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Two-primary Algebraic K-Theory of Spaces
and Related Spaces of Symmetries of Manifolds

John Rognes

Abstract. We outline the link between automorphisms (symmetries) of mani-

folds and algebraic K-theory of spaces. Then we discuss recent two-primary
calculations for the algebraic K-theory of a point, and obtain a two-primary

description of the stable smooth h-cobordism spaces and pseudoisotopy spaces

of discs in a range of degrees.

Introduction

This paper is based on the author’s lecture at the Seattle algebraic K-theory
conference in July 1997. It begins with an elementary introduction to the results
of the theory relating spaces of symmetries of manifolds to algebraic K-theory.
This expresses spaces of pseudoisotopies or h-cobordisms of manifolds in terms of
F. Waldhausen’s algebraic K-theory of spaces, alias the functor X 7→ A(X). For a
deeper survey of these topics, see [WW].

By a theorem of B. Dundas, this algebraicK-theory of spaces can in principle be
expressed in terms of algebraic K-theory of rings, together with topological cyclic
homology of rings and spaces. The paper goes on to present some recent two-
primary calculations of the topological cyclic homology of a point, of topological
cyclic homology of the integers, and of algebraic K-theory of the integers, and
assembles these to give an explicit two-primary description of the algebraic K-
theory of a point in a range of degrees. This gives information about the spaces
of pseudoisotopies and h-cobordisms of discs of high dimension, in this range of
degrees.

Some ideas from geometric topology

Let us begin by asking some geometric questions. We will later point out how
these relate to the algebraic K-theory of spaces.

Surgery. Surgery theory addresses the question: Which homotopy types con-
tain manifolds ? That is, given a homotopy type of spaces, does there exist a
manifold of that homotopy type ? Surgery theory reduces this question to rela-
tively standard problems in algebraic topology. Now if the answer is yes then we
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may also ask: How many manifolds there are in such a given homotopy type ? To
make this question well-posed, we should really ask how many isomorphism classes
of manifolds there are in this or that homotopy type, since otherwise the answer will
not even be a set. Here isomorphism of manifolds can mean diffeomorphism if we
are talking about smooth (C∞-) manifolds, or homeomorphism if we are thinking
of topological manifolds. Surgery theory also answers this refined question, in the
sense that it is reduced to a question in algebraic topology.

Symmetries. But we may go on. Beyond asking how many isomorphism
classes of manifolds there are in a homotopy type, we may ask in how many ways
two abstractly isomorphic manifolds then in fact are isomorphic. That is, how
many isomorphisms are there between them ? By fixing one choice of isomorphism
we may assume that the two manifolds are one and the same, and in this case
the question is: In how many ways is a manifold isomorphic to itself ? Such self-
isomorphisms are precisely the automorphisms or symmetries of the manifold. So if
we have some category of manifolds in mind, we may consider the set of self-maps
of this manifold preserving the structures endowed upon it.

For example, considering Riemannian manifolds, smooth manifolds, topological
manifolds or spaces, we have the following increasing chain of symmetries available:

Isometries ⊂ Diffeomorphisms

⊂ Homeomorphisms ⊂ Homotopy equivalences

These sets of symmetries can naturally be topologized, and thus become topological
groups or monoids. We are fundamentally interested in understanding these spaces
of symmetries of manifolds.

In the case of the sphere Sn, this amounts to the sequence of topological groups
or monoids:

O(n+ 1)→ Diff(Sn)→ Homeo(Sn)→ G(Sn)

Here O(n+ 1) denotes the orthogonal group of linear isometries of Rn+1, or equiv-
alently of Sn with the standard metric, while we write G(X) for the grouplike
monoid of self-homotopy equivalences of a space X. The first map above admits
a left inverse (a retraction), essentially given by taking a diffeomorphism of Sn

to the linear isomorphism induced by its derivative at, say, the north pole of Sn,
orthogonalized by the Gram–Schmidt process. Hence Diff(Sn) splits off a factor
O(n + 1), represented by the linear diffeomorphisms. We of course ask: What is
the remaining factor ?

In general the topological types of these automorphism groups are infinite di-
mensional, i.e., large and complicated, so let us settle for studying their homotopy
types.

Question. What is the homotopy type of these spaces of symmetries ?

Here is an example of a theorem in this direction, proving a result called the
Smale conjecture:

Theorem (Hatcher [H]). The natural map

O(4)
'−→ Diff(S3)

is a homotopy equivalence.
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The corresponding results for Sn with n = 1, 2 are much easier, while for n ≥ 4
the homotopy type of the remaining factor is unknown.

h-cobordism, pseudoisotopy. Let us review some other kinds of symmetries
that arise in geometric topology, and focus on the smooth category for definiteness.

Definition. Let M,M ′ be (smooth) closed n-manifolds. A compact (n+ 1)-
manifold W with boundary ∂W ∼= M

∐
M ′ is called a cobordism from M to M ′.

If the inclusions

M
'−→W

'←−M ′

are homotopy equivalences, then W is called an h-cobordism.

Given an h-cobordism W as above, J.H.C. Whitehead showed how to asso-
ciate an element τ(W,M) ∈ Wh1(π1M) to it, called its Whitehead torsion. Here
Wh1(π) = K1(Zπ)/{±π} is the Whitehead group of the common fundamental group
π = π1M = π1W . This is perhaps the first place where algebraic K-theory (through
K1-groups of group rings) enters into geometric topology. See [Mi] for a nice survey.

We recall that Zπ is the group ring of π, K1(R) = GL(R)/E(R) is the Abelian
group of infinite invertible matrices modulo infinite elementary matrices with coef-
ficients in a ring R, and {±π} ⊂ GL1(Zπ) ⊂ GL(Zπ) naturally maps to K1(Zπ).

The main application of associating a Whitehead torsion element to an h-
cobordism is to detect whether the h-cobordism can be trivialized or not. The trivial
h-cobordism from M is the cylinder M×I, with boundary M×∂I = M×0

∐
M×1.

We identify M with M × 0 in the obvious way. Then an h-cobordism W is said to
be trivial if it is isomorphic to this particularly trivial example. The s-cobordism
theorem of Barden, Mazur and Stallings asserts that this is the case if and only
if the associated Whitehead torsion element τ(W,M) is zero in Wh1(π1M). See
e.g. [K] for a proof.

s-cobordism Theorem (Barden, Mazur, Stallings). Suppose dim(M) ≥
5. If τ(W,M) = 0 in Wh1(π1M) then there exists a diffeomorphism

α : (W,M)
∼=−→ (M × I,M × 0),

and conversely if such a trivialization exists then τ(W,M) = 0.
Furthermore any element in Wh1(π1M) can be realized as the Whitehead tor-

sion of an h-cobordism.

This theorem tells us precisely when such a trivialization α exists. However,
when one exists, it will not be unique ! So given another trivialization β : (W,M)→
(M × I,M × 0), we can compare the two, and obtain a diffeomorphism

ψ = βα−1 : (M × I,M × 0)
∼=−→ (M × I,M × 0).

Such a trivialization ψ of the trivial h-cobordism is called a pseudoisotopy of M ,
or equivalently a concordance of M . It is an element in the space

P (M) = Diff(M × I rel M × 0)

of diffeomorphisms of M × I that fix (a neighborhood of) the lower edge M × 0,
which we call the pseudoisotopy space of M . Again this is a topological group,
equal to the space of symmetries of a trivial h-cobordism.
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The name ‘concordance’ may refer to how ψ compares different trivializations,
while ‘pseudoisotopy’ expresses that such maps ψ generalize isotopies from the iden-
tity of M . For an isotopy t 7→ φt ∈ Diff(M) with φ0 = 1M defines a pseudoisotopy
ψ by the formula ψ(x, t) = (φt(x), t). Here (x, t) ∈M × I.

The pseudoisotopy space is closely linked to the diffeomorphism spaces we con-
sidered at the outset. When W is a manifold with boundary (such as M × I) we
write Diff(W ) for the topological group of diffeomorphisms fixing the boundary ∂W .

Theorem (Cerf [C]). There is a fiber sequence

Diff(M × I) −→ P (M)
r1−→ Diff(M)

onto the path components in Diff(M) that are in the image of r1. Here r1 restricts
a pseudoisotopy ψ acting on M × I to the upper edge M × 1 ∼= M .

In a related vein, we can embed any h-cobordism W into M × I, as a codi-
mension 0 submanifold. (To see this, suppose W is an h-cobordism from M to
M ′. Realize −τ(W,M) ∈Wh1(π1M) as the Whitehead torsion of an h-cobordism
W ′ from M ′. Then W ∪M ′ W ′ has zero Whitehead torsion, hence is isomorphic to
M × I, and contains W as a codimension 0 submanifold.) Restricting attention to
h-cobordisms from M that arise as such codimension 0 submanifolds of M × I, we
can topologize the set of such, and form the space of h-cobordisms from M , denoted
H(M).

Proposition [W3].
(a) π0H(M) ∼= Wh1(π1M). Hence the isotopy classes of h-cobordisms from M

are in bijection, via their Whitehead torsion, with the elements of the Whitehead
group.

(b) ΩH(M) ' P (M). Hence the homotopy groups of H(M) and P (M) agree
up to a shift by one degree.

So the spaces H(M), P (M) and Diff(M) are closely related and have direct
geometric interest.

Stabilization. As in homotopy theory these constructions can be stabilized,
by increasing the dimension of the manifolds in question by multiplying them with
cubes I` for ` ≥ 0. (This replaces a closed manifold M with a manifold with
boundary, or even with corners, and so it becomes necessary to extend the preceding
discussion to cover such cases too. In general a pseudoisotopy of M is required to fix
∂M×I, in addition to M×0. This forces the stabilization map P (M)→ P (M×I)
to involve some ‘bending around collars’; see [Ig, §2].)

The stabilization process turns out to simplify the homotopy types of these
spaces. We define

P(M) = colim` P (M × I`)
H(M) = colim`H(M × I`)

as the stable pseudoisotopy space and the stable h-cobordism space of M , respec-
tively.

The miracle is that these functors now only depend on the homotopy type of
M , and in fact take values in infinite loop spaces.
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Theorem (Waldhausen [W4]). There exists a homotopy functor

Wh: Spaces −→ Ω∞-Spaces

X 7−→Wh(X)

such that

Ω Wh(M) ' H(M)

Ω2 Wh(M) ' P(M)

when M is a manifold.

We call Wh(X) the Whitehead space of X. There is actually one Whitehead
space for each category of manifolds, and when necessary we will indicate the cat-
egory (Diff or Top) by a superscript.

Algebraic K-theory of spaces

Roughly speaking, the algebraic K-theory of a space X can be thought of as
the algebraic K-theory of the ‘ring up to homotopy’

Q(ΩX+) = colimn ΩnΣn(ΩX+).

Here the loop space ΩX is an H-group, and can be modeled by an actual simplicial
group called the Kan loop group. Hence we may think of ΩX as a topological group.
The subscript + denotes addition of a disjoint base point, and the spherical group
ring Q(ΩX+) is analogous to the usual integral group ring Zπ on a group π. In
fact, there is a ‘ring homomorphism up to homotopy’ from the spherical group ring
Q(ΩX+) to the integral group ring Zπ when π = π1X, induced by the map to path
components ΩX → π0ΩX = π1X and a linearization map Q(π+)→ Zπ.

We are being vague here, because there are many compatible definitions of the
algebraic K-theory space A(X) of the space X, but they all require some technical
preparations that we do not wish to go into. As with the K-theory of rings, where
the algebraic K-groups Ki(R) appear in a unified way as the homotopy groups of
a space K(R), we can and will focus on the space (or spectrum) A(X) as a whole,
and only consider the homotopy groups πiA(X) when we are unable to do better.

In the simplest case, when X = ∗ is a point, we can give a precise definition of
A(∗) and the linearization map L : A(∗)→ K(Z) as follows:

A(∗) = ΩB
( ∐
k≥0

colimnBG(∨kSn)
) L−→ K(Z) = ΩB

( ∐
k≥0

BGLk(Z)
)

Here ∨kSn is the one-point union (wedge) of k copies of Sn. G(−) denotes the
monoid of self-homotopy equivalences, as before, and B denotes the bar construc-
tion. We may stabilize self-homotopy equivalences by suspension, and thus pass
to the direct limit over n. The disjoint union of the spaces colimnBG(∨kSn) over
all k ≥ 0 admits a monoid pairing induced by wedge sum, taking a self-homotopy
equivalence of ∨kSn and one of ∨`Sn to one of ∨k+`Sn. Applying ΩB to this
topological monoid amounts to group completion, and is (in essence) equivalent to
using Quillen’s plus-construction.

The reduced homology of ∨kSn is a copy of Zk in degree n, and a self-homotopy
equivalence of this space determines a linear isomorphism of Zk, or equivalently
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an element in GLk(Z). This construction is invariant under stabilization by sus-
pensions, so induces maps L : colimnBG(∨kSn) → BGLk(Z), which relate wedge
sum to Whitney (block) sum of matrices. Then the right hand space above is a
model for the group completion of the nerve of the category of finitely generated
free Z-modules, i.e., for K(Z), and passage to homology classes determines the
linearization map L : A(∗)→ K(Z), as displayed.

In general, the association X 7→ A(X) is a homotopy functor:

A : Spaces −→ Ω∞-Spaces

Theorem (Waldhausen [W3, W5]).
(a) In the smooth category, there is a homotopy fiber sequence of infinite loop

spaces, natural in X:

Q(X+) −→ A(X) −→WhDiff(X) .

There is a natural infinite loop splitting A(X) → Q(X+), so A(X) ' Q(X+) ×
WhDiff(X) as infinite loop spaces.

(b) In the topological category, there is a homotopy fiber sequence of infinite
loop spaces, natural in X:

h(X,A(∗)) α−→ A(X) −→WhTop(X) .

Here h(X,A(∗)) = Ω∞(A(∗) ∧ X+) is the value at the space X of the generalized
homology theory associated to the spectrum A(∗). (The smash product A(∗) ∧X+

is formed in the category of spectra.) The left map α is the assembly map in the
algebraic K-theory of spaces.

So A(∗) ' QS0 ×WhDiff(∗) is central to both the smooth and the topological
theory. In both categories Wh(M) was related to stable pseudoisotopy- and h-
cobordism spaces in the section above. The following stability theorem tells us to
what extent the stabilized theories agree with the unstable, geometrically relevant
pseudoisotopy- and h-cobordism spaces.

Theorem (Igusa [Ig]). Let Mn be a smooth n-manifold, and suppose k �
n/3. (More precisely, suppose n ≥ max{2k + 7, 3k + 4}.) Then the stabilization
map

P (M) −→ P(M) ' Ω2 Wh(M)

is at least k-connected, in both the smooth and topological categories.
In particular, the map

P (Dn) −→ P(∗) ' Ω2 Wh(∗)

is roughly n/3-connected, and so πiP (Dn) ∼= πi+2 WhDiff(∗) for i � n/3 in the
smooth category.

From here on we focus on the smooth category again.

Rational information

The linearization map L : A(∗)→ K(Z) is a rational equivalence, i.e., it induces
an isomorphism of homotopy groups tensored with Q. Combined with Borel’s
calculation of Ki(Z) ⊗ Q, this gives a classical rational calculation of A(∗), and
thus of Wh(∗), P (Dn) and Diff(Dn) in the stable range.
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Theorem (Farrel and Hsiang [FH]). Suppose i� n/3. Then

πiDiff(Dn)⊗Q ∼=
{ Q for i ≡ 3 mod 4 and n odd

0 else.

There are also reasonably explicit rational calculations for A(X) for more gen-
eral spaces X; see [DHS].

These results can be contrasted with the topological case, where the space
Homeo(Dn) of homeomorphisms of Dn fixing the boundary is contractible by the
Alexander trick: A contraction gradually reparametrizes a given homeomorphism
over concentric discs of shrinking radius, while leaving the surrounding annulus
fixed.

A more recent rational calculation involves the cyclotomic trace map

trcX : A(X) −→ TC(X)

from the algebraic K-theory of spaces A(X) to topological cyclic homology TC(X);
see [BHM].

Theorem (Bökstedt, Hsiang and Madsen). The cyclotomic trace map

trc∗ : A(∗)→ TC(∗)

is rationally injective.

As an application, these authors show that the K-theoretic assembly map

α : K(Z) ∧BΓ+ −→ K(ZΓ)

is rationally injective for groups Γ with H∗(BΓ) finitely generated in each degree.
This is the K-theoretic version of the Novikov conjecture for the group Γ.

Primary information

More recently, it has also become possible to access torsion information about
the algebraic K-theory of spaces, and thus about the spaces of symmetries of mani-
folds. This is achieved by means of the following theorem of Dundas. We state it
in its simplest interesting case:

Theorem (Dundas [D]). The square

A(∗) L //

trc∗

��

K(Z)

trcZ

��
TC(∗) L // TC(Z)

is homotopy Cartesian (after p-adic completion at any prime p). Hence A(∗) is
homotopy equivalent to the homotopy fiber product of TC(∗) and K(Z) over TC(Z).

We pause to explain the diagram. Both algebraic K-theory and topological
cyclic homology are spectrum-valued functors defined on a category of (strictly
associative) ring spectra F , and the cyclotomic trace map trcF : K(F ) → TC(F )
is a natural transformation. This class of ring spectra contains the spherical group
rings with underlying space Q(ΩX+) for connected spaces X, as well as ordinary
rings. Furthermore, the linearization map L : Q(ΩX+)→ Zπ1(X) is a morphism in
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this category of ring spectra. We write trcX : A(X) → TC(X) for the cyclotomic
trace map in the case of the spherical group ring Q(ΩX+). Then naturality of the
cyclotomic trace map with respect to the linearization map asserts that there is a
commutative square of spectra with π = π1X:

A(X)
L //

trcX

��

K(Zπ)

trcZπ

��
TC(X)

L // TC(Zπ)

Dundas’ theorem also tells us that this square is homotopy Cartesian. We recover
the statement above in the case when X = ∗ is a point.

The history of this result begins with Goodwillie’s theorem [G1] that relative
K-theory is rationally equivalent to relative negative cyclic homology HC− for
nilpotent extensions of (simplicial) rings. This can be expressed as a rationally
homotopy Cartesian square similar to the ones above. Replacing negative cyclic
homology with topological cyclic homology, McCarthy [McC] proved that relative
K-theory is also p-adically equivalent to relative topological cyclic homology TC
for nilpotent extensions of (simplicial) rings. Goodwillie conjectured in his 1990
ICM talk [G2] that the same result should hold for maps of arbitrary (strictly
associative) ring spectra that induce nilpotent extensions on π0. This is what was
proven by Dundas, and the versions of the theorem stated above amount to the
special case of the linearization map L : Q(ΩX+) → Zπ1X of ring spectra. That
map induces an isomorphism of rings on π0, which certainly is a (trivial) nilpotent
extension.

Vista

We now wish to use Dundas’ theorem [D] to compute A(∗) completed at the
prime 2. To do this, we first use the homotopy-theoretic description of TC(∗) from
[BHM] to give a calculation of π∗TC(∗) in a range of degrees (∗ ≤ 21). Then we
recall the calculation of π∗TC(Z) at 2 from [R5], which in non-negative degrees

agrees with the K-theory K∗(Ẑ2) of the 2-adic integers. Next we review the 2-
primary calculation of K(Z) from [RW], which uses Voevodsky’s proof of the Milnor
conjecture [V]. Then A(∗) is in principle determined as the homotopy pullback in
the square of Dundas’ theorem. In practice this also involves determining the
homotopical behavior of the maps trcZ : K(Z)→ TC(Z) and L : TC(∗)→ TC(Z).
The former map was described in [R5], and we have more recently used homotopy
theoretic techniques to study the linearization map L in a range of degrees (∗ ≤ 15).
As a conclusion, we are able to compute π∗A(∗), and thus π∗Wh(∗) completed at 2,
for ∗ ≤ 14. This range of degrees is sufficient to allow the detection of certain v4

1-
periodic phenomena related to Bott periodicity and K-local spectra. In particular
we can make statements about the 2-adic connectivity of the Hatcher–Waldhausen
map [W3, R1]

hw : G/O −→ Ω Wh(∗)

in the smooth category. The aim for the remainder of the paper is to outline these
homotopy-theoretic calculations.
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Topological cyclic homology of a point: TC(∗)

Let Cq ⊂ S1 be the cyclic subgroup of order q. The topological Hochschild
homology of a point THH(∗) = T (∗) is an S1-spectrum, and is Cq-equivariantly
homotopy equivalent to the S1-equivariant sphere spectrum QS0 for each q:

THH(∗) 'Cq QS0

Fixing a prime p and restricting attention to cyclic groups of order powers of p,
there are restriction and Frobenius maps

R : THH(∗)Cpn −→ THH(∗)Cpn−1

F : THH(∗)Cpn −→ THH(∗)Cpn−1

for all n ≥ 1. By definition the p-primary topological cyclic homology of a point is
a homotopy limit

TC(∗, p) = holimR,F THH(∗)Cpn ' holimR,F Q(S0)Cpn

over a suitable category generated by these restriction and Frobenius maps; see
[BHM, HM] for more on these constructions. Hereafter we implicitly complete
everything at p, and simply write TC(∗) for TC(∗, p).

The defining limit for TC(∗) can be analyzed in terms of the Segal–tom Dieck
splitting [S1, tD]

Q(S0)Cpn '
n∏
i=0

Q(BCpi+).

With respect to this factorization, the restriction map R is the identity on the ith
factor for 0 ≤ i < n, and is trivial on the last (nth) factor. The Frobenius map F
is the identity on the initial (0th) factor, and maps the ith factor to the (i − 1)st
factor by the Becker–Gottlieb transfer map [BG]

t : Q(BCpi+) −→ Q(BCpi−1+)

of the p-fold covering BCpi−1 → BCpi , for 0 < i ≤ n. So R(x0, x1, . . . , xn) =
(x0, x1, . . . , xn−1), while F (x0, x1, . . . , xn) = (x0 + t(x1), t(x2), . . . , t(xn)). See
[BHM, 5.18].

The following diagram displays the first few relevant maps; the R-maps are
solid and the F -maps are dashed.

QS0 ' QS0 ∗

Q(S0)Cp

R

OO

F

OO�
�
�

' QS0

1

OO

1

OO�
�
�

× Q(BCp+)

OO
t

ddI
I

I
I

I

∗

Q(S0)Cp2

R

OO

F

OO�
�
�

' QS0

1

OO

1

OO�
�
�

× Q(BCp+)

1

OO
t

ddI
I

I
I

I
× Q(BCp2+)

OO
t

ffM M M M M M

TC(∗)

OO

The analysis gives the following calculation of TC(∗), which is a special case
of a more general calculation of TC(X) for any space X:
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Theorem (Bökstedt, Hsiang and Madsen). There is a homotopy Carte-
sian square

TC(∗) α //

β

��

Q(ΣCP∞+ )

trfS1

��
QS0 0 // QS0.

The composite map A(∗)→ TC(∗) β−→ QS0 is the splitting map in the factorization
A(∗) ' QS0 ×Wh(∗).

More precisely, there exists a strictly commutative homotopy Cartesian square
which is homotopy equivalent to the square displayed in the theorem. The S1-
equivariant transfer map trfS1 is obtained from the ‘dimension-shifting transfer’ of
[LMS, p. 100], which is a map of S1-equivariant spectra

τ : Σ∞S1(CP∞+ ) −→ Σ−1Σ∞S1(ES1
+),

by passing to underlying non-equivariant spectra, delooping once, and mapping
ES1

+ to S0.

A virtual Thom spectrum. Let γ1 be the tautological complex line bundle
over CP∞. Working with spectra we can form the virtual Thom spectrum CP∞−1 =

(CP∞)−γ
1

of the formal negative of this line bundle. This spectrum has one cell in
each even degree ≥ −2, corresponding to complex dimensions ≥ −1. Its connective
cover is the suspension spectrum on CP∞+ , and the attaching map of CP∞+ onto
the (−2)-cell is the S1-equivariant transfer map, up to a degree shift [Ra]. Hence
there is a fiber sequence of underlying spaces:

Ω∞(ΣCP∞−1) −→ Q(ΣCP∞+ )
trfS1−−−→ QS0

We note that by [BHM, 5.15] there is a homotopy equivalence

Q(ΣCP∞+ ) ' holimnQ(BCpn+)

(implicitly completed at p), where the homotopy limit is formed over the Becker–
Gottlieb transfer maps t. The S1-equivariant transfer trfS1 is the map from this
homotopy limit to the n = 0 term, which is QS0.

Taking vertical homotopy fibers in the theorem above, we obtain:

Corollary. There is a split fiber sequence of infinite loop spaces

Ω∞(ΣCP∞−1) −→ TC(∗) β−→ QS0.

The splitting is given by the unit map QS0 → TC(∗).

Stable homotopy of CP∞−1. To compute the spectrum homotopy of CP∞−1

in a range, we use the Atiyah–Hirzebruch spectral sequence for stable homotopy
theory:

E2
p,q = Hp(CP∞−1;πSq ) =⇒ πp+qΩ

∞(CP∞−1)

Here classes x2n ∈ H2n(CP∞−1) ∼= Z for n ≥ −1 additively generate the entire
homology. Hence the E2-term of this spectral sequence has a copy of the stable
homotopy groups of spheres (the stable stems) πS∗ = π∗QS

0, in each even column
starting in filtration degree −2. Based on work by Mosher [Mo] and Mukai [Mu1,
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Mu2, Mu3], the author as made such calculations in the range of total degrees
≤ 20, where there are approximately 100 nonzero differentials.

In the following theorem, the E∞-representatives for permanent cycles are given
on the form αx2n, with α ∈ πS∗ given in Toda’s notation [T]. Thus η, ν and σ are
the Hopf maps, while µ, ζ and ρ are in the image of J-summand. We write AoB
for an extension of B by A as Abelian groups.

Theorem (Mosher, Mukai, Rognes). The homotopy groups πnΩ∞(CP∞−1)
are known for n ≤ 20, and begin:

n πnΩ∞(CP∞−1) E∞-rep.

−2 Z x−2

−1 0

0 Z 2x0

1 0

2 Z 4x2

3 Z/8 νx0

4 Z 2x4

5 Z/2 σx−2

6 Z/2⊕ Z ν2x0, 16x6

7 Z/2 o Z/8 µx−2, 2σx0

8 Z/2⊕ Z ν2x2, 8x8

9 Z/2⊕ Z/2⊕ Z/8 η2σx0, ην̄x0, σx2

10 Z 32x10

11 Z/8⊕ Z/4 ζx0, 2σx4

12 Z 16x12

13 Z/2⊕ Z/2 o Z/2 ρx−2, ζx2, η
2σx4

The extension in degree 7 is cyclic (yielding a copy of Z/16), while the extension
in degree 13 is unresolved.

Topological cyclic homology of the integers: TC(Z)

For p odd, TC(Z, p) = TC(Z)∧p was computed by Bökstedt and Madsen. For
p = 2 the author’s calculation of TC(Z)∧2 will appear in [R2, R3, R4 and R5].
The following two theorems describe the conclusion, where we implicitly complete
at 2.

Theorem (McCarthy [McC], Hesselholt and Madsen [HM]). There is
a homotopy fiber sequence of spectra

K(Ẑ2) −→ TC(Z) −→ K(Z,−1).

Hence K(Ẑ2) is homotopy equivalent to the connective cover of TC(Z).
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Theorem (Rognes [R5]). There are two homotopy fiber sequences of infinite
loop spaces

B ImJC // Kred(Ẑ2) //

��

K(Ẑ2)

red

��
BBU ImJC.

Here ImJC ' K(F3) is the complex image of J-spectrum, and red is a Galois
reduction map.

The fiber sequences in question each consist of a map going across, followed
by a map going down. Hence this result expresses K(Ẑ2) after 2-adic completion
as a three-stage extension of known infinite loop spaces, each of which agrees with
its (Bousfield) K-localization above degree 1. The extensions are also known, and

induce split short exact sequences on the level of homotopy groups. So K(Ẑ2)
agrees with its K-localization above degree 1, and its homotopy groups

K∗(Ẑ2) ∼= π∗ ImJC ⊕ π∗BBU ⊕ π∗B ImJC

are completely known.

Algebraic K-theory of the integers: K(Z)

The 2-torsion in K∗(Z) is found in [RW] using Voevodsky’s proof of the Milnor
Conjecture [V], Suslin and Voevodsky’s subsequent identification [SV] of Bloch’s
higher Chow groups [Bl] with étale cohomology groups, a mod 2 version of the
Bloch–Lichtenbaum spectral sequence [BL] converging to algebraic K-theory, and

the topological data from the above calculation of K(Ẑ2) to control the differentials
in that spectral sequence.

The outcome is that Bökstedt’s model JK(Z) for the algebraic K-theory of the
integers, defined in [Bö] as the homotopy fiber of the composite

Z×BO ψ3−1−−−→ BSpin
c−→ BSU

gives the correct answer for K(Z), after localization or completion at 2. So K(Z) '
JK(Z) at 2, and there are 2-adic fiber sequences:

BBO // K(Z) // ImJC

K(Z) // Z×BO
c◦(ψ3−1)// BSU

ImJR // K(Z) // BBSO

In the last sequence, ImJR denotes the connective real image of J-spectrum, which
agrees with the K-localization of the sphere spectrum above degree 1.

So K(Z) agrees with its K-localization above degree 1, and K(Z)∧2 is completely
known.
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A fiber sequence

Recall the splittings A(∗) ' QS0 ×Wh(∗) and TC(∗) ' QS0 × Ω∞(ΣCP∞−1).
The cyclotomic trace map trc∗ respects the projection to the QS0-factors given by
the older trace map to THH(∗) ' QS0 from [W2]. Hence we can fiber off a factor
QS0 from Dundas’ theorem, and obtain two homotopy Cartesian squares:

Wh(∗) //

t̃rc

��

A(∗) L //

trc∗

��

K(Z)

trcZ

��
Ω∞(ΣCP∞−1) // TC(∗) L // TC(Z)

Comparing vertical homotopy fibers then leads to the following fiber sequence

(∗) Ω Wh(∗) Ωt̃rc−−−→ Ω∞(CP∞−1)
`−→ hofib(trcZ).

Here ` is induced by the linearization map L.

The fiber of the cyclotomic trace map

The calculation of TC(Z) at 2 simultaneously gave a complete description of
the cyclotomic trace map

trcZ : K(Z) −→ K(Ẑ2) −→ TC(Z)

on homotopy. In particular we proved:

Theorem (Rognes [R5]). The natural map

Ẑ2
∼= K4i+1(Z)∧2 /(torsion) −→ K4i+1(Ẑ2)∧2 /(torsion) ∼= Ẑ2

is an isomorphism for all i ≥ 1.

We can use this to compute π∗ hofib(trcZ). For concreteness we give names to
the generators of the groups in the following table, but do not explain the notation
in detail. It respects the module action of πS∗ on the homotopy of the spectrum
hofib(trcZ), so σ · ∂2(1) = ∂2(σ), as an example.

Proposition. The homotopy groups πn hofib(trcZ) are known for all n, and
begin:

n πn hofib(trcZ) gen.

−2 Z ∂2(1)

−1 0

0 Z ∂(f1)

1 0

2 Z ∂(f3)

3 Z/8 o Z/2 ∂2(κ5), η3

4 Z/2 ∂(t5)

5 Z/2 ∂2(σ)

n πn hofib(trcZ) gen.

6 Z ∂(f7)

7 Z/16 ∂(σf1)

8 0

9 0

10 Z ∂(f11)

11 Z/8 o Z/2 ∂2(κ13), η2µ

12 Z/2 ∂(t13)

13 Z/2 ∂2(ρ)

The extensions in degrees ≡ 3 mod 8 are cyclic (yielding copies of Z/16).
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Homotopy of the smooth Whitehead space

We now sketch how to determine the map π∗(`) in a range of degrees, and to
use the fiber sequence (∗) to describe π∗Ω Wh(∗).

To get started, note that Wh(∗) is 1-connected. For π1 Wh(X) = Wh1(π1X)
for all spaces X, and Wh1(0) = 0. It follows that π∗(`) is an isomorphism for ∗ ≤ 0.

Next, ` : Ω∞(CP∞−1)→ hofib(trcZ) is a spectrum map, so π∗(`) is a πS∗ -module
homomorphism. Combined with the isomorphisms in degrees ∗ ≤ 0, this allows us
to determine π∗(`) in several higher degrees. Finally we use secondary composition
methods involving Toda brackets to determine π∗(`) for ∗ ≤ 14.

This gives us π∗Ω Wh(∗) for ∗ ≤ 13. (There remains an extension question in
degree 13.) This result thus gives us π∗A(∗) and π∗P (Dk) for large k, in a similar
range of degrees.

Theorem. The homotopy groups πnΩ Wh(∗) are known (modulo odd torsion)
for n ≤ 13, and begin:

n πnΩ Wh(∗) πnG/O

0, 1 0 0

2 Z/2 Z/2
3 0 0

4 Z Z
5 0 0

6 Z/2 Z/2
7 0 0

8 Z/2⊕ Z Z/2⊕ Z
9 Z/2⊕ Z/2⊕ Z/8 Z/2⊕ Z/2

10 Z/2 Z/2
11 Z/4 0

12 Z Z
13 Z/2 o Z/2 0

The extension in degree 13 is unresolved.

We have included the homotopy groups of G/O, the classifying space for smooth
surgery normal invariants, for comparison. This is also the homotopy fiber of the
j-map j : BSO → BSG. There is a fiber sequence CokJ⊗ → G/O → BSO⊗ of
infinite loop spaces, which only splits on the space level [Ma, V.4].

Using manifold models for the algebraic K-theory of spaces, Waldhausen de-
fined a map

hw : G/O −→ Ω Wh(∗)
in [W3], and proved that it is 2-connected. From the table above, we see that
the map might at best be 8-connected, and might even induce a split injection on
homotopy. If so, the homotopy groups of the remainder term would begin with a
Z/8 in degree 9, a Z/4 in degree 11, and a group of order four in degree 13.

Towards assembling a space level description of the homotopy type of Ω Wh(∗),
we offer the following result. Here ᾱ collapses the (−2)- and 0-cells of CP∞−1 to
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a point, R̄ is the Segal retracting map [S2] that extends the inclusion CP∞ '
BU(1)→ BU , and c is the complexification map.

Proposition. The diagram

CokJ

��
G/O

hw //

��

Ω Wh(∗) Ωt̃rc // Ω∞(CP∞−1)
ᾱ // Q(CP∞)

R̄

��
BSO

c // BU

commutes, up to a homotopy automorphism of BSO.

With some extra work we get the following theorem, which improves somewhat
on Bökstedt’s theorem [Bö] that hw : G/O → Ω Wh(∗) is a rational equivalence.

Theorem. The Hatcher–Waldhausen map

hw∗ : π∗G/O −→ π∗Ω Wh(∗)

is at least 5-connected, and induces 2-adic isomorphisms of homotopy groups modulo
torsion.

Corollary. The first nontrivial k-invariant in Ω Wh(∗) is

β Sq2 ∈ H5(K(Z/2, 2);Z).

Here β is the Bockstein map and Sq2 is the Steenrod squaring operation.

As a concluding geometric interpretation of the connectivity of the Hatcher–
Waldhausen map, we recall the rigid tubes map from [W3]. Let T (∗) be the
stable tube space of single smooth k-handles embedded in Dn × I, attached to
the base disc Dn × 0, stabilized both with respect to the handle dimension k and
codimension n − k. Likewise take as a model for BO the Grassmannian of k-
dimensional subspaces of Rn, stabilized both with respect to k and n−k. The rigid
tubes map

BO −→ T (∗)

takes a subspace V k ⊂ Rn to a standardized smooth k-handle erected over the unit
disc of V , attached to a thickening of the unit sphere of V .

The rigid tubes map has the same connectivity as the Hatcher–Waldhausen
map. Hence our calculations show that, after 2-adic completion, the increased
flexibility in the space of stable smooth tubes compared to the space of stable rigid
tubes only affects the homotopy groups in degree 6 or higher, and possibly the first
difference only appears in degree 9.

It remains an open problem to obtain a homotopy-theoretic understanding of
the difference of these spaces of rigid or smooth tubes, or equivalently, of the fiber
of the Hatcher–Waldhausen map.
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