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Summary 
 

The Casitas B-lineage lymphoma (Cbl) family of ubiquitin ligases has been studied for years 

regarding their important role in downregulation of ligand bound epidermal growth factor 

receptor (EGFR). The two isoforms c-Cbl and Cbl-b share the same structural features and 

are thought to be equally important for EGFR downregulation. Few comparative studies 

between c-Cbl and Cbl-b have been published with respect to EGFR regulation. Even though 

both Cbl proteins appear to display the same functional activity in EGFR regulation, some 

studies reveal that there might be some differences between these two isoforms. In this study, 

we have used biochemical studies and live imaging to further investigate and compare the 

recruitment and intracellular trafficking of c-Cbl and Cbl-b upon EGF stimulation.  

 

Summarized, Cbl-b is recruited more efficiently to EGFR than c-Cbl upon receptor 

activation. However, this difference in recruitment does not seem to affect their trafficking, 

as both isoforms follow the same trafficking pattern to early endosomes.  

 

The finding that Cbl-b is recruited to the EGFR more efficiently than c-Cbl is recruited to the 

EGFR, implies that they could have distinct activities at early time points. Due to their 

important roles in downregulation of growth factor signaling, further investigations regarding 

their individual functions are of great importance.  
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1 Introduction 
 

1.1 Growth factor receptors 

Cells constitute the basic building blocks in every living organism and are dependent on 

numerous different growth factors in order to maintain normal growth, development and for 

maintaining homeostasis. In multicellular organisms, these growth factors are especially 

important signals in cell-to-cell communications during tissue development, cell migration, 

cell survival and apoptosis in embryogenesis. 

 

Growth factors bind to the extracellular part of specific receptors located in the plasma 

membrane, which lead to conformational changes and activation of the intracellular part of 

the receptor. The receptor activation induces specific intracellular signaling pathways 

dependent on the type of growth factor, which in turn lead a cellular response. The final 

outcome of the cellular response is dependent on the duration and intensity of the signaling 

combined with the activity of various signaling proteins involved in these pathways. The 

activities of the intracellular signaling pathways are carefully controlled by other proteins in 

order to prevent excessive growth response. Another important mechanism involved in signal 

attenuation is the removal of the receptor-ligand complex from the cell surface.  

  

Most of these growth factor receptors have a similar molecular structure, with the well 

characterized receptor family receptor tyrosine kinases (RTKs) as a typical member. The 

RTKs are transmembrane proteins containing an extracellular ligand binding part and an 

intracellular tyrosine kinase domain responsible for activation of signaling pathways. These 

receptors are  therefore capable of transforming the extracellular binding of a specific type of 

growth factor  into activation of several specific intracellular signaling pathways. These 

signaling pathways are carefully regulated, ensuring a controlled cellular response. 

Dysregulation of growth signals by mutations in RTKs or disturbance in intracellular 

signaling pathways is implicated in various diseases such as cancer, diabetes and 

inflammation (Wieduwilt and Moasser, 2008).  
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The RTKs have been extensively studied for years and have revealed important insights into 

their structure and regulation. The increased understanding of their nature has been important 

for the development and improvement of drugs. 

 

1.2 The Epidermal Growth Factor receptor  

The epidermal growth factor receptor (EGFR) is one of four members in the epidermal 

growth factor family of receptor tyrosine kinases (ErbBs), all of which share homologous 

sequences. The ErbB family consists of the EGFR (ErbB1, HER1), ErbB2 (HER2), ErbB3 

(HER3) and ErbB4 (HER4), which are essential in regulating cellular differentiation, 

proliferation, migration and survival (Wieduwilt and Moasser, 2008). They are one of at least 

58 discovered human members of transmembrane RTKs, which all share a conserved 

structure and function and are necessary for regulating normal cellular processes (Lemmon 

and Schlessinger, 2010).  

 

EGFR is expressed in cells with epithelial, mesenchymal and neuronal origin and is 

important for regulating cell development, proliferation, migration and for maintaining 

homeostastis (Yano et al., 2003). It is distributed on the basolateral surface on epithelial cells 

where it is are able to bind secreted ligands exclusively on this side. In this way, the receptor 

can interact with growth factors promoting cell proliferation and migration, both processes 

required for wound healing. Also, the tight junctions between the epithelial cells creates a 

barrier towards growth factors that are secreted onto the apical side. If this barrier is broken,  

for instance by a wound, growth factors gain access to receptors on the basolateral side. 

When the barrier is restored due to epithelial growth, the wound is healed and growth factors 

can no longer access the receptors (Vermeer et al., 2003). This asymmetrical distribution 

contributes to the polarization in the epithelial cell, which is important for the directional 

transport of molecules. Loss of polarity is often implicated in epithelial cancers, giving EGFR 

access to apically located growth factors. This in turn may result in sustained or prolonged 

growth signaling and thus uncontrolled cell migration or cell proliferation (Casaletto and 

McClatchey, 2012).  

 

Normally, the cell density and amount of cell-to-cell contact regulates the activity of EGFR 

and in this way also controls the epithelial tissue growth (Kim et al., 2009). Knockout of 

EGFR has been reported to result in embryonic lethality in mice (Threadgill et al., 1995) and 
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deficient development of epithelial tissues in many vital organs (Miettinen et al., 1995; 

Sibilia and Wagner, 1995). Mutations or dysregulation of EGFR is also involved in the 

development of colorectal cancer (Krasinskas, 2011), non-small-cell lung cancer (Gorgoulis 

et al., 1992), head and neck cancer (Irish and Bernstein, 1993) and glioblastomas (Wong et 

al., 1992).  

 

EGFR has been studied for decades and has become the receptor model for studying 

mechanisms underlying receptor tyrosine kinase signaling and signaling attenuation. Correct  

attenuation of receptor signaling is crucial for controlled cell growth. One important 

regulatory mechanisms is to rapidly remove the receptor from the plasma membrane by 

endocytosis, a mechanism involving many adaptor proteins and enzymes (Casaletto and 

McClatchey, 2012). Among these is the ubiquitin ligase Casitas B-lineage lymphoma (Cbl) 

family that attaches ubiquitin onto lysine residues in the cytoplasmic tail of the receptor, a 

modification that further recruits other adaptor proteins and targets the receptor for 

internalization and transport to lysosomes for degradation. Also, recent studies of EGFR  

structure and behavior have gained additional knowledge that facilitates the development of 

new cancer drugs (Endres et al., 2011).  

 

1.2.1 EGFR structure 

The ErbB familyof receptors are all transmembrane proteins, consisting of an extracellular 

glycosylated N-terminal domain containing ligand binding sites and cysteine-rich domains 

for dimerization, a transmembrane section, a small juxtamembrane segment, and an 

intracellular C-terminal domain containing a number of tyrosine phosphorylation (pY) sites 

and a tyrosine kinase domain (Bazley and Gullick, 2005) (figure 1-1).  
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Figure 1-1. ErbB receptor structure. The ErbB receptor family are transmembrane proteins with an 

extracellular N-terminal domain, a transmembrane domain, a small juxtamembrane domain (JM), and a C-

terminal cytoplasmic part. The N-terminal part contains ligand binding sites (L1/L2) and cysteine residues (S1 

and S2), S1 are invloved in EGFR dimerization. The C-terminal domains consists of a protein kinase domain 

(SH1) and tyrosine residues that become phosphorylated upon receptor activation (orange part). Modified from 

(Bazley and Gullick, 2005) 

 

 

EGFR is the only member of the ErbB famliy which is capable of rapid ligand-induced 

endocytosis (Baulida et al., 1996). Seven different ligands can bind to the EGFR (Hynes and 

MacDonald, 2009) and they all induce internalization from the plasma membrane (PM). 

However, after internalization from the PM each of them triggers different mechanisms of 

intracellular sorting of the receptor, either to the recycling or the degradative pathway. 

Ligands which dissociate from the receptor in early endosomes induce receptor recycling 

(transforming growth factor- (TGF-), epiregulin (EPI), amphiregulin (AR)), whereas 

others that remain bound lead to further receptor sorting to lysosomes for degradation (EGF, 

heparin-binding EGF (HB-EGF), betacellulin (BTC)) (Roepstorff et al., 2009). Of these 

ligands, EGF has been the most used ligand when studying trafficking and downregulation of 

EGFR, as it is the founding member of the EGF family of proteins (Carpenter and Cohen, 

1979). 
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1.2.2 EGFR activation and signaling 

Upon binding of EGF, the EGFR forms an asymmetric kinase dimer leading to activation of 

the tyrosine kinase domain. This event induces transphosphorylation of tyrosines in the 

cytoplasmic tail, by which a specific tyrosine kinase domain in one of the receptors (activator 

kinase) bind to the head of the other tyrosine kinase domain (receiver kinase). This in turn 

leads to a conformational change where the receiver kinase phosphorylates tyrosines both on 

its own tail and the dimerization partner (figure 1-2)  (Endres et al., 2011).  

 

     

        

Figure 1-2. EGF receptor activation. In the inactivate state, EGFRs are mainly distributed as monomers across 

the cell membrane. Upon ligand binding, the receptors dimerize in an asymmetric manner leading to activation 

of the intrinsic tyrosine kinase activity and autophosphorylation of distinct tyrosine residues in the cytoplasmic 

tail. 

 

 

This autophosphorylation event creates binding sites for proteins containing phosphoryrosine 

binding domains, such as the Src-Homology 2 (SH2)-domain. Two of the major proteins 

recruited to the phosphotyrosine sites are the adaptor protein growth factor receptor-bound 

protein 2 (Grb2) and Shc. Grb2 is fast recruited to pY1068 and pY1086 in the cytoplasmic 

tail of the EGFR upon its activation, at which it binds through its SH2 domain. Grb2 is also 

bound to and recruits to the EGFR Son-of-Sevenless (SOS), a Ras a guanine-exchange factor 

that activates Ras GTPase located at the PM. Grb2 may also bind to the receptor indirectly by 

associating with Shc through its SH3 domain, at which Shc binds directly to phosphotyrosine 
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residues through its SH2 domain. Activation of Ras leads to activation of the well 

characterized mitogen-activating protein kinase (MAPK)/extracellular signal-regulated 

kinase (ERK) signaling pathway which ultimately regulates DNA transcription. Additionally 

other signaling pathways are induced upon EGFR activation, such as PI3P/Akt signaling that 

regulates cell proliferation and survival. At the same time, Grb2, which is involved in signal 

transduction, also induces receptor internalization by recruiting proteins responsible for 

receptor endocytosis (Schlessinger et al., 1983; Sorkin and von Zastrow, 2009; Yarden and 

Schlessinger, 1987a; Yarden and Schlessinger, 1987b). The type of ligand binding to the 

EGFR determines the sites of autophosphorylation, which in turn regulates the activation of 

specific signaling proteins and ultimately regulation of gene expression and thus cellular 

response (Olayioye et al., 1998). Figure 1-3 illustrates the major signaling pathways initiated 

by the ligand bound activated receptor. 

 

 

                       

Figure 1-3. EGFR signaling. Upon  receptor activation by ligand binding, the receptor initiates downstream 

signaling by recruiting several effector proteins involved in different signaling pathways ultimately leading to 

specific cellular responses. 
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Activated, ligand bound EGFR continues to induce intracellular signaling on endosomes as 

long as it exists in a phosphorylated state, sustaining the interaction with effector proteins 

such as Grb2, Shc and SOS. Thus, peristent EGF receptor signaling both from the PM and on 

endosomes could ultimately lead to uncontrolled cell growth and proliferation. Attenuation of 

signaling is controlled by receptor modification by ubiquitin, receptor dephosphorylation and 

ligand dissociation at the lower pH found in later endosomes (Lai et al., 1989; Sorkin and 

Carpenter, 1991).  

 

1.3 Endosomal trafficking  

Endocytosis is a general term for the cellular uptake and intracellular sorting of extracellular 

material, such as nutrients, cell surface receptors, plasma membrane lipids and other soluble 

particles. Several uptake mechanisms have been identified, depending on the type of cargo  

(Scita and Di Fiore, 2010). A well-studied endocytic route is clathrin-mediated endocytosis, 

where extracellular cargo is selected by adaptor proteins into specialized areas at the PM 

called clathrin coated pits followed by intracellular transport in clathrin coated vesicles. 

Clathrin-mediated endocytosis is described as the main endocytic route, especially for the 

internalization of plasma membrane receptors (Doherty and McMahon, 2009). Clathrin and 

adaptor protein 2 (AP2) are the main components in the clathrin coated pits. The uptake of 

extracellular cargo through this route is initiated by the cooperation of adaptor proteins which 

recognize and bind the cargo and lastly recruit clathrin triskelia to coat the forming clathrin 

coated pit at the PM. AP2 or other cargo-specific adaptor proteins, are responsible for the 

recognition and binding of cargo, and further recruit clathrin triskelia from the cytosol to 

areas containing adaptor proteins. The clathrin polymerization leads to stabilization of the 

membrane curvature, assisted by other adaptor proteins, like the epsins. The membrane 

scission is mediated by the enzymatic activity of dynamin. After budding from the plasma 

membrane, other adaptor proteins such as auxillin or G-associated kinase, recognizes clathrin 

inducing dissociation and recycling of clathrin, which lastly produces a cargo-containing 

endosome (McMahon and Boucrot, 2011).   

 

Once internalized, extracellular cargo enters early endosomes and becomes further sorted to 

distinct destinations, such as lysosomal degradation, recycling to the plasma membrane or 

retrotransport to Golgi, all depending on the type of trafficking route they encounter. The 

sorting processes during endosomal pathways are highly dynamic and complex, where 
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effector proteins on the early endosome determine the fate of the cargo (Sigismund et al., 

2012). 

1.3.1 Endosomal trafficking of EGFR 

Clathrin-mediated endocytosis is considered to be the most common endocytic route of the 

EGFR, although other endocytic pathways have been suggested. The type of uptake of the 

receptor depends on the ligand concentration: lower ligand concentrations favor clathrin 

mediated endocytosis and higher concentrations favor clathrin independent endocytosis (Goh 

et al., 2010; Sigismund et al., 2005).  

 

Upon activation by ligand binding, the EGFR becomes ubiquitinated by the E3 ligase Cbl 

followed by recruitment of ubiquitin (ub) binding proteins, like Eps15 and epsin, which 

interacts with other components in clathrin coated pits. This event leads to translocation of 

the EGFR into clathrin coated pits followed by invagination and pinching off from the 

clahtrin coated invagination (McMahon and Boucrot, 2011). Ligand bound, active and 

ubiquitinated receptor is sorted towards lysosomal degradation while receptors with no ligand 

becomes deubiquitinated and are sorted for recycling back to the plasma membrane. 

Internalized ligand bound receptor enters early endosomes, where ubiquitinated receptors are 

sorted into intraluminal vesicles (ILVs), destined for lysosomal degradation. This sorting 

process is controlled by the endosomal sorting complex required for sorting (ESCRT), a 

group of proteins located on early endosomes that recognizes ubiquitinated cargo and 

prevents the recycling by mediating invagination of cargo into intraluminal vesicles and in 

turn creating multivesicular bodies (MVBs). The ESCRT-complexes consist of four protein 

complexes ESCRT-0,-I,-II and -III that cooperate during the sorting of ubiquitinated cargo 

(Raiborg and Stenmark, 2009). The first complex, ESCRT-0, consists of a Hrs and STAM 

complex, which specifically binds ubiquitinated proteins and clathrin (Bache et al., 2003; 

Raiborg et al., 2002). Further, ESCRT-I (Katzmann et al., 2001) and ESCRT-II (Babst et al., 

2002b) mediates the invagination of the membrane containing the cargo, while ESCRT-III 

finally pinches them off creating intraluminal vesicles (Babst et al., 2002a). During the 

sorting, ub is removed from cargo by deubiquitinating enzymes (DUBs), which ensure 

recycling of ub back to the cytoplasmic pool for new rounds of ubiquitination (Wright et al., 

2011). Once sorted into ILVs, the receptor is transported towards lysosomes for degradation 

(Futter et al., 1996). Figure 1-4 summarizes the endocytic trafficking of the EGFR. 
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Figure 1-4. Model of  EGFR endocytosis. Receptors activated by ligand binding are ubiquitinated by E3 

ligases (Cbl) in order to be internalized, followed by sorting to lysosomes for degradation. High concentrations 

of ligand mediate clathrin-independent endocytosis while low ligand concentrations mediates clathrin- mediated 

endocytisis. During sorting into inner vesicles of early endosomes and MVB by the ESCRT complex, the 

ubiquitin molecules attached to the ligand bound  receptor are removed by deubiquitinating enzymes in order to 

be recycled back to the cytoplasmic pool. Internalized receptors that are inactivated due to ligand dissociation 

are recycled back to the membrane as the cytoplasmic tail of the receptor is not ubiquitinated and thus not 

marked for lysosomal sorting . Figure from (Haglund and Dikic, 2012) 

 

 

1.4 Ubiquitination 

Ubiquitin is a 76 amino acid residue protein that can be covalently attached to other cellular 

proteins. Conjugation of ubiquitin (ubiqutination) is a reversible post-translational 

modification that may regulate the protein’s localization, interaction partners, half-life and 

structure. In this manner, ubiquitin regulates several important cellular processes such as 

protein degradation, endocytic trafficking, DNA repair and transcription, autophagy, 

inflammation and immune responses (Woelk et al., 2007). 
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These ubiquitin modifications occur by covalent bonding through an isopeptide bond 

between the C-terminal domain on ubiquitin and the ε-aminogroup on the lysine (Lys) 

residue of the target protein (Goldknopf et al., 1977; Hershko et al., 1980), a step carried out 

by ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin 

ligases (E3) (Hershko et al., 1983). The process starts with the ATP-consuming activation of 

ubiquitin by the E1 enzymes, linking ubiquitin to E1 by a thioester bond, followed by transfer 

of the ubiquitin to the E2 enzymes by making a thioester bond. The E2 enzymes are then 

recruited to the E3 ligases, which recognize the target protein and finally conjugate the 

ubiquitin to lysines in the target substrate (figure 1-5 A). In this manner, the E3 ligase 

determines the type of ubiquitin modification and thus the fate of the target substrate 

(Husnjak and Dikic, 2012). There are two major families of E3 ligases, described below in 

section 1.4.1.  

 

Ubiquitin can itself become ubiquitinated. Seven Lys residues in ubiquitin make it possible to 

create different kinds of modifications on the target substrate, and in this way determine the 

fate of the target substrate (summarized in figure 1-5 B). Essentially, ubiquitin can be 

attached to the substrate as one or more single moieties (mono- and multiple mono-

ubiquitination) or in ubiquitin chains (polyubiquitination), where several ubiquitin moieties 

are covalently attached through isopeptide bonds (Husnjak and Dikic, 2012). Of these 

possible modifications, multiple monoubiquitination and a combination of ubiquitin chains 

have been under focus regarding their role in regulation of endocytic trafficking and 

downregulation of receptor tyrosine kinases, with EGFR as a model (Haglund et al., 2003; 

Huang et al., 2006; Mosesson et al., 2003). 
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Figure 1-5. Ubiquitin modification. A: The sequential action between ubiquitin activating enzymes (E1), 

ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3) regulate the ubiquitination by breaking the 

isopeptide bond between target and ubiquitin. B: Various ubiquitin modifications determines the fate of the 

target substrate. Figure from (Husnjak and Dikic, 2012). 

 

1.4.1 Ubiquitin ligases 

As mentioned above, E3 ligases determines the fate of the substrate by identifying it as a 

target substrate for ubiquitination. There are two main groups of E3 ligases, RING (really-

intereresting-new-gene) finger E3 ligases and HECT (homologous to E6-AP carboxy 

terminus) domain E3 ligases. The zinc-binding RING finger domain ligases mediates 

ubiquitination by binding the E2 and mediating the transfer of ubiquitin from E2 directly to 

the substrate linking ubiquitin to Lys residues in the substrate by a isopeptide bond (Freemont 

et al., 1991; Xie and Varshavsky, 1999), whereas for the HECT domain ligases ubiqutin is 

conjugated to the E3 ligase by a thioester bond before conjugating ubiquitin to Lys in the 

B 

A 
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substrate by a isopeptide bond (Huibregtse et al., 1995). DUBs regulate the level of protein 

ubiquitination by removing ubiquitin by cleaving of the ubiquitin-lysine isopeptide bond 

(Komander et al., 2009). 

 

The RING finger E3 ligase Cbl is one of the most studied E3 ligases due to its important role 

as a negative regulator of various plasma membrane receptors, especially in the case of the 

downstream signaling of receptor tyrosine kinases like EGFR (Thien and Langdon, 2005). 

 

1.5 The Cbl family 

The Cbl proteins are evolutionary conserved RING finger E3 ligases that are ubiquitously 

expressed, both in mammals and non-mammals (chicken (Gallus gallus), zebra fish (Danio 

rerio), frog (Zenopu tropicalis), fly (Drosphila melanogaster), worm (Caenorhabditis 

elegans) and amoeba (Dictyostelium discoideum)) (Mohapatra et al., 2013). Dysfunction or 

lack of Cbl may lead to various severe disorders, such as immune diseases and cancer (Ryan 

et al., 2006). 

 

c-Cbl (Cbl) was the first member to be characterized as a cellular homologue of v-Cbl, a 

truncated oncogenic of c-Cbl expressed in Cas-Br-M virus that induces pre-B cell 

lymphomas in mice. Due the oncogenic potential in the truncated form, c-Cbl was thus 

characterized as a proto-oncoprotein (Blake et al., 1991; Langdon et al., 1989a). Two other 

mammalian members were later discovered: Cbl-b (Keane et al., 1995) and Cbl-3 (Cbl-c, 

Cbl-SL) (Keane et al., 1999).  

 

1.5.1 Cbl structure 

The Cbl family members all have a conserved N-termini containing a tyrosine kinase binding 

domain (TKB) and a RING finger domain. The C-terminal domain is more divergent, which 

in its full length form contains proline rich regions, tyrosine phosphorylation sites and a 

ubiquitin associated domain (UBA) overlapping with a leucine zipper motif (LZ) (figure 1-6 

A) (Huang, 2010). The TKB domain contains a four-helical bundle (4H), a calcium-binding 

EF domain and a SH2 domain. TKB recognizes phosphotyrosine residues on the substrate 

and translocates Cbl to the target protein (Meng et al., 1999). The RING finger domain serves 

as a binding site for the E2 ligase and is thus important for the E3 ligase activity (Joazeiro et 
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al., 1999). The proline rich domain and the pY residues in the C-terminal domain have 

binding sites for proteins containing SH3-motifs and SH2-motifs, making them important 

sites for interaction with adaptor- and signaling proteins. Cbl-3 has a much shorter proline-

rich domain and thus interact with fewer proteins than c-Cbl and Cbl-b (Goh et al., 2010). 

 

Once bound to the substrate, c-Cbl and Cbl-b are activated by phosphorylation of the tyrosine 

residues Y371 and Y363 in the linker region, respectively, by tyrosine kinases (Kassenbrock 

and Anderson, 2004). Both of these Cbl-isoforms have an UBA domain, but the tendency of  

ubiquitin binding through the UBA domain is different in c-Cbl and Cbl-b, as Cbl-b has 

higher ubiquitin-binding affinity than c-Cbl (Davies et al., 2004). Lastly, the LZ motifs are 

involved in the homodimerization of Cbl (Alber, 1992; Busch and Sassone-Corsi, 1990) 

(figure 1-6 B). 
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A  

 

    

 

  

Figure 1-6. Cbl protein structure. A: The evolutionary conserved N-terminal region of the Cbl proteins 

contains a tyrosine kinase binding domain (TKB), a RING finger domain (RF) and a proline rich domain. The 

C-termimal region is more divergent and contains phosphotyrosine residues between the proline rich region and 

a ubiquitin associated domain (UBA) fused to a leuzine zipper domain (LZ). Modified from (Huang, 2010). B: 

TKB recognizes and binds to phosphorylated tyrosine residues on target protein. Meanwhile, ubiquitin 

activating enzymes (E1) load ubiquitin and activate ubiquitin conjugating enzymes (E2). The activated E2 binds 

to the RING finger domain (RF) in Cbl, which further transfers ubiquitin to lysines in the target protein. Figure 

from Lene E. Johannessen. 
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1.5.2 The function and regulation of Cbl 

The Cbl proteins have been extensively studied for their role in the internalization, trafficking 

and downregulation of the EGFR (Meisner and Czech, 1995; Yoon et al., 1995) and also in 

regulation of other growth factor- and immune receptors. In addition, they play an important 

role in regulating actin polymerization, focal adhesions and integrin through adaptor proteins 

that are directly involved in these processes (Huang, 2010). Since they are essential in the cell 

function and development, the regulation of Cbl proteins is crucial. A mechanism to control 

their activity is through ubiquitination of the Cbl proteins by HECT E3 enzymes, which 

target Cbl for proteasomal degradation (Ryan et al., 2006). It has also been proposed that 

lysosomes may mediate degradation of Cbl (Ettenberg et al., 2001).  

 

1.5.3 The physiological function of c-Cbl and Cbl-b 

c-Cbl is highly expressed in the thymus, serving as an important regulator for hematopoietic 

stem cells, and testis (Langdon et al., 1989b). It is also expressed in other organs as the 

spleen, lung, heart, brain as well as in T- and B cells (Huang, 2010; Rathinam et al., 2008).  

Like c-Cbl, Cbl-b is also expressed in hematopoietic cells, thymus, testis, heart, lung and 

brain. In addition, Cbl-b is expressed in the ovary, placenta, prostate, kidney, liver, skeletal 

muscles and especially in the spleen (Huang, 2010; Keane et al., 1995).  

 

Mutations in c-Cbl and Cbl-b have been implicated in immune disorders, such as leukemia, 

due to their important role in the regulation of immune receptors in hematopoietic stem cells 

(Naramura et al., 2010; Rathinam et al., 2010). Other studies have shown that knockout of 

both c-Cbl and Cbl-b is associated with early embryonic lethality, suggesting an important 

role in embryonic development (Naramura et al., 2002).  

 

The patterns of expression levels for c-Cbl and Cbl-b in different tissues also reflect the 

important roles for each of them. As c-Cbl is preferentially expressed in the testis and 

thymus, deletion of c-Cbl in germ-cells in mice has been shown to be involved in reduced 

male fertility (El Chami et al., 2005), increased cellular populations in lymphoid organs 

(Murphy et al., 1998; Rathinam et al., 2008), and alteration of positive selection of T-cells in 

the thymus (Naramura et al., 1998). On the other hand, Cbl-b deficient germ-cells in mice do 

not seem to promote abnormal developments, but rather lead to autoimmune diseases by 
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inducing hyperactive T-cell responses (Bachmaier et al., 2000; Chiang et al., 2000) and also a 

failure to induce T-cell tolerance (Jeon et al., 2004). 

 

1.5.4 The physiological function of Cbl-3 

Cbl-3 differs from c-Cbl and Cbl-b both in expression pattern, structure and physiological 

functions. It is mainly espressed in epithelial tissues lining the small intestine, colon, prostate, 

adrenal gland and salvary gland (Huang, 2010; Keane et al., 1999). Cbl-3 exhibits normal E3 

ligase activity, despite its truncated structure. However, in contrast to c-Cbl and Cbl-b, Cbl-3 

deficiency in mice does not seem to have any effect on the phenotype in epithelial tissues 

(Griffiths et al., 2003).  

 

1.5.5 c-Cbl and Cbl-b in EGFR trafficking  

c-Cbl and Cbl-b appear to have distinct roles in regulation of several receptors, especially 

immune receptors. c-Cbl regulates the internalization and degradation of components of T 

cell-receptors and B cell-receptors, while Cbl-b regulates the level of specific signaling 

molecules involved in T cell-receptor and B cell-receptor signaling (Badger-Brown et al., 

2012; Shao et al., 2004; Thien and Langdon, 2005). Additionally, it has been reported that c-

Cbl and Cbl-b has different functions in the IgE-receptor FcεRI signaling, by which Cbl-b 

negatively regulates mast cell degranulation significantly more than c-Cbl (Zhang et al., 

2004).  

 

However, except for some minor differences in their protein length and structure, c-Cbl and 

Cbl-b seems to perform the same regulatory mechanism in terms of EGFR ubiquitination and 

downregulation. Knockout of only one of them does not have any effect on EGFR 

downregulation, while knockout or downregulation of both of the Cbl´s have a significant 

negative effect on downregulation and internalization of the receptor (Pennock and Wang, 

2008).  

 

Upon EGFR activation, c-Cbl and Cbl-b can bind both directly and indirectly to specific 

phosphotyrosine residues on the receptor. Cbl can bind directly to the pY1045 site in EGFR 

through their SH2-domain in the TKB domain and at the same time recruit other proline rich 

binding proteins, like the adaptor protein Cbl-interacting protein of 85 kDa (CIN85), which is 
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bound through its SH3-domain to the proline rich region in Cbl. The multidomain structure of 

CIN85 makes it able to also interact with a variety of other proteins, which are involved 

several important processes such as regulation of RTK signaling, apoptotic signaling and T 

cell functions (Kowanetz et al., 2003; Szymkiewicz et al., 2002). Of note, CIN85 has been 

demonstrated to constitutively interact with the ESCRT-protein Hrs (Ronning et al., 2011). 

Additionally, Cbl can also bind indirectly to the pY1068 and pY1086 residues on the EGFR 

through the interaction of their proline rich domain with the SH3-domains in Grb2. Together, 

Grb2 and Cbl bind to distinct phosphotyrosine sites on the receptor and cooperate in order to 

mediate rapid internalization and downregulate the receptor signaling (Levkowitz et al., 

1999; Waterman et al., 2002). Binding of Cbl to pY1045 is crucial for sorting of the ligand 

bound EGFR towards lysosomal degradation, suggested by the findings that mutation in this 

binding site leads to decreased degradation of receptor in lysosomes and increased recycling 

(Grovdal et al., 2004). On the other hand, indirect binding of Cbl to pY1068 and pY1086 is 

essential for internalization rather than receptor trafficking towards lysosomal degradation 

(Huang and Sorkin, 2005). Taken together, distinct binding patterns of Cbl to the receptor 

differently affects EGFR fate.  

 

Although c-Cbl and Cbl-b appear to have overlapping functions in EGFR regulation, some 

differences have been reported. c-Cbl has been stated to be recruited earlier to the EGF 

receptor than Cbl-b, and Cbl-b seems to have prolonged association with the receptor when 

compared to c-Cbl. In these experiments c-Cbl appears to be strongly recruited after 15 

minutes and Cbl-b after 30 min, by which Cbl-b seems to be associated with the receptor for 

at least 4 hours (Pennock and Wang, 2008). In addition, Pennock and Wang (2008) reported 

that Cbl-b may have additional binding sites in EGFR compared to c-Cbl. By using various 

forms of EGF receptors truncated in the C-terminal part transfected into 293T cells, Cbl-b, 

but not c-Cbl was found to bind truncated receptors containing amino acids 1-1044 or 1-958, 

lacking the identified Cbl binding site, pY1045, and the Grb2 binding sites, pY1068/1086. 

This suggested that Cbl-b binds to these constructs at sites not used by c-Cbl (Pennock and 

Wang, 2008). It has also been proposed that the UBA domain in Cbl-b can bind ubiquitinated 

proteins in contrast to c-Cbl. In 293T cells co-transfected with HA epitope tagged ubiquitin 

and c-Cbl or Cbl-b, the molecular weight of ubiquitinated proteins co-immunoprecipitated 

with each of the Cbls were compared. It was observed that considerable more ubiquitinated 

proteins with higher molecular weight was precipitated with overexpression Cbl-b, but not 

with c-Cbl (Davies et al., 2004). Further, c-Cbl and Cbl-b might have different roles in the 
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EGFR induced signaling, as overexpression of Cbl-b, but not c-Cbl, appears to inhibit the cell 

growth mediated by EGF-induced signaling in 32D cells overexpressing EGFR (Ettenberg et 

al., 1999).  

 

Taken together, these reported differences between c-Cbl and Cbl-b in EGFR regulation give 

rise to further questions about their individual and cooperative functions. As different 

recruitment sites for Cbl in EGFR has different regulatory functions and the finding that Cbl-

b may have other binding sites in EGFR when compared to c-Cbl, could indicate a more 

diverse regulatory function of Cbl-b compared to c-Cbl, such as in intracellular trafficking 

and cellular growth. 
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2 Aim of study 
 

The Cbl family members c-Cbl and Cbl-b share the same functional structure and their 

ubiquitin ligase activity has been studied for years, of which c-Cbl has been most in focus. 

Nevertheles, studies on Cbl-b have shown that, in contrast to c-Cbl it is important in negative 

regulation of intracellular signaling leading to apoptosis and also appear to have an ubiquitin 

binding domain that is able to bind ubiquitinated proteins unlike c-Cbl. Even though both c-

Cbl and Cbl-b are mainly expressed in the same cell types, they appear to have some different 

essential functions, exemplified in the importance of c-Cbl in male fertility (El Chami et al., 

2005), and requirement of Cbl-b in the normal T-cell response (Bachmaier et al., 2000). 

Another comparative study between c-Cbl and Cbl-b proposed that Cbl-b had additional 

binding sites in EGFR and that they displayed different time of recruitment, by which it was 

demonstrated that c-Cbl was the first to bind EGFR followed by an overlap with Cbl-b that 

appeared to have a prolonged association with the receptor (Pennock and Wang, 2008).  

However, despite studies that have demonstrated differences in their functions, few other 

published studies have compared their activity and function in EGFR regulation. 

 

The overall aim of this study is to look into the functions of c-Cbl and Cbl-b in EGFR 

regulation, by comparing their recruitment to the EGFR upon EGF stimulation and their 

intracellular trafficking to early endosomes.  

 

The approach was the following: 

- To study the colocalizations of c-Cbl, Cbl-b and EGF using live imaging 

- To study the colocalization of c-Cbl and Cbl-b to early, Hrs-positive endosomes  

- Comparison of binding of c-Cbl and Cbl-b to the EGFR by use of biochemical 

techniques 
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3 Materials and methods 
 

3.1 Constructs 

 

3.1.1 Plasmids and expression vectors 

c-Cbl and Cbl-b were subcloned from pDsRed-momomer-C1 vector into a pcDNA3 vector 

containing the gene encoding the fluorescent tag mCherry by PCR-amplification of c-Cbl and 

Cbl-b from pDsRed-c-Cbl and pDsRed-Cbl-b, followed by restriction cutting using NotI and 

XhoI and ligation into the pcDNA3-mCherry vector. A schematic map over pDsRed-

monomer-C1 and pcDNA3 are illustrated in figure 3-1 A and B, respectively.  

 

A           B  

 

 

 

Figure 3-1. Schematic map of expression vectors pDsRed-Monomer-C1 and pcDNA3.  

 

Other contstructs were also used in this study for both biochemical experiments and live cell 

imaging. An outline of the different plasmids are listed in table 3-1. 
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Table 3-1. List of expression contructs used in this study 

Plasmid Gene Vector Source 

pEGFP-c-Cbl c-Cbl pEGFP-C1 (Clontech) I.H. Madshus* 

pcDNA3-mCherry-c-Cbl c-Cbl pcDNA3-mCherry 

(Progida et al., 2012) 

 

Benedicte Semb Hagen 

pDsRed-monomer-c-Cbl c-Cbl pDsRed-monomer-C1 

(Clontech) 

I.H. Madshus* 

pEGFP-Cbl-b Cbl-b pEGFP-C1 (Clontech) I.H. Madshus* 

pcDNA3-mCherry-Cbl-b Cbl-b pcDNA3-mCherry 

(Progida et al., 2012) 

Benedicte Semb Hagen 

pDsRed-monomer-Cbl-b Cbl-b pDsRed-monomer-C1 

(Clontech) 

I.H. Madshus* 

mRFP-Hrs Hrs mRFP (Campbell et al., 

2002) 

Frode M. Skjeldal** 

* Inger Helene Madshus, Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway 

**Frode Miltzow Skjeldal, Department of Biosciences, University of Oslo, Oslo, Norway 

 

 

3.2 DNA techniques 

 

3.2.1 PCR 

The Cbl constructs were amplified by Polymerase Chain Reaction (PCR) of the Cbl sequence 

in the pDsRed-plasmid constructs using gene specific primers containing restriction sites for 

the restriction enzymes NotI and XhoI, which were located upstream and downstream the Cbl 

sequences respectively (table 3-2). Phusion High Fidelity DNA Polymerase (New England 

Biolabs, Ipswich, England) was used for amplification. The PCR mixture was prepared 

according to the enzyme manufactorer´s protocol.  
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Table 3-2. List of primers and restiction enzymes used in this study * 

Name of primer Tm Primer sequence 

c-Cbl forward/NotI  82 °C 5´ GAAGCGGCCGCAATGGCCGGCAACGTGAAGAA 3´ 

c-Cbl reverse/XhoI  72 °C 5´GAACTCGAGCTAGGTAGCTACATGGGCAGGAGAAGAAA 

3´ 

Cbl-b forward/NotI  74 °C 5´ GAAGCGGCCGCAATGGCAAACTCAATGAAT 3´ 

Cbl-b reverse/XhoI  66 °C 5´ GTTCTCGAGCTATAGATTTAGACGTGGGGATACTG 3´ 

*Restriction enzyme sites are written in bold 

 

The PCR reaction programme used started with one denaturation step at 95 °C / 2 minutes, 

followed by 30 cycles of denaturation at 95 °C /20 seconds, annealing at 60 °C /20 seconds 

and amplification at 72 °C /6 minutes. The whole PCR cycle was ended by a final elongation 

at 72 °C /3 minutes. An overview of the PCR setup is described in table 3-3. 

 

 

Table 3-3. PCR setup 

Stage Duration Temperature (C) Cycles 

Initial denaturation 
2min 95 1 

Denaturation 
20s 95  

Annealing 
20s 60 30 

Amplification 
6min 72  

Final elongation 
3min 72 1 

 

 

3.2.2 Agarose gel electrophoresis 

DNA fragments and digested vector were separated in 1 % agarose gels. The agarose gel was 

prepared by dissolving 0,5 g TopVision Agarose (Thermo Scientific, Waltham, USA) and 5 

l Ethidium Bromide in 50 ml 1 x Tris-acetate-EDTA buffer (TAE, 40 mM Tris-acetate, 1 

mM EDTA). 6 x sample buffer was added to the individual DNA samples before they were 

separated on gel using a 10K DNA ladder (Thermo Scientific, Waltham, USA) as a reference. 
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The agarose gel electrophoresis was performed in 1 x TAE buffer at 5 V per cm of the gel in 

45 minutes. The DNA bands was detected by exposure to UV light in a UV Transilluminator 

(UVP, CA, USA). 

 

DNA-fragments and digested vector were purified from the agarose gel using QIAquick Gel 

Extraction Kit (QIAgen, Hilden, Germany) following the manufactoter´s manual.  

 

3.2.3 Restriction digestion and ligation of DNA fragments 

The PCR products (purified from gel) and the vectors were restriction digested with the 

restriction enzymes XhoI and NotI with an appropriate buffer for double digestion. All 

enzymes and buffers were supplied by (New England Biolabs). The digestion was completed 

at 37 °C over night (16 hours).  

 

The vector was run on gel and purified as described in the previous section using QIAquick 

Gel Extraction Kit while the digested PCR-fragments were purified with E.Z.N.A® Cycle 

Pure Kit (Omega Biotek, Nocross, GA, USA). 

 

Digested c-Cbl and Cbl-b fragments were ligated into the digested pcDNA3-mCherry vector 

at room temperature (RT) for 2 hours utilizing 1 l T4 DNA ligase and 1 l 10 x T4 DNA 

ligase buffer (both New England Biolabs) in a final volume of 10 µl. The ratio of PCR 

fragment to vector was 5:1. 

 

3.2.4 Bacterial transformation  

For amplification of  plasmid DNA, CaCl2 competent E.coli Top10F cells were used for 

transformation. 200 l cells were thawed on ice and incubated with 1 g plasmid DNA on ice 

for 30 minutes. They were then heat shocked at 42 °C  in water bath for 2 min, followed by 

incubation on ice for 2 minutes. 1 ml Lysogeny broth (LB) medium (prewarmed to 37 °C) 

was then added before incubation for 1 hour at 37 °C on a heating block. Next, the cells were 

pelleted by centrifugation at  4000 rpm and 90 % of the supernatant was removed before 

resuspension of the bacteria in the remaining solution. Transformed bacteria were then plated 

on an agar plate containing 100 g/ml ampicillin or 250 g/ml kanamycin, depending on the 

selection marker of the plasmid, and incbated over night in an incubator at 37 °C. Antibiotic 
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resistant clones were then picked and grown in 100 ml LB medium containing 100 mg/ml 

ampicillin or 250 mg/ml kanamycin in an incubator at 37 °C over night followed by midiprep 

purification.  

 

For amplification of plasmids from a ligation mixture, XL 10-Gold Ultracompetent Cells 

(Agilent Technologies, CA, USA) were used for transformation. 100 l cells were thawed 

and incubated on ice with 4 l -mercaptoethanol, included in the kit, for 10 minutes. 5 l of 

the ligation mixture was added to the bacteria and they were further incubated on ice for 30 

minutes. The cells were then heat shocked at 42 °C in water bath for 30 seconds followed by 

incubation on ice for 2 minutes. 900 l 42 °C Super Optimal broth with Catabolite repression 

medium were added to the cells, and incubated in an at 37 °C incubator with shaking for 1 

hour. The bacteria were then pelleted, resuspended in 200 l LB medium and plated on agar 

plates containing 100 g/ml ampicillin and incubated at 37 °C over night. pUC18 control 

plasmid was used as control. The ampicillin resistent clones were then grown in 1,5 ml LB 

medium for miniprep purification 

 

3.2.5 Plasmid purification 

E.Z.N.A.® Plasmid Mini Kit I (Omega Bio-Tek, PA, USA) and Wizard Plus Midipreps 

DNA Purification System (Promega, WI, USA) was used for small-scale and medium-scale 

plasmid DNA purification, respectively. Small-scale plasmid DNA was used for purification 

of plasmids from bacterial cells after cloning and ligation, while medium-scale plasmid DNA 

was used for large scale purification of plasmids.  The purification was performed using the 

manufacturer´s manual with supplemented solutions and reagents.  

 

3.2.6  Sequencing 

Primers used for sequencing was constructed in Webprimer 

(http://www.yeastgenome.org/cgi-bin/web-primer) with 600 base pairs between  alignment of 

the primers. The pcDNA3-mCherry-Cbl constructs were sequenced by GATC Biotek 

(Konstanz, Germany). The program CLC sequence viewer 

(http://www.clcbio.com/products/clc-sequence-viewer) was used for the sequence alignment. 

 

http://www.yeastgenome.org/cgi-bin/web-primer
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3.3 Cell techniques 

 

3.3.1 Cell lines and cell culture 

The human epithelial cervix adenocarcinoma cell line HeLa stabily transfected with a 

plasmid encoding CdCl2-inducable expression of invariant chain (Ii), pMEP4-Ii, (HeLa Ii) 

and wt HeLa cells were used in this study. HeLa cells were grown in Dulbeccos Modified 

Eagles Medium (DMEM) (Lonza, Basel, Switzerland) supplemented with 10 % fetal calf 

serum (BioSera, Boussens, France), 2 mM L-glutamine, 25 U/ml penicillin, 25 g/ml 

streptomycin (all from PAA Laboratories, Pashing, Austria) and incubated in 5 % CO2 in a 

37 °C incubator. The HeLa Ii cells were grown in DMEM supplemented with 10 % fetal calf 

serum, 0,15 mg/ml Hygromycin B (Duchefa Biochemie BV, Haarlem, Netherlands), 2 mM 

L-glutamine, 25 U/ml penicillin, 25 g/ml streptomycin and incubated in 5 % CO2 in a 37 °C 

incubator. The expression of Ii was induced by incubation with 2,5 M CdCl2 over night (16-

18 hours). An overview of the cell density seeded for each experiment are included in table 3-

4 and 3-5. 

 

Table 3-4. Cell density for experiments two days after seeding. HeLa (1,5 x 10
5 

cells/cm
2
) 

and HeLa Ii (4,5 x 10
5 
cells/cm

2
) 

Cells Dish Area Cells/dish Producer Experiment 

HeLa 3,5 cm glass 

bottom dishes 

8 cm
2 

1,20 x 10
5
 MatTek Corp., 

MA, USA 

Live cell imaging 

HeLa Ii 3,5 cm glass 

bottom dishes 

8 cm
2
 3,60 x 10

5
 MatTek Corp., 

MA, USA 

Live cell imaging 

HeLa 6 cm 21,5 cm
2
 3,22 x 10

5
 Nunclon™Surface, 

NUNC, Roskilde, 

Denmark 

Western blot 

HeLa Ii 6 cm 21,5 cm
2
 9,77 x 10

5
 Nunclon™Surface, 

NUNC, Roskilde, 

Denmark 

Western blot 

HeLa Ii 6 well plate 9,5 cm
2
 4,28 x 10

5
 Nunclon™Surface, 

NUNC, Roskilde, 

Denmark 

Immunoprecipitation 
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Table 3-5. Cell density for experiments  three days after seeding. HeLa Ii (22,5 x 10
5 

cells/cm
2
) and HeLa (7,5 x 10

5 
cells/cm

2
)  

Cells Dish Area Cells/dish Producer Experiment 

HeLa 3,5 cm glass 

bottom dishes 

8 cm
2 

0,6 x 10
5
 MatTek Corp., 

MA, USA 

Live cell imaging 

HeLa Ii 3,5 cm glass 

bottom dishes 

8 cm
2
 1,8 x 10

5
 MatTek Corp., 

MA, USA 

Live cell imaging 

HeLa 6 cm 21,5 cm
2
 16,25 x 10

5
 Nunclon™Surface, 

NUNC, Roskilde, 

Denmark 

Western blot 

HeLa Ii 6 cm 21,5 cm
2
 4,85 x 10

5
 Nunclon™Surface, 

NUNC, Roskilde, 

Denmark 

Western blot 

HeLa Ii 6 well plate 9,5 cm
2
 2,14 x 10

5
 Nunclon™Surface, 

NUNC, Roskilde, 

Denmark 

Immunoprecipitation 

 

 

3.3.2 Transient transfection 

HeLa cells were seeded as described above and transfected the day before the experiment 

with one or two of the constructs listed in table 3-6 using Lipofectamine 2000 (Invitrogen, 

OR, USA). At the day of transfection, growth medium was removed and the cells were 

washed tree times with Phosphate buffered saline (PBS) before addition of DMEM w/o 

antibiotics, with 2 mM L-glutamine and 10 % fetal calf serum. 

 

Lipofectamine2000 was first mixed with Opti-MEM
® 

(Invitrogen) and incubated for 5 

minutes. In another tube, DNA was mixed with Opti-MEM
®
. After incubation, the 

Lipofectamine2000 solution was mixed with the DNA-solution and further incubated for 

20 minutes before adding the mixture to the cells. The amount of Opti-MEM
®
, 

Lipofectamine2000 and DNA are listed in table 3-6. For cotransfections of c-Cbl and Cbl-b 

the two plasmids were mixed by a ratio 1:1, and for cotransfection of Hrs and either of the 

Cbl constructs the plasmids were similarily mixed by a ratio of 1:3. 
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Table 3-6. Overview of the Lipofectamine2000 transfection mixture. 

Cell culture plate Volum of 

plating medium 

Total DNA  Lipofectamine Opti-MEM
®
 

6 well plate  2 ml 4 µg 2,25 µl 2 x 250 µl 

3,5 cm dish 2 ml 2-4 µg  2,25 µl 2 x 250 µl 

6 cm dish 5 ml 8 µg 3 µl 2 x 500 µl 

 

 

3.4 Protein techniques 

 

3.4.1 Cell lysis 

The cells were chilled on ice and washed three times with cold PBS and lysed in cold lysis 

buffer (Supplementary, table S2) for 15 minutes. The lysates were then transferred to 

prechilled eppendorf tubes and centrifuged at 13000 x g at 4 °C  for 15 minutes  to remove 

cell nuclei and debris. The supernatant containing the proteins were transferred to new 

prechilled eppendorf tubes. 100 l and 200 l lysis buffer was used in 6 well plates and 6 cm 

dishes, respectively.  

 

Cells were serum starved by incubation with DMEM (Invitrogen) supplemented with 2 mM 

L-glutamine, 25 U/ml penicillin, 25 g/ml streptomycin for 4 hours before stimulation with 

100 ng/ml EGF in phenol red-free HEPES-supplemented DMEM (Invitrogen) containing 25 

U/ml penicillin, 25 g/ml streptomycin and  0.1 % bovine serum albumine (Sigma Aldrich, 

MO, USA) 

 

3.4.2 SDS-PAGE and Western blotting 

6 x sample buffer (Supplementary, table S6) was added to the protein samples prepared for 

Western blot, as described above, and boiled at 95 °C in 5 minutes to denature the proteins. 

20 µl of the samples were loaded on a 10 % gel (Thermo Scientific Precise Protein Gels, 

Pierce, Rockford, IL, USA) and the proteins were separated at 100 V for 70 minutes in 1 x 
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HEPES running buffer (Supplementary, table S3). 5 l of the prestained standard Precision 

Plus Protein Kaleidoscope (Bio-Rad, Hercules, CA, USA) was used a a protein size 

marker. 

 

Immobilion Polyvinylidene fluoride (PVDF) membranes (Millipore, Bedford, MA, USA) 

were pre-treated in methanol for 20 seconds, followed by incubation in dH2O for 2 minutes 

and in 1 x Tris-Glycine Transfer buffer (Supplementary, table S4) for 5 minutes. The gel with 

the separated poteins and PVDF-membrane was assembled in an assembly cassett with the 

membrane facing the cathode. The separated proteins were transferred onto the PVDF-

membranes at 100 V for 60 minutes at 4 °C in 1 x Tris-Glycine Transfer buffer. 

 

The membranes were washed at room temperature for 5 minutes in Tris-buffered saline 

(TBS) (Supplementary, table S5) containing 0,05 % Tween-20 (TBS-T), followed by 

blocking in TBS-T with 5 % blotting grade non-fat dry milk (Bio-Rad, Hercules, CA, USA) 

for 30 minutes. The membranes were then incubated with primary antibody diluted in TBS-T 

with 1% blotting grade non-fat dry milk either over night at 4 °C or for 1 hour at RT. The 

membranes were washed 3 x 10 times with TBS-T after incubation with primary antibody 

followed by blocking in 30 minutes. Further, the membranes were incubated with secondary 

Horseradish peroxidase (HRP)-conjugated antibody diluted in TBS-T with 1 % blotting grade 

non-fat dry milk either over night at 4 °C or for 1 hour at RT. Last, the membranes were 

washed 3 x 10 times with TBS-T and incubated in SuperSignal West Dura Extended 

Duration Substrate (Thermo Scientific, Pierce, Rockford, USA) to generate a luminiscence 

signal. The luminescent signal was detected on Kodak Image Station 4000R (Carestream 

Health Inc., NY, USA) and the intensity of the bands were measured using the Carestream 

Molecular Imaging program (Carestream Health, Inc., NY, USA). 

 

3.4.3 Immunoprecipitation 

Magnetic Dynabeads Protein G (Invitrogen) were used for immunoprecipitation (IP) A 

magnet was used to remove supernatant from the beads throughout the protocol.  

 

50 l of beads were used per IP. Supernatant was removed from the beads before they were 

incubated with 200 l PBS containing 0,02 % Tween-20 (PBS-T) and 1 g of primary 
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antibody under rotation at RT for 60 minutes to allow the Dynabeads to bind the antibody. 

After incubation, the eppendorf tubes were placed on a magnet and the supernatant was 

removed and beads washed three times with PBS-T. 

 

10 l of the cell lysates were transferred to new eppendorf tubes and 2 x sample buffer 

(Supplementary, table S7) added to these protein samples representing the total cell lysates 

and boiled at 95 °C for 5 minutes to denature the proteins. The rest of the cell lysate were 

incubated with the antibody coupled Dynabeads from above, under rotation at 4 °C for 60 

minutes.  

 

After incubation, the Dynabeads were placed on magnet and supernatant was removed. The 

beads were then washed three times with 200 l lysis buffer. Finally, the beads were 

resuspended in 20 l 2 x sample buffer (Supplementary, table S7) and boiled at 95 °C  for 5 

minutes before being loaded onto SDS-PAGE-gels and analyzed by Western Blotting as 

described above. 

 

3.4.4 Antibodies 

All antibodies used in this study are listed in supplementary, table S1. 
 

3.5 Imaging techniques 

HeLa and HeLa Ii cells were seeded on 3,5 cm glass bottom dishes and left to adhere for 24 

or 72 hours before being transiently transfected with DNA of interest using 

Lipofectamine2000, as previously described. At the day of the live imaging experiment, the 

cells were washed 3 times with 1 x PBS prewarmed to 37 °C before adding phenol red free, 

HEPES-supplemented DMEM containing 10 % fetal calf serum. EGF conjugated with Alexa 

647 (Invitrogen) was added to cells under the microscope while imaging (final concentration 

100 ng/ml), in order to initiate activation and internalization of the EGF receptor. The cells 

were maintained inside a 37 °C chamber during the imaging. 
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The live cell imaging was carried out using PlanApo 60x/1,42 oil objective on an Olympus 

IX-71 microscope (Olympus, Hamburg, Germany), set up with a CSU22 Spinning Disk 

confocal unit (Yokogawa, Tokyo, Japan) and an iXonEM+EMCCD camera (Andor, Belfast, 

UK). The fluorochromes were excited with an Argon laser emitting 488 nm, 559 nm or 647 

nm. All live imaging experiments were excecuted with one frame per 5 or15 seconds for 12-

87 minutes, and the images were prepared using Andor iQ 1.8.1 software and ImageJ (NIH, 

Bethesda, MD). 

 

3.5.1 Image analysis 

The images were analysed in ImageJ. The area around the cell was subtracted to give the 

region of interest (ROI). The area in ROI was subjected to background subtraction using the 

built-in rolling-ball algorithm. The images were thresholded so the structures positive for 

Cbl, EGF or Hrs could be detected and the number of pixels representing the structures were 

quantified. 

 

The colocalizations were analysed using the colocalization plug-in, which superimposes the 

pixels from the two respective thresholded images and quantifies the number of colocalized 

pixels in the ROI. Subsequently, the number of pixels showing colocalization was expressed 

as a proportion of the total thresholded pixels for each of the given proteins, by dividing the 

number of pixels showing colocalization by the number of thresholded pixels for each of the 

individual channels at each time point.  
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4 Results 
 

4.1 Construct design and characterization of cell lines 

In order to optimize the visualization of red fluorescence protein tagged c-Cbl and Cbl-b 

under live imaging, c-Cbl and Cbl-b were cloned into the pcDNA3-mCherry vector as 

mCherry is a more photostable and brighter protein than DsRed (Shaner et al., 2005). First, a 

gene encoding Rab7b originally included in pcDNA3-mCherry was removed by restriction 

digestion using NotI and XhoI. PCR-amplified Cbl-sequences were digested using the same 

restriction enzymes (NotI and XhoI) and subcloned into the digested pcDNA3-mCherry 

construct, downstream of the mCherry gene and cytomegalovirus (CMV) promoter (figure 4-

1).  

                            

 

Figure 4-1: Illustration of the subcloning of the Cbl-gene from pDsRed-monomer-C1 into pcDNA3-

mCherry. The gene encoding Rab7b was removed from the pcDNA3-mCherry-Rab7b plasmid by restriction 

digestion using the enzymes NotI and XhoI. The Cbl-sequences were amplified by PCR using primers 

containing the same  restriction sites as used for pcDNA3-mCherry-Rab7b. The amplified Cbl-sequences were 

cut by NotI and XhoI and ligated into the pcDNA3-mCherry vector. 
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pcDNA3	
mCherry	
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To identify plasmids containing the correct Cbl-insert, several clones of the pcDNA3-

mCherry-Cbl constructs were digested with NotI and XhoI, as described in section 3.2.3. The 

digestion reactions were loaded on a 1% agarose gel to identify plasmids containing the Cbl 

insert (figure 4-2 A and B). Several of the plasmids showed a band of correct sizes, around 

3000 base pairs, representing the Cbl insert. The plasmids displaying correct band sizes were 

verified by sequencing, as described in section 3.2.6. To verify that expression of mCherry-c-

Cbl and mCherry-Cbl-b were induced properly from the mCherry-plasmids, HeLa Ii cells 

were transiently transfected with pcDNA3-mCherry-c-Cbl or pcDNA3-mCherry-Cbl-b 

before lysis and blotting against antibodies specific for c-Cbl and Cbl-b (figure 4-2 C and D). 

Non-transfected HeLa Ii cells expressing only endogenous c-Cbl and Cbl-b were used as 

negative control, while HeLa Ii cells transfected with EGFP-Cbl or DsRed-Cbl were used as 

a positive control. The cells transfected with mCherry-Cbl showed bands at similar size as for 

the positive controls, indicating that the constructs were correctly expressed in the cells. 

 

 

A        B   

               

C        D 

                       

 

Figure 4-2: Verification of plasmids expressing mCherry-Cbl. A and B: Identification of plasmids 

containing the Cbl insert. Several different clones of  pcDNA3-mCherry-c-Cbl (A) and pcDNA3-mCherry-Cbl-

b (B) were digested with NotI and XhoI in appropriate buffers at 37 °C over night. 6 x sample  buffer was added 

to the digested plasmids before being loaded onto a 1 % agarose gel. A band of approximately 3000 bp, the 

correct size of the Cbl-inserts, could be detected in several clones. C and D: Expression of mCherry-Cbl in Hela 

Ii cells. HeLa Ii cells were transiently transfected with pcDNA3-mCherry-Cbl-plasmids, using pEGFP-Cbl- and  

6000 bp 

3000 bp 

6000 bp 

3000 bp 
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pDsRed-Cbl constructs as positive controls. Non-transfected cells were used as a negative control. The cells 

were lysed and the proteins were separated on SDS-PAGE. The proteins were transferred to a PVDF membrane 

blotted with antibodies specific for c-Cbl and Cbl-b, respectively. The membranes were blotted with an antibody 

against Tubulin as loading control. Expression of both mCherry-c-Cbl (C) and  mCherry-Cbl-b ccould be 

detected (D). 

 

 

4.1.1 Imaging of mCherry-Cbl 

As a final control, HeLa Ii cells transfected with mCherry-c-Cbl or mCherry-Cbl-b were 

analyzed under confocal microscope. Unfortunately, the expression of the mCherry-Cbl 

constructs appeared to cause aggregation of the mCherry-Cbl proteins in the majority of the 

transfected cells (figure 4-3 A and B) and the mCherry constructs did not translocate to the 

EGFR upon EGF addition (confocal imaging, data not shown). For this reason, DsRed was 

utilized as red fluorescent tag for Cbl in further experiments. 

 

A       B 

 

Figure 4-3. Confocal microscopy of mCherry-Cbl. HeLa Ii cells seeded onto 3,5 cm dishes and transiently 

transfected with either  mCherry-c-Cbl (A) or mCherry-Cbl-b (B) over night. The cells were imaged at 37 °C 

using a Spinning Disc confocal microscope with lasers emitting fluorescent light at 555 nm wavelength. 

 

 

4.1.2 Cell lines 

HeLa Ii were initially intended to be used for live imaging due to their ability to express Ii 

through its CdCl2 inducable promoter. Ii expression induces formation of enlarged 

endosomes, which makes it easier to visualize different domains on endosomes and therefore 

if two proteins on the same endosome actually colocalize on the same endosomal domains. 

However very few cells containing Ii induced enlarged endosomes expressed the transfected 



Results 

 

 36 

Cbl constructs. In most of the cells expressing the Cbl-constructs, enlarged endosomes could 

not be detected. Additionally, Hela Ii cells with induced enlarged vesicles appeared to be 

particularly sensitive towards live imaging. For this reason, wt HeLa cells were also used in 

the following experiments. Both HeLa Ii and HeLa cells express EGFR, c-Cbl, Cbl-b and Hrs 

endogenously (figure 4-4).  

 

 

   

 

4.2 c-Cbl and Cbl-b show similar colocalization  

characteristics with EGF 

To investigate the trafficking of c-Cbl and Cbl-b towards activated EGFR, HeLa cells were 

transiently cotransfected with DsRed-c-Cbl and EGFP-Cbl-b and imaged under a Spinning 

Disc confocal microscope. Hela cells endogenously expressing EGFR were stimulated with 

100 ng/ml Alexa 647-tagged EGF. EGFR ligand addition induced a distinct recruitment of 

DsRed-c-Cbl and EGFP-Cbl-b to EGF, at which it was much easier to detect Cbl-b regardless 

of the tag used, suggesting that there could be a stronger recruitment of Cbl-b than c-Cbl to 

the EGFR (figure 4-5, movie S1 and data not shown). However, despite the weaker signal 

from DsRed-c-Cbl on EGF positive endosomes, we could observe a similar recruitment 

pattern of c-Cbl and Cbl-b.  

 

 

 

Figure 4-4: Endogenous expression of EGF receptor, c-Cbl, Cbl-b 

and Hrs in HeLa Ii and HeLa cells.  

HeLa Ii (without or with Ii induction) and HeLa cells were lysed and 

the proteins were separated on SDS-PAGE. The proteins were 

transferred onto a PVDF membrane and blotted with antibodies 

specific for EGFR, c-Cbl, Cbl-b, Hrs, and Ii. The membranes were 

blotted with an antibody against Tubulin as a loading control.  
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Figure 4-5: Trafficking of c-Cbl and Cbl-b with EGF. HeLa cells were transiently cotransfected with DsRed-

c-Cbl and EGFP-Cbl-b and stimulated with 100 ng/ml Alexa 647-tagged EGF under live imaging at 37 °C using 

Spinning Disc confocal microscopy with lasers emitting fluorescent light at 488, 555 nm and 647 wavelength.  

 

 

 

The pixels representing c-Cbl, Cbl-b and EGF structures were analyzed, and the amount of 

the given proteins in the colocalized area was further quantified as described in section 3.5.1. 

The quantifications showed that when measuring the total number of colocalized pixels in the 

cell, colocalization of c-Cbl and Cbl-b with EGF both started after around 3 minutes, 

followed by a plateu (figure 4-6 A and C). However, the weak signal from DsRed-tagged c-

Cbl lead to high pixel background and therefore less certainty regarding c-Cbl measurements. 

When quantifying the fraction of each protein that colocalized with an other protein, based on 

number of pixels (figure 4-6 B and D), an increased proportion of pixels representing c-Cbl 

DsRed-c-Cbl EGFP-Cbl-b EGF Alexa 647 Merge 
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             10 min 
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on EGF structures could be detected over time, coinciding with increased recruitment to 

EGFR. However, it was difficult to establish the pattern due to the weak signal from c-Cbl. 

An increased proportion of pixels representing Cbl-b on EGF structures could be detected at 

early time points followed by a plateu, which was as expected when compared to the plateu 

in figure C. The proportion of EGF colocalizing with c-Cbl or Cbl-b over time was low. This 

could be due to a much larger size of the EGF structures than the Cbl-stuctures, which would 

lead to more EGF pixels than Cbl pixels on what that supposedly is the same endocytic 

vesicle. Another explanation could be saturation of the cell with Alexa 647-tagged EGF 

during stimulation, which might lead to alternative endocytic pathways. 

 

 

 

Figure 4-6: Quantification of colocalization of c-Cbl and EGF, and Cbl-b and EGF. Quantification of live 

imaging in figure 5-5 (movie S1), analyzed in ImageJ. 

A and C: Percentage of colocalized pixels measured as number of pixels showing colocalization of c-Cbl and 

EGF (A) or Cbl-b and EGF (C) out of total number of pixels in ROI. B and D: Percentage colocalization 

measured as fraction of colocalized pixels relative to the total number of c-Cbl or EGF pixels (B) or number of 

Cbl-b or EGF (D) pixels in the ROI. The analysis was based on one experiment.  
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4.3 Binding of c-Cbl and Cbl-b to EGFR show a different 

efficiency of recruitment 

The previous imaging experiment could indicate that although both Cbls seem to localize 

together with EGF on endosomes at the same time points, Cbl-b was recruited more 

efficiently to the EGFR than c-Cbl, as the Cbl-b-structures were rapidly detected and gave a 

stronger signal than c-Cbl. To address this further, we investigated the recruitment of Cbl to 

EGFR upon EGFR activation by IP studies. In this experiment, HeLa Ii cells without Ii 

induction were transiently transfected with EGFP-c-Cbl or EGFP-Cbl-b and stimulated with 

EGF for the indicated time points. The time courses of the shown experiments were limited 

to 12 minutes, since it has previously been demonstrated that expression of Cbl leads to EGF 

receptor induced phosphorylation of Hrs within this period of time (Stern et al., 2007). Non-

stimulated cells were used as a negative control and stimulation for 60 min on ice as positive 

control to detect the total amount of c-Cbl and Cbl-b recruited to EGFR at the PM. EGFP-c-

Cbl and EGFP-Cbl-b were immunoprecipitated using antibody against GFP, and the 

immunoprecipitated proteins were further analyzed by Western blotting using antibodies 

specific for EGFR and GFP (figure 4-7 A). The intensity of the EGFR bands relative to the 

Cbl-bands were further quantified (figure 4-7 B). A higher proportion of EGFR was 

precipitated with Cbl-b over time than with c-Cbl, in accordance with the previous imaging 

experiment. Except for the more efficient recruitment of Cbl-b than c-Cbl to the EGFR, the 

tendency of the time courses were the same, also coinciding with the previous imaging 

experiment.   
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Figure 4-7: Recruitment of Cbl to EGFR. A: HeLa Ii cells were transiently transfected with either EGFP-c-

Cbl or EGFP-Cbl-b and stimulated with 100 ng/ml EGF for the indicated time points. The cells were lysed and 

immunoprecipitated with antibody against GFP. The samples were further blotted with antibodies specific for 

EGFR and GFP (Cbl and GFP). B: The intensities of the immunoreactive bands in A were analyzed in 

Carestream M1. The EGFR:Cbl ratios were calculated and normalized to the EGFR:Cbl-b value at 2 min for 

easier comparison. The data represents one representative out of four independent experiments showing similar 

results. 
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4.4 c-Cbl and Cbl-b colocalize with Hrs at similar time 

points 

Cbl has been reported to increase EGFR induced phosphorylation of Hrs, and this 

phosphorylation seems to be an important mechanism for correct trafficking of EGFR to 

lysosomes (Stern et al., 2007). After observing the more efficient recruitment of Cbl-b to 

EGFR when compared to c-Cbl, we further wanted to study if these differences could 

influence the trafficking of EGFR to Hrs positive endosomes. The trafficking was studied by 

transient cotransfections with either EGFP-c-Cbl and RFP-Hrs or EGFP-Cbl-b and RFP-Hrs. 

 

4.4.1 c-Cbl and Hrs 

In the experiment for c-Cbl, HeLa cells were transiently cotransfected with EGFP-c-Cbl and 

RFP-Hrs and stimulated with Alexa 647-tagged EGF under live imaging. Stimulation of 

EGFR with EGF showed a rapid recruitment of c-Cbl to EGF structures and they appeared to 

colocalize during internalization and intracellular trafficking (figure 4-8, movie S2).  
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Figure 4-8: Trafficking of c-Cbl to Hrs-positive vesicles after EGF stimulation. HeLa cells were transiently 

cotransfected with EGFP-c-Cbl and RFP-Hrs at 37 °C over night and stimulated with 100 ng/ml Alexa 647–

tagged EGF under live imaging using Spinning Disc confocal microscopy with lasers emitting fluorescent light 

at 488, 555 nm and 647 wavelength.  

 

 

We further analyzed colocalization over time for c-Cbl and EGF, c-Cbl and Hrs, and Hrs and 

EGF to better get a picture of the trafficking pattern. These data showed that colocalization of 

c-Cbl and EGF could be detected after 4 minutes (figure 4-9 A), indicating a rapid 

recruitment to EGF and correlating with the findings in c-Cbl and Cbl-b cotransfected cells 

(figure 4-6). Analyzing the proportion of c-Cbl involved in colocalization with EGF revealed 

that by 10 minutes after stimulation, there seems to be a plateu of the thresholded c-Cbl 

signal colocalizing with EGF (figure 4-9 B). Analysis of c-Cbl and Hrs demonstrated that the 

colocalization started around 4 minutes, at which there was a steady increase in the number 

of pixels representing c-Cbl that colocalized with Hrs (figure 5-9 C and D). Lastly, 

colocalization of Hrs and EGF appeared to start after 4 minutes, where there was a high 

proportion of pixels respresenting EGF colocalization with Hrs, suggesting a rapid trafficking 

pattern of EGFR to Hrs-positive early endosomes (figure 5-9 E and F). 
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Figure 4-9:  Colocalization of c-Cbl and EGF, c-Cbl and Hrs and Hrs and EGF. Quantification of live 

imaging in figure 4-8 (movie S2), analyzed in ImageJ. 

A: Percentage colocalization of c-Cbl and EGF in ROI. B: Percentage colocalization relative to the amount of c-

Cbl or EGF in the ROI. C: Percentage colocalization of c-Cbl and Hrs in ROI. D: Percentage colocalization 

relative to the amount of c-Cbl or Hrs in the ROI. E: Percentage colocalization of Hrs and EGF in ROI. F: 

Percentage colocalization relative to the amount of Hrs or EGF in the ROI. 
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4.4.2 Cbl-b and Hrs 

For experiments with Cbl-b, HeLa Ii cells with Ii induced enlarged endosomes were 

transiently cotransfected with EGFP-Cbl-b and RFP-Hrs and stimulated with Alexa 647 –

tagged EGF under live imaging (figure 4-10, movie S3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10. The number of Cbl-b- and Hrs positive vesicles after EGF stimulation. HeLa Ii cells were 

transiently cotransfected with EGFP-Cbl-b and RFP-Hrs at 37 °C over night and stimulated with 100 ng/ml 

Alexa 647-tagged EGF under live imaging using Spinning Disc confocal microscopy with lasers emitting 

fluorescent light at 488, 555 nm and 647 wavelength. 

 

 

Further analysis showed that the colocalization of Cbl-b and EGF could be detected after 2 

minutes (figure 4-11 A), comparable to the findings in c-Cbl and Cbl-b cotransfected cells 

(figure 4-6). Further quantifications showed a rapid increase in the amount of Cbl-b pixels 

colocalizing with EGF pixels, also correlating with the observations in cells cotransfected 

with c-Cbl and Cbl-b. The small drop in the amount of Cbl-b that colocalized with EGF after 

4-5 min was not observed in the cells cotransfected with c-Cbl and Cbl-b and might simply 

be due to cell-to-cell variation, as quantifications are based on one cell only. Further, the 
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amount of EGF colocalizing with Cbl-b positive structures seemed to increase throughout the 

time course (figure 4-11 B). Colocalization of Cbl-b and Hrs showed a steady increase after 4 

minutes (figure 4-11 C), correlating with cells cotransfected with c-Cbl and Hrs (figure 4-9 

C). Analyzing the proportions of Cbl-b and Hrs colocalizing with each other revealed a 

similar time course pattern for both proteins (4-11 D). Lastly, Hrs and EGF showed 

colocalization after 4 minutes (figure 4-11 E), which is similar to c-Cbl in cells cotransfected 

with c-Cbl and Hrs (figure 4-9 E). Further, the analysis showed that there was a steady 

increase in the number of pixels showing colocalization of EGF and Hrs, suggesting a 

gradual trafficking of EGFR to early endosomes (figure 4-11 F). 

 

                 

 

Figure 4-11: Quantification of colocalization of Cbl-b and EGF, Cbl-b and Hrs and Hrs and EGF.  

The images from live imaging in figure 4-10 (movie S3) were analyzed in ImageJ.  
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A: Percentage colocalization of c-Cbl and EGF in ROI. B: Percentage colocalization relative to the amount of c-

Cbl or EGF in the ROI. C: Percentage colocalization of c-Cbl and Hrs in ROI. D: Percentage colocalization 

relative to the amount of c-Cbl or Hrs in the ROI. E: Percentage colocalization of Hrs and EGF in ROI. F: 

Percentage colocalization relative to the amount of Hrs or EGF in the ROI. 
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5 Discussion 
In this thesis I have investigated whether the two isoforms of the ubiqutin ligase Cbl, namely 

c-Cbl and Cbl-b, differently affect EGFR trafficking at early time points. c-Cbl and Cbl-b  

have been thought to have the same and overlapping function in the internalization and 

intracellular trafficking of activated EGFR. However some difference have been reported. Of 

note, c-Cbl seems to be recruited earlier to the receptor than Cbl-b and Cbl-b appears to have 

prolonged association with the receptor (Pennock and Wang, 2008). Further, Pennock and 

Wang (2008) proposed that Cbl-b has additional binding sites in the phosphorylated receptor  

compared to c-Cbl. Also, Cbl-b has been shown to regulate cellular growth through EGFR 

signaling to a larger extent than c-Cbl (Ettenberg et al., 1999). Taken together, even though c-

Cbl and Cbl-b display similar regulatory functions in EGFR internalization and trafficking, 

questions still remain about their individual functions. 

 

As Cbl proteins are essential for correct EGFR internalization and degradation following 

activation, we wanted to investigate whether any differences could be detected between c-Cbl 

and Cbl-b in EGFR trafficking by studying the recruitment of c-Cbl and Cbl-b to the 

activated EGFR and their trafficking to early endosomes. In order to investigate this, both 

biochemical assays and live imaging were conducted. HeLa Ii cells were initially selected for 

the experiments due to their ability to induce expression of Ii by addition of CdCl2, which in 

turn induces enlarged endosome. Hela Ii cells without induction of Ii were chosen for 

biochemical analysis, while Hela Ii cells with induced Ii-expression were chosen for live 

imaging, in order to avoid clonal differences. Endosomes contain many separate domains and 

two proteins on the same endosome might be localized to different microdomains. The Ii 

enlarged endosomes would make it easier to detect any possible colocations between two 

proteins on the same endosome by live imaging. However, there were several problems 

regarding the transient transfections and induction of expression of Ii. Wt HeLa cells were 

therefore also used and is the reason for different cell lines in the experiments. HeLa Ii cells 

appeared not display any different pattern of EGF endocytosis compared to HeLa 

(Supplementary, figure S1). The differences at early time points might be due to variations in 

EGFR expressions and thus different amount of EGF binding to the cells, which would result 

in differences in amount of pixels representing EGF structures. However, it seems that the 

pattern of internalization is essentially the same, as the curved appears to have the same peak. 
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Also, expression of endogenous Cbl-proteins and EGFR was the same in both cell lines 

(figure 4-4)  

 

To investigate the intracellular trafficking of c-Cbl and Cbl-b, HeLa cells were transiently 

cotransfected with DsRed-c-Cbl and EGFP-Cbl-b, and EGFR was stimulated with Alexa 

647-labeled EGF (figure 4-5). The analysis from live imaging showed that both c-Cbl and 

Cbl-b both appeared on EGF positive endosomes at the same time (figure 4-6). These data 

were verified by co-IP, which showed a similar recruitment pattern of c-Cbl and Cbl-b to 

EGFR over time (figure 4-7). These observations contradict Pennock and Wang (2008), 

proposing that c-Cbl is recruited earlier than Cbl-b. The weaker signal of c-Cbl compared to 

Cbl-b on endosomes during live imaging reduced confidence in the analysis and in order to 

get conclusive results, these experiments need therefore to be repeated. Independent of the 

tag, however, there appeared to be a weaker signal of c-Cbl than Cbl-b on endosomes after 

EGF addition (data not shown). IP of GFP-tagged c-Cbl and Cbl-b verified  that significantly 

more EGFR was precipitated with Cbl-b than c-Cbl, indicating that Cbl-b binds a larger 

proportion of EGFR than c-Cbl.  

 

The observed more efficient interaction between Cbl-b and the EGFR, compared to c-Cbl, 

has not been demonstrated before. An increased interaction between receptor and Cbl can be 

due to increased number of Cbl proteins binding to EGFR, which would give the increased 

signal as observed by live imaging. However, as more Cbl-proteins bind to one EGFR-

molecule, the fraction of EGFR precipitated with Cbl would be reduced. Increased interaction 

of EGFR with Cbl could alternatively be explained by the same amount of Cbl-binding for 

the two isoforms, but one binding with higher affinity to the EGFR. Precipitation of Cbl 

might then give an increased fraction of precipitated EGFR, but this would not give any 

difference in signal intensities for the two isoforms by live imaging. Therefore, these two 

explanations for increased interaction do not correlate with the findings in this thesis. 

However, if more EGFR molecules at the PM binds Cbl-b than c-Cbl, meaning not more Cbl 

molecules per EGFR molecules but a larger portion of EGFR binding Cbl-b than c-Cbl, a 

larger fraction of EGFR would precipitate with Cbl-b and a stronger signal from Cbl-b would 

be observed by live imaging. The latter explanation is in accordance with the findings in this 

thesis. We therefore believe that a larger fraction of EGFR binds Cbl-b than c-Cbl upon 

EGFR activation. The different efficiencies in recruitment of c-Cbl and Cbl-b to the EGFR 

might be explained by the ability of Cbl-b to bind ubiquitinated proteins through its UBA 
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domain (Davies et al., 2004) and thus display higher affinity for the ubiquitinated EGFR. The 

previous demonstrations from Pennock and Wang (2008) that Cbl-b may have additional 

binding sites than c-Cbl on the EGFR, might also be a probable explanation for the apparent 

differences in recruitment of c-Cbl and Cbl-b to EGFR.  

 

Our findings that there was a more efficient interaction between Cbl-b and EGFR compared 

to c-Cbl and the fact that Cbl has been demonstrated to increase the EGF-induced 

phosphorylation of the endosomal ubiquitin-sorting protein Hrs (Stern et al., 2007), prompted 

us to investigate whether transport of the EGF receptor to Hrs positive endosomes could be 

different in c-Cbl contra Cbl-b overexpressing cells. Phosphorylation of Hrs is important for 

correct EGFR degradation (Haugen et al., 2013) and alterations in the trafficking pattern 

might thus affect the rate of EGF receptor downregulation and degradation. As Cbl increases 

the EGF-induced phosphorylation of Hrs (Stern et al., 2007), a difference in the trafficking of 

c-Cbl and Cbl-b might influence the phosphorylation of Hrs. The notion that both Cbl and 

Hrs are associated with the adaptor protein CIN85 (Ronning et al., 2011; Soubeyran et al., 

2002), might open the possibility that Cbl somehow regulate phosphorylation of Hrs through  

CIN85.  

 

We investigated the intracellular trafficking of c-Cbl and Cbl-b to early endosomes, by 

transiently cotransfecting HeLa and HeLa Ii cells with either EGFP-c-Cbl or EGFP-Cbl-b 

together with RFP-Hrs, where Hrs was used as a marker for early endosomes (figure 4-8 and 

4-9). Quantifications of Hrs-transfected cells (figure 4-9 and 4-11 A and B) showed the same 

pattern in the colocalization of c-Cbl and Cbl-b with EGF compared to in cells cotransfected 

with c-Cbl and Cbl-b (figure 4-6). A weaker signal from c-Cbl than Cbl-b was observed in 

both Hrs-transfected cells upon stimulation with EGF, as observed in cells cotransfected with 

c-Cbl and Cbl-b. The somewhat different curves of the colocalization of c-Cbl and EGF in 

Hrs transfected cells compared to cells cotransfected with c-Cbl and Cbl-b, could be 

explained by the weaker c-Cbl signal in cells cotransfected with c-Cbl and Cbl-b. The 

colocalization pattern of both c-Cbl and Cbl-b with Hrs positive endosomes appeared to be 

quite similar (figure 4-9 and 4-11 C and D). Likewise, colocalization of Hrs and EGF started 

after 4 minutes in cells overexpressing either c-Cbl or Cbl-b (figure 4-9 and 4-11 E and F). 

Together, these analysis indicated that both c-Cbl and Cbl-b appear to follow the same 

trafficking pattern regarding recruitment to EGFR and the transport to Hrs positive 

endosomes.  
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An interesting note is the analysis of the live imaging at longer time points. Analysis of the 

experiment with cells cotransfected with DsRed-c-Cbl and EGFP-Cbl-b (supplementary 

figure 2, movie S1) shows that both c-Cbl and Cbl-b have a peak of colocalization with EGF 

after 15 minutes, followed by a drop in colocalization when it comes to Cbl-b and EGF. 

Further, analysis of cells cotransfected with EGFP-c-Cbl and RFP-Hrs (supplementary figure 

3, movie S2) demonstrates that colocalization of c-Cbl and EGF had the same peak as 

colocalization with EGF and Hrs. While there is a decline in c-Cbl colocalizing with EGF 

and Hrs, there is a prolonged colocalization with EGF and Hrs. This might indicate a 

transport of EGFR into ILV in MVBs, which is as expected. A similar drop in c-Cbl and EGF 

colocalization could not be detected in cells cotransfected with c-Cbl and Cbl-b. However, in 

the movie of the cells co-transfected with c-Cbl and Cbl-b, the c-Cbl signal on endosomes is 

very weak and considering that these movies are based on one experiment each and with 

overexpression of different proteins, these experiments must be repeated in order to be able to 

detect any clear pattern. Nevertheless, the imaging experiments together with the results from 

the coprecipitations of Cbl and EGFR, contradicts Pennock and Wang (2008), stating that 

Cbl-b is recruited later than c-Cbl and shows somewhat prolonged association with EGFR 

after a decline in c-Cbl association. 

 

Taken together, the results in this thesis indicate that Cbl-b is more efficiently recruited to the 

EGF receptor. However, both c-Cbl and Cbl-b seem to follow the same trafficking pattern 

both regarding the recruitment to EGFR and the trafficking to early endosomes. 
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6 Future perspectives 
In this study, we have found that Cbl-b is more efficiently recruited to the EGFR than c-Cbl, 

but this does not appear to affect the intracellular trafficking of the EGFR at early time 

points. Therefore, further questions remain as to whether there are any differences in the 

activity of c-Cbl and Cbl-b at later time points. As knockout of one of them does not seem to 

affect EGFR trafficking (Pennock and Wang, 2008), it can be speculated if the more efficient 

recruitment of Cbl-b could affect the half-life of signaling proteins rather than affecting 

EGFR trafficking. The cause for the efficient recruitment of Cbl-b to EGFR needs to be 

clarified and it would be interesting to investigate its binding sites. A possible approach may 

be to mutate tyrosines in EGFR upstream of the deletion sites in the paper from Pennock and 

Wang (2008) and delete the UBA domain in Cbl-b. Lastly, we would like to investigate the 

late effects of c-Cbl contra Cbl-b overexpression on EGFR, by comparing EGFR degradation 

efficiency and by measuring growth and duration of signaling. 

 

Unfortunately, we were not able to get long timecourse movies of cells cotransfected with 

Cbl-b and Hrs as these cells were very sensitive to imaging. In cells cotransfected with c-Cbl 

and Cbl-b, and c-Cbl and Hrs, the patterns somewhat contradicted each other as c-Cbl 

seemed to disappear from endosomes after 11 minutes of EGF addition, while in c-Cbl and 

Cbl-b co-transfected cells c-Cbl still colocalized with EGF after 87 minutes. As the imaging 

results presented in this thesis are only based on one film in each experiment, more 

experiments for each condition using only one cell line is needed to make definite 

conclusions. Also, the cotransfection of Cbl-b and Hrs must be optimalized to get longer 

movies.  

 

Further, since both c-Cbl and Cbl-b appear to colocalize with Hrs positive endosomes at the 

same time, it would be of great advantage to be able to optimalize live imaging with Cbl on Ii 

induced Hrs positive enlarged endosomes to investigate if they might affect the localization 

of EGF and Cbl on distinct microdomains on the Hrs positive endosomes differently.Cbl has 

been shown to increase EGFR induced phosphorylation of Hrs and preliminary results 

showed that both Cbl-proteins induce increased Hrs phosphorylation upon EGFR activation. 

These experiments need to be optimalized, but it would be very interesting to investigate 

whether the more efficient Cbl-b recuitment affects Hrs function through phosphorylation, as 

this modification is important for correct EGFR trafficking.  
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Figure S1 

 

 

 
 

 

 

 

 

 

 

 

 

  

Figure S1. Count of pixels representing Alexa 647-EGF positive structures. 

Pixel count of Alexa 647-EGF structures in cells cotransfected with DsRed-c-Cbl and 

EGFP-Cbl-b (movie S1) (Red), EGFP-c-Cbl and RFP-Hrs (movie S2) (Green), and EGFP-

Cbl-b and RFP-Hrs (movie S3) (Blue). All images were analyzed in ImageJ.   
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Figure S2 

 

 
Figure S2. Quantification of colocalization of c-Cbl and EGF, and Cbl-b and EGF at longer time points. 

Quantification of live imaging in figure 4-5 (movie S1), analyzed in ImageJ. 

 A and C: Percentage of colocalized pixels measured as number of pixels showing colocalization of c-Cbl and 

EGF (A) or Cbl-b and EGF (C) out of total number of pixels in ROI. B and D: Percentage colocalization 

meaured as fraction of colocalized pixels relative to the total number of c-Cbl or EGF (B) pixels or number of 

Cbl-b or EGF (D) pixels in the ROI. The analysis was based on one experiment.  
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Figure S3 

 
Figure S3. Quantification of colocalization of c-Cbl and EGF, c-Cbl and Hrs and Hrs and EGF at longer 

time points.  

Quantification of live imaging in figure 4-8 (movie S2), analyzed in ImageJ. 

A: Percentage colocalization of c-Cbl and EGF in ROI. B: Percentage colocalization relative to the amount of c-

Cbl or EGF in the ROI. C: Percentage colocalization of c-Cbl and Hrs in ROI. D: Percentage colocalization 

relative to the amount of c-Cbl or Hrs in the ROI. E: Percentage colocalization of Hrs and EGF ROI. F: 

Percentage colocalization relative to the amount of Hrs or EGF in the ROI. 

 

 

. 
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Table S1: Antibodies 

 

* Harald Stenmark, Centre for Cancer Biomedicine, Norwegian Radium Hospital, University of Oslo, Oslo, 

Norway. 

 

 

 

 

 

 

 

 

 

Antibody Class Epitope Purchased 

from 

Concentration  for 

WB 

Concentration 

for IP 

Primary (P)/ 

Secondary (S) 

Anti c-Cbl Rabbit IgG c-Cbl (human) Santa Cruz, CA, 

USA 

1:500  P 

Anti Cbl-b  Rabbit IgG Cbl-b (human) Santa Cruz, CA, 

USA 

1:200  P 

Anti Hrs Rabbit IgG Hrs (mouse) Harald Stenmark* 1:1000  P 

Anti EGFR Sheep IgG EGFR (human) Fitzgerald, MA, 

USA 

1:10000  P 

M-B741 Mouse IgG Ii C-terminus (all 

isoforms) (human) 

Santa Cruz, CA, 

USA 

1:5000  P 

Anti tubulin Mouse ascites N-terminus of α-

tubulin (various 

species) 

Zymed 

Laboratories, CA, 

USA 

1:5000  P 

Anti GFP Rabbit  Abcam, 

Cambridge, UK  

1:1000 1µg P 

Sheep anti-mouse 

IgG HRP-linked 

Sheep IgG  GE Healthcare, 

Buckinghamshire, 

UK 

1:10000  S 

Donkey anti-rabbit 

IgG HRP-linked 

Donkey IgG  GE Healthcare, 

Buckinghamshire, 

UK 

1:10000  S 

Rabbit Anti-sheep Rabbit IgG  Southern Biotech, 

AL, USA 

1:8000  S 



Supplementary 

 

 64 

Table S2: Lysis buffers 

 

Lysis buffer for Western Blot 

Ingredients Concentration   

Tris-HCl (pH 6.8) 50 mM   

EDTA (pH 8) 5 mM   

NaF 30 mM   

Sodium pyrophosphate 50 mM   

dH2O  Adjustment to desired volume   

0,5 % Nonidet P-40 and 1:100 protease inhibitor (Roche, Basel Switzerland) was added 

before use 

 

 

Lysis buffer for immunoprecipitation 

Ingredients Concentration   

Sodium phosphate-buffer (pH 7,2)  0.01 mM   

EDTA (pH 8) 10 mM   

NaF 30 mM   

NaCl 0.15 mM   

dH2O  Adjustment to desired volume   

0,5 % Nonidet P-40, 1:100 protease inhibitor (Roche), 1:100 phosphatase inhibitor 

cocktail (Sigma-Aldrich) and 100 mM n-ethylmaleimide was added before use 

 

 

 

Table S3: Hepes Running buffer (1x) 

Ingredients Concentration 

Tris 10 mM 

Hepes 35 mM 

SDS 3 mM 
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dH2O  Adjustment to desired volume 

 

 

Table S4: Transfer buffer (1x) 

Ingredients Concentration   

Glycine 380 mM   

Tris 50 mM   

Methanol (Sigma-Aldrich) 10 %   

dH2O  Adjustment to desired volume   

 

 

Table S5: TBS (1x) (pH 7.6) 

Ingredients Concentration 

Tris 20 mM 

NaCl 0,0137 mM 

dH2O  Adjustment to desired volume 

 

 

Table S6: Gel loading buffer (6 x) for Western blot 

Ingredients Concentration 

Glycerol 30 % 

Bromophenol blue 0,3 % 

-mercaptoethanol 24 % 

SDS 12 % 

dH2O  Adjustment to desired volume 

 

 

 

 

 

 



Supplementary 

 

 66 

 

Table S7: Gel loading buffer (2 x) for 

immunoprecipitation 

 

Ingredients Concentration 

Glycerol 10 % 

Bromophenol blue 0,01 % 

-mercaptoethanol 8 % 

SDS 4 % 

EDTA (pH 8) 10 mM 

Na pyrophosphate 60 mM 

NaF 100 mM 

Tris-HCl (pH 6,8) 125 mM 

dH2O  Adjustment to desired volume 
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Supplementary movies 
 
 

Movie S1: Trafficking of c-Cbl and Cbl-b 

HeLa cells were transiently cotransfected with DsRed-c-Cbl and EGFP-Cbl-b and stimulated 

with 100 ng/ml Alexa 647-tagged EGF under live imaging at 37 °C using Spinning Disc 

confocal microscopy. Note: The movie has a longer time scale than the movie with HeLa Ii 

cells cotransfected with EGFP-Cbl-b and RFP-Hrs. 

Scale bar = 10 μm 

 

Movie S2: Trafficking of c-Cbl and Hrs 

HeLa cells were transiently cotransfected with EGFP-c-Cbl and RFP-Hrs at 37 °C over night 

and stimulated with 100 ng/ml Alexa 647-tagged EGF under live imaging using Spinning 

Disc confocal microscopy. 

Note: The movie has a longer time scale than  the movie with HeLa Ii cells cotransfected 

with EGFP-Cbl-b and RFP-Hrs. 

Scale bar = 10 μm 

 

Movie S3: Trafficking of Cbl-b and Hrs 

HeLa Ii cells were transiently cotransfected with EGFP-Cbl-b and RFP-Hrs at 37 °C over 

night and stimulated with 100 ng/ml Alexa 647-tagged EGF under live imaging using 

Spinning Disc confocal microscopy. 

Scale bar = 10 μm 
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Appendix 

 

Previous master project 
 

Initially, the master project was to study the role of Hrs and Eps15 in intracellular trafficking 

of the FcεRI, the high affinity receptor for IgE. The study was thought to investigate if Hrs 

and Eps15 had similar functions in the intracellular trafficking of FcεRI as for the EGF 

receptor (Haugen et al., 2013). Mast cells (RBL-2H3) were used to study the degranulation 

response resulting from stimulation of FcεRI with IgE cross bound with allergen. Both 

degranulation assays, immunoprecipitations, Flow cytometry, live imaging and imaging of 

fixed cells were applied. Unfortunately, the cells were not responding properly giving 

contradicting results and there were difficulties finding appropriate antibodies against the 

subunits of FcεRI in the biochemical experiments. The project was ended september last year 

after a year with attempts to get trustworthy results.  
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