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Abstract— Publish/subscribe (pub/sub) is a pop-
ular communication paradigm in the design of large-
scale distributed systems. A provider of a pub/sub
service (whether centralized, peer-assisted, or based
on a federated organization of cooperatively managed
servers) commonly faces a fundamental challenge: given
limited resources, how to maximize the satisfaction of
subscribers?

We provide, to the best of our knowledge, the first
formal treatment of this problem by introducing two
metrics that capture subscriber satisfaction in the pres-
ence of limited resources. This allows us to formulate
matters as two new flavors of maximum coverage op-
timization problems. Unfortunately, both variants of
the problem prove to be NP-hard. By subsequently
providing formal approximation bounds and heuristics,
we show, however, that efficient approximations can be
attained. We validate our approach using real-world
traces from Spotify and show that our solutions can
be executed periodically in real-time in order to adapt
to workload variations.

I. INTRODUCTION

We are witnessing an increasingly widespread use of
the publish/subscribe (pub/sub) communication paradigm
in the design of large-scale distributed systems. Pub/sub
is regarded as a technology enabler for a loosely coupled
form of interaction among many publishing data sources
and many subscribing data sinks. Many applications report
benefits from using this form of interaction, such as online
delivery of notifications due to social interaction [1], appli-
cation integration [2], financial data dissemination [3], RSS
feed distribution and filtering [4], [5], and business process
management [6]. As a result, many industry standards
have adopted pub/sub as part of their interfaces. Examples
of such standards include WS Notifications, WS Eventing,
and the Active Message Queuing Protocol.

In this paper, we focus on the topic-based pub/sub
model. In a topic-based system, publication events are as-
sociated with topics, and subscribers register their interest
in receiving all events published to certain topics.

While traditional pub/sub implementations are either
centralized or based on a federated organization of co-
operatively managed servers, an increasingly higher num-
ber of pub/sub applications are being deployed in P2P
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environments [7]. In particular, the pub/sub service at
Spotify [1] is suitable for a peer-assisted implementation,
in line with the reported peer-assisted implementation of
other Spotify services such as music streaming [8]. In a
peer-assisted implementation, a limited number of servers
provide a guaranteed high-quality service to a subset of
pub/sub subscribers while the rest of subscribers receive
notifications through peers, thereby getting a best-effort
service that works convincingly well in practice. The part
of the workload assigned to a server is dictated by max-
imizing server utilization as well as the overall quality of
service given to the subscribers.

In this paper, we provide the first formal treatment of
this subject to the best of our knowledge. Specifically, we
introduce a measure of subscriber satisfaction that lends
itself to a large class of pub/sub notification services where
(a) publication-event message delivery is best effort: reli-
able delivery is desirable but it is not mandatory to deliver
all notifications, and (b) every notification is intended to
be read by a human user, so having a cumulative delivery
rate to a particular subscriber above a certain threshold
might not bring significant benefit to the user experience.
For example, many applications where notifications are
generated due to social interaction fall into this class of
pub/sub services: following the tweets of selected users in
Twitter, monitoring updates to the profiles of user’s friends
in Facebook, or receiving instant notifications related to
favorite artists and albums in Spotify. According to our sat-
isfaction metric, we consider a subscriber satisfied in such
applications if and only if the user receives all notifications
of interest at a configurable minimum threshold delivery
rate. We also provide a fractional satisfaction metric: If
a subscriber receives fewer notifications than desired, the
satisfaction of the subscriber is defined as a fraction of the
actual and desired number of notifications.

Then, we introduce a principal optimization problem:
given a server with a limited capacity, and a workload
consisting of (a) a set of topics each with its own pub-
lication event rate, and (b) a set of subscribers with their
interests; the goal is to mazimize the number of sub-
scribers with their cumulative delivery rate of publications
to match a certain threshold (satisfaction metric), while
respecting the budget constraint imposed by the limited
resources of the back-end servers. We define two distinct



flavors of the problem: a “Budgeted Maximum Mul-
tiset Multicover” (B3M) and “Fractional Budgeted
Maximum Multiset Multicover” (F-B3M) using the
binary and fractional satisfaction metrics, respectively. We
prove that both flavors are NP-Hard. We reduce B3M from
the Densest-k-Subgraph (DkS) problem [9], a new way
to reduce max-cover problems. We also show that, while
B3M does not admit a Polynomial-Time Approximation
Scheme (PTAS) unless NP has randomized algorithms that
run in sub-exponential time, F-B3M has a polynomial-
time approximation algorithm with a guaranteed constant
ratio of % (1 — %) Furthermore, we derive an upper bound
for the optimal solution of each problem.

We evaluated the proposed heuristics for B&M and F-
B3M using a large-scale real data set from the pub/sub
system of Spotify. We show that the heuristics provide
an approximation of at least 0.7 for both problems, for
the given dataset, using the derived upper bound on
the optimal solution as the baseline. Finally, we propose
various optimizations to make the heuristics more efficient.
We show that the heuristics run in less than 30 seconds for
workloads with over a million topics, and in less than one
second in most realistic scenarios.

II. MOTIVATING APPLICATION SCENARIO AND
PROPOSED PUB/SUB ARCHITECTURE

A pub/sub system typically consists of publishers that
publish messages at one end and subscribers that re-
ceive publication messages asynchronously at the other
end. A pool of servers called brokers enable asynchronous
communication between them. Use of pub/sub to notify
events generated due to social interaction is becoming
increasingly popular [1], [10]. Typically, in these systems
notifications are intended to be read by human users and
having a cumulative delivery rate to a particular user
above a certain threshold will not always bring much
benefit. For example, in some social-networking mecha-
nisms such as tweet feed in Twitter or friend feed in
Facebook or friend feed and artist updates in Spotify,
users often ignore notifications beyond some threshold.
In such cases, spending precious resources on delivering
every single notification (Friend-feed or Tweet) beyond
that threshold might be wasteful. In this case, the workload
that does not increase the satisfaction of subscribers can
be simply dropped or offloaded to a lower-cost external
system (such as a peer-to-peer network). As we show in
Section ITI-A and III-B, the problem of selecting a subset
of the workload in such a way as to maximize subscriber
satisfaction while respecting the back-end capacity is a
challenging optimization problem.

In this paper, we propose a methodology to select a
fraction of the pub/sub workload such that this fraction
is within the capacity of a back-end service with limited
resources, while user satisfaction is maximized. This ap-
proach can help system managers to deal with the trade-
off between deploying additional hardware and satisfying
more users. It can also be used as a mechanism to drop or
divert part of the pub/sub workload to an external lower-
cost system with lower quality of service, such as a pool
of lower-reliability servers, or a set of computers belonging
to end users (peers) forming a peer-to-peer network.
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Fig. 1. Proposed Peer-assisted architecture for Spotify pub/sub

To facilitate the offloading of the workload we propose a
service called Offloading Decision Service (ODS). In order
to perform its work, the ODS divides the total pub/sub
load on a per-topic basis and then decides for each topic
whether the topic can be managed by the back-end service
without exceeding the capacity. In this context, managing
a topic means taking care of delivering the corresponding
topic events for all subscribers of that topic.

The rationale for this design decision is that we believe
that organizing the pub/sub load at this granularity level
greatly simplifies system design compared to an approach
based on dealing with each (topic, subscriber) subscription
pair individually. While offloading at (topic, subscriber)
granularity may be beneficial, it poses additional overhead
to the pub/sub system and the ODS, making the offloading
more complicated and expensive.

We now show the benefits of the ODS in the context of
practical pub/sub systems designed for social interaction.

A. Social interaction among Spotify users

Spotify uses a pub/sub system to facilitate social
interaction among its users. A Spotify user can follow
friends (from Facebook or native to Spotify), artists and
playlists!. The pub/sub system delivers the friend-feed,
artist updates, and playlist updates to the appropriate
Spotify users. The Spotify pub/sub system is implemented
as a back-end service running in Spotify’s data centers. De-
tails about Spotify’s pub/sub system have been presented
in [1]. With the ever-growing user base of Spotify it is
crucial for its pub/sub to scale accordingly. Typically, such
services are scaled horizontally by deploying new hard-
ware. In this paper, we provide a tool that can help system
managers to estimate the amount of user satisfaction that
can be achieved with existing resources, and estimate how
it can be improved with additional hardware. We also
show how the existing Spotify pub/sub architecture can be
extended to divert part of the pub/sub workload to a P2P
network by solving the proposed optimization problems,
in line with the existing peer-assisted streaming solution
already used by Spotify.

Fig. 1 shows our proposed peer-assisted pub/sub ar-
chitecture. In a peer-assisted architecture, part of the
load that is normally managed by a server in a classical
client/server architecture, is managed by clients them-
selves, which act as servers towards other clients, and are

Luser-created collections of music tracks



referred to as peers. This approach has the advantage that
it can reduce implementation costs, and can potentially
scale easily with respect to the number of users, since
peers bring with them an amount of resources that is
proportional to the load the system has to handle.

As shown in Fig. 1, the ODS has access to Publishers
and the Notification Module of the pub/sub architecture
of Spotify to collect statistics about publication event rates
and topic popularity. Depending on the satisfaction metric
used, ODS will solve B3M or F-B3M, using collected
statistics and the heuristics presented in Sections IV and
V. The ODS then instructs the pub/sub engine to consider
the list of topics it has found to maximize the subscriber
satisfaction for real-time delivery of publications using its
pool of brokers, while the remaining topics are offloaded to
the P2P network. The ODS constantly monitors changes
to the publication event rates as well as subscriptions
and unsubscriptions and uses these updated statistics to
periodically recompute the solutions for BSM or F-B3M to
maximize the subscriber satisfaction. Therefore, an addi-
tional requirement for the ODS is that it should employ
light-weight algorithms that can be executed relatively
quickly. In this regard, we propose efficient algorithms to
solve BSM or F-B3M in Section IV and V and validate
them in Section VI to show that they can be executed in
real-time for real traces from Spotify.

B. Cloud-based peer-assisted microblogging service

n [10], Cuckoo, a new Twitter-like microblogging sys-
tem that offloads the workload from the cloud to a P2P
network is proposed. However, the offloading technique
is arbitrary and hence it may result in under utilization
of the cloud resources. In addition, Cuckoo could benefit
from our definition of satisfaction metrics to deal with
overwhelming event rates of the topics related to news
media. The Cuckoo design relies on offloading the topics
with low publication rate and few subscribers to the P2P
network. While this is proven to reduce the load on the
cloud, we believe more can be achieved with the same
cloud resources by using a more sophisticated strategy
to select what to offload. In this paper we formalize this
problem and provide approximation algorithms that could
be applied in Cuckoo.

It is worth noting that application of the ODS is not
limited to the two scenarios described above. It is not
hard to see the applicability of the ODS in any pub/sub
system with limited resources. In the future, we plan
to design and implement a generic pub/sub framework
built around the ODS, especially to facilitate peer-assisted
pub/sub. However, in this paper we focus on designing and
evaluating efficient algorithms to solve BSM and F-B3M.

III. PROBLEM DEFINITIONS

The two QoS metrics mentioned in Section I prompt
problems that are similar in nature but very different in
hardness, as we show in Sections IV and V. In the first QoS
metric, we are interested in maximizing the number of sub-
scribers receiving at least 7 (satisfaction threshold) events
related to them from the back-end service. A subscriber is
considered satisfied if and only if at least 7 relevant events

are received. This definition of user satisfaction is suitable
for applications with events that are relatively infrequent
but important for the user. Spotify updates about favorite
albums and artists fall in this category. In this regard,
we define a problem coined Budgeted Maximum Multiset
Multicover (B3M) in this section. In Section IV we analyze
the hardness of BSM and propose a feasible heuristic.

In the second QoS metric we quantify the amount
of benefit towards the satisfaction of a subscriber with
a fraction of cumulative events delivered to a subscriber
relative to the given satisfaction threshold of 7. The goal
is to maximize the sum of fractional benefits of individual
subscribers of the topics set to be served by the back-
end servers. This definition is appropriate for applications
where events are frequent but of relatively low importance.
An example would be Spotify’s updates about the activities
of the friends of each given user. In this regard we define
the Fractional Budgeted Mazimum Multiset Multicover (F-
B3M) problem. In Section V we analyze the hardness of
F-B3M and propose a feasible heuristic that also gives a
guarantee on the quality of the output.

In both flavors of the problem, we want to ensure
that the computational and communication costs to serve
the events needed to maximize the number of satisfied
subscribers does not exceed a given limit on the capacity
of the resources at the back-end service.

Before we define the problem more formally, we intro-
duce the following notations:

T : A collection of [ topics {t1,ta,...,t;} in the system.
V : A collection of n subscribers {vy,va, ..., v, } participat-
ing in the pub/sub system. A subscriber can subscribe
to one or more topics from 7. Subscribers in a typical
pub/sub system are generally end-user applications (e.g.
Spotify client software). In the rest of the paper we use
subscribers and users interchangeably.

T, : The interest of subscriber v, that is, the set of topics
subscribed by v.

Int : The collection of interests {T,, Ty,,..., Iy, } for all
subscribers in V.

ev; : Bvent rate of the publications generated for a topic
t, that is, mean of events published to topic ¢ during a
given period (e.g., per minute or per hour). Without loss of
generality, we assume that ev;, > 0. When we say ‘event’ in
the rest of the paper we mean a publication-event message
generated by the back-end service for a topic intended for
all subscribers of the topic.

T : A system parameter that represents the satisfaction
threshold for a subscriber. It is defined as a constant spec-
ifying the number of events to be delivered to a subscriber
by the back-end service in order for the subscriber to be
considered satisfied. The period over which the events are
to be delivered is the same as the time unit of ev;. In the
rest of the paper when we say a subscriber is covered x
times we mean that a subscriber is set to receive exactly x
events from the back-end service in a given period of time.
Ty ¢ Subscriber-specific satisfaction threshold. In practice,
the total event rate of the topics subscribed to by a
subscriber is sometimes less than 7. In such cases we
need to serve all the events the subscriber is interested
in to meet the satisfaction threshold. It is mathematically



expressed as follows: 7, = min(r, > ,cp evr).

Vi« Vi CV is a non-empty set of subscribers to topic ¢.
Given Int, V; can be derived trivially.

cost(t) : Represents the non-zero cost of serving a topic ¢
by the back-end service. We say that the cost of a topic
is mormalized if it costs 1 per event sent by the server to
each subscriber of the topic and hence, normalized cost is
defined as cost(t) = ev - |V4].

C : Capacity of the back-end service. A constant to quan-
titatively represent the amount of resources available to
the back-end service. C has same unit as cost.

S : Solution (§ C T). It is a set of topics that can
be served by the back-end service with a cost that does
not exceed a given resource constraint expressed by the
constant C.

0(S) : Represents the sum of the satisfaction for all sub-
scribers, given a potential solution . We want to maximize
this function.

A. The problem of Budgeted Maximum Multiset Mul-
ticover (B3M):

Given an instance of T', V' and their interests Int, the
goal of the BSM(T,V, ev, cost, Int, 7,C) problem is to find
S C T so as to maximize the objective function defined
below:

Maximize O'(S):Z f(v), subject tchost(t) <C (1)

veV teS

f(v) is a function that indicates if subscriber v is receiving
a number of events that meets the satisfaction threshold:

ro={ g

The first condition in the Equation (2) is the case when
a subscriber v is receiving publication events at a rate not
lower than 7,. In order for v to contribute to the objective
function f(v), the solution & must include enough topics
subscribed by v with a total event rate of at least 7.

B. The problem of Fractional Budgeted Maximum
Multiset Multicover (F-B3M):

We now define a relaxed version of the B&M problem in
which we quantify the satisfaction relative to the number of
events covered for a subscriber v out of 7, events. Given an
instance of T', V' and their interests Int, the goal of the F-
B3M (T, V, ev, cost, Int, 7,C) problem is to find S C T so as
to maximize the sum of the fractions for all the subscribers.

if Z{teSmTv} evy 2 Ty (2)
otherwise

Maximize o(S)= Z g(v), subject toz cost(t) < C (3)
veV teS

g(v) is the fraction of events subscriber v receives, and it
is defined as:

if Z{teSmTU} evy =2 Ty

1
g(U) = { Z{teSﬁTU} evy (4)

Otherwise

The difference between B3M and F-B3M lies in the
definition of the satisfaction metrics in Equation (2) and
Equation (4) respectively. In Equation (2) the satisfaction

is defined in a binary fashion i.e. the satisfaction is 0 when
less than 7, events are received by the subscriber and 1
otherwise. On the other hand in Equation (4) a fraction of
events received up to 7, is considered instead of a binary
1 or 0. This subtle difference makes the two problems
fundamentally different in terms of difficulty of solving.
We explore this in detail in Sections IV and V.

IV. HARDNESS OF B3M AND ITS SOLUTION
APPROACH

In this section we prove that B3M is NP-Hard and we
also show that B3M has no Polynomial-Time Approxima-
tion Scheme (PTAS). We further propose an algorithm to
give an upper bound on B3M instances. We use this bound
to evaluate a greedy heuristic we propose in Section VI-B.

A. Hardness of BSM problem

To establish the hardness of BSM we prove that the
well-known hard problem of Densest-k-Subgraph (DkS)
can be reduced to a special case of BSM. We now define the
DES problem and an auxiliary unit-cost version of B3M.

Definition IV.1 (Densest-k-Subgraph). Given an undi-
rected graph G(U, E) the Densest-k-Subgraph

(DES(U, E,k)) problem on G is the problem of finding
a subset U’ € U of vertices of size |U’| = k with the
maximum induced average degree. The average degree of
the optimal subgraph is 2|E(U’)|/k. Here |E(U’)| denotes
the number of edges in the subgraph induced by U’.

The DkS problem can be proven to be NP-Hard by
reduction from the Max-Clique problem [11]. In [9] it has
been shown that DS is also NP-Hard even when restricted
to a maximum degree of 3. The best known approximation
algorithm achieves a ratio of O (n1/4+€) and runs in 277
time, for any € > 0 [12]. On the other hand, it is known
that DkS does not admit a PTAS [13].

Definition IV.2 (UC-B8M). We define an auxiliary prob-
lem coined Unit-Cost-B3M (UC-B3M ) which is a restricted
version of B3M. We define UC-B3M to be an instance of
B3M with unit cost for all the topics V¢t € T : cost(t) =1
and unit event rate ev; = 1, each subscriber subscribes to
exactly two topics Vo € V : |T,,| = 2, no two subscribers
subscribe to same set of topics Vv # vy : T,,, # T, and
the satisfaction threshold 7, = 2.

Lemma IV.3. UC-B3M is NP-Hard

Proof: Given an instance of DkS(U, E,k) we con-
struct an instance of UC-B3M(T,V,ev, cost, Int,7,C) in
the following way: we take T with topics that one-to-one
correspond to the vertices in the set U. We take V' to one-
to-one correspond to the edges in the set E. We build Int
from the edges incident on the vertices. For example, V;
corresponds to the edges incident on the corresponding
vertex in U. We set C = k . We now prove that there
is an induced subgraph of A(U’, E') with average degree
0 and exactly k vertices if and only if there is a solution
S to UC-B3M with value at least |[E(U’)| (i.e., the total
number of edges in the induced subgraph).

To see this, we observe that a subscriber in our UC-
B3M instance only contributes to the objective function



if both of her topics are included in S. This precisely
corresponds to the condition if and only if that exact edge
with the vertices corresponding to those two topics is in the
induced subgraph of the DkS instance. We can, without
loss of generality, assume that S contains precisely k topics
as the cost of each topic is 1 and the objective function is
non-decreasing in the number of selected topics.

As we know that DkS is NP-Hard [11], it follows that
UC-B3M is NP-Hard too. [

Theorem IV.4. B3M is NP-Hard.

Proof: UC-B3M is a special case of BSM. From The-
orem IV.3 we know that UC-B3M is NP-Hard and hence
B3M is NP-Hard too.

Corollary IV.5. Assuming NP ¢ N.oBPTIME(2"),
there is mo Polynomial-Time Approximation Scheme
(PTAS) for B3M.

Proof: The statement follows directly for UC-B3M
from the reduction given in Lemma IV.3 together with
a result by Khot [13] saying that unless NP has random-
ized algorithms that run in sub-exponential time (more
formally: NP C N.~oBPTIME(2"")) there is no PTAS for
DES. As UC-B3M is a special case of BEM, the statement
also holds for B3M. [ |

B. Greedy heuristic for BSM

In the greedy algorithm to solve B3M, in each iteration
of the algorithm, a topic ¢ is chosen so as to maximize the
ratio between its benefit and its cost. The benefit of a topic
is quantified by its total contribution towards the objective
function relative to the already chosen topics S&’. This is
done for each subscriber of a topic in a for loop (lines 2 to
5 of Algorithm 1). We define the contribution of a topic
t by considering the following scenarios: Adding ¢ to the
solution & (a) guarantees to deliver 7, events to its sub-
scriber v (b) contributes partially to the target 7, events
for its subscriber v. In the first case, the contribution is of
value 1. In the second case, the contribution is the ratio
between ev; and the remaining events needed to reach the
target 7, (computed in line 3). The intuition behind this
choice is to give higher priority to a topic that satisfies a
subscriber and hence, directly contributes to the objective
function. On the other hand, a topic contributing partially
to the satisfaction of its subscriber is given relatively lower
priority. This step is repeated for each subscriber of the
topic ¢ and the contribution is accumulated as a sum (line
5). Finally, in line 6 the total contribution is divided by
the topic’s cost to return the benefit-cost ratio.

The pseudocode of the greedy algorithm to solve
B3M is sketched in Algorithm 2 and the greedy strategy
is to choose a topic that maximizes the objective function.
In lines 2 and 3 an array containing the benefit-cost
ratio of the individual topics is initialized using Algorithm
1. In practice, this array can be a max-heap structure
optimized for obtaining elements with maximum value.
A topic that maximizes the benefit-cost ratio in each
iteration is selected in Algorithm 5. The topic is added

Algorithm 1: Heuristic value of topic ¢ given partial
solution S’

1 GetHeuristicB3M(t, ev, cost(t), Int,S’, T)
Input: t, ev, cost(t), Int,S’, T
Data: h < 0 : Heuristic value
rem, < 0: Events remaining to make user v happy

2 foreach {v € V;} do

3 TE€My — Ty — {t’eS’mTv}evt’
4 if rem, > 0 then

5 Lhethmin(l,rzxv)

6 return #t(t)

Algorithm 2: Greedy solution for BSM

1 GreedyB3M(T,V,ev, cost, Int, 7,C)
Input: TV, ev, cost, Int, T,C
Data: A : Array of size [
Result: 8’ < 0 : Output set of topics
foreach t € T do
L Alt] + GetHeuristicB3M(t, ev, cost(t), Int,S’, T)
while T # 0 do
t < argmax gy cpy Aft']
if Alt] =0 then
L break
if cost(t) + Zt’es’ cost(t') < C then
S+« S U {t}
foreach {t' : ViNVy #0 At ¢ S’} do
t A[t'] +
GetHeuristicB3M(t/, ev, cost(t'), Int, S’, T)
12 T+ T\ {t}

13 return S’

© ® IO A N

=
= O

Algorithm 3: Upper bound for B8M with normal-
ized topic costs
1 GetUpperBound(V,T,ev, Int,C, 1)
Input: V,T,ev, Int,C, T
Data: C : Array of size n
csubs < 0 : Set of subscribers covered
foreach {v € V} do
L Cv] ¢~ max (7, minge, €vy)
while V # () do
v 4 argming,cyy Cv']
if Cv] + Zv’Ecsubs C[v'] <C then
csubs < csubs U {v}

V +— V\{v}
return |csubs|

O O A N

to the solution if its addition keeps the cost of the solution
within the budget. Otherwise the topic is ignored. If the
topic is added to the solution, the benefit-cost ratio of all
the topics not selected so far are updated based on the
current solution set S’ (lines 10 and 11). V;NVy is the set of
subscribers common to subscribers of ¢ and subscribers of
t'. The algorithm terminates when it has considered all the
available topics, or when all subscribers have been covered
in which case the benefit-cost ratio of all the topics would
be 0 (line 7).

Theorem IV.6. The run time complexity of Algorithm 2
is O(|T*(|V| + log |T)).

Proof: Refer to Appendix A. [ |



Theorem IV.6 gives the worst-case run time complexity,
the cost being dominated by updating the cost for all topics
in lines 10 and 11 of Algorithm 2 when a topic is added
to the solution. We remark that in practice, the code runs
significantly faster than this bound would imply. One of
the reasons being that the number of updates is bounded
by maxize|Vi N V|, which is usually significantly lower
than |T.

We now turn to the subject of computing an upper
bound on the optimal solution. For this analysis, we only
consider the case when the cost function is normalized, i.e.,
cost(t) = evy - |V4.

Theorem Iv.7. Given an
B3M(T,V, ev, cost, Int,7,C)  where  the
normalized, for any solution S it holds that:

< 1. i <
o(S) < max <|V \ Z max <7’U,%I€1¥11) evt) < C) ,

veV’

instance
costs are

where V' C V.

Proof (Sketch): With normalized costs, one can see
that the amortized cost to cover each subscriber v is at
least 7,. The cost is also bounded by the lowest event
rate of any event in which the subscriber is interested. For
detailed proof please refer to Appendix B. [ ]

Theorem IV.7 presents a way to compute an upper
bound on the optimal solution. Since Algorithm 2 gives an
unbounded approximation ratio, we make use of Theorem
IV.7 to evaluate how well our proposed heuristic performs
on real-world inputs (see Section VI-B). This theorem can
be readily turned into an algorithm as shown in Algorithm
3. In lines 2 and 3 the minimum cost to consider a
subscriber satisfied is initialized in an array. Then, in each
iteration the subscriber with the least cost is selected until
there is no more budget left to cover more subscribers
(lines 4 to 8). Finally, the number of selected subscribers
is returned as the upper bound for the optimal solution
(line 9).

V. HARDNESS OF F-B3M AND ITS SOLUTION
APPROACH

In this section we analyze the hardness of F-B3M.
Comparing to the results we obtained for BSM, the direct
reduction we did from Densest-k-Subgraph no longer works
as in that case it is imperative that we are not “paid” for
a partially satisfied subscriber. This also means that the
approximation-resistance results obtained for BSM do not
translate. For F-B3M, we are instead able to give a greedy
approximation algorithm with an approximation ratio of
% (1 — %) F-B3M is still NP-Hard, which we first prove
by a reduction from the (unweighted) Mazimum Coverage
problem [14].

Theorem V.1. F-B3M problem is NP-Hard.

Proof: By reduction from Maximum Coverage. Refer
to Appendix C. [ |

Algorithm 4: Heuristic value of topic ¢ given partial
solution S’
1 GetHeuristicFB3M(t, ev, Int,S’, 7)

Input: t,ev, Int, S’ T

Data: h < 0 : Heuristic value

rem, : Events remaining to make user v happy

foreach {v € V;} do

remy — Ty —

2

3 {t'es'nT,} €V
4 if rem, > 0 then
5

6

L he h+ min(re;:@,evf,)

return h

Algorithm 5: Appropriate simple greedy algorithm
for F-B3M, given a type
1 GreedyFB3M(T,V,ev, cost, Int, T, C, type)

Input: TV, ev, cost, Int, T,C, type

Data: A : Array of size [

Result: S’ <+ 0 : Output set of topics

2 foreach t € T do

3 L A[t] + ComputeHeuristic(t, ev, cost(t), Int,S’, T, type)

4 while T # () do

5 t < argmax g7y Alz]

6 T+ T\ {t}

7 if cost(t) + Z cost(t') < C then

t'esS’

8 S« S U {t}

9 repeat
10 t 1t
11 t + argmaxy,cry Alz]
12 Alt] +

ComputeHeuristic(t, ev, cost(t), Int,S’, T, type)

13 | until Aft'] = A[¢]

14 return S’

Algorithm 6: Appropriate heuristic, given a type

1 ComputeHeuristic(¢, ev, cost(t), Int, S’, T, type)
Input: ¢, ev, cost(t), Int,S’, T, type

2 if type = G then

3 L return GetHeuristicFB3M(t, ev, Int, S’, T)

4 else if type = R then
5 L return GetHeuristicFB3M(t, ev, Int, S’, 7) /cost(t)

Algorithm 7: Greedy algorithm for F-B3M

1 ModifiedGreedyFB3M(T,V, ev, cost, Int, T,C)
Input: TV, ev, cost, Int, T,C

S’ «+ GreedyFB3M(T,V, ev, cost, Int, 7,C,G)
S" «+ GreedyFB3M(T,V, ev, cost, Int, 7,C, R)
if 0(S’) > 0(S”) then return &’

else return §”’

[SL I N U R V]

A. Greedy Heuristic

Theorem V.2. The objective function in the F-B3M prob-
lem from Ezpression (3) is a submodular function.

Proof: Refer to Appendix D, where we also define
submodularity. ]

From Theorem V.2 we infer that the F-B3M problem
is essentially the budgeted maximization of a submodular
function. The generalized greedy heuristic for maximiza-
tion of submodular functions is known to guarantee a con-



stant approximation factor as shown in [15]. Unfortunately,
greedily selecting topics with best benefit-cost ratio for a
budgeted maximization of a submodular function no longer
gives a constant approximation guarantee. Greedily choos-
ing the topics similarly to the solution for BSM performs
arbitrarily poorly.

To see why the simple greedy approach fails, consider
an instance with two topics ¢; and ty with o(t;) = 1 and
cost(t1) = 1 and o(t2) = x for some x > 1 and cost(tz) =
241 and with C = 2+ 1. The heuristic of benefit-cost ratio
prefers ¢t over to. Having spent a budget of 1 the heuristic
can no longer select t3 and terminates with o(t1) = 1 while
the optimal solution is choosing ¢t with the gain o(t2) =z
giving an approximation ratio of x.

Taking inspiration from [16], we address this problem
by running two instances of a greedy algorithm, each using
a different heuristic. The first algorithm, which we refer
to as being of type G, uses o as shown in Algorithm
4. The second algorithm, of type R, uses the benefit-
cost ratio (o/cost(t)). The final solution is the best of
the two solutions provided by executing the algorithms of
type G and R, respectively. The pseudocode of the simple
greedy algorithm is shown in Algorithm 5. Algorithm 7
is the pseudocode for the modified greedy algorithm to
solve the F-B3M problem that executes the simple greedy
algorithms of type G and R and selects the best solution.

Our simple greedy algorithm (Algorithm 5) includes
an optimization that is important in practice, but does
not affect the worst-case run time. After selecting a topic,
the contribution of other topics needs to be updated. Here
we observe that, due to submodularity, the contribution
of those topics can only decrease. Thus, we loop over the
sorted list of topics in descending order of value and stop
updating as soon as the contribution of the topic with
maximum contribution (top topic in max-heap) does not
change. This is done between lines 9 and 12.

Theorem V.3. Algorithm 7 has an approximation ratio

ok (1-)

Proof: A general result for budgeted maximization of
submodular functions was given by Krause and Guestrin
[17][Theorem 1]. Our Algorithm 7 is a minor extension of
theirs, the difference being that they only select a single
element when type = G. [ |

We remark that, following [17], one can also create a
greedy heuristic with an approximation ratio of 1 — i at
the cost of an additional factor of |T|® in the running time
of the algorithm.

Theorem V.4. Given an instance
B3M(T,V, ev, cost, Int, 7,C) where costs are normalized,
for any solution S it holds that:

n. .
o(S) < max <V | : Z max (Tv,{renTrj evt) < C) +1,

veV’
where V! C V.

Note that Theorem V.4 is an extension of Theorem IV.7
with a minor difference in that there may be a fractional

contribution to the objective function. This fractional part
is upper bounded by 1.

Theorem V.5. Algorithm 7 has run time complexity of
O(IT*(|V] + log |TT)).

Proof: Refer to Appendix A. [ |

VI. EVALUATIONS
A. Ezperimental Setup

We implemented both GreedyB3M and Modified-
GreedyFB3M using C++4. To evaluate these heuristics we
make use of real data from Spotify’s deployed pub/sub
system. The data consists of about 1.1 million topics and
4.9 million subscribers. The traces were gathered for 10
days from Spotify’s data center at Stockholm. For more
information about the data traces refer to [1]. We use the
normalized cost function: for each topic cost(t) = ev; - |V|.
To choose C we analyzed the full data traces and computed
the total capacity needed to handle the full traces in terms
of the total cost of all the topics ), . cost(t). Unless
mentioned explicitly, for evaluations in this paper we set
the capacity constraint C to be 10% of this sum. For 7 we
used 1%(27) to 100%(2763) of the mean event rate of all
the topics. All experiments were executed single threaded
on a server with 16 cores of Intel Xeon 2.13GHz processors
and 32 GB of RAM.

B. Performance of GreedyB3M

First we analyze the performance of GreedyB3M (Al-
gorithm 2) comparing it to the upper bound computed
by GetUpperBound (Algorithm 3). To visualize the per-
formance we observe that both algorithms iteratively con-
struct solutions. Thus, in Figure 2 we show the progress of
the GreedyB3M algorithm after selecting a topic in each
iteration, by comparing the service capacity used so far
(x-axis) against the number of satisfied subscribers (for
a given 7) (y-axis) by the chosen topics. Note that this
represents a single run of GreedyB3M until a budget C of
10% of the workload is reached. However, the intermediate
results are equivalent to having stopped GreedyB3M at
the corresponding values of C. We can see that the gap
between GreedyB3M and the upper bound increases as C
also increases in most cases when C is restricted to 10%.

An interesting observation is that, with C equivalent to
10% of what is needed to handle the full workload, the
gap between GreedyB3M and the upper bound increases
as 7 increases from 27 to 276 (the approximation ratio
drops from 0.87 to 0.75, as shown in Figure 4). However,
this changes when 7 is increased to 2763, in which case
the approximation ratio of GreedyB3M increases from 0.75
to 0.82. 7 &~ 27 is a reasonably realistic value. With
this parameter we satisfy around 72% of all subscribers
(3.5 million of the total 4.9 million). The upper bound
gives that at most 86% (4.2 million) of subscribers can be
satisfied, with an approximation ratio of around 0.83.
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C. Performance of ModifiedGreedyFB3M

We now analyze the performance of Modified-
GreedyFB3M. From the theoretic results, we know that
ModifiedGreedyFB3M guarantees an approximation ratio
of 3 (1 — 1). In our real-world data set, we achieve a signif-
icantly better ratio (up to 0.9). Analogously to our analysis
of GreedyB3M, we use the upper bound given by Theorem
V.4. This theorem can be easily turned into an algorithm
identical to Algorithm 3 but with the change that in the
last step (line 9) we return |csubs| + 1 instead. Since the
goal of F-B3M is to maximize the total satisfaction frac-
tion among the subscribers of all the topics, the outcome
is measured in terms of total fraction instead of number
of subscribers. As shown in Figure 3, a similar pattern to
GreedyB3M is observed in the approximation ratio when
the 7 changes from 27 to 2763. However, the gap between
the ModifiedGreedyFB3M and the upper bound is much
lower compared to the gap between GreedyB3M and its
corresponding upper bound. For example for 7 = 2763 the
approximation ratio between ModifiedGreedyFB3M and
the upper bound is 0.9 compared to 0.82 for GreedyB3M,
as shown in Figure 4.

GreedyB3M and ModifiedGreedyFB3M are intended to
run on a regular basis, thus it is important that they
are fast. In Figure 5 the running times of the greedy
approaches proposed in this paper are shown in seconds
(mean of 3 runs). We also introduce a naive version
coined ModifiedGreedyFB3MSlow, to evaluate the gain
of exploting submodularity structure to lazily updating
costs in ModifiedGreedyFB3M as explained in Section
V-A . ModifiedGreedyFB3MSlow is identical to Modified-
GreedyFB3M except from line 9 to 12 of Algorithm 5.
Instead of lazily updating topic costs, all the topics that
have a common subscriber with the chosen topic in the
current iteration are updated (same as lines 6 and 7 of
Algorithm 2). From Figure 5 it is clear that Modified-
GreedyFB3M outperforms Modified GreedyFB3MSlow and
runs in less than 20 seconds for all values of 7, while
without optimization it takes a maximum of 33 seconds
to run for 7 = 276. It is clear that these algorithms are in
general fast to run in large-scale settings and can be run
on a regular basis.

D. Real-Time Performance

The solutions for B3M and F-B3M are expected to
be run periodically to recompute the solution. In these

Comparison of ModifiedGreedyFB3M B3M and F-B3M with varying 7
with the Estimated Upper Bound

periodic computations, the input sizes are smaller as they
only need to provide a solution until the next computation,
meaning that topics without publications can be ignored.
To evaluate their performance in this scenario, we use the
stream of publications from Spotify with a fixed 7 = 20 and
C varying from 1% to 50%. We divide the stream in smaller
time windows, where each window is an hour long. We then
execute our algorithms for the topics active in 10 consec-
utive time windows. In Fig. 6 we show the execution time
of the GreedyB3M and ModifiedGreedyFB3M algorithms.
The algorithms execute in just a few hundred milliseconds,
and ModifiedGreedyFB3M executes at least twice as fast
as GreedyB3M due to the proposed optimization. The
running times reflect the size of the workload and, for a
typical workload in Spotify, the solutions are suitable for
periodic execution in real-time. In Fig. 7 we show that both
heuristics provide similar approximation ratios. However,
ModifiedGreedyFB3M performs slightly better in all cases.
An interesting observation is that, as C increases, the
approximation ratios also increase.

VII.

There are many types of pub/sub systems proposed
in the literature [18]. Proposals from the last 15 years
come from both industry [1]-[3] and academia [6], [7], [18].
Publisher placement and subscriber relocation to minimize
metrics like publication-notification delay and system load
in content-based pub/sub systems have been proposed be-
fore [19]. In [10] a peer-assisted pub/sub service to offload
workload from the cloud is proposed. We believe that cloud
resource utilization under this approach can be improved
by defining and then maximizing satisfaction metrics using
our proposed algorithms. To the best of our knowledge, we
are the first to formalize subscriber satisfaction metrics
and formulate the problem of maximizing the number of
satisfied subscribers under resource constraints.

RELATED WORK

The formal definition we arrive at bears a strong
resemblance to (set) coverage problems; the problem of
Budgeted Maximum Coverage (BMC) [16] being the clos-
est match. However, a significant difference is that in our
setting a subscriber may need to be “covered” more than
once. The family of coverage problems are generally proven
NP-Hard using reductions from the Max-Cover problem
[14]. We instead reduce DkS to our BSM problem, which
allows us to rule out the existence of a PTAS.

Seminal work on analysis of the maximization of sub-
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modular set functions was originally done in [15]. We ex-
ploit the submodularity property of the objective function
of F-BSM to derive a constant approximation ratio for
its greedy heuristic and to speed up the corresponding
algorithm.

VIII.

In this paper, motivated by practical scenarios in a
real deployed pub/sub system at Spotify, we proposed a
new approach to maximize subscriber satisfaction. In the
process, we introduced a new set of problems (B3M and
F-B3M) to address the maximization of the number of
satisfied subscribers in a pub/sub system and proposed
greedy heuristics to solve both problems. We proved that
B3M is NP-Hard by reduction from the DES problem
and, as a corollary, also proved that B3M has no PTAS
under a standard assumption. F-B3M is a relaxed version
of B3M that is relatively easy to solve. We proved that
the objective function of F-B3M is submodular, derived a
constant approximation bound for its greedy heuristic, and
proposed a way to exploit the submodularity of the objec-
tive function to improve the running time of the heuristic
for typical scenarios. We evaluated our heuristics for both
problems using a large-scale real data set from Spotify’s
pub/sub system and compared their performance with
upper bounds we derived for the optimal solutions of both
problems. We illustrated that, with a realistic pub/sub
workload as input, our heuristics achieve an approximation
ratio of at least 0.7 and they can be run in under a second
in a realistic scenario to adapt to the workload variations.
We conclude that we have demonstrated that there is
theoretical and practical evidence that pub/sub systems
(like Spotify’s pub/sub) can benefit from the algorithms
presented in this paper.

CONCLUSIONS
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APPENDIX
A. Proof for theorem V.5 and theorem IV.6

Proof: The data structure A (both in case of
GreedyB3M and GreedyFB3M) can be any max-heap
structure supporting insertion, update, and extracting the
maximum element in time O(log n), e.g., a binary heap.
The initialization of the array to store the heuristic values
per-topic done in Line 3 of the Algorithm 2 and Algo-
rithm 7 has complexity of O(|T'||V|log|T|). Once a topic
is selected a while loop (lines 9 to 12) is exectued to update
the topics in the top of the heap until there is no more
change. This loop runs |T| times in the worst case. Within
the loop, re-evaluating the heuristics has complexity of |V
and updating A has takes time O(log |T). Hence the run
time complexity of the Algorithm 7 and Algorithm 2 is

O([VIIT|1og |T|+T* (IV| + log [T])) = O(IT[*(|V|-+log |T1))

B. Detailed Proof of Theorem IV.7

Proof: Given a data set and a capcity constraint, we
can derive an upper bound on the number of subscribers
that can be maximized. Intuitively, we can spend the
available capacity minimally to buy satisfied subscribers.
However, since we consider the case of normalized costs,
in order to obtain a tighter bound we only pay amortized
cost of a topic for each of its subscribers. We elaborate this
idea below:

We first show that the theorem holds for an instance
where Vier|Vi| = 1, and then show that it generalizes to
the full setting with normalized costs.

When each topic has only a single subscriber, consider
the capacity that must be spent to add a user to the
solution set. A subscriber v can be satisfied when topics
with total event rate of 7, are selected in the solution.
Hence, the minimum capacity that must be spent to satisfy
a subscriber is 7,,. To tighten this bound slightly, we also
observe that if Vier, ev; > 7,, then the semantics of the
B3M definition dictates that a topic must be completely
paid for or not at all. Hence, the capacity that must be
spent in such a scenario is min;er, ev;. Note that the topics
costs here are normalized, i.e., cost(t) = evy * |V4|. Since
|[Vi] = 1, we derive the clause max (7,, minger, evy) as a
cost to satisfy a single subscriber. Clearly, the solution set
must have sufficient capacity to add all users, so summing
up these bounds, we get the theorem as stated.

Considering the general setting of the problem where
topics can be subscribed to by multiple users, we see that
our bound still holds. As costs are normalized, we can
easily amortize the cost of adding a subscriber to the
solution. As the cost of a topic is cost(t) = ev; * |V;|, when
we select a topic we add an amortized cost of ev; to each of
the subscribers of the topic. The bound we derived on the
setting where each topic has a single subscriber also applies
to the amortized costs, and thus the theorem follows. W

C. Proof of Theorem V.1

Definition A.1 (Maximum Coverage). In the (un-
weighted) Mazimum Coverage problem, input consists of

a collection of sets S = {s1, $2,...,5,} and a parameter k.
The goal is to find a subset S" C S maximizing ||J,cg 5|
subject to |S'| < k.

Proof: Given an instance of Maximum Coverage(.S, k)
we construct an instance of F-B3M (T, V, ev, cost, Int, T,C)
in the following way: we take T" with topics that one-to-one
correspond to the sets in the collection S and let cost(t) =
1. We take V that one-to-one correspond to the elements of
Useg and construct Int from set membership relationship
of sets in S. We further let evy = 1, set 7 = 1, and let
C=k.

From this construction it is easy to see that there is a
solution of size d of the Maximum Coverage instance iff
there is a solution of value d of the F-B3M instance. As
Maximum Coverage is NP-Hard, this concludes the proof.

|

D. Proof for Theorem V.2

Definition A.2 (Submodularity). A function o is said to
be submodular for any set A C B if the following holds:

oc(AUz) —o(A) > o(BUzx)—o(B)
for any element x ¢ B.

Proof: Intuitively, the objective function for F-B3M is
submodular because the incremental gain from adding a
new topic is fractional i.e, reaching a threshold of 7 to
have incremental gain is not a requirement. However, a
larger set is more likely to have covered more subscribers
and higher number of times hence the gain is incremental.
In addition to that adding a topic with subscribers already
covered T to a larger set of topics gives no incremental gain
in the objective function. On the other hand adding it to a
smaller set of topics would give larger incremental gain. Let
us now capture the intuition mathematically. Assume that
we have two solution sets S; and Sy such that Sy C Sj.
Adding a topic t ¢ S; to these sets always has non-negative
incremental gain in their respective objective functions.
However, the amount of incremental gain depends on the
following scenarios:

1)  The subscribers V; of topic ¢ are already covered
7 times in both &1 and Ss. Hence, adding ¢ results
no incremental gain for both sets. Note that this
case can be extended to both sets already covering
equal number of times, and the incremental gain
will be same for both.

2)  V; are covered in 87 x times and they are covered
y times in S such that > y (again, note that
other way round is not possible since So C &7).
The following sub-cases are possible:

a) Ifx+ev; > 7 and y+ evy > 7 then, since
we know that x > y, &1 will have lower
gain because ), oy, o <370y Y

b) Ifx+ev; > 7 and y+ev; < 7 then, the in-
cremental gain for S, is higher because the
incremental gain for S; is Zvew Tu—Z <

Ty

Zvew % since we know that x+ev; > 7.

c) Finally, if v+ev; < 7 and y+ev; < 7 then,
both S; and S have same incremental

gain.




V, are covered 7 times in S; but not in Ss
(note that other way round is not possible since
Sz C &1). Hence, adding t to S; results in no in-
cremental gain while the objective function for Sy
is incremented with exactly 7y w,
where, rem, = 7, — Z{t’eS’ﬁTv} evy .

All possible scenarios are covered using the above cases.
It is easy to see that in all of the above scenarios the
following always holds for any ¢ ¢ S;.

0'(81 Ut)—O'(Sl) SO‘(SQUt)—O’(Sg)



