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ABSTRACT
We present Funky Sole Music, a musical interface employing
a sole embedded with three force sensitive resistors in com-
bination with a novel algorithm for continuous movement
classification. A heuristics-based music engine has been im-
plemented, allowing users to control high-level parameters
of the musical output. This provides a greater degree of con-
trol to users without musical expertise compared to what
they get with traditional media playes. By using the move-
ment classification result not as a direct control action in
itself, but as a way to change mapping spaces and musi-
cal sections, the control possibilities offered by the simple
interface are greatly increased.

1. INTRODUCTION
In music technology, a clear distinction has traditionally
been made between the performer creating the music on a
musical instrument, and the perceiver receiving the music
through a music playback device [18]. Increased develop-
ment efforts in music technology in the past few decades
have started to blur this clear distinction. Several exam-
ples exist of applications where people can play a musical
instrument without needing the skill of a professional per-
former, for instance musical instruments like Smule’s Oca-
rina [22] and Magic Fiddle [23], or music games, such as Gui-
tar Hero [9]. Not only musical instruments have changed,
but also music players. Where people only used to be able
to have simple control options such as play, pause, skip,
and volume, they may now take use of social features or
recommendation services in applications such as iTunes or
Spotify. As the clear distinction between instruments and
playback devices is blurred out, a continuum emerges on
which the two are opposite extremes (Figure 1), between
these extremes are what we call active music technologies.

?

Figure 1: A continuum between musical instru-
ments and music playback devices. In the middle
we find active music technologies.
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With the increased availability of motion tracking tech-
nologies, there has also been an increased effort towards the
use of machine learning algorithms to recognise control ac-
tions of users. Such algorithms have been applied to control
musical instruments (e.g. [7, 1, 8]), gesture based sound se-
lection from a database [3], and study of instrumentalists’
sound-producing actions [4].

Our paper presents a new active music device, using a sen-
sor sole and a novel movement classification algorithm to
continuously recognise the movement pattern of the user.
Movement patterns could be different gaits, such as run-
ning or walking straight or sideways, or other activities such
as foot-tapping or jumping. Being an active music device,
where the user can influence the music to some extent, the
mapping between control actions and sound output is an
essential part of the decive. In our implentation, the con-
tinuous classification of movement is utilised to change the
mapping space itself. With this adaptive mapping, the quite
simple interface consisting of three force sensitive resistors
(FSR) in a sole is given a larger range of control possibilities
than it would if the mapping between control actions and
musical parameters were fixed.

In the next section, we will introduce previous use of foot-
worn interfaces in music, before moving on to describing
our implementation in Section 3. The device and our ap-
proach is discussed further in Section 4 before we conclude
and present our plans for future extensions of the work in
Section 5.

2. BACKGROUND
Several researchers have explored foot-worn sensor systems
for sound interaction. Among the first to explore this mode
of interaction was Joe Paradiso and colleagues [17] who
in 1997 presented a pair of dancing shoes embedded with
piezoelectric pads, FSRs, accelerometers, and compasses.
These sensors allowed tracking the wearer’s feet in a number
of dimensions, including foot pressure, orientation, acceler-
ation, and deformation. Additionally, a laser rangefinder
combined with ultrasound sensing detected the horizontal
position of the shoes on a stage, and electric field sensing
was applied to detect the vertical position of the shoes. The
device was developed further, and an upgraded version us-
ing a jogging sneaker was presented in [15] and [16], along
with a discussion of its musical application. The same sys-
tem has later also been applied for medical purposes as a
low-cost alternative to expensive motion capture systems in
gait analysis [14].

Another approach to footworn sensors is their applica-
tion in virtual reality. Choi and Ricci used force sensors
combined with fuzzy logic to detect different gaits [5], and
Turchet used sandals embedded with force sensors and ac-
tuators to study a range of aspects related to audio-haptic
feedback of foot-step sounds [21]. Accelerometers mounted



in shoes have been applied to adjust the tempo of audio
files by a phase vocoder [10, 13] and for selecting tempo-
tagged songs from a database [12]. Similar systems have
also been developed for both hand-held and arm-worn ac-
celerometers [6, 2].

Our system has found great inspiration in the above men-
tioned systems, and extends previous work by adapting the
mapping space to the current movement pattern of the user.

3. IMPLEMENTATION
This section covers the implementation of our system: Con-
troller and sensor interface, music engine, the machine learn-
ing algorithm for gait recognition, and adaptive mapping
based on the gait classification.

3.1 Sensors and Interface
Our prototype consists of a sole made from rubber foam,
with three Interlink 402 FSRs attached with duct tape, see
Figure 2. One sensor is placed below the heel, and the two
other in the front of the sole on each side, to capture side-
ways tilting of the foot. The FSRs are connected by cable
to our General Purpose Sensor Platform (GPSP), which
samples the sensors and passes the sensor data on in the
Open Sound Control format via WLAN. Various filtering
and thresholding can also be applied on the GPSP. The
GPSP enclosure is 3D-printed and fitted with a strap made
from elastic rubber and velcro, allowing attachment of the
GPSP to the leg of the user. Further documentation and
results from performance tests of the Arduino-based GPSP,
along with links to STL files and assembly instructions for
the enclosure, is available in [20].

Figure 2: The sensor sole with three force sensitive
resistors attached with duct tape (top) and a san-
dal connected to the GPSP interface with exposed
electronics (bottom).

3.2 Music Engine
The music engine of our system has been implemented using
Max1 and Reason.2 To demonstrate the system, we have

1http://www.cycling74.com
2http://www.propellerheads.se/reason/

implemented one song with two parts. Part A is a twelve-
measure blues chord progression, and part B is a steady
tonic chord.

The sounds are generated by four instruments in Reason:

1. Drum loop (Dr. Octo Rex loop player)

2. Guitar loop (Dr. Octo Rex loop player)

3. Bass guitar (Subtractor synthesiser)

4. Wurlitzer (NN19-sampler)

The Reason loop player uses a prerecorded loop sample
which has been processed by slicing it into individual sam-
ples for each onset. As such, the loop is not played back as
one continuous sound file, but by triggering the individual
samples at given points in time. This facilitates tempo ad-
justments for the two loop-based instruments. Two drum
loops and guitar loops have been implemented, one for each
part of the song.

The main control of the music occurs in Max. A phasor∼
object is used to keep track of tempo in Max and a cor-
responding BPM value is sent to the Reason loop players.
Thresholding the output from the phasor∼ object enables
triggering of events at various times in each measure. Sim-
ple probabilistic heuristics for parts A and B have been
defined, sending MIDI-events to the reason engine and trig-
gering tones from the bass guitar and wurlitzer at certain
times in each measure. For instance, at the first beat of
each measure, the bass guitar has only two tones to choose
from: The root note in one out of two octaves. The re-
maining beats of each measure have a certain probability of
being skipped, and a wider range of selectable tones. Ad-
ditionally, there is a probability of triggering bass tones on
the shuffled 16ths. Naturally, such heuristics hardly imi-
tate how a real bass player would play, but the music is less
static than a hard-coded bass pattern would be, and since
the heuristics are designed by hand, some degree of musical
coherence is ensured. Further, by adjusting the probability
levels, interesting dynamic changes can occur in the music.

3.3 Movement Recogition
In order to perform continuous classification of movement
patterns, we apply a movement recognition algorithm in-
spired by the concept of pheromones in ant colony optimi-
sation. The ant learning algorithm (ALA) has been shown
to work efficiently with only one training instance, with bet-
ter recognition rates than Hidden Markov Models and sim-
ilar rates to Dynamic Time Warping, outperforming both
of these in terms of execution time. The details of the al-
gorithm and various test results for its application to ac-
celerometer data have previously been presented in [19]. We
will here describe how the previous paper was adjusted to
work with the sensor sole. Below, we present how the force
data from the sensors is quantised into a set of basic states,
and further how the sequence of such states are recognised
as an ongoing movement pattern by the ALA algorithm.

3.3.1 Vector Quantisation
To be able to recognise a movement pattern, a set of four
“protostates” have been defined. Figure 3 shows how the
state of the foot can be either FullRelease, ToePress, Heel-
Press, or FullPress. The system is calibrated by a short
recording of each state, to obtain a characteristic data vec-
tor for each of them. After calibration, the data is contin-
uously mapped onto one of the four different states using
a nearest neighbour algorithm, and consequently a move-
ment pattern is represented as a sequential order of these
characteristic states.
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Figure 3: The data is quantised into four states:
1-FullRelease, 2-ToePress, 3-HeelPress, 4-FullPress

Force data from a walking sequence with 22 steps is shown
in Figure 4. The top plot shows the raw data from the sen-
sors, and the lower plot shows the sequence of characteristic
states. The repeating pattern in this sequence is: FullRe-
lease, HeelPress, FullPress and ToePress.

Figure 4: The top plot shows the 10 bit data from
the three force sensors. The lower plot shows the
quantised version with four states.

3.3.2 Ant Learning Algorithm
The foundation of classification in the ALA algorithm is a
pheromone table, inspired by the pheromone mechanism in
ant colony optimisation, where an ant leaves a pheromone
trail as a record of its path. While ants in nature track a
path (i.e. a sequential order of positions), our tracking is
of the sequential order of characteristic states, counting the
number of times each transition between states occurs. Sep-
arate pheromone tables are trained for each type of move-
ment that is to be recognised. An example of a simplified
(very short) walking pattern is shown in figure 5. For every
two successive frames, a corresponding increment is found
in the pheromone table below. When one state is followed
by the same state, the corresponding value along the di-
agonal is incremented, when the state is different from the
previous, one of the other cells are incremented.

4 4 42 2 2 1 1 1 3 3 3

1-FullRelease

2-ToePress

3-HeelPress

4-FullPress

1-FullRelease 2-ToePress 3-HeelPress 4-FullPress

1 110
0 110
2 001
0 012

p
re

v
io

u
s 

st
a

te

current state

Figure 5: A simplified example of a short walking
sequence made from 12 successive states. Below is
the corresponding pheromone table.

The algorithm is trained by recording a short sequence of
of each movement pattern to be recognised, for instance a 30
second walking sequence. A pheromone table correspond-
ing to the recording is generated. Additionally, the training
data is split into shorter segments and one pheromone table
is created for each segment. This provides a set of slightly
different tables which all correspond to the same type of
movement. We calculate the distances C = c1, c2, ... be-
tween all pheromone tables that correspond to the same
movement pattern.

c =

4∑
ı=1,=1

(τ1ı, − τ2ı,)
2 (1)

Where τ1ı, and τ2ı, represents the fields of two tables to be
compared. The mean and standard deviation of C provides
an indication of how much a pattern varies, and is used to
deterimine a confidence interval for the realtime classifica-
tion.

A fixed size moving window is used in the online move-
ment recognition, and a pheromone table is generated for
each window. The current table is compared to the set of
trained pheromone tables using Equation 1, and classified
accordingly if the distance to the table falls within the con-
fidence interval of a learned movement pattern.

3.4 Adaptive Mapping
A traditional way of implementing mapping between a con-
troller and sound engine is through a direct mapping be-
tween the available control parameters and sound parame-
ters, often through a set of layers to create a complex many-
to-many relationship [11]. In our system, we want the user
to have control over many aspects of the musical output,
and a direct mapping between the three force sensors and
the musical engine would run the risk of being too simple,
even with complex many-to-many mappings. For this rea-
son, we use the classifications made by the ALA algorithm
to change between different sections of the music, and also
between different mapping spaces. In the prototype, three
movement patterns are used to illustrate the concept:

Walking: While walking, the tempo of the music follows
the footsteps of the user. All other parameters are
predefined and the twelve measure blues is played ac-
cording to the probability-based approach described
in Section 3.2.

Tapping back: When tapping the heel to the floor, the
tempo control is disabled. A wah-wah effect is enabled
and controlled by the data from the force sensors.
Also, the probability threshold of bass note onsets is
controlled by the overall change in sensor data, and
thus the bass activity level increased with increased
foot activity.

Tapping front: Tapping with the front of the foot takes
the music to a new section. In this section, a wurlizer
solo is enabled when the front of the foot touches the
floor.

4. DISCUSSION
The presented Funky Sole Music protoype allows a more
varied control over a piece of music than what is provided
by traditional media players. At the same time, the con-
trol space is far more limited than in a traditional musical
instrument, e.g. without any possibility of playing out of
tune or out of sync. The restrictions on the musical out-
put ensures a certain degree of musical coherence, but can



also be argued to diminish the possibilities for musical ex-
pressivity. This however, is only when compared with a
traditional musical instrument — to a non-musician who
would never touch a musical instrument, Funky Sole Mu-
sic provides an increased possibility for musical expression
compared to normal media players.

Even though the device is more of an active media device
than a musical instrument, a principle is shown which could
also be fruitful in development of new musical instruments.
Instead of only direct links between control data and syn-
thesis parameters, we can create digital musical instruments
where more indirect control actions determine the effect of
direct control actions by manipulating the mapping space.
Such indirect control actions can for instance be the current
state of the performer or the audience. Ranging from sim-
ple examples such as the current location of the performer
on stage to the more advanced classification of the mood of
a person through biosensors.

5. CONCLUSION AND FUTURE WORK
We have presented an interactive music system for high-level
control of a musical piece. A novel movement recognition
algorithm is applied to continuously let the user move be-
tween different mapping spaces. A video example of the
system in action is available online.3

In future work, we aim at developing the system further
towards a more generic device for active music. The cur-
rent implementation of adaptive mapping is strongly con-
nected with one particular piece of music, but future ver-
sions should enable users to select different songs, and to
employ the same control actions to other musical pieces.
Future developments should also include usability testing
both in controlled environments and in potential use scenar-
ios such as workout sessions and interactive installations.
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