
Formalization of a
Type and Effect System
using COQ and OTT

Peter Brottveit Bock
Master’s Thesis Autumn 2013





Formalization of a

Type and Effect System

using Coq and Ott

Peter Brottveit Bock

November 1, 2013





Abstract

Papers from the field of programming language theory, especially those related
to concurrent programming languages, often contain languages and definitions
with many rules, and proofs about these are therefore often long and tedious.
The need for both formalization and automation is sought after, as indicated by
the POPLMark-challenge.

This thesis presents a formalization of two type and effect systems, and a
formalized proof relating one of the systems to the other. The formalization
is realized with the tools Coq and Ott, which give a rigorous and machine
checkable formalization.



2



Contents

1 Introduction 5
1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Ott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Type Theory 9
2.1 Type Theory and Coq . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Simply-Typed Lambda Calculus . . . . . . . . . . . . . . . . . . . 9
2.3 Polymorphic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Predicative and Impredicative System . . . . . . . . . . . . . . . . 13
2.5 Type Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Dependent Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 The Lambda Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 About Ott 19
3.1 Grammars in Ott . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Relations in Ott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Generating Coq Code . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Embedding of Languages 27
4.1 Deep Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Shallow Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Deadlock Detection 31
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 The Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Semantics of the Language . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Type and Effect Systems . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4.1 Specification Type System . . . . . . . . . . . . . . . . . . . 33
5.4.2 Algorithmic Type System . . . . . . . . . . . . . . . . . . . 33
5.4.3 Syntax Directed Type System . . . . . . . . . . . . . . . . . 34

5.5 Theorems and their Proofs . . . . . . . . . . . . . . . . . . . . . . . 34
5.5.1 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5.3 Subject reduction . . . . . . . . . . . . . . . . . . . . . . . . 35

3



6 Formalization 37
6.1 Syntactical Constructions . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.2 Type-Level Variables and Type Schemes . . . . . . . . . . 39
6.1.3 Threads, Expressions, Types, and Values . . . . . . . . . . 39
6.1.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.5 Lock Environments . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.6 Lock Sets and Effects . . . . . . . . . . . . . . . . . . . . . . 41
6.1.7 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.1 Ott Generated Substitution Functions . . . . . . . . . . . 41
6.2.2 Deep Embedding of Substitutions . . . . . . . . . . . . . . 42
6.2.3 Shallow Embedding of Substitutions . . . . . . . . . . . . . 42

6.3 Type and Effect System: Specification . . . . . . . . . . . . . . . . 44
6.4 Type and Effect System: Algorithm . . . . . . . . . . . . . . . . . 44

6.4.1 Freshness of Variables . . . . . . . . . . . . . . . . . . . . . 44
6.5 Syntax Directed Type System . . . . . . . . . . . . . . . . . . . . . 46
6.6 Formalization of the Soundness Proof . . . . . . . . . . . . . . . . 46

6.6.1 Proving the Case of TA Abs2 . . . . . . . . . . . . . . . . 46
6.6.2 Strengthening of Constraints . . . . . . . . . . . . . . . . . 47
6.6.3 Status of the Proof . . . . . . . . . . . . . . . . . . . . . . . 49

7 Technical and Practical Experiences 51
7.1 α-Equivalence between Type Schemes . . . . . . . . . . . . . . . . 51

7.1.1 Representation of Syntax and Bound Variables . . . . . . 51
7.1.2 Application to Type Schemes . . . . . . . . . . . . . . . . . 53
7.1.3 Representation of Expressions . . . . . . . . . . . . . . . . . 54

7.2 Experience with Ott . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.1 Separation of Ott-files . . . . . . . . . . . . . . . . . . . . . 55
7.2.2 Substitution and Free Variables . . . . . . . . . . . . . . . . 56

7.3 Experience with Formalization . . . . . . . . . . . . . . . . . . . . . 56

8 Conclusion 59
8.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 General Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A Ott output 65

4



Chapter 1

Introduction

Programming language theory often consists of complex definitions and proofs.
They are usually written in English together with mathematical notation. This
allows the authors to appeal to the intuition of the reader, skip trivialities, and
let obvious things be implicit, which helps readability as well as being good from
a pedagogical point of view.

The chance of errors increase with the size of a work. Errors can include
trivialities like typographical errors, but also logical fallacies, omissions and
misunderstandings.

To gain faith in the correctness of claims made in such papers, machine check-
able formal methods are desirable. This desire is shown through the POPLMark
challenge [ABF+05], which is a challenge for researchers to formalize the type
system F<∶, where the formalization is evaluated using certain benchmarks.

Theorem prover assistants are tools to formalize theories and the proof of its
theorems. The definitions, lemmas, theorems, and proofs are written in one or
more formal, machine-readable languages, and the theorem prover assistant will
check for errors and verify the correctness of the proofs.

1.1 Goal

The goal of this thesis is to formalize a non-trivial system, with the following
sub-goals:

1. The formalization should be rigorous.

2. The formalization should be machine checkable.

3. The formalization should be readable.

The domain of the formalization will be static deadlock checking of programs.
Creating concurrent programs is considered more difficult than creating single
threaded programs, and one of the most common types of errors are deadlocks,
which occur when several threads are waiting in a cyclic manner for resources
that they collectively hold.

It is therefore desirable to statically analyze programs to check if they contain
deadlocks. The systems which do this are not trivial; they usually contain many

5



definitions and tedious proofs, and it is therefore of interest to formally check
that the system has the properties it has been claimed to have.

Several papers were considered, and the article Deadlock Checking by Data
Race Condition [PSS13] was chosen. It is a highly technical paper, with several
type and effect systems, each with many rules; several auxiliary definitions; and
several long proofs.

Two tools were used in the formalization work: Ott and Coq.

1.2 Coq

Coq [BC04] is an advanced proof assistant. Its foundation is type theory, a topic
which is investigated in Chapter 2. It has support for higher-order functions,
inductive and co-inductive types, and dependent types. The expressivity of Coq
is very high; its logic corresponds to an intuitionistic higher-order predicate logic,
and is compatible with classical axioms such as double negation elimination and
the law of exclude middle.

The most famous use of Coq is the proof of the Four-Color theorem by
Gonthier [Gon08], while in the field of programming language theory Comp-
Cert [Ler09] is the most well-known example. CompCert is a formally verified
compiler for almost all of the C programming language, written and verified in
Coq.

It is assumed the reader of this thesis has a basic knowledge of Coq, mainly
inductive definitions, fixpoints, and dependent types. Relevant literature is the
online book Software Foundations1 by Benjamin C. Pierce et. al. which is a good,
practical introduction to the use of Coq, while the book Interactive Theorem
Proving and Program Development [BC04] is a thorough introduction to Coq,
which also introduces the underlying system Calculus of Inductive Constructions.
Finally, Adam Chlipala’s Certified Programming with Dependent Types [Chl11]
focuses on the use of dependent functions, and has an unusual technique for
completing proofs in an automated way.

There are three major reasons for the choice of Coq. First of all, I wanted
to investigate dependent type theory, which is the foundation of Coq. Coq is
also one of three choices which can be used together with Ott. Finally, Coq is
a mature project.

1.3 Ott

Ott [SNO+07] is a tool intended to help researchers in the field of programming
language theory to formalize their work. It consists of a domain specific language
for writing context free grammars and judgments. The syntax of the Ott-
language mirrors quite closely how one would write grammars and judgments in
scientific papers.

The Ott program can generate both a nicely typeset LATEX-document and
Coq-code from a given Ott-file. Generation of OCaml, HOL and Isabelle code
is also supported, but it is not used for this thesis.

1http://www.cis.upenn.edu/~bcpierce/sf/

6

http://www.cis.upenn.edu/~bcpierce/sf/


1.4 Results

The main results in this thesis is: the formalization in Ott of two type systems,
a specification and an algorithm, together with all syntactical constructions and
auxiliary judgments needed by these two type systems; and the formalization
in Coq of the proof given in [PSS13] for a “soundness” property between the
algorithm and the specification. The result includes several technical proofs that
are outside the scope of [PSS13]. The formalization is rigorous and machine
checkable.

In addition to this, the semantics and another type system is formalized
in Ott. These are used for proofs in [PSS13], but those proofs have not been
formalized. The formalization in Ott gives rise to fourteen pages of typeset
grammars and relations. The typeset version of the formalization turned out to
be helpful when discussing the formalization with others.

As a result of the formalization, several typographic errors in the original
type systems were found, some insignificant, while other were more serious, such
as wrongly indexed variables. In addition, an error where a rule was applied
wrongly was found in the proof of soundness.

1.5 Overview of the Thesis

The first chapter gives an introduction to type theory. Then Ott is introduced in
Chapter 3; deep and shallow embedding, which are categorizations of embedding
of logics, is described in Chapter 4; the work to be formalized is presented
in Chapter 5, and Chapter 6 describes the formalization process. The major
shortcoming of the formalization and the experience of using Ott is described in
Chapter 7. Finally, the conclusion is in Chapter 8. In Appendix A, the typeset
version of the formalization, as generated by Ott, is given.

The source code can be found at http://heim.ifi.uio.no/peterbb/master/.

1.6 Acknowledgments

I would like to thank my supervisor Martin Steffen for all of his great feedback;
and my girlfriend Julia Batkiewicz for her support and for proofreading my
thesis.

7

http://heim.ifi.uio.no/peterbb/master/


8



Chapter 2

Type Theory

Type theory is the foundation of the theorem prover Coq, and it is used in
the work which has been formalized in this thesis. We therefore have two good
reasons to investigate type theory.

2.1 Type Theory and Coq

A theorem prover assistant is a program where one can express propositions and
their proofs and check if a proof is correct. Examples of theorem provers are
Coq [BC04], Agda [Nor07, CC99], Isabelle [Pau88], and ACL2 [BM79]. Some
theorem provers, such as Coq, use type theory as its foundation, but users
usually interact with Coq using notation from logic, even though Coq’s “internal”
language is that of types and programs. The core of Coq is a type checker,
which can check if a given program has a given type.

It is the Curry-Howard correspondence [Cur34], bridging logic with type
theory, that makes it possible to use type theory for proving propositions. In the
correspondence, a type corresponds to a propositions, a program corresponds to
a proof, and type checking corresponds to proof verification.

It is possible to express complex propositions in Coq, and the claim that
they correspond to types may seem far-fetched for programmers. For which type,
in for instance ML, would correspond to the proposition “f is a function which
sorts lists of numbers”? While ML’s and Coq’s type systems share a common
foundation, they differ in that Coq’s type system can express more, but on the
other hand, ML’s can infer the type of a program without type annotations.

One of the goals of this chapter is to show what kind of type system one
can use to express propositions. Another more practical goal is to get more
knowledge of how Coq and similar systems work, so that one can understand
practical problems which come up when working with them.

The syntax and inference rules are taken from Barendregt’s Handbook
[Bar92].

2.2 Simply-Typed Lambda Calculus

The simply-typed lambda calculus (λ→) will be the basis for all our type systems.
λ→ can be viewed as a minimal functional programming language, for instance

9



a very restricted version of ML. To make the system a bit more interesting,
product and sum types has been added in the same way as in the book Proofs
and Types [GLT89].

For the definition of the types, assume that there is a set B of base types,
which for instance could be {bool, int} for boolean and integer values, and let
V = {α,β, . . .} be a set of type variables. Given this, the set T of all the types of
λ→ is defined as follows:

T ∶∶= B ∣ V ∣ T→ T ∣ T ×T ∣ T +T

Throughout this section, τ and σ will range over T. The meaning of each
construct is as follows: τ → σ is read as “function from τ to σ”; and τ ×σ is read
as “product of τ and σ”, which is a pair where the first element is of type τ , and
the second of type σ; and finally τ + σ is read as “disjoint sum of τ and σ” (or
“tagged union”), which is a value of τ or σ tagged with which of the types it has.

The terms of λ→ are defined as

M,N ∶∶= cτ ∣ x ∣ λx ∶τ. M ∣M N ∣
⟨M, N⟩ ∣ π1M ∣ π2M ∣
ι1M ∣ ι2M ∣ case(M,N,N ′)

where cτ is a constant c of type τ , x is a variable, λx ∶τ. M is a lambda abstraction
(i.e. an anonymous function), and M N is a function application, where M is
the function and N is the argument.

The next operators: ⟨M, N⟩, π1M , and π2M , respectively construct pairs,
fetch the first element of a pair, and fetch the second element of a pair. A variant
of this pair construction, using labels instead of indexes, is found in languages
like C, Algol, and ML under the name records or structs.

The final operators: ι1M , ι2M , and case(M,N,N ′), respectively construct
a left-hand sum object, construct a right-hand sum object, and does a case
statement on the sum object (N and N ′ are functions of which one will be called
with M , depending on M ’s type). A variant of this construct using labels (called
constructors) instead of indexes is found in languages like ML and Haskell, where
one uses pattern matching for better readability.

To check whether a given expression has a given type is called type checking.
If an expression passes type checking, then, evaluating the expression will not
result in a type error.

To perform type checking, a context will need to be maintained to remember
the type of variables. Γ denotes a context, which is a finite sequence of pairs
of variables and types, i.e. ⟨x1 ∶ τ1, ⋯, xk ∶ τk⟩. Two operations are applied to
contexts: Γ(x) = τ denotes that the right most pair in Γ which contains x is x ∶τ ,
and Γ[x↦ τ] denotes the sequence where the pair x ∶τ is appended to the right
of the sequence which Γ denotes. Thus a context is used as a kind of stack, with
push and a specialized search.

Finally, Γ ⊢ M ∶ τ is the type checking relation, and it is true if in the
context Γ, the expression M has type τ , and it is defined by the inference rules
in Figure 2.1.1 Γ ⊢M ∶τ is also called a type judgment. If one can construct

1We will not go into The Curry-Howard correspondence, but these rules are almost identical
to the rules of Natural Deduction for propositional logic if one view a variable as an assumption,
a function type as an implication, a sum type as a disjunction, and a product type as a
conjunction. See for instance Proof and Types [GLT89].

10



Const
Γ ⊢ cτ ∶τ

Γ, x ∶τ ⊢M ∶τ ′
→ Intro

Γ ⊢ (λx ∶τ. M) ∶τ → τ ′

Γ ⊢M ∶τ Γ ⊢ N ∶τ ′
× Intro

Γ ⊢ ⟨M, N⟩ ∶τ × τ ′

Γ ⊢M ∶τ × τ ′
× Elim-1

Γ ⊢ π1M ∶τ

Γ ⊢M ∶τ × τ ′
× Elim-2

Γ ⊢ π2M ∶τ ′

Γ(x) = τ
Var

Γ ⊢ x ∶τ

Γ ⊢M ∶τ → τ ′ Γ ⊢ N ∶τ
→ Elim

Γ ⊢M N ∶τ ′

Γ ⊢M ∶τ τ ′ ∈ T
+ Intro-1

Γ ⊢ ι1M ∶τ + τ ′

τ ∈ T Γ ⊢M ∶τ ′
+ Intro-2

Γ ⊢ ι2M ∶τ + τ ′

Γ ⊢M ∶τ + τ ′ Γ ⊢ fl ∶τ → σ Γ ⊢ fr ∶τ ′ → σ
+ Elim

Γ ⊢ case(M,fl, fr) ∶σ

Figure 2.1: Rules and axioms of the simply-typed lambda calculus

a derivation tree, and if all the leaves of the tree are axioms, then we call the
program well-typed.

Three questions may be asked with regards to type judgments. Note that if
Γ = ⟨x1 ∶τ1, ⋯, xn ∶τn⟩, then Γ ⊢ e ∶σ if and only if

⊢ λx1 ∶τ1⋯xn ∶τn.e ∶τ1 → ⋯→ τn → σ

Thus in all the questions, the context is assumed empty.

Type checking Does it exist a derivation with ⊢M ∶τ as its root?

Typability Given an expression M , does it exist a type τ such that ⊢M ∶τ is
derivable?

Inhabitation Given a type τ , does there exists an expression M such that
⊢M ∶τ is derivable?

An example of a derivation is:

Γ(x) = α
Var

Γ ⊢ x ∶α
Γ(y) = β

Var
Γ ⊢ y ∶β

× Intro
Γ = ⟨x ∶ α, y ∶ β⟩ ⊢ ⟨x, y⟩ ∶α × β

→ Intro
⟨x ∶ α⟩ ⊢ λy ∶β. ⟨x, y⟩ ∶β → α × β

→ Intro
⊢ λx ∶α. λy ∶β. ⟨x, y⟩ ∶α → β → α × β

2.3 Polymorphic Types

Our first extensions to the simply-typed lambda calculus will be polymorphic
types, which is also known as (polymorphic) second order types, giving the
system λ2, equivalent to System F [Rey74][Gir72]. The goal is to allow functions
which work independent of the types of some part of its input. For instance,
the map-function working on lists: given a list with elements of type α, and a

11



function from α to β, then the map function has the type listα → (α → β)→
listβ , and it does not depend on the type of α and β. So in λ2 the type is
then ∀α.∀β .(listα → (α → β) → listβ) (assuming list is a primitive type
operator). Formally, the set of types is extended with types on the form ∀V.T,
and to eliminate and introduce the quantifier type, there are two extensions to
the syntax with corresponding rules.

The first extension to the syntax is Λα. M , which says that the type variable
α is universally quantified in the expression M . The rule for this is:

Γ ⊢M ∶τ α ∉ FV (Γ)
∀ Introduction

Γ ⊢ (Λα. M) ∶(∀α . τ)
where FV (Γ) is the set of free variables from Γ.

The final extension isM τ , which is the instantiating of a universally quantified
variable. Assuming M is of type ∀α. τ , then M can be viewed as having the
type τ[σ/α]. Formally:

Γ ⊢M ∶(∀α .A)
∀ Elimination

Γ ⊢M τ ∶A[τ/α]
Now follows two examples which shows how polymorphic types may be used.

Example of Identity Function in λ2

A simple example is the identity function which in λ→ needs to be implemented
for each type, while in λ2 is a single function Λα. (λx ∶α. x) of type ∀α . (α → α).

The following derivation tree shows that the identity function is well-typed
in λ2.

⟨x ∶α⟩(x) = α
Var

⟨x ∶α⟩ ⊢ x ∶α
∀ Intro.

⊢ λx ∶α. x ∶(α → α)
∀ Intro.

⊢ Λα. λx ∶α. x ∶∀α.(α → α)

Example of Church Numerals in λ2

Another example is Church numerals, which is a way to represent natural
numbers as lambda terms. The intuition is that the Church numeral of 5 is an
iterator, which given a function f and an element x, applies f five times to x.

In the untyped lambda calculus we have that 0 ≡ λf x . x, and 1 ≡ λf x . fx,
and 2 ≡ λf x . f(fx), and in general, n ≡ λf x . fnx. The successor function is
λnf x . nf(fx), where n is the number to be increased. It works by doing one
iteration on x “manually” by calling (fx), and then makes n do the rest of the
iterations, thus one more iteration than just calling n is executed.

In λ2 all Church numerals has type Nat = ∀α. ((α → α)→ α → α), and zero
and the successor function is defined as:

zero: Λα. λf ∶α → α. λx ∶α. x of type Nat

succ: λn ∶Nat. Λα. λf ∶α → α. λx ∶α. f (nαf (f x)) of type Nat→ Nat

It is not possible to define Church numerals in λ→, so this shows that λ2 is
closer than λ→ to the expressive power of untyped lambda calculus.

12



2.4 Predicative and Impredicative System

The type systems in this chapter are of the Church style, which means that
the variables of lambda abstractions are annotated with types. Without these
annotations, the terms of the language is the same as the untyped lambda
calculus, but it is still possible to define a typing relation for them, and such a
type system is said to be of the Curry style.

It can be argued that having to write out the type of every variable is
cumbersome, so programming languages like Haskell and ML do type inference
to reconstruct the types which the user have left out. But it has been proved
that it is impossible to do type inference for λ2 in a Curry style system [Wel94].
Thus the type systems of ML and Haskell have a limited form of polymorphism
which is predicative, for which type inference is computable, in contrast to λ2,
which is impredicative.

In a type ∀α.τ , the type variable α quantifies over all types of T, including
itself: ∀α.τ . Because of this possibility of self-reference, λ2 is called impredicative.
In the type system of ML, it is only allowed to have quantifiers at the outermost
position of types (called polytypes or type schema), and quantifiers only range
over monotypes (types free of quantifiers).

Note that the type of the successor function in the implementation of natural
numbers using Church encoding cannot be expressed in a predicative type system.

2.5 Type Operators

Another way to extend the simply-typed lambda calculus is to add type operators.
The intuition is that type operators are functions from types to types. The
function type, sum type, and product type of the simply-typed lambda calculus
are type operators, but in a system with type operators one may add new type
operators from within the system.

As an informal example, look at the untyped function λαβ . α + β. If it is
applied to the types int and bool, the result is the type int + bool.

There are two questions which now arise: What are the types of α and β?
And what is the type of the whole function? One way to answer this is by
introducing kinds. The set of kinds is defined as K ∶∶= ∗ ∣ K → K, where the
kind ∗ denotes any type (such as int, int→ bool), while K→ K denote a type
operator from one kind to another. Thus in the informal example, it is the case
that ⊢ λα ∶∗, β ∶∗. α + β ∶∗→ ∗→ ∗. As with normal lambda abstractions, type
operators are higher order.

The function above uses a mixture of types and terms, which is called
pseudo-terms. The pseudo-terms of λω are defined as: 2

A,a,B, b ∶∶= V ∣ C ∣ a b ∣ λV ∶A. b ∣ A→ B

C is the set of constants, which contains at least ∗ and ◻, and also base types
like int and its values. ∗ and ◻ are called sorts, and if one views types as sets,
then ∗ = T and ◻ = K. More formally we have the axioms ⊢ ∗ ∶◻ and ⊢ int ∶∗
(and similar for all other base types), and two rules for forming new elements of
a sort:

2The sum and product types has been dropped to focus on the essence of type operators.

13



Γ ⊢ A ∶∗ Γ ⊢ B ∶∗ Type→
formationΓ ⊢ A→ B ∶∗

Γ ⊢ A ∶◻ Γ ⊢ B ∶◻ Kind→
formationΓ ⊢ A→ B ∶◻

V is the set of variables for both values, types and type operators.
λV ∶ A. B is the abstraction of a variable of any sort, and the rule for

constructing a well sorted abstraction is almost the same as before, but there
is an extra requirement: The resulting “type” A→ B must either be a kind or
a type. Throughout this and the next section, let s range over ∗ and ◻ in the
definitions of the rules.

Γ, x ∶ A ⊢ b ∶B Γ ⊢ A→ B ∶s
Abstraction

Γ ⊢ λx ∶A. b ∶A→ B

The rule for application, a b, is just as before:

Γ ⊢ a ∶A→ B Γ ⊢ b ∶B
Application

Γ ⊢ a b ∶B

The final interesting rule is the conversion rule. It says that if it can be
proved that an expression A has sort B, and that sort B′ is equivalent to B
under beta reduction3, then it can be concluded that A has sort B′. Formally:

Γ ⊢ A ∶B Γ ⊢ B ∶s B =β B′

Conversion
Γ ⊢ A ∶B′

This rule causes the type system to regard types as equal if they are structurally
equal, not only if they have the same name. E.g. x ∶ (λα ∶ ∗. α)int ⊢ x ∶int,
and vice versa, x ∶ int ⊢ x ∶(λα ∶∗. α)int.

The final rules are assumption and weakening:

x ∉ Γ Γ ⊢ A ∶s
Ass

Γ, x ∶ A ⊢ x ∶A
x ∉ Γ Γ ⊢ A ∶B Γ ⊢ C ∶s

Weak
Γ, x ∶ C ⊢ A ∶B

A user of λω may notice that it has a practical shortcoming: it is not possible
to define a type operator and use it throughout an expression. For instance, it
would be useful to bind the definition of the list-type operator to a variable so
that it can be used throughout the code, i.e.:

(λlist ∶ ∗→ ∗ .

let nil : listα := ...

let cons : α → listα → listα := ...

...)

The problem now is that the function λlist ∶∗→ ∗. ⋯ is typed (∗→ ∗)→ τ for
some type τ , which is not a well typed function in λω.

Recall that the Λ abstraction from λ2 is essentially what is needed: a functions
from types to values. The combination of λ2 and λω into one system, called λω
(Lambda Calculus Omega, equivalent to System Fω), is a quite practical type
system, where for instance the above is well-typed.

3A single beta reduction step →β is the rewrite (λx.M)N ⇒M[N/x] applied anywhere in
a term. The relation ↠β is the reflexive, transitive closure of →β . And =β is the symmetric,
transitive closure of ↠β .

14



Example of User Defined Ordered Pair in λω

In this example, a definition for ordered pairs will be given which is well-typed
in λω. To get an intuition of the implementation, the definitions in untyped
lambda calculus is first given:

make-pair ≡ λx, y . λf. f xy
first ≡ λp . p (λx, y. x)

second ≡ λp . p (λx, y. y)

This can be expressed in λω, where each function would have the following
type (and kind for pair):

pair ∶∶ ∗→ ∗→ ∗
make-pair ∶∶ ∀α ∶ ∗.∀β ∶ ∗.(α → β → (pair αβ))

first ∶∶ ∀α ∶ ∗.∀β ∶ ∗.((pair αβ)→ α)
second ∶∶ ∀α ∶ ∗.∀β ∶ ∗.((pair αβ)→ β)

And the following definitions:

pair ≡ λα ∶∗. λβ ∶∗. ∀σ ∶∗. [(α → β → σ)→ σ]
make-pair ≡ λα ∶∗. λβ ∶∗. λx ∶α. λy ∶β. λσ ∶∗. λf ∶α → β → σ. fxy

first ≡ λα ∶∗. λβ ∶∗. λp ∶pair αβ. pα (λx ∶α. λy ∶β. x)
second ≡ λα ∶∗. λβ ∶∗. λp ∶pair αβ. pβ (λx ∶α. λy ∶β. y)

It is remarkable that given the types of a polymorphic function, then it is
possible to construct a theorem which any function of that type will have [Wad89];
for instance, a function with the same type as “first” must be the first projection
from pairs.

2.6 Dependent Types

The final extension will be dependent types, which is types depending on val-
ues. While programmers are somewhat familiar with polymorphism and type
operators, dependent types is probably unfamiliar.

An example of how dependent types could be used, would be lists where the
length of a list is a part of its type. Then nil would have the type list(0), and
cons would have the type A→ list(n)→ list(n + 1).

The syntax of pseudo-terms in λP is as follows:

T ∶∶= V ∣ C ∣ T T ∣ λV ∶T . T ∣ ΠV ∶T . T

The only difference from λω is that the arrow-type has been replaced with the
more general constructor for cartesian product type, Πx ∶ T . T ′, which is the
type of a lambda abstraction expecting an argument a of type or kind T , and
returning a result of type T ′[a/x].

So a normal function from int→ bool would be encoded as Πx ∶int. bool.
If this function is called with 5, the resulting type would be bool[5/x] which is
bool. In general can any function of type A→ B be encoded as Πx ∶A. B, where
x is not free in B.

15



Functions in λP can be from values to values (as before), but also from
values to types. This is enforced by the following rule for constructing cartesian
products.

Γ ⊢ A ∶∗ Γ, x ∶A ⊢ B ∶s
Type/kind formation

Γ ⊢ (Πx ∶A. B) ∶s

The set K can thus be defined as K ∶∶= ⋆ ∣ T→ K.
The rule for applications is similar to the old ones, but with the important

difference that the argument is substituted into the return type of the function.

Γ ⊢ F ∶(Πx ∶A. B) Γ ⊢ a ∶A
Application

Γ ⊢ Fa ∶B[a/x]
The final rule is for abstractions, which also is similar to the earlier rules for

abstraction.

Γ, x ∶A ⊢ b ∶B Γ ⊢ (Πx ∶A. B) ∶s
Abstraction

Γ ⊢ (λx ∶A. b) ∶(Πx ∶A. B)

Example of Intuitionistic Implicational Logic in
λP

As an example, intuitionistic implicational logic will be encoded inside λP. We
will do this by defining the initial assumptions Γ0 and describe the intuition
behind them, and by describing how to interpret that a formula is valid.

Γ0 ∶= prop ∶ ∗, (2.1)

⋅ ⊃ ⋅ ∶ prop→ prop→ prop, (2.2)

T ∶ prop→ ∗, (2.3)

⊃i ∶ Πϕ ∶prop. Πψ ∶prop. (Tϕ→ Tψ)→ T (ϕ ⊃ ψ), (2.4)

⊃e ∶ Πϕ ∶prop. Πψ ∶prop. T (ϕ ⊃ ψ)→ Tϕ→ Tψ (2.5)

A proposition in this encoding has type prop, thus 2.1 says that prop is a type.
The variable ⊃, as defined in 2.2, says that given two propositions ϕ and ψ, ϕ ⊃ ψ
is also a proposition, and the intuition is that it denotes “ϕ implies ψ”.

The dependent type T is used to denote that a proposition ϕ is valid, and is
written Tϕ. Thus the assumption of a variable of type Tϕ is equivalent to the
assumption that ϕ is valid.

A function f from T (ϕ) to T (ψ) is considered a proof for “ϕ implies ψ”,
thus the variable assumed in 2.4 makes it possible to construct an expression of
type T (ϕ→ ψ) from f , by writing ⊃i ϕψ f .

The reverse is given by the variable assumed in 2.5. If we have an expression
(proof) e of type T (ϕ ⊃ ψ) (for ϕ → ψ), then a function converting proofs of
T (ϕ) to proofs of T (ψ) can be constructed, and it is written as ⊃e ϕψ e.

Finally, a proposition ϕ is valid if the type T (ϕ) is inhabited. I.e. to prove
ϕ, an expression of type T (ϕ) must given.

As an example, given an proposition A ∶ prop, then A → A should be
provable, which is the case since the type T (A ⊃ A) is inhabited. The expression
λx ∶T (A). x is of type T (A)→ T (A), and by using ⊃i we have that ⊃i AA (λx ∶
T (A). x) is of type T (A ⊃ A).

16



λ→

λ2

λP

λP2

λω

λω

λPω

λPω

Figure 2.2: Barendregt’s Lambda Cube

2.7 The Lambda Cube

We have seen three extensions of the type system λ→: polymorphic types (λ2),
type operators (λω), and dependent types (λP). By combining these extensions,
a total of eight different type systems can be made from λ→. In Figure 2.2
the eight different type systems are put into relation to each other. In the
bottom-left corner is the simply-typed lambda calculus, and each axis represents
an extension.

We have already looked at λ→, λ2, λω, λP and λω. The most powerful
type system in the cube is in the top-right corner and is called λPω, and it is
equivalent to the Calculus of Construction, Coc, which is what Coq is based
upon.

The Lambda Cube is actually defined using a common framework to formalize
all the type systems. All the systems have the same syntax for expressions, which
is the same as for λP. And all the systems have a common set of inference rules,
which are similar to those of λP and λω. The different extensions are realized
by varying s and t over ∗ and ◻ in the rule

Γ ⊢ A ∶s Γ, x ∶A ⊢ B ∶t
Γ ⊢ (Πx ∶A. B) ∶t

which defines what kind of functions which may be constructed. All the systems
have the version of the rule where t = s = ∗, which means that one can construct
normal functions. With s = ◻ and t = ∗, functions from types to values is
accepted, which gives polymorphic types; and with t = s = ◻, functions from
types to types is accepted, which gives type operators; and with t = ∗ and t = ◻,
functions from values to types is accepted, which gives dependent types.

17



18



Chapter 3

About Ott

The use of languages defined by context-free grammars and relations over these
languages is ubique in the field of programming language theory. They were
used throughout the previous chapter, and are also used in almost all papers
about programming language theory. Typical languages are the expressions and
statements of programs, types of programs, and contexts for type checking, while
typical relations over the languages are operational semantics and type systems.
These relations are often given in the style of inference rules, which we also saw
used throughout the previous chapter.

Ott is a tool created by Francesco Zappa Nardelli, Peter Sewell, and Scott
Owens, which is intended to help researchers in fields related to programming
language theory to formalize their work [SNO+07]. The main contributions of
Ott is a domain-specific language for grammars and relations, which Ott can
check for inconsistencies, can typeset in LATEX, and compile to definitions and
relations in the languages of Coq, HOL, Isabelle, and OCaml.

In addition to languages and relations, Ott can automatically generate
functions for free variables in a term and for substitution of variables: both single
and multi-variable substitution. Experimental support for defining functions
and a locally nameless Coq-backend also exists.

The advantage of using Ott to typeset grammars and judgments, as opposed
to writing them directly in LATEX, is that Ott performs some saneness checks
when defining relations. By considering the grammar as simple type declaration,
Ott can check that the definition of relations is unambiguous and that different
kinds of expressions are used consistently.

If one uses Ott to produce code for a combination of LATEX, Coq, and
the other supported back ends, the additional benefit is that there is a single
definition (the Ott files), which can be translated to LATEX, Coq, etc. This
means that grammars and relations are consistent between the typeset version in
LATEX, the theorem prover version in for instance Coq, and the implementation
version in OCaml.

A general disadvantage with Ott is that one loses the fine-grained control
one have when type-setting manually in LATEX and writing Coq-code manually.

A short introduction to Ott is now provided. For further information see
the paper [SNO+07] and the user guide1.

1http://www.cl.cam.ac.uk/~pes20/ott/ott_manual_0.22.pdf

19

http://www.cl.cam.ac.uk/~pes20/ott/ott_manual_0.22.pdf


e ∶∶= x ∣ e e ∣ λx.e expression

t ∶∶= int ∣ t→ t type

Γ ∶∶= ε ∣ Γ, x ∶ t context

Figure 3.1: BNF grammar for the simply-typed lambda calculus.

metavar variable , x ::= {{com Variable }}

grammar

expr , e :: ’e_ ’ ::= {{com Expression }}

| x :: :: Var {{com Variable }}

| e e’ :: :: App {{com Application }}

| lambda x . e :: :: Abs {{com Abstraction }}

{{tex \lambda [[x]] . [[e]]}}

| ( e ) :: :: Paren {{com Parenthesis }}

type , t {{tex \tau}} :: ’t_ ’ ::= {{com Type}}

| int :: :: Int {{com Integer }}

| t -> t’ :: :: Arrow {{com Function }}

{{tex [[t]] \to [[t ’]]}}

gamma , G {{tex \Gamma }}:: ’G_ ’ ::= {{com Context }}

| Empty :: :: Empty {{com Empty context }}

{{tex \epsilon }}

| G , x : t :: :: Extend {{com Extension }}

Figure 3.2: Ott code for the BNF from Figure 3.1.

3.1 Grammars in Ott

Backus-Naur Form (BNF) [NBB+63] is the standard way of describing the syntax
of a programming language. BNF is a notation for context-free grammars (CFG),
a finite description of a language, which describes context-free languages. Almost
all programming languages can be defined using context-free grammars. These
languages correspond to the languages which parsers of acceptable (polynomial)
time and space complexity can recognize.

Formally, the symbols of a CFG is divided into terminals and non-terminals,
where the terminals represent symbols which appear in the language, while
non-terminals represent sets of words.

A typical definition of the language for the simply-typed lambda calculus is
given in Figure 3.1, where “e”, “t”, and “G” are non-terminals, and “λ”, “.”,
“(”, “)”, “int”, “→”, “ε”, “,”, and “:” are terminals. The status of x is not
given by the grammar, but it is implicitly understood that it is a non-terminal
for some set of symbols which is not defined here.

The translation of this grammar to Ott is shown in Figure 3.2. In the first
line, we see that x is defined as a meta-variable, which means x is a non-terminal

20



variable, x Variable

expr , e ∶∶= Expression
∣ x Variable
∣ e e ′ Application
∣ λx .e Abstraction
∣ (e) Parenthesis

type, τ ∶∶= Type
∣ int Integer
∣ τ → τ ′ Function

gamma, Γ ∶∶= Context
∣ ε Empty context
∣ Γ, x ∶ τ Extension

Figure 3.3: Result of Ott compiling code from Figure 3.2 to LATEX.

which is not defined by the grammar. Notice the double braces which indicate
what Ott calls a homomorphism. Homomorphisms usually give some way to
translate a symbol or rule into LATEX or Coq. One can access the “default”
homomorphism for an Ott term with the double square brackets, written
[[...]], as we will see later. In this case, the homomorphism is for a comment.
The grammar-keyword indicates that next follows grammars — three in our case.

Each grammar starts with a list of non-terminal names. It is possible to give
several names for the same non-terminals. One could for instances have given
an extra name, s, for the types, which could then be used instead of t’. We
also see a new homomorphism, tex, which is how a rule or symbol should be
translated to LATEX. In the case of t and G, they are simply translated to another
LATEX symbol. The rule for abstractions and arrow types are more advanced,
here the double brackets [[t]] means that the LATEX-representation of t should
be inserted at that place.

The result of compiling this Ott-file (together with the previous one), results
in the output we see in Figure 3.3.

3.2 Relations in Ott

Given a grammar, Ott allows us to define judgments over them, and the notation
mimics how judgments are usually written as pure text:

Premise1

⋮
Premisen

--------------------------- :: RuleName

Conclusion

The premises must be on the form described by the non-terminal formula,
which by default only contains the non-terminal judgment, where each judgment
in the file is automatically added. By redefining the non-terminal formula, one
can add those propositions which are needed.

21



grammar

formula :: formula_ ::=

| judgement :: :: judgement

| x notIn FV( e ) :: :: NotFree

{{tex [[x]] \notin FV([[e]])}}

defns

type_judgement :: ’’ ::=

defn

G |- e : t :: :: type_judgement :: ’’

{{tex [[G]] \vdash [[e]] : [[t]] }} by

---------------- :: T_Var

G, x:t |- x:t

G |- e : t

x notIn FV(e)

---------------- :: T_Weak

G, x:t’ |- e : t

G |- e : t’ -> t

G |- e’ : t’

----------------- :: T_App

G |- e e’ : t

G, x:t’ |- e : t

----------------- :: T_Abs

G |- lambda x . e : t’ -> t

Figure 3.4: Ott source for typing judgments with user-defined formula.

The Ott code for the rules of our running example of the simply-typed
lambda calculus is given in Figure 3.4. For the weakening rule, a new formula
stating that the variable x does not occur freely in the expression e must be
added to formula. The LATEX output of these rules is shown in Figure 3.5.

3.3 Generating Coq Code

With the Ott-file that we now have, would it be nice to generate source code to
a theorem prover assistant. However, there are some things which are missing.
We will only concern ourselves with translating to Coq.

The idea of the translation is that each non-terminal is translated to an
inductively defined type, living in Set2, while each judgment is translated to

2Set is the universe in Coq intended for “data-types”. Coq also have the universe Prop,
intended for proposition, and an cumulative hierarchy of universes Typei. When specifying a
universe Typei, the index can be omitted, and Coq will infer it. The universes are related as
Set ⊆ Type1, Prop ⊆ Type1, and Typei ⊆ Typei+1.

22



judgement ∶∶=
∣ type judgement

formula ∶∶=
∣ judgement
∣ x ∉ FV (e)

Γ ⊢ e ∶ τ

Γ, x ∶ τ ⊢ x ∶ τ
T Var

Γ ⊢ e ∶ τ
x ∉ FV (e)

Γ, x ∶ τ ′ ⊢ e ∶ τ
T Weak

Γ ⊢ e ∶ τ ′ → τ
Γ ⊢ e ′ ∶ τ ′

Γ ⊢ e e ′ ∶ τ
T App

Γ, x ∶ τ ′ ⊢ e ∶ τ
Γ ⊢ λx .e ∶ τ ′ → τ

T Abs

Figure 3.5: LATEX output from Ott code in Figure 3.4.

an inductively defined family of types, indexed by its arguments, and living in
Prop.

We can notice that there is some information missing in our Ott source
code (Figure 3.2 and 3.4) to do this translation, namely, what x is and what the
formula x ∉ FV (e) means.

Again homomorphisms come to our rescue. Adding the homomorphisms
{{coq nat}} and {{ coq-equality }} to x tells Ott how x should be trans-
lated to Coq. The line introducing x should be changed to:

metavar variable , x ::= {{coq nat}} {{ coq -equality }}

The second problem is the x ∉ FV (e) formula, which is solved by adding a
homomorphism describing how to translate it into Coq. This can be done with
the homomorphism

{{coq (~In [[x]] (FV [[e]]))}}

where In is Coq’s standard list membership predicate, and FV should be a
function giving all the free variables in the term e. We can make Ott generate
this function automatically for us, by adding the lines

freevars

expr x :: FV

which creates a function FV, from expr to a list of variables, collecting all free
variables into a list.

One last thing to change, is the parentheses production rule, as we want the
data type expr to be the abstract syntax tree. We should therefore change the
line

23



| ( e ) :: :: Paren {{com Parenthesis }}

to

| ( e ) :: S:: Paren {{com Parenthesis }}

{{icho [[e]]}}

meaning that the parenthesizes are only used for parsing, and the icho-homomorphism
says that it should be translated to that of e.

The source code generated from all of this is shown in Figure 3.6. Notice how
each of the non-terminals expr, type, and gamma correspond to an inductive
definition in the output. Ott is smart enough to know that it must reorder
the inductive definitions so that type comes before expr. If there are mutual
recursive grammars, then Ott will also handle this.

24



(* generated by Ott 0.21.2 from: simple.ott *)

Require Import Arith.

Require Import Bool.

Require Import List.

Definition variable := nat. (*r Variable *)

Lemma eq_variable: forall (x y : variable), {x = y} +¾
Ç {x <> y}.

Proof.

decide equality; auto with ott_coq_equality arith.

Defined.

Hint Resolve eq_variable : ott_coq_equality.

Inductive type : Set := (*r Type *)

| t_Int : type (*r Integer *)

| t_Arrow (t:type) (t’:type) (*r Function *).

Inductive gamma : Set := (*r Context *)

| G_Empty : gamma (*r Empty context *)

| G_Extend (G:gamma) (x:variable) (t:type) (*r ¾
ÇExtension *).

Inductive expr : Set := (*r Expression *)

| e_Var (x:variable) (*r Variable *)

| e_App (e:expr) (e’:expr) (*r Application *)

| e_Abs (x:variable) (e:expr) (*r Abstraction *)

| e_Paren (e:expr) (*r Parenthesis *).

(** definitions *)

(* defns type_judgement *)

Inductive type_judgement : gamma -> expr -> type -> ¾
ÇProp := (* defn type_judgement *)

| T_Var : forall (G:gamma) (x:variable) (t:type),

type_judgement (G_Extend G x t) (e_Var x) t

| T_Weak : forall (G:gamma) (x:variable) (t’:type) (¾
Çe:expr) (t:type),

type_judgement G e t ->

(formula_NotFree x e) ->

type_judgement (G_Extend G x t’) e t

| T_App : forall (G:gamma) (e e’:expr) (t t’:type),

type_judgement G e (t_Arrow t’ t) ->

type_judgement G e’ t’ ->

type_judgement G (e_App e e’) t

| T_Abs : forall (G:gamma) (x:variable) (e:expr) (t’¾
Ç t:type),

type_judgement (G_Extend G x t’) e t ->

type_judgement G (e_Abs x e) (t_Arrow t’ t).

Figure 3.6: Generated Coq-output from Ott.
25



26



Chapter 4

Embedding of Languages

During formalization, we work with two languages, the object language and the
meta language. The object language is the language we are talking about, while
the meta language is the language we are talking in. For us, the object language
will be the functional programming language with threads and locks, which is
described in [PSS13], and the meta language with be those of Coq and Ott.

The main problem of formalization is to implement the meaning of the object
language into the meta language. The approaches of how to do this can be
categorized along an axis of shallow and deep embedding [BGG+92]. In practice,
a combination of both is usually used.

As an illustration, consider the problem of formalizing propositional intu-
itionistic logic, where the formulas can be defined as

ϕ ∶∶= P ∣ ϕ→ ϕ,

where P is a set of propositions. The following are two ways to formalize the
claim “ϕ is provable”:

Deep embedding Use Coq’s inductive type construction to define the syntax
of formulas ϕ and the syntax of contexts Γ, and also define the judgments
for intuitionistic propositional logic, Γ ⊢ ϕ, as an inductive relation.

Shallow embedding In some programming language, define a function which
translates formulas ϕ to the Coq-term ∀P1 ∶ Prop,⋯, Pn ∶ Prop; ϕ, where
P1,⋯Pn are the free variables of ϕ.

The proposition ϕ is provable if the corresponding Coq-type is inhabited.

A more in-depth description of each of these approaches follows.

4.1 Deep Embedding

Deep embedding is to model the logic in the meta language. This includes
defining both the syntax and the semantics of the object language in the meta
language.

For a deep embedding of the intuitionistic logic mentioned above, we need to
define both the syntax and what it means for this to be provable in Coq. The
formalization is shown in Figure 4.1. The syntax of formulas is defined as an

27



Inductive prop : Set :=

| Var (n:nat) : prop

| Imp (p q:prop) : prop.

Definition context := list prop.

Notation "G , p" := (cons p G) (at level 40).

Reserved Notation "G |- p" (at level 40).

Inductive judge : context -> prop -> Prop :=

| jAxiom (G:context) (p:prop) :

G, p |- p

| jWeak (G:context) (p q:prop) :

G |- p ->

G, q |- p

| jIntro (G:context) (p q:prop) :

G, p |- q ->

G |- (Imp p q)

| jElim (G:context) (p q:prop) :

G |- (Imp p q) ->

G |- p ->

G |- q

where "G |- p" := (judge G p).

Figure 4.1: Deep embedding of provability of intuitionistic propositional logic.

inductive type and the rules of the judgment Γ ⊢ ϕ is defined as an inductive
relation on propositions and contexts.

With this approach, everything is formalized in Coq, and statements about
the object language can be formulated. Especially if the derivations are placed
in the universe Set or Type, then statements about and transformations on
derivations can be made. This is essential for expressing properties such as
cut-elimination, and other properties about the structure of derivations.

The main disadvantage with deep embedding is that everything is built from
the ground, even things which might not be interesting. For instance, if one does
not really care about the structure of derivations, only about derivability, then
shallow embedding might be more fitting.

4.2 Shallow Embedding

In a shallow embedding, the formulas of the logic are translated directly to Coq
formulas. For a “proper” shallow embedding, this translation happens outside
of Coq, for instance by Ott. If this is the case, then the elements of the object
language will not be entities in the meta language, so one does not have the
possibility to reason about for instance transformations of the syntax.

Derivations will happen inside the logic of Coq, which means that some
properties of the formalized systems will be inherited from Coq. For instance, if
the object language is some typed lambda calculus, and the lambda terms are
translated directly to Coq’s lambda terms, then it is guaranteed that accepted

28



translations are terminating.
It can be argued that to implement a shallow embedding, a more in-depth

knowledge about the meta language is needed. One must be aware of whether
intuitionistic or classical reasoning is needed, and whether one needs functional
extensionality1. When shallow embedding is applicable, it can lead to short
formalizations, as one reuses the meta language’s functionality.

A downside with shallow embedding, is that the object language is “lost”
through the translation. In a deep embedding, one can reason about the object
language, as it is a distinct data type defined in Coq, as opposed to some
“informally” restricted class of Coq terms.

A translation happening inside Coq it can still be considered a shallow
embedding; as mentioned in the introduction, often a mixture of deep and
shallow embedding is used.

A shallow embedding of our example with intuitionistic propositional logic
is given in Figure 4.2. The idea for the translation is to create the Coq-
proposition ∀p⃗, ϕ, where Imp p q is translated to Coq-implication, and each
variable P is translated to the corresponding bound variable.

The main part of the translation happens in the den_prop functions which
takes a formula p and a mapping from variables to Coq-propositions G, and
creates a Coq-proposition for p.

To create the mapping of variables, the function den_quantify will add an
universal quantifier for each free variable in p, and update the mapping.

There are a few things to note:

1. When classical axioms are assumed in Coq, then suddenly the denotation
is for classical propositional logic.

2. Since the translation gives us simple propositions of Prop, all the tactics of
Coq are available, especially, decision procedures for propositional logic.

3. Changing the quantifier in den_quantify from an universal to an existential
changes the meaning from validity to satisfiability.

1Functional extensionality means that if two functions f and g are pointwise equal, then f
and g are propositionally equal.

29



Require Import Arith ListSet.

Fixpoint free (p:prop) : set nat :=

match p with

| Var n => set_add eq_nat_dec n (empty_set _)

| Imp p q => set_union eq_nat_dec (free p) (free q)

end.

Definition context := nat -> Prop.

Definition extend (G:context) x value x’ :=

if beq_nat x x’ then value else (G x’).

Fixpoint den_prop (G:context) (p:prop) : Prop :=

match p with

| Var n => (G n)

| Imp q r => (den_prop G q) -> (den_prop G r)

end.

Fixpoint den_quantify (vars:set nat) (G:context)

(p:prop) : Prop :=

match vars with

| nil => den_prop G p

| (cons n vars ’) =>

forall (n’:Prop),

den_quantify vars ’ (extend G n n’) p

end.

Definition denote (p:prop) : Prop :=

den_quantify (free p) (fun _ => False) p.

Figure 4.2: Shallow embedding of provability of intuitionistic propositional logic.

30



Chapter 5

Deadlock Detection by
Reduction to Data Race
Condition Checking

The contribution of this thesis is the formalization of some of the results presented
in the article [PSS13]; this chapter is an introduction to the work which is
formalized. First an overview of the problem is given, then the syntax, rules,
and proofs are presented. For an in-depth explanation of what is described in
this chapter, see the above reference. Problems related with the formalization
are not discussed in this chapter, but in the next chapter.

5.1 Overview

The paper introduces the novel idea to reduce deadlock checking to race condition
checking. They claim that state of the art static detection of race conditions
are further ahead than static deadlock detectors. Therefore, the reduction takes
advantage of the research done for race condition detection, and applies it to
deadlock detection.

The first part of the reduction is to extract information about the use of locks
in the program, specifically, to approximate how many times a reentrant lock
may be taken. There are several ways this could be done, but in the technical
report, this is done using a type and effect system, together with constraints.

The second part, is to use the information from the type and effect system, to
insert variables into the program, which in the case of a deadlock in the original
program will cause a race condition.

It is the first part which is the focus of my work; formalizing the type and
effect system, and the proofs that are given.

5.2 The Language

The language of study is a statically typed, functional programming language
with threads and reentrant locks.

31



The class P represents programs, which are essentially sets of processes. P
can either be the empty program ∅, a single thread p⟨t⟩, where p is a process
identifier and t is a thread, or the composition of two programs P ∣∣P . The
process identifier for threads are assumed to be unique for each thread.

The expressions of the language is divided into three categories, threads t, ex-
pressions e, and values v, similar to the notion of A-normal form (ANF)1 [FSDF93],
which is related to continuation-passing style (CPS). This restriction on the form
of expressions does not cause a loss in expressiveness, as there exists an effective
conversions from general lambda terms into ANF-form. The advantage of the
A-normal form, is that the semantics, type systems, and proofs, have stronger
assumptions to work with, which makes them more elegant and simple.

The grammar for the abstract syntax is given in Figure 5.1, and consists of:

• variables x, truth values, and lock references (the labeling r of lock refer-
ences is only used by the proofs about type systems);

• a let binding constructions, which are needed because of a poly-let type
system 2,

• both recursive and non-recursive abstraction;

• function application;

• conditional expressions;

• spawning threads;

• locking and unlocking.

The underlying type system is not really of interest, and is not specified, but
it can be inferred to be a minimally, simply-typed lambda calculus with explicit,
general recursion. Terms are given in the style of Church, i.e. variable binders
are annotated with types.

5.3 Semantics of the Language

The semantics of the language is given as a small step operational semantics.
The semantic is divided into “local” and “global” rewrite rules. The “local” rules
describe the steps done by a single thread which has no effect on other threads
and which cannot be affected by other threads, while the “global” rules describe
the steps which requires synchronization between threads, or which may affect
other threads.

Note that the semantics has an emphasis on storing information about locks,
and does not store any information about the values of variables, as they are
substituted with their value.

1ANF usually just have two categories, expressions and values.
2In some type systems, the expression let x = e in e′ is different from (λx.e′) e, because of

let-polymorphism, as described in Chapter 2.

32



P ∶∶= ∅ ∣ p⟨t⟩ ∣ P ∣∣P Program

t ∶∶= v Value

∣ let x ∶ T = e in t Sequential Composition

e ∶∶= t thread

∣ v v application

∣ if v then e else e conditional

∣ spawn t spawn thread

∣ new L new lock

∣ v.lock acquire lock

∣ v.unlock release lock

v ∶∶= x variable

∣ lr lock reference

∣ true ∣ false truth values

∣ fn x ∶ T.t function

∣ fun f ∶ T,x ∶ T. t recursive function

Figure 5.1: Abstract syntax of programs.

5.4 Type and Effect Systems

The paper defines three type systems: a specification, a syntax directed, and an
algorithmic one. The goal of all of the systems, is to approximate how many
times a lock is taken, and at which places in the program.

5.4.1 Specification Type System

The first type system given is used as a specification. It is written in a declarative
style, with an emphasis on being general and easy to understand. The judgments
are on the form

C; Γ ⊢ t ∶ Ŝ ∶∶ ∆→∆′

where C is the set of constraints, Γ is the context mapping variables to type
schemes, t is a thread, S is the resulting type scheme, and ∆→∆′ is the effect.
Each ∆ correspond to an approximation of how many times a lock has been
taken, and the effect should be read as “if program t starts evaluating in state
∆, then if it terminates, it will end in state ∆′”.

5.4.2 Algorithmic Type System

The second type system given is used as an algorithm. Even though it is
written with judgment-rules-notation, it should be suitable as a guide for an
implementation.

The main difference between the algorithm and specification, is that the
algorithm is deterministic, while the specification is non-deterministic. This is

33



the case because the algorithm is syntax directed; there is only one rule which
may be used to fulfill a judgment. This is opposed to the specification, where the
rules for instantiating a type schemes, generalization a type, and subsumption
can be applied no matter what the term to be type checked is.

Another difference from the specification, is that the algorithm version will
compute the minimal set of constraints, as opposed to the specification, where
the set of constraints must be given a priori.

5.4.3 Syntax Directed Type System

The syntax directed type system is used as a mean to prove that the specification
and algorithm are related. It is syntax directed, just as the algorithm, but it
does not generate constraints, just like the specification.

5.5 Theorems and their Proofs

There are five major theorems and lemmas associated with the type systems and
the semantics. They are:

5.5.1 Soundness

The first major theorem and proof which appear is the soundness, relating the
algorithmic type system and the specification. It is stated as:

Theorem 1 (Soundness). Given Γ ⊢a t ∶ T̂ ∶∶ ∆1 → ∆2;C, then C;G ⊢s t ∶ T̂ ∶∶
∆1 →∆2. Where ⊢a is the algorithmic type system, and ⊢s is the specification.

In other words, if the algorithm is given a term and generates a type, an
effect and a constraint, then the specification will hold for the same parameters.

The proof is given by induction on the structure of algorithmic proofs.

5.5.2 Completeness

The second major theorem and proof, is the completeness proof, relating the
syntax directed type system with the algorithm. It is stated as:

Theorem 2 (Completeness). Assume Γ ≲θ Γ′, ∆1 ≲θ ∆′
1, and C; Γ ⊢n t ∶ T̂ ∶∶

∆1 →∆2, then Γ ⊢a t ∶ T̂ ′ ∶∶ ∆′
1 →∆′

2;C ′ such that

1. C ⊧θ′ C ′,

2. C ⊢ θ′T̂ ′ ≤ T̂ , and

3. C ⊢ θ′∆′
2 ≤ ∆2,

for some θ′ = θ, θ′′. ⊢n is the syntax directed type system.

This claim is more involved than soundness, since the syntax directed type
system will accept many constraints and types, while the algorithm will compute
minimal constraints and types.

34



5.5.3 Subject reduction

The final major theorem is the subject reduction, which means that evaluating
a term preserves its type. This property is proved together with a simulation
property: the effect simulates the usage of locks by the semantics.

35



36



Chapter 6

Formalization

This chapter discusses the choices which had to be made during the formalization
of the type systems. When there are more than one viable way to do the
formalization, the different choices are presented, and what was chosen will be
made clear.

6.1 Syntactical Constructions

The syntactical classes are formalized in Ott. This includes expressions, simple
types, annotated types, type schemes, lock sets, lock environments, effects, and
constraints.

Note that in this chapter, the phrase “syntactical representation” will be
used to mean the inductive data type which closely resembles the grammar.
This is opposed to an “abstract representation”, where the syntactical object
is represented by a more abstract type, for instances sets, which should have
inherent properties that are wanted.

6.1.1 Programs

There are two main challenges for formalizing programs. Each problem will be
considered separately.

The Parallel Composition Operator

The first challenge is that the ∣∣ operator on programs should be associative and
commutative, and should have ∅ as left and right identity. These properties
cannot be stated directly in Ott and Coq. The following choices were considered
to address the algebraic properties of programs:

Data Type for Sets Representing programs with a data type for finite sets,
for instance Coqs MSet is a feasible solution. Given that one does not break any
abstractions of the set, then all relations on programs will be compatible up to
the appropriate equivalence relation. In addition, all existing lemmas about the
data type are readily available.

Still, for most representations of finite sets, one cannot expect equivalence
and identity to coincide.

37



Augment Rules The second solution is to represent programs as syntactical
objects, and then augment the rules where the property is needed. Especially
with regards to the semantics, one could then have a rule

P1 ≡ P ′
1 σ ⊢ P ′

1 Ð→ σ′ ⊢ P ′
2 P ′

2 ≡ P2

σ ⊢ P1 Ð→ σ′ ⊢ P2,

where ≡ is the desired equivalence relation.

This approach is quite elegant and simple to implement. The downside is
that the judgment rules will deviate from the “original” rules, and proofs over
these judgments become more complex. Additionally, the relation ≡ must be
formalized.

Work on Equivalence Classes The final way is to again represent programs
as syntactical objects, and then work on equivalence classes of programs, for a
suitable relation ≡. For instance, the R Par rule could be defined as

σ ⊢ [P1]≡ Ð→ σ′ ⊢ [P ′
1]≡

σ ⊢ [P1∣∣P2]≡ Ð→ σ′ ⊢ [P ′
1∣∣P2]≡

where [P ]≡ is the equivalence class of P under ≡.

On the positive side, this rule follows the “meaning” of the informal rules.
The downside is that one must prove that each judgment is compatible. For
the soundness, this means that if σ ⊢ [P1]≡ Ð→ σ′ ⊢ [P ′]≡ and P1 ≡ P2, then
σ ⊢ [P2]≡ Ð→ σ′ ⊢ [P ′]≡.

The idea of the first solution is used, but is extended, as explained below.

Uniqueness of Process Identifiers

The second challenge is that in a program P , each process identifier should only
occur once, i.e. each process identifier uniquely identifies a thread. This cannot
be formalized using Otts grammar, but there are again several ways to solve it.

Predicate The first solution, is to define a relation over programs which check
if the property hold. For instance collecting each identifier in a list, and control
that no element is repeated.

This approach would need some auxiliary lemmas which state the conse-
quences of a derivation having this property.

Dependent Types The second solution uses dependent types. This means
that it has to be defined directly in Coq, not in Ott. Let the type of programs
depend on a set of process identifiers, and define parallel composition so that it
can only be constructed if the two sets are disjoint. An implementation of this
is shown in Figure 6.1.

Mapping The final solution, which solves both this and the above problem, is
to implement programs as a finite mapping from process identifiers to threads.
This has the advantage that it captures the idea of the process identifiers.

38



Require Import ListSet Arith.

Inductive thread : Set := Thread.

Definition process_id : Set := nat.

Notation "{}" := (empty_set process_id ).

Notation "{ p }" := (set_add eq_nat_dec p (empty_set _)).

Definition union S U := set_union eq_nat_dec S U.

Definition inter S U := set_inter eq_nat_dec S U.

Inductive program : set process_id -> Type :=

| EmptyProgram : program {}

| Single (p:process_id) (t:thread) : program {p}

| Parallell {S U} (P1 : program S) (P2 : program U) :

(inter S U) = {} -> program (union S U).

Figure 6.1: Implementation of the program, with the requirement that process
identifiers are unique.

Selected Formalization

It could be argued that the first property (associativity, commutativity, and
identity) should not be inherent in the type of programs, but should rather be
formalized elsewhere. The argument is that the type systems should in principle
not depend on this.

A program has been formalized as a finite mapping from process identifiers
to threads. The Tree data type from library of CompCert is used. Parallel
composition is then union, and the empty program is the empty set. This
means that parallel composition is associative, commutative, and has the empty
program as identity. Also, this means that each process identifier uniquely
identifies a thread. Both are properties that we want.

6.1.2 Type-Level Variables and Type Schemes

In the paper, the class of variables Y is defined as the combination of lock set
variables and lock environment variables, which is then used to define type
schemes as ∀Y⃗ ∶ C.T̂ . For reasons which are discussed in section 6.2, this has
been changed to ∀ρ⃗ X⃗ ∶ C.T̂ , where the vector Y⃗ has been split into two vectors,
ρ⃗ and X⃗.

6.1.3 Threads, Expressions, Types, and Values

Threads, expressions, simple types, annotated types, program types, and values
are represented directly and straightforwardly in Ott. The underlying types
were formalized as those of simply-typed lambda calculus. The representation of
variables is näıve; variables are identified by natural numbers, and there is no
distinction between free and bound variables.

The expression new L should be annotated with a program point π. The
point should be unique, but this is not forced by the current implementation. Not
enforcing this will only mean that the program can contains less “information”,

39



so the analysis may not give the most precise answer. Solutions to this are the
same as those which enforces unique process identifiers in the program-type.

6.1.4 Constraints

If one chose a syntactical representation of constraints, there is still a choice to
be made for how to formalize the semantics of C ⊧ C ′. It is also possible to have
a non-syntactical representation of the constraints. Regarding this, the following
possibilities were considered:

1. Constraints can be represented with “syntactical” objects, and an axiom-
atization of the judgment C ⊢ C ′ can be given. Since we are not doing
research about the fundamentals of constraint satisfaction, this approach
only needs a sound axiomatization, completeness is not needed. Typical
properties axiomized would be that the order of inequality does not matter,
and similar.

2. Constraints can be represented with “syntactical” objects, and an imple-
mentation of an algorithm, for instance the Worklist Algorithm [NNH99],
can be implemented to decide judgments.

One of the major drawbacks with this approach would be that this would
be a lot of work. Even though one correctly completes the implementation,
one would still have to prove that it has the desired properties.

3. Constraints can be “syntactical” objects, and a function JCK can be given,
which translates a constraint C to Prop. The translation would use an
underlying representation for sets, for instance MSet from the standard
library.

If C and C ′ does not contain any free variables, the claim C ⊧ C ′ would
be JCK→ JC ′K. If there are free variables in C or C ′, the translation could
be

∀θ, JθCK→ JθC ′K,

where θ is a mapping from variables to the underlying representation of
sets.

The main issue with this embedding, is that one must make sure that one
is only able to prove the translated statements of those constraint-checks
which actually hold. Given that we are working with finite sets, represented
with a plain data type, this should hold.

4. A final solution is if constraints are translated directly to Prop, using the
Coq-hom in Ott. This means there will not be a syntactic representation
in Coq of the constraints.

The problem with this is that the syntactic version seems to be needed,
mainly because of the variables, as these are needed in type schemes,
lock sets, and lock environments. So implementing this deep embedding
would presumably cause larger changes in the representation of everything
depending on lock sets and lock environments.

The first and the third solutions seem most useful, and it is the third which
was chosen. To represent the constraints, the syntax of inequalities is formalized
by Ott, and a constraint is then a list of inequalities.

40



6.1.5 Lock Environments

It could be tempting to represent the lock environments as a mapping from lock
sets to a number. This is problematic; first of all, there is a state ordering over
the syntax of lock environments; and secondly, they are really lock environment
expressions, so if they contain a free variable, the translation to a single mapping
cannot be done.

Therefore, a syntactical representation is used, faithful to the “original”
definition from [PSS13]. It could be the case, that the form ∆, r ∶ n could be
restricted to ∆, ρ ∶ n, which is indicated by [PSS13], but this has not been done.

6.1.6 Lock Sets and Effects

The grammar for lock sets, and effects are implemented directly as syntactical
objects in Ott.

Note that lock sets are expressions which represent sets; one cannot represent
a lock set as a finite set of lock references, unless one manage to represent lock
set variables with Coq’s variables, in other works, with a shallow embedding.

6.1.7 Context

Contexts are defined as lists, where new bindings are added to the right, and a
relation is defined in Coq for variable look up. It would also be possible to define
contexts as a finite mapping from variables to type schemes. For simplicity, the
context is defined as a syntactical object in Ott, and a judgment Γ(x) = Ŝ is
defined, by induction over the context.

6.2 Substitutions

The paper uses substitutions, but there is no elaboration about their meaning.
The substitutions are from several lock set variables and lock environment
variables, to respectively lock sets and lock environments. The substitutions are
applied to to constraints, annotated types, type schemes, and therefore implicitly
also to lock sets and lock environment as well.

Via Ott, the substitutions are given by four finite lists, one for lock set
variables, and a corresponding one for lock sets, and similar for the lock environ-
ments. Trying to model the approach of the paper, where the different kind of
variables are mixed together, would require either a custom list type, or heavy
use of dependent types. The advantages over simply using four lists are probably
small.

The importance of enforcing absence of repeated variables is low, and similar
for enforcing that the lists matching a variable to its value have the same length;
simply dropping the last elements should not cause any problems.

6.2.1 Ott Generated Substitution Functions

Using the grammar of the programming language, Ott can generate Coq
functions for both single and multi-variable substitution. Simply by stating

substitutions

multi lockset ls_var :: subst_ls

41



Ott will generate a function subst_ls_in_constraints, which will substitute
free occurrences of lock set variables (ls_var) in constraints.

However, these functions are intended for substituting one kind of variable,
while the substitutions needed by our type system requires simultaneous sub-
stitution of two kinds of variables, lock set variables and lock environment
variables.

It is in general not the case that composing two substitutions, one for each
variable kind, would be equivalent to one substitution which simultaneously
substitutes both variable kinds. This is because the terms substituted by the first
substitution could contain variables which the second substitution then would
change. With simultaneous substitution, the substitution will not be applied to
the terms which are inserted.

Fortunately, this is not the case for our type system, as lock environment
variables do not occur in lock sets. So if lock set variables are substituted first,
no new lock environment variables will be introduced, and then one can then
apply the substitution for lock environment variables.

Unfortunately, trying to generate a substitution function for lock set variables
causes Ott to output no function for substitution variables in constraints. The
reason is that Ott is not responsible for the generation of Coq code for
constraints, as this is translated manually. Therefore, Ott does not know how
to do substitution in constraints.

In addition, the generated substitution-function is not capture-avoiding.

6.2.2 Deep Embedding of Substitutions

The final proposal is to represent the substitution as finite lists, mapping variables
to values, and when applied to a term, the a function will traverse the term
and look up in the list every time a variable occur. This could be considered a
deeper embedding than what will be described below.

6.2.3 Shallow Embedding of Substitutions

Another proposal, is to immediately translate a given substitution to a function
from variables to corresponding terms, and then when the substitution is applied
to a term, lift this substitution of variables up to substitution on terms.

One challenge with this is the typing of the substitution functions, as there
is a relationship between the actual parameter and its return type — if it is
called with a lock set variable, a lock set should be returned, and similar for lock
environments.

This can be solved quite elegantly with dependent types, as shown in Fig-
ure 6.2. The type of a substitution is defined as subst, and it is the type of
a dependent function, taking an argument which is either a lock environment
variable or lock set variable, and depending on which it is, it will return either a
lock environment or a lock set.

Notice that defining the type of substitutions as

Definition subst : Type :=

(le_var+ls_var) -> (lockset + lockenv ).

is not the same, as this would allow calling the substitution with a lock set
variable, and get a lock environment returned.

42



Definition subst_type (y : le_var + ls_var) : Set :=

match y with

| inl _ => lockenv

| inr _ => lockset

end.

Definition subst : Set :=

forall (y:le_var + ls_var), subst_type y.

Definition empty_subst : subst :=

fun (y : le_var + ls_var) =>

match y with

| inl X => le_Var X

| inr rho => ls_Var rho

end.

Definition extend_ls (x:ls_var) (v:lockset)

(th:subst) : subst :=

fun (y : le_var + ls_var) =>

match y as y’ return (subst_type y’) with

| inl X => th (inl X)

| inr x’ =>

if beq_le_var x x’

then v

else th (inr x’)

end.

Figure 6.2: Implementation of substitution functions with dependent types.

43



The empty substitution takes a variable, and applies the correct constructor
to make it a term — it is essentially the identity function.

To extend a substitution (the function extend_ls), an anonymous function
is returned, which compares the variable to be substituted, and either returns the
value given value, or delegates the problem to the substitution that is extended.

After building such a function, one function which lifts it up to constraints,
types, lock environments, and lock sets is needed. This function will be total,
without the use of arbitrary “default” values or the option type operator.

To make sure that the substitution is capture-avoiding, all bound variables
in a type scheme is increased with the maximum identifier which occur in the
substitution and in the type scheme. Since type schemes are the only binders of
these variables, and type schemes cannot be nested, this is sufficient.

It is this last proposal which was implemented.

6.3 Type and Effect System: Specification

The formalization of the type and effect system which is the specification includes
the relations for abstract state ordering relation, subtype relation, and the type
system itself.

The function ⌊Ŝ⌋, which removes the annotations from a type, was defined
in Ott as a function. All occurrences of the “function” ⌈T ⌉ in the type system
are on the form ⌈T ⌉ = T̂ , and was replaced with the equivalent claim T = ⌊T̂ ⌋.
The main reason for this is that ⌈T ⌉ is not a function, as there are several types
T̂ such that ⌈T ⌉ = T̂ .

Some formulas are used in the definitions of the relations, but are not
formalized as judgments. These are added as rules to the formula-language of
Ott, and a Coq-homomorphism is given, which translates them to Coq code.
The formulas include the point-wise greater relation on abstract states (∆ ≤ ∆′),
the constraint check C ⊢ C ′, and a checks of free variables (Y⃗ ∉ FV (G,C)).

6.4 Type and Effect System: Algorithm

The function ⌈T̂ ⌉A used in the algorithm version, is implemented in Coq. The
formalized version takes as arguments a simple type, and two numbers which
represents the next fresh variable identifier for lock set and lockenv variables.
It returns a triple, consisting of the generated annotated type, and the new
numbers to be used for generating fresh variables.

The relations of constraint generation (T̂ ≤ T̂ ′ ⊢ C); greatest lower bound
(T̂1 ∧ T̂2 = T̂ ;C) and least upper bound (T̂1 ∨ T̂2 = T̂ ;C) for annotated types;
the greatest lower bound and least upper bound for lock environment, and the
algorithm itself, is defined directly in Ott.

6.4.1 Freshness of Variables

Several of the inference rules in the algorithmic type systems and operational
semantics introduces variables (or other entities) with the claim that they are
fresh. A formal definition of what it means to be fresh is not obvious, but one
thing which certainly is clear is that derivations containing freshness-claims are
in general not composable.

44



There are also claims of “being free in” in the rules, which have a straightfor-
ward meaning. In one case, the claim of freshness can be changed with a “being
free” claim: the rule R-NewL have a claim of freshness, but claiming that it is
free in σ suffices. Since σ contains all previously introduced lock references, is it
sufficient to check if the lock reference does not occur in σ.

Using global freshness destroys the compositionality of the inference rules.
For instance, if one has two derivations D1 and D2, both containing a claim that
x is fresh, then applying an inference rule using these two derivations yields an
incorrect derivation

Here are some ideas which were considered for how to implement a freshness
claim in Coq.

Predicates on Derivations

Instead of enforcing the correctness of a derivation locally, one can create a
predicate, which given a derivation, will check if all freshness-claims holds. How
this can be done is shown in Figure 6.3.

The main problem with this is that this will not work if the derivation was
defined to be of type Prop, since one cannot inspect object of type Prop. It
is possible to change which universe Ott places a predicate, so Ott’s default
behavior is not a problem.

Inductive derivation : Type :=

| IsFresh (x : nat) : derivation

| UseVar (x : nat) : derivation

| And (a b : derivation) : derivation.

Fixpoint free_variables (d : derivation) : list nat :=

match d with

| UseVar x => x::nil

| IsFresh _ => nil

| And a b => (free_variables a) ++ (free_variables b)

end.

Fixpoint fresh_variables (d : derivation) : list nat :=

match d with

| UseVar _ => nil

| IsFresh x => x::nil

| And a b => (fresh_variables a) ++ (fresh_variables b)

end.

Definition FreshClaimsHolds (d : derivation) : Prop :=

List.NoDup (fresh_variables d) /\

List.Forall (fun x y => x <> y)

(list_prod (fresh_variables d) (free_variables d)).

Figure 6.3: Checking freshness with a predicate.

The major drawback with this method, is that the proof that freshness claims

45



holds has to be carried around, and lemmas describing the consequences of
freshness holding would probably be needed.

Make Type System Composable

The second approach is to change the rules, so that information about freshness
flows through the system. In our case, this can be achieved by adding two
counters, one for each kind of variables, as “input” to the algorithm, which
represents the next free identifiers for lock set and lock environment variables,
and make the algorithm return an updated version of these two numbers.

Whenever a fresh variable is needed, any number larger than the input-
number and which is also not free in its local surroundings can be chosen. The
output numbers will then be the maximum number for a free variable at that
point.

This is the approach followed used in the formalization. The new signature
for the algorithm is

ρmax;Xmax; Γ ⊢ t ∶ T̂ ∶∶ φ;C;ρ′max;X ′
max

where ρmax and Xmax are the input for counters of fresh variables, and ρ′max
and X ′

max is the output.

6.5 Syntax Directed Type System

The final type system which was formalized is the syntax directed type system.
No surprises or new challenges arose during the formalization of this system,
since it is very similar to the specification.

6.6 Formalization of the Soundness Proof

The soundness proof establishes that the algorithm is sound with regards to the
specification, and it is stated as:

Theorem 3 (Soundness). Given Γ ⊢a t ∶ T̂ ∶∶ ∆1 → ∆2,C, then C; Γ ⊢s t ∶ T̂ ∶∶
∆1 →∆2.

To prove this, there are several properties related to the structural proper-
ties of constraints which needs to be proven. These lemmas are discussed in
Section 6.6.2.

The proof of soundness is by induction over the given algorithmic derivation.
The way it has been formalized is to, at least some degree, follow the outline of
the proof given in [PSS13]. All cases have been completed, except the case for
TA Abs2, which has a problem that will be described below.

6.6.1 Proving the Case of TA Abs2

In the case for TA Abs2 there is a step which is not justified, and which is not
obviously true. The given proof is:

Given is the derivation

46



T̂1 = ⌈T1⌉A T̂2 = ⌈T2⌉A X1, X2 fresh

Γ, f ∶ T̂1
X1→X2ÐÐÐÐ→ T̂2, x ∶ T̂1 ⊢a e ∶ T̂ ′2 ∶∶X1 →∆2

C2 ⊢ T̂2 ≥ T̂ ′2
C3 =X2 ≤ ∆2

Γ ⊢a fun f ∶ T̂1
X1→X2ÐÐÐÐ→ T̂2, x ∶ T̂1. e ∶ T̂1

X1→X2ÐÐÐÐ→ T̂2 ∶∶ ∆1 →∆1;C

where C = C1,C2,C3. From this they give a derivation concluding with

C; Γ, f ∶ T̂1
X1→X2ÐÐÐÐ→ T̂2, x ∶ T̂1 ⊢s e ∶ T̂2 ∶∶X1 →X2

T Abs2

C ⊢s fun f ∶ T̂1
X1→X2ÐÐÐÐ→ T̂2, x ∶ T̂1. e ∶ T̂1

X1→X2ÐÐÐÐ→ T̂2 ∶∶ ∆1 →∆1.

Everything before this point in the proof is correct, and also accepted by Coq,
but the application of the T Abs2 is wrong, as X1 in the final type and the two
∆1’s in the final effect must be exactly the same.

Possible Fix: Evaluation of Values Should have no Effect

The idea of the first possible fix is that a function is a value, and as the
evaluation of a value causes no effect, it should be possible to conclude from
C; Γ ⊢s v ∶ T̂ ∶∶ ∆ → ∆ that Γ ⊢s v ∶ T̂ ∶∶ ∆′ → ∆′ holds for any ∆′. This is
a property one ideally want the type system to have, and it is certainly the
case that algorithmic version has this property, as all the derivation rules for
values places not constraint on their effect. It is unfortunately not a trivial
proof for that the type specification has this property, as the T Abs2-rule places
restrictions on which lock environments may be used.

To prove this property, one would probably have to construct a new derivation.
For the purpose of proving soundness, it would be sufficient to prove the

weaker statement where from an effect X →X one can get the effect ∆→∆.

Possible Fix: Change Type System

Another possibility would be to change the specification so that the above
property of effect of values is easier to prove. There is in a way a miss-match
between the specification and the algorithm, since the property is so apparent in
one of them, but not in the other.

The problem remains open in the formalization. In the proof of soundness,
the inductive step of T Abs2 has been assumed without proof.

6.6.2 Strengthening of Constraints

There are several judgments which depend on constraints. Those of the judgments
which only use the constraints as the antecedent of constraint checks should
obey structural rules about constraints. More specific, for a judgment J ∶
Constraints→ Prop, the following properties should hold:

Weakening If J(C), then J(C ⊔C ′).

Exchange If J(C ⊔C ′), then J(C ′ ⊔C).

Weakening is used in many of the proofs, and must therefore be formalized.
In addition, associativity and exchange of constraint must also be proved to
preserve derivability. The property can also be called strengthening, dependent
on one’s perspective. In the formalization, there is a large class of lemmas

47



related to this. Note that associativity holds immediately, as list concatenation
is associative.

Some or all of these properties have been stated, and either proved, partially
proved, or been admitted1, for the following judgments.

Constraint denotation: Weakening and exchange, and some more, have been
stated and completely proved to hold for the denotation of constraints.

Type specification: Commutativity has been proved. Strengthening has been
partially proved. There is one case in the inductive proof has not been
completed, as α-conversion is needed. More on this in Section 7.1.

Subtyping: Strengthening stated and proved.

The most interesting of these proofs is the strengthening of constraints for
the type system. Proving this by induction over the assumption, is easy for all
cases except T Gen, and for a good reason: at first sight it might not be the
case that it holds.

To see this, consider the T Gen-case, where the derivation

C1, C2; Γ ⊢ t ∶ T̂ ∶∶ φ Y⃗ not free in Γ,C1
T Gen

C1; Γ ⊢ t ∶ ∀Y⃗ .C2 ∶ T̂ ∶∶ φ

is given, and

C1,C; Γ ⊢ t ∶ ∀Y⃗ .C2 ∶ T̂ ∶∶ φ

is the goal, with the induction hypothesis

C1, C, C2; Γ ⊢ t ∶ T̂ ∶∶ φ.

Then an application of the T Gen-rule will not work, as we then need to prove
that Y⃗ is not free in Γ and C1,C. But Y⃗ is fixed by the goal, and the C is
arbitrary, so this cannot possibly work.

Given that it is an actual2 type scheme in the conclusion, the only other
applicable rule is T Var.

ρ ⊒ {π} ⊢ ρ ⊒ {π}
T NewL

ρ ⊒ {π}; ε ⊢ New Lπ ∶ Lρ ∶∶ φ ρ ∉ FV (∅, ε)
T Gen

∅, ρ ⊒ {π}; ε ⊢ New Lπ ∶ ∀ρ.ρ ⊒ {π} ∶ Lρ ∶∶ φ

Notice that if we, for instance, tries to strengthen it with C ∶= ρ ⊒ π′, then
the T Gen-rule is not applicable, as shown here

⋯ ρ ∉ FV (ρ ⊑ π′, ε)
T Gen

C,∅, ρ ⊒ {π}; ε ⊢ New Lπ ∶ ∀ρ.ρ ⊒ {π} ∶ Lρ ∶∶ φ.

1Admitted is a term used in Coq which means that a proof is not completed, but is assumed.
One can admit a complete proof, or parts of a proof.

2By actual I mean that the list of variables and the constraints are not empty.

48



6.6.3 Status of the Proof

To summarize the status of the soundness proof, the following cases have not
been proved:

• The case of TA Abs is not completed because of the error in the original
proof.

• Two cases in the proof of strengthening of the type specification is not
completed, as α-equivalence is needed.

• The proof have, as planned, been cut off at “obviously true” lemmas.

49



50



Chapter 7

Technical and Practical
Experiences

This chapter will first discuss the major technical shortcomings of the formal-
ization, namely α-equivalence of type schemes (Section 7.1), and technical and
practical problems related to the use of Ott (Section 7.2), finally, the overall
experience with formalizing a typical article is discussed (Section 7.3).

7.1 α-Equivalence between Type Schemes

α-equivalence is a general phenomenon in programming languages and logics with
bound variables. The main reason why some technical lemmas needed for the
soundness proof were not completed, is that α-equivalence of type schemes was
not formalized. Two type schemes ∀Y⃗ . C ∶ T̂ and ∀Ŷ ′. C[Y⃗ ′/Y⃗ ] ∶ T̂ ′[Y⃗ ′/Y⃗ ],
where the substitution does not cause any variable to be bound, should be
considered equal. Since the problem was discovered too late, it has not been
corrected in the formalization. A survey of the problem in general is first
described, then how these can be applied to our case is discussed.

7.1.1 Representation of Syntax and Bound Variables

A major problem when formalizing a language with variables and bindings is to
get α-equivalence and capture-avoiding substitution.

α-equivalence means that the names of bound variables in an expression,
formula, etc, do not matter. For instance, the two lambda terms λx. x x and
λy. y y denote the same function, and one would like to identify them as “the
same”.

Capture-avoiding substitution is also related to bound variables. For instance,
if one näıvely replaces x for y in λx. x y, the result is λx. x x, which is wrong:
the replacement caused the variable y to be “captured” by the binder. A
capture-avoiding substitution would have resulted in λx′. x′ x, or an equivalent
term.

51



Näıve Representation

A näıve representation of expressions would use identifiers (for instance numbers
or strings) to differentiate between variables. This corresponds to the syntactic
representation used by humans. With this representation, both checking α-
equivalence and doing capture-avoiding substitution is cumbersome.

To check for α-equivalence, one would have to systematically rename bound
variables, and then check for syntactic equivalence.

Substitution is even more work: one must have a way to generate a fresh
variable from a list of variables, and also potentially rename all bound variables,
so that the free variables of an inserted expression do not accidentally get bound.

Locally-Nameless Representation

One can represent bound variables in an expression as a number which indicates
which of the enclosing binding operator it refers to. For instance, the expression
λx. λy. xy can be represented as λλ1 0. These numbers are called De Bruijn
indexes [DB72]. There are several options for how to represent free variables;
if the free variables uses identifiers as in the näıve approach, this is called a
locally-nameless representation [Gor94].

The expression λy. λx. yx, which is α-equivalent to the expression above,
is also represented as λλ1 0. In general, the De Bruijn indexed version of two
terms t1 and t2 are identical iff t1 and t2 are α-equivalent. The advantage with
this representation, is that checking for α-equivalence is trivial: it is syntactical
equality.

Substitution on the other hand, is more complex, but not as complex as
in the näıve representation. Given that a term has exactly one free variable,
indicated with 0 at the top-level, then substituting this variable with the term e
is done by replacing each variable n enclosed by n binding operators, with the
term e ↑n. The last operation, e ↑n, is called lifting or shifting, and means that
every free variable in e is increased with n. This causes free variables in e not to
be bound by the substitution.

Higher Order Abstract Syntax

The idea of Higher Order Abstract Syntax (HOAS) [PE88] is that the language of
formalization already has support for substitution, namely function application.
One could then imagine a formalization in Coq of lambda calculus as:

Inductive expr : Type :=

| App : expr -> expr -> expr

| Abs : (expr -> expr) -> expr.

If this definition was accepted, it would lead to an inconsistent theory in Coq
[Chl08], so, the definition is rejected by Coq. The reason why Coq rejects
the definition is because it violates the positivity restriction. A type defined
inductively cannot occur as an argument in a function type in its own definition.
The Abs-constructor takes an argument of type (expr -> expr), which is a
violation of the positivity-restriction. Still, we will look at what this definition
“could” mean in the next paragraphs1.

1This definition is still used in programming languages like Haskell, where non-termination is
not a grave problem, and in logics like that of Twelf, where it does not lead to an inconsistency.

52



The expression λx. λy. x is then be represented as Abs (fun x => fun y => x),
and substitution is then simply to call the function with the value to be inserted.

Checking for α-equivalence is trivial, as Coq already does this.
Unfortunately, the definition also allows elements which do not correspond

to any lambda term, called exotic terms [Chl08]. Consider the expression

Abs (fun x => match x with

| App e _ => e

| _ => x

end)

which is of type expr. This does not correspond to any lambda term, as a term
cannot change itself based on what is substituted into it. It is possible to remove
the existence of exotic terms [WW03], but it will still not pass the positivity
requirement.

Parametric Higher Order Abstract Syntax

Parametric Higher Order Abstract Syntax (PHOAS) [Chl08] is a weakening of
HOAS which both rules out unwanted terms, and is accepted by Coq.

The idea is that one make variables explicit, drawn from some type V, as
shown here:

Inductive expr ’ (V : Type) : Type :=

| Var : V -> expr ’ V

| App : (expr ’ V) -> (expr ’ V) -> (expr ’ V)

| Abs : (V -> expr ’ V) -> expr ’ V.

With this definition, one could still make exotic terms. For instance, if one
chooses V to be natural numbers, one could make a function which behaves
differently for odd and even numbers. To solve this, the following definition of
an expression is given:

Definition expr : Type := forall (V : Type), expr ’ V.

The universal quantification rules out any possibility for members of expr to
inspect what is substituted into it.

Checking for α-equivalence is equality, just as with HOAS.

7.1.2 Application to Type Schemes

The problem of α-equivalence of type schemes could be solved using all the
techniques above (except HOAS). How each technique applies to our specific
problem is now described.

Näıve Representation

One could continue to use the current, näıve representation, but add a new
inference rule to each of the type systems, which allows α-conversion. This
would be, at least in the short term, the quickest fix. For the longer run however,
the solution is not desirable. It is conceptually ugly, as one needs to formalize
properties which could be inherent in the representation, and the definitions of
substitution and α-equivalence make the proofs unnecessarily complex.

53



Locally-Nameless Representation

The implementation of De Bruijn indexes would introduce a strict difference
between bound and free variables. Bound variables would use De Bruijn indexes,
while free variables would use identifiers. The binding structure also must be
changed, and where variables can occur must now be duplicated to two versions,

scheme, Ŝ ∶∶= ∀n,m,C ∶ T̂

where n is the number of lock set variables introduces, and m is the number of
lock-environment variables introduced.

There is experimental support for locally-nameless representation in Ott,
but it is not directly applicable to the given representation of type schemes,
only supports binders which introduce a fixed numbers of variables. It could be
possible to change the syntax and rules related to type schemes, so that type
schemes only introduce one variable at the time.

Additionally, a predicate is needed which checks if a structure with variables
is locally closed, i.e. that it does not contain bound variables which do not point
to any binder.

Parametric Higher Order Abstract Syntax

The initial challenge with PHOAS is that the introduction of several variables
at once is needed, so a similar transformation which is needed for Otts locally-
nameless representation is needed. And also here, free variables must be indicated
as named variables.

If the system were to be formalized again, this would be the way I would
formalize bound variables for type schemes, as long as the type schemes can be
coerced into introducing a single variable at the time. The “free” and correct
variable substitution and semantics for bound variables is very appealing.

7.1.3 Representation of Expressions

The problem of binding and substitution also occurs in the context of expressions,
but it has not affected the current work, as proofs relating the type systems and
the semantics have not been formalized. Though it is important to note that
this would still affect the current proofs, though the implication of this has not
been researched.

As the functions work with closed terms, both De Bruijn indexes and PHOAS
would should work fine. It would be natural to try to reformulate the syntax
using PHOAS.

7.2 Experience with Ott

During the process of learning and using Ott, as the size of the project grew,
several lessons were learned. Ott feels to some degree unreliable, in that changes
in the Ott-file can have unintended effects on the generated Coq-code.

One problem encountered early, was that using Coq-homomorphisms to give
a definition of a grammar can be unreliable, as it could produce Coq-code where
the order of definitions were incorrect. The code was on the form as shown

54



grammar

foo :: foo_ ::=

| Foo1 :: :: Foo1_Intro

| Foo2 :: :: Foo2_Intro

bar :: ’’ ::= {{coq (list foo)}}

| empty :: S:: EmptyList {{coq (@nil foo)}}

| foo :: bar :: S:: ConsList {{coq (cons [[foo]] [[bar ]])}}

Figure 7.1: The form of the code which caused the generation of an invalid
Coq-file.

in Figure 7.1, with two definitions. Ott will generate an inductive definition
for foo, while the definition of bar is given by Coq-homomorphisms. In the
concrete example I had, the definition of bar was given before that of foo, which
caused Coq to reject the program. Changing the order in the Ott-file had no
effect on the produced output. Splitting the Ott-files across several files, as
described next, seems to remedy this.

7.2.1 Separation of Ott-files

Early on in the formalization, only a single Ott-file was used. From a software
engineering point of view, we know this is not a good idea. Ott has fairly
good support of separating a project into several files. Having two Ott-files
syntax.ott and semantics.ott, the command

$ ott -i syntax.ott -o syntax.v \

-i semantics.ott -o semantics.v

causes two Coq-files to be created, syntax.v, which will contain the definitions
from syntax.ott, and semantics.v, which will contain the definitions from
semantics.ott. The files cannot be mutually dependent, but the definitions
within each file can.

While this lets us break up a project into several files, there can still be
problems where a definition ideally should be split across several files, but is
forced to stay in a single file. This is mainly if there are mutually dependent
definitions.

An example of this is the definition of formula. In the beginning of the
project, formula was defined in a single file. This is not very practical, ideally,
the best would be to introduce a kind of formula where it is defined and used.
This was achieved by changing the definition of formula to what is shown in
Figure 7.2. With this definition, each file can define their own formulas, together
with inline Coq-code.

One must then define all of the extra formula-rules as meta-rules (with the
M). The only downside, is that one will get rules such as

Inductive syntax_formula : Set := .

which litter the code, but they cause no harm. An interesting project would be
to make it possible to make Ott drop definitions like this, if wanted.

55



formula , F :: formula_ ::=

| judgement :: :: judgement

| syntax_formula :: M::

syntax_formula {{coq [[ syntax_formula ]]}}

| type_formula :: M::

type_formula {{coq [[ type_formula ]]}}

| substitution_formula :: M::

substitution_formula {{coq [[ substitution_formula ]]}}

| constraint_formula :: M::

constraint_formula {{coq [[ constraint_formula ]]}}

| free_formula :: M::

free_formula {{coq [[ free_formula ]]}}

Figure 7.2: Main definition of formulas, which delegates the definition of formulas
to where they are used.

7.2.2 Substitution and Free Variables

In the beginning the substitution functions generated by Ott were used. But
when the syntax of constraints was changed to use Coq’s list, then Ott could
no longer generate a correct substitution function, which means that a function
has to be defined manually.

The auto-generated functions become unusable as soon as some part of the
syntax is defined using Coq-homomorphisms.

7.3 Experience with Formalization

To take a highly technical article and formalize its content was a challenge. The
most typical problems are the “informal” changes of definitions, and inconsistent
use of notations. Here are some examples:

1. The type systems uses the type Thread, which is not mentioned in the
syntax of types.

2. In the semantics then expression spawn t will return the process identifier
of the created thread, but that is not a value according to the syntax.

3. The operational semantics which is given in the paper is unlabeled; later
in the paper, it is said its transitions should be labeled with information
about lock usage.

4. Notation which is not property defined is used, such as C ⊧θ C ′, Γ ≲θ Γ′,
and ∆ ≲θ ∆′.

5. The syntax of the base types T is not defined. In the formalization, these
have been implemented as the base types Lock, Thread, and Bool, closed
under function-types.

6. There were examples of typographical errors in the type systems; for
instance the rule TA Cond, there are primes which are placed wrongly.

56



7. The rule LE Arrow is wrong, also here is primes missing.

8. Only the least upper bound of types, abstract states, and effects is given
explicit, the definition of greatest lower bound must be inferred.

Having the authors of the paper available to answer questions during the formal-
ization was of great value.

57



58



Chapter 8

Conclusion

8.1 Contribution

The formalization presented in this thesis, shows that the theory introduced in
the article [PSS13] is precise enough to be formalized in a rigorous, unambiguous,
and machine-checkable way. Furthermore, the formalized proof of soundness
done in Coq shows that the arguments used in the article are logically sound,
and increase the faith in the correctness of the claim of soundness. The additional
formalized technical proofs about the type systems further increase the faith in
the correctness of the type systems.

The main limitation of the thesis is that there are admitted proofs. This
was expected from the start, but it could be that some properties which have
been assumed, but not proven, do not actually hold. Ideally, all proofs should
be completed. Furthermore, only one major proof from the article is formalized;
all the proofs should be formalized.

8.2 General Challenges

To quote the POPLMark challenge [ABF+05]:

How close are we to a world where every paper on programming
languages is accompanied by an electronic appendix with machine-
checked proofs?

The nature of the problems which had to be solved in this thesis indicates that
the gap between machine checkable and “English” proofs and definitions are still
wide apart. The skills needed to do a proper formalization is a research topic in
itself.

The first major problem is that of bindings and capture-avoiding substitutions.
In the theorem prover Twelf, this is partially solved with higher-order abstract
syntax. In other theorem provers, a first-order representation, such as De Bruijn
indexes, is usually used, which is not ideal. An approach to solve the problem,
which do not include changing the underlying logic of theorem provers, is to
create high-level libraries, such as “Lambda Tamer” by Adam Chlipala [Chl10],
implementing a framework around PHOAS.

59



Another major problem with “practical” formalization is the different kinds
of equivalences which theorem provers supply and the equivalences which users
want. Type systems usually have two kinds of equivalences: judgmental equal-
ity and propositional equality1. Furthermore, user-defined equivalences is also
needed; in this thesis both constraints, programs, and types have natural equiva-
lence relations. There are mainly two approaches for working with user-defined
equivalence relations in type theory: setoids (a set equipped with an equivalence
relation) and quotient types (essentially the type of equivalence classes). Unfor-
tunately, quotient types are not directly available in intentional type theories
such as Coq, so setoids must be used instead. Using setoids means that relations
might not be compatible with the equipped equivalence relation, which means
that additional lemmas about compatibility needs to be proven. There has been
work on finding restricted quotient types to intensional type theories [AAL].

Further work on creating and improving specialized tools, such as Ott, is
needed to minimize the overhead of formalizing.

1In extensional type theory, these are collapsed to one.

60



Bibliography

[AAL] Thorsten Altenkirch, Thomas Anberrée, and Nuo Li, Definable quo-
tients in type theory.

[ABF+05] Brian E Aydemir, Aaron Bohannon, Matthew Fairbairn, J Nathan
Foster, Benjamin C Pierce, Peter Sewell, Dimitrios Vytiniotis, Geof-
frey Washburn, Stephanie Weirich, and Steve Zdancewic, Mechanized
metatheory for the masses: The poplmark challenge, Theorem Proving
in Higher Order Logics, Springer, 2005, pp. 50–65.

[Bar92] Henk P. Barendregt, Lambda calculi with types, Handbook of Logic
in Computer Science (Samson Abramsky, Dov Gabbay, and Thomas
Maibaum, eds.), vol. 1: Mathematical Structures, Oxford University
Press, 1992, pp. 117–309.

[BC04] Yves Bertot and Pierre Castéran, Interactive theorem proving and
program development: Coq’art: the calculus of inductive constructions,
springer, 2004.

[BGG+92] Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John
Herbert, and John Van Tassel, Experience with embedding hardware
description languages in HOL, TPCD, vol. 10, 1992, pp. 129–156.

[BM79] Robert S. Boyer and J. Strother Moore, A computational logic, vol. 5,
Academic press New York, 1979.

[CC99] Catarina Coquand and Thierry Coquand, Structured type theory,
Workshop on Logical Frameworks and Metalanguages, 1999.

[Chl08] Adam Chlipala, Parametric higher-order abstract syntax for mecha-
nized semantics, ACM Sigplan Notices 43 (2008), no. 9, 143–156.

[Chl10] , A verified compiler for an impure functional language, ACM
Sigplan Notices, vol. 45, ACM, 2010, pp. 93–106.

[Chl11] , Certified programming with dependent types, 2011.

[Cur34] Haskell B. Curry, Functionality in combinatory logic, Proceedings of
the National Academy of Sciences of the United States of America
20 (1934), no. 11, 584.

[DB72] Nicolaas Govert De Bruijn, Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with application
to the church-rosser theorem, Indagationes Mathematicae (Proceed-
ings), vol. 75, Elsevier, 1972, pp. 381–392.

61



[FSDF93] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen, The essence
of compiling with continuations, ACM Conference on Programming
Language Design and Implementation (PLDI), ACM, June 1993, In
SIGPLAN Notices 28(6).

[Gir72] Jean-Yves Girard, Interprétation fonctionelle et élimination des
coupure dans l’arithmetique d’ordre supérieur, Ph.D. thesis, Uni-
versité Paris VII, 1972.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor, Proofs and types,
Cambridge University Press, 1989.

[Gon08] Georges Gonthier, Formal proof–the four-color theorem, Notices of
the AMS 55 (2008), no. 11, 1382–1393.

[Gor94] Andrew D. Gordon, A mechanisation of name-carrying syntax up to
alpha-conversion, Springer, 1994.

[Ler09] Xavier Leroy, Formal verification of a realistic compiler, Communica-
tions of the ACM 52 (2009), no. 7, 107–115.

[NBB+63] Peter Naur, John W. Backus, Friedrich L. Bauer, Julien Green,
Charles Katz, John McCarthy, Alan J. Perlis, Heinz Rutishauser,
Klaus Samelson, Bernard Vauquois, et al., Revised report on the
algorithmic language algol 60, Communications of the ACM 6 (1963),
no. 1, 1–17.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin, Principles
of program analysis, Springer, 1999.

[Nor07] Ulf Norell, Towards a practical programming language based on depen-
dent type theory, Ph.D. thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, SE-412 96 Göteborg,
Sweden, September 2007.

[Pau88] Lawrence C Paulson, A preliminary user’s manual for Isabelle, Uni-
versity of Cambridge, Computer Laboratory, 1988.

[PE88] Frank Pfenning and Conal Elliot, Higher-order abstract syntax, ACM
SIGPLAN Notices, vol. 23, ACM, 1988, pp. 199–208.

[PSS13] Ka I Pun, Martin Steffen, and Volker Stolz, Deadlock checking by
data race detection, Submitted for journal publication, under review.

[Rey74] John Reynolds, Towards a theory of type structure, Colloque sur la
programmation (Paris, France) (B. Robinet, ed.), Lecture Notes in
Computer Science, vol. 19, Springer-Verlag, 1974, pp. 408–425.

[SNO+07] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,
Thomas Ridge, Susmit Sarkar, and Rok Strnǐsa, Ott: effective tool
support for the working semanticist, Proceedings of the 12th ACM
SIGPLAN international conference on Functional programming (New
York, NY, USA), ICFP ’07, ACM, 2007, pp. 1–12.

62



[Wad89] Philip Wadler, Theorems for free!, Proceedings of the fourth interna-
tional conference on Functional programming languages and computer
architecture, ACM, 1989, pp. 347–359.

[Wel94] J. B. Wells, Typability and type checking in the second order λ-calculus
are equivalent and undecidable, Ninth Annual Symposium on Logic in
Computer Science (LICS) (Paris, France), IEEE, Computer Society
Press, July 1994, pp. 176–185.

[WW03] Geoffrey Washburn and Stephanie Weirich, Boxes go bananas: En-
coding higher-order abstract syntax with parametric polymorphism
(extended version), Tech. report, Department of Computer & Infor-
mation Science, University of Pennsylvania, 2003, MS-CIS-03-26.

63



64



Appendix A

Ott output

processid , p Process id
variable, x , f Variable for value
programpoint , π Program point
lockref , l Lock reference
lockcount , lc Times lock is taken
index , k , j , m, z
n

65



formula, F ∶∶=
∣ judgement
∣ syntax formula M
∣ type formula M
∣ substitution formula M
∣ constraint formula M
∣ free formula M
∣ ρ1, .. , ρk > ρmax

terminals ∶∶=
∣ ∀
∣ /=

syntax formula ∶∶=
∣ ρ = ρ′ M
∣ ρ /= ρ′ M
∣ ρ < ρ′ M
∣ x /= x ′ M
∣ p /= p′ M

program, P ∶∶= Program
∣ ∅ Empty Program
∣ p⟨t⟩ Single Program
∣ P1∣∣P2 Parallel Composition

thread , t ∶∶= Thread
∣ v Value
∣ let x ∶ T = e in t bind x in t Let
∣ t[v/x ] M Substitute v for x in t
∣ (t) S

66



expr , e ∶∶= Expression
∣ t Thread
∣ v1 v2 Application
∣ if v then e1 else e2 Conditional
∣ spawn t Spawn a thread
∣ newLπ Create a new lock
∣ v . lock Aqcuire lock
∣ v .unlock Release lock
∣ (e) S

value, v ∶∶= Value
∣ x Variable reference
∣ lr Lock reference
∣ true Truth value
∣ false Truth value
∣ fn x ∶ T.t bind x in t Function abstraction
∣ fun f ∶ T1.x ∶ T2.t bind f in t Recursive function abstraction

bind x in t
∣ p Proccess id
∣ (v) S

lockset , r ∶∶= Lock set expression
∣ ρ Variable
∣ {π} Singleton
∣ r ∪ r ′ Union
∣ (r) M

ls var , ρmax, ρ ∶∶=
∣ ρ + 1 M
∣ max(ρ1 .. ρk) M
∣ min(ρ1 .. ρk) M
∣ (ρ) S

simpletype, T ∶∶= Simple Type
∣ Bool Boolean
∣ Thread Thread
∣ L Lock
∣ T1 → T2 Function
∣ (T ) S

∣ ⌊T̂ ⌋ M

∣ ⌊Ŝ⌋ M

lockstate ∶∶=
∣ free

67



∣ p(lc)
∣ p(1) M
∣ p(lc + 1) M
∣ dec (p(lc)) M

state, σ ∶∶=
∣ ε M
∣ σ[l ↦ lockstate] M

free ls var ∶∶=
∣ FV (∆) M
∣ FV (Γ) M
∣ FV (C ) M

free le var ∶∶=
∣ FV (∆) M
∣ FV (Γ) M
∣ FV (C ) M

free formula ∶∶=
∣ ρ1 .. ρk notIn free ls var M
∣ X1 ..Xk notIn free le var M

constraint formula ∶∶=
∣ C ⊧ C ′ M
∣ C ⊢ r ⊑ r ′ M

type formula ∶∶=
∣ ϕ = ϕ′ M
∣ T = T ′ M

∣ Ŝ = Ŝ′ M
∣ σ = σ′ M
∣ X < X ′ M
∣ X /= X ′ M
∣ unique X1 ..Xk M
∣ uniqueρ1 .. ρk M
∣ ∆ <= ∆′ M

le var , X , Xmax ∶∶=
∣ X + 1
∣ max(X1 ..Xk)
∣ min(X1 ..Xk)
∣ const X M

68



lockenv , ∆ ∶∶= Lock Environment expression
∣ ●
∣ X
∣ ∆, r ∶ n
∣ ∆⊕∆′

∣ ∆⊖∆′

∣ (r ∶ 1) M
∣ (∆) M

ineq ∶∶= Single Constraint
∣ r ⊑ r ′

∣ ∆ ≤ ∆′

constraints, C ∶∶= Constraint
∣ ∅ M
∣ ineq M
∣ C ,C ′ M
∣ θC M

effect , ϕ ∶∶= Effect
∣ ∆1 →∆2

annotatedtype, T̂ ∶∶= Annotated Type
∣ Bool
∣ Thread
∣ Lr

∣ T̂1
ϕÐ→ T̂2

∣ θ T̂ M

∣ (T̂ ) S

scheme, Ŝ ∶∶= Typescheme

∣ ∀ρ1 .. ρk X1 ..Xj ∶ C .T̂ bind ρ1..ρk in C

bind ρ1..ρk in T̂
bind X1..Xj in C

bind X1..Xj in T̂

∣ T̂ S

∣ θ Ŝ M

∣ close(Γ,C , T̂ ) M

program type, Φ ∶∶= Program type
∣ p⟨ϕ; C ⟩
∣ Φ∣∣Φ′

context , Γ ∶∶=

69



∣ ε Empty context

∣ Γ, x ∶ Ŝ Extend Γ with x : Ŝ
∣ (Γ) S

substitution formula ∶∶=
∣ θ = θ′ M

subst , θ ∶∶=
∣ [∆1 ..∆m/X1 ..Xk ][r1 .. rj /ρ1 .. ρz ] M

LocalStep ∶∶=
∣ t1 → t2 As a local step, t1 reduces to t2

GlobalStep ∶∶=
∣ σ ⊢ P → σ′ ⊢ P ′

ContextLookup ∶∶=
∣ Γ(x) = Ŝ x is bound to Ŝ in Γ

DownAT ∶∶=
∣ ⌊T̂ ⌋

DownSC ∶∶=
∣ ⌊Ŝ⌋

AbstrSateOrder ∶∶=
∣ C ⊢∆ ≤ ∆′

SubType ∶∶=
∣ C ⊢ T̂ ≤ T̂ ′

TypeAndEffect ∶∶=
∣ C ; Γ ⊢ e ∶ Ŝ ∶∶ ϕ
∣ ⊢ P ∶∶ Φ

ConstraintGeneration ∶∶=
∣ T̂ ≤ T̂ ′ ⊢ C
∣ ∆ ≤ ∆′ ⊢ C

LeastUpperBound ∶∶=
∣ T̂ ∨ T̂ ′ = T̂ ′′; C

∣ T̂ ∧ T̂ ′ = T̂ ′′; C
∣ ∆1 ∨∆2 = ∆; C

70



∣ ∆1 ∧∆2 = ∆; C
∣ ϕ1 ∨ ϕ2 = ϕ; C
∣ ϕ1 ∧ ϕ2 = ϕ; C

TypeAndEffectAlgo ∶∶=
∣ (ρmax,Xmax)Γ ⊢ e ∶ T̂ ∶∶ ϕ; C (ρ′max,X ′

max)

SyntaxDirected ∶∶=
∣ C ; Γ ⊢ e ∶ T̂ ∶∶ ϕ

judgement ∶∶=
∣ LocalStep
∣ GlobalStep
∣ ContextLookup
∣ AbstrSateOrder
∣ SubType
∣ TypeAndEffect
∣ ConstraintGeneration
∣ LeastUpperBound
∣ TypeAndEffectAlgo
∣ SyntaxDirected

user syntax ∶∶=
∣ processid
∣ variable
∣ programpoint
∣ lockref
∣ lockcount
∣ index
∣ n
∣ formula
∣ terminals
∣ syntax formula
∣ program
∣ thread
∣ expr
∣ value
∣ lockset
∣ ls var
∣ simpletype
∣ lockstate
∣ state
∣ free ls var
∣ free le var

71



∣ free formula
∣ constraint formula
∣ type formula
∣ le var
∣ lockenv
∣ ineq
∣ constraints
∣ effect
∣ annotatedtype
∣ scheme
∣ program type
∣ context
∣ substitution formula
∣ subst

t1 → t2 As a local step, t1 reduces to t2

let x ∶ T = v in t → t[v/x ]
R Red

let x2 ∶ T2 = (let x1 ∶ T1 = e1 in t1) in t2 → let x1 ∶ T1 = e1 in (let x2 ∶ T2 = t1 in t2)
R Let

let x ∶ T = (if true then e1 else e2) in t → let x ∶ T = e1 in t
R If1

let x ∶ T = (if false then e1 else e2) in t → let x ∶ T = e2 in t
R If2

let x ∶ T = ((fn x ′ ∶ T ′.t ′) v) in t → let x ∶ T = t ′[v/x ′] in t
R App1

let x ∶ T = ((fun f ∶ T1.x ′ ∶ T2.t ′) v) in t → let x ∶ T = (t ′[v/x ′])[fun f ∶ T1.x ′ ∶ T2.t ′/f ] in t
R App2

σ ⊢ P → σ′ ⊢ P ′

t1 → t2

σ ⊢ p⟨t1⟩→ σ ⊢ p⟨t2⟩
R Lift

σ ⊢ P1 → σ′ ⊢ P ′
1

NoDup (dom P (P1∣∣P2))

σ ⊢ P1∣∣P2 → σ′ ⊢ P ′
1∣∣P2

R Par

p1 /= p2

σ ⊢ p1⟨let x ∶ T = spawn t2 in t1⟩→ σ ⊢ p1⟨let x ∶ T = p2 in t1⟩∣∣p2⟨t2⟩
R Spawn

σ′ = σ[l ↦ free]
lockref fresh σ l

σ ⊢ p⟨let x ∶ T = newLπ in t⟩→ σ′ ⊢ p⟨let x ∶ T = lr in t⟩
R NewL

lockref lookup σ l = Some free
σ′ = σ[l ↦ p(1)]

σ ⊢ p⟨let x ∶ T = lr . lock in t⟩→ σ′ ⊢ p⟨let x ∶ T = lr in t⟩
R Lock

72



lockref lookup σ l = Some p(lc)
σ′ = σ[l ↦ p(lc + 1)]

σ ⊢ p⟨let x ∶ T = lr . lock in t⟩→ σ′ ⊢ p⟨let x ∶ T = lr in t⟩
R Relock

lockref lookup σ l = Some p(lc)
σ′ = σ[l ↦ dec (p(lc))]

σ ⊢ p⟨let x ∶ T = lr .unlock in t⟩→ σ′ ⊢ p⟨let x ∶ T = lr in t⟩
R Unlock

Γ(x) = Ŝ x is bound to Ŝ in Γ

(Γ, x ∶ Ŝ)(x) = Ŝ
LookupAx

x /= x ′

Γ(x) = Ŝ
(Γ, x ′ ∶ Ŝ′)(x) = Ŝ

LookupNext

⌊T̂ ⌋

⌊Bool⌋ ≡ Bool
⌊Thread⌋ ≡ Thread
⌊Lr ⌋ ≡ L

⌊T̂1
ϕÐ→ T̂2⌋ ≡ (⌊T̂1⌋)→ (⌊T̂2⌋)

⌊Ŝ⌋

⌊∀ρ1 .. ρk X1 ..Xj ∶ C .T̂ ⌋ ≡ ⌊T̂ ⌋

C ⊢∆ ≤ ∆′

C ⊢∆ ≤ ∆
SO Refl

C ⊢∆1 ≤ ∆2

C ⊢∆2 ≤ ∆3

C ⊢∆1 ≤ ∆3
SO Trans

∆ ≤ ∆′ ⊢∆ ≤ ∆′
SO Ax

∆1 <= ∆2

C ⊢∆1 ≤ ∆2
SO Base

C ⊢ ● ≤ ∆1

C ⊢∆2 ≤ ∆2 ⊕∆1
SO Plus1

C ⊢∆1 ≤ ●
C ⊢∆2 ⊕∆1 ≤ ∆2

SO Plus2

C ⊢ ● ≤ ∆1

C ⊢∆2 ⊖∆1 ≤ ∆2
SO Minus1

C ⊢∆1 ≤ ●
C ⊢∆2 ≤ ∆2 ⊖∆1

SO Minus2

73



C ⊢ T̂ ≤ T̂ ′

C ⊢ T̂ ≤ T̂
S Refl

C ⊢ T̂1 ≤ T̂2

C ⊢ T̂2 ≤ T̂3

C ⊢ T̂1 ≤ T̂3

S Trans

C ⊧ r1 ⊑ r2

C ⊢ Lr1 ≤ Lr2
S Lock

C ⊢ T̂ ′1 ≤ T̂1

C ⊢ T̂2 ≤ T̂ ′2
C ⊢∆′

1 ≤ ∆1

C ⊢∆2 ≤ ∆′
2

C ⊢ T̂1
∆1→∆2ÐÐÐÐ→ T̂2 ≤ T̂ ′1

∆′1→∆′2ÐÐÐÐ→ T̂ ′2

S Arrow

C ; Γ ⊢ e ∶ Ŝ ∶∶ ϕ

Γ(x) = Ŝ
C ; Γ ⊢ x ∶ Ŝ ∶∶ ∆→∆

T Var

C ⊢ {π} ⊑ ρ
C ; Γ ⊢ newLπ ∶ Lρ ∶∶ ∆→∆

T NewL

C ⊢ ρ ⊑ ρ′

C ; Γ ⊢ lρ ∶ Lρ′ ∶∶ ∆→∆
T LRef

⌊T̂1⌋ = T1

C ; Γ, x ∶ T̂1 ⊢ t ∶ T̂2 ∶∶ ϕ

C ; Γ ⊢ fn x ∶ T1.t ∶ T̂1
ϕÐ→ T̂2 ∶∶ ∆→∆

T Abs1

⌊T̂1⌋ = T1

⌊T̂2⌋ = T2

C ; Γ, f ∶ T̂1
ϕÐ→ T̂2, x ∶ T̂1 ⊢ t ∶ T̂2 ∶∶ ∆1 →∆2

C ; Γ ⊢ fun f ∶ T1 → T2.x ∶ T1.t ∶ T̂1
∆1→∆2ÐÐÐÐ→ T̂2 ∶∶ ∆1 →∆1

T Abs2

C ; Γ ⊢ v1 ∶ T̂2
∆1→∆2ÐÐÐÐ→ T̂1 ∶∶ ∆1 →∆1

C ; Γ ⊢ v2 ∶ T̂2 ∶∶ ∆1 →∆1

C ; Γ ⊢ v1 v2 ∶ T̂1 ∶∶ ∆1 →∆2

T App

C ; Γ ⊢ v ∶ Bool ∶∶ ∆1 →∆1

C ; Γ ⊢ e1 ∶ T̂ ∶∶ ∆1 →∆2

C ; Γ ⊢ e2 ∶ T̂ ∶∶ ∆1 →∆2

C ; Γ ⊢ if v then e1 else e2 ∶ T̂ ∶∶ ∆1 →∆2

T Cond

C ; Γ ⊢ e1 ∶ Ŝ1 ∶∶ ∆1 →∆2

⌊Ŝ1⌋ = T1

C ; Γ, x ∶ Ŝ1 ⊢ t2 ∶ T̂2 ∶∶ ∆2 →∆3

C ; Γ ⊢ let x ∶ T1 = e1 in t2 ∶ T̂2 ∶∶ ∆1 →∆3

T Let

74



C ; Γ ⊢ t ∶ T̂ ∶∶ ●→∆2

C ; Γ ⊢ spawn t ∶ Thread ∶∶ ∆1 →∆1
T Spawn

C ; Γ ⊢ v ∶ Lρ ∶∶ ∆1 →∆1

C ⊢∆1 ⊕ (ρ ∶ 1) ≤ ∆2

C ; Γ ⊢ v . lock ∶ Lρ ∶∶ ∆1 →∆2
T Lock

C ; Γ ⊢ v ∶ Lρ ∶∶ ∆1 →∆1

C ⊢∆1 ⊖ (ρ ∶ 1) ≤ ∆2

C ; Γ ⊢ v .unlock ∶ Lρ ∶∶ ∆1 →∆2
T Unlock

C1,C2; Γ ⊢ e ∶ T̂ ∶∶ ∆1 →∆2

ρ1 .. ρj notInFV (Γ)
X1 ..Xk notInFV (Γ)
ρ1 .. ρj notInFV (C1)
X1 ..Xk notInFV (C1)

C1; Γ ⊢ e ∶ ∀ρ1 .. ρj X1 ..Xk ∶ C2.T̂ ∶∶ ∆1 →∆2

T Gen

C1; Γ ⊢ e ∶ ∀ρ1 .. ρj X1 ..Xk ∶ C2.T̂ ∶∶ ∆1 →∆2

θ = [∆1 ..∆m/X1 ..Xk ][r1 .. rz /ρ1 .. ρj ]
C1 ⊧ θC2

C1; Γ ⊢ e ∶ θ T̂ ∶∶ ∆1 →∆2

T Inst

C ; Γ ⊢ e ∶ T̂2 ∶∶ ∆1 →∆2

C ⊢ T̂2 ≤ T̂1

C ⊢∆′
1 ≤ ∆1

C ⊢∆2 ≤ ∆′
2

C ; Γ ⊢ e ∶ T̂1 ∶∶ ∆′
1 →∆′

2

T Sub

⊢ P ∶∶ Φ

C ; ε ⊢ t ∶ T̂ ∶∶ ϕ
⊢ p⟨t⟩ ∶∶ p⟨ϕ; C ⟩

T Thread

⊢ P1 ∶∶ Φ1

⊢ P2 ∶∶ Φ2

⊢ P1∣∣P2 ∶∶ Φ1∣∣Φ2
T Par

T̂ ≤ T̂ ′ ⊢ C

Bool ≤ Bool ⊢ ∅
C Basic1

Thread ≤ Thread ⊢ ∅
C Basic2

Lρ1 ≤ Lρ2 ⊢ ρ1 ⊑ ρ2
C Lock

T̂ ′1 ≤ T̂1 ⊢ C1

T̂2 ≤ T̂ ′2 ⊢ C2

T̂1
X1→X2ÐÐÐÐ→ T̂2 ≤ T̂ ′1

X ′

1→X ′

2ÐÐÐÐ→ T̂ ′2 ⊢ C1,C2,X ′
1 ≤ X1,X2 ≤ X ′

2

C Arrow

∆ ≤ ∆′ ⊢ C

75



∆ ≤ ∆′ ⊢∆ ≤ ∆′
C Id

T̂ ∨ T̂ ′ = T̂ ′′; C

Bool ∨Bool = Bool;∅
LT Bool

Thread ∨Thread = Thread;∅
LT Thread

ρ /= ρ1

ρ /= ρ2

Lρ1 ≤ Lρ ⊢ C1

Lρ2 ≤ Lρ ⊢ C2

Lρ1 ∨Lρ2 = Lρ; C1,C2
LT Lock

T̂ ′1 ∧ T̂ ′′1 = T̂ ; C1

T̂ ′2 ∨ T̂ ′′2 = T̂ ′; C2

ϕ1 ∨ ϕ2 = ϕ; C3

T̂ ′1
ϕ1Ð→ T̂ ′2 ∨ T̂ ′′1

ϕ2Ð→ T̂ ′′2 = T̂1
ϕÐ→ T̂2; C1,C2,C3

LT Arrow

T̂ ∧ T̂ ′ = T̂ ′′; C

Bool ∧Bool = Bool;∅
GT Bool

Thread ∧Thread = Thread;∅
GT Thread

ρ /= ρ1

ρ /= ρ2

Lρ ≤ Lρ1 ⊢ C1

Lρ ≤ Lρ2 ⊢ C2

Lρ1 ∧Lρ2 = Lρ; C1,C2
GT Lock

T̂ ′1 ∨ T̂ ′′1 = T̂ ; C1

T̂ ′2 ∧ T̂ ′′2 = T̂ ′; C2

ϕ1 ∧ ϕ2 = ϕ; C3

(T̂ ′1
ϕ1Ð→ T̂ ′2) ∧ (T̂ ′′1

ϕ2Ð→ T̂ ′′2 ) = (T̂1
ϕÐ→ T̂2); C1,C2,C3

GT Arrow

∆1 ∨∆2 = ∆; C

∆1 ≤ X ⊢ C1

∆2 ≤ X ⊢ C2

∆1 ∨∆2 = X ; C1,C2
LE States

∆1 ∧∆2 = ∆; C

X ≤ ∆1 ⊢ C1

X ≤ ∆2 ⊢ C2

∆1 ∧∆2 = X ; C1,C2
GE States

ϕ1 ∨ ϕ2 = ϕ; C

76



∆′
1 ∧∆′′

1 = ∆1; C1

∆′
2 ∨∆′′

2 = ∆2; C2

∆1 →∆2 ∨∆′
1 →∆′

2 = ∆1 →∆2; C1,C2
LE Arrow

ϕ1 ∧ ϕ2 = ϕ; C

∆′
1 ∨∆′′

1 = ∆1; C1

∆′
2 ∧∆′′

2 = ∆2; C2

∆1 →∆2 ∧∆′
1 →∆′

2 = ∆1 →∆2; C1,C2
GE Arrow

(ρmax,Xmax)Γ ⊢ e ∶ T̂ ∶∶ ϕ; C (ρ′max,X ′
max)

Γ(x) = ∀ρ1 .. ρj X1 ..Xk ∶ C .T̂
θ = [X ′

1 ..X
′
m/X1 ..Xk ][ρ′1 .. ρ′z /ρ1 .. ρj ]

uniqueρ′1 .. ρ
′
z

unique X ′
1 ..X

′
m

ρ′1 .. ρ
′
z notInFV (Γ)

ρ′1 .. ρ
′
z notInFV (C )

ρ′1 .. ρ
′
z notInFV (∆)

X ′
1 ..X

′
m notInFV (Γ)

X ′
1 ..X

′
m notInFV (C )

X ′
1 ..X

′
m notInFV (∆)

ρmax <min(ρ′1 .. ρ′z )
Xmax <min(X ′

1 ..X
′
m)

(ρmax,Xmax)Γ ⊢ x ∶ θ T̂ ∶∶ ∆→∆; θC (max(ρ′1 .. ρ′z ) + 1,max(X ′
1 ..X

′
m) + 1)

TA Var

Xmax <X ′
max

ρmax < ρ
ρ < ρ′max

(ρmax,Xmax)Γ ⊢ newLπ ∶ Lρ ∶∶ ∆→∆;{π} ⊑ ρ(ρ′max,X ′
max)

TA NewL

Xmax <X ′
max

ρmax < ρ′
ρ′ < ρ′max

(ρmax,Xmax)Γ ⊢ lρ ∶ Lρ′ ∶∶ ∆→∆;ρ ⊑ ρ′(ρ′max,X ′
max)

TA Lref

lift A T1 ρmax Xmax = (T̂1, ρ′max, X ′
max)

(ρ′max,X ′
max)Γ, x ∶ T̂1 ⊢ t ∶ T̂2 ∶∶ X1 →∆2; C (ρ′′max,X ′′

max)
X ′′
max < X1

X1 < X2

X2 <X ′′′
max

(ρmax,Xmax)Γ ⊢ fn x ∶ T1.t ∶ T̂1
X1→X2ÐÐÐÐ→ T̂2 ∶∶ ∆1 →∆1; C ,∆2 ≤ X2(ρ′′max,X ′′′

max)
TA Abs1

lift A T1 → T2 ρmax Xmax = (T̂1
X1→X2ÐÐÐÐ→ T̂2, ρ′max, X ′

max)

(ρ′max,X ′
max)Γ, f ∶ T̂1

X1→X2ÐÐÐÐ→ T̂2, x ∶ T̂1 ⊢ t ∶ T̂ ′2 ∶∶ X1 →∆2; C1(ρ′′max,X ′′
max)

T̂ ′2 ≤ T̂2 ⊢ C2

∆2 ≤ X2 ⊢ C3

(* No fresh claim X1, X2? *) True

(ρmax,Xmax)Γ ⊢ fun f ∶ T1 → T2.x ∶ T1.t ∶ T̂1
X1→X2ÐÐÐÐ→ T̂2 ∶∶ ∆1 →∆1; C1,C2,C3(ρ′′max,X ′′

max)
TA Abs2

77



(ρmax,Xmax)Γ ⊢ v1 ∶ T̂2
∆1→∆2ÐÐÐÐ→ T̂1 ∶∶ ∆→∆; C1(ρ′max,X ′

max)
(ρ′max,X ′

max)Γ ⊢ v2 ∶ T̂ ′2 ∶∶ ∆→∆; C2(ρ′′max,X ′′
max)

T̂ ′2 ≤ T̂2 ⊢ C
X ′′
max < X

X <X ′′′
max

(ρmax,Xmax)Γ ⊢ v1 v2 ∶ T̂1 ∶∶ ∆→ X ; C1,C2,C ,∆ ≤ ∆1,∆2 ≤ X (ρ′′max,X ′′′
max)

TA App

T = ⌊T̂1⌋
T = ⌊T̂2⌋
T̂1 ∨ T̂2 = T̂ ; C
∆1 ∨∆2 = ∆′; C ′

(ρmax,Xmax)Γ ⊢ v ∶ Bool ∶∶ ∆0 →∆0; C0(ρ′max,X ′
max)

(ρ′max,X ′
max)Γ ⊢ e1 ∶ T̂1 ∶∶ ∆0 →∆1; C1(ρ′′max,X ′′

max)
(ρ′′max,X ′′

max)Γ ⊢ e2 ∶ T̂2 ∶∶ ∆0 →∆2; C2(ρ′′′max,X ′′′
max)

(ρmax,Xmax)Γ ⊢ if v then e1 else e2 ∶ T̂ ∶∶ ∆0 →∆′; C0,C1,C2,C ,C ′(ρ′′′max,X ′′′
max)

TA Cond

(ρmax,Xmax)Γ ⊢ e1 ∶ T̂1 ∶∶ ∆1 →∆2; C1(ρ′max,X ′
max)

⌊T̂1⌋ = T1

(ρ′max,X ′
max)Γ, x ∶ Ŝ1 ⊢ t2 ∶ T̂2 ∶∶ ∆2 →∆3; C2(ρ′′max,X ′′

max)
Ŝ1 = close(Γ,C1, T̂1)

(ρmax,Xmax)Γ ⊢ let x ∶ T1 = e1 in t2 ∶ T̂2 ∶∶ ∆1 →∆3; C2(ρ′′max,X ′′
max)

TA Let

(ρmax,Xmax)Γ ⊢ t ∶ T̂ ∶∶ ●→∆2; C (ρ′max,X ′
max)

(* Should it really be ∆1 →∆1 in conclusion? *) True

(ρmax,Xmax)Γ ⊢ spawn t ∶ Thread ∶∶ ∆1 →∆1; C (ρ′max,X ′
max)

TA Spawn

(ρmax,Xmax)Γ ⊢ v ∶ Lρ ∶∶ ∆→∆; C1(ρ′max,X ′
max)

X ′
max < X

X <X ′′
max

∆⊕ (ρ ∶ 1) ≤ X ⊢ C2

(ρmax,Xmax)Γ ⊢ v . lock ∶ Lρ ∶∶ ∆→ X ; C1,C2(ρ′max,X ′′
max)

TA Lock

(ρmax,Xmax)Γ ⊢ v ∶ Lρ ∶∶ ∆→∆; C1(ρ′max,X ′
max)

X ′
max < X

X <X ′′
max

∆⊖ (ρ ∶ 1) ≤ X ⊢ C2

(ρmax,Xmax)Γ ⊢ v .unlock ∶ Lρ ∶∶ ∆→ X ; C1,C2(ρ′max,X ′′
max)

TA Unlock

C ; Γ ⊢ e ∶ T̂ ∶∶ ϕ

Γ(x) = ∀ρ1 .. ρk X1 ..Xj ∶ C ′.T̂
θ = [∆1 ..∆m/X1 ..Xj ][r1 .. rz /ρ1 .. ρk ]
C ⊧ θC ′

C ; Γ ⊢ x ∶ θ T̂ ∶∶ ∆→∆
TD Var

C ⊢ {π} ⊑ ρ
C ; Γ ⊢ newLπ ∶ Lρ ∶∶ ∆→∆

TD NewL

C ⊢ ρ ⊑ ρ′

C ; Γ ⊢ lρ ∶ Lρ′ ∶∶ ∆→∆
TD LRef

78



⌊T̂1⌋ = T1

C ; Γ, x ∶ T̂1 ⊢ t ∶ T̂2 ∶∶ ϕ

C ; Γ ⊢ fn x ∶ T.t ∶ T̂1
ϕÐ→ T̂2 ∶∶ ∆→∆

TD Abs1

⌊T̂1⌋ = T1

⌊T̂2⌋ = T2

C ; Γ, f ∶ T̂1
ϕÐ→ T̂2, x ∶ T̂2 ⊢ t ∶ T̂2 ∶∶ ϕ

ϕ = ∆1 →∆2

C ; Γ ⊢ fun f ∶ T1 → T2.x ∶ T1.t ∶ T̂1
ϕÐ→ T̂2 ∶∶ ∆1 →∆1

TD Abs2

C ; Γ ⊢ v1 ∶ T̂2
∆1→∆2ÐÐÐÐ→ T̂2 ∶∶ ∆→∆

C ; Γ ⊢ v2 ∶ T̂2 ∶∶ ∆→∆

C ; Γ ⊢ v1 v2 ∶ T̂1 ∶∶ ∆→∆′
TD App

C ⊢ T̂1 ≤ T̂
C ⊢ T̂2 ≤ T̂
C ⊢∆1 ≤ ∆′

C ⊢∆2 ≤ ∆′

C ; Γ ⊢ v ∶ Bool ∶∶ ∆→∆

C ; Γ ⊢ e1 ∶ T̂1 ∶∶ ∆→∆1

C ; Γ ⊢ e2 ∶ T̂2 ∶∶ ∆→∆2

C ; Γ ⊢ if v then e1 else e2 ∶ T̂ ∶∶ ∆→∆′
TD Cond

C1,C2; Γ ⊢ e ∶ T̂1 ∶∶ ∆1 →∆2

ρ1 .. ρj notInFV (Γ)
ρ1 .. ρj notInFV (C )
X1 ..Xk notInFV (Γ)
X1 ..Xk notInFV (C )
C2; Γ, x ∶ ∀ρ1 .. ρj X1 ..Xk ∶ C1.T̂1 ⊢ e2 ∶ T̂2 ∶∶ ∆2 →∆3

C2; Γ ⊢ let x ∶ T1 = e in t ∶ T̂2 ∶∶ ∆1 →∆3

TD Let

C ; Γ ⊢ t ∶ T̂ ∶∶ ●→∆2

C ; Γ ⊢ spawn t ∶ Thread ∶∶ ∆1 →∆1
TD Spawn

C ; Γ ⊢ v ∶ Lρ ∶∶ ∆1 →∆1

C ⊢∆1 ⊕ (ρ ∶ 1) ≤ ∆2

C ; Γ ⊢ v . lock ∶ Lρ ∶∶ ∆1 →∆2
TD Lock

C ; Γ ⊢ v ∶ Lρ ∶∶ ∆1 →∆1

C ⊢∆1 ⊖ (ρ ∶ 1) ≤ ∆2

C ; Γ ⊢ v .unlock ∶ Lρ ∶∶ ∆1 →∆2
TD Unlock

79


	Introduction
	Goal
	Coq
	Ott
	Results
	Overview of the Thesis
	Acknowledgments

	Type Theory
	Type Theory and Coq
	Simply-Typed Lambda Calculus 
	Polymorphic Types 
	Predicative and Impredicative System
	Type Operators  
	Dependent Types
	The Lambda Cube 

	About Ott
	Grammars in Ott
	Relations in Ott
	Generating Coq Code

	Embedding of Languages
	Deep Embedding
	Shallow Embedding

	Deadlock Detection
	Overview
	The Language
	Semantics of the Language
	Type and Effect Systems
	Specification Type System
	Algorithmic Type System
	Syntax Directed Type System

	Theorems and their Proofs
	Soundness
	Completeness
	Subject reduction


	Formalization
	Syntactical Constructions
	Programs
	Type-Level Variables and Type Schemes
	Threads, Expressions, Types, and Values
	Constraints
	Lock Environments
	Lock Sets and Effects
	Context

	Substitutions
	Ott Generated Substitution Functions
	Deep Embedding of Substitutions
	Shallow Embedding of Substitutions

	Type and Effect System: Specification
	Type and Effect System: Algorithm
	Freshness of Variables

	Syntax Directed Type System
	Formalization of the Soundness Proof
	Proving the Case of TA_Abs2
	Strengthening of Constraints
	Status of the Proof


	Technical and Practical Experiences
	-Equivalence between Type Schemes
	Representation of Syntax and Bound Variables
	Application to Type Schemes
	Representation of Expressions

	Experience with Ott
	Separation of Ott-files
	Substitution and Free Variables

	Experience with Formalization

	Conclusion
	Contribution
	General Challenges

	Ott output

