UNIVERSITY OF OSLO
Department of Informatics

A Comparison of
Runtime Assertion
Checking and Theorem
Proving for Concurrent
and Distributed
Systems

Research Report 435

Crystal Chang Din
Olaf Owe
Richard Bubel

[SBN 978-82-7368-400-4
[SSN 0806-3036

November 2013

A Comparison of Runtime Assertion Checking
and Theorem Proving for Concurrent and
Distributed Systems

Crystal Chang Din *!, Olaf Owe ™, and Richard Bubel *?2

1University of Oslo, Norway
2Technische Universitat Darmstadt, Germany

Abstract

We investigate the usage of a history-based specification approach for
concurrent and distributed systems. In particular, we compare two ap-
proaches on checking that those systems behave according to their specifi-
cation. Concretely, we apply runtime assertion checking and static deduc-
tive verification on two small case studies to detect specification violations,
respectively to ensure that the system follows its specifications. We eval-
uate and compare both approaches with respect to their scope and ease of
application. We give recommendations on which approach is suitable for
which purpose as well as the implied costs and benefits of each approach.

1 Introduction

Distributed systems play an essential role in society today. However, quality as-
surance of distributed systems is non-trivial since they depend on unpredictable
factors, such as different processing speeds of independent components. There-
fore, it is highly challenging to test distributed systems after deployment under
different relevant conditions. These challenges motivate frameworks combining
precise modeling and analysis with suitable tool support.

Object orientation is the leading framework for concurrent and distributed
systems, recommended by the RM-ODP [19]. However, method-based commu-
nication between concurrent units may cause busy-waiting, as in the case of
remote and synchronous method invocation, e.g., Java RMI [2]. Concurrent
objects communicating by asynchronous method calls appears as a promising
framework to combine object-orientation and distribution in a natural manner.
Each concurrent object encapsulates its own state and processor, and internal
interference is avoided as at most one process is executing on an object at a
time. Asynchronous method calls allow the caller to continue with its own ac-
tivity without blocking while waiting for the reply, and a method call leads to

*crystald@ifi.uio.no
Tolaf@ifi.uio.no
fbubel@cs.tu-darmstadt.de

a new process on the called object. The notion of futures [5, 14,22, 23] im-
proves this setting by providing a decoupling of the process invoking a method
and the process reading the returned value. By sharing future identities, the
caller enables other objects to get method results directly from the future ob-
ject. We consider a core language following these principles, based on the ABS
language [16]. However, futures complicate program analysis since programs be-
come more involved compared to semantics with traditional method calls, and
in particular local reasoning is a challenge.

The execution of a distributed system can be represented by its communi-
cation history or trace; i.e., the sequence of observable communication events
between system components [18]. At any point in time the communication
history abstractly captures the system state [9,10]. In fact, traces are used in
semantics for full abstraction results (e.g., [1,20]). The local history of an object
reflects the communication visible to that object, i.e., between the object and
its surroundings. A system may be specified by the finite initial segments of
its communication histories, and a history invariant is a predicate which holds
for all finite sequences in the set of possible histories, expressing safety proper-
ties [4].

In this work we present and compare a runtime assertion checker with a
verification system/theorem prover for concurrent and distributed systems us-
ing object-orientation, asynchronous method calls and futures. Communication
histories are generated through the execution and are assumed wellformed. The
modeling language is extended such that users can define software behavioral
specification [15], i.e., invariants, preconditions, assertions and postconditions,
inline with the code. We provide the ability to specify both state-based and
history-based properties, which are verified during simulation. Although by
runtime assertion checking, we gain confidence in the quality of programs, cor-
rectness is still not fully guaranteed for all runs. Formal verification may instead
show that a program is correct by proving that the code satisfies a given spec-
ification. We choose KeY [6] as our formal verification tool since it is a highly
automated theorem prover, and with support for ABS. We extended KeY with
extra rules for dealing with history-based properties. At the end we compare
the differences and challenges of using these two approaches.

Paper overview. Section 2 introduces and explains the core language, Sec-
tion 3 presents (1)reader writer example and (2)publisher subscriber example,
Section 4 formalizes the observable behavior in the distributed systems, Sec-
tion 5 shows the result of runtime assertion checking on the examples (1) and
(2), Section 6 shows the result of theorem proving on the examples (1) and (2),
Section 7 compares runtime assertion checking with theorem proving, Section 8
discusses related work and we then close with remarks about future work.

2 The Core Language

For the purposes of this paper, we consider a core object-oriented language
with futures, presented in Fig 1. It includes basic statements for first order
futures, inspired by ABS [16]. Methods are organized in classes in a standard
manner. A class C takes a list of formal parameters ¢p, and defines fields w0,
an optional initialization block s, and methods M. There is read-only access to
class parameters ¢p as well as method parameters. A method definition has the

Cl == class C([T cp]*) {[T w [:= €]*]* [s]" M*} class definition

M = T m([T a*) {[var [T 2*]" s; return e} method definition

T == C|Int| Bool| String | Void | Put<T > types

v = z|w variables (local or field)
e := null|this |v]|cp]| f(e) pure expressions

s u= wv:i=el|fri=vm(e) | v:=e.get statements

| await e | await e? | assert e | v := new C(€)
| while (e) {s} | if (e) {s} [else {s}]" | skip|s;s

Figure 1: Core language syntax, with C' class name, cp formal class parameter,
m method name, w field, £ method parameter or local variable, and fr future
variable. []* and []” denote repeated and optional parts. Expressions e and
functions f are side-effect free, € is a (possibly empty) expression list.

form m(Z){var 7; s; return e}, ignoring type information, where Z is the
list of parameters (as in the Creol language [21], a reference to the caller will be
an implicit parameter and the language guarantees that caller is non-null), 7 an
optional list of method-local variables, s a sequence of statements, and the value
of e is returned upon termination.

A future is a placeholder for the return value of a method call. Each future
has a unique identity generated when the method is invoked. The future is
resolved upon method termination, by placing the return value of the method
call in the future. Unlike the traditional method call mechanism, the callee does
not send the return value directly back to the caller. However, the caller may
keep a reference to the future, allowing the caller to fetch the future value once
resolved. References to futures may be shared between objects, e.g., by passing
them as parameters. Thus a future reference may be communicated to third
party objects, and these may then fetch the future value. A future value may
be fetched several times, possibly by different objects. In this manner, shared
futures provide an efficient way to distribute method call results to a number of
objects.

A future variable fr is declared by Fut<T > fr, indicating that fr may refer
to futures which may contain values of type T. The call statement fr:= v!m(e)
invokes the method m on object v with input values €. The identity of the
generated future is assigned to fr, and the calling process continues execution
without waiting for fr to become resolved. The statement await fr? releases
the process until the future fr is resolved. The query statement v := fr.get is
used to fetch the value of a future. The statement blocks until fr is resolved,
and then assigns the value contained in fr to v. The await statement await e
releases the process until the Boolean condition e is satisfied. The language
contains additional statements for assignment, skip, conditionals, sequential
composition, and includes an assert statement for asserting conditions.

We assume that call and query statements are well-typed. If v refers to an
object where m is defined with no input values and return type Int, the following
is well-typed: Fut<Int> fr:=v!m(); await fr?; Intx := fr.get, corresponding
to a non-blocking method call, whereas Fut< Int> fr:= v'm(); Int x := fr.get
corresponds to a blocking method call.

Class instances are concurrent, encapsulating their own state and processor,

similarly to the actor model [17]. Each method invoked on the object leads
to a new process, and at most one process is executing on an object at a time.
Object communication is asynchronous, as there is no explicit transfer of control
between the caller and the callee. A release point may cause the active process to
be suspended, allowing the processor to resume other (enabled) processes. Note
that a process, as well as the initialization code of an object, may make self calls
to recursive methods with release points thereby enabling interleaving of active
and passive behavior. The core language considered here ignores ABS features
orthogonal to futures, including interface encapsulation and local synchronous
calls. We refer to a report for a treatment of these issues [11].

As in ABS, we assume language support for abstract data types, and in this
paper we will use the following notation for sets and sequences. The empty
set is denoted Empty, addition of an element z to a set s is denoted s + x, the
removal of an element x from a set s is denoted s — x, and the cardinality of a
set s is denoted #s. Similarly, the empty sequence is denoted Nil, addition of an
element x to a sequence s is denoted s - x, the removal of all from a sequence
s is denoted s — z, and the length of a sequence s is denoted #s. Indexing
of the ith element in a sequence s is denoted s[i] (assuming ¢ is in the range
0...#£s — 1). Membership in a set or sequence is denoted €. (This notation is
somewhat shorter than the notation actually used in our implementation.)

3 Examples

We illustrate the ABS runtime assertion checking and theorem proving of ABS
programs in KeY via two examples: a fair version of the reader/writer example
and a publisher/subscriber example. The first example shows how we verify
the class implementation by relating the objects state with the communication
history. The second example shows how we achieve compositional reasoning by
proving the order of the local history events for each object.

3.1 The Reader Writer Example

We assume given a shared database db, which provides two basic operations
read and write. In order to synchronize reading and writing activity on the
database, we consider the class RWController, see Fig. 2. All client activity
on the database is assumed to go through a single RWController object. The
RW(Controller provides read and write operations to clients and in addition four
methods used to synchronize reading and writing activity: openR (OpenRead),
closeR (CloseRead), openW (OpenWrite) and closeW (CloseWrite). A reading
session happens between invocations of openR and closeR and writing between
invocations of openW and closeW. Several clients may read the database at the
same time, but writing requires exclusive access. A client with write access may
also perform read operations during a writing session. Clients starting a session
are responsible for closing the session.

Internally in the class, the attribute readers contains a set of clients currently
with read access and writer contains the client with write access. Additionally,
the attribute pr counts the number of pending calls to method read on object
db. (A corresponding counter for writing is not needed since the call to method
write on object db is called synchronously.) In order to ensure fair competition
between readers and writers, invocations of openR and openW compete on equal

class RWController implements Rilinterface{
DB db; Set<CallerI> readers := Empty;
CallerI writer := null; Int pr := 0;
{db = new DataBase();}

Void openR () { await writer = null;

readers := readers -+ caller;}

Void closeR(){ readers := readers — caller;}

Void openW () { await writer = null; writer := caller;
readers := readers 4 caller;}

Void closeW(){ await writer = caller;
writer := null; readers := readers — caller;}

String read(){ await caller € readers;
pr := pr + 1; Fut<String> fr := dbl!read(key); await fr?;
String s := fr.get; pr := pr - 1; return s;}

Void write (Int key, String value) {
await caller=writer && pr=0 && readers — caller = Empty;
Fut<void> fr := db!write (key,value); fr.get;}}

Figure 2: Implementation of class RWController in Reader/Writer Example

terms for a guard writer = null. The set of readers is extended by execution of
openR or openW, and the guards in both methods ensure that there is no writer.
If there is no writer, a client gains write access by execution of openW. A client
may thereby become the writer even if readers is non-empty. The guard in openR
will then be false, which means that new invocations openR will be delayed,
and the write operations initiated by the writer will be delayed until the current
reading activities are completed. The client with write access will eventually be
allowed to perform write operations since all active readers (other than itself)
are assumed to end their sessions at some point. Thus even though readers may
be non-empty while writer contains a client, the controller ensures that reading
and writing activity cannot happen simultaneously on the database.

As in the Creol language [21], we use the convention that inside a method
body the implicit parameter caller gives access to the identity of the caller.
Thereby a caller need not send its identity explicitly; and the language guaran-
tees that caller is not null. Conjunction is denoted &&. For readability reasons,
we have taken the freedom to declare local variables in the middle of a statement
list, and omit the (redundant) return statement of Void methods.

3.2 The Publisher Subscriber Example

In this example clients may subscribe to a service, while the service object
is responsible for generating news and distributing each news update to the
subscribing clients. To avoid bottlenecks when publishing events, the service
delegates publishing to a chain of proxy objects, where each proxy object handles
a bounded number of clients. The implementation of the classes Service and
Proxy are shown in Fig. 3.

The example takes advantage of the future concept by letting the service ob-
ject delegate publishing of news updates to the proxies without waiting for the

class Service (Int limit, NewsProducerI np) implements Servicel{
ProducerI prod; Proxyl proxy; ProxyI lastProxy;

{prod := new Producer (np); proxy := new Proxy (limit, this);
lastProxy := proxy; this!produce();}

Void subscribe (ClientI cl) {

Fut<ProxyI> last := lastProxy'add(cl);
lastProxy := last.get;}
Void produce () { Fut<News> fut := prod!detectNews();

proxy!publish (fut);}}

class Proxy (Int limit, Servicel s) implements ProxyT{
List<ClientI> myClients = Nil; ProxyI nextProxy;

ProxyI add(ClientI cl){ ProxyI lastProxy := this;
if (#myClients < limit){ myClients := (myClients-cl);}
else{if (nextProxy = null){ nextProxy := new Proxy(limit,s);}
Fut<ProxyI> last := nextProxy'!add(cl);
lastProxy := last.get;}

return lastProxy; }

Void publish (Fut<News> fut) {

Int counter := 0; News ns := fut.get;

while (counter < #myClients) {
ClientI client := myClients[counter];
client!signal (ns); counter := counter + 1;}

if (nextProxy = null) {s!produce();}
else {nextProxy!publish (fut);}}}

Figure 3: Implementation of class Service and Proxy in Publisher/Subscriber
Example

result of the news update. This is done by the sequence fut := prod!detectNews();
prozy!publish(fut). Thus the service object is not blocking by waiting for news
updates. Furthermore, the calls on add are blocking, however, this is harmless
since the implementation of add may not deadlock and terminates efficiently.
The other calls in the example are not blocking nor involving shared futures.

4 Observable Behaviour

In this section we describe a communication model for concurrent objects com-
municating by means of asynchronous message passing and futures. The model
is defined in terms of the observable communication between objects in the sys-
tem. We consider how the execution of an object may be described by different
communication events which reflect the observable interaction between the ob-
ject and its environment. The observable behavior of a system is described by
communication histories over observable events [7,18].

Since message passing is asynchronous, we consider separate events for method
invocation, reacting upon a method call, resolving a future, and for fetching the
value of a future. Each event is observable to only one object, which is the
one that generates the event. Assume an object o calls a method m on object
o' with input values € and where u denotes the future identity. An invocation

message is sent from o to o’ when the method is invoked. This is reflected by the
invocation event {0 — o', u,m,€) generated by o. An invocation reaction event
(0 - o', u,m,€) is generated by o’ once the method starts execution. When
the method terminates, the object o’ generates the future event (+ o', u,m,e).
This event reflects that u is resolved with return value e. The fetching event
(0 «—, u,e) is generated by o when o fetches the value of the resolved future.
Since future identities may be passed to other objects, e.g, 0o”, that object may
also fetch the future value, reflected by the event (0" «, u,e), generated by
0". The object creation event (o 1 o',C,€) represents object creation, and is
generated by o when o creates a fresh object o'.

For a method call with future u, the ordering of events is described by the
regular expression (using - for sequential composition of events)

<O — O/7u7m7é> ' <0 - 0,7u7m7é> ! <<7 O/a u,m,e>[-<_ “=, U, 6”*

for some fixed o, o', m, €, e, and where _ denotes arbitrary values. Thus
the result value may be read several times, each time with the same value,
namely that given in the preceding future event. A communication history is
wellformed if the order of communication events follows the pattern defined
above, the identities of created objects is fresh, and the communicating objects
are non-null.

Invariants In interactive and non-terminating systems, it is difficult to spec-
ify and reason compositionally about object behaviour in terms of pre- and
postconditions of the defined methods. Also, the highly non-deterministic be-
haviour of ABS objects due to processor release points complicates reasoning in
terms of pre- and postconditions. Instead, pre- and postconditions to method
definitions are in our setting used to establish a so-called class invariant. Class
invariants express a relation between the internal state of class instances and
observable communication. The internal state is given by the values of the class
attributes.

A class invariant must hold after initialization in all the instances of
the class, be maintained by all methods, and hold at all processor
release points (i.e., before await statements).

The five-event semantics reflects actions on asynchronous method calls, shared
futures, and object creation. The semantics gives a clean separation of the
activities of the different objects, which leads to disjointness of local histories.
Thus, object behavior can be specified in terms of the observable interaction of
the current object.

5 Runtime Assertion Checking

The ABS compiler front-end, which takes a complete ABS model of the software
system as input, checks the model for syntactic and semantic errors and trans-
lates it into an internal representation. There are various compiler back-ends.
Maude is a tool for executing models defined in rewriting logic. The Maude
back-end takes the internal representation of ABS models and translates them
to rewriting systems in the language of Maude for simulation and analysis.

We implement the history-explicit semantics in Maude as part of the ABS
interpreter, by means of a global history reflecting all events that have occurred
in the execution. We extend the ABS language with two annotations, Require
and Ensure, given as part of method declarations:

[Require: pre,] [Ensure: post, && invp]
Unit m() {... assert invy,; await b; ...}
Unit n() {... olm(); ...}

where invy,, pre, and post, are the class invariant, precondition and postcon-
dition for the method m, respectively. The pre- and postconditions must then
be respected by the method body, together with the invariant. Each method
ensures that the invariant holds upon termination and when the method is
suspended, assuming that the invariant holds initially and after suspensions.
Preconditions indicate the values that a component is designed to process. As-
sertions impose constrains on variable values as a system passes through differ-
ent execution states. Postconditions specify the functionality of a method by
describing how its output values relate to its input values.

The underling implementation for the Require and Ensure annotations
is shown in Fig. 4, where a Java method translating ABS method declarations
into Maude. The properties defined in the Require and Ensure annotations
are implemented as assertions around the method body.

public void MethodImpl.generateMaude (PrintStream stream) {
PureExp require =
CompilerUtils.getAnnotationValue (
sig.getAnnotationList (), "Require");

PureExp ensure =
CompilerUtils.getAnnotationValue (
sig.getAnnotationList (), "Ensure");

stream.print ("< "+...+": Method | Param: "+" ... ");
stream.print (", \n Code: ");
if (require != null){
stream.print ("assert ");
require.generateMaude (stream) ;
stream.print ("; ");}

/* print out the method body */
/* including the return statement x/

if (ensure != null) {
stream.print ("assert ");
ensure.generateMaude (stream) ; }
stream.print ("> ");

Figure 4: The Java method which translates ABS method declarations with
Require/Ensure annotations into Maude.

The operation order of history extension for method execution, the eval-
uation of the Require and Ensure expressions as well as the method body
execution is illustrated in Fig. 5, where invocrEv and futureEv stand for the

invocrEv Require methodBody futureEv Ensure
L

Figure 5: The implementation order of Require and Ensure annotations, and
history extension for method declaration.

generation of invocation reaction event and future event, respectively; Require
and Ensure point out the evaluation of the method annotations. Notice, pre-
conditions may express the property of invocrEv and postconditions may
express the property of futureEv.

In this work, history functions are implemented in Maude as part of the ABS
interpreter to extract relevant information from the generated history, such that
history-based invariants are subjected to runtime assertion checking.

5.1 Specification and Verification of the Reader/Writer
Example

For the RWController class, we may define a class invariant I = I} A Iy A I3 A
Iy N I5:

I £ Readers(H) = readers

I, £ Writers(H) = {writer} — null

I3 2 Reading(H) = pr

Iy = Writing(H) # 0 = # Writers(H) = 1 A Readers(H) C Writers(H)
Iy £ Writing(H) = 0V Reading(H) =0

This illustrates how the values of class attributes may be expressed in terms of
observable communication. The invariant I; expresses that the set of readers re-
trieved from the history by function Readers(h) is the same as the class attribute
readers. The invariant I expresses that if the set of writers retrieved from the
history by function Writers(h) is empty then the class attribute writer is null,
otherwise it contains only one element which is the same as the non-null writer.
The function Reading(h) in I3 computes the difference between the number of
initiated calls to dblread and the corresponding get statement. The function
Writing(h) is defined in a corresponding manner. The invariant I states that
when the database is being written, there should be one and only one writer.
Besides, the set of readers may only contain the writer object. The invariant
I5 implies the desired mutual exclusion of reading and writing, i.e., no reading
and writing activity happens simultaneously.

For the implementation details of the history functions, we define Readers :
Seq|Ev] — Set[Obj]:

Readers(Nil Empty
Readers(h - (+ this, fi',openR,)

(Nil) =

(h-{) aders(h) + irev(h, fr').caller
Readers(h - (+ this, fi',openW,))

(h-{)

(h-{

Re

Readers(h) + irev(h, fi').caller
Readers(h - (+ this, fr', closeR,) Re
Readers(h - (+ this fr closeW,)) = Re
Readers(h - others) = Readers(h)

aders(h) — irev(h, fr').caller

N
A
N
£ Readers(h) — irev(h, fi').caller

where others matches all events not matching any of the above cases. The
function drev(h, fr') extracts the invocation reaction event, containing the future

fr', from the history h. The caller is added to the set of readers upon termination
of openR or openW, and the caller is removed from the set upon termination
of closeR or closeW. We furthermore assume a function Writers, defined over
completions of openW and closeW in a corresponding manner. Next we define
Reading : Seq|Ev] — Nat by:

Reading(h) £ #((h/(this — db, ,read,)).future — (h/{(this «—, ,)).future)

where projection, / : Seq[T] x Set[T] — Seq[T] is defined inductively by
Nil/s £ Nil and (a-x)/s £ if x € s then (a/s) -z else a/s, for a: Seq[T],
x:T, and s: Set[T], restricting a to the elements in s. And (h/ —).future
is the set of future identities from these invocation events. Thus the function
Reading(h) computes the difference between the number of initiated calls to
dblread and the corresponding get statements. The function Writing(h) follows
the same pattern over calls to dblwrite.

Implementation The global history is implemented as part of the ABS in-
terpreter and is not transparent in ABS programs, therefore we implement
the history functions, Readers(h), Writers(h), Reading(h), and Writing(h), in
the ABS interpreter and provide for each function a built-in predicate in the
ABS language. Note that none of the predicates have the history as an ex-
plicit argument. For instance, the built-in predicate get Readers() returns the
result of Readers(h) from the interpreter. Similarly, getWriters() corresponds
to Writers(h), numAccessing(“read”) corresponds to Reading(h), and
numAccessing(“write”) corresponds to Writing(h).

The concrete formulation of I; — I5 as given to the runtime assertion checker
is presented below:

I1: compareSet (getReaders (), readers)
I>: compareSet (getWriters (), Empty + writer — null)
I3: numAccessing("read") = pr
I;: numAccessing ("write") # 0 =
#getWriters() = 1 A isSubset (getReaders(),getWriters())
Is: numAccessing("read") = 0 V numAccessing ("write") = 0

where compareSet (s1, S2) returns true if the set s; is equal to s9, and
isSubset (s1, S2) returns true if the set s; is a subset of the set s».

Another approach is to define a built-in function in ABS which gives the
current local history from the interpreter. In this way, ABS programmers have
the freedom to define their own history functions in ABS programs. However,
the arguments of a method call can be a list of values of different types. This
proposal is currently not considered due to the absence of a universal supertype
in the ABS language (as the predefined type Data of the Creol language [21]).

5.2 Specification and Verification of the Publisher/Sub-
scriber Example

In the publisher-subscriber example we consider object systems based on the
classes Service and Proxy found in Fig. 3. We may state properties, like: For
every signal invocation from a proxy py to a client ¢ with news ns, the client
must have subscribed to a service v, which must have issued a publish invocation
with a future u generated by a detectNews invocation, and then the proxy
py must have received news ns from the future u. This expresses that when

10

clients get news it is only from services they have subscribed to, and the news
is resulting from actions of the service.

Since this property depends on pattern matching, we define an algebraic
data type Fvent in ABS, and the constructors of the type are listed as the
following:

data Event =
InvocEv (Any callee, Any future, String method, Any arg) |
InvocrEv (Any caller, Any future, String method, Any arg) |
FutureEv (Any future, String method, Any result) |
FetchEv (Any future, Any result) |
NewEv (Any callee,String class,Any arg);

This event type is used to define class invariants, to be verified at runtime for
each related object. The generating object is redundant in the local invariants
and therefore is omitted from the event.

Since there is no supertype in the current ABS language, we cannot define
the type of each argument. Consequently, to specify the value of the arguments
in the ABS events is currently not straight forward. We overcome this limitation
by defining an algebraic data type Any:

data Any = O | F | AR | any ;

Letting all arguments in the events be of type Any except method names and
class names which are of type String. The constructors of type Any are
any, a special constant used as a placeholder for any expression, and O, F,
and AR, are artificial constants used as placeholders for object identities, future
identities, and arguments, respectively, to simulate pattern matching in history
functions. The constants O, F, and AR, are used in patterns where a pattern
variable occurs more than once, letting all occurrences of O match the same
value (and similarly for F and AR), whereas each occurrence of any matches
any value. For our example, it is enough to define one constructor for each
kind. To identify different variables of the same kind, more constructors would
be needed, e.g. 0O; and 0, for object identities. Compared to dynamic logic
specifications there is no universally quantified variables or auxiliary variables
defined in the class invariants for runtime assertion checking. We therefore need
these placeholders to express non-regular pattern matching, (when the same
placeholder appears more than once).

Now we may derive the property above using the class invariants shown in
Fig. 6, in which the class invariants for Service is I; A I> and for Proxy is I3A 1.
The predicate has checks the existence of an event in the local history. A list
list[a,b,c] declares the order of the events where (surprisingly) event a is
the latest. The predicate isSubseq returns true if the list of events is a subse-
quence of the local history. The search for a subsequence by the implementation
of isSubseq starts from the latest event and continues backwards until finding
the first match. In this way, the proved property is prefix-closed by runtime
assertion checking. For instance, the invariant I; expresses that if the local
history of the Service object has an invocation event which reflects a call to a
method add on some object, there should exist an invocation reaction event with
a method name subscribe in the prefixed local history and by pattern matching
these two events contain the same argument AR. When we execute assertions, if
I; holds for the current state, the Service object always receives a client before

11

I
has (InvocEv (any, any, "add", any)) =>
isSubseq(list [InvocEv (any, any, "add", AR),
InvocrEv (any, any, "subscribe",AR)])
Is:
has (InvocEv (any, any, "publish", any)) =>
isSubseq(list [InvocEv (any, any, "publish", F),
InvocEv (any, F, "detectNews", any) 1)
Is3:
has (InvocEv (any, any, "signal",any)) =>
isSubseq(list [InvocEv (O, any, "signal", AR),
FetchEv (F, 2R) , InvocrEv (any, any, "publish",F),
InvocrEv (any, any, "add",0) 1)
Iy
has (InvocEv (any, any, "publish",any)) =>
isSubseq(list [InvocEv (any, any, "publish", AR),
InvocrEv (any, any, "publish",AR)])

Figure 6: Class invariants of the Publisher/Subscriber Example (1).

sending the client to the Proxy. Similar interpretation can be applied in Io, I3
and Iy.

By strengthening the class invariant of Proxy, we can also prove other prop-
erties such as: For each proxy, if nertProzy is null, the number of contained
clients is less or equal to limit, otherwise equal to limit. The value of nextProxy
can be reflected by the existence of an object creation event of Proxy as shown
in Fig. 7. The symbol “ ~ 7 stands for negation.

I5: ~has (NewEv(_, "Proxy",_)) =>
#myClients <= limit
I6: has (NewEv (_, "Proxy",_)) =>

#myClients = limit

Figure 7: Class invariants of the Publisher/Subscriber Example (2).

6 Theorem Proving using KeY

In this section we describe our experiences with verification of some properties
of the reader/writer and the publisher/subscriber examples.

6.1 Introduction to KeY

The KeY theorem prover [6] is a deductive verification system. The standard
system targets sequential Java programs while the system used in this case
study is a variant that uses ABS programs instead of Java programs. The
system features ABS Dynamic Logic which is a dynamic logic for ABS. We
provide here only a quick overview on the logic for more details see [3].
ABSDL is basically a sorted first-order logic with modalities. Let p be an
ABS program and ¢ an ABSDL formula, then the formula [p]¢ is true if and
only if the following holds: if p terminates then in its final state ¢ holds. Given

12

an ABS method m with body mb and a class invariant I, the ABSDL formula to
prove that method m preserves the class invariant by I — [mb]I. The formula
means that if method m is invoked in a state where the invariant holds initially
then if m terminates in all reached final states the invariant holds again.

To prove that such a formula is valid we use a Gentzen-style sequent calcu-
lus. A sequent 1, ..., 0y F ¢1,..., ¢, has the same meaning as an implication
where the formulas ¢; on the left side of the sequent (antecedent) are conjunc-
tively connected and the formulas ¢; on the right side (succedent) are connected
disjunctively.

A proof in a sequent calculus is a tree which is constructed by a sequence
of rule applications. The sequent calculus is based on the symbolic execu-
tion paradigm and emulates a symbolic interpreter for ABS programs. The
conditional rule which symbolically executes a conditional statement looks as
follows:

T, bk [p;rest]p, A T, bt [q;rest]p, A

It [if(b){p}telse{q};rest]p, A

where I'; A stand for (possibly empty) sets of formulas. Rules are applied from
bottom to top by matching the sequent of the bottom part (the rule’s conclusion)
against the sequent of an open proof goal (leaf) of the proof. The conditional
rule matches any sequent which contains an ABS program whose first active
statement is a conditional statement. Application of the rule splits the proof
into two branches. The left branch assumes that the guard of the conditional
statement is true. Here, we have to show that after execution of the then branch
of the conditional and the rest of the program, we are in a state in which formula
¢ holds. The right branch is concerned with the analogue case where the guard
is assumed to be false.

6.2 Reasoning about concurrent and distributed ABS pro-
grams

We describe briefly how to formalize and reason about ABS programs in pres-
ence of concurrency and distribution. First, the history is modeled as an explicit
list of events. The current history is maintained by a global program variable
called H. The program variable H cannot be directly assigned within an ABS
program, but for instance the symbolic execution of an asynchronous method
invocation updates the variable by appending an invocation event to the history.

One feature of our logic is that we do not need to model process queues or
interleaving explicitly, but we can stay in a sequential setting. The concurrency
model of ABS ensures co-operative multithreading for threads within the same
object. This means we can syntactically determine interleaving points, i.e.,
places in the code where control is released. In our setting the only statements
that release control are await statements. The rule for the await statement looks
(slightly simplified) as follows:

[+ Clnve(H, A),A
I'={Uy 4} (Clnvc(H, A) — [rest]g), A
[t [await r?;rest|p, A

In case of an await statement, the proof splits into two branches. The first
branch ensures that the class invariant is satisfied before control is released, so

13

that the process which takes over control can assume that the class invariant
holds. The second branch is concerned with the continuation of the program
execution once the future r is resolved and the current thread is rescheduled for
execution. In such a state, all instance variables might have been changed and
the history might have been extended by new events by other processes while
the execution of our thread was suspended. This is technically represented by
the update Uy 4. For the purpose of this paper, updates can be seen as explicit
substitutions which represents state changes. The update Uy, 3 sets all fields to
fixed but unknown values and extends the history H by appending a sequence
of unknown length and content. The formula behind the update, states that
assuming the class invariant holds in the new state then we have to show that
after the execution of the remaining program rest the formula ¢ holds. One
additional remark, the need to extend the history with an unknown sequence of
events is one of the causes that makes verification tedious as it removes almost
all knowledge about the system state and the only properties we can exploit are
those encoded in the class invariant.

6.3 Formalizing and Verifying the Reader Writer Example

Formalization of the invariants and proof-obligations for the purpose of verifica-
tion proves harder than is the case for runtime assertion checking. Parts of the
reasons are purely technical and are due to current technical shortcomings of the
KeY tool which can and will be overcome relatively easily, e.g., absence of a gen-
eral set datatype, automation of reasoning about sequences and similar. Other
reasons are more deeply rooted in a basic difference between runtime assertion
checking and verification. To a certain extent runtime assertion checking can
take advantage of a closed system view. A closed system view allows to safely
assume that certain interleavings (await statements) will never happen. This
allows to simplify the formalization of some invariants considerably, in contrast
to verification where we take an open world assumption and in addition have to
consider all possible runs.

We take here a closer look at the formalization of the invariant I from
Section 5.1. Invariant I, states that at most one writer may exist at any time
and that if a writer exists then it is the one set by the most recently completed
openW invocation. In a first step, we define some auxiliary predicates and
functions that help us to access the necessary information: First we define
the function getWriter which takes the local history as argument and returns
a sequence of all writers for which a successful completed openW invocation
exists that has not yet been matched by a completed closeW invocation. The
axiomatization in our dynamic logic (slightly beautified) looks as follows:

Vth(w # null A
Ji(getWriters(h).get(i) = w)
54

Je(isFutEv(e) A e €h A

getMethod(e) = openW A
w = getCaller(getIREv(h, getFut(e))) A
Ve'(later(e’,e,h) A isFutEv(e’) —
getMethod(e) # closel)))

14

where h is a history, isFutEv tests if the given event is a future event, and
getIREv returns the invocation reaction event from a given history and future.
The other functions should be self-explanatory. We can now state our version
of Iy for an object self:

length(getWriters(h)) <1 A
self.writer = (length(getWriters(h)) =07
null : getWriters(h).get(0))

Note that the formalization here is stronger than the one used in runtime as-
sertion checking as we allow at most one writer in the list of writers, i.e., we
disallow also that the same writer calls (and completes) openW repeatedly. This
stronger invariant is satisfied by our implementation.

An important lemma we can derive from the definition of getWriters is that
it is independent of events other than future and invocation reaction events for
openW and closeW. This allows us to simplify the history at several places and
to ease the proving process.

In order to prove the property of fairness and mutual exclusion of the reader
writer example, we might need a stronger invariant: OK : Seg[Ev] — Bool which
is defined inductively over the history:

OK(Nil) & true

OK(h - (+ this, fr' ,openR,)) & OK(h) A # Writers(h) =0 (1)
OK(h - (+ this, fr' ,openW,)) & OK(h) A # Writers(h) =0 (2)
OK(h - (this — db, fi',write,)) £ OK(h)

@)
AReading(h) = 0 A # Writers(h) =1 (3)
OK(h - (this — db, fr' . read,)) = OK(h) A Writing(h) =0 (4)
OK(h - others) = OK(h)

Here, conditions (1) and (2) reflect the fairness condition: invocations of openR
and openW compete on equal terms for the guard writer = null, which equals
Writers(H) = Empty by Io. If writer is different from null, conditions (1) and
(2) additionally ensure that no clients can be included in the readers set or be
assigned to writer. Condition (3) captures the guard in write: when invoking
dblwrite, there cannot be any pending calls to dblread. Correspondingly, con-
dition (4) expresses that when invoking db!read, there is no incomplete writing
operation.

6.4 Formalizing and Verifying the Publisher Subscriber
Example

The formalization and verification of the publisher subscriber example is inher-
ently harder than that for the reader writer example. The reason is that the
properties to be specified focus mainly on the structure of the history. Further,
in presence of control releases the history is extended by an unspecified sequence
of events. In contrast to runtime assertion checking, we can mostly only rely
on the invariants to regain knowledge about the history after a release point.
This entails also that we need to actually specify additional invariants express-
ing what could not have happened in between, e.g., certain method invocations.
We formalized the property similar to the runtime assertion approach using an
axiomatization of loose sequences.

15

For runtime assertion checking it was possible to use pattern matching to
express the invariant of Section 5.2. On the logic level, we have to use quantifi-
cation to achieve the same effect. This impairs at the moment automation as
the efficiency of quantifier instantiations decreases rapidly with the number of
nested quantifiers.

7 Comparison

In this section we discuss the main differences in scope and application between
runtime assertion checking and formal verification. We highlight in particular
the difficulties we faced in the respective approaches.

Runtime assertion checking shares with testing that it is a method for detect-
ing the presence of bugs, while formal verification provides a guarantee that the
program has the required property. In other words, although by using runtime
assertion checking we gain confidence in the quality of programs, correctness of
the software is still not fully guaranteed for all runs. Formal verification may
instead show that a program is correct by proving that the code satisfies a given
specification.

A closer look at the considered specifications reveals that for runtime asser-
tion checking, we check whether a method satisfies its pre- and postcondition at
invocation reaction and future resolving time, respectively. An assertion failure
was reported if these were not satisfied. In verification, we face the following
additional challenge: The caller of a method can only ensure that the precon-
dition holds at the time of the invocation event. But the caller has no control
over the system itself and thus cannot ensure that the property still holds when
the invoked method is scheduled at the callee side. Possible solutions to this
problem are to ensure that once the precondition is proved, it is satisfied until
and including the moment when the method is scheduled; a different approach
would be to restrict preconditions to express only history and state indepen-
dent properties about the method parameters. An analogous problem exists for
postconditions.

Similarly, formal verification is harder when compared to assertion checking
as in the latter we are only concerned with a closed system, namely, the one
currently running. This puts less demands on the completeness of specifications
as the number of reachable states is restricted by the program code itself. In
formal verification we have to consider all states that are not excluded by the
specification. For instance, in runtime assertion checking, it is not necessary to
specify that the same object does not call openW twice without a call to closeW
in between, while this has to specified explicitly for verification purposes. The
need for strong invariant specifications arises in particular when dealing with
await statements which release control. During verification, we extend the
history by an unspecified sequence of events before continuing the execution after
those release points. Almost any knowledge about the new extended history has
then to be provided by the invariants.

Further, it turned out that the specification relied heavily on quantification
and recursively defined functions and properties. This makes automation of
the proof search significantly more difficult, and finally, required many direct
interactions with the prover. In contrast to the symbolic execution in verifi-
cation, specifications need to be executable in runtime assertion checking such

16

that using quantifiers is not an option. For our purposes, pattern matching is
instead applied in this place (when the same place holder appears more than
once). In addition, the tool used for formal verification is still work-in-progress
and not yet on par with the degree of automation KeY achieves when verifying
Java programs.

8 Related Work

Behavioral reasoning about distributed and object-oriented systems is challeng-
ing, due to the combination of concurrency, compositionality, and object ori-
entation. Moreover, the gap in reasoning complexity between sequential and
distributed, object-oriented systems makes tool-based verification difficult in
practice. A survey of these challenges can be found in [3].

The present approach follows the line of work based on communication his-
tories to model object communication events in a distributed setting [8, 18].
Objects are concurrent and interact solely by method calls and futures, and
remote access to object fields are forbidden. By creating unique references for
method calls, the label construct of Creol [21] resembles futures, as callers may
postpone reading result values. Verification systems capturing Creol labels can
be found in [3,13]. However, a label reference is local to the caller and cannot
be shared with other objects.

A compositional reasoning system for asynchronous methods in ABS with fu-
tures is introduced in [12]. In this work, we implement the reasoning system [12]
in two ways: runtime assertion checking and theorem proving in KeY [6]. The
article [15] surveys behavioral interface specification languages with a focus to-
ward automatic program verification. A prototype of the verification system [3]
based on the two-event semantics (for method calls) [13] has been implemented
in KeY [6], but requires more complex rules than the present semantics.

9 Conclusions and Future Work

In this work we implement a runtime assertion checker and extend the KeY
theorem prover [6] for testing and verifying ABS programs, respectively. For
runtime assertion checking, the ABS interpreter is augmented by an explicit
representation of the global history, recording all events that occur in an exe-
cution. And the ABS modeling language is extended with method annotations
such that users can define software behavioral specification [15] , i.e., invari-
ants, preconditions, assertions and postconditions, inline with the code. We
provide the ability to specify both state- and history-based properties, which
are checked during simulation. For theorem proving, we follow the approach de-
veloped in [3] for the ABS formalization in dynamic logic, but use the improved
history formalization as presented in [12]| for handling history-based properties.

We specified two small concurrent and distributed programs and checked
their adherence to the specification using two different approaches: runtime as-
sertion checking and deductive verification. We were in particular interested
in how far the use of histories allows us to achieve a similar support for dis-
tributed system as state-of-the-art techniques achieve for sequential programs.
The results are positive so far: runtime assertion checking is nearly on par with

17

that of a sequential setting. Deductive verification does harder, but some of
the encountered issues stem from the current early state of the used tool, where
support for reasoning about histories is not yet automatized to a high degree.
In the future we intend to improve on the automation of the used tool.

Acknowledgements. We thank Rudolf Schlatte for fruitful discussions.

References

1

2]

13]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

E. Abraham, I. Grabe, A. Griiner, and M. Steffen. Behavioral interface de-
scription of an object-oriented language with futures and promises. Journal
of Logic and Algebraic Programming, 78(7):491-518, 2009.

A. Ahern and N. Yoshida. Formalising Java RMI with Explicit Code Mo-
bility. Theoretical Computer Science, 389(3):341 — 410, 2007.

W. Ahrendt and M. Dylla. A system for compositional verification of asyn-
chronous objects. Science of Computer Programming, 77(12):1289-1309,
Oct. 2012.

B. Alpern and F. B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181-185, Oct. 1985.

H. G. Baker Jr. and C. Hewitt. The Incremental Garbage Collection of
Processes. In Proc. 1977 Symposium on Artificial Intelligence and Pro-
gramming Languages, pages 55—59. ACM, 1977.

B. Beckert, R. Hahnle, and P. H. Schmitt, editors. Verification of Object-
Oriented Software: The KeY Approach, volume 4334 of LNCS. Springer,
2007.

M. Broy and K. Stglen. Specification and Development of Interactive Sys-
tems. Monographs in Computer Science. Springer, 2001.

O.-J. Dahl. Can program proving be made practical? In Les Fondements
de la Programmation, pages 57-114. Institut de Recherche d’Informatique
et d’Automatique, France, Dec. 1977.

O.-J. Dahl. Object-oriented specifications. In Research directions in object-
oriented programming, pages 561-576. MIT Press, Cambridge, MA, USA,
1987.

O.-J. Dahl. Verifiable Programming. International Series in Computer
Science. Prentice Hall, New York, N.Y., 1992.

C. C. Din, J. Dovland, and O. Owe. An approach to compositional
reasoning about concurrent objects and futures. Research Report 415,
Dept. of Informatics, University of Oslo, Feb. 2012. Available at http:
//folk.uio.no/crystald/.

C. C. Din, J. Dovland, and O. Owe. Compositional reasoning about shared
futures. In Proc. International Conference on Software Engineering and
Formal Methods (SEFM’12), volume 7504 of LNCS, pages 94-108. Springer,
2012.

18

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

J. Dovland, E. B. Johnsen, and O. Owe. Verification of concurrent objects
with asynchronous method calls. In Proceedings of the IEEE International
Conference on Software Science, Technology € Engineering(SwSTE’05),
pages 141-150. IEEE Computer Society Press, Feb. 2005.

R. H. Halstead Jr. Multilisp: a language for concurrent symbolic com-
putation. ACM Transactions on Programming Languages and Systems,

7(4):501-538, Oct. 1985.

J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Miiller, and M. Parkin-
son. Behavioral interface specification languages. ACM Comput. Surv.,
44(3):16:1-16:58, June 2012.

Full ABS Modeling Framework (Mar 2011), 2011. Deliverable 1.2 of project
FP7-231620 (HATS), http://www.hats-project.eu.

C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism
for artificial intelligence. In Proc. 3rd international joint conference on
Artificial intelligence, pages 235-245, 1973.

C. A. R. Hoare. Communicating Sequential Processes. International Series
in Computer Science. Prentice Hall, 1985.

International Telecommunication Union. Open Distributed Processing:
Reference Model parts 1-4. Technical report, ISO/IEC, Geneva, July 1995.

A. S. A. Jeffrey and J. Rathke. Java Jr.: Fully abstract trace semantics
for a core Java language. In Proc. Furopean Symposium on Programming,
volume 3444 of LNCS, pages 423-438. Springer, 2005.

E. B. Johnsen and O. Owe. An asynchronous communication model for
distributed concurrent objects. Software and Systems Modeling, 6(1):35—
58, Mar. 2007.

B. H. Liskov and L. Shrira. Promises: Linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Proc. SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI’88),
pages 260-267. ACM, June 1988.

A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concur-
rent programming in ABCL/1. In Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA’86). Sigplan Notices,
21(11):258-268, Nov. 1986.

19

