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Abstract—Underlay-unawareness in P2P systems can result in
sub-optimal peer selection for overlay routing and hence poor
performance. The majority of underlay aware proposals for peer
selection focus on finding the shortest overlay routes by selecting
the nearest peers according to proximity. However, in case of
multiple and parallel downloads, if the underlay paths between
a downloader and its selected nearest peers share a bottleneck,
this can cause congestion, leading to performance deterioration
instead of improvement. This effect was neglected in previous
work because, in today’s Internet, the bottleneck is usually not
shared as it is the end user’s access link. This is no longer the case
in more modern scenarios, e.g. with FTTH or with upcoming in-
network caching techniques such as DECADE. We propose an
improved peer selection approach for P2P applications called
Fewest Common Hops (FCH) that ensures proximity based node
selection having maximum path disjointness. It is a client based,
infrastructure independent heuristic to optimize download time
for multiple and parallel downloads in P2P content distribution
applications. Simulations show that, even when FCH is imple-
mented in the simplest possible fashion (using only traceroute),
it can significantly decrease the download time.

Keywords-fewest common hops; peer Selection; path disjoint-
ness; multiple downloads;

I. INTRODUCTION

Peer to Peer (P2P) systems were developed initially for file
sharing, e.g. Napster, Gnutella but later they have become
popular for content sharing, media streaming, telephony appli-
cations etc. P2P system is a virtual or logical network of nodes,
often called overlay, because it is formed at the application
layer, on top of a physical network. This underlying physical
network is called underlay. All P2P systems have a certain
deliberate ignorance about the underlay that allows them to
form an entirely new network, which is completely under the
control of the application it is designed for. Hence, many P2P
systems perform their own routing function at the application
layer called overlay routing, thereby allowing end nodes to
choose routing paths themselves.

Although this application level peer selection gives flexibil-
ity to P2P applications to choose paths, underlay-unawareness
and continuous change in underlay properties such as band-
width and loss rate can result in sub-optimal peer selection and
overlay routing that generates a large amount of unnecessary
traffic [1][2] — a significant waste, given that P2P filesharing is
the dominant traffic type of the Internet [3]. As with all Internet
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traffic, it can cause congestion and performance deterioration,
which can thereby limit the scalability of the overlay, resulting
in customer dissatisfaction. All these problems stress the use
of underlay awareness for peer selection.

To overcome this problem, many overlay optimization
mechanisms have been proposed that use underlay information
for peer selection. Some are based on passive or active
probing, and some approaches strive for using ISPs or third
parties to provide underlay information for node selection.
However, neither ISPs nor other third parties (e.g. other
P2P applications) might cooperate because there are issues
of security, privacy, storage, and continuous maintenance of
information. The majority of underlay-aware proposals for
peer selection is therefore focused on finding shortest overlay
routes by selecting nearest nodes according to proximity
information [4][5]. Apparently this selection could yield better
performance [5][6] — but proximity based node selection alone
is not sufficient. If the selected shortest overlay routes are
shared between peers, this can result in congestion on shared
bottlenecks and ultimately in suboptimal performance. In order
to overcome this problem, there is therefore a need to find the
non-shared paths both at access and core networks for peer
selection.

Shared bottlenecks can exist both at the access and core
level due to the increase in Internet usage and advancement in
Internet technology. Fiber to the home (FTTH) is an example
of advancement in technology that provides high speed at
access links i.e. 100 Mbit/s or its variants in countries like
japan, where it will become gigabit FTTH by 2020 [7].
The largest operators have limited capacities in terms of
tens of gigabits, approximately having thousands of gigabit
FTTH customers, making a shared bottleneck at the core
level a genuine possibility. Deployment of the IETF DECADE
standard could become another cause for shared bottlenecks,
as it strives to let P2P applications operate on caches that
are located beyond the typical last-mile bottleneck. Finally, in
developing countries, there is a trend of sharing one Internet
connection among many users, e.g. in an Internet cafe, causing
shared bottlenecks between close nodes at the access level. All
these problems stress the importance of path disjointness for
peer selection.

Path disjointness means that selected overlay paths should



have a minimum number of common intermediate hops. If
selected peers are nearest according to proximity but do not
have disjoint paths, there is a chance that a part of their shared
path becomes a bottleneck, which means that the downloads
negatively affect each other. Figure 1 shows an example over-
lay network of four nodes {A,B,C,D} connected with a net-
work of backbone routers {Bi, Bz, Bs, By, Bs, Bg, B7, Bs}
through edge routers { £, F, E3, E4}. Suppose node B wants
to perform multiple downloads and it is using a proximity
based peer selection algorithm, e.g. Pastry [4].

For the first download, node B performs a lookup and
finds two nodes C and D storing replica of the required file.
Node B selects node C for download because it is nearest
(4 hops away, as compared to the 5 hops needed to reach
node D). For the second download, node B performs another
lookup and finds two nodes A and D storing replica of the
file. Node B selects node D because it is nearest according
to proximity. However, link E; — B is shared between two
downloads because both C and D would send data through this
common link simultaneously. This can result in congestion and
an increased download time.

To address the above problem, we have designed, imple-
mented, and evaluated a simple yet efficient peer selection
heuristic for multiple and parallel downloads, called Fewest
Common Hops (FCH). FCH enables a node to select a peer
that is nearest according to proximity but has maximum path
disjointness. To do so, a client peer uses traceroute to all
available candidate peers and stores the resulting path topology
from the client to these candidate peers. We pick traceroute
because it is the simplest possible mechanism that can indicate
path disjointness; more sophisticated measurement methods
could be used in future work. The number of traceroutes
is equal to the number of replica used in the P2P system;
the storage and time effort is therefore O(m), where m is
the number of replica. Afterwards, the traceroute results are
compared to select the peers that have the fewest routing hops
and maximum path disjointness with paths that are already
selected for downloads (in case of multiple downloads).

FCH is meant for efficient network resource utilization in
P2P content distribution applications where the setup latency is
non-critical (like file downloads, not real-time streams where
users want an immediate reaction). However, one can still
apply FCH for real-time streams later and switch between
peers if that gives a benefit. FCH runs on the application
layer of the client, and does not require any third party

information. Moreover, it does not contradict existing peer
selection algorithms, such that any existing peer selection
algorithms could be enhanced with it.

The remainder of this paper is structured as follows: Sec-
tion2 critically analyses existing peer selection algorithms
designed for P2P systems to identify open issues that need
further research. Section 3 presents an overview of our FCH
peer selection algorithm, Section 4 outlines the simulation
setup and presents experimental results. Section 5 concludes.

II. RELATED WORK

Overlay optimization mechanisms for proximity-based peer
selection in P2P applications can be categorized as follows:

A. Grouping/Clustering of nodes

The approaches in this category use proximity information
for arranging nodes into groups. P2P applications can get this
information by estimating the network position of peers with
reference to a) landmarks (e.g. GNP [8]) b) IP-Prefixes (e.g.
[9]) and c) super peers (e.g. [10]), via network measurements
like Time-to-Live (TTL) or Round-Trip Time (RTT) between
peers, or via geographical position of nodes (e.g. [11]). Ac-
cording to [12] network positioning shows noticeably worse
performance as compared to results shown in [8].

B. Use of ISPs

Another approach is to use ISPs or third parties to get
information such as topology, bandwidth, loss rate from the
underlay and provide it to P2P clients. Xie et al. [13] proposed
provisioning of underlay information as a service by a third
party. P2P clients can use this information for peer selection.
The IETF has also recently formed the Application Layer
Traffic Optimization (ALTO) working group that provides
underlying network information to P2P clients with the help
of ISPs or third parties [14]. Similarly, [15], [16] investigated
node selection with the help of an ISP “oracle” according to
ISP preferences. In [17] a gametheory framework is proposed
that facilitate design of ISPs cooperative policies for P2P
applications to reducing inter-domain traffic. For maximizing
path independence, [18], [19] exploit path redundancy and use
multi-homing at endpoints and at the stub network level. These
approaches have issues related to privacy, storage, continuous
maintenance, bandwidth consumption, and continuous prob-
ing. Efforts are therefore being made to solve these problems.

C. Probing based Overlays

A few probing based P2P applications [4], [20] use passive
probing to get the proximity information for node selection
whereas [21], [22] use a combination of active and passive
probing for topology discovery, node selection, monitoring
the functioning and quality of Internet paths, route failure
detection and recovery. ROR [23] uses continuous periodic
beaconing of normal and pre-calculated backup paths for fast
failure detection.

In these applications, each peer would ideally send probing
messages to all other peers, store this information, and then



do a lookup on that database to select a peer. The probing
cost then reaches up to O(n?), and hence some restrictions
must be in place. Regarding the time effort, the overhead is in
the order of O(log n) if there are O(log n) routing messages,
and if it is a constant additional effort on top of every routing
message that is sent. These probing techniques are also used
for calculating alternate paths for construction of fault tolerant
overlay networks [21], [23].

These probing based overlays can be realized for small
or medium sized P2P systems because the discovery of the
topology or alternate paths requires a lot of active and passive
probing messages and their maintenance also requires contin-
uous probing which generates a large amount of unnecessary
traffic, limiting the application’s scalability. Redundancy is
another issue in these probing based P2P systems because the
network itself already has a complete picture of the network
from different network vantage points. To rediscover this
information by probing is a waste of time and resources.
Further, none of these algorithms investigate the path sharing
needed by multiple downloads or parallel downloads.

I1I. FCH

FCH is a simple and scalable peer selection algorithm, based
on proximity and maximum path disjointness for multiple and
parallel downloads. It ensures that a peer chosen for download
among candidate peers is nearest and has maximum path
disjointness with peers that are already selected for downloads
by the same client. It has three main components:

1) Whenever a download is initiated, the Path Topology
Extractor (PTE) infers the path topology between the
client and the candidate peers. The path topology is just
a list of all intermediate routing hops between the client
and the candidate peer. To obtain this path topology,
PTE uses pair-wise traceroute [24]. However, the design
is flexible enough to use any end-to-end measurement
tool to find the underlay topology. PTE stores the path
topology of every candidate peer as a separate topology
set S; : ¢ =1,...,n and provides these topology sets to
Path Topology Comparator.

2) The Path Topology Comparator (PTC) compares the
path topology set of every candidate peer with path
topology sets of peers that are already selected for
downloading. Then PTC selects the path topology set
that has the fewest common hops with path topologies
of these selected peers in case of multiple or parallel
downloads. Let us consider the scenario of multiple
downloads.

Case-1 (first download): PTC checks the cardinality
of the topology sets and the set having the smallest
cardinality is selected as a set S. .S is transferred to
the peer selector module. PTC also puts nodes of set S
into set SN which is used by PTC to determine path
disjointness for future downloads, where SN contains
topology sets of all selected peers.

minDistance = min(|S1],|S2], ...|Sn|)

S = {Sk: |Sk|= minDistance}

SN <<= S

Case-2 (all later downloads): In this case, PTC compares
every set S; : ¢ = 1,...,n with set SV to find the number
of common elements.

cNodes; ={x:x € SN N S;} where i =1,...,n

PTC then uses the number of common intermediate
routing hops between the candidate peer and already
selected peers |cNodes;|to select the set S with the
smallest number of common hops.

minHops = min(|cNodesi |, |cNodess|,...|cNodes,|)
S = {Sk: |Sk|=|cNodesy|= minHops}

where S;, € S;

SN = {SN U S}

In both cases, after the path topology comparison, PTC
will send the set S to the Peer Selector.

3) The Peer Selector (PS) chooses the peer from the set S.
It receives S from PTC and compares the nodes of the
set S with all candidate peers. In this way, the nearest
candidate peer having maximum path disjointness with
other, already selected peers is chosen for downloading.

A. Example

Let us now consider how FCH works in the scenario
described in Figure 1.
Case-1 (first download): For Node B to select peers in case
of two downloads, FCH operates as follows:
PTE extracts the path topology of the candidate peers C and D
and store them in two sets of nodes, S; and Ss, respectively.
Sl = {E‘l7 Bl, .B47 EQ, C}
Sy = {F4,B1, B2, Bs, E4, D}
PTC checks the cardinality of sets S7, So and the set .S; having
smallest cardinality is selected as set S.
|S1]= 5, |S2|= 6; minDistance = min(5,6)
S = {S1: |S1|= 5}
S = {FE1,B1, B4, F>,C}
The set S is transferred to the Peer Selector module. PTC also
copies nodes of set .S into set SN which is used by PTC to
determine path disjointness for future downloads.
SN — {Eh Bl, B4, .E27 C}
Case-2 (second download): PTC obtains the sets S7,.S; rep-
resenting the path topology of the two candidate peers D and
A from PTE.
Sl = {Elv Bla B27 B3; E47 D}
Sy = {Fy, By, Bg, By, Bg, E3, A}
Afterwards, it compares the sets S, Ss with the set SN to
find the number of common elements.
SN = {FE, By, By, E>}
c¢Nodesy = {E1,B1} =S1NSN
c¢Nodesy = {E1} = S2NSN
Here, |cNodes;| represents the number of common interme-
diate routing hops between S; and SN and |cNodess| rep-
resents the number of common intermediate routing hops
between S; and SN. PTC then uses |cNodes;| to select the
peer with the fewest common hops.
minHops = min(|cNodesi|, |cNodess|) = min(2,1)
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S = {Sk: |Sk|=|cNodesy|= minHops}

SN = {Ey,B1,By,E2,C} U Sy

SN = {FE, By,By,E>,C, Bs, Bg, B7, Bs, FE3, A}

In both cases, after the path topology comparison, PTC will
send S to PS and add the elements of set S in SN to determine
path disjointness for future downloads. For the first download
PTS compares nodes of set .S with nodes C and D and finds
and selects node C. For the second download, it selects node
A after comparing the nodes of set S with nodes A and D.

IV. PERFORMANCE EVALUATION

The distributed behavior of large scale overlays makes their
development and evaluation highly complex. To overcome
this complexity, simulations have proven indispensable for
the design, development and evaluation of overlays. We have
therefore implemented and evaluated a prototype for FCH
using simulations. Since we expect the problem that FTH
solves — shared bottlenecks in the network — to become
significant in the future due to e.g. FTTH and DECADE, it is
hard to additionally carry out a credible real-life experiment.
We have carried out a series of PlanetLab tests with the shared
bottleneck detection tool in [25] and found that, as accepted,
there are no shared bottlenecks inside the network, as the
bottleneck is always the hosts’s acces link. However, in the
future we plan to at least use Real Network Support provided
by Oversim to carry out an emulation based experiment, as a
compromise between a real-world environment and simulation.

A. Simulation Setup

We used the OMNET++ based Overlay Simulation Frame-
work “OverSim” [26] that encompasses the simulation models
of all network layers from MAC to application layer. It
allows the design, evaluation and comparison of different
P2P networks at a large scale with a choice of different
underlying Network Models. We selected the ReaseUnderlay
because it generate a realistic Internet like network topology
with realistic bandwidths, packet delays, and packet losses
and can also generate self-similar background traffic. . We
used a transit-stub topology available in Rease called “TSA”,
shown in Figure 2. TSA has 1 transit domain, 2 stub domains
and 9 autonomous systems with realistic data rates similar to
the GEANT topology model and the FTTH Internet model
in Japan [7]. Fifteen routers are arranged hierarchically. The
transit domain has one transit/core router to connect stub
routers of the stub domains by a 10Gbps/20ms traonsit-stub
link. Every stub domain has a stub router to connect with

a transit router of the transit domain and a gateway router
to connect with three autonomous systems via a 1Gbps/1ms
STUB-AS link. Every gateway router is connected with three
access routers via a 155Mbps/Ims GW-AS link. The end
hosts/nodes are connected with this access router by an access
link with a datarate of FTTH, i.e. 100Mbps, and delay Sms.

We also repeated all experiments with a TSI topology (using
INETUnderlay), where 6 backbone/core routers are connected
by a 10Gbps/Ims NE-PON channel and four of these backbone
routers are connected with access routers (each representing an
autonomous system) by a 1Gbps/30ms G-PON channel. End
hosts are connected to the access router via a 100Mbps/10ms
E-PON (Ethernet PON) channel [27]. Since the results were
similar, we only present the results that we obtained with the
more sophisticated model (TSA using ReaseUnderlay).

LCH is implemented as an extension of the Distributed Hash
Table (DHT) based P2P system “Pastry” that exploits physical
network proximity by applying certain heuristics in its routing
tables. We conducted an experiment in which we took 14 sets
of nodes, consisting of 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 200, 300, 400, 500 nodes respectively. In our experiment
end nodes are running Pastry [4] to form an overlay. Pastry
in Oversim sends put requests to put data/replica on different
nodes. Similarly, download requests are sent randomly from X
nodes (downloaders) to X nodes (sources/replica). For Pastry
the lookup requests of a client always finds a set of numerically
closest nodelds storing the replica and selects a node from
this set that is closest in the network according to a proximity
metric. The proximity metric is the RTT from ping.

Our data points show the cases where there was one down-
loader doing multiple downloads from different sources/replica
but having a shared path between these sources/replica. We
measured the RTT from the downloader to FCH-based selected
source and Pastry-based selected source. Not all sources
selected by Pastry are nearest according to proximity; we have
therefore restricted our observations to only those Pastry based
sources that were actually nearest in terms of the proximity
metric for comparison with FCH based source selection. For
both kinds of selections, we took the average of results of 100
download requests seen at all the destinations (downloaders)
for every set. The number of replica was also varied from
1-6, i.e. the experiment was repeated six times for every set
and again the average of these results was taken. We compared
the performance of Pastry with and without applying FCH and
observed that FCH can significantly reduce the download time
as compared to Pastry-based node selection. For evaluating
the performance of FCH, the average download time of FCH-
based source selection is plotted against average download
time of Pastry-based source selection for all sets of nodes
as shown in Figure 3. The red line in the graph shows the
download time with Pastry-based nearest source selection and
the black line shows the download time with FCH based source
selection.

Based on 100 measurements, the average download time
of 10-70 nodes with FCH-based source selection is always at
least 22% less than with Pastry-based source selection. The
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download time increases with the number of nodes but the
performance of FCH also improves because the gap between
two lines becomes wider after 70 nodes. With 500 nodes, FCH
reduces the average download time by 29%.

We also evaluated how the performance depends on number
of replica. For this, we observed the average download time
of 20 download requests in 6 separate cases, i.e. with 1-6
replica, against sets of nodes i.e. 100-500. The cases of 1-2
replica look uninteresting because FCH only began to take
effect from 3 replica onward; so the cases of 3-6 replica
are shown in Figure 4. The red lines in these graphs show
the average download time of Pastry-based nearest source
selection and black lines show the average download time of
FCH based source selection. Pastry-3, FCH-3 refers to the
case of 3 replica, Pastry-4, FCH-4 shows the download time
for 4 replica and so on. The average download time based
on 100 measurements of FCH-3 is 22% less than Pastry-3.
Performance of FCH increases with number of replica — for
FCH-6 the average Pastry-6 download time is reduced by 33%.

V. CONCLUSION AND FUTURE WORK

We have developed the FCH peer selection algorithm based
on proximity and maximum path disjointness, which will
become increasingly relevant as the Internet moves towards
faster access links (e.g. FTTH) and incorporates more in-
network caching techniques such as DECADE. We have

implemented and evaluated a prototype for FCH using Pastry
and Oversim. Results show a significant decrease in download
time as compared to Pastry. Our implementation of FCH
assumes we have topology knowledge from traceroute;clearly,
more sophisticated measurement methods for shared bottle-
neck detection could also be applied. ISPs or third parties
can also apply this heuristic in combination with their own
techniques for providing underlay information that helps in
node selection to clients.

We have considered multiple data transfers in this work,
where a client simultaneously downloads different contents
from different sources, forming a one-to-many relationship.
A single parallel download is a similar situation where the
content is divided into different chunks, and the client gets
each chunk from a different source. We therefore plan to
study the applicability of FCH for parallel downloads. One
particularly interesting case that we plan to investigate is
parallel downloading with BitTorrent [28], which continuously
measures the per-source download speed and accordingly
adapts its choice of peers, but does not consider correlations
between these sources as it would be needed in order to
take shared bottlenecks in the underlay into account. Finally,
we will examine the cases where minDistance is small
having large minH ops or minDistance is large having small
minHops. To design a peer selection policy that can balance
both traffic and download time, we need to study all factors
that can affect these two targets and derive an appropriate
metric for peer selection.
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