
UNIVERSITY OF OSLO
Department of Informatics

Coupled
Congestion
Control for RTP
Media

Technical Report 440

Safiqul Islam
Michael Welzl
Stein Gjessing
Naeem Khademi

ISBN 978-82-7368-405-9
ISSN 0806-3036

21 March 2014

Abstract

Congestion occurs at a bottleneck along an Internet path; multiple
flows between the same sender and receiver pairs can benefit from using
only a single congestion control instance when they share the same bot-
tleneck. These benefits include the ability to control the rate allocation
between flows and reduced overall delay (multiple congestion control in-
stances cause more queuing delay than one since each has no knowledge of
the congestion episodes experienced by the others). We present a mech-
anism for coupling congestion control for real-time media and show its
benefits by coupling multiple congestion controlled flows that share the
same bottleneck.

1 Introduction
Multiple congestion controlled flows (e.g., TCP) between the same two hosts
usually have separate congestion control instances, even when the path used by
them is the same. There may be several reasons for this separation. For example,
one cannot always be sure if the path is indeed the same – routing mechanisms
like Equal-Cost Multi-Path (ECMP) may assign different flows to different paths
to achieve load balancing, even when they have the same destination IP address.

Routers or other middle-boxes usually identify flows using a five-tuple of
source and destination IP addresses, transport protocol, and the transport pro-
tocol’s source and destination port numbers. When – as it will be possible
with the new WebRTC standard for interactive communication between web
browsers – multiple flows are multiplexed over a single UDP port pair, they are
normally regarded as a single flow inside the network and therefore treated in
the same way. In such a setup, congestion management can be readily applied.

The new “RTP Media Congestion Avoidance Techniques” (RMCAT) IETF
Working Group develops standards for RTP-based interactive real-time media.
WebRTC being the major use case for these standards, RMCAT will also stan-
dardize methods for coupled congestion control, with the goal of having the
best possible control over the send rate allocation. Here, we describe the first
proposal for RMCAT’s coupled congestion control and show its feasibility and
some of its benefits.

After a review of related work in the next section, we will introduce our
method for coupling congestion control in RMCAT in Section 3. In Section 4, we
show some performance evaluation results using ns-2 simulations, and Section 5
concludes the paper.

2 Related Work
The Congestion Manager (CM) [3] is the best known, and perhaps the oldest
related work. It provides a common congestion management framework for all
the flows from a sender going to the same receiver. Flows pass information to
the CM which uses a scheduler to distribute the available bandwidth. Since the
CM replaces each flow’s congestion controller with an overarching one, it is hard
to implement, which may be the reason why it has never been widely deployed.

1

In any standard TCP implementation, each connection maintains state (e.g.
the current round-trip time (RTT) and congestion window (cwnd)) in a data
structure called Transport Control Block (TCB). RFC 2140 [11] describes that
TCB data can be shared among multiple connections in two ways: 1) Temporal
Sharing, and 2) Ensemble Sharing. Temporal Sharing can be used to cache
state of a closed connection, and this previous connection state can be used to
later instantiate a similar connection and avoid inefficiencies. Ensemble Sharing
occurs when an active host opens another concurrent connection. Among other
variables, RFC 2140 discusses how cwnd can be shared in order to couple the
congestion control of multiple flows.

Ensemble TCP (E-TCP) [4] utilizes the concept of TCB information reusing
and sharing among existing connections. It has been designed to show the aggre-
gate network transmission behavior of an ensemble (parallel TCP connections)
as a single TCP/Reno connection. The authors of [4] compared it with per-
sistent HTTP 1.1, showing benefits. E-TCP does not discuss what RFC 2140
calls Temporal Sharing, i.e. reusing cached information when the network is
idle because network properties might change during an idle period.

Based on E-TCP, Savoric et al. [10] proposed an Ensemble Flow Control
Mechanism (EFCM) where a controller actively probes for information from the
flows, and calculates the new rate for a flow by aggregating congestion properties
(e.g. RTT, cwnd). They showed that EFCM increases the throughput and
fairness for the flows sharing the same bottleneck.

Both E-TCP and EFCM are similar in style to the mechanism presented in
this paper. However, there are some important differences: these mechanisms
focus exclusively on TCP congestion control, which is window based, whereas
our mechanism targets rate-based RTP applications. Neither [4] nor [10] present
an evaluation of the mechanism’s impact on queuing delay or packet loss; reduc-
ing both is an important goal for us (RMCAT targets low-latency interactive
applications). Since we tried to minimize changes needed to existing conges-
tion controls, we only share rates between flows, whereas E-TCP and EFCM
share not only cwnd but also other TCP-specific information such as SRTT
and ssthresh.

Rather than trying to directly combine the congestion control of multiple
flows, a similar behavior can also be attained by multiplexing application-level
data streams onto a single connection. This can be done using e.g. SCTP,
where it can lead to a significant performance benefit [8]. In [14], a performance
gain was attained by transparently mapping TCP connections onto a single
SCTP association. Connection reuse – with the goal of allowing TCP’s con-
gestion window to grow larger and reduce transport-layer overhead – can also
be implemented at the application layer, e.g. via persistent HTTP 1.1. How-
ever, HTTP 1.1 only allows delivery of application-level streams in the sequence
in which they were requested, which can cause Head-Of-Line (HOL) blocking,
e.g. when the first request involves a slow database access. This has recently
been addressed by SPDY, which multiplexes data streams onto a single TCP
connection [1].

2

3 The Flow State Exchange
RMCAT’s congestion control should be applicable but not limited to WebRTC.
This means that we may need to jointly control flows that reside within a single
application (a web browser, in case of WebRTC) or in multiple applications. In
the latter case, WebRTC’s benefit of knowing that packets from multiple flows
will be routed in the same way is lost. There are, however, measurement based
methods to determine whether multiple flows share a bottleneck in the network;
being able to make use of measurements when necessary, and supporting various
intra- as well as inter-application scenarios calls for a congestion management
architecture that is much simpler than, e.g., the well-known CM.

We have opted for an approach [13] that minimizes the amount of necessary
changes to existing applications. It involves a central storage element called
“Flow State Exchange” (FSE). The elements of our architecture for coupled
congestion control are: the Flow State Exchange (FSE), Shared Bottleneck De-
tection (SBD) and Flows. The FSE is a storage element that can be implemented
in two ways: active and passive. In the active version, it initiates communica-
tion with flows and SBD. However, in the passive version, it does not actively
initiate communication with flows and SBD, and its only task is internal state
maintenance (e.g., an implementation could use soft state to remove a flow’s
data after long periods of inactivity).

Every time a flow’s congestion control mechanism would normally update
its sending rate, the flow instead updates information in the FSE and performs
a query on the FSE, leading to a sending rate that can be different from what
the congestion controller originally determined. In the active version, the FSE
additionally calculates the rates for all the other flows in the same Flow Group
(FG) and actively informs their congestion controllers with a callback function.
A Flow Group consists of flows which should be controlled together, i.e. they
have a common network bottleneck. A FG is determined by an SBD module
based on measurements or knowledge about multiplexing. An SBD module can
be a part of one of the applications using the FSE, or it can be a standalone
entity. We plan to develop a measurement-based SBD as future work; in this
paper, we assume that FGs are known by multiplexing flows over the same UDP
port pair in WebRTC.

The FSE contains a list of all flows that have registered with it. For each
flow, it stores:

1. A unique flow number to identify the flow

2. The Flow Group Identifier (FGI) of the FG that it belongs to

3. A priority P, which here is assumed to be represented as a floating point
number in the range from 0.1 (unimportant) to 1 (very important)

4. The calculated rate FSE_R, i.e. the rate that was most recently calculated
by the flow’s congestion controller

Flows register themselves with SBD and FSE when they start, deregister
from the FSE when they stop, and carry out an UPDATE function call every
time their congestion controller calculates a new sending rate. Via UPDATE,
they provide the newly calculated rate. The FSE then calculates rates for all
the flows and sends them back. When a flow f starts, FSE_R is initialized with

3

the congestion controller’s initial rate. SBD will assign the correct FGI. When
a flow is assigned an FGI, it adds its FSE_R to S_CR. When a flow stops, its
entry is removed from the list.

As a first step, we designed Algorithm 1, which simply keeps track of the
total rate of all flows and assigns each flow a share that is weighted by the
flow’s priority. Variables are explained in Table 1. Intuitively, it might seem
that this simple algorithm would perform well, but our initial tests have shown
that it is in fact unsatisfactory. Before we proceed to an improved version of the
algorithm, we now illustrate the problem with some of our intermediate results.

Variables Description
CC_R The rate received from flow’s congestion controller when a flow

calls UPDATE
new_DR The desired rate received a flow when it calls UPDATE
FSE_R The calculated rate by the FSE
S_CR The sum of the calculated rates of all flows in the same FG; this

value is used to calculate the sending rate
FG A group of flows having the same FGI, and hence sharing the

same bottleneck
P The priority of a flow which is received from the flow’s congestion

controller; the FSE uses this variable for calculating FSE_R
S_P The sum of all the priorities

DELTA This is used to calculate the difference between CC_R and pre-
viously stored FSE_R

Table 1: Names of variables used in algorithms 1 and 2

Algorithm 1 Active FSE Rate Control
Require: CC_R and new_DR
Ensure: FSE_R
1: S_P ← 0
2: S_CR← S_CR+ CC_R− FSE_R(f)
3: for all flows i in FG do
4: S_P = S_P + P (i)
5: end for
6: for all flows i in FG do
7: FSE_R(i)← min(new_DR, ((P (i) ∗ S_CR)/S_P))
8: send FSE_R(i) to the flow i
9: end for

We implemented the FSE in ns-2 and simulated the behavior of conges-
tion controlled flows using a dumbbell network topology (bottleneck capacity
10Mbit/s, RTT 10ms, packet size 1000 bytes, queue length of 13 packets1;
for simplicity, unless otherwise mentioned, senders always had enough data to

1This is based on the bandwidth×delay product (BDP). We repeated our tests with dif-
ferent queue lengths and found no significant differences.

4

send.2 The current implementation only supports two rate-based protocols:
Rate Adaptation Protocol (RAP) [9] (because it is a simple rate-based Addi-
tive Increase – Multiplicative Decrease (AIMD) scheme, hence representing a
whole class of TCP-like mechanisms) and TCP Friendly Rate Control (TFRC)
[5] (because it is the only standardized congestion control mechanism aimed at
supporting media flows).

Jain’s fairness index is used to calculate the expected gains in fairness where
a fairness index of 1 denotes that all n concurrent flows get a fair share of the
total available bandwidth whereas a fairness index of 1/n means that one of the
n flows gets the entire available bandwidth. It is clear from the algorithm, and
was also confirmed in our simulations, that the FSE achieves precise fairness
among the flows. This is important, as it is a requirement for WebRTC [6] –
but because coupling congestion controllers should help avoid competition at the
bottleneck, we expected reduced queuing delay and packet loss, while achieving
at least as much throughput as of a single flow. While the latter requirement was
also fulfilled by this algorithm, the results with Algorithm 1 were disappointing
regarding queuing delay and packet loss.

The loss ratio and average queue length with FSE-controlled vs. non-FSE-
controlled RAP and TFRC flows are illustrated in Figures 1, 2, 3, and 4. Since
we only highlight a problem, every data point in these graphs is the result of a
single simulation run. It can be seen that, with the FSE, the loss ratio improves
as the number of flows grows, but the average queue length is higher. Results
were even worse with TFRC.

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 Q

u
e
u
e
 L

e
n
g
th

Number of Flows

FSE
Without FSE

Figure 1: Average queue length (TFRC)

 5

 6

 7

 8

 9

 10

 11

 12

 2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 Q

u
e
u
e
 L

e
n
g
th

Number of Flows

FSE
Without FSE

Figure 2: Average queue length (RAP)

To address these problems, we investigated the queue growth over time with
and without the FSE. As shown in Figure 5, the queue essentially oscillates
between empty and full, but it does not always drain. In the same test without
the FSE (see Figure 6), the queue failed to drain only once, in contrast to the 7
such occurrences in Figure 5. This is because the FSE de-synchronizes the flows.
For example, consider two RAP flows, each sending at a rate X. If one of these
flows tries to increase its rate and immediately experiences congestion, it halves

2This may not be a totally unreasonable assumption for modern multimedia systems, which
may be able to closely track the available bandwidth (cf. [7]). However, the actual behavior
is codec-dependent and hard to characterize. At the time of writing, the RMCAT group is
working on suitable test cases; in the absence of a solution in this space, we opted to investigate
two extreme ends of the spectrum – the case where applications can always send data, and
the case where a codec cannot adapt to the available bandwidth at all (Section 4).

5

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20

P
a

c
k
e

t
L

o
s
s
 R

a
ti
o

 %

Number of Flows

FSE
Without FSE

Figure 3: Loss ratio (TFRC)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20

P
a

c
k
e

t
L

o
s
s
 R

a
ti
o

 %

Number of Flows

FSE
Without FSE

Figure 4: Loss ratio (RAP)

its rate, which reduces the aggregate rate from 2X to 1.5X. However, without
the FSE, when the two flows get synchronized, both halve their rate when
congestion occurs which also halves the rate of the aggregate. Synchronization
is usually regarded as a detrimental network effect, but in this case, it appears
to play out positively.

 0

 2

 4

 6

 8

 10

 12

 14

 15 15.5 16 16.5 17 17.5 18 18.5 19

Q
u
e
u
e
 s

iz
e
 (

p
k
ts

)

Time (s)

Figure 5: Queue growth over time for 3
RAP flows, with FSE

 0

 2

 4

 6

 8

 10

 12

 14

 15 15.5 16 16.5 17 17.5 18 18.5 19

Q
u
e
u
e
 s

iz
e
 (

p
k
ts

)

Time (s)

Figure 6: Queue growth over time for 3
RAP flows, without FSE

In order to fix the loss ratio and average queue growth, we updated our al-
gorithm to emulate a similar behavior by proportionally reducing the aggregate
rate on congestion (Algorithm 2). To better emulate the behavior of a single
flow, we additionally limited the aggregate rate growth (in the absence of con-
gestion) of N flows to I/N , where I is the flow’s increase factor. In order to
avoid over-reacting to congestion, we set a timer that prohibits flows other than
the flow that just reduced its rate from changing their rate for two RTT periods
(of the flow that reduced its rate). We decided to use 2 RTTs so that other flows
do not react to the same loss interval. We assume a loss interval to persist for
up to one RTT and added another RTT to compensate for fluctuations in the
measured RTT value.

A local variableDELTA is used for calculating the difference between CC_R
and previously stored FSE_R. When DELTA is negative, we adjust the aggre-
gate and set a timer for 2 RTTs. When the timer is not set or expired, flows
operate as before and increase their rates by I/N until congestion is experi-
enced. As we will show in the next section, these changes largely removed the

6

problems that we observed with the first version of our algorithm.

Algorithm 2 Conservative Active FSE Rate Control
Require: CC_R, new_DR and RTT
Ensure: FSE_R
1: S_P ← 0
2: if T imer has expired or not set then
3: DELTA← CC_R− FSE_R(f)
4: if DELTA < 0 then . Reduce the sum proportionally
5: S_CR← S_CR ∗ CC_R/FSE_R(f)
6: Set T imer for 2 RTTs
7: else
8: S_CR← S_CR+DELTA
9: end if

10: end if
11: for all flows i in FG do
12: S_P = S_P + P (i)
13: end for
14: for all flows i in FG do
15: FSE_R(i)← min(new_DR, ((P (i) ∗ S_CR)/S_P))
16: send FSE_R(i) to the flow i
17: end for

4 Evaluation
Evaluations were carried out using ns-2 simulations3 with the same setup as
described in the previous section, except that we used a larger RTT of 100ms
(and half-BDP queue of 62 packets – we also tested other queue lengths and
saw consistently lower queuing delay. Different from Section 3, however, all
tests reported here were carried out 10 times with different randomly picked
start times over the first second. This produced results that had such a small
standard deviation (the worst case was 0.2%) that we opted against showing
error bars for the sake of clarity.

Figures 7 and 8 illustrate that the updated algorithm achieves a consistent
reduction of the average queuing delay both for TFRC and RAP. Figure 10 shows
that the loss ratio gain for FSE-controlled RAP flows also becomes noticeable as
the number of flows increases. However, the result is less favorable for TFRC,
as shown in Figure 9. This is because forcing TFRC to use a lower rate than
what its congestion controller has derived causes it to increase its rate more
aggressively. From [5], TFRC increases by at most 0.22 packets per RTT, as
a result of the deterministic length of loss intervals measured by the receiver.
When TFRC uses a lower rate than planned, the loss interval gets artificially
prolonged at the receiver, which then calculates a lower value for the loss event
ratio p, which in turn provokes a faster rate increase at the sender.

Figures 11 and 12 illustrate the link utilization for RAP and TFRC flows,
with and without the FSE. The relevance of link utilization here is that sending
very little obviously produces a small queue and reduces packet loss; however,

3source code is available at: http://safiquli.at.ifi.uio.no/coupled-cc/cc-source.
html

7

 30

 35

 40

 45

 50

 55

 60

 2 4 6 8 10 12 14 16 18 20

A
v
e

ra
g
e

 Q
u
e

u
e

 L
e
n

g
th

of Flows

FSE
Without FSE

Figure 7: Average queue length (TFRC)

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16 18 20

A
v
e

ra
g
e

 Q
u
e

u
e

 L
e
n

g
th

of Flows

FSE
Without FSE

Figure 8: Average queue length (RAP)

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16 18 20

P
a

c
k
e

t
L

o
s
s
 R

a
ti
o

 %

of Flows

FSE
Without FSE

Figure 9: Loss ratio (TFRC)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2 4 6 8 10 12 14 16 18 20

P
a

c
k
e

t
L

o
s
s
 R

a
ti
o

 %

of Flows

FSE
Without FSE

Figure 10: Loss ratio (RAP)

because Algorithm 2 tries to emulate the behavior of one flow, it should not have
a significantly smaller throughput than a single flow. As expected, in all tests,
the link utilization with the FSE was at most equal or smaller than without the
FSE. However, link utilization of the FSE-controlled RAP flows is higher than
the link utilization of a single RAP flow. In contrast, for the FSE-controlled
TFRC flows, link utilization is in some cases less than the link utilization of one
flow, but the difference appears rather marginal (3% less in the worst case in
our tests).

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

L
in

k
 U

ti
li
z
a

ti
o

n
 %

of Flows

FSE
Without FSE

Figure 11: Link Utilization (TFRC)

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

L
in

k
 U

ti
liz

a
ti
o

n
 %

of Flows

FSE
Without FSE

Throughput - 1 flow

Figure 12: Link Utilization (RAP)

To achieve prioritization, one of the requirements of RMCAT, the FSE can

8

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

S
e
n
d
in

g
 R

a
te

 (
M

b
p
s
)

Time(s)

Flow 1
Flow 2

Figure 13: Flow 1 changing its priority coupled via the FSE

calculate and assign rates based on a priority. Figure 13 shows how two FSE-
controlled flows change their rates based on the assigned priorities over time.
The two flows started out with a priority of 1 each. After 100 seconds, the
priority of flow 1 was decreased to 0.66, 0.42, 0.25 and 0.11 after 100, 150, 200
and 250 seconds, respectively. This means that a high priority flow can easily
get the desired rate from the FSE without requiring any further changes in
its congestion controller. The first 100 seconds of this graph also illustrate the
perfect fairness that is enforced by our algorithm; we do not show Jain’s fairness
index because the result was always 1 in our tests.

To illustrate the effect of changing the queue length, we also investigated the
average queue length for 5, 10 and 15 RAP and TFRC flows, with and without
FSE. It is clear from Figures 14, 15, 16 and 17 that average queue length is
consistently lower for the FSE-controlled flows.

The loss ratio is lower for the FSE-controlled RAP flows when the queue
length is half a BDP as it drains more often. However, the loss ratio is equal
or slightly higher when the queue is larger. The results are less favorable with
TFRC flows. The somewhat surprising increased loss despite a lower average
queue is currently under investigation.

Figures 20 and 21 show the positive influence on the fairness index while
varying the number of RAP and TFRC flows with similar RTTs. We also inves-
tigated the fairness of 2-5 RAP and TFRC flows with different RTTs between
them, with ratios up to 48:24:12:6:3. While the FSE enforces perfect fairness
irrespective of the RTT, the fairness without the FSE degrades heavily in some
cases. Figures 22, 23, 24 25, 26 and 27 illustrate the fairness index for 2-5 RAP
flows and 4-5 TFRC flows as the RTT ratio is varied; the positive influence
on the fairness for the FSE-controlled flows is noticeable. The loss ratio and
average queue length are sometimes surprisingly equal or less when flows have
different RTTs. This is also currently under investigation.

RMCAT targets interactive media flows, with a focus on video and audio.
Other than the bulk data transfers that we have used in our evaluation so far,
such flows do not always keep the send buffer full. Using such “greedy” traffic
is a reasonable starting point because a mechanism that fails when its send
buffer is constantly full has little chance of success when the buffer occasionally

9

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 60 80 100 120 140 160 180

A
v
e

ra
g

e
 Q

u
e

u
e

 L
e

n
g

th

Queue Length

FSE
Without FSE

Figure 14: Average queue length for 10
RAP flows while changing the queue

length from 0.5 BDP (62 Packets) to 1.5
BDP (167 packets)

 20

 30

 40

 50

 60

 70

 80

 90

 60 80 100 120 140 160 180

A
v
e

ra
g

e
 Q

u
e

u
e

 L
e

n
g

th

Queue Length

FSE
Without FSE

Figure 15: Average queue length for 15
RAP flows while changing the queue

length from 0.5 BDP (62 Packets) to 1.5
BDP (167 packets)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 60 80 100 120 140 160 180

A
v
e

ra
g

e
 Q

u
e

u
e

 L
e

n
g

th

Queue Length

FSE
Without FSE

Figure 16: Average queue length for 10
TFRC flows while changing the queue

length from 0.5 BDP (62 Packets) to 1.5
BDP (167 packets)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 60 80 100 120 140 160 180

A
v
e

ra
g

e
 Q

u
e

u
e

 L
e

n
g

th

Queue Length

FSE
Without FSE

Figure 17: Average queue length for 15
TFRC flows while changing the queue

length from 0.5 BDP (62 Packets) to 1.5
BDP (167 packets)

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 60 80 100 120 140 160 180

P
a
c
k
e
t
L
o
s
s
 R

a
ti
o
 %

Queue-Limit

FSE
Without FSE

Figure 18: Loss ratio precentage as the
queue length for 10 RAP flows is varied,

with and without FSE

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 60 80 100 120 140 160 180

P
a
c
k
e
t
L
o
s
s
 R

a
ti
o
 %

Queue-Limit

FSE
Without FSE

Figure 19: Loss ratio precentage as the
queue length for 15 RAP flows is varied,

with and without FSE, with and
without FSE

runs empty. There is an ongoing discussion in RMCAT on how to best evaluate
congestion control mechanisms, given the multitude of available codecs and their

10

 0.999

 0.9992

 0.9994

 0.9996

 0.9998

 1

 1.0002

 1.0004

 1.0006

 1.0008

 1.001

 2 4 6 8 10 12 14 16 18 20

F
a

ir
n

e
s
s
 I

n
d

e
x

of Flows

FSE
Without FSE

Figure 20: Fairness index as the
number of TFRC flows is varied, with

and without FSE

 0.999

 0.9992

 0.9994

 0.9996

 0.9998

 1

 1.0002

 1.0004

 1.0006

 1.0008

 1.001

 2 4 6 8 10 12 14 16 18 20

F
a

ir
n

e
s
s
 I

n
d

e
x

of Flows

FSE
Without FSE

Figure 21: Fairness index as the
number of RAP flows is varied, with and

without FSE

different behaviors; but there is some consensus that modern codecs are able to
track the transport’s calculated rate quite precisely.

In the face of these complications, we decided to use a simple approach
to evaluate how well our mechanism would work with media traffic. From a
transport point of view, the send buffer can either run empty or not, with
variations in how quickly changes between these two states occur. We therefore
ran a simulation with two flows: an application limited flow, sending based on
a video trace, and a greedy flow. As it can be observed from Figure 28, in
the presence of the congestion, FSE-controlled flows proportionally reduce their
rates together, whereas synchronization causes the application-limited flows to
over-react without the FSE (e.g., in the congestion events at t=5, 10 and 20
seconds in Figure 29).

Figure 30 illustrates the behavior of a greedy flow with low priority (0.2)
and an application limited flow with a higher priority (1) that is sending based
on a video trace. It can be observed that the low-priority flow can grab un-
used bandwidth as long as there is enough capacity. The bandwidth was not
completely utilized in these tests because the simulation time was based on the
total duration of the video trace, which was too short for the low priority flow
to reach the capacity limit.

We conducted a series of simulations using synthetic background traffic in
order to emulate a situation that is typical for the Internet. For this purpose we
used TMIX [12], which is a tool to generate realistic TCP application workload
in ns-2. The traffic used in our simulation is taken from 60-minute trace of
campus traffic at the University of North Carolina, which is available from the
common TCP evaluation suite [2].

We employed a pre-processed version of this traffic which is adapted to pro-
vide an approximate load of 50% on a 10Mbps bottleneck link based on the
network topology discussed in previous sections over the course of 300 sec as sim-
ulation time. The pre-processing also included the removal of non-stationarity
in the background traffic pattern by randomly shuffling different portions of the
traffic pattern. The RTT of background TCP flows generated by TMIX fluctu-
ates between the range of 80∼100ms while the RTT of foreground TFRC flows
was statically set to 100ms, and foreground and background traffic shared the
bottleneck queue.

11

 0

 0.2

 0.4

 0.6

 0.8

 1

5:1 10:1 15:1 20:1

F
a

ir
n

e
s
s
 I

n
d

e
x

RTT Ratio

FSE
Without FSE

Figure 22: Fairness index for 2 RAP
flows as the RTT ratio is varied, with

and without FSE

 0

 0.2

 0.4

 0.6

 0.8

 1

1:1:1 8:4:2 16:8:4

F
a
ir
n
e
s
s
 I
n
d
e
x

RTT Ratio

FSE
Without FSE

Figure 23: Fairness index for 3 RAP
flows as the RTT ratio is varied, with

and without FSE

 0

 0.2

 0.4

 0.6

 0.8

 1

1:1:1:1 24:12:6:3 48:24:12:6

F
a
ir
n
e
s
s
 I
n
d
e
x

RTT Ratio

FSE
Without FSE

Figure 24: Fairness index for 4 RAP
flows as the RTT ratio is varied, with

and without FSE

 0

 0.2

 0.4

 0.6

 0.8

 1

1:1:1:1:1 16:8:4:2:1 32:16:8:4:2 48:24:12:6:3

F
a

ir
n

e
s
s
 I

n
d

e
x

RTT Ratio

FSE
Without FSE

Figure 25: Fairness index for 5 RAP
flows as the RTT ratio is varied, with

and without FSE

 0

 0.2

 0.4

 0.6

 0.8

 1

1:1:1:1 24:12:6:3 48:24:12:6

F
a
ir
n
e
s
s
 I
n
d
e
x

RTT Ratio

FSE
Without FSE

Figure 26: Fairness index for 4 TFRC
flows as the RTT ratio is varied, with

and without FSE

 0

 0.2

 0.4

 0.6

 0.8

 1

1:1:1:1:1 16:8:4:2:1 32:16:8:4:2 48:24:12:6:3

F
a

ir
n

e
s
s
 I

n
d

e
x

RTT Ratio

FSE
Without FSE

Figure 27: Fairness index for 5 TFRC
flows as the RTT ratio is varied, with

and without FSE

Figure 31 shows the goodput values of two TFRC flows with FSE in the
presence of background synthetic traffic when the priority of the first flow is set
to 1, while the other flows’ priority is varied. As it can be seen from the graph,
the goodputs of flows 1 and 2 are very close to the theoretical value that one
might expect: for example, when the priority of flow 2 is 0.2, 0.5 and 0.8, the
goodput ratio is 0.199 (instead of 0.2), 0.499 (instead of 0.5) and 0.799 (instead
of 0.8), respectively. These are surprisingly precise values, seen by the receivers

12

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25

S
e

n
d

in
g

 R
a

te
 (

M
b

p
s
)

Time (s)

Flow 1
Flow 2

Figure 28: Application limited flow and
greedy flow – with FSE

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25

S
e

n
d

in
g

 R
a

te
 (

M
b

p
s
)

Time (s)

Flow 1
Flow 2

Figure 29: Application limited flow and
greedy flow – without FSE

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t

Capacity

Flow #1
Flow #2

Link Utilization

Figure 30: High-priority (1) application-limited flow #1 is hardly affected by a
low-priority (0.2) greedy flow #2 as long as there is enough capacity for flow #1.

in the presence of synthetic background traffic with various numbers of arriving
and departing flows and RTTs at any instance of time.

5 Conclusions
We have presented the coupled congestion control mechanism that is currently
being proposed for WebRTC in the IETF RMCAT group. Simulations with the
two congestion control mechanisms RAP and TFRC indicate that, our method
not only satisfies the requirements of controllable fairness with prioritization,
but, by emulating the behavior of a single flow, also reduces queuing delay and
packet loss without significantly affecting throughput. In case of RAP, we even
saw these effects combined with better link utilization than with a single flow.
The difference in behavior between the two mechanisms highlights the need to
evaluate our scheme with each mechanism it is applied to.

We plan to test our method in real life as a next step. The congestion control
of RMCAT is currently under development, and will probably be delay based;
we therefore need to test our scheme with a delay-based congestion control

13

 0

 1

 2

 3

 4

 5

 6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
o
o
d
p
u
t
(M

b
p
s
)

Priority of Flow #2

Flow #1
Flow #2

Figure 31: Goodput of two FSE-controlled flows competing with synthetic traffic

too. To incorporate WebRTC’s data channel, we will investigate coupling with
window-based protocols too; then we can control TCP like E-TCP and EFCM,
which will enable us to compare the mechanisms against each other. At this
point, it will also be necessary to investigate the effect of coupling different
congestion controllers together. The evaluations in this paper were also limited
to a scenario where SBD is based on multiplexing, not measurements. With
measurement-based SBD, flows between different host pairs can be controlled,
which means that the flows will also have different RTTs – another factor that
needs to be incorporated in future evaluations.

6 Acknowledgments
This work is partially supported by the European Union through the FP7-ICT
project RITE under contract number 317700. We would like to thank Dr. David
Hayes for his guidance in conducting TMIX tests.

References
[1] SPDY: An experimental protocol for a faster web. http://www.chromium.

org/spdy/spdy-whitepaper. Last Accessed:06/07/2013.

[2] L. Andrew, S. Floyd, and G. Wang. Common TCP evaluation suite.
http://tools.ietf.org/id/draft-irtf-tmrg-tests-02.txt, 2009.

[3] H. Balakrishnan, H. Rahul, and S. Seshan. An integrated congestion man-
ager architecure for internet hosts. In Proc. ACM SIGCOMM, 1999.

[4] L. Eggert, J. Heidemann, and J. Touch. Effects of ensemble TCP. USC/In-
formation Sciences Institute, 7(1), December 1999.

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based conges-
tion control for unicast applications. In ACM SIGCOMM, 2000.

14

[6] C. Holmberg, S. Hakansson, and G. Eriksson. Web real-time communica-
tion use-cases and requirements. Internet-draft draft-ietf-rtcweb-use-cases-
and-requirements-12.txt (work in progress), 2013.

[7] M. Nagy, V. Singh, J. Ott, and L. Eggert. Congestion control us-
ing fec for conversational multimedia communication. arXiv preprint
arXiv:1310.1582, 2013.

[8] P. Natarajan, P. D. Amer, and R. Stewart. Multistreamed web transport
for developing regions. In SIGCOMM NSDR ’08 workshop.

[9] R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-end rate-based
congestion control mechanism for realtime streams in the internet. In IEEE
INFOCOM ’99, 1999.

[10] M. Savorić, H. Karl, M. Schläger, T. Poschwatta, and A. Wolisz. Analysis
and performance evaluation of the EFCM common congestion controller
for TCP connections. Computer Networks, 49(2):269–294, 2005.

[11] J. Touch. TCP Control Block Interdependence. RFC 2140, April 1997.

[12] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, and F. D.
Smith. Tmix: A tool for generating realistic TCP application workloads in
ns-2. SIGCOMM Comput. Commun. Rev., 36(3):65–76, July 2006.

[13] M. Welzl, S. Islam, and S. Gjessing. Coupled congestion control for RTP
media. Internet-draft draft-welzl-rmcat-coupled-cc-02 (work in progress),
2013.

[14] M. Welzl, F. Niederbacher, and S. Gjessing. Beneficial transparent deploy-
ment of SCTP: the missing pieces. In IEEE GLOBECOM 2011.

15

