease. Animal research provides matchless possibilities in studying the development and mechanisms of cardiac diseases, and techniques allowing reliable measurement of in vivo cardiac and regional myocardial function play a vital role. PC-MRI is thoroughly validated as a technique accurately measuring velocity, displacement and deformation of the myocardium, and offers a unique combination of the unrestricted geometry intrinsic to MRI and true 3D motion mapping. However, it might be challenging to achieve the optimal resolution required to capture the fine details of cardiac mechanics in small animals.

An overarching theme of this thesis was therefore to establish approaches allowing pushing the limits of the achievable resolution, both spatially and temporally, in PC-MRI imaging. Increased spatial and/or temporal resolution in MRI is accomplished by altering the gradient amplitudes and durations; higher spatial resolution requires stronger gradient, and higher temporal resolution requires shorter gradients. Unfortunately, stronger and more rapid gradients generate stronger eddy currents that inflict detrimental alterations in the measurements.

Paper I and II concern the pervasive challenge of eddy current induced artifacts in PC-MRI, and introduces approaches reducing the impact of these artifacts, ultimately allowing the employment of stronger gradients and therefore higher resolution than before. Paper III and IV investigate the ability of improved myocardial PC-MRI to assess regional motion/strain and work, respectively, in the rodent heart.

A rough overview of PC-MRI data acquisition and post-processing is illustrated in Figure 7.1, along with where the different papers in this thesis belong.

Figure 7.1 PC-MRI workflow overview
Rough overview of the workflow of a PC-MRI experiment, with markings denoting where the individual papers in this thesis belong. P1 = Paper I, and so on.

7.1 APPLICATION OF PRECLINICAL MYOCARDIAL PC-MRI

Although PC-MRI has been shown to be powerful and versatile in several research applications in humans (1, 90, 101, 104, 120, 121, 126, 127), to the best of our knowledge only two other groups have reported the use of myocardial PC-MRI in
small-animal research; Würzburg, Germany (105, 131, 132, 151) and Oxford, United Kingdom (17, 68).  

Using a 7T-system, Streif et al. (131) investigated the in-plane motion in a midventricular slice in normal and infarcted mouse hearts. Weissman et al. published a case report (132) also comparing healthy and infarcted mouse hearts using the same approach. Nahrendorf et al. (151) used the technique to investigate the altered myocardial velocities of a creatine kinase-deficient mouse.  

Herold et al. (105) acquired three-directional motion in three short-axis slices in mice with (so far) unmatched spatial resolution using a 17.6 T system: 98 μm/pixel in-plane resolution and 0.6 mm slice thickness.  

The most recent study, Dall’Armellina et al. (68) used a 9.4 T MR system equivalent to the system used in this thesis. They measured three-dimensional motion of mouse hearts in three LV levels with improved spatiotemporal resolution (200 μm/pixel, 4.6 ms per frame) which allowed detailed description of the waveform of the motion and transmural variation; using a ischemia-reperfusion model as a proof-of-principle application. This study is so far the only study reporting transmural variation in motion in small animals using PC-MRI. In addition, they were the first to employ black-blood contrast in preclinical myocardial PC-MRI, and documented the significance of suppressing blood flow to reduce flow artifacts.

Jung, Odening and Dall’Armellina et al. (17) compared the regional myocardial motion in mice (with data from study (68)), rabbits and humans (with data from study (1)), and revealed and described the different motion patterns between the species.

Three of the papers in this thesis report parameters from myocardial PC-MRI in mice and rats, offering improved temporal resolution as well as a higher number of circumferential segments compared to previous work.

A quick comparison of principal sequence parameters is found in Table 7.1.

### Table 7.1 Comparison of applications of myocardial PC-MRI in mice and rats

To date, only three groups (Würzburg (105, 131, 132, 151), Oxford (17, 68) and Oslo (93, 130)) have published studies on applications of myocardial PC-MRI in mice or rats.  

*: This assumes 450 bpm in mice and 350 bpm in rats. SA = short axis.

<table>
<thead>
<tr>
<th>Work</th>
<th>MR field (T)</th>
<th>Species</th>
<th>Spat.res (μm)</th>
<th>SA sectors</th>
<th>Temp.res (ms)</th>
<th>Frames/cycle*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streif et al. (131)</td>
<td>7.05</td>
<td>Mouse</td>
<td>234</td>
<td>4</td>
<td>~10</td>
<td>~13</td>
</tr>
<tr>
<td>Wiesmann et al. (132)</td>
<td>7.05</td>
<td>Mouse</td>
<td>234</td>
<td>-</td>
<td>~10</td>
<td>~13</td>
</tr>
<tr>
<td>Herold et al. (105)</td>
<td>17.6</td>
<td>Mouse</td>
<td>98</td>
<td>4</td>
<td>6</td>
<td>~22</td>
</tr>
<tr>
<td>Nahrendorf et al. (151)</td>
<td>7.05</td>
<td>Mouse</td>
<td>234</td>
<td>1</td>
<td>~10</td>
<td>~13</td>
</tr>
<tr>
<td>Dall’Armellina et al. (68)</td>
<td>9.4</td>
<td>Mouse</td>
<td>200</td>
<td>6/24</td>
<td>4.6</td>
<td>~29</td>
</tr>
<tr>
<td>Jung et al. (17)</td>
<td>9.4</td>
<td>Mouse</td>
<td>200</td>
<td>6/24</td>
<td>4.6</td>
<td>~29</td>
</tr>
<tr>
<td>Paper I (93)</td>
<td>9.4</td>
<td>Mouse</td>
<td>200</td>
<td>32</td>
<td>3.5</td>
<td>~38</td>
</tr>
<tr>
<td>Paper III (130)</td>
<td>9.4</td>
<td>Rat</td>
<td>390</td>
<td>32</td>
<td>3.2</td>
<td>~54</td>
</tr>
<tr>
<td>Paper IV (subm)</td>
<td>9.4</td>
<td>Rat</td>
<td>390</td>
<td>32</td>
<td>2.9-3.2</td>
<td>~54-59</td>
</tr>
</tbody>
</table>

10 One of the studies was a collaborative effort between Freiburg, Germany and Oxford, UK. However, the mouse imaging was performed by the Oxford Group.
7.2 OPTIMIZING PC-MRI ACQUISITION FOR SMALL ANIMAL APPLICATIONS

At the heart of optimizing myocardial PC-MRI for small animals is the aim to optimize spatial and temporal resolution; to be able to study both the intricate motion of the healthy heart and the complex and possibly subtle alterations in diseased hearts. Improved temporal resolution allows better peak detection due to reduced low-pass filtering and better evaluation of regional dyssynchrony (207). As mentioned in the Methods, a temporal resolution of 60-70 frames per cardiac cycle is recommended in humans to accurately being able to capture the fine motion of the heart (25, 153). So far, the data with highest resolution published in mice is less than half of this. In addition, optimized spatial resolution ensures the ability to discriminate function in different regions, and better opportunity to follow regional changes in function over time.

High-resolution myocardial PC-MRI will also potentially be of value in studies on e.g. spread of dysfunction after MI and regional function vs. local degree of fibrosis.

**Figure 7.2 PC-MRI pulse sequence**
Cartoon of the phase contrast MRI sequence. The first and second lobes in each encoding direction are sums of the spatial encoding (inherent of the gradient echo imaging sequence) and motion encoding (bipolar components). Amplitudes and timings are not exactly to scale. In the implementation of PC-MRI in this work, the spatial encoding could be first-order nulled (flow compensated) at the request of the operator. Echo and repetition times (TE/TR) are marked in the figure; note how TR equals the temporal resolution of the cine loop.

**7.2.1 DEVELOPMENT OF PC-MRI PROTOCOL**

The pulse sequence employed in this thesis, with operator-selectable motion encoding and compensation, was developed in-house based on a gradient echo cine sequence bundled with the system. Bipolar flow-encoding gradient were incorporated into the RF-spoiled gradient echo cine sequence, using a minimum-TE approach (208). Motion encoding could be turned off by the operator, and spatial-encoding
gradient complexes in all directions could be first moment-nulled (flow compensated) at echo time at the request of the operator. If the motion encoding gradients were turned off, the PC-MRI sequence essentially became a motion-compensated gradient echo cine sequence, which was used for all cine MRI in the work with the current thesis. The pulse sequence is illustrated in Figure 7.2.

The gradient waveforms and exact duration were automatically calculated from four PC-MRI related inputs from the operator: venc, lobe duration, intergradient delays and encoding direction. Additional delays could also be prescribed by the operator, e.g. to allow some decay of eddy currents in the system after spatial and velocity encoding, before readout.

Since the whole trustworthiness of the measurements relied on precise calculation of gradients, care was taken to ensure the mathematics was correct, and that the prescribed gradients (specifically, their time-amplitude area and timing) were accurately carried out by the hardware. This was done on several levels;

1. The area of the calculated gradients were printed by the protocol on-screen during preparation of experiments, as they were dependent on a wide range of parameters
2. The actual gradient activity was measured using a four-channel digital oscilloscope, which allowed monitoring and quantification of the activity in the gradient hardware system
3. The resulting velocity measured was verified by use of a rotating phantom (Paper I)

### 7.2.2 Increasing the Resolution

A well-established approach to accomplish high temporal resolution is to employ non-interleaved scans (209). This renders temporal resolution is simply equal to TR, and improving temporal resolution essentially becomes an issue of reducing TR. Striving to improve the spatiotemporal resolution of preclinical PC-MRI, an essential task therefore becomes to employ as strong and rapid gradients as possible, since (as described in the Theory section) resolution is directly related to the strength and duration of the magnetic gradients applied (105, 156).

- Optimal spatial resolution and velocity sensitivity is achieved by ensuring high time-amplitude areas of the encoding gradients.
- Increased temporal resolution demands shorter gradients, calling for even stronger gradients to achieve the same time-amplitude area.

#### Hardware Aspects

Progress in MR technology over the years has allowed the application of advanced protocols in small-animal research.

There is, as would be expected, an upper limit in the gradient system for how strong the gradients can be, and how quickly they can reach their maximum value. Another limiting factor is the gradient duty cycle, a limiting parameter related to the

---

11 The actual durations of the gradients could only take certain values depending on its amplitude; thus it would differ ever so slightly (in the order of a few microseconds) to the user-prescribed duration. Since the first moment of the gradients, and thus velocity encoding, was directly a function of gradient timing, care had to be taken to ensure precise velocity encoding.
fraction of the time the gradients may be active without overheating. Together, these factors define the boundaries of how high resolution that is theoretically obtainable in a given system.

In the current thesis, no modifications in the actual hardware were done, so the work was not intended to extend the operating limits of the apparatus. Rather, we sought to find ways to be able to push the system towards its operating limits—and handle the consequences of this.

### Resulting Resolution

The spatial resolution of the raw MRI data in the mice experiments in this thesis (Paper I) were not higher than previously published studies by Herold et al. (105) and Dall’Armellina et al. (68). The papers in the thesis demonstrate, however, improved temporal resolution without compromised spatial resolution in mice (Table 7.1). In addition, the studies in this thesis performed analysis on smaller regions than before, so the actual spatial resolution in the data reported was improved.

No other studies have, to our knowledge, applied myocardial PC-MRI in rats (as were done in Paper III and IV), so no study can serve as a comparison. But since rat hearts generally are larger and their beating frequency lower than mouse hearts, e.g. the number of frames per cycle (last column, Table 7.1) is considerably higher than previously reported in rodents.

#### 7.2.3 EDDY CURRENTS: FACING THE CONSEQUENCES OF IMPROVED RESOLUTION

As mentioned in the Theory section, stronger and quicker gradients cause stronger eddy currents, which may result in severe baseline phase shifts (156). This renders the generation of eddy currents one of the most pressing challenges in high-resolution PC-MRI, since they have highly detrimental effects on the measurements. A predominant theme for Paper I and Paper II was thus to manage the increased presence of eddy current induced errors in the baseline phase following the considerably higher gradient activity that accompanies increased resolution (162, 165, 179, 180, 182, 183).

In all the papers in this thesis, a semi-automated spatially-specific ECC method without the need for additional scans was incorporated, described in details in Ref. (179). In short, it relies on the identification of static tissue from the temporal standard deviation of image pixels, and subsequent calculation and subtraction of a best-fit correction map. In this work, ECC was done after Fourier transforming (210) and multicoil reconstruction (211), but prior to velocity reconstruction.

#### Improved Efficiency of ECC

Paper I uses the conventional ECC approach (179). It demonstrates that increasing the number of encoding directions, i.e. the number of unique acquisitions of the motion, offers improved correction of baseline errors. The balanced nine-point encoding strategy, as was applied throughout all studies in this thesis, is an extension of the balanced five-point scheme where eight encoded scans plus a reference scan are acquired, spanning the corners of a cube. The dynamic range between the methods is identical. The balanced nine-point method offers improved accuracy compared to
previous approaches (175, 177) in measuring myocardial motion in mice. In Paper I, we argue that this is due to improved efficiency of the eddy current compensation. This allows the employment of stronger and more rapid gradients, ultimately increasing the spatiotemporal resolution (105).

**Improved ECC**

However, the conventional ECC is inadequate if the eddy currents are sufficiently strong to produce discontinuities in the baseline phase due to phase wrapping; this is reflected by the aim for the second study in this thesis. Paper II introduces a new preconditioning step to ECC, resulting in unwrapping ECC. This improved version of ECC was applied in Paper III and IV.

The challenge of baseline phase wrapping (i.e. discontinuities) due to severe eddy current induced baseline shifts is first introduced in Paper II, along with a technique to handle it. No study has previously, to our knowledge, reported such wrapping in the baseline phase in PC-MRI. There are probably two reasons for this. First, the majority of applications of PC-MRI have been developed to evaluate blood flow. As mentioned, this requires weaker gradients and consequently induces less eddy currents. Second, we have pushed the temporal resolution without compromised spatial resolution and thereby employed stronger and more rapid gradients than any other study (see Table 7.1).

The methodology presented in Paper I and II were shown to provide improved accuracy in the presence of strong eddy currents compared to conventional approaches, thus allowing further improvement of the resolution in future applications.

**7.2.4 ROTATING FOV: REDUCING IMPACT OF FLOW ARTIFACTS**

Beat-to-beat variations in blood flow generates ghosting in the phase encoding direction, causing errors that are spatially dependent in the velocity measurements in the myocardium (21) and has been shown to affect the measurements of absolute myocardial velocities (68). Black blood contrast has been demonstrated to be beneficial in myocardial PC-MRI, both in humans (186, 192) and in mice (68), as well as when using MR tagging in mouse hearts (212). However, we demonstrate in Paper III that even after black-blood preparation, some residual artifacts might still remain in the phase-encoding direction (Figure 1, Paper III). The rotating FOV presented in this paper reduces the impact of such errors in regional analysis through averaging multiple acquisitions where the orientation of the phase-encoding direction is varied. As noted in Paper III, this only applies to Cartesian imaging. Other acquisition strategies, such as spiral acquisition (207), are faced with other manifestations of motion artifacts not addressed in this thesis.

A challenge with black-blood preparation is that it occupies valuable time in the sequence. In small-animal applications, a black-blood preparation complex occupies 10-20 ms of the cycle and thus either reduces cycle coverage (68) or leads to a doubling of the experiment time (130).
7.2.5 ADDITIONAL OPTIMIZATION

**Overshoot**

In all PC-MRI experiments in this thesis, as well as the valve cine data, more than 100% of the cardiac cycle was covered (151). This is referred to as overshoot, and was achieved by prescribing a cine train whose duration exceeded the R-R-interval. This was a necessary and rewarding in that it 1) guaranteed complete coverage of the whole cardiac cycle in combination with prospective gating and black-blood preparation, 2) allowed some decay of the currents in the ECG wires, thus improved the reliability of R-peak detection and 3) it allowed retrospective calculation of the mean heart rate at the time of experiment.

**Improved Respiration Gating**

Since prospective ECG-triggering with respiration gating (198) was used, a subtle (but important) optimization step was implemented: a limit was applied to how large fraction of the time between respiration events that were actually accepted for acquisition. This improved data quality substantially, since it avoided the situation where a trigger signal would be transmitted to the acquisition system immediately before a respiration event occurs, thus “allowing” acquisition during respiration.

7.2.6 THE COST OF INCREASING RESOLUTION

One of the unavoidable trade-offs in MR is between data quality and acquisition time. As discussed in Paper I, the nine-point obviously increases scan time compared to four- or five-point encoding. However, achieving satisfactory SNR in small-animal applications renders employment of signal averaging (NA>1) necessary (that is, multiple acquisition of the same signal to improve signal-to-noise ratio). In Paper I, we demonstrate that the nine-point scheme with NA=n offers a decrease in scan time but still improves measurement accuracy compared to the five-point scheme with NA=2n and the four-point scheme with NA=3n. Thus, in comparison to earlier implementations of murine myocardial PC-MRI where NA>2 is used (105, 131, 151), the nine-point approach would actually be beneficial with respect to acquisition time. This is not the case in the latest application of myocardial PC-MRI in mice (68), whose four-point encoding with NA=2 renders the acquisition time about 11% lower than would have been possible with nine-point.

Although no myocardial PC-MRI studies on the rat have been published, the acquisition time in Paper III was comparable to previously reports on MR-based strain measurement (81, 213).

Another factor increasing acquisition time is the choice of “overshooting” the cardiac cycle, in that the PC-MRI cine train covered more than 100% of the R-R-interval. However, as discussed in the papers, this allowed complete coverage of the whole phase (including diastole) in combination with black-blood preparation, and improved the reliability of ECG-triggering by allowing decay of currents induced in the ECG wires by gradient activity.

Nevertheless, all MR examinations reported in this thesis were considerably more time-consuming than similar echocardiography examinations, although the data yield would be different. Depending on study design and experimental needs, the
trade-off between data yield and acquisition time must be considered. In this parallel imaging was not employed, which potentially reduces the acquisition time considerably (30, 108, 109).

7.3 Optimized Analysis of Regional Myocardial Function

In this section, some of the aspects of optimizing post-processing are discussed.

7.3.1 Velocity

In this thesis, the myocardial PC-MRI protocol was applied in mice (Paper I) and rats (Paper III and IV), and revealed that peak radial motion was about half in mice compared to rats. The waveforms of radial motion in normal humans, rats and mice are very similar with easily discernible systolic, isovolumic relaxation and diastolic phases (68, 101, 130), although the peak velocities are different (Table 7.2). The short but distinct biphasic radial motion pattern in early diastole has previously been emphasized as an example of a brief complex motion pattern in humans that requires high-temporal resolution to capture (101). This pattern is easily discernible in myocardial PC-MRI data in both mice (Paper I) and rats (Paper III), indicating that the temporal resolution employed is sufficient to capture very fine details of cardiac motion.

7.3.2 Displacement

Temporal integration of velocity, having units distance per time, results in a measure of displacement. Integration of velocity plays an important role in Paper I, III and IV; however it serves very different purposes.

In Paper I, it was used as a tool for evaluating the accuracy of the proposed nine-point method. Here, no extra steps were taken to improve trajectory calculation since we intended to examine the presence of errors in the velocity data.

In Paper III and IV, however, velocity integration played a fundamental role in calculation of myocardial strain. In these papers, the trajectory of each myocardial pixel was calculated using a Fourier corrected forward-backward motion tracking technique (91, 92, 95), providing accurate assessment of displacement from velocity data. Since the imaging volume was static in the laboratory system, slightly different parts of the myocardium was included in end-diastole and end-systole. This motivated our choice of extending the motion tracking technique to include end-systole as a temporal origin, in addition to end-diastole. This provided two unique representations of the displacement field, and analysis revealed that the intra- and interstudy limits-of-agreements were improved when this approach was employed.

7.3.3 Strain

In Paper III and IV, the Lagrangian strain in the circumferential direction ($\varepsilon_{cc}$) was calculated by comparing the position of neighboring regions over time (Eq. 3.14). As noted in Paper III, our method of calculating strain is rather simple compared to more advanced approaches such as a spline-based deformation analysis (214). However, validation, analysis of inter- and intrastudy variability and excellent agreement
with the literature of the results advocates our approach as suitable for calculating circumferential strain.

The work in this thesis have, as many previous studies (85, 147, 194-197), focused on circumferential strain. A limitation of solely focusing on the circumferential component of strain is that it does not enable calculation of the strain tensor, and relies on precise definition of cardiac geometry prior to strain calculation (14).

**Validation of PC-MRI Strain**

PC-MRI itself has been validated to accurately measure velocity (90), displacement (94, 95) and deformation (96) of the myocardium. It has been used to calculate myocardial strain in dogs (90) and humans (97) and compared theoretically to MR tagging (215).

However, the work in Paper III and IV was, to our knowledge, the first studies employing high-resolution velocity data to calculate myocardial strain in rodents. We therefore needed to validate this to a well-established method, and our choice fell on speckle-tracking echocardiography (2D-STE), which itself has been validated against tagging MRI, sonomicrometry and tissue Doppler echocardiography (216) and compared to displacement-encoded MRI in mice (217, 218). We found that strain derived from PC-MRI and 2D-STE agreed excellently. PC-MRI-derived strain also had low inter- and intrastudy variability.

When validating the strain calculation from PC-MRI with 2D-STE, we found it appropriate to compare temporally-resolved global values rather than regional values. The reason for this was that since our object was to reveal any possible systematic difference between the modalities, we wanted the variability within each method to be as optimal as possible. If we were to use regional strain from speckle-tracking and compare it to corresponding regions in MRI, we believe that the increased uncertainty in the measurements due to differences in segmentation would possibly reduce the power of the validation in detecting possible systematic differences between echo- and MRI-derived strain.

**Consistency with Literature**

As described in Paper III, our findings on circumferential strain in rat hearts agreed well with other studies employing MR tagging (20, 219, 220) and HARP (213), however Paper III had considerably higher temporal resolution (>50 temporal frames per cycle vs. 12-25). All studies report maximum circumferential strain at the mid-ventricular level to be 19-23% (Table 7.2).

We found, initially somewhat surprisingly, a quite prominent heterogeneity in regional circumferential strain in sham-operated hearts. However, we soon found that this has also been documented earlier in a study employing 2D-STE (67). There might be several reasons for this;

- The sham-operated animals have had the pericardium opened. This can cause the epicardium to “stick” to the inside of the chest wall, which will provide an external force restricting the intrinsic freedom of the cardiac motion.
- The zones in the LV myocardium where the RV is attached experiences additional forces due to contraction and passive forces in the RV myocardium and lumen.
Similarly, it has been shown in human hearts that circumferential strain is indeed not completely homogenous around the circumference; it is greater in anterior and lateral regions than in posterior regions at all levels in the heart (48, 221).

Table 7.2 Comparison of peak radial velocities and circumferential strain between species
Velocity measured by PC-MRI at a mid-ventricular level in normal subjects. From (1, 68, 93, 101, 119, 130, 207). Circumferential strain measured by MRI at a mid-ventricular level. From (16, 19, 20, 69, 81, 213, 219, 220, 222, 223).

<table>
<thead>
<tr>
<th>Species</th>
<th>Peak systole (cm/s)</th>
<th>Peak diastole (cm/s)</th>
<th>Circ. strain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humans</td>
<td>2.4-3.5</td>
<td>3.6-5.1</td>
<td>20-23</td>
</tr>
<tr>
<td>Rats</td>
<td>2.2</td>
<td>2.7</td>
<td>19-23</td>
</tr>
<tr>
<td>Mice</td>
<td>0.8-1.3</td>
<td>1.6-1.8</td>
<td>15-17</td>
</tr>
</tbody>
</table>

7.3.4 WORK
In Paper IV, the regional work in MI hearts was compared to sham-operated controls. Performed work was, as expected, reduced in the lateral wall of the MI hearts (containing both viable and infarcted tissue); and work done in the infarcted regions alone was zero. The total work done by the entire septum, however, was increased in the MI hearts. Moreover, stroke volume and estimated stroke work (from mean work per unit length in each heart multiplied with the heart length) was preserved in the MI hearts, and this agreed well with the finding of increased work in the viable myocardium in infarcted hearts. Thus, we were able to detect a compensatory increase in work in the viable myocardium by use of PC-MRI in combination with measurement of peak systemic pressure.

The stroke work done in the septum per unit myocardial mass was found to be not different between groups, but the septal volume was increased, consistent with our finding on increased work done by this region.

As discussed in the paper, we found work per unit myocardial mass in rats to be higher than previously reported values in larger animals (56, 224). However, our finding was consistent between the two different approaches for calculating stroke work per volume; using data from either cine MRI or PC-MRI. On that note; somewhat surprisingly, however, was the fact that total stroke work calculated from circumferential strain only (mean PC-MRI derived work per unit length multiplied with heart length) was more or less equal to work form dimension-independent data (mean systolic LVP multiplied with cine MRI-derived stroke volume). An explanation of this is that the consequence of ignoring both long-axis strain and curvature is expected to contribute in opposite directions, i.e. this simplification concurrently both over- and underestimate the actual work and ultimately the error is reduced.

7.4 APPLICABILITY OF THE PRESENT RESULTS TO CLINICAL USAGE
Although the work in this thesis is motivated by the need for improved resolution in small-animal imaging, there are no fundamentally technical differences between pre-
clinical and clinical MRI; and the methodological results in this thesis is in principle applicable to human MRI usage. Paper I and II presents improved handling of eddy current artifacts, which might allow improved resolution and/or sensitivity in also in human applications. Paper III and IV present the methods for calculation of myocardial strain and work, respectively, from PC-MRI data, both completely independent on species.

Still, there are other important issues that must be considered when translating MRI methodology from preclinical to human applications; including achieving acceptable acquisition times and acceptable exposure to gradient- and RF activity.

7.5 THE FUTURE IS THREE-DIMENSIONAL

The work in this thesis concerns the acquisition and analysis of three-directional velocity on a 2D grid (a slice). There are several limitations by doing this; first and foremost we are not able to accurately capture the complex three-directional motion and create true 3D motion paths (225). Second, the slices are stationary in the laboratory system meaning that slightly different parts of the myocardium are included at different phases in the cardiac cycle. Third, the slices are defined in the acquisition process, and the data relies on

A natural extension of the work in this thesis is to develop a sequence able to capture true 3D data, that is, three-directional three-dimensional motion. While flow-quantification PC-MRI has seen a rapid development over the years towards fast, comprehensive acquisition of true 3D data (172, 173, 226, 227), 3D myocardial PC-MRI has to the author’s knowledge only been used once by Kvitting et al. (13), in a human study.

When established, it is likely that 3D PC-MRI using acceleration methods such as vastly undersampled isotropic-voxel radial projection imaging (VIPR) (172, 226) or spiral acquisition (167) will come to play important roles in the study of the healthy and diseased myocardium.

The nine-point encoding scheme introduced in Paper I and the unwrapping ECC technique presented in Paper II are readily applied to 3D acquisitions; both conventional and accelerated approaches. The myocardial strain and work calculation from Papers III-IV are extendable to 3D data with only minor modifications.
8 CONCLUSIONS

The main conclusion of this thesis is the following:

PC-MRI is a versatile and accurate method able to describe regional motion, deformation and work of the myocardium in small animals with high spatio-temporal resolution.

Reflecting the four aims and papers in this thesis, the sub conclusions are the following:

1. Employing nine-point balanced PC-MRI encoding strategy offers higher accuracy in velocity measurements due to increased robustness to eddy current effects through improved efficiency of eddy current compensation.

2. Baseline wrapping occurs in high-field, high-resolution PC-MRI if the resolution is pushed, and conventional ECC fails to properly correct such errors. An improved unwrapping ECC technique significantly improves correction of eddy current induced errors in phase contrast MRI.

3. Through a combination of optimized slice planning, acquisition parameters and post-processing, exploration of the complex spatiotemporal pattern of in vivo motion and circumferential strain in the healthy and dysfunctional rat heart is feasible.

4. PC-MRI strain in combination with peak blood pressure and LV valve event quantification allows calculation of regional myocardial work in the rat heart, constituting a potentially noninvasive technique for evaluation of regional myocardial work in rodent hearts.
9 REFERENCES


58. Helle-Valle TM, Yu WC, Fernandes VR, Rosen BD, Lima JA. Usefulness of radial strain mapping by multidetector computer tomography to quantify regional


Novel insight into the detailed myocardial motion and deformation of the rodent heart using high-resolution phase contrast cardiovascular magnetic resonance

Emil KS Espe1,2*, Jan Magnus Aronsen1,2,3, Kristine Skårdal1,2, Jürgen E Schneider4, Lili Zhang1,2 and Ivar Sjaastad1,2

Abstract

Background: Phase contrast velocimetry cardiovascular magnetic resonance (PC-CMR) is a powerful and versatile tool allowing assessment of in vivo motion of the myocardium. However, PC-CMR is sensitive to motion related artifacts causing errors that are geometrically systematic, rendering regional analysis of myocardial function challenging. The objective of this study was to establish an optimized PC-CMR method able to provide novel insight in the complex regional motion and strain of the rodent myocardium, and provide a proof-of-concept in normal and diseased rat hearts with higher temporal and spatial resolution than previously reported.

Methods: A PC-CMR protocol optimized for assessing the motion and deformation of the myocardium in rats with high spatiotemporal resolution was established, and ten animals with different degree of cardiac dysfunction underwent examination and served as proof-of-concept. Global and regional myocardial velocities and circumferential strain were calculated, and the results were compared to five control animals. Furthermore, the global strain measurements were validated against speckle-tracking echocardiography, and inter- and intrastudy variability of the protocol were evaluated.

Results: The presented method allows assessment of regional myocardial function in rats with high level of detail; temporal resolution was 3.2 ms, and analysis was done using 32 circumferential segments. In the dysfunctional hearts, global and regional function were distinctly altered, including reduced global peak values, increased regional heterogeneity and increased index of dyssynchrony. Strain derived from the PC-CMR data was in excellent agreement with echocardiography (r = 0.95, p < 0.001; limits-of-agreement −0.02 ± 3.92%strain), and intra- and interstudy variability were low for both velocity and strain (limits-of-agreement, radial motion: 0.01 ± 0.32 cm/s and −0.06 ± 0.75 cm/s; circumferential strain: -0.16 ± 0.89%strain and -0.71 ± 1.67%strain, for intra- and interstudy, respectively).

Conclusion: We demonstrate, for the first time, that PC-CMR enables high-resolution evaluation of in vivo circumferential strain in addition to myocardial motion of the rat heart. In combination with the superior geometric robustness of CMR, this ultimately provides a tool for longitudinal studies of regional function in rodents with high level of detail.

Keywords: CMR, 3D phase contrast, Strain analysis, Tissue phase mapping, Myocardial motion, Myocardial strain, Motion artifacts
Background

The intricate motion and deformation of the heart can be assessed in vivo with varying degree of detail using several different techniques, including sonomicrometry, echocardiography employing Tissue Doppler Imaging or speckle-tracking strain analysis, as well as various cardiovascular magnetic resonance (CMR) techniques. Compared to other modalities, CMR offers measurements of true 3D function with practically no limitations in visualization geometry, and thus provides complete freedom in choosing regions for examination. Different techniques for the evaluation of myocardial function are available, including myocardial tagging [1], strain-encoded CMR (SENC) [2], displacement-encoded imaging with stimulated echoes (DENSE) [3] and phase contrast imaging (PC-CMR) [4]. The latter two offer pixel-wise measurement of displacement and velocity, respectively, allowing for high-resolution evaluation of tissue function. However, PC-CMR is the only CMR technique that been shown to allow assessment of velocity with high spatial and temporal resolution [5] and, subsequently, displacement [6], strain rate [7] and strain [8] concurrently, throughout the entire cardiac cycle. While PC-CMR velocimetry is emerging as a powerful and versatile tool for assessment of tissue motion both in humans and in rodents [5,9], it has only been reported so far for the assessment of average myocardial velocities within a slice, or in a few (<=8) circumferential segments. Also, it might be challenging to achieve the optimal temporal resolution to capture the fine details of cardiac motion in small animals. Thus, to accurately investigate the regional function e.g. in hearts with infarctions with various sizes, and in order to derive parameters such as subtle dysynchrony, transmural functional gradients or longitudinal spread of dysfunction, data with higher spatial and temporal resolution along with appropriate post-processing procedures are essential.

In PC-CMR, the displacement of spins between the centers of the bipolar encoding gradient lobes is encoded into the phase of the MR signal, producing datasets with near-instantaneous velocities with temporal resolution equal to the TR [10,11]. Although PC-CMR is prone to errors from various sources, including concomitant gradient [12] and eddy-current induced [13] artifacts, several approaches has been proposed to minimize these errors [12,14,15]. However, PC-CMR encoded acquisitions are intrinsically non-motion compensated and thus particularly sensitive to flow- and motion related artifacts, such as ghosting due to beat-to-beat variation in blood flow [16,17]. In Cartesian imaging, motion-related artifacts manifest in the phase-encoding direction, and may (in a short-axis view) affect the measurements non-uniformly over the circumference of the myocardium. This could lead to systematic errors when regional myocardial function is to be assessed, reducing the effective level of detail available for analysis. Black-blood contrast is therefore essential in PC-CMR of the myocardium, reducing this effect [5]. In addition, the impact of directionally dependent artifacts in studies employing signal averaging can be reduced by an in-plane rotation of the field-of-view (FOV) between the acquisitions, referred to as rotating FOV (Figure 1).

In this study, we present a PC-CMR approach for assessing left ventricular (LV) myocardial motion in rats, employing a rotating FOV along with optimized acquisition parameters and post-processing protocols. We aim to demonstrate the feasibility of PC-CMR for accurately describing both myocardial motion and deformation in rodents by deriving global parameters such as peak velocities and maximum circumferential strain, as well as describing the spatial variability in essential parameters with higher resolution than have been previously reported. By applying this method on rats with myocardial infarction, we were able to describe distinct alterations in regional myocardial function, compared to sham-operated controls. These findings were validated against speckle-tracking echocardiography, confirming our protocol with PC-CMR as an accurate tool for investigating regional myocardial function in rats.

Methods

Experimental animals

Myocardial infarction was induced in male Wistar rats (10–12 weeks old, ~300 g) as described previously [18], where the left coronary artery was occluded by a silk suture. Six weeks later, cardiac imaging was performed. Inclusion criterion was visible myocardial infarction on echocardiography, and we selected both rats with small and large infarctions (infarct size range 21%-46%). Sham-operated rats went through the same procedure, except no coronary artery ligation was performed. Animals were 16–18 weeks old at the time of cardiac imaging.

The animal weights during examination were in the range 400–450 g. For evaluation of the PC-CMR method, the animals (total N = 15) were divided into two groups, one cohort to validate the method relative to echocardiography (post-MI (N = 6), sham (N = 3)), and one cohort to perform inter- and intra-study variability analysis (post-MI (N = 4), sham (N = 2)). All animals were cared for according to the Norwegian Animal Welfare Act. The use of animals was approved by the Norwegian Animal Research Authority (ID 3284), and conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health and the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (ETS no. 123).

Anesthesia was induced in a chamber with a mixture of O₂ and 4.5% isoflurane, and maintained during experiments by administration of a mixture of O₂ and 1.5% isoflurane in freely breathing animals. During the CMR experiments,
body temperature was maintained using heated air; and ECG, respiration rate and animal temperature were constantly monitored. Respiration was registered by an air cushion. The heart rate was kept as constant as practically possible during experiments by minor adjustments of the level of anesthesia.

**Echocardiography**

Echocardiography examinations were performed on a Vevo 2100 (Visual Sonics Inc., Ontario, Canada) scanner with a 24 MHz transducer approximately one day prior to CMR scan. For the animals included in the validation study, global circumferential strain was calculated off-line by 2D speckle-tracking [19] in mid-ventricular short-axis slices. The temporal resolution of the echocardiography data was 152 frames per second.

**CMR hardware and acquisition**

CMR experiments were performed on a 9.4 T/210 mm/ASR horizontal bore magnet (Agilent Technologies, Inc.,

---

**Figure 1. Geometrically systematic artifacts.** Even after black-blood preparation, some flow artifacts remain. Although not obvious in the original end-systolic (ES) magnitude images (a, b), the difference between the magnitude images of end-diastole (ED) and end-systole (c, d) reveal geometrically systematic artifacts. A rotation of the field-of-view alters the characteristics of these artifacts. Both acquisitions exhibit unique artifacts in the phase-encoding direction (solid ellipses), not present in the other (dashed ellipse). In the average image (e), these artifacts are reduced. For illustrative purposes, a median filter has been applied for noise reduction in this figure. In c-e the grayscale has been exaggerated for clarity.
USA) with a high-performance actively shielded gradient coil (inner diameter 120 mm, rise time 180 μs, max strength 600 mT/m). A quadrature volume transmit coil (inner diameter 72 mm) was used in combination with a four-channel surface receive coil array dedicated to rat heart imaging. Bipolar motion encoding gradients were incorporated into an RF-spoiled gradient echo cine sequence [9]. The acquisition employed a nine-point balanced scheme [15] encoding motion in three orthogonal directions, and was non-interleaved, that is, each encoding step was recorded separately with full temporal resolution [20]. Black-blood contrast was achieved by placing saturation slices above and below the imaging slice, applied at the end of the cine train [5]. To allow for some decay of eddy currents in the system, a short delay (τ = 250 μs) was introduced between the second encoding gradient lobe and the readout gradient.

In each animal, a mid-ventricular LV short-axis slice was planned as described by Schneider et al. [21]. Acquisition was prospectively triggered by ECG R-peak and gated for respiration by pausing acquisition during respiratory motion. 70-80 time frames were recorded covering >130% of the r-r-interval, with a temporal resolution of 3.2 ms. Overshooting the r-r-interval permitted complete coverage of the diastole in combination with black-blood saturation; and provided time for decay of gradient-induced disturbances in the ECG signal.

To reduce the impact of directional-dependent artifacts, each slice was acquired twice (corresponding to 2x signal averaging), where the second acquisition was rotated (in-plane) at least 30 degrees with respect to the first.

Key imaging parameters were as follows: TE/TR = 2.2/3.2 ms; FOV = 50x50 mm; matrix 128x128, slice thickness 1.5 mm, flip angle 7°, receiver bandwidth = 156.25 kHz; \( \text{venc} = 13.9 \text{ cm/s} \). Acquisition time for a complete slice was 10-15 minutes, depending on heart rate.

**CMR post-processing**

The phase contrast data was extracted from the multi-receiver array coil data as described by Bernstein et al. [22], including complex-conjugated multiplication of the encoded scans with the reference scans individually for each coil element. Spatially-specific ECC was performed as previously described [13], excluding areas in the FOV subject to fold-over artifacts from analysis [15].

The data sets were subsequently semi-automatically segmented and analyzed using a purpose-written Matlab software (The MathWorks, Natick, USA). The only human inputs required during post-processing were 1) tracking of subendo- and subepicardial border at key time frames (segmentation of intermediate time frames were automatically interpolated), 2) definition of position of papillary muscles in the images, 3) definition of regions in the image subject to fold-over artifacts and 4) definition of the last diastolic time-point. Bulk cardiac motion was corrected for by subtraction of the average in-plane motion. Data points outside the myocardial mask were discarded, and the accepted data points were automatically divided into 32 segments [15]. Both the myocardial mask and segments followed the motion of the LV throughout the cycle. Finally, the velocity vector in each pixel was decomposed into a cardiopolar coordinate system, constituting of in-plane radial and tangential components and a through-plane longitudinal component [5]. The time points corresponding to peak and end-systole was automatically determined from peak global radial motion and minimum LV lumen area, respectively.

The data from the two individual acquisitions were independently processed, including division into segments using the papillary muscles as reference points, and segment-wise averaged as the last step of post-processing. To reduce low-pass filtering of the velocities following signal averaging (due to potential slight variation in heart rate), the data was normalized prior to combination. This was done by temporal stretching the data (using cubic spline interpolation) from one acquisition to the point where maximum correlation in global radial velocity between the acquisitions was achieved.

**Myocardial trajectories and strain calculations**

Pixel-by-pixel motion paths were calculated from the velocity data through forward-backward-integration-based Fourier tracking [6,23], with nearest-neighbor interpolation estimating velocities at non-grid locations. Trajectories travelling out of the user-defined myocardial mask were automatically discarded, but no other signal filtering was employed. To include more data points into the analysis (since the in-slice myocardial area is larger in end-systole), the motion tracking was performed twice. This was done by extending the forward-backward motion tracking protocol to calculate motion paths with temporal origin of integration in both end-diastole and end-systole, resulting in two separate descriptions of the displacement field of the myocardium. In both datasets, circumferential strain was calculated in each of the 32 myocardial segments from the trajectories of the two adjacent segments, before the strain waveforms from the two individual trajectory tracings were averaged segment-wise.

The circumferential (Lagrangian) strain in segment \( s \) at time \( t \) was given by [24]

\[
Sc_s(t) = \frac{|x_s(t) - x_{s+1}(t)| - 1}{|x_s(1) - x_{s+1}(1)|} \tag{1}
\]

where \( x_s(t) \) is the mean in-plane position vector for all pixels in segment \( s \) at time \( t \), and \( s-1 \) and \( s+1 \) refer to the two adjacent segments. As the motion paths were closed,
it follows from Eq. 1 that $S_c(t_1) = S_c(t_{ED}) = 0$, where $t_{ED}$ is the time point corresponding to end-diastole.

**Evaluation of global and regional cardiac function**

To investigate global function, peak global radial velocities and circumferential strain ($S_c$) were calculated in each animal. Furthermore, in order to evaluate regional function, the following parameters were determined:

- **Dispersion of peak motion**: the in-slice standard deviation over the 32 segments of the regional radial velocities at peak systole.
- **Dispersion of peak strain**: the segment-wise standard deviation of the regional $S_c$ at end-systole.
- **Coherence of motion waveforms**: the mean temporal correlation coefficient of regional vs. global radial velocity tracings (as described by Markl et al. [25]).
- **Dispersion of motion waveforms**: the standard deviation of the above, over the 32 segments.
- **Index of dyssynchrony**: evaluated from cross-correlation delay analysis where the temporal shift in the regional velocity waveforms that maximized the correlation relative to the global motion was calculated (as described by Delfino et al. [26]). The standard deviation of the 32 delays in each animal was used as a single index of myocardial dyssynchrony.

**Validation of strain calculations**

In order to validate the PC-CMR-derived circumferential strain, the global $S_c$ was compared to echocardiography-derived global $S_c$. The number of temporal sampling points for a complete cardiac cycle varied between the data sets, due to differences between the techniques and animal heart rate. The dataset with lowest number of sampling points had 23 data points covering the cardiac cycle. To allow temporal paired analysis between the methods, all datasets were re-sampled using cubic spline interpolation to 23 equally spaced time points, and synchronized to peak global $S_c$.

In addition, as an internal control, the PC-CMR-derived $S_c$ was compared with $S_c$ estimated directly from the segmentation polygons following the borders of the subepi- and subendocardium. Here, the mean global $S_c$ was estimated from

$$S_c(t) = \frac{1}{2} \left( \frac{L_{epi}(t) - L_{epi}(1)}{L_{epi}(1)} + \frac{L_{endo}(t) - L_{endo}(1)}{L_{endo}(1)} \right)$$

(2)

where $L_{epi}(t)$ and $L_{endo}(t)$ are the lengths, at time $t$, of the polygons delineating the subepi- and subendocardium, respectively.

**Inter- and intrastudy variability**

To evaluate inter- and intrastudy variability of the protocol, six animals underwent two PC-CMR examinations on separate days, one of which included two full acquisitions of the same mid-ventricular short-axis slice. Inter- and intrastudy variability in global myocardial velocities and $S_c$ were analyzed using limits-of-agreement. To avoid temporal jitter, all data sets were normalized to end-systole [27].

**Statistical analysis**

Student’s t-test was used for statistical analysis when comparing the dysfunctional heart to the controls, and $p$-values $<0.05$ were considered statistically significant. Statistical analysis was performed using Matlab. Measurements are presented as mean with standard deviation in parentheses, and correlation coefficients are Pearson’s $r$.

**Results**

**Animal characteristics**

Animal characteristics for the rats included in the validation study are listed in Table 1. During echocardiography, the mean heart rate for the 9 animals in the validation study was 354 (35) bpm. Mean heart rate in all 15 animals during CMR experiments was 371 (31) bpm. Heart rate was not significantly different between groups. On average, the standard deviation of the heart rate in individual animals throughout the CMR examination was 10 bpm.

**Analysis of myocardial motion**

Examples of radial velocities in a representative post-MI heart are shown in Figure 2, and compared to a representative control heart. Distinct alterations in both global (Figure 2a) and regional (Figure 2b-c) motion are evident in the images. The latter also demonstrate the spatiotemporal resolution of the data. Likewise, global and regional $S_c$ are depicted in Figure 3, comparing the same post-MI and control hearts. In Figure 3c and e, the dispersions of regional $S_c$ at peak global $S_c$ are illustrated, that is, the profile of the line marked in Figure 3b and d. In both hearts heterogeneity in regional $S_c$ is evident; however major alterations in the post-MI hearts are clearly visible.

Central parameters on myocardial function are listed in Table 2. Peak systolic radial velocity was reduced in the post-MI animals compared to the control ($p < 0.001$), as was global $S_c$ ($p < 0.001$). Intragroup variation in peak

**Table 1 Body and organ weights for the animals included in the validation study**

<table>
<thead>
<tr>
<th></th>
<th>Sham (N = 3)</th>
<th>Post-MI (N = 6)</th>
<th>t-test p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Body weight (g)</strong></td>
<td>431 (25)</td>
<td>406 (37)</td>
<td>NS</td>
</tr>
<tr>
<td><strong>Heart weight (g)</strong></td>
<td>1.19 (0.19)</td>
<td>2.20 (0.45)</td>
<td>0.008</td>
</tr>
<tr>
<td><strong>Lung weight (g)</strong></td>
<td>1.36 (0.13)</td>
<td>3.83 (1.24)</td>
<td>0.013</td>
</tr>
</tbody>
</table>

NS = not significant. Values are mean (SD).
diastolic radial velocity was larger in the post-MI animals compared to controls, but the mean value was not significantly different between the groups. The dispersion (i.e., the standard deviation over the segments) of regional velocities and \( \text{Sc} \) in peak systole and end-systole, respectively, was increased in the post-MI animals (\( p = 0.02 \) and \( < 0.001 \)). The regional radial velocity waveforms in the post-MI hearts exhibited lower correlation to the respective global velocities than in the control hearts, and the standard deviation (the spread) of the correlation coefficients was likewise increased in the post-MI hearts (both \( p < 0.001 \)). The post-MI hearts also exhibited increased index of dyssynchrony, identified from the spread of cross-correlation delays over the circumference (\( p = 0.006 \)).

Validation of strain calculations

Analysis of temporally resolved global \( \text{Sc} \) demonstrated excellent correlation between PC-CMR and echocardiography data (\( r = 0.95, p < 0.001; N = 207 \)). A linear fit revealed a close relationship between temporally resolved CMR- and echocardiography-derived data, with a slope not significantly different from 1.00 (95% confidence bounds:

![Image of radial motion waveforms.](image)

Figure 2 Example of radial motion waveforms. The global radial (a) in-plane velocities for two representative animals are shown, one post-MI and one sham. Note the distinct reduction in peak velocities in the diseased heart. Also, spatiotemporally resolved motion maps are displayed as colored plots (b-c) where the y-axis is circumferential position (i.e., segment; direction anteroseptal-anterior-lateral-posterior-posteroseptal), and x-axis is time after r-peak. Green color is positive radial motion (i.e., contraction), red is negative. The altered motion, especially in the anterolateral wall where the infarction is located, is clearly visible. Corresponding CMR magnitude images are shown (d-e), illustrating the location of myocardial thinning in the infarcted heart. The line denotes the first segment and counting direction.
Bland-Altman limits-of-agreement was \(-0.02 \pm 3.92\%\) strain (Figure 4b). Intra-animal analysis exhibited likewise strong correlation in all animals (mean \(r = 0.94 (0.08), p < 0.001\) and \(N = 23\) in all nine animals).

The PC-CMR-derived Sc also correlated well with Sc estimated directly from the segmentation polygons \((r = 0.95, p < 0.001; N = 207)\), with limits-of-agreement \(-1.4 \pm 4.8\%\). However, linear fit revealed a relationship whose slope significantly different from 1.00 (95% confidence bounds: [0.97, 1.07], \(R^2 = 0.90\)), see Figure 4a. Bland-Altman limits-of-agreement was \(-0.02 \pm 3.92\%\) strain (Figure 4b).

Intra-animal analysis exhibited likewise strong correlation in all animals (mean \(r = 0.94 (0.08), p < 0.001\) and \(N = 23\) in all nine animals).

### Table 2 Selected parameters from PC-CMR acquisition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sham ((N = 5))</th>
<th>MI ((N = 10))</th>
<th>t-test</th>
<th>(p) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak global radial velocity (cm/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>2.22 (0.14)</td>
<td>1.41 (0.37)</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>(-2.68 (0.58))</td>
<td>(-2.64 (1.03))</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Peak global Sc (% strain)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-19.87 (2.28))</td>
<td>(-6.98 (2.34))</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td>Dispersion of peak motion (cm/s)</td>
<td>0.58 (0.17)</td>
<td>0.91 (0.24)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Dispersion of peak strain (% strain)</td>
<td>5.91 (2.12)</td>
<td>10.40 (1.26)</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td>Coherence of motion waveforms</td>
<td>0.95 (0.02)</td>
<td>0.74 (0.09)</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td>Dispersion of motion waveforms</td>
<td>0.03 (0.01)</td>
<td>0.24 (0.10)</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td>Index of dyssynchrony (ms)</td>
<td>1.44 (0.37)</td>
<td>12.60 (7.37)</td>
<td>0.006</td>
<td></td>
</tr>
</tbody>
</table>

Sc = Circumferential strain. NS = not significant. Values are mean (SD).
Intra- and interstudy variability

The resulting intra- and interstudy limits-of-agreement are listed in Table 3. Intra- and interstudy variability in the actual velocity and Sc waveforms from a single animal are illustrated in Figure 5.

Discussion

In this study, we have presented a PC-CMR protocol for assessing myocardial motion in rats. Several steps were introduced in data acquisition and post-processing to optimize the protocol. PC-CMR-derived circumferential strain was validated against echocardiography, and we demonstrated that PC-CMR is capable of capturing fine details in the intricate motion of the rodent heart. The velocity and strain data exhibited distinct alterations, both globally and regionally, in the post-MI hearts vs. sham.

Our findings on global Sc agree well with an MR tagging study by Liu and colleagues [28], which reported mid-ventricular Sc in the normal rat heart as −19 (1)%. A study by the same group based on harmonic phase MR tagging [29] investigated the reduction in strain in infarcted hearts. Both studies had 15 temporal frames per cardiac cycle. In a study employing displacement-encoded CMR of infarcted mouse hearts, the circumferential strain one day post-surgery was found to be reduced from −16.4 (1.3)% in controls to −11.6 (1.8) and +4.2 (2.4)% in non-infarcted and infarcted regions, respectively [30]. They also demonstrated good correlation with MR tagging.

Distinct regional alterations in infarcted rat hearts have previously been demonstrated using speckle-tracking echocardiography [31], and our results agree well with their reported circumferential strain. That study also reported, in accordance with our findings, prominent heterogeneity in the Sc in healthy rat hearts. Our results are also in excellent agreement with other studies on global myocardial Sc in rat hearts [32,33].

A recent study by Dall’Armellina et al. [5] employed PC-CMR in studying myocardial velocities in mice, reporting corresponding findings on myocardial motion. The waveform of the global mid-ventricular radial motion is very similar between the species; however we found peak radial velocities (both in systole and diastole) in normal rats to be roughly the double of what they found in mice. Also, the regional heterogeneity of the motion around the circumference seems more pronounced in normal rats compared to mice. While this might reflect an actual variance between the species, differences could also be attributed to a fewer number of circumferential segments employed in [5].

Validation

PC-CMR has been previously validated as a technique capable of accurately measuring velocity [4,15], displacement [16,34] and the deformation gradient of the myocardium [8]. It has been used for calculation of myocardial strain [4,7] and has been compared to MR tagging (by use of “virtual tagging”) [35]. In our study, two-dimensional speckle-tracking echocardiography (2D-STE) serves as a method for comparison. 2D-STE has been validated against tagged CMR, sonomicrometry and tissue Doppler echocardiography [36], and previously compared to DENSE CMR in mice [37,38]. Our findings demonstrate that global Sc in a mid-ventricular slice derived from PC-CMR [0.76,0.82]). Intra-animal analysis also demonstrated good correlation (mean r = 0.95 (0.05), p < 0.001 and N = 23 in all nine animals).
correlates well with echocardiography-derived $S_c$, with narrow limits-of-agreement.

When comparing to mask-derived $S_c$, both PC-CMR and echo yielded a linear slope significantly different from 1.00, both results suggesting that the mask-derived $S_c$ systematically overestimated the strain (this is also supported by the fact that the 95% confidence bounds for the linear slope of mask vs. PC-CMR and mask vs echo overlapped (data not shown), suggesting that their slopes were not significantly different). This is not surprising, as the circumferential change-of-length of the subendo- and subepicardium of the LV is expected to be a result of a combination of actual shortening of the LV both circumferentially and longitudinally, which both echo and PC-CMR would account for while the masks would not. Also, the blood volume in the myocardium itself varies throughout the cardiac cycle, contributing to the change in in-slice area of the short-axis LV images, thus not to be attributed to the actual deformation of the cardiomyocytes.

**Inter- and intrastudy variability**

We found that both intra- and interstudy variability were low, the latter being comparable to previously reported values for human myocardial PC-CMR [39,40]. A source

<table>
<thead>
<tr>
<th></th>
<th>Intrastudy variability</th>
<th>Interstudy variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial velocity</td>
<td>0.01 ± 0.32 cm/s</td>
<td>0.07 ± 2.30%venc</td>
</tr>
<tr>
<td></td>
<td>−0.06 ± 0.75 cm/s</td>
<td>−0.43 ± 5.40%venc</td>
</tr>
<tr>
<td>Circ. velocity</td>
<td>0.10 ± 0.35 cm/s</td>
<td>0.72 ± 2.52%venc</td>
</tr>
<tr>
<td></td>
<td>0.06 ± 0.94 cm/s</td>
<td>0.43 ± 6.76%venc</td>
</tr>
<tr>
<td>Long. velocity</td>
<td>0.13 ± 0.51 cm/s</td>
<td>0.94 ± 3.67%venc</td>
</tr>
<tr>
<td></td>
<td>0.12 ± 1.15 cm/s</td>
<td>0.86 ± 8.27%venc</td>
</tr>
<tr>
<td>$S_c$</td>
<td>−0.16 ± 0.89%</td>
<td>−0.71 ± 1.67%</td>
</tr>
<tr>
<td>$S_c$ (single motion tracking)*</td>
<td>−0.15 ± 0.96%</td>
<td>−0.78 ± 2.31%</td>
</tr>
</tbody>
</table>

Velocity variability shown in absolute values (cm/s) and percentage of the applied venc. Strain variability is reported in absolute values (%strain). $S_c$ = Circumferential strain. $N = 43\times6 = 258$. Values are mean ± 1.96*SD.

* $S_c$ was also calculated from motion paths using only end-diastole as temporal origin, as described in [23], without our proposed extension of also including end-systole as temporal origin.

![Figure 5](http://jcmr-online.com/content/15/1/82)
of variation in our data is suspected to be instability of animal physiology, as the data sets were acquired at different times after induction of anesthesia. Although all datasets were temporally normalized to account for varying lengths of the cardiac cycle, the actual velocities and peak $Sc$ are not independent on heart rate and thus remain uncorrected.

Limitations
Geometrically systematic artifacts as they appear in this study, along with the rotating FOV approach, only apply to Cartesian imaging.

The choice to cover more than one r-r-interval doubles the scanning time since only every second r-peak was used as trigger point. However, this allowed complete coverage of the diastolic phase in combination with black-blood preparation, and improved the reliability of the triggering by allowing decay of currents in the ECG wires. Although the acquisition time per slice in our study was quite long, it is comparable to previous reports on MR-based strain assessment [29,30]. Compared to echocardiography, the MR examination is considerably more time-consuming. Depending on study design and needs, the trade-off between data yield and acquisition time must be considered.

Although beyond the scope of this study, a direct comparison of PC-CMR-derived strain with MR tagging should be considered, the latter usually being considered as the reference standard for measurement of myocardial strain. While our study validated global strain measurements, future studies should also address comparison of evaluation of regional strain from different methods.

The algorithm for calculating circumferential strain from myocardial trajectories in this paper (Eq. 1) is rather simple compared to more complex approaches, such as spline-based deformation analysis [41]. However, the presented results suggest that our approach is appropriate, yielding accurate and reproducible results.

Since slice selection was done in the laboratory system and the heart moves longitudinally during contraction, slightly different parts of the myocardium may be imaged in different time points throughout the cardiac cycle. This motivated the choice of including end-systole as a temporal origin for estimating tissue trajectories. Compared to conventional forward-backward motion tracking, intra- and interstudy limits-of-agreements were reduced using this extension (Table 3). However, to accurately capture complex three-directional motion and thus true 3D strain, volumetric data is required [42], and should be addressed by future studies. Volumetric PC-CMR might be achieved by embedding velocity encoding gradients into conventional or accelerated 3D imaging protocols, and has been demonstrated to allow comprehensive evaluation of both blood flow and myocardial motion in humans [43-45], but not, to our knowledge, in small animals.

Conclusion
In this study, we have presented an optimized PC-CMR protocol allowing assessment of the motion of the myocardium in rats with high detail, and provided a robust method for calculation of regional circumferential strain from the velocity data. By combining optimized slice planning, acquisition parameters and post-processing, exploration of the complex spatiotemporal pattern of in vivo motion and circumferential strain in the healthy and dysfunctional rat heart is feasible. We present, to our knowledge, the first study in small animals using PC-CMR to calculate strain.

Abbreviations
2D-STE: Two-dimensional speckle tracking echocardiography; DENSE: Displacement encoded imaging with stimulated echoes; FOV: Field-of-view; LV: Left ventricle; MI: Myocardial infarction; PC-CMR: Phase contrast cardiovascular magnetic resonance; Sc: Circumferential strain; SENC: Strain-encoded CMR.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EKSE was involved in designing the study, collected, analyzed and interpreted CMR data, and drafted the manuscript; JMA was involved in designing the study, provided and performed surgery on experimental animals, collected, analyzed and interpreted echocardiography data and provided critical review of the manuscript; KS and LZ were involved in designing the study, assisted in collection of CMR data, interpreted CMR data and provided critical review of the manuscript; JES was involved in designing the study, interpreted CMR data, and provided critical review of the manuscript; IS conceived and designed the study, collected, analyzed and interpreted echocardiography data, interpreted CMR data, and provided critical review of the manuscript. All authors have read and approved the final manuscript.

Acknowledgements
This work was supported by the South-Eastern Norway Regional Health Authority, Anders Jahn’s fund for the Promotion of Science and Familien Blix’ Fond Till Fremme Av Medisinsk Forsknin. JES is a Senior British Heart Foundation Basic Science Research Fellow.

Author details
1Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Kirkeveien 166, N-0407 Oslo, Norway. 2KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway. 3Baerkes College, Oslo, Norway. 4Department of Cardiovascular Medicine, University of Oxford, Oxford, UK.

Received: 21 May 2013 Accepted: 3 September 2013 Published: 14 September 2013

References


