
ScriptingRT: A Software Library for Collecting Response
Latencies in Online Studies of Cognition
Thomas W. Schubert1,2*, Carla Murteira2, Elizabeth C. Collins2, Diniz Lopes2

1 Department of Psychology, University of Oslo, Oslo, Norway, 2 Centro de Investigação e Intervenção Social, Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

Abstract

ScriptingRT is a new open source tool to collect response latencies in online studies of human cognition. ScriptingRT studies
run as Flash applets in enabled browsers. ScriptingRT provides the building blocks of response latency studies, which are
then combined with generic Apache Flex programming. Six studies evaluate the performance of ScriptingRT empirically.
Studies 1–3 use specialized hardware to measure variance of response time measurement and stimulus presentation timing.
Studies 4–6 implement a Stroop paradigm and run it both online and in the laboratory, comparing ScriptingRT to other
response latency software. Altogether, the studies show that Flash programs developed in ScriptingRT show a small lag and
an increased variance in response latencies. However, this did not significantly influence measured effects: The Stroop effect
was reliably replicated in all studies, and the found effects did not depend on the software used. We conclude that
ScriptingRT can be used to test response latency effects online.

Citation: Schubert TW, Murteira C, Collins EC, Lopes D (2013) ScriptingRT: A Software Library for Collecting Response Latencies in Online Studies of
Cognition. PLoS ONE 8(6): e67769. doi:10.1371/journal.pone.0067769

Editor: Teresa Serrano-Gotarredona, National Microelectronics Center, Spain

Received February 25, 2013; Accepted May 7, 2013; Published June 21, 2013

Copyright: � 2013 Schubert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research and development was supported by Fundação para a Ciência e a Tecnologia (FCT) grant PTDC/PSI-PSO/101366/2008 and funding by
Instituto Universitário de Lisboa (ISCTE-IUL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: schubert@igroup.org

Introduction

There are two pervasive current trends in how to collect data in

psychological studies: One is to take advantage of the Internet and

collect data using online methods of various kinds, especially

online questionnaires. This allows easier access to traditional

participant samples, extension of research to hard-to-reach

samples, and the adaptation of items to previous answers. The

other trend is the long-standing but ever-increasing tendency to

use response latencies as indices of cognitive processing. Such

measures are utilized to examine both individual differences

between participants, and differences elicited by experimental

manipulations [1–3].

However, with a few notable exceptions, these two trends have

not been merged: Only a fraction of online research measures

response latencies to individual trials that last around a second or

less. The reasons are of a rather technical nature, and repeated

attempts to bridge the gulf demonstrate the need, while still falling

short in many ways. The few projects that have bridged the gulf,

however, show the great potential of online response latency

collection.

In the present work, we offer a fresh approach to the problem.

We design, implement, and evaluate an approach to measuring

response latencies online that is based completely on open source

or free technology, namely Adobe Flash files created with Apache

Flex [4] (formerly Adobe Flex), using concepts that are inspired by

the free response latency software DMDX [5]. The software that

we developed is itself open source and modular, inviting

contributions from other laboratories and researchers.

Previous Approaches to Online Response Latency
Measurement

The typical response latency study presents the participant with

a number of trials, somewhere between 50 and 300, and asks for as

rapid responses as possible. The kind of stimuli in a trial and the

task for the participant vary widely, and consequently the response

latencies can vary immensely, from ca. 400 to 2000 ms for most

tasks. The factors of interest are typically manipulated within

participant, and latency differences in the literature range from a

few to dozens of milliseconds.

In order to participate in a web-based survey, participants

typically only need a standard computer with network connection

and a recent browser program. In such surveys, the computer is

doing little else besides showing the questionnaire and sending

back the answers to the server. However, in order to collect

response latencies to many individual trials, some kind of program

needs to be executed on the participant’s computer (i.e., client-

side). This is because communication across networks and

responses by servers takes time and the amount of time varies,

and would introduce too much noise.

Thus, to run a response latency study online, one needs some

program that runs on the participant’s computer, and that presents

the trials and collects the latencies. Several client side technologies

have been used to create such programs: JavaScript, Java, Flash,

and native (Windows PC or Mac) code that is downloaded. Let us

briefly review some such attempts.

PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e67769

Java Programs
Most attempts to measure response latencies in online studies

have been based on Java. A decade ago, Eichstaedt [6] evaluated

the performance of latency measurement by Java. Nosek, Banaji,

and Greenwald [7] reported large datasets where the Implicit

Association Test (IAT), a robust response latency paradigm, was

applied online using applets programmed in Java. Eight of the

nine reported IATs showed response latency differences between

the critical blocks that were between 95 and 301 ms, with SDs

lower than 224 ms, resulting in Cohen’s ds between 0.72 and 1.42.

Also working with Java, Keller, Gunasekharan, Mayo, and Corley

[8] implemented a psycholinguistic study. Using a self-paced

reading time paradigm that produces latencies between 1000 and

2000 ms, they replicated a study previously run in the lab. They

estimated that their study had the power to detect reaction time

differences above 183 ms. Von Bastian, Locher, and Ruflin

recently [9] introduced Tatool, a Java-based open-source

programming framework for psychological studies, however

without an evaluation of its measurement precision.

Flash Programs
It is worth noting that all recent online IATs run by ‘‘Project

Implicit’’ [10] are programmed in Flash, replacing Java. Reimers

and Stewart [11] varied whether participants completed a

binomial choice paradigm with 30 trials in the lab using a test

programmed in C++, in the lab with a Flash program, or with the

same Flash program from outside the lab. They found that Flash

added a delay of about 30 ms, but no additional standard

deviation to the distribution of latencies.

Scripting Programs: JavaScript and HTML
JavaScript and HTML 5 have been used by Mason [12] to

implement a modular open source version of the IAT. No

evaluation of that implementation has been published yet. Zwaan

and Pecher [13] also relied on standard JavaScript to measure

response latencies, but analysed median instead of mean values.

Recently, Crump, McDonnell, and Gureckis [14] replicated

several reaction time paradigms with JavaScript programs and

participants recruited through Amazon MTurk [15]. They found

solid replication of the chosen reaction time-based paradigms

(Stroop, task-switching, flanker task, Simon, and Posner cuing).

They also observed that control over stimulus presentation times

could be achieved down to about 80 ms, but not shorter.

Native Windows Programs
Two originally PC-based software packages designed to collect

response times have made efforts to extend their reach to online

data collection. The commercial software Inquisit enables running

studies online. To participate in such a study, one must download

either an executable file directly or one wrapped in Java Web

Launch. Similarly, the free software package DMDX [5] offers a

remote testing mode where participants must download an

executable file. In both cases, the advantage is that well performing

code is executed on the client’s machine – in fact the same code as

is used for desktop testing, except that the machines running this

code will vary much more than a well-managed lab, adding error

variance [16,17]. The disadvantage is, in both cases, that

participants must trust the source enough to allow the download

of executable code. Security concerns, anti-virus software, and

browser restrictions make this difficult, and possibly limit these

packages to applications where participants know the entity

conducting the study well enough (e.g., to students of a university).

Comparison and Summary
In sum, Java, JavaScript, and Flash all have been used to

measure response latencies online. The published evidence

suggests that all three can be successfully used, but also that all

three can be expected to increase noise in comparison to native

programming on a PC, which can serve as an alternative.

The best comparison of these techniques to native programs

that we are aware of has been published by Neath et al. [18]. They

built a device that allowed the standardized evaluation of a

system’s latency and programmed a simple task where the screen

turned from black to white. The onset of the white screen was

detected by a light sensor placed on the screen, which was

connected to a solenoid that was placed above the keyboard.

When light was detected, the solenoid fired and pressed a button,

given the answer in the trial. Using this system, Neath et al.

evaluated four different hardware setups of Macintosh computers,

and the same procedure using different software. When Neath et

al. [18] programmed their task in Java, the average latency of their

device was measured as 99.72 ms, with an average SD of 6.66 ms.

Flash measured an average latency of 91.56 ms, with an average

SD of 8.14. Javascript measured the reaction time as being on

average 88.07 ms, with an average SD of 5.94 ms. As a

comparison, when measuring with Matlab and Psychtoolbox

and synchronized displays (i.e., native software), an average

latency of 49.88, average SD = 2.63, was obtained. The additional

measurement error in Java, Flash and JavaScript seems acceptable

for many paradigms.

ScriptingRT
We developed a software library that supports programming

response latency studies in Flash, called ScriptingRT (online at

http://reactiontimes.wordpress.com/scriptingrt/). ScriptingRT

studies run in a Flash plugin or in a Flash-supporting browser.

They are programmed in Apache Flex and then compiled into

Flash applications that can be distributed online and embedded in

HTML pages.

Flex is a combination of an XML-based markup language

(MXML) and a scripting language (ActionScript). Flex started as

an Adobe product, but became open source in 2012, hosted by the

Apache Foundation. Because ScriptingRT is also released under

an open source license, developing ScriptingRT studies is thus

completely based on open source and free software. In order to

develop ScriptingRT studies, researchers need to install the Flex

SDK (available for OS X and Windows), the ScriptingRT library

[19], a text editor, a Flash-enabled browser, and a server running

PHP on which data are stored.

The philosophy of ScriptingRT is to allow the programming of

a response latency study using a simple set of markup tags in an

XML file, while at the same time allowing the programming of

additional functionality. The ScriptingRT markup tags and their

functionality are defined in the ScriptingRT library, which is used

to compile the studies into Flash files.

The concepts for this markup language are inspired by, but not

identical to, the free response latency software DMDX. Studies are

programmed as a combination of blocks, which consist of items;

items, for their part, are made up of frames. A frame represents

what is displayed on a single screen at one time. An item can

consist of one or more frames. For instance, one item can include a

blank intertrial interval frame, a frame with an asterisk to signal

the next trial, a frame with a prime, and a frame with a target.

Frames never change order within an item. Similarly, a block can

be made up of one or multiple items. However, the order of items

within a block can change (randomization). In their attributes,

items save what the correct response should be.

Collecting Response Latencies in Online Research

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e67769

Each of these structures is constructed with XML tags: A frame

is created with the markup ,Frame.,/Frame., items are

constructed with ,Item.,/Item., and blocks are constructed

with ,TestPart.,/TestPart.. Blocks that do not collect

response latencies (e.g., for instructions) are constructed with

,Part.,/Part..

These XML tags are defined by the ScriptingRT library. In

combination with such ScriptingRT-specific tags, standard Flex

tags can be used. For instance, ,Text. ,/Text. would be used

to present text within a frame. As a result, every ScriptingRT code

is a mix of tags from the ScriptingRT library and standard Flex

tags. An item from a Stroop task could be coded as:

,TestPart id = "stroop" positive = "keyboard.Q.press" negati-

ve = "keyboard.P.press" scramble = "1" backgroundCo-

lor = "0xffffff" color = "0x000000".

,Item id = "i1" type = "+".

,Frame response = "Time.2000" protocol = "false".

,mx:Text verticalCenter = "0" horizontalCenter = "0"

fontSize = "48" text = "+"/.

,/Frame.

,Frame id = "if1" protocol = "true".

,mx:Text id = "text100" verticalCenter = "0" horizontal-

Center = "0" fontSize = "36" color = "0xff0000"

text = "red"/.

,/Frame.

,/Item.

,/TestPart.

In this example, the ,TestPart. tag sets the defaults for this

block, including the expected answers (Q and P), randomization of

items (scrambling), and default colors for background and text.

Within this block one item with two frames is created. The type of

the item is marked as positive with a plus sign, which means that

the correct answer will be given with the key identified as correct

for positive answers (O). The first frame stays on screen for

2000 ms and displays an asterisk, which is realized using a Text

element from the regular Flex library. The second frame stays on

screen until an answer is given. In this example, all XML tags

except the ,Text/. tag are defined by ScriptingRT. (That is also

why the ,Text/. tag has the prefix ‘‘mx:’’, which points to a

previous definition of additional libraries in the opening ,Appli-

cation/. tag, not shown here.) Figure 1 shows an example of the

structure of a complete experiment.

Other building blocks of ScriptingRT studies are special tags for

instructions, feedback, and branching. A full list is given in Table 1.

Except branching, all of these elements can be used without

coding additional ActionScript. More information on the

ScriptingRT library is available in the manual [19]. Additional

capabilities that are neither in the standard nor the ScriptingRT

library can be added by either importing other Flex libraries, or by

writing ActionScript programs that are embedded in the XML

file. ScriptingRT can contain any Flex object, such as text, html-

coded text, vector graphics, images, or sound.

For each answered item, ScriptingRT saves the response time

and whether the response was correct or incorrect. Latency

measurement is implemented with the standard Flex component

flash.utils.Timer, and more specifically the flash.utils.getTimer,

which measures in milliseconds.

ScriptingRT flash files can exchange data with the HTML page

in which they are embedded. After the study is finished, the data

are transmitted to a server that receives them using a PHP script.

The format is fully customizable; additional information can be

appended if programmed (e.g., order of randomized blocks, data

transferred from the HTML page).

ScriptingRT focuses on measuring response latencies to specific

stimulus presentations. Other response formats, such as text or

scales, are available as standard components of Flex and could be

incorporated in ScriptingRT studies. However, instead of adding

other response formats, we rather envision ScriptingRT as one

element of a larger web-based study, where open ended questions

and rating scales that do not require latency measurement are

implemented in HTML, and only the trial presentation is done

with ScriptingRT in Flash. This approach can benefit from

advanced HTML survey software.

One factor within Flash that we do not address empirically here

is the frame rate specified in the Flex file. We used both the default

(24 frames per second) and a modified rate of 60. Our current

recommendation is to use 60 Hz.

In sum, a ScriptingRT study is programmed in Flex, compiled

into a Flash file, and then embedded in an HTML page where it

collects data that are sent back to a server. ScriptingRT studies are

a combination of standard Flex and ScriptingRT-specific func-

tionality for response time studies, and can also contain additional

Flex libraries for special content, as well as additional ActionScript

for special functionality. In combination, these building blocks

provide a programming environment for creating many types of

response latency studies, plus flexibility for more experienced

programmers. The library is ready to be used, and available in

source code. It should be noted that the functionality is under

development and we hope will be continuously extended. A

complete description of the philosophy, syntax, and capabilities of

ScriptingRT is available online [19]. In the remainder of this

paper, we present empirical investigations where we tested

ScriptingRT using online samples, and also in the lab with

independent timing equipment.

Overview of the Current Research

Six studies were run to evaluate the ScriptingRT software and

to compare it to standard software packages. Studies 1 through 3

used hardware to evaluate the precision and accuracy of response

latencies and presentation times in ScriptingRT. Studies 4 through

6 applied the Stroop paradigm, testing the replicability of the

Stroop effect in ScriptingRT and comparing it to other software,

both in the lab (Study 5) and online (Studies 4, 6).

We used a variety of hardware and software across the studies,

and compared the performance of different software versions

where possible. Table 2 gives an overview of the studies.

Ethics Statement
Only Studies 4–6 dealt with human participants. The studies

were conducted in concordance with the Ethics Guidelines issued

in 2012 by the Scientific Commission (Comissão Cientı́fica) of the

hosting institution Centro de Investigação e Intervenção Social,

Lisboa, Portugal (CIS-IUL). These Ethics Guidelines provide a

checklist to decide whether a formal review process is necessary.

This checklist indicated that the current studies were exempt from

formal ethics review because data were 1) collected anonymously

with no pressure to complete, 2) did not involve questions about

undesirable personal characteristics, 3) did not involve participants

from a population of concern, 4) did not involve deception, 5) did

not involve ingesting anything, 6) did not involve invasive

measures, 7) did not collect personally identifying information

(defined as name, IDs, physical or email addresses, or images), and

8) did not collect potentially endangering information.

All experiments were noninvasive, no false information was

provided, and the results were analyzed anonymously. Data were

collected sampling only adults. The participants in Study 4 were

Collecting Response Latencies in Online Research

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e67769

recruited online through a social network, those from Studies 5

and 6 were recruited at a Portuguese university (in person for

Study 5 or through email for Study 6). Thus, all data were

collected inside Portugal, the country of the hosting institution. In

all three studies, participants read the description and purpose of

the study on the initial screen, and were there informed that by

proceeding, they consented to participating, but that they could

withdraw at any stage of the study. In Study 5, which took place in

the laboratory, this was repeated verbally.

Figure 1. Outline of a Stroop study implemented in ScriptingRT. Excerpt from a ScriptingRT source code file implementing a Stroop
paradigm. The tags shown set preferences (tags 1 and 2), create an introductory screen and an instruction screen (3–5) as well as one experimental
block with two items (6–12). Tags 1 and 2 are general Apache Flex components. Tags 9 and 12 also embed a general Flex object, a ,Text/. object
(referenced in the Application tag with the prefix mx). All other tags are part of the ScriptingRT library (referenced in the Application tag).
doi:10.1371/journal.pone.0067769.g001

Table 1. Overview of main tags and attributes introduced by the ScriptingRT library.

Tag Explanation

,WelcomeScreen/. Defines the contents of the first screen, which is equipped with a button to be pressed

,Part/. Creates a block of items and instructions that are not collecting latencies

,Instruction/. Displays an instruction

,TestPart/. Creates a block of items that collect responses and latencies

,Item/. Creates an item that can contain one or more frames

,Frame/. Creates a frame, the basic unit of stimuli presentation

response Attribute of ,Part/. and ,TestPart., defines the way a frame can end. Can be keyboard event, mouse event, or time
event.

positive, negative, noresponse Attributes of ,TestPart/., define expected positive and negative response, and maximum time for answer

scramble Defines way of item randomization in a ,TestPart/.

outputURL, protocolFormatHead,
protocolFormatItem,

Used in the opening ,Application/. tag, define location and formatting of results output

debug Used in the opening ,Application/. tag, displays protocol for debugging at run time

finishedButtonValue Used in the opening ,Application/. tag, sets exit message

,repeat/. Attribute of ,TestPart/., creates frames that are repeated before frames in every item

,Feedback/., ,correct/., ,incorrect/.,
,miss/.

Creates feedback frames to be displayed after each item

,branches/., ,Branch/. Attributes of TestParts, implementing branching between them

doi:10.1371/journal.pone.0067769.t001

Collecting Response Latencies in Online Research

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e67769

Study 1: Comparing ScriptingRT to Other
Software Using Automated Responses with an
Emulated Keyboard

We start by examining how much variability in response times is

introduced by the software ScriptingRT and Flash. Thus, in Study

1, we removed variance due to human variability and kept

differences between trials to a minimum by automatizing the

responses to a single stimulus. For this purpose, we employed an

Arduino Leonardo Microcontroller board that detected the onset

of stimuli on the screen with a light dependent resistor and sent

virtual ‘‘key strokes’’ to the computer, emulating a participant’s

response on a keyboard. The latency of the board’s ‘‘reactions’’

was then measured.

Method
We connected an Arduino Leonardo microcontroller board to a

computer by USB. The board can emulate a computer keyboard

and send key strokes to the computer that are recognized as

coming from a regular keyboard. The Arduino itself was equipped

with a TinkerKit light dependent resistor (LDR) sensor, which was

placed on the screen of a Vaio Core i5 laptop. The Arduino was

programmed such that it checked the state of the LDR

continuously. When the reading surpassed the threshold (i.e. was

brighter than a certain programmed criteria), the Arduino

communicated by USB with the computer, sending a SPACE

key stroke, which appeared as a regular press of the space bar on

the computer.

We programmed a simple task, which presented 100 trials, in

both ScriptingRT and DMDX. The number of trials in this and

the following two studies was derived from the typical cognitive

science study, which has somewhere between 50 and 300 trials. In

each trial, an inter-trial interval with a black screen was followed

by the stimulus, a plain white screen, which remained until the

press of the space bar was registered. The onset of this white screen

was detected by the LDR. The length of time from the display of

the white screen to the registration of the key press was measured

as the latency. We ran the ScriptingRT task three times on the

same laptop: in Chrome 24, Firefox 16, and IE9, all under

Windows 7. All browsers relied on the Adobe Flash plugin 11.5.

Results
The DMDX software set the benchmark in this study. It

registered response rates from the Arduino Leonardo between

6.86 and 8.21 ms after the onset of the stimulus, M = 7.60,

SD = .30. Running ScriptingRT, Chrome detected responses

between 50 and 97 ms later, M = 72.21, SD = 6.84. In IE9,

response times ranged from 52 to 70 ms, M = 60.92, SD = 4.93.

Firefox registered response times between 50 and 90 ms,

M = 64.31, SD = 6.56.

When running t-tests to compare the means, they differed in all

cases, ts.4.13, ps,.001. We compared the standard deviations

with Levene’s tests. They differed significantly between Firefox

and IE9, F(1,198) = 14.54, p,.001, and obviously between

DMDX and the other three measures, but not between Chrome

and the other two browsers (Chrome vs. IE9: F(198) = 2.72,

p = .101).

Discussion
In Study 1 we used a well performing benchmark: DMDX in

combination with an Arduino Leonardo board that detected

stimulus onset with a light sensor and emulated a keyboard press

as a response. DMDX detected this emulated response with a very

low standard deviation of less than half a millisecond.

Not surprisingly, ScriptingRT was less precise. In three

browsers, measured response latencies had ranges between 18

and 47 ms, and their averages differed significantly. On the other

hand, the SDs of these responses stayed below 7 ms in all three

browsers. That value is comparable to many regular keyboards

and standard reaction time software. In addition, the constant

added by measuring in ScriptingRT was about 60 ms. This result

suggests that researchers using ScriptingRT should thus focus

primarily on differences between RTs and be cautious when

interpreting absolute latencies.

For researchers using ScriptingRT, knowing the size and the

distribution of the offset is useful. In addition, it is instructive to

know how this offset is produced. Several separate delays may feed

into it. First, ScriptingRT starts measuring the latency as soon as

the command to display the stimulus is issued, but the actual

presentation on the screen might be delayed. A second possible

delay occurs between the registration of the key press by the

operating system and the activation of a key press event in the

Flash software. A third delay may occur between the firing of that

event and the recording of a time stamp in ScriptingRT.

We conclude that not surprisingly, ScriptingRT is less precise in

the measurement of latencies than a natively run specialized

response latency software program. Furthermore, different brows-

ers result in somewhat different average latencies. Nevertheless,

the offset produced by ScriptingRT seems acceptable.

Table 2. Overview of the Studies.

Study Data Collection Hardware and Software

1 Timing study with external microcontroller Arduino Leonardo board connected to Sony Vaio Core i5 laptop, ScriptingRT
running in various browsers, and DMDX

2 Timing study with external microcontroller and solenoid Arduino Uno board interacting with Intel Core i7 desktop computer,
ScriptingRT and various other packages

3 Timing study with external microcontroller measuring
presentation times

Arduino Uno board measuring Sony Vaio Core i5 laptop, ScriptingRT in Adobe
Flash player and Flash plugin in Firefox, and DMDX

4 Online data collection with human participants Various hardware and flash/browser software programs used by participants

5 Laboratory data collection with human participants Sony Vaio Core i5 laptop, ScriptingRT running in Firefox with Adobe Flash
plugin

6 Online data collection with human participants Various hardware used by participants

doi:10.1371/journal.pone.0067769.t002

Collecting Response Latencies in Online Research

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e67769

Study 2: Comparing ScriptingRT to Other
Software Using Automated Responses with a
Keyboard

Study 1 used an emulated keyboard, and thus could not

compare performance with a regular keyboard. That was the goal

of Study 2. For this study, we built a machine that detected the

appearance of a stimulus (a white screen following a black screen)

with a photodiode, and then pressed a response button on an

actual keyboard with a solenoid. It thus simulated a human

participant in a reaction time task with the aim of getting constant

external responses. With this setup, we compared various software

packages to ScriptingRT using a standard keyboard [18,20].

The same machine and procedure was used in previous work on

response boxes by our laboratory [21]. In those tests, it was found

that both a PST serial response box (connected to the serial port)

and a new response device based on an Arduino microcontroller

board resulted in standard deviations between 1 and 1.4 ms. This

confirms that the machine used here had a rather low variance in

its answers. The average reaction time as measured by E-Prime

[22] was about 50 ms. This response time was a combination of

the time the robot needed to register a change and to fire the

solenoid, the pure travel time of the solenoid to the key, plus the

time Windows and the software required to register the button

press.

Method
A simple test experiment was programmed in ScriptingRT, E-

Prime 2.0.10.178, Inquisit 3.0 [23], DMDX 4 [5], and SuperLab

4.0 [24]. Each trial consisted of a black screen presented for

2000 ms, followed by a white screen, representing the stimulus to

which the robot should respond. The white screen remained until

a response was detected. As response devices, we used a Microsoft

keyboard (model 1047 KU-0459) or a PST Serial Response Box

Model 200 (the latter only with E-Prime). Each experiment

consisted of 100 trials, and we repeated each two times, resulting

in 200 trials. For the sake of simplicity, in this paper we analyzed

all 200 trials combined.

All tests were run on the same desktop computer (Intel Core i7,

3.4GHz) with an Nvidia GeForce GTX 560 graphics processor,

running at 60 Hz frame rate, using Windows 7 (64-bit), on an Asus

VE278 flat screen. The display resolution was set to 192061080

pixels, with a refresh rate of 60 Hz and 32 bit of true colors,

maximum brightness.

The machine was built using a photodiode to sense stimulus

onset, a solenoid to press the button, and an Arduino micro-

controller board to connect the two. The photodiode was an

Osram BPW 34, the solenoid an Intertec ITS-lz-2560 d-12vdc,

and the controller an Arduino Uno, based on an Atmel

ATmega328, running at 16 MHz. The Arduino was programmed

to consecutively read the input from the photodiode. When a

change of brightness was detected on two consecutive readings, the

solenoid was fired, pressing a keyboard button positioned below it,

and then turned off again after the next change. During the

experiment, the machine was only connected to a power source;

there was no communication between the computer running the

study and the machine [34].

Results
Table 3 summarizes the response latencies obtained using the

machine, for each software and periphery. The benchmark here is

the performance using the E-Prime PST serial response box

(PreRelease = 0; we also ran the same test with PreRelease

= 2000, which lead to worse performance. In E-Prime, PreRelease

instructs the computer to prepare the next display while still

executing the current display. In theory, setting PreRelease to the

duration used to present the current display should allow the

fastest performance, and this is thus the default in the most recent

version of E-Prime. We do not know the reasons for this

unexpected result in E-Prime. These data are identical those in

Schubert et al. [21])

E-Prime in combination with a keyboard (and PreRelease

= 2000), Inquisit, DMDX and also the Web version of Inquisit all

register somewhat longer overall averages than does E-Prime with

a response box, but with acceptable SDs between 2.7 and 4 ms.

Surprisingly, both E-Prime when using a keyboard and no

PreRelease and Superlab produced higher averages and SDs

larger than 4. ScriptingRT itself registered the machine’s response

latencies with an average of 93 ms and a SD of 4.21 – about 36 ms

slower than E-Prime using the response box (the shortest reaction

time), and with about three times the SD.

We analyzed these reaction times by submitting them to a

mixed model with software as a fixed factor. (Note that the mixed

model is in this case mathematically identical to a General Linear

Model.) This model showed a highly significant effect of software

on the average latency, F(2786) = 2374, p,.001. We used the

estimated marginal means to compare the average latency

measured by ScriptingRT to each of the other software programs

(using SIDAK corrections). The average of ScriptingRT’s

measurements was significantly different from every other

software, all ps,.001. Thus, it was significantly slower than all,

except Superlab, which it was significantly faster than. We also

computed whether the standard deviations of ScriptingRT’s

measures differed from the SDs produced by the other software

packages, by computing Levene’s tests comparing the respective

variances. The last two columns of Table 3 show that

ScriptingRT’s SD is significantly larger than those of every other

program except Superlab and E-Prime in one configuration.

Discussion
Study 2 evaluated ScriptingRT’s performance when measuring

reaction times in comparison to other software packages. For this

purpose, we created a machine that pressed a button in response

to a stimulus onset. Previous tests confirmed that measurements

Table 3. Means and SDs of measured response times (in ms)
by software (Study 2).

Descriptives
Comparison of
Variances

Software M SD F (1,198) p

ScriptingRT 92.80 4.21 – –

E-Prime SRB (PR = 0) 56.91 1.37 131.89 ,.001

E-prime SRB (PR = 2000) 56.47 1.85 102.56 ,.001

E-prime (PR = 0) 84.58 6.25 12.84 ,.001

E-prime (PR = 2000) 70.96 3.30 7.57 .006

DMDX 68.24 3.18 10.75 .001

Inquisit 70.05 3.20 9.78 .002

Superlab 98.18 4.17 ,1 .822

InquisitWeb 66.21 2.74 24.04 ,.001

Note. Last two columns show comparisons of each variance to the variance
measured by ScriptingRT (first row). All measures used a keyboard except those
labelled SRB, indicating Serial Response Box. PR = PreRelease in E-Prime.
doi:10.1371/journal.pone.0067769.t003

Collecting Response Latencies in Online Research

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e67769

with this machine produce standard deviations below 1.5 ms with

precise hard- and software [21].

ScriptingRT resulted in both longer response latencies and a

larger standard deviation than all other packages except SuperLab

and E-Prime in one configuration. Nevertheless, in absolute terms,

the SD of 4.21 is comparable to what was standard for keyboards

for a long time [16]. It is thus clear that any test with ScriptingRT

should be well powered and used to assess primarily paradigms

with a large effect size. At the same time, the differences between

the other tests show that differences are also present between

different native software packages (e.g, Superlab vs. DMDX), or

can be due to specifics of programming (e.g., the pre-release in E-

Prime) and hardware (keyboard vs. response box). Thus,

researchers should always be aware that their choice of software,

programming, and hardware results in a specific amount of error

variance that often can only be evaluated through empirical

testing.

Study 3: Measuring Refresh Rate in ScriptingRT

In addition to the measurement performance of ScriptingRT, it

is useful to know how precise the timing of presentations can be.

For this purpose, we programmed varied duration, quickly

changing presentations in both ScriptingRT and DMDX, and

measured the duration of each presentation with an external

photodiode. As we anticipate that ScriptingRT will not be used for

millisecond-accurate or subliminal presentations, but rather with

presentations that have a minimum of about 100 ms, this was our

lowest presentation time.

Method
We programmed ScriptingRT and DMDX (as a comparison)

scripts that switched between a white and a black screen 250 times,

with varying presentation durations. In ScriptingRT screen

presentation durations were 100, 200, or 300 ms. We ran these

with the standalone Flash player and also with the plugin running

in Firefox. The timing method used in DMDX is based on units of

so-called tics – one refresh cycle of the screen. We used a screen

with 60 Hz refresh rate, which resulted in single tics that were

16.664 ms long. Each screen was displayed for 1, 2, 3, 4, 5, or 10

tics. All tests were done on a Vaio Core i5 Laptop. The

ScriptingRT tasks ran with a display resolution of 13666768

pixels.

To measure the duration of each black and white screen, we

used the photodiode component of the machine used in Study 2.

The Arduino microcontroller to which the photodiode was

connected registered a change in brightness when two consecutive

readings indicated it, and saved the duration in ms between the

changes in its internal memory. It did this for 250 changes, and

then sent all measurements via the USB connection to the

attached PC. In other words, the Arduino measured and recorded

the measurements stand-alone and offline during the test, and only

transmitted them afterwards.

Results
Table 4 summarizes the results. The first six lines confirm that

the apparatus measured presentation duration rather precisely and

with low standard deviations: We obtained absolute differences

between 0.03 and 0.21 ms between how long DMDX and the

screen ideally should have presented for and what was measured,

and SDs varied between 1.11 and 2.81 ms.

ScriptingRT produced a rather constant lengthening of about

24 ms in its presentation duration. This was independent of the

programmed presentation duration. Likewise, there was a

standard deviation of around 11 ms that did not depend on the

programmed duration. The plugin and the standalone player did

not differ.

Discussion
In contrast to specialized experimentation software (DMDX),

Flash/ScriptingRT adds a constant duration of about 24 ms to

each presentation, and the standard deviation of the measured

presentation duration was about 11 ms, or 5 times higher. Note

that this test switched the screen consecutively between white and

black about 250 times, which is probably a rather straining test.

Note also that these results might be specific to the display monitor

used in this study. Nevertheless, the conclusion is that stimulus

presentations in Flash/ScriptingRT cannot be relied upon to be

more precise than the above numbers, and that the choice of

paradigm should follow these constraints.

Studies 4–6 Overview: Stroop Task

Studies 1–3 outlined the basic capabilities of ScriptingRT,

leading to the conclusion that it will be safely replicating robust

paradigms that do not require very short presentation times. The

following three studies apply such a paradigm to evaluate and

compare ScriptingRT to various other software packages.

We adapted a standard color Stroop task for our evaluation

purposes [25]. This is one of the most robust findings in cognitive

psychology [26]. We used the version employed by Jostmann and

Koole [23].

Method
We created a Portuguese version of the Stroop task. The stimuli

were either words (vermelho = red, and azul = blue) or a neutral

letter string (XXXX), that appeared either in red or blue script on

a white background. Each color word was presented in both colors

ten times, and the neutral string was presented in each color ten

times, resulting in a total of 60 trials. Trial order was randomized.

In addition, there were 10 practice trials. Congruent trials were

those where the word named the color it was written in.

Incongruent trials were those where the word named the other

color.

Each trial consisted of a blank frame (2000 ms), followed by a

frame with a central fixation cross ‘‘+’’ (1000 ms), followed by the

Table 4. Presentation times by DMDX and ScriptingRT (in ms,
Study 3).

Software Target Time M SD

DMDX 16.66 (1 tic) 16.63 1.11

33.33 (2 tics) 33.20 2.56

49.99 (3 tics) 49.78 2.17

66.56 (4 tics) 66.42 2.20

83.32 (5 tics) 83.20 1.53

166.64 (10 tics) 166.43 2.81

Flash Standalone Player, 60 Hz refresh rate 100 124.57 10.86

200 223.43 11.70

300 323.64 10.45

Flash plugin in Firefox, 24 Hz refresh rate 100 124.84 11.45

Note. Measured with an Arduino connected to a photodiode, for 250 switches
between a black and a white screen (Study 3).
doi:10.1371/journal.pone.0067769.t004

Collecting Response Latencies in Online Research

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e67769

target, which stayed on screen until a response was detected.

Participants were instructed to press Q if the word was written in

red and P if was printed in blue. In order to reduce additional

variance, the response keys were not counterbalanced.

Analytical strategy
Jostmann & Koole [23] focused on the Stroop interference

alone (i.e., the difference between incongruent and neutral trials)

for theoretical reasons. We decided to focus our analyses on the

combined interference and facilitation effect (the comparison of

congruent and incongruent trials) because a) we are not interested

in the difference between interference and facilitation here, b) in

preliminary analyses, facilitation effects were much smaller and

mostly insignificant, while interference effects were strong and

always significant [27]. When comparing congruent and incon-

gruent trials, it is possible to include judged color as another factor

(which in our case is confounded with which hand is used to

answer). Preliminary analyses showed that this factor did not

explain a significant amount of variance here, and we thus also

dropped it from our reports for ease of presentation. (Analyses

including neutral trials and color as an additional factors can be

requested from the first author.)

We report the significance of each statistical test, the 95%

confidence interval for the difference, and an effect size. Both the

significance tests and confidence intervals were computed by

submitting the data to a mixed model (also known as hierarchical

linear model) in SPSS 20. In mixed models, individual response

latencies are the units of analyses, instead of averaging them to

create composite scores, which is the traditional practice. Mixed

models have recently been recommended over the standard

practice because of more precise and often more conservative

testing, and because of enhanced modeling options [28,29].

However, effect size estimation remains difficult in mixed models.

For this reason, after reporting test and confidence intervals

estimated from the mixed model, we then averaged response

latencies for each participant and computed effect sizes in the

traditional manner to report here.

In order to have an a priori estimate of the effect size of the

Stroop effect, we computed a weighted average of the Stroop

interference Jostmann and Koole [23] reported in their Study 1: a

difference of 85 ms with an SD of 84 ms, a large effect. To

replicate such an effect at a significance level a,.05 and with a test

power of .80, one would need ten participants. The combined

effect of facilitation and interference, which we are going to test, is

likely larger. We sampled more than ten participants in each study

to assure sufficient power.

Study 4: Replicating Stroop with ScriptingRT
online

Method
Overview and design. Study 4 was conducted online.

Participants performed the Stroop task programmed in Scrip-

tingRT with the following design: 3 (target word: blue vs. red vs.

xxxx, within) 62 (color: red vs. blue, within) design.

Participants. All participants volunteered to take part in the

experiment. Recruiting was done on Facebook from a Portuguese

community. After removing cases with missing values, 19

participants remained in the sample (Age: M = 28.3, SD = 6.3).

Materials and procedure. The Flash applet running the

ScriptingRT task was 600 pixels high and 800 pixels wide. The

frame rate was set to the Flex/Flash default of 24 Hz. The flash

applet was embedded in an HTML page. Initial survey

instructions requested that participants switch the browser into

full screen mode and explained the task: particularly to answer as

fast as possible, but also as correctly as possible.

Results
Response latencies. All participants answered more than 48

of the 60 trials correctly. Incorrect responses and latencies above

1600 ms or below 300 ms (together 5% of all trials) were removed

from the analyses.

We submitted the response latencies to a mixed model, entering

congruency as a fixed effect, and participants as the grouping

variable. Congruent trials were answered faster (M = 577.32,

SD = 195.58) than incongruent trials (M = 632.59, SD = 246.26),

showing the classical Stroop effect. This difference was statistically

significant, F(1,702) = 18.81, p,.001.

The traditional way to analyse these data would be to average

trials of one type for each participant, and then to subject them to

a GLM or equivalent analysis. For comparison purposes, we did

this for this sample, averaging for each participant congruent and

incongruent trials into two separate scores. When we tested this as

a repeated factor in a GLM, we found that congruency had a

significant effect, F(1,18) = 9.18, p = .007.

We estimated confidence intervals for this difference with the/

EMMEANS … COMPARE command in SPSS Mixed Models.

The estimated mean difference of 59.92 has a confidence interval

from 32.79 to 87.05 (Figure 2). After averaging the response

latencies for each participant and condition, the effect size for

congruency was estimated as gp
2 = .338.

Discussion
The goal of Study 4 was to validate ScriptingRT with a well

know paradigm, the Stroop Effect. Participants had to decide

which color a target series of letters was written in, responding to

60 trials. The results showed that responses on incongruent trials

were about 60 ms slower than those on congruent trials, and that

ScriptingRT measured this difference precisely enough to be

significant in the sample of 19 participants.

Study 5: Comparing ScriptingRT and DMDX in the
Laboratory

Study 5 tested the precision of ScriptingRT by comparing it to

DMDX [5] with both running on the same computer in a

controlled laboratory setting.

Method
Overview and design. All participants completed a Stroop

task twice on the same PC, once in ScriptingRT and once in

DMDX. The order of software was counterbalanced. The

complete design was thus 3 (targets words, within) 62 (color,

within) 62 (software: ScriptingRT vs. DMDX, within) 62 (first

task: DMDX vs. ScriptingRT, between).

Participants. Nineteen undergraduates students from a

Portuguese university took part in the experiment and were

compensated with a 5 J gift voucher (Age: M = 25.3, SD = 9.1).

The data from one participant had to be excluded because 27

responses were either incorrect or outside of the response window.

Thus, data from 18 participants were analyzed.

Materials and procedure. Participants were informed that

we were testing several software packages and therefore they had

to perform the same task twice. Between the two versions of the

task there was a short break. Participants were run individually.

The Stroop task was programmed as before and conducted in

Portuguese. The DMDX procedure matched the one in

ScriptingRT as closely as possible. In ScriptingRT, the size of

Collecting Response Latencies in Online Research

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e67769

the Flash app in the browser was set to 13666768 pixels, with a

frame rate of 24 Hz, run in Mozilla Firefox with the Adobe Flash

plugin. In DMDX, the task was displayed with the same

resolution, but DMDX used the standard frame rate of 60 Hz.

This study was run in the laboratory on Sony Vaio Core i5

laptops, running Windows 7 (64-bit). These laptops have 13 inch

screens, with a refresh rate of 60 Hz.

Results
We first removed incorrect trials and trials with latencies above

1600 ms and below 300 ms (a total of 4.03%).

We submitted the individual response latencies to a mixed

model, with congruency, software, order of software, and all their

interactions as fixed effects, and participant as the grouping

variable.

Congruent trials were faster than incongruent trials in both

ScriptingRT (M = 629.66, SD = 234.17 and M = 729.04,

SD = 301.44, respectively) and DMDX (M = 504.85, SD = 172.98

and M = 565.73, SD = 229.88, respectively). The main effect of

congruency was significant in the mixed model, F(1,1358) = 21.23,

p,.001. In addition, there was a main effect of software,

F(1,1358) = 58.47, p,.001. DMDX recorded responses as faster,

M = 551.98, SD = 201.38, than ScriptingRT did, M = 631.63,

SD = 243.42. Importantly, the congruency effect was not moder-

ated by software, F,1.

In addition there were some effects that are irrelevant given the

present purposes. Software and order interacted, indicating that

the second software run produced faster answers (presumably

because of practice). We also found a moderation of the overall

Stroop effect by which software was run first, which is most likely a

randomization artifact.

Turning to confidence intervals of the estimated mean

differences, we found that the difference due to congruency in

ScriptingRT was 61.35, ranging from 33.96 to 88.75 (Figure 2).

Responses in DMDX resulted in a smaller difference of 48.96,

ranging from 21.59 to 76.33.

Effect sizes were computed after averaging latencies, for each

participant, software, and congruency separately. We used two

separate GLMs with congruency as a repeated measure. The effect

size for congruency was gp
2 = .37 in ScriptingRT and gp

2 = .24 in

DMDX.

Discussion
Study 5 compared ScriptingRT and DMDX, using again the

classic Stroop effect. All participants performed the task in both

programs in the laboratory on the same computer. We found that

the size of the Stroop effect was not affected by which software was

used. If there was a difference at all, ScriptingRT showed larger

interference effects than did DMDX. However, that ScriptingRT

indicated significantly longer response latencies. The difference is

close to the differences observed in Studies 1 and 2. Note that it

seems impossible to state exactly how much measuring in Flash

with ScriptingRT adds as a constant to the latency, as this seems to

differ between browsers (Study 1) and presumably also depending

on hardware [18].

Figure 2. Stroop effects and confidence intervals. Estimated mean Stroop effect (average difference between response latencies in
incongruent and congruent trials in ms) and their 95% confidence intervals, obtained in three studies with five samples. Studies 4 and 6 were run
online, Study 5 in the laboratory. Software varied within participants in Studies 5, and between participants in Study 6.
doi:10.1371/journal.pone.0067769.g002

Collecting Response Latencies in Online Research

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e67769

Study 6: Comparing ScriptingRT to Inquisit Web
Edition, Running Online

Method
Overview and design. Study 6 went beyond the previous

studies by comparing ScriptingRT to the only currently available

commercial solution for online data collection, namely Inquisit

Web Edition. We ran this study online, directing voluntary

participants to a website and assigning them randomly to either a

ScriptingRT or an Inquisit Web Edition version of the same

Stroop task that was used before. Software thus varied between

participants in this study.

Participants
Undergraduates of a Portuguese university were contacted by e-

mail and asked to perform the experiment voluntarily. The E-mail

contained a brief explanation of the experiment’s goal (not

mentioning interference) and a link to the web page. Each

participant was assigned randomly to either ScriptingRT or

Inquisit. Data from 43 participants were collected, but one had

technical problems, leaving 42 in the final sample; 18 performed

the task in Inquisit and 24 in ScriptingRT (Age: M = 25.8

SD = 7.78).

Materials and procedure. ScriptingRT used a resolution of

6006800 pixels. The frame rate in Flex was set to 60 Hz. The task

was programmed in Inquisit and deployed using the web edition

version. The experiment ran on the participant’s computer with

their specific resolution and frame rate.

Results
Again, we first removed trials with incorrect responses and

responses outside the 300 to 1600 ms time window (in total 6.9%).

Individual latencies were subjected to a mixed model with

software, congruency, and their interaction as fixed factors, and

participant as grouping variable.

Congruent trials were faster than incongruent trials in both

ScriptingRT (M = 569.16, SD = 224.79 and M = 630.10,

SD = 269.74) and Inquisit (M = 526.58, SD = 184.26 and

M = 576.24, SD = 250.66). The main effect of congruency was

significant, F(1,1520) = 45.40, p,.001. Software had neither a

main effect, nor did it interact with the congruency effect, both

Fs,1.

When we estimated means and confidence intervals, the

congruency effect in ScriptingRT was estimated as 69.57, with

an interval from 46.19 to 92.94. In Inquisit, the congruency effect

was estimated as 51.82, with an interval from 25.32 to 78.32

(Figure 2).

We again averaged latencies for participants to two scores for

congruent and incongruent trials, and then ran two GLMs to

estimate effect sizes. The effect size in ScriptingRT was gp
2 = .33,

and in Inquisit gp
2 = .28.

Discussion
In an online study, we compared ScriptingRT to the only

commercially available software that measures response latencies

online. Again, the Stroop effect replicated in ScriptingRT, and

again we found no difference from another software, this time

Inquisit Web Edition. The latencies measured by ScriptingRT

were again somewhat longer, but the difference was not significant

here. Note that this study used a between subjects design, which

added more error variance to the between software comparison.

General Discussion

ScriptingRT is an open source software framework for

developing online response latency studies running in Adobe

Flash. ScriptingRT studies are programmed in Apache Flex, with

a combination of four elements: (1) ScriptingRT-provided

components (in MXML) that create the building blocks of a

latency study (e.g., blocks, items, and frames), (2) standard Flex

components (in MXML) that describe general content such as text,

graphics, images, or sound, (3) additional Flex components that

add custom components, and (4) programs (in ActionScript) that

add custom functionality.

Flash has been used to conduct response latency studies before,

notably using the IAT [7]. In the current paper, we show that the

precision and accuracy provided by Flash in the form of

ScriptingRT is not perfect, but suitable for many paradigms. As

Figure 2 shows, using ScriptingRT, we replicated in three studies

the classic Stroop interference effect with samples of around 20

participants. In two of those studies, we compared the combined

interference and facilitation effect obtained in ScriptingRT to the

same effect in a different software (DMDX, Inquisit Web Edition),

without finding a significant difference. Figure 2 also shows that all

five computed Stroop differences fall within the 95% confidence

intervals of all other studies and conditions, suggesting a solid

replication of the effect across software. Notably, when computing

effect sizes, we found somewhat larger effects in ScriptingRT in all

three comparison studies. Even though the differences between

software were never significant, this assures that we did not simply

have too little power in the tests of an inferior software, when

measuring ScriptingRT against the competitors.

The solid replication and the missing significant differences

across software might be surprising given the offsets documented

in Studies 1–3. To understand this, one should keep in mind that

the delays have a random distribution with a standard deviation

that is much smaller than the studied effect itself. In addition, other

sources of error variance, in particular due to participants, are

distributed randomly. In the current paper, we did not address the

question of how smaller experimental effects may hold up in the

same comparison. In other words, can we expect to replicate

response latency differences around 20 or even 10 ms? It can be

expected that the smaller the effect, the more problematic the

noise introduced by ScriptingRT (and online experimentation

more generally). Both pilot testing and simulation can be used to

estimate the impact on a particular paradigm with given number

of trials and variance in materials. For researchers interested in

using ScriptingRT to study smaller effects, we recommend to a)

include conditions that replicate well known effects as a

comparison condition, and b) use pilot studies to estimate effect

sizes and required sample size for sufficient power.

Tests using special hardware designed to register the precise

timing of stimulus presentations found evidence that as a stimulus

presentation vehicle, Flash is not precise to the millisecond; we

found constant lags of about 24 ms using the Flash-based

ScriptingRT software. We also saw that compared to standard

software packages, the standard deviation of the measures was

larger; but because these deviations were below 5 ms, it still seems

to be useful for most purposes. This amount of additional variance

is comparable to what was standard for many years when regular

keyboards were used. Finally, ScriptingRT overestimates the

response latencies by a constant amount of about 60 ms. These

issues must be taken into account when planning a study using

ScriptingRT and interpreting results.

Importantly, variance added by measuring response latencies in

Flash rather than a native software is only one source of added

Collecting Response Latencies in Online Research

PLOS ONE | www.plosone.org 10 June 2013 | Volume 8 | Issue 6 | e67769

variance when collecting data online. In addition, it is quite likely

that different implementations (e.g., Flash plugin vs. Flash support

integrated into Chrome), different operating systems (e.g.,

Windows vs. OS X), additional programs running on the

computer, and the quality of the hardware, can influence both

the presentation timing and the time measurement, and will add

error variance that is indistinguishable from variance due to

interindividual differences. The present data do not yet allow

conclusions on this beyond the differences found in Study 1, but as

a precaution, any online data collection project should collect as

much technical data on the client machine as possible. We will

continue with formal tests to find out more about these variances.

With the current evaluation we show that ScriptingRT can

replicate strong effects. What remains a task for future work is to

provide exact guidelines for a priori judgments of how added noise

in latency measures, combined with variability by assessing more

diverse samples, will affect test power and the occurrence of false

positive findings.

ScriptingRT can be used in its current form to implement many

different paradigms, and it is under further development. Its

source code is available, and we invite contributions to it. We will

actively continue to develop it, document programmed enhance-

ments online, and empirically test them.

Conclusion

ScriptingRT is a software library that allows programming

response latency studies using Apache Flex and Adobe Flash.

ScriptingRT offers the building blocks for typical response latency

paradigms in XML, while additional functionality can be added

with programming a scripting language. The testing reported

herein suggests that it is, in its present form, a viable software for

using standard response latency paradigms online. Our evidence

suggests that for a robust paradigm like Stroop, ScriptingRT is

comparable to the other available options (i.e., Java, and HTML/

JavaScript, and Inquisit Web Edition).

Future research will ideally run studies with a variety of software

in a variety of environments, for instance using Flash and

JavaScript to access large samples, native software running on a

desktop computer and Java to get more precise measures, and

accompanying replications in the lab with precise equipment. We

see Flash and ScriptingRT as an important component in this mix,

because it is free and accessible, and thus allows smaller labs to run

large studies.

We contend that running response latency studies online can

contribute to overcoming a number of problems that trouble

current psychological research: First, many studies have low

power. Here, easy access to participants online can help [15,30],

even though power will be slightly decreased by the additional

noise from using Flash compared to native PC software. Second,

many studies are conducted by sampling only from Western,

educated, industrialized, rich, and democratic societies [31].

Running online naturally restricts sampling to educated and

industrialized populations that have access to computers and the

Internet, but it may go a long way towards getting more cultural

variability into cognitive and social science studies. Finally,

replication is becoming increasingly important in psychological

research [32,33]. Response latency studies may be especially

difficult to replicate because their material is often programmed in

proprietary software, and not easily shareable. ScriptingRT is

completely open source, and its source files are simple text, and

thus easily shareable.

ScriptingRT is already being used by various researchers to run

studies. We believe it is quite accessible for the average researcher.

Because ScriptingRT is an open source software program,

developed to be used in conjunction with other open source

programs, we look forward to its growth in many directions, with

wide applications. The results obtained and reported in this article

and the expansion possibilities allowed by the software’s open

source nature, make us confident that ScriptingRT will gain

researchers’ interest and we hope that its usage will be widespread.

Acknowledgments

We thank Frank Friedmann for programming ScriptingRT, Gonçalo

Paiva, Pedro Antunes, João Fonseca, and Robert Richards for their help

with building the photodiode and solenoid hardware, and Yoav Bar-Anan

for helpful comments on this manuscript.

Author Contributions

Conceived and designed the experiments: TWS CM ECC DL. Performed

the experiments: TWS CM. Analyzed the data: TWS CM. Contributed

reagents/materials/analysis tools: TWS. Wrote the paper: TWS CM ECC

DL.

References

1. Kraut R, Olson J, Banaji M, Bruckman A, Cohen J, et al. (2004) Psychological

research online: Report of Board of Scientific Affairs’ Advisory Group on the

conduct of research on the Internet. Am Psychol 59: 105–117. doi:10.1037/

0003-066X.59.2.105.

2. Fraley RC (2007) Using the Internet for personality research: What can be done,

how to do it, and some concerns. In: Robins RW, Fraley RC, Krueger RF,

editors. Handbook of research methods in personality psychology. New York,

NY, US: Guilford Press. 130–148.

3. Sargis EG, Skitka LJ (2012) The Internet as psychological laboratory revisited:

Best practices, challenges, and solutions. In: Amichai-Hamburger Y, editor. The

Internet as psychological laboratory revisited: Best practices, challenges, and

solutions (2nd ed.). Oxford University Press. 253–270.

4. Apache Flex (2013) Available: http://flex.apache.org/.Accessed 2013 May 1.

5. Forster KI, Forster JC (2003) DMDX: A Windows display program with

millisecond accuracy. Behav Res Methods Instrum Comput 35: 116–124.

6. Eichstaedt J (2001) An inaccurate-timing filter for reaction time measurement by

JAVA applets implementing Internet-based experiments. Behav Res Methods

Instrum Comput 33: 179–186.

7. Nosek BA, Banaji M, Greenwald AG (2002) Harvesting implicit group attitudes

and beliefs from a demonstration web site. Group Dyn 6: 101–115.

doi:10.1037//1089-2699.6.1.101.

8. Keller F, Gunasekharan S, Mayo N, Corley M (2009) Timing accuracy of Web

experiments: a case study using the WebExp software package. Behav Res

Methods 41: 1–12. doi:10.3758/BRM.41.1.12.

9. Von Bastian CC, Locher A, Ruflin M (2013) Tatool: A Java-based open-source

programming framework for psychological studies. Behav Res Methods 45: 108–

115. doi:10.3758/s13428-012-0224-y.

10. Project Implicit (2011). Available: https://implicit.harvard.edu.Accessed 2013

May 1.

11. Reimers S, Stewart N (2007) Adobe Flash as a medium for online

experimentation: A test of reaction time measurement capabilities. Behav Res

Methods 39: 365–370.

12. Mason W (2011) Open-source, Web-based IAT. Available: http://github.com/

winteram/IAT. Accessed 2013 May 1.

13. Zwaan RA, Pecher D (2012) Revisiting mental simulation in language

comprehension: six replication attempts. PloS ONE 7: e51382. doi:10.1371/

journal.pone.0051382.

14. Crump MJC, McDonnell JV, Gureckis TM (2013) Evaluating Amazon’s

Mechanical Turk as a tool for experimental behavioral research. PLoS ONE 8:

e57410. doi:10.1371/journal.pone.0057410.

15. Buhrmester M, Kwang T, Gosling SD (2011) Amazon’s Mechanical Turk: A

new source of inexpensive, yet high-quality, data? Perspect Psychol Sci 6: 3–5.

doi:10.1177/1745691610393980.

16. Plant RR, Turner G (2009) Millisecond precision psychological research in a

world of commodity computers: New hardware, new problems? Behav Res

Methods 41: 598–614. doi:10.3758/BRM.41.3.598.

17. Plant RR, Hammond N, Whitehouse T (2003) How choice of mouse may affect

response timing in psychological studies. Behav Res Methods Instrum Comput

35: 276–284.

Collecting Response Latencies in Online Research

PLOS ONE | www.plosone.org 11 June 2013 | Volume 8 | Issue 6 | e67769

18. Neath I, Earle A, Hallett D, Surprenant AM (2011) Response time accuracy in

Apple Macintosh computers. Behav Res Methods 43: 353–362. doi:10.3758/
s13428-011-0069-9.

19. Schubert TW (2012) ScriptingRT. Available: http://reactiontimes.wordpress.

com/scriptingrt/. Accessed 2013 May 1.
20. Forster JC (2012) DMDX Help Input. Available: http://www.u.arizona.edu/

j̃forster/dmdx/help/dmdxhinput.htm. Accessed 2013 Aug 16.
21. Schubert TW, D9Ausilio A, Canto R (2013) Using Arduino microcontroller

boards to measure response latencies. Behav Res Methods. doi:10.3758/s13428-

013-0336-z.
22. E-Prime (2012) Computer software. Pittsburth, PA: Psychology Software Tools.

23. Inquisit (2011) Computer software. Seattle, WA: Millisecond Software.
24. SuperLab (2011). Computer software. San Pedro, CA: Cedrus Corporation.

25. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol
18: 643–662.

26. MacLeod CM (1991) Half a century of research on the Stroop effect: an

integrative review. Psychol Bull 109: 163–203.
27. Jostmann NB, Koole SL (2007) On the regulation of cognitive control: Action

orientation moderates the impact of high demands in Stroop interference tasks.
J Exp Psychol Gen 136: 593–609. doi:10.1037/0096-3445.136.4.593.

28. Hoffman L, Rovine MJ (2007) Multilevel models for the experimental

psychologist: foundations and illustrative examples. Behav Res Methods 39:

101–117.

29. Judd CM, Westfall J, Kenny DA (2012) Treating stimuli as a random factor in

social psychology: A new and comprehensive solution to a pervasive but largely

ignored problem. J Pers Soc Psychol 103: 54–69. doi:10.1037/a0028347.

30. Mason W, Suri S (2012) Conducting behavioral research on Amazon’s

Mechanical Turk. Behav Res Methods 44: 1–23. doi:10.3758/s13428-011-

0124-6.

31. Henrich J, Heine SJ, Norenzayan A (2010) The weirdest people in the world?

Behav Brain Sci 33: 61–135. doi:10.1017/S0140525X0999152X.

32. Asendorpf JB, Conner M, De Fruyt F, De Houwer J, Denissen JJA, et al. (2013)

Recommendations for increasing replicability in psychology. Eur J Pers 27: 108–

119. doi: 10.1002/per.1919.

33. Pashler H, Wagenmakers EJ (2012) Editors’ Introduction to the Special Section

on Replicability in Psychological Science: A Crisis of Confidence? Perspect

Psychol Sci 7: 528–530. doi:10.1177/1745691612465253.

34. Schubert TW (2012) Electro-Mechanical Turk. Available: http://reactiontimes.

wordpress.com/electro-mechanical-turk/. Accessed 2012 Oct 30.

Collecting Response Latencies in Online Research

PLOS ONE | www.plosone.org 12 June 2013 | Volume 8 | Issue 6 | e67769

