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Abstract: Simply supported plates of laminated composite material subjected to 
uniaxial in-plane compression have been investigated. The ultimate strength analysis 
has been performed using a semi-analytical method based on large deflection theory and 
first order shear deformation theory. Two degradation models have been developed with 
material degradation either applied to the entire failed ply or to the affected regions of a 
failed ply. Both instantaneous and linear degradation of materials are presented. Further, 
two different types of in-plane displacement fields have been examined for their 
influence on the strength predictions.    
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1     INTRODUCTION 

1.1   Background 

Plates made of fibre-reinforced composite materials are widely used in many 
structures, for example in certain types of ships and most wind turbine blades. In design 
of such large composite structures, buckling analysis is generally confined to estimation 
of elastic critical loads. For many plates, the carrying capacity can be significantly 
higher than the elastic critical load, while neglect of geometric imperfections in 
eigenvalue buckling analyses may result in overestimation of the strength. Thus, in 
order to include the post-buckling deformation and utilise the full potential of the 
material, ultimate strength analysis of such plates should be considered. Such analyses 
should also take account of geometric imperfections. For this, nonlinear finite element 
methods can be used, but are at present mostly restricted to research because these 
analyses tend to be complex and time consuming to prepare, run and post-process. 
Besides, commercial software sometimes has limitations, particularly with regard to 
material behaviour. In contrast, for plates made of steel material, design strength curves 
that take account of slenderness and geometric imperfections have been established 
based on extensive studies. For steel structures, practical, analytical and semi-analytical 
approaches for buckling and strength analysis are available; many of these are user-
friendly and computationally efficient. However, these approaches are often tailor-made 
for specific cases for certain loads and boundary conditions, and are thus not so general 
as the FE method. Previously, to estimate the ultimate strength of stiffened and 
unstiffened thin steel plates under in-plane compression, Steen [1], Brubak et al. [2], 
and Brubak and Hellesland [3,4,5,6] have developed several simplified semi-analytical 
methods. The work reported here is part of a study that aims to extend these efficient 
methods to fibre-reinforced composite plates having a range of layups and thicknesses.                     

1.2   The Present Study 

The present paper concerns the prediction of the ultimate strength of composite 
plates in compression using a semi-analytical method. As a first step to establish a more 
accurate, simplified and reliable method, several models based on small deflection 
theory, combined with first order shear deformations, have been presented in [7,8]. As 
expected, the investigation showed that neglect of non-linear post-buckling behaviour 
makes the ultimate strength estimations very conservative for thinner plates. For thicker 
plates, the results showed reasonable, but somewhat conservative predictions. As an 
extension of the previous work, the present method is able to take account of: 

• failure and degradation models for composites, 

• initial geometric imperfections, 

• out-of-plane shear deformations which are most relevant for thick composite and 
sandwich plates, and 

• post-buckling deformations, thus the reserve strength of plates which is 
especially important for thin plates. 

As in [7,8], two different degradation approaches in combination with the Hashin 
and Rotem failure criterion [9] from 1973 have been used: 
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• Complete ply degradation model (CPDM): The material degradation is applied 
to entire plies. 

• Ply region degradation model (PRDM): The stiffness degradation is limited to 
the affected regions of a failed ply.  

For both approaches, an energy solution is performed using assumed deformations in 
the form of a truncated double Fourier series. For the PRDM, two types of assumed in-
plane displacement fields have been investigated and both instantaneous and linear 
material degradation have been implemented. To validate the method, the results are 
compared with the FE analysis performed by Misirlis using ABAQUS, and reported by 
Hayman et al. [10].    

2     BOUNDARY CONDITIONS AND DISPLACEMENTS 

2.1   Kinematics 

In order to describe the post-buckling behaviour, the classical large deflection theory 
(assumptions of moderate rotations, but small in-plane strains) combined with the first 
order shear deformation theory has been used. The nonlinear strains taking account of 
an initial out-of-plane imperfection winit are given by [11,12]: 

 
 

(1a) 

 
 

(1b) 

 
 

(1c) 

 (1d) 

 (1e) 

Here x and y are the in-plane coordinates and z is the distance from the middle plane of 
the plate. The terms with the super index “0” denote the mid-plane membrane strains, 
while κ are the curvatures. The symbols u0 and v0 represent the mid-plane 
displacements in the x- and y-direction, respectively, while w is the out-of-plane 
displacement that is additional to the initial out-of-plane imperfection. The rotations of a 
transverse normal about axes parallel to the y and x axes are denoted by φx and φy, 
respectively. 
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2.2   Boundary Conditions and Displacement Field 1 (DF1) 

 
Fig. 1. Plate geometry and load condition. The broken lines and the numbers are explained in Section 6.2. 

A rectangular plate is considered, with dimensions a × b (Fig. 1) with an initial out-
of-plane deformation winit. The plate is simply supported on all edges and subjected to a 
mean compression Nx in the x-direction. In the analyses, this is achieved by restraining 
the edge x = 0 in the x-direction and applying a uniform, negative displacement uc in the 
x-direction on the edge x = a, all four edges being held straight. The total out-of-plane 
deformation is wtot=winit+w. Each deformation component is assumed in the form of a 
truncated double Fourier series [6,13] combined with a linear in-plane displacement 
field [6,14]: 

     (2a) 

    (2b) 

   (2c) 

    (2d) 

 
     

(2e) 

The coefficients uc, vc, umn, vmn, xmn, ymn and wmn are the unknowns, wimn are given 
imperfection amplitudes, and m, n, M and N are positive integers.  

2.3   Boundary Conditions and Displacement Field 2 (DF2) 
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For the second set of boundary conditions and assumed displacements, the out-of-
plane displacement and the rotations are the same as those presented in Section 2.2, i.e. 
Eqs. (2c)-(2e), but the in-plane displacement fields are replaced by those used by Reddy 
[10] for simply supported plates:    

     (3a) 

    (3b) 

Note that the linear in-plane displacement fields are unchanged, and all four edges are 
still constrained to remain straight, but the displacement component u0 is now allowed 
to vary more freely along the edges y = 0,b and v0 is allowed to vary more freely along 
the edges x = 0,a. Note that for odd values of m or n, the cosine terms in DF2 give an 
antisymmetric variation along or across the plate. Reddy primarily applied DF2 for 
antisymmetric angle-ply laminates having ply orientations of θ and -θ where 0° ≤ θ ≤ 
90°, and having at least one layer with an orientation other than 0° or 90°.  

3     POTENTIAL ENERGY 

The total potential energy consists of three contributions associated, respectively, 
with in-plane strain energy, shear strain energy and external forces: 

     (4) 
 

The strain energy associated with in-plane stresses can be written as  

 

   

 

 

 

  (5) 
 

where Um and Ub are the membrane and bending strain energies, respectively, and Umb 
is the strain energy due to the coupling terms between the membrane and bending 
contributions.    

 

 

 

(6a)  
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(6b)  

 

   

 

(6c) 

The extensional stiffness matrix is given by A, while B and D are the bending-stretching 
coupling matrix and the bending stiffness matrix, respectively.  

 

The transverse shear strain is given in Eq. (7): 

 

 
 
 
 

    (7) 
 

Here, As is the stiffness matrix for transverse shear and k (= 5/6) is the shear correction 
coefficient. 

 
For nonlinear analysis, it is most convenient to introduce a dimensionless load 

parameter Λ, and define Nx as a constant reference load value, which is chosen based on 
the laminate thicknesses. The potential energy of an external, in-plane load ΛNx in the 
x-direction is given by 

 (8) 

where b is the width of the plate. 

4     SOLUTION PROCEDURE 

4.1   Incremental Response Propagation 

The post-buckling response is traced by an incremental procedure [1]. Here, an arc 
length parameter is used as a propagation parameter.  

 
Using large deflection theory, the equilibrium equations obtained from the Rayleigh-

Ritz method are nonlinear. Instead of solving the nonlinear equations directly, these are 
solved incrementally by computing the rate form of the equilibrium equations with 
respect to an arc length parameter η. Further, the change in the arc length parameter is 
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associated with a change in the external load and the displacements and rotations. For 
an external applied load, changing proportionally with Λ, this relationship is illustrated 
graphically in Fig. 2.  
 

 
Fig. 2. Relationship between an arc length parameter increment Δη, a load increment ΔΛ and an 
incremental displacement amplitude Δλi. 

As the increment size approaches zero, the relationship can be given by   
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(9) 

where λi represents the displacement and rotation amplitudes and t is the plate 
thickness. A dot above a symbol can be interpreted as differentiation with respect to the 
arc length parameter η. 
 

In the incremental procedure, the load parameter Λ and displacement and rotation 
amplitudes λi are functions of the arc length parameter η. For an increment Δη along 
the equilibrium curve from point s to (s +1), a Taylor series expansion gives 

 
(10a) 

 
(10b) 
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The second and higher order terms are neglected in the present work, i.e. the expansion 
is of first order. In other works, such as in Byklum [15], it is shown how to include the 
second order terms. However, by choosing a sufficiently small increment, the results 
achieved by this first order expansion are found to be satisfactory. Besides, retaining the 
second or higher order terms to improve the accuracy is computationally costly.   

4.2   Incremental Equilibrium Equations 

The Rayleigh-Ritz method on an incremental form or rate form as mentioned in 
Section 4.1 has been used to solve the problem. The total potential energy is given by 
Eq. (4). Equilibrium requires that  δ !Π = 0 , and thus 
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(11) 

Here, Cij is a generalised, incremental stiffness matrix and  Fi !Λ  is a generalised, 
incremental load vector, where i indicates the row number and j the column number in a 
matrix. The total number of unknowns is Ntot + 1 (λi and Λ), where Ntot is number of 
equations in Eq. (11). The additional equation required is Eq. (9). In matrix form, Eq. 
(11) becomes: 
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   (12) 

The row number is indicated by f and g for corresponding displacement and rotation 
amplitudes with two subscripts. Further, in a similar way, i and j are used to indicate the 
column number. 

4.3   Procedure for Solving the Equations  

First,  and  can be found by solving the Eqs. (9) and (11). The solution of Eq. 
(11) is given by 

 
!λ j = − !ΛCij

−1Fi  (13) 

Substituting equation (13) into equation (9): 

 
     

(14) 

Then, from Eq. (14), the load rate parameter  can be determined as 

  

(15) 

Based on the assumption that the equilibrium curve is smooth, it is necessary to find the 
solution to Eq. (15) that gives a continuous increase of the arc length. This is achieved 
by the requirement that the absolute value of the angle between the tangents of the 
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consecutive increments (s − 1) and s in the load-displacement space is smaller than 90°. 
For the correct sign of the load rate  at stage s, the following equivalent criterion 
must be satisfied [1]: 

 

!Λs

−Cij
−1Fi( )s !λ j

s−1

Displ .
∑

t 2
+ −Cij

−1Fi( )s !λ j
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⎝

⎜
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⎜

⎞

⎠

⎟
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> 0  

 

(16) 

When  at stage s is found, the displacement and rotation rate amplitudes  at the 
stage s are given by Eq. (13). The displacement and rotation amplitudes, and load 
parameter at the next stage are then obtained by the first order Taylor series expansion: 

 (17a) 

 (17b) 

As mentioned in section 4.1, Δη has to be small to give a satisfactory result. The 
solution propagation is continued until a given failure criterion is reached. 

4.4   Application of Riks-Wempner Method 

The method described in Section 4.3 has the major advantage of its simplicity in 
application. However, the major drawback of the method is that the unbalanced forces 
occurring in each load increment are ignored, i.e. no iterations are performed to bring 
the calculated equilibrium path back to the true one. These existing errors tend to 
accumulate and eventually become significant, sometimes leading to convergence 
problems. To reduce these errors, it is necessary to arrange an iterative procedure within 
each load increment to correct for the disagreement that exists between the external 
applied forces and the internal forces of the system. A way to perform this iteration is 
by using the Riks-Wempner method [16,17]. 

 
In order to apply the Riks-Wempner method, Eq. (11) has been modified to include 

the unbalanced forces Ui [18,19]: 

 Cij
!λ j + Fi !Λ +Ui = 0  (18) 

Eq. (18) can be decomposed into two equations: 

 −
!ΛCij

−1Fi = !Λ !λ j  (19a) 

 −Cij
−1Ui = !λ j  (19b) 

Here, Eq. (19a) gives the displacement and rotation increments associated with the 
generalised, incremental load vector provided in Eq. (13), while Eq. (19b) gives the 
displacement and rotation increments associated with the unbalanced forces. Note that 
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for the sake of convenience, the displacement increments presented in this section are 
assumed to be dimensionless.   

For the first iteration at a randomly selected load step s, and  are found 
by following the solution procedure described in Section 4.3 (the unbalanced forces are 
zero in the beginning), and in turn and  are obtained by using Eqs. (17). 
The unbalanced forces based on the predicted displacement and rotation amplitudes and 
load parameter are thus 

 
 

(20) 

Here, r denotes iteration number, Hij is a stiffness matrix and Lj is a load vector.   
         

For subsequent iterations at the same load step s, the load incremental factor  
is determined by enforcing the orthogonality condition [18]: 

 
!Λs{ }1 !Λs{ }r + !λ j
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The corrected version of displacement and rotation increments can be calculated 
by superposition based on Eqs. (19): 
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Substituting for  and  using Eq. (19a) and Eq. (22), Eq. (21) becomes 
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(23) 

Solving Eq. (23) for gives 
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(24) 

Finally, the load and displacement and rotation increments at stage s are given by  
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!Λs = !Λs{ }r

r=1

∞

∑  (25a) 

 
!λ j
s = !λ j

s{ }r
r=1

∞

∑  (25b) 

A schematic illustration of the method is presented in Fig. 3. 

 
Fig. 3. Iterations performed by the Riks-Wempner method. 

 

A convergence criterion must be introduced to determine the number of iterations 
needed to reduce the errors within each load step. This criterion is based on the 
magnitude of the unbalanced forces U and the internal forces I [19,20]: 

 (26) 

In the analyses performed in Section 7, the chosen value of β is 0.01.  
 

The Riks-Wempner method has only been implemented after damage initiation in the 
analyses with linear degradation of the material properties. In the analyses implemented 
with the instantaneous material degradation model, an unloading and reloading 
technique is used (see Fig. 5 in Section 5.3.2), which compensates for the absence of an 
iterative procedure within each load increment.      

5     PROGRESSIVE FAILURE MODELS 

5.1   Hashin and Rotem Failure Criterion 

The 1973 Hashin and Rotem failure criterion for in-plane stresses can be written [9]: 
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(27a) 

 
 

(27b) 

Failure occurs when any of the four failure functions from Eqs. (27) reaches unity. Each 
is associated with a dominant failure mode. 

5.2   Degradation of Properties 

When failure occurs in a laminated composite plate, the effective material properties 
change. This results in a new stiffness of the plate. To describe this behaviour, a 
damaged material stiffness matrix for in-plane deformations is defined [10]: 

 

 

(28) 

Here d1 is the damage factor in the longitudinal direction of the material, d2 is the 
damage factor in the transverse direction, and d6 is the damage factor in the in-plane 

shear component. The remaining parameters in Eq. (28) are defined as , 

, ,  and . 

For the Hashin criterion, because the shear failure component is associated with the 
fibre and matrix modes of failure, the damage variable d6 is defined as: 

 (29) 

To allow direct comparison with the results of Misirlis [10], the transverse (out-of-
plane) shear stiffness matrix is not degraded during the analysis. (The ABAQUS shell 
elements used by Misirlis do not allow such degradation of the transverse shear 
properties.) Thus 

 

 

(30) 

where K44 = G23 and K55 = G13. 
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5.3   Material Degradation 

5.3.1   Introduction 

 
Fig. 4. Material degradations. 

Both instantaneous degradation and linear degradation of material properties are 
implemented in the progressive failure model reported here, see Fig. 4 [21]. The FEA 
results presented in Hayman et al. [10] assumed a linear degradation of the properties 
by using the built-in progressive failure model in ABAQUS. 

5.3.2   Instantaneous Material Degradation 

For the instantaneous material degradation, when any ply or ply region fulfils a stress 
criterion, its corresponding properties are instantaneously reduced to a predefined value 
equal to 1% of the respective initial values [22]. Thus the associated damage factor di  = 
0.99. The analyses implemented with the instantaneous material degradation are 
performed with the unloading and reloading technique, which is illustrated in Fig. 5. 
After damage is detected in a ply or a ply region, the plate is unloaded and material 
degradation is applied. The plate is then reloaded with the reduced material stiffness 
until further damage is detected. This process is repeated until appearance of the 
ultimate load.  

 
Fig. 5. The unloading and reloading procedure associated with the instantaneous material degradation. 
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5.3.3   Linear Material Degradation 

For linear degradation of the material properties, the degradation procedure is based 
on the constitutive model proposed by Matzenmiller et al. [21], i.e. the damage 
evolution is similar to the model implemented in ABAQUS. More information is given 
in Appendix A [23]. In each of the failure modes provided in Eqs. (27), a damage 
variable di will evolve based on the stress-displacement relation shown in Fig. A.1 and 
Eq. (A.5) in Appendix A. This stress-displacement behaviour is expressed as equivalent 
stress σeq and equivalent displacement δeq, where  is the initial equivalent 

displacement at which the initiation criterion for that mode was met and  is the 
displacement at which the material is completely damaged in this failure mode. Further, 

 is given as; 

 (31) 

For both matrix and fibre failure modes, α = 2 [21] has been used in most of the cases 
investigated in Section 7. In section 7.8.2, a lower α value has been applied for the fibre 
failure modes. Note that the ABAQUS analyses were performed with α = 2 for all 
failure modes.        

6     DEGRADATION MODELS 

6.1   Complete Ply Degradation Model (CPDM) 

In the complete ply degradation model (CPDM), if any part of a ply has exceeded a 
given stress criterion, degradation of the corresponding properties is applied to that 
entire ply. The plate is analysed under increasing loads using the equations and 
procedures described in the previous sections. In the analyses presented here using 
CPDM, only the displacement field described in Section 2.2 has been considered. The 
degradation procedure is shown schematically in Fig. 6. The process is repeated until 
the maximum value of load is reached; this is considered to be the ultimate load. 
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Fig. 6. Schematic diagram: procedure for both CPDM and PRDM with the instantaneous material 
degradation. The procedure is repeated until maximum load is reached. 

6.2   Ply Region Degradation Model (PRDM) 

To use the ply region degradation model (PRDM) the plate is divided into 9 regions 
as shown by the broken lines in Fig. 1. Thus regions 1, 3, 7 and 9 are corner regions, 5 
is a centre region and 2, 4, 6 and 8 are mid-edge regions (of which 4 and 6 are loaded 
edges). The progressive failure model with degraded material properties is now 
implemented by reducing the appropriate stiffness terms only in the specific region of 
the ply where failure has occurred. This model has the advantage that it allows a closer 
approximation to the true degradation distribution, while also giving some useful insight 
into the dominant failure mechanisms and sequences. In the analyses with PRDM, the 
two alternative displacement fields presented in Sections 2.2 and 2.3 have been 
considered. Otherwise, the procedure implemented with the instantaneous material 
degradation is similar to the CPDM (Fig. 6). The procedure implemented with the linear 
material degradation and the Riks-Wempner method is presented in Fig. 7.  
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Fig. 7. Schematic diagram: procedure for PRDM with the linear material degradation. The procedure is 
repeated until maximum load is reached. 

7     PARAMETRIC STUDY 

7.1   Description 

To test the simplified approach by comparing results with those obtained by Misirlis 
using advanced FE analysis [10], parametric studies have been performed for a series of 
square plates, with a = b = 500 mm, having various breadth/thickness (b/t) ratios. Four 
different maximum initial imperfection amplitudes have been examined, respectively 
0.1%, 1%, 2% and 3% of the width b (= 500 mm). The assumed shape of the initial 
geometric imperfection is a single half sine wave in each direction, so that wimn = 0 for 
all values of m and n other than 1. Two different types of composite layup are 
considered [10]: 

• Case A, a triaxial layup:  

           This layup configuration is typical for the main spar of a wind turbine blade. 
 

• Case B, a quasi-isotropic, quadriaxial layup:  

This layup configuration is more typical for ship hull panels that experience a 
mixture of lateral pressure and in-plane loading due to hull girder bending. 

For the triaxial layups (case A), the required b/t values are achieved by scaling the 
thickness of each individual ply. For the quadriaxial layups (case B), the thickness is 
increased by adding groups of plies (increasing X) to give the desired b/t values. The 
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material properties and the plate thicknesses for cases A and B are given in Tables 1-3. 
Note that ply number 1 is located on the concave side of the plate. It should be 
mentioned that Misirlis [24] observed that in some cases the linear degradation model 
overestimated the ultimate strength, so validation against other sources is also needed.  
Furthermore, the layup configurations considered are two extreme cases; in order to 
have a better overall picture of the trends, other layups have been evaluated in Section 
7.9. For the ply region degradation model (see Fig. 1), regions 1, 3, 7 and 9 are each 160 
mm × 160 mm, regions 2 and 8 are each 180 mm × 160 mm, regions 4 and 6 are 160 
mm × 180 mm and region 5 is 180 mm × 180 mm. 

Table 1 
Material properties (strengths and moduli). 
Property E1 E2 ν12 G12 G13 G23 Xt Xc Yt Yc S12 
Value 49627 15430 0.272 4800 4800 4800 968 915 24 118 65 
Units MPa MPa - MPa MPa MPa MPa MPa MPa MPa MPa 

                           Table 2 
                           Plate thicknesses and ply thicknesses for case A. 

Layup case b/t t (mm) t0 (mm) t±45 (mm) 
A1 50 10.00 0.39 0.12 
A2 30 16.70 0.65 0.20 
A3 20 25.00 0.97 0.30 
A4 15 33.30 1.30 0.40 
A5 10 50.00 1.95 0.59 

                        Table 3  
                        Plate thicknesses and ply thicknesses for case B. 

Layup case b/t t (mm) X t0, t±45, t90 (mm) 
B1 62.50 8.00 1 1.00 
B2 31.25 16.00 2 1.00 
B3 20.83 24.00 3 1.00 
B4 15.63 32.00 4 1.00 
B5 10.42 48.00 6 1.00 

 

7.2   Step Size and Number of Terms 

The physical step size along the equilibrium path is dependent on the chosen 
propagation parameter value Δη and the chosen size of the load interval, which in turn 
depends on the selected value of Nx. In order to reduce the computation time, larger 
propagation parameter values may be considered. The influence of the step size Δη on 
the accuracy of ultimate strength estimations is presented in Fig. 8. The total number of 
increments used in a calculation is given as the inverse of the propagation parameter, 
1/Δη. The ultimate strengths are plotted relative to an ultimate strength σmax,100 
estimated with a small value of Δη = 0.01 (1/Δη = 100). In most of the cases 
investigated, Δη = 0.10 was found to give reasonably accurate results with acceptable 
computational time. More information regarding the chosen Nx and Δη values is given 
in Appendix C and D. Note that the influence of the chosen step size Δη will only affect 
the models without Riks-Wempner method. More explanation is given in Section 4.4. 
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Fig. 8. The ultimate strength relation is plotted against 1/Δη for layup A3 (in Table 2) with 1% 
imperfection using CPDM.   

 A convergence test (Tables B.1-B.3 in Appendix B) has been performed to 
determine the total number of terms to be used in the assumed displacement fields given 
by Eqs. (2) and (3). In this test, the number of terms is increased until the change of 
result is less than 1%.  

7.3   Load-Displacement Response Without Material Degradation 

The load-displacement responses for plates with various thicknesses and 
imperfection amplitudes are provided in Figs. 9-14. Without material degradation, a 
reasonable load-displacement response is achieved with 127 terms included in the 
displacement fields presented in Eqs. (2). The results have been compared to FE 
analyses performed in ANSYS with chosen element type SHELL281 and element size 
25 × 25 mm2.  

 
Fig. 9. Load vs. centre out-of-plane displacement (left) and load vs. end shortening (right) for case A, t = 
10.02 mm and 0.1% imperfection. The line shows the results from the present method and the circles are 
the results form ANSYS. 
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Fig. 10. Load vs. centre out-of-plane displacement (left) and load vs. end shortening (right) for case A, t = 
10.02 mm and 1% imperfection. The line shows the results from the present method and the circles are 
the results from ANSYS. 

 
Fig. 11. Load vs. centre out-of-plane displacement (left) and load vs. end shortening (right) for case A, t 
= 10.02 mm and 3% imperfection. The line shows the results from the present method and the circles are 
the results from ANSYS. 

 
Fig. 12. Load vs. centre out-of-plane displacement (left) and load vs. end shortening (right) for case B, t = 
24 mm and 0.1% imperfection. The line shows the results from the present method and the circles are the 
results from ANSYS. 
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Fig. 13. Load vs. centre out-of-plane displacement (left) and load vs. end shortening (right) for case B, t = 
24 mm and 1% imperfection. The line shows the results from the present method and the circles are the 
results from ANSYS. 

 
Fig. 14. Load vs. centre out-of-plane displacement (left) and load vs. end shortening (right) for case B, t = 
24 mm and 3% imperfection. The line shows the results from the present method and the circles are the 
results from ANSYS. 

From Figs. 9-14, the present method gives slightly greater plate stiffness than the 
ANSYS results, especially in the post-buckling area. This could be explained by the fact 
that the element type SHELL281 in ANSYS uses reduced integration in the 
calculations. Compared with ANSYS, the load vs. end shortening curves produce a 
better agreement than the load vs. centre out-of-plane displacement curves.  

7.4   CPDM with Instantaneous Material Degradation 

The detailed results using CPDM for a limited number of cases are given in 
Appendix C, Tables C.1-C.2 for layup cases A and B, respectively. The ratios of the 
ultimate strengths estimated using the present model to the reference values found by 
Misirlis are shown in Figs. 15-16 for various values of plate thickness t and 
imperfection amplitude. 

For the triaxial layup, case A, the outermost 0° plies on the convex side of the plate 
undergo matrix failure first for all cases except for the thickest plate (A5 in Table 2) 
with 0.1% imperfection. For that layup, matrix failure occurs in the outermost -45° ply 
on the concave side of the plate. For the case A layups generally, the 0° plies usually 
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fail first in the centre of the plate, while the ±45° plies fail at the corners. The total 
number of plies is 34 for case A, and all 34 plies experience matrix failure before the 
ultimate strength is reached at the first incidence of fibre failure. This trend is seen for 
all cases, regardless of thickness or imperfection. From Table C.1, the ultimate strength 
predictions using CPDM are in the range of 14% - 33% smaller than Misirlis’s FE 
analysis. The greatest deviations are observed for the thin plates (A1). 

 

Fig. 15. Case A (triaxial layup) with complete ply degradation model: the ultimate strengths from the 
present analyses are compared to the reference values σmax_ref obtained by Misirlis [10], for various plate 
thicknesses t and imperfection amplitudes. 
 

For the quadriaxial layup, case B, first ply failure occurred as matrix failure in the 
outermost 0° plies on the convex side of the plate for all cases except for the thickest 
plate (B5 in Table 3) with 0.1% imperfection. For that layup, matrix failure occurred in 
the outermost 90° ply on the concave side of the plate. In general, the 0° and 90° plies 
tend to fail first in the centre of the plate, while the ±45° plies fail at the corners. 
According to Table C.2, for this more balanced layup configuration, the ultimate 
strength predictions using CPDM are 11% - 21% lower than Misirlis’s ABAQUS 
results. This range of deviations is smaller than for case A layups, and with less 
variation. For all cases except the thickest plate (B5) with 0.1% and 1% imperfections, 
all plies experience matrix failure and the ultimate strength is reached at the first, or 
sometimes the second, occurrence of fibre failure. For layup B5 with 0.1% 
imperfection, all ±45° plies experienced matrix failure before the occurrence of the 
ultimate strength; this is reached at the first incidence of fibre failure, which occurs in a 
0° ply without matrix failure. A similar trend is observed for layup B5 with 1% 
imperfection. However, this time all ±45° plies as well as some of the 0° plies 
experience matrix failure before the occurrence of the ultimate strength, which is again 
at the first fibre failure, occurring in a 0° ply without matrix failure.  



 24 

 
Fig. 16. Case B (quadriaxial layup) with complete ply degradation model: the ultimate strengths from the 
present analyses are compared to the reference values σmax_ref obtained by Misirlis [10], for various plate 
thicknesses t and imperfection amplitudes. 

7.5   PRDM-DF1 with Instantaneous Material Degradation 

The corresponding results using PRDM-DF1 are provided in Figs. 17-18 and Tables 
C.3-C.4 in Appendix C for a limited number of cases. For both layup cases, considering 
first ply failure, there is no detectable difference between CPDM and PRDM-DF1, as 
should be expected. The matrix failures occurred in the same locations at the same 
calculated stresses. 

 
For case A layups, the ultimate strength predictions using PRDM-DF1 are in the 

range 14% - 29% smaller than Misirlis’s FE analysis. Again, the deviations are smallest 
for the thickest plate (A5). Further, no clear trend is observed except that at least 90% of 
the ply regions experience matrix failure before the ultimate strength is attained at the 
first fibre failure. For layup A5 with 1% imperfection, the ultimate strength is reached at 
the first incidence of fibre failure, occurring in a ply region without matrix failure.  

 

Fig. 17. Case A (triaxial layup) with ply region degradation model (DF1): the ultimate strengths from the 
present analyses are compared to the reference values σmax_ref obtained by Misirlis, for various plate 
thicknesses t and imperfection amplitudes. 
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For case B layups, the ultimate strength predictions using PRDM-DF1 are 3% - 19% 
lower than the ABAQUS results provided by Misirlis, which for some of the cases is 
appreciably better than the predictions with CPDM. The best results are achieved for a 
thin plate (B1). For case B layups, 75% of the ply regions and 95% of the ply regions 
suffer matrix failure before the ultimate strength is attained at the first and second fibre 
failure, respectively, for layups B3 and B1. For layup B5, the trend is similar to that 
with CPDM; 75% - 90% of ply regions experience matrix failure before the first 
incidence of fibre failure, which occurs in a ply region without matrix failure, gives the 
ultimate strength.   

 
Fig. 18. Case B (quadriaxial layup) with ply region degradation model (DF1): the ultimate strengths from 
the present analyses are compared to the reference values σmax_ref obtained by Misirlis, for various plate 
thicknesses t and imperfection amplitudes. 

7.6   PRDM-DF2 with Instantaneous Material Degradation 

The results using PRDM-DF2 are provided in Figs. 19-20 and Tables C.5-C.6 in 
Appendix C for a limited number of cases. For both layup cases, considering first ply 
failure, PRDM-DF2 provides higher predictions than PRDM-DF1, but the matrix 
failures occur in the same plies.  

 
For case A layups, the ultimate strength predictions using PRDM-DF2 are still 3% - 

20% smaller than those from Misirlis’s FE analysis. The greatest improvements 
obtained by using displacement field 2 are found for layup A3, for which the sequence 
of failures is changed. Fibre failure now occurs in the ply regions without matrix failure. 
With DF1, this behaviour was limited to layup A5. For layup A1, the improvements are 
about 0% - 7% compared to PRDM-DF1, while the results are almost unchanged for 
thick plates. The ultimate strength is reached at the first occurrence of fibre failure for 
all analyses of case A layups using PRDM-DF2.   
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Fig. 19. Case A (triaxial layup) with ply region degradation model (DF2): the ultimate strengths from the 
present analyses are compared to the reference values σmax_ref obtained by Misirlis, for various plate 
thicknesses t and imperfection amplitudes. 

For case B layups, the ultimate strength predictions using PRDM-DF2 range from 
2% higher to 25% lower than Misirlis’s ABAQUS results. By using the displacement 
field 2, the strength estimations have decreased for moderately thick and thick plates 
compared to the results achieved by PRDM-DF1. The results for case B layups have 
thus become more consistent with those for case A layups. A special case has also been 
found for a moderately thick plate with 0.1% imperfection: the ultimate strength is 
reached at first ply failure. For thin plates, significant improvements are observed and 
the strength predictions are now almost identical to the ABAQUS results. As with 
PRDM-DF1, the ultimate strength predicted for thin plates occurred at the second 
incidence of fibre failure. For the remaining analyses, the first occurrence of fibre 
failure gives the ultimate load.  

 
Fig. 20. Case B (quadriaxial layup) with ply region degradation model (DF2): the ultimate strengths from 
the present analyses are compared to the reference values σmax_ref obtained by Misirlis, for various plate 
thicknesses t and imperfection amplitudes. 
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7.7   PRDM-DF1 with Linear Material Degradation 

7.7.1   Ultimate Strength Predictions 

The results using PRDM-DF1 with linear material degradation are provided in Figs. 
21-24 and in full detail in Appendix D, Tables D.1-D.2 for layup cases A and B, 
respectively. In Figs. 22 and 24, the ultimate strength for a range of b/t values is 
presented along with the corresponding results presented by Misirlis. These figures 
include ultimate loads (squash loads) for extremely thick plates (b/t < 10), which has 
been found by using the present method with b/t = 5 and initial geometric imperfection 
equal to 0.002% of the plate width. The critical buckling loads for various b/t values 
estimated from a linear eigenvalue analysis are also provided in the same figures. 

 
For case A layups, the ultimate strengths predicted are in the range 0% - 26% smaller 

than Misirlis’s FE analysis. Implementation with the linear material degradation gives a 
desirable increase of ultimate strengths compared to the results produced by the 
instantaneous material degradation for most of the cases. The greatest deviations are 
found for layups A2 and A3. For layup A3 with 0.1% imperfection, the strength 
estimation has decreased compared to the similar case in Section 7.5. From Fig. 22, the 
strength predictions from the present model and ABAQUS indicate very little 
dependence on the imperfection amplitudes for b/t values greater than 25. It can also be 
seen that the elastic critical load is a rather conservative estimate of  the ultimate 
strength for b/t values greater than about 20, with the current analysis indicating a 
transition at a slightly lower b/t value than that of Misirlis.         

 
Fig. 21. Case A (triaxial layup) with ply region degradation model (DF1): the ultimate strengths from the 
present analyses are compared to the reference values σmax_ref obtained by Misirlis, for various plate 
thicknesses t and imperfection amplitudes. 
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Fig. 22. Case A (triaxial layup) with ply region degradation model (DF1): the ultimate strengths from the 
present analyses (left) are compared to the corresponding results obtained by Misirlis (right) [10], for 
various b/t values and imperfection amplitudes. 

For case B layups, the ultimate strength predictions range from 3% higher to 15% 
lower than the ABAQUS results provided by Misirlis. As expected, the linear 
degradation of material properties provides appreciably greater plate stiffness than the 
predictions with the instantaneous material degradation. The best results are achieved 
for thin plates. For this balanced layup configuration, the present model produced a 
more stable deviation than case A layups. From Fig. 24, case B layups appear to have 
little sensitivity to initial imperfections in the b/t region greater than 30 according to the 
present analysis or 25 according Misirlis’s ABAQUS results. Considering the elastic 
critical load, the curve is located significantly lower than the corresponding strength 
predictions for b/t values greater than 22-23 for both the present model and the results 
presented by Misirlis.  

 

 
Fig. 23. Case B (quadriaxial layup) with ply region degradation model (DF1): the ultimate strengths from 
the present analyses are compared to the reference values σmax_ref obtained by Misirlis, for various plate 
thicknesses t and imperfection amplitudes. 
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Fig. 24. Case B (quadriaxial layup) with ply region degradation model (DF1): the ultimate strengths from 
the present analyses (left) are compared to the corresponding results obtained by Misirlis (right) [10], for 
various b/t values and imperfection amplitudes. 

7.7.2   Load-Displacement Response 

For a limited number of cases, the load-displacement responses using the linear 
material degradation model and the instantaneous material degradation model are 
shown in Figs. 25-27. Instantaneous degradation of the material properties results in a 
more severe reduction in plate stiffness, so that more conservative ultimate strengths are 
achieved for this model. 

 
Fig. 25. Load vs. centre out-of-plane displacement (left) and load vs. end shortening (right) for case A 
(triaxial layup) with t = 10.02 mm and 0.1% imperfection amplitude. 



 30 

 
Fig. 26. Load vs. centre out-of-plane displacement (left) and load vs. end shortening (right) for case A 
(triaxial layup) with t = 49.98 mm and 1% imperfection amplitude. 

 
Fig. 27. Load vs. centre out-of-plane displacement (left) and load vs. end shortening (right) for case B 
(quadriaxial layup) with t = 24 mm and 3% imperfection amplitude. 

7.7.3   Alternative Ply Region Sizes 

Analyses with alternative ply region sizes have been performed to investigate 
whether this will affect the strength predictions. For the plate shown in Fig. 1, regions 1, 
3, 7 and 9 are modified to 100 mm × 100 mm each, regions 2 and 8 are each 300 mm × 
100 mm, regions 4 and 6 are 100 mm × 300 mm and region 5 is 300 mm × 300 mm. 
The ultimate strength predictions are provided in Table 4 for a selected number of cases. 
For a given imperfection amplitude, corresponding plate thickness (t) and number of 
plies (ply regions), the table shows the ultimate stresses (σmax) from Section 7.7.1 and 
the present model. In the last column, these predictions have been compared to the 
ABAQUS results (σmax_ref). Compared to ABAQUS, the ultimate strength predictions 
using the alternative ply region sizes are 1% - 2% higher than the predictions for the 
corresponding cases in Section 7.7.1. It is conceivable that a more drastic variation of 
the plate division might give greater differences. However, this has not been pursued in 
the present study. 
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Table 4 
Strength predictions conducted by the alternative ply region sizes. 

σmax/σmax_ref Layup 
case 

Imp. 
% of 
b 

t 
(mm) 

No. of 
plies (no. 
of ply 
regions) 

σmax from 
Section 
7.7.1 
(MPa) 

σmax from 
alternative 
ply regions  
(MPa) 

σmax_ref 

(MPa) σmax from 
Section 
7.7.1 

σmax from 
alternative 
ply regions 

A1 1.0 10.02 34 (306) 109.77 111.26 130 0.84 0.86 
A3 1.0 24.94 34 (306) 193.35 195.43 235 0.82 0.83 
A5 1.0 49.98 34 (306) 399.82 405.52 435 0.92 0.93 
B1 1.0 8.00 8 (72) 108.03 109.11 107 1.01 1.02 
B3 1.0 24.00 24 (216) 195.89 197.90 210 0.93 0.94 
B5 1.0 48.00 48 (432) 271.95 275.32 302 0.90 0.91 

7.8   PRDM-DF2 with Linear Material Degradation 

7.8.1   Ultimate Strength Predictions 

The detailed results using PRDM-DF2 are provided in Appendix D, Tables D.3-D.4 
for layup cases A and B, respectively. The results are presented graphically in Figs. 28-
29 for case A layups and Figs. 30-31 for case B layups. 

  
For case A layups, considering ultimate strengths, PRDM-DF2 provides higher 

predictions than PRDM-DF1. The greatest improvements obtained by using DF2 are 
found for layups A2 and A3. The PRDM-DF2 estimations are in the range 5% higher to 
11% lower than ABAQUS results, i.e. the discrepancy suggested in Fig. 21 has been 
reduced drastically. Further, the linear degradation model provides higher strength 
estimations than the results implemented with the instantaneous degradation model 
given in Section 7.6. Figure 29 shows little sensitivity to geometric imperfections for b/t 
values greater than 25 from both the present model and the results from [10]. The elastic 
critical load curve is located lower than the corresponding strength predictions for b/t 
values greater than 19 for both the present model and the ABAQUS results.  

 

 
Fig. 28. Case A (triaxial) layups with ply region degradation model (DF2): the ultimate strengths from 
the present analyses are compared to the reference values σmax_ref obtained by Misirlis, for various plate 
thicknesses t and imperfection amplitudes. 
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Fig. 29. Case A (triaxial layup) with ply region degradation model (DF2): the ultimate strengths from the 
present analyses (left) are compared to the corresponding results obtained by Misirlis (right), for various 
b/t values and imperfection amplitudes. 

For layup case B, by applying DF2 and comparing to the results achieved by PRDM-
DF1, the strength predictions have decreased for most of the layups except for layup B1 
and layup B4 with 2% imperfection. Overall, the PRDM-DF2 estimations are in the 
range 5% higher to 17% lower than Misirlis’s ABAQUS results. Again, a similar trend 
is observed to that for case A; higher ultimate strengths are predicted by using the linear 
material degradation model compared to the instantaneous material degradation model. 
Figure 31 shows that initial imperfections have very little effect on the strength 
predictions for b/t values greater than 30 and 25 for the present model and Misirlis’s 
results, respectively. The ultimate strengths are significantly higher than the elastic 
critical loads for b/t values greater than 22-23 for both the present model and ABAQUS.   
 

 
Fig. 30. Case B (quadriaxial) layups with ply region degradation model (DF2): the ultimate strengths 
from the present analyses are compared to the reference values σmax_ref obtained by Misirlis, for various 
plate thicknesses t and imperfection amplitudes. 
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Fig. 31. Case B (quadriaxial layup) with ply region degradation model (DF2): the ultimate strengths from 
the present analyses (left) are compared to the corresponding results obtained by Misirlis (right), for 
various b/t values and imperfection amplitudes. 

7.8.2   Alternative Material Degradation for Fibre Failure   

For both matrix and fibre failure modes, a linear material degradation has been 
considered in the previous sections and in ABAQUS. In reality, the material stiffness 
associated with the fibre failure modes degrades more steeply than for matrix failure 
modes. In order to give a more realistic picture of the material degradation, the ultimate 
strength analysis has been performed with  associated with the fibre 

failure modes and  associated with the matrix failure modes. The 
results are provided in Table 5 for a limited number of cases. For a given imperfection 
amplitude, corresponding plate thickness (t) and number of plies (and ply regions), the 
table shows the ultimate stresses (σmax_ref ) from Section 7.8.1 and the present model. 
These are further compared to the results from ABAQUS in the last column. Compared 
to ABAQUS, the ultimate strengths produced by the alternative material degradation are 
in the range of 1% - 6% lower than the estimations for the corresponding cases in 
Section 7.8.1.    

Table 5 
Strength predictions conducted by the alternative material degradation due to fibre failure. 

σmax/σmax_ref Layup 
case 

Imp. 
% of 
b 

t 
(mm) 

No. of 
plies (no. 
of ply 
regions) 

σmax from 
Section 
7.8.1 
(MPa) 

σmax from 
alternative 
mater. deg.   
(MPa) 

σmax_ref 

(MPa) σmax from 
Section 
7.8.1 

σmax from 
alternative 
mater. deg. 

A3 3.0 24.94 34 (306) 224.60 210.40 235 1.03 0.97 
A5 1.0 49.98 34 (306) 401.84 382.96 435 0.92 0.88 
B1 3.0 8.00 8 (72) 118.09 117.26 107 1.03 1.02 
B3 1.0 24.00 24 (216) 190.01 180.91 210 0.90 0.86 
 



 34 

7.9   Alternative Layup Configurations 

Other layup configurations have been considered in this section. It is interesting to 
analyse a more balanced triaxial layup (case C) and a more unbalanced quadriaxial 
layup (case D): 

• Case C, a triaxial layup:  

• Case D, a quasi-isotropic, quadriaxial layup:  

The material properties are given in Table 1, and the plate thicknesses for cases C and D 
are given in Tables 6-7. The plate size and the imperfection shape are similar to those 
given in Section 7.1. Note that only the maximum initial imperfection amplitude with 
0.1% of the width b has been investigated in this section. The analyses have been 
performed with PRDM-DF1 and PRDM-DF2 implemented with the linear material 
degradation model. The results have been compared to the nonlinear FE analysis 
conducted for these layups by Braaten and Boström [25] in cooperation with DNV GL, 
using ABAQUS.    

                           Table 6 
                           Plate thicknesses and ply thicknesses for case C. 

Layup case b/t t (mm) t0, t±45, t90 (mm) 
C1 50 10.00 0.42 
C2 30 16.70 0.70 
C3 20 25.00 1.04 
C4 15 33.30 1.39 
C5 10 50.00 2.08 

                        Table 7  
                        Plate thicknesses and ply thicknesses for case D. 

Layup case b/t t (mm) t0 (mm) t±45, t90 (mm) 
D1 50 10.00 0.52 0.31 
D2 30 16.70 0.87 0.52 
D3 20 25.00 1.30 0.78 
D4 15 33.30 1.73 1.04 
D5 10 50.00 2.61 1.56 

 
The ultimate strengths predicted using PRDM-DF1 for layup cases C and D are 

provided in Table D.5 in Appendix D. The ratios of the ultimate strengths estimated 
using the present model to the reference values found by Braaten and Boström 
(σmax_ref2) are shown in Fig. 32 for various values of plate thickness t. For case C layups, 
the predictions are highly satisfactory in that they range from 2% higher to 8% lower 
than the ABAQUS analysis. For case D layups, the ultimate strength estimations are in 
the range 5% higher to 31% lower than the ABAQUS results. The greatest deviation is 
found for a moderately thick plate (D3) for which the strength predicted is even lower 
than the prediction for a thinner plate (D2).   
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Fig. 32. Layup cases C (triaxial) and D (quadriaxial) with ply region degradation model (DF1): the 
ultimate strengths from the present analyses are compared to the reference values σmax_ref2 obtained by 
Braaten and Boström [25], for various plate thicknesses t and imperfection amplitude 0.1% of the width. 

The corresponding results using PRDM-DF2 for layup cases C and D are given in 
Fig. 33 and Table D.6 in Appendix D. The ultimate strength predictions achieved for 
case C layups are 0% - 20% lower than the ABAQUS results. The greatest deviations 
are found for layups C1 and C2, while the results for the remaining cases are almost 
unchanged compared to the corresponding cases with DF1. The strength estimations 
obtained for case D layups are in the range 5% lower to 24% higher than ABAQUS 
predictions. The discrepancy that existed for layup D3 using PRDM-DF1 has been 
reduced significantly, and this is currently 5% lower than the ABAQUS result. A 
special case has been observed: for layup D1, the prediction is 24% higher than 
ABAQUS analysis. The reason for this rather surprising outcome is unclear. However, 
inspection of the results from [25] suggests an error in the tabulated ABAQUS result for 
this particular case.  

 

 
Fig. 33. Layup cases C (triaxial) and D (quadriaxial) with ply region degradation model (DF2): the 
ultimate strengths from the present analyses are compared to the reference values σmax_ref2 obtained by 
Braaten and Boström, for various plate thicknesses t and imperfection amplitude 0.1% of the width. 
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8     DISCUSSION  

8.1   CPDM and PRDM 

In the first degradation approach, CPDM, fulfilment of the failure criterion at any 
position in a ply leads to instantaneous degradation of corresponding stiffness properties 
throughout that ply. In the slightly more detailed approach, PRDM-DF1, the plate is 
divided into nine regions and the stiffness degradation is limited to the affected regions 
of a failed ply. 

 
For the triaxial layup configuration, case A, the predicted ultimate stresses using 

CPDM are 14% - 33% smaller than those of Misirlis, while the deviations are in the 
range of 14% - 29% by using PRDM-DF1. The greatest improvements, 7% - 9%, 
between the predictions using CPDM and PRDM-DFI are observed for thin plates (A1). 
However, the improvements obtained are simply 0% - 2% for moderately thick (A3) 
and thick plates (A5).  

 
 For the quadriaxial layup, case B, the ultimate strength predictions using CPDM 

produced a more stable deviation in the range of 11% - 21% compared to Misirlis’s 
ABAQUS results, while the differences are in the range of 3% - 19% by using PRDM-
DF1. The greatest improvements, 7% - 11%, between the predictions using CPDM and 
PRDM-DFI are observed for thin plates (B1). For moderately thick (B3) and thick 
plates (B5), the improvements obtained are 0% - 4%. 

  
The analyses with PRDM-DFI thus provide better estimates than those with CPDM 

for many of the cases. Especially for thin plates, characterised by small ply thicknesses 
(case A) and few plies (case B), PRDM-DFI gives appreciably better results. Ply region 
based material degradation results in smaller stiffness-reduced areas compared to entire 
ply based material degradation. The total plate stiffness can thus be significantly larger 
for these plates, even with a small number of regions undamaged. However, for 
moderately thick and thick plates the improvements obtained are either negligible or 
quite small for both layup cases. This could be explained by the fact that many plies and 
ply regions have to fail before the ultimate strength is reached. The few ply regions left 
with intact material properties are unlikely to affect the total plate stiffness significantly, 
since thicker plates have more plies and/or greater ply thicknesses. These effects are 
closely related to the fact that thick plates undergo less bending deformation than 
thinner plates, so that stresses are more uniformly distributed throughout the plate. 

 
An alternative set of ply region sizes were investigated in Section 7.7.3. Considering 

the ultimate strength estimations, no clear trend has been detected compared to the 
original ply region sizes.  

8.2   Instantaneous and Linear Degradation of Materials 

Damage initiation refers to the onset of stiffness reduction, and the corresponding 
material properties are either degraded directly to a predefined value or a linear material 
degradation model is applied.   
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Considering case A layups using PRDM-DF1 and PRDM-DF2, the linear 
degradation model gives higher ultimate strength predictions than the results produced 
by the instantaneous degradation model for all cases except one. When using DF1, the 
greatest improvements by using linear degradation, 6% - 20%, are found for layup A5. 
The differences are in the range from 2% lower to 11% higher for layup A3 and 3% - 
9% higher for layup A1. The 2% lower prediction occurred for layup A3 with 0.1% 
imperfection. The reason for this exceptional outcome is unclear. When using linear 
degradation with DF2, the predictions have been improved by 6% - 21%, compared 
with instantaneous degradation, for layup A5, and by 6% - 8% and 8% - 9% for layups 
A3 and A1, respectively.  

 
For case B layups using both PRDM-DF1 and PRDM-DF2, the ultimate strength 

predictions achieved by the linear degradation model are higher than the estimations 
implemented with the instantaneous degradation model. Considering DF1, the 
improvement is 6% for layup B1. For layups B3 and B5, the improvements are 8% - 
13% and 1% - 15%, respectively. Considering DF2, the improvements obtained are 2% 
- 3% for layup B1, and by 10% - 15% and 1% - 18% for layups B3 and B5, 
respectively. 

 
Implementation with the linear degradation model brings the strength predictions 

closer to those conducted by Misirlis. The greatest improvements are generally obtained 
for thick and moderately thick plates for both layup cases. This could be explained by 
the fact that the linear degradation model leads to smoother stiffness reduction in which 
the post-damage behaviour of the materials is based on the stress-displacement relation 
in a ply region. As mentioned in the previous section, thicker plates undergo less 
bending deformation, so that stresses and displacements evolve more gradually 
throughout the plate. Instantaneous degradation of the material properties causes an 
unnecessarily large reduction of the plate stiffness, and in turn lower ultimate strengths 
are predicted. On the other hand, thin plates undergo more bending deformation, so that 
the damage spreads much faster throughout the plate, thus the instantaneous degradation 
model will provide a fairly correct picture of the material failure propagation. Another 
important disadvantage by using the instantaneous degradation model is the time-
consuming performance in terms of the unloading and reloading procedure (see Section 
5.3.2).  

 
In association with the fibre failure modes, an alternative material degradation has 

been suggested in Section 7.8.2 in which the corresponding material properties are 
reduced more instantaneously, while the matrix failure modes still use the linear 
degradation model. This modification gives a more realistic picture of the damage 
development. In the analysis with ABAQUS, which only allows using the same α value 
for all failure modes, Misirlis has applied a value (α = 2) that is appropriate for matrix 
failure. Compared to results in [10], the strengths predicted using PRDM-DF2 are 1% - 
6% lower than those produced by PRDM-DF2 with the unmodified linear degradation 
model.      
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8.3   DF1 and DF2     

Two alternative in-plane displacement fields have been investigated. In DF1, no 
movements are allowed along the four edges for displacement components u0 and v0 
apart from the linear components. In DF2, u0 is permitted to vary more freely along the 
edges y = 0,b and v0 is permitted to vary more freely along the edges x = 0,a. However, 
while DF1 gives a symmetric variation across the plate, DF2 gives an antisymmetric 
variation. 

 
 For the triaxial layup configuration, case A, the predicted ultimate stresses using 

PRDM-DF1 and linear degradation model are 0% - 26% smaller than those from 
ABAQUS. The differences are in the range 5% higher to 11% lower by using PRDM-
DF2, i.e. a clear improvement is achieved, especially for layups A2 and A3. The same 
trend is observed for these models implemented with the instantaneous material 
degradation; the greatest improvements are obtained for a moderately thick plate, while 
the differences are almost negligible for a thick plate.  
 

For the quadriaxial layup configuration, case B, the PRDM-DF1 estimations using 
the linear degradation model are in the range 3% higher to 15% lower than Misirlis’s 
ABAQUS results. Using PRDM-DF2, the differences become 5% higher to 17% lower. 
Compared to DF1, the strength predictions with DF2 have decreased for most of the 
cases except for layup B1 and layup B4 with 2% imperfection. The same trend is found 
for both PRDMs implemented with the instantaneous material degradation model.  

 
DF1 seems to give best predictions for balanced layup cases, while DF2 is better for 

unbalanced layup cases. This statement has been strengthened by investigating two 
more layup configurations, cases C and D in Section 7.9. Reddy primarily suggested 
DF2 for anti-symmetric laminates. All cases investigated in Section 7 are initially 
symmetric, i.e. up to first ply failure DF1 will give the most correct displacement 
responses. Considering ultimate stresses, it seems that failure sequence, layup 
configuration and plate thickness are all factors that will influence the choice of DF1 or 
DF2: 
 

1. The failure usually initiates on the convex side (outermost 0° plies) of the plate 
for most of the cases investigated. The matrix failure will propagate on this side 
of the plate to a certain point before the damage initiates on the concave side. At 
this point, the material degradation causes the layup to become fairly 
asymmetric, and this asymmetry will normally be maintained throughout the 
degradation procedure. Since DF2 is intended for anti-symmetric laminates, this 
displacement field will provide more correct displacement responses.   

 
2. The unbalanced layup cases A and D are most affected: the 0° plies that undergo 

matrix failure as described in 1) have greater ply thickness than the remaining 
plies (±45° and 90°). This will increase the asymmetry that already exists in the 
laminate.   

 
3. For thick plates, the displacement responses are more stable due to their larger 

ply thicknesses and stiffness, and in turn the failure spreads more gradually 
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throughout the plate. After damage initiation, the material properties degraded 
on the convex/concave side of the plate are unlikely to influence the symmetry 
significantly before the failure initiates on the other side of the plate. Thus, DF1 
and DF2 provide more or less equivalent displacement responses.    

9     CONCLUSIONS 

Ultimate strength prediction using a semi-analytical method has been established for 
simply supported composite plates under uniaxial in-plane compression. The present 
model is able to take account of post-buckling behaviour, out-of-plane shear 
deformation and initial geometric imperfections. Two different area-based degradation 
approaches have been proposed, where the stiffness reduction has been either applied to 
the entire failed ply or to the affected region of a ply. Further, linear degradation of the 
material properties has been compared to the instantaneous material degradation.  Two 
alternatives of displacement fields have been studied for their influence on the strength 
estimations. A parametric study has been performed for square plates with a range of 
thicknesses, initial imperfections. Four different types of composite layup have been 
considered. The numerical results have been compared with reference values obtained 
using advanced FE analysis by Misirlis [10]. Based on that evaluation, the 
recommended model for further ultimate strength predictions is PRDM-DF2 combined 
with the linear material degradation model. It is clear from the investigation that the 
ultimate strengths are much higher than the elastic critical loads, especially for thin 
plates. Indication of sensitivity to geometric imperfections is detected for b/t ratio less 
than 25-30. As mentioned by Brubak et al. [2,3], similar analysis methods applied to 
stiffened steel plates have been implemented in the computerised software code PULS 
for use in the strength assessment of steel ship structures (see Steen et al. [26]). The 
analysis methods developed in the current work will enable this software to be adapted 
in the near future to include laminated composites.  
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APPENDIX A: DAMAGE EVOLUTION AND FAILURE MODES 

Equivalent displacement (σeq) and stress (δeq) for each of the four damage modes are 
defined as follows: 

• Fibre tension: 

 (A.1a) 

 (A.1b) 

• Fibre compression: 

 (A.2a) 

 (A.2b) 

• Matrix tension:  

 (A.3a) 

 (A.3b) 

• Matrix compression: 

 (A.4a) 

 (A.4b) 

The symbol 〈 〉 in the equations above represents the Macaulay bracket operator which 
is defined for every a ∈ℜ as . 
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Fig. A.1. Linear damage evolution. 

Computation of the damage variables is based on the stress-displacement relation 
shown in Fig. A.1. The positive slope of the stress-displacement curve prior to damage 
initiation corresponds to linear elastic material behaviour. After damage initiation, the 
negative slope is achieved by evolution of the respective damage variables according to 
the equations (A.1)-(A.4). After damage initiation (i.e.  ≥ ), the damage variable 
di for a particular mode is achieved by: 

 (A.5) 

APPENDIX B: COVERGENCE TEST 

In Tables B.1-B.3, for a given initial geometric imperfection amplitude and plate 
thickness (t), the number of terms included are shown alongside the strength estimations 
using the present method (σmax) and these have been compared to the results provided by 
Misirlis (σmax_ref). Further, 47 terms corresponds to N = M = 3, 127 terms corresponds to 
N = M = 5, 247 terms to N = M = 7 and 407 terms to N = M = 9, 607 terms corresponds 
to N = M = 11. 
Table B.1 
The ultimate strengths for case A using CPDM. 
Imp. % of b Plate 

thickness, t 
(mm) 

Number of 
terms  

σmax (MPa) σmax_ref (MPa)  σmax/σmax_ref 

47 133.85 130 1.03 
127 105.76 130 0.81 
249 97.50 130 0.75 
407 94.94 130 0.73 

0.1 10.02 

607 94.22 130 0.72 
127 101.89 130 0.78 
249 91.40 130 0.70 
407 87.73 130 0.67 

3.0 10.02 

607 86.65 130 0.67 
47 177.17 235 0.75 

127 171.40 235 0.73 
249 170.65 235 0.73 

1.0 24.94 

407 170.16 235 0.72 
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47 159.51 218 0.73 
127 149.98 218 0.69 

3.0 24.94 

249 148.49 218 0.68 
47 376.88 435 0.87 1.0 49.98 

127 374.88 435 0.86 
 

Table B.2 
The ultimate strengths for case B using CPDM. 
Imp. % of b Plate 

thickness, t 
(mm) 

Number of 
terms 

σmax (MPa) σmax_ref (MPa) σmax/σmax_ref 

127   111.27 107 1.04 
249   96.75 107 0.90 
407   91.51 107 0.86 

1.0 8 

607   90.87 107 0.85 
47     175.64 210 0.84 
127   174.05 210 0.83 
249   171.48 210 0.82 

1.0 24 

407   169.42 210 0.81 
127   301.97 340 0.89 0.1 48 
249   301.97 340 0.89 
47     212.28 260 0.82 
127   210.72 260 0.81 

3.0 48 

249   211.24 260 0.81 
 
Table B.3 
The ultimate strengths for case A using PRDM-DF1. 
Imp. % of b Plate 

thickness, t 
(mm) 

Number of 
terms 

σmax (MPa) σmax_ref (MPa)  σmax/σmax_ref 

127   162.27 218 0.74 
249   155.30 218 0.71 

3.0 24.94 

407   154.80 218 0.71 
127   299.73 360 0.83 3.0 49.98 
249   302.73 360 0.84 

APPENDIX C: TABULATED RESULTS - INSTANTANEOUS MATERIAL 
DEGRADATION 

For a given initial geometric imperfection amplitude, plate thickness (t) and total 
number of plies (ply regions), Tables C.1-C.6 show the total number of terms included, 
the calculated stress (σFPF) at first ply failure (FPF), and location of first ply in terms of 
ply number and direction of that ply. By investigating a last ply failure condition 
(“LPF”), the ultimate stress (σmax) using the semi-analytical method is presented, and 
the number of plies (ply regions) that have failed at this stage is also provided. Further, 
the ply in which this last ply failure occurs (as ply number and direction) is shown for 
CPDM. The results from the analysis are compared with those conducted by Misirlis 
(σmax_ref). The ratio of the ultimate strength from the present model to that found by 
Misirlis are given in the last column (σmax /σmax_ref).  
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The numbers of terms used are shown in Tables C.1-C.6; 127 terms corresponds to N 
= M = 5, 247 terms to N = M = 7 and 407 terms to N = M = 9. For case B1 and for case 
A1 with displacement field 2, Δη = 0.01 has been used. The remaining layup cases, Δη 
is set to 0.10. The chosen basic values of Nx are 150 N/mm and 200 N/mm for layups 
A1 and B1, respectively. For layups A3 and B3, Nx is set to 500 N/mm. The remaining 
layups are implemented with Nx = 2000 N/mm. 

Table C.1 
Complete ply degradation model for Case A (triaxial layup). 

FPF  “LPF” 

Imp. 
% of 
b 

t 
(mm) 

No. 
of  
plies 

No. 
of  
terms 

σFPF 
(MPa) 

Ply no. 
(direction) 

σmax 
(MPa) 

No. of 
matrix 
(fibre) 
failed 
plies 

Ply no. 
(direction) 

σmax_ref  
(MPa) 

 

0.1 10.02 34 407 39.86 32 (0°) 94.94 34 (1) 34 (-45°) 130 0.73 
0.1 24.94 34 127 172.00 32 (0°) 186.66 34 (1) 34 (-45°) 240 0.78 
0.1 49.98 34 127 382.13 1 (-45°) 453.24 34 (1) 3 (0°) 570 0.80 
1.0 10.02 34 407 31.64 32 (0°) 90.92 34 (1) 34 (-45°) 130 0.70 
1.0 24.94 34 127 71.64 32 (0°) 171.40 34 (1) 34 (-45°) 235 0.73 
1.0 49.98 34 127 149.55 32 (0°) 374.88 34 (1) 3 (0°) 435 0.86 
3.0 10.02 34 407 22.96 32 (0°) 87.73 34 (1) 34 (-45°) 130 0.67 
3.0 24.94 34 127 39.05 32 (0°) 149.98 34 (1) 34 (-45°) 218 0.69 
3.0 49.98 34 127 64.26 32 (0°) 292.84 34 (1) 34 (-45°) 360 0.81 

Table C.2  
Complete ply degradation model for Case B (quadriaxial layup). 

FPF  “LPF” 

Imp. 
% of 
b 

t 
(mm) 

No. 
of 
plies 

No. 
of 
terms 

σFPF 
(MPa) 

Ply no. 
(direction) 

σmax 
(MPa) 

No. of 
matrix 
(fibre) 
failed 
plies 

Ply no. 
(direction) 

σmax_ref 

(MPa) 
 

0.1 8.00 8 407 29.08 8 (0°) 89.85 8 (1)  7 (45°) 105 0.86 
0.1 24.00 24 247 170.92 24 (0°) 177.66 24 (1)  1 (0°) 215 0.83 
0.1 48.00 48 127 204.13 3 (90°) 301.97 36 (1*)  1 (0°) 340 0.89 
1.0 8.00 8 407 27.38 8 (0°) 91.51 8 (2)  2 (45°) 107 0.86 
1.0 24.00 24 247 69.49 24 (0°) 171.48 24 (1)  23 (45°) 210 0.82 
1.0 48.00 48 127 144.77 48 (0°) 250.92 42 (1*)  1 (0°) 302 0.83 
3.0 8.00 8 407 26.08 8 (0°) 94.11 8 (1)  7 (45°) 115 0.82 
3.0 24.00 24 247 35.62 24 (0°) 162.77 24 (2)  2 (45°) 205 0.79 
3.0 48.00 48 247 61.70 48 (0°) 211.24 48 (1)  1 (0°) 260 0.81 
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Table C.3  
Ply region degradation model (PRDM-DF1) for Case A (triaxial layup). 

FPF  “LPF” 

Imp. 
% of 
b 

t 
(mm) 

No. of 
plies (no. 
of ply 
regions) 

No. 
of 
terms 

σFPF 
(MPa) 

Ply no. 
(direction) 

σmax 
(MPa) 

No. of 
matrix 
failed 
ply 
regions 

No. of 
fibre 
failed 
ply 
regions 

σmax_ref 
(MPa) 

 

0.1 10.02 34 (306) 407 39.86 32 (0°) 106.24 277 9 130 0.82 
0.1 24.94 34 (306) 127 172.00 32 (0°) 186.68 293 2 240 0.78 
0.1 49.98 34 (306) 127 382.13 1 (-45°) 453.24 306 1 570 0.80 
1.0 10.02 34 (306) 407 31.64 32 (0°) 99.57 302 18 130 0.77 
1.0 24.94 34 (306) 247 71.39 32 (0°) 175.34 276 12 235 0.75 
1.0 49.98 34 (306) 127 149.55 32 (0°) 375.89 301 1* 435 0.86 
3.0 10.02 34 (306) 407 22.96 32 (0°) 96.03 303 18 130 0.74 
3.0 24.94 34 (306) 247 38.92 32 (0°) 155.30 276 10 218 0.71 
3.0 49.98 34 (306) 127 64.26 32 (0°) 299.73 301 14 360 0.83 
*In these ply regions fibre failure occurred without matrix failure. 

Table C.4  
Ply region degradation model (PRDM-DF1) for Case B (quadriaxial layup).  

FPF  “LPF” 

Imp. 
% of 
b 

t 
(mm) 

No. of 
plies (no. 
of ply 
regions) 

No. 
of 
terms  

σFPF 
(MPa) 

Ply no. 
(direction) 

σmax 
(MPa) 

No. of 
matrix 
failed 
ply 
regions 

No. of 
fibre 
failed 
ply 
regions 

σmax_ref

(MPa) 
 

0.1 8.00 8 (72) 407 29.08 8 (0°) 101.71 57 4 105 0.97 
0.1 24.00 24 (216) 247 170.92 24 (0°) 178.32 209 1 215 0.83 
0.1 48.00 48 (432) 247 204.13 3 (90°) 301.97 324 1* 340 0.89 
1.0 8.00 8 (72) 407 27.38 8 (0°) 101.54 56 4 107 0.95 
1.0 24.00 24 (216) 247 69.49 24 (0°) 177.05 208 4 210 0.84 
1.0 48.00 48 (432) 247 144.77 48 (0°) 250.92 378 1* 302 0.83 
3.0 8.00 8 (72) 407 26.08 8 (0°) 101.86 54 4 115 0.89 
3.0 24.00 24 (216) 247 35.62 24 (0°) 170.62 202 6 205 0.83 
3.0 48.00 48 (432) 247 61.70 48 (0°) 209.70 392 1* 260 0.81 
*In these ply regions fibre failure occurred without matrix failure. 

Table C.5  
Ply region degradation model (PRDM-DF2) for Case A (triaxial layup). 

FPF  “LPF” 

Imp. 
% of 
b 

t 
(mm) 

No. of 
plies (no. 
of ply 
regions) 

No. 
of 
terms  

σFPF 
(MPa) 

Ply no. 
(direction) 

σmax 
(MPa) 

No. of 
matrix 
failed 
ply 
regions 

No. of 
fibre 
failed 
ply 
regions 

σmax_ref 

(MPa) 
 

0.1 10.02 34 (306) 407 42.50 32 (0°) 106.70 279 2 130 0.82 
0.1 24.94 34 (306) 127 173.39 32 (0°) 224.13 295 1* 240 0.93 
0.1 49.98 34 (306) 127 382.14 1 (-45°) 457.81 306 1 570 0.80 
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1.0 10.02 34 (306) 407 40.37 32 (0°) 106.16 283 2 130 0.82 
1.0 24.94 34 (306) 247 77.65 32 (0°) 219.19 278 1* 235 0.93 
1.0 49.98 34 (306) 127 155.05 32 (0°) 372.95 301 1* 435 0.86 
3.0 10.02 34 (306) 407 38.08 32 (0°) 105.55 284 2 130 0.81 
3.0 24.94 34 (306) 247 49.57 32 (0°) 210.92 271 1* 218 0.97 
3.0 49.98 34 (306) 127 73.02 32 (0°) 305.90 300 1* 360 0.85 
*In these ply regions fibre failure occurred without matrix failure. 

Table C.6  
Ply region degradation model (PRDM-DF2) for Case B (quadriaxial layup).  

FPF  “LPF” 

Imp. 
% of 
b 

t 
(mm) 

No. of 
plies (no. 
of ply 
regions) 

No. 
of 
terms 

σFPF 
(MPa) 

Ply no. 
(direction) 

σmax 
(MPa) 

No. of 
matrix 
failed 
ply 
regions 

No. of 
fibre 
failed 
ply 
regions 

σmax_ref 

(MPa) 
 

0.1 8.00 8 (72) 407 32.47 8 (0°) 107.34 68 4 105 1.02 
0.1 24.00 24 (216) 247 171.83 24 (0°) 171.93 1 0 215 0.80 
0.1 48.00 48 (432) 247 204.13 3 (90°) 301.97 325 6* 340 0.89 
1.0 8.00 8 (72) 407 32.15 8 (0°) 109.08 68 4 107 1.02 
1.0 24.00 24 (216) 247 74.17 24 (0°) 165.21 204 3 210 0.79 
1.0 48.00 48 (432) 247 148.93 48 (0°) 247.79 372 1* 302 0.82 
3.0 8.00 8 (72) 407 36.24 8 (0°) 114.68 68 4 115 1.00 
3.0 24.00 24 (216) 247 42.13 24 (0°) 154.48 199 2 205 0.75 
3.0 48.00 48 (432) 247 68.47 48 (0°) 197.73 412 1* 260 0.76 
*In these ply regions fibre failure occurred without matrix failure. 

APPENDIX D: TABULATED RESULTS - LINEAR MATERIAL 
DEGRADATION 

For a given initial geometric imperfection amplitude, plate thickness (t) and total 
number of plies (ply regions), Tables D.1-D.4 show the total number of terms included, 
the Δη values and the calculated stress (σFPF) at first ply failure (FPF). The ultimate 
stress using the semi-analytical method is presented as σmax. The results from the 
analysis are compared with those conducted by Misirlis (σmax_ref). The ratio of the 
ultimate strength from the present model to that found by Misirlis are given in the last 
column (σmax /σmax_ref). In Tables D.5-D.6, some changes have been made from Tables 
D.1-D.4. In addition to the information mentioned above, these tables provide also the 
chosen basic value of Nx and σFPF has been omitted. The ultimate stresses from the 
semi-analytical method have been compared with the ABAQUS results conducted by 
Braaten and Boström (σmax_ref2). 

 
The numbers of terms used are shown in Tables D.1-D.6; 127 terms corresponds to N 

= M = 5, 247 terms to N = M = 7 and 407 terms to N = M = 9. The chosen basic value of 
Nx is 150 N/mm for layups A1 and B1, and 250 N/mm for layups A2 and B2. For layups 
A3 and B3, Nx is set to 500 N/mm. For layups A4 and B4, Nx is set to 1000 N/mm. The 
remaining layups are implemented with Nx = 2000 N/mm. 
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Table D.1  
Ply region degradation model (PRDM-DF1) for Case A (triaxial layup). 
Imp. 
% of b 

t (mm) No. of plies 
(no. of ply 
regions) 

No. of 
terms 

Δη σFPF 
(MPa) 

σmax 
(MPa) 

σmax_ref 

(MPa)  

0.1 10.02 34 (306) 407 0.05 39.86 110.02 130 0.85 
0.1 16.70 34 (306) 407 0.10 84.79 140.26 180 0.78 
0.1 24.94 34 (306) 127 0.10 172.00 182.54 240 0.76 
0.1 33.40 34 (306) 127 0.10 271.31 308.72 320 0.96 
0.1 49.98 34 (306) 127 0.10 382.13 570.09 570 1.00 
1.0 10.02 34 (306) 407 0.05 31.64 109.77 130 0.84 
1.0 16.70 34 (306) 407 0.10 45.91 139.42 180 0.77 
1.0 24.94 34 (306) 247 0.10 71.39 193.35 235 0.82 
1.0 33.40 34 (306) 247 0.10 97.29 267.01 300 0.89 
1.0 49.98 34 (306) 127 0.10 149.55 399.82 435 0.92 
2.0 10.02 34 (306) 407 0.05 25.90 108.17 130 0.83 
2.0 16.70 34 (306) 407 0.10 35.79 134.12 178 0.75 
2.0 24.94 34 (306) 247 0.10 46.69 184.08 225 0.82 
2.0 33.40 34 (306) 247 0.10 60.04 244.69 280 0.87 
2.0 49.98 34 (306) 127 0.10 87.52 368.29 395 0.93 
3.0 10.02 34 (306) 407 0.05 22.96 108.52 130 0.83 
3.0 16.70 34 (306) 407 0.10 30.37 129.36 174 0.74 
3.0 24.94 34 (306) 247 0.10 38.92 179.61 218 0.82 
3.0 33.40 34 (306) 247 0.10 46.19 230.80 260 0.89 
3.0 49.98 34 (306) 127 0.10 64.26 341.32 360 0.95 
 
Table D.2 
Ply region degradation model (PRDM-DF1) for Case B (quadriaxial layup). 
Imp. % 
of b 

t (mm) No. of 
plies (no. 
of ply 
regions) 

No. of 
terms 

Δη σFPF 
(MPa) 

σmax 
(MPa) 

σmax_ref 

(MPa)  

0.1 8.00 8 (72) 407 0.05 29.08 108.12 105 1.03 
0.1 16.00 16 (144) 407 0.10 83.19 162.06 180 0.90 
0.1 24.00 24 (216) 247 0.10 170.92 206.88 215 0.96 
0.1 32.00 32 (288) 247 0.10 198.40 259.99 270 0.96 
0.1 48.00 48 (432) 247 0.10 204.13 307.42 340 0.90 
1.0 8.00 8 (72) 407 0.05 27.38 108.03 107 1.01 
1.0 16.00 16 (144) 407 0.10 43.80 160.11 181 0.88 
1.0 24.00 24 (216) 247 0.10 69.49 195.89 210 0.93 
1.0 32.00 32 (288) 247 0.10 94.30 232.98 240 0.97 
1.0 48.00 48 (432) 247 0.10 144.77 271.95 302 0.90 
2.0 8.00 8 (72) 407 0.05 26.68 108.55 108 1.01 
2.0 16.00 16 (144) 407 0.10 33.03 158.14 181 0.87 
2.0 24.00 24 (216) 247 0.10 44.22 191.18 205 0.93 
2.0 32.00 32 (288) 247 0.10 57.58 219.57 230 0.95 
2.0 48.00 48 (432) 247 0.10 84.87 243.79 270 0.90 
3.0 8.00 8 (72) 407 0.05 26.08 109.67 115 0.95 
3.0 16.00 16 (144) 407 0.10 29.90 156.77 185 0.85 
3.0 24.00 24 (216) 247 0.10 35.62 187.14 205 0.91 
3.0 32.00 32 (288) 247 0.10 43.32 211.14 222 0.95 
3.0 48.00 48 (432) 247 0.10 61.70 248.63 260 0.96 
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Table D.3  
Ply region degradation model (PRDM-DF2) for Case A (triaxial layup). 
Imp. 
% of b 

t (mm) No. of plies 
(no. of ply 
regions) 

No. of 
terms 

Δη σFPF 
(MPa) 

σmax 
(MPa) 

σmax_ref 

(MPa)  

0.1 10.02 34 (306) 407 0.05 42.50 117.75 130 0.91 
0.1 16.70 34 (306) 407 0.10 86.95 189.87 180 1.05 
0.1 24.94 34 (306) 127 0.10 173.39 241.86 240 1.01 
0.1 33.40 34 (306) 127 0.10 272.81 314.71 320 0.98 
0.1 49.98 34 (306) 127 0.10 382.14 577.57 570 1.01 
1.0 10.02 34 (306) 407 0.05 40.37 117.02 130 0.90 
1.0 16.70 34 (306) 407 0.10 53.03 187.09 180 1.04 
1.0 24.94 34 (306) 247 0.10 77.65 236.25 235 1.01 
1.0 33.40 34 (306) 247 0.10 103.27 290.35 300 0.97 
1.0 49.98 34 (306) 127 0.10 155.05 401.84 435 0.92 
2.0 10.02 34 (306) 407 0.05 39.37 116.31 130 0.89 
2.0 16.70 34 (306) 407 0.10 46.29 184.00 178 1.03 
2.0 24.94 34 (306) 247 0.10 55.59 232.92 225 1.04 
2.0 33.40 34 (306) 247 0.10 68.46 279.28 280 1.00 
2.0 49.98 34 (306) 127 0.10 95.03 364.81 395 0.92 
3.0 10.02 34 (306) 407 0.05 38.08 115.95 130 0.89 
3.0 16.70 34 (306) 407 0.10 43.87 181.49 174 1.04 
3.0 24.94 34 (306) 247 0.10 49.57 224.60 218 1.03 
3.0 33.40 34 (306) 247 0.10 56.11 268.87 260 1.03 
3.0 49.98 34 (306) 127 0.10 73.02 342.20 360 0.95 
 
Table D.4 
Ply region degradation model (PRDM-DF2) for Case B (quadriaxial layup). 
Imp. % 
of b 

t (mm) No. of 
plies (no. 
of ply 
regions) 

No. of 
terms 

Δη σFPF 
(MPa) 

σmax 
(MPa) 

σmax_ref 

(MPa)  

0.1 8.00 8 (72) 407 0.05 32.47 110.09 105 1.05 
0.1 16.00 16 (144) 407 0.10 84.56 159.97 180 0.89 
0.1 24.00 24 (216) 247 0.10 171.83 205.08 215 0.95 
0.1 32.00 32 (288) 247 0.10 198.40 261.02 270 0.97 
0.1 48.00 48 (432) 247 0.10 204.13 307.42 340 0.90 
1.0 8.00 8 (72) 407 0.05 32.15 111.36 107 1.04 
1.0 16.00 16 (144) 407 0.10 48.38 157.87 181 0.87 
1.0 24.00 24 (216) 247 0.10 74.17 190.01 210 0.90 
1.0 32.00 32 (288) 247 0.10 98.79 228.49 240 0.95 
1.0 48.00 48 (432) 247 0.10 148.93 265.21 302 0.88 
2.0 8.00 8 (72) 407 0.05 34.04 113.33 108 1.05 
2.0 16.00 16 (144) 407 0.10 38.71 155.31 181 0.86 
2.0 24.00 24 (216) 247 0.10 50.21 181.87 205 0.89 
2.0 32.00 32 (288) 247 0.10 63.63 211.57 230 0.92 
2.0 48.00 48 (432) 247 0.10 90.86 257.64 270 0.95 
3.0 8.00 8 (72) 407 0.05 36.24 118.09 115 1.03 
3.0 16.00 16 (144) 407 0.10 35.69 152.86 185 0.83 
3.0 24.00 24 (216) 247 0.10 42.13 174.92 205 0.85 
3.0 32.00 32 (288) 247 0.10 49.95 200.47 222 0.90 
3.0 48.00 48 (432) 247 0.10 68.47 245.32 260 0.94 
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Table D.5 
Strength predictions for layup cases C and D using PRDM-DF1. 
Layup 
case 

Imp. 
% of b 

t (mm) No. of plies 
(no. of ply 
regions) 

No. of 
terms 

Nx 
(N/mm) 

Δη σmax 
(MPa) 

σmax_ref2 

(MPa) 
 

C1 0.1 10.00 24 (216) 407 150 0.05 119.08 129 0.92 
C2 0.1 16.70 24 (216) 407 200 0.10 156.05 162 0.96 
C3 0.1 25.00 24 (216) 247 500 0.10 223.30 220 1.02 
C4 0.1 33.30 24 (216) 247 1000 0.10 283.46 298 0.95 
C5 0.1 50.00 24 (216) 127 2000 0.10 321.03 343 0.94 
D1 0.1 10.00 24 (216) 407 150 0.05 143.72 137 1.05 
D2 0.1 16.70 24 (216) 407 200 0.10 203.01 215 0.94 
D3 0.1 25.00 24 (216) 247 500 0.10 179.12 259 0.69 
D4 0.1 33.30 24 (216) 247 1000 0.10 301.11 306 0.98 
D5 0.1 50.00 24 (216) 247 2000 0.10 552.57 543 1.02 
 
Table D.6 
Strength predictions for layup cases C and D using PRDM-DF2. 
Layup 
case 

Imp. 
% of b 

t (mm) No. of plies 
(no. of ply 
regions) 

No. of 
terms 

Nx 
(N/mm) 

Δη σmax 
(MPa) 

σmax_ref2 

(MPa) 
 

C1 0.1 10.00 24 (216) 407 150 0.05 103.55 129 0.80 
C2 0.1 16.70 24 (216) 407 200 0.10 142.14 162 0.88 
C3 0.1 25.00 24 (216) 247 500 0.10 219.19 220 1.00 
C4 0.1 33.30 24 (216) 247 1000 0.10 282.26 298 0.95 
C5 0.1 50.00 24 (216) 127 2000 0.10 316.05 343 0.92 
D1 0.1 10.00 24 (216) 407 150 0.05 170.53 137 1.24 
D2 0.1 16.70 24 (216) 407 200 0.10 209.73 215 0.98 
D3 0.1 25.00 24 (216) 247 500 0.10 244.78 259 0.95 
D4 0.1 33.30 24 (216) 247 1000 0.10 313.92 306 1.03 
D5 0.1 50.00 24 (216) 247 2000 0.10 554.39 543 1.02 
 


