
Halo finding in Modified Gravity N-body
simulations

by

Simen Tennøe

Thesis

for the degree of

Master of Science in Astronomy

(Master i Astronomi)

Institute of Theoretical Astrophysics

Faculty of Mathematics and Natural Sciences

University of Oslo

Oktober 2013

Institutt for teoretisk astrofysikk
Det matematisk- naturvitenskapelige fakultet

Universitetet i Oslo

Abstract

Modified gravity theories are a popular research field in the hope that they could explain
some of the unanswered questions in cosmology, for example how the universe starts,
evolves and ends. One way to test proposed modified gravity models is by analyzing
how the model affects the evolution of large scale structures in the universe. In the
non-linear regime the only way of doing this is by performing N-body simulations, which
simulates how a dynamical system of particles behave and evolve under the influence of
physical forces. After performing such a simulation we wish to compare the data from
the simulation with the observed universe. This cannot be done directly from the output
from N-body simulations. To extract the necessary statistics a halo finding process should
be performed, which determine how galaxies are grouped into halos and calculates the
properties of these halos. As of yet, no one has taken into account the differences between
standard general relativity and modified gravity in their halo finders, so the validity of
other halo finders in the regime of modified gravity is therefore unknown.

This is what has been the focus of this thesis. Here, we introduce MORPH, the
first halo finder that is completely independent of the gravity model used in the N-
body simulations. MORPH can analyze any dataset from a modified gravity N-body
simulation. This is performed without the need for code modifications to accommodate
for the modified gravity theory. As a part of this work we have examined various unbinding
algorithms and their dependence on the gravity model. The main question this thesis set
out to answer was whether there is a justified need for a modified gravity adjusted halo
finder. The conclusion is that modified gravity must be taken into consideration when
we intend to analyze halos in modified gravity datasets. However, only if the halo finders
have a high unbinding percentage, making the errors from the unbinding routine larger
than the current 10% error bars for halo finding.

Acknowledgements

Firstly, I would like to thank my two supervisors Nicolaas Ervik Groeneboom and David
F. Mota for their valuable help through my thesis. I am especially grateful to Nicolaas
Groeneboom who has provided me with such an interesting thesis topic and answering
my numerous questions. Many thanks also goes to Amir Hammami who first mentioned
Nicolaas as a potential supervisor.

I would like to give many thanks to Claudio Llinares, who have provided much needed
insight into some of the more theoretical parts of halo finding and modified gravity and
Max Grönke for giving me helpful insight into how it could be possible to calculate Rvir

independently of the gravity model.
In addition I am especially thankful to Katrine H. Olsen who have suffered through

my bad grammar several times and helped me improve it and to Jorun Ramstad who
have read through the algorithm chapter of this thesis and made sure there are no errors
and being a helpful sounding board.

I would also like to thank my family and friends for being supportive and listening to
my complaints when the work have taken its toll. Lastly, I would like to thank Realist-
foreningen for making the years I have worked on my master thesis a pleasant experience,
and for being very helpful when I have felt the need to procrastinate.

ii

Contents

1 Introduction 1
1.1 The beginning of modern cosmology . 1

2 Modern Cosmology 7
2.1 Cosmic dynamics, the Friedmann equations 8

2.1.1 Equation of state . 9
2.1.2 Evolution of the energy density of the universe 11

2.2 The flat ΛCDM universe . 13
2.2.1 Friedmann equations for a ΛCDM universe 14

2.3 A shorter history of nearly everything . 16
2.3.1 Inflation . 16
2.3.2 The Big Bang Nucleosynthesis . 18
2.3.3 Recombination . 19
2.3.4 Re-ionization . 19
2.3.5 Structure formation . 19

3 Gravity 21
3.1 Introduction . 21

3.1.1 Equivalence principle . 21
3.1.2 Preliminaries . 22

3.2 Einstein equations . 23
3.2.1 Lagrange formalism of general relativity 25
3.2.2 Geodesic equation . 27

3.3 Modified Gravity . 27
3.3.1 Motivation for modified gravity . 27
3.3.2 Modifications of Einstein’s equations 28

3.4 Alternative gravity theories . 29
3.4.1 Theories of Gravity with Extra Fields 29
3.4.2 Higher Derivative and Non-Local Theories of Gravity 29
3.4.3 Higher Dimensional Theories of Gravity 30

3.5 f(R) gravity . 30
3.6 Symmetron model . 32
3.7 Tests of general relativity . 33

3.7.1 Classical tests . 33
3.7.2 Modern tests . 33

iii

4 N-body simulations 37
4.1 Introduction . 37
4.2 Numerical methods for calculation of the force 38

4.2.1 Direct summation . 38
4.2.2 Tree codes . 38
4.2.3 Particle Mesh codes . 40
4.2.4 Particle-Particle Particle-Mesh codes 40

4.3 Gas dynamics . 40
4.4 Numerical methods for moving particles 41
4.5 Ramses . 41
4.6 ISIS . 42

5 Halo Finders 43
5.1 Introduction . 43

5.1.1 What is a Halo? . 43
5.1.2 The need for a modified gravity adjusted halo finder 44

5.2 The General Method of Halo Finding . 44
5.2.1 Identification of possible halo candidates 45
5.2.2 Particle Collection . 46
5.2.3 Calculating position and velocity of halos 46
5.2.4 Unbinding procedure . 46
5.2.5 Calculating halo mass and edge . 47

5.3 Source of the scatter in the final result . 47
5.4 Astrophysical Applications . 48

5.4.1 Galaxy formation . 48
5.4.2 Dark Matter Detection . 49
5.4.3 Gravitational Lensing . 49
5.4.4 Modified Gravity Simulations . 49

5.5 AHF . 50
5.6 Rockstar . 50

6 MORPH Algorithms 53
6.1 Loading routines . 53
6.2 Parallelization . 55
6.3 Friends-of-friends algorithms . 56

6.3.1 Friends-of-Friends N2 . 56
6.3.2 Friends-of-Friends grid . 56
6.3.3 FOF N2 vs FOF grid runtime . 60

6.4 6D phase-space splitting . 60
6.4.1 6D phase space friends-of-friends algorithm 66

6.5 Unbinding . 72
6.5.1 Calculating φ using a spherical approximation 73
6.5.2 Using φ using the acceleration of each particle 76
6.5.3 Using φ from the N-body simulation 77
6.5.4 Unbounding . 77

6.6 Calculating Rvir . 77

iv

6.6.1 Algorithm . 81
6.7 Results of the 6D phase space friends-of-friends algorithm 81
6.8 Mass estimation . 81

6.8.1 Mass function . 81
6.8.2 Choosing b . 85

7 Results 89
7.1 Unbinding routines . 89
7.2 Rvir . 90

8 Conclusions and outlook 99
8.1 Conclusions . 99

8.1.1 Do we need a halo finder that takes into account modified gravity
models? . 101

8.2 Outlook . 101
8.2.1 Result improvements . 101
8.2.2 Code improvements . 102

A MORPH, Libraries 105
A.1 Libraries . 105

B Code parameters 107

v

vi

List of Figures

1.1 The Cosmic Microwave Background, image courtesy of wikipedia. 4

2.1 Difference between a positively curved, k = +1 universe, a negatively
curved universe, k = −1 and a flat universe, k = 0. 8

2.2 Evolution of the scalefactor for universes with Ωm0 = [0.9, 1.0, 1.1] 15
2.3 Evolution of the universe, image courtesy of wikipedia. 16

4.1 Example of an octree, image courtesy of wikipedia 39

5.1 The general steps performed by a halo finder. 45

6.1 Illustration of array structure. 54
6.2 Plot of the positions of every 25th particle for the 1283 particle dataset. . . 55
6.3 The positions of every 25th particle for the 1283 particle dataset, after the

3D FOF algorithm . 60
6.4 Runtime for MORPH using different parameters for the nr of particles

needed for the scaling and the scaling itself. 61
6.5 Runtime for the FOF-N2 scheme for different number of particles. 62
6.6 Runtime for the FOF-Grid scheme for different number of particles 62
6.7 An example of a linking bridge affecting a FOF group. 63
6.8 Plot of the positions of the particles in a single FOF group. 64
6.9 Plot of the velocities of the particles in a single FOF group, after the 3D

FOF algorithm. 64
6.10 Plot of the x-position vs x-velocity, y-position vs y-velocity and z-position

vs z-velocity for the particles in a single halo, after the 3D FOF algorithm. 65
6.11 Flowchart of the 6D phase space friends-of-friends method. 67
6.12 Mass functions for f = [0.5, 0.6, 0.7, 0.8, 0.9]. 68
6.13 Potential from the N-body potential for different halos after the 6D phase-

space splitting. 78
6.14 Positions of the particles in a single FOF group, after the 3D FOF algorithm

(top) and after the 6D splitting (bottom). 83
6.15 Plot of the positions of the particles for each halo in a single FOF group,

after the 6D FOF algorithm. 84
6.16 Mass functions for b = [0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3]. 86
6.17 Mass function for b = 0.21. 87

7.1 Mass function for lcdm1, four different unbinding routines. 91
7.2 Mass function for symm A, four different unbinding routines. 91

vii

7.3 Mass function for symm B, four different unbinding routines. 92
7.4 Mass function for symm C, four different unbinding routines. 92
7.5 Mass function for symm D, four different unbinding routines. 93
7.6 Mass function for fofr4, four different unbinding routines. 93
7.7 Mass function for fofr5, four different unbinding routines. 94
7.8 Mass function for fofr5, four different unbinding routines. 94
7.9 Fractional difference between the accelerated unbinding for MG and the

Newtonian case, smoothened over neighboring bins to remove noise that
appear in the binning, for lcdm1 and symm A - symm B. 95

7.10 Fractional difference between the accelerated unbinding for MG and the
Newtonian case, smoothened over neighboring bins to remove noise that
appear in the binning, for fofr4 - fofr6. 95

7.11 Fractional difference between the two methods to calculate Rvir. 97

viii

List of Tables

5.1 Scatter in the main properties computed by halo finders, from Knebe et al.
(2013) . 48

6.1 FOF group information,. Positions are given as Mpc/h, velocities as Mpc/-
Gyr and mass as M�. 63

6.2 Runtime for MORPH with f = [0.5, 0.6, 0.7, 0.8, 0.9] 66
6.3 6D split FOF group halo information,. Positions are in units of Mpc/h,

velocities in Mpc/Gyr and mass in M�. 85

7.1 Analyzed dataset details. 89
7.2 Symmetron model details. 90
7.3 f(R) model details. 90
7.4 The unbinding values for the different unbinding routines for each dataset . 96
7.5 The unbinding values for the different unbinding routines for each dataset,

using the standard method to calculate Rvir. 98

A.1 Code summary, from ohcount. 105

ix

x

Chapter 1

Introduction

In this thesis we will discuss different halo finding algorithms and their implementation.
We will also look at modified gravity theories before implementing our own halo finder
that is independent of the gravity model used in the N-body simulation.

The outline of this thesis is as follows: In chapter 1 we will review the beginning of
modern cosmology before diving further into the topic in chapter 2. In chapter 3 the topic
turns to general relativity and modified gravity theories, elaborating on why it is useful
to consider modified gravity models. Chapter 4 gives a short introduction to N-body
simulations. In chapter 5 we will discuss halo finders and give a short description of two
of the popular halo finders, one from each major type of algorithms. We will take a look
at MORPH, the halo finder written in this thesis, and implemented algorithms in chapter
6. Chapter 7 will provide the results obtained from MORPH. Lastly, chapter 8 discloses
the conclusions reached as well as giving a short outlook on possible advancements.

Cosmology is the study of the universe as a whole, its content, structure and evolution.
It is a fairly new branch of science and began with the evolution of general relativity in
the 1920s. Before this, cosmology was considered a branch of metaphysics and/or religion.
A science that regards the universe as one big entity might seem far removed from the
concerns of humanity, but cosmology tries to answer important questions that have been
asked for a long time, such as: what is the universe made of? How did the universe
begin and how will it end? Is the universe infinite in size, or does it have boundaries?
Cosmology draws heavily from the work within several very different areas of physics, such
as theoretical and experimental particle physics, quantum mechanics, general relativity
and plasma physics. As such, cosmology spans from general relativity, being on the
massive scale to quantum mechanics which is on the minute scale.

1.1 The beginning of modern cosmology

We can learn a lot about the universe from simple observations of the night sky. If the
universe is infinite and have existed forever, then why is the night sky dark? No matter
in which direction one look we are going to have line of sight to a star, and no matter how
far away that star is, the light would have had time to reach us. Therefore the sky would
be as bright as the surface of stars. Since this is clearly not the case we can conclude that
the universe cannot both be infinite and have existed for an infinite amount of time.

1

The basis for all of cosmology is the Copernican principle, also known as the cosmolog-
ical principle, which states that the universe on large scales is homogeneous and isotropic.
This means that there is no place in the universe that is special, it does not matter from
where or in which direction we look, the universe is going to seem similar.

Light from stars and galaxies typically contain absorption spectra and any one given
absorption line is always emitted at the same wavelength. By looking at where the
absorption spectra should be compared to where we observe it, we can calculate the
Doppler shift of the light from a star and find out if it moves towards, or away from us.
This factor z, called the cosmological redshift, is given as:

z ≡ λob − λem

λem

, (1.1)

with λob the wavelength of the observed spectral line and λem the emitted wavelength.
When looking at the light from distant objects we discover that nearly all of them are
redshifted1, no matter in which direction we look. It might seem that our position in
the universe is special, we are at the position from which everything moves away, but
these observations is exactly what we would expect to see from a expanding universe.
Every point is moving away from each other point, so an observer in a distant galaxy
would observe the same phenomena. An important distinction, the cosmological redshift
does not originate because the observed objects are moving away from us2, but because
space itself is expanding, resulting in the light waves being stretched. In 1929 astronomer
Edwin Hubble plotted the redshift of galaxies against their distance from us and got
a linear relation called Hubble’s law (Hubble 1929). This law relates distance, d, and
redshift z,

z =
H0

c
d, (1.2)

with c the speed of light and H0 the Hubble’s constant, H0 = 70 ± 7km/s/Mpc, which
measures how fast space expands. Using Hubble’s law we see that we can use redshift as a
measure of distance in addition to being used as a measure of time, due to the expansion
of the universe. If we interpret the redshift as a Doppler shift we get a better known
versions of Hubble’s law:

v = H0d. (1.3)

This can be used to find the velocity, v, of an object moving away from us when the
distance, d, is known. Since we have established that the universe is expanding, we
introduce a scale factor, a(t). This factor tells us how much the universe has expanded in
a given timespan. The norm is to set it to 1 at our time, a(t0) ≡ 1, where t0 is the time
today. The Hubble parameter, H, which gives Hubble’s constant at a time t, is defined
using this scalefactor,

H(t) ≡
da(t)
dt

a(t)
=
ȧ(t)

a(t)
, (1.4)

where ȧ(t) is the time derivative of the scalefactor. The Hubble parameter measures how
fast the scale factor changes. The scalefactor also gives us the following relation linking

1This is the reason why z is called the cosmological redshift.
2The traditional Doppler shift.

2

distance between two objects today and at any another time t:

d(t) = a(t)d0. (1.5)

Rearranging this equation and taking the derivate with respect to time gives us Hubble’s
law. If we discover how the scale factor changes with time we know how the universe
evolves. This is why there is such an interest in solving the equations for a(t).

We now know that the universe cannot be both infinite and have existed for an infinite
time, or perhaps neither and that the universe today is expanding. From this knowledge,
two different cosmological models evolved in the 1920s, the Big Bang theory and the
Steady State model. In the big bang theory the universe starts in a extremely dense and
hot initial state and as time goes by the universe expands and subsequently the density
and temperature is decreased. The average distance between galaxies are increasing as
the universe evolves with time. The Steady State model assumed an addition to the
cosmological principle, namely that there is no favored moment in time. Therefore the
Steady State universe is infinitively old, if there existed a time where the universe came
into being that would certainly be a special moment in time. This universe expands
following Hubble’s law, but for it to be in a steady state, the density of the universe must
remain constant. Because of the continuously expanding space, matter must be created
at an equal rate.

During the 1950s and 1960s these two models coexisted. The followers of the big Bang
theory argued that the continuous creation of matter violates mass-energy conservation,
while the followers of the Steady State model retorted with it being no less weird than the
creation of the entire universe in one big explosion. This debate lessened in 1965 when
Arno Penzias and Robert Wilson discovered that the universe is filled with a isotropic
background of microwave radiation (Penzias & Wilson 1965) called the Cosmic Microwave
Background (CMB). The temperature of this radiation is fir particularly well by a black-
body radiation with a temperature T = 2.7 K. An image of the CMB can be seen in figure
1.1, taken by Planck, a satellite designed to detect small perturbations in the CMB. The
existence of the CMB is an important cosmological clue and is one of the reasons that the
Big Bang theory was favored instead of the Steady State model. In the Big Bang theory
CMB is explained as ”left over” radiation from a time when the universe was very hot
and dense. When the universe expanded it became less dense and the radiation cooled
down. The Steady State model on the other hand have no good explanation for the CMB.
Today the success of the Big Bang theory mainly rests on three observational pillars.

� The Cosmic Background Radiation.

� The abundances of light elements in the universe.

� The expansion of the universe, as found by Hubble’s law.

In 1916 Albert Einstein published a paper containing the theory of general relativity
(GR) (Einstein 1916). This was a generalization of the special theory of relativity. It
introduces the concept of spacetime, a model that combines space and time into one entity.
It is usually interpreted as space being three dimensions with time being the fourth. The
effects of gravity is understood as caused by the curvature of spacetime, everything that
has a mass curves the spacetime around it. GR is one of the most important cosmological

3

Figure 1.1: The Cosmic Microwave Background, image courtesy of wikipedia.

tools we have since on cosmological scales the only acting force is gravity. The weak
nuclear force acts on distances less than 18−18 m while the strong nuclear force acts on
distances less than 10−15 m. The electromagnetic force and gravity are both long range
forces, but on large scales the universe is electrically neutral, so there is no electromagnetic
force at work. The evolution of the universe is thus dominated by gravity, the weakest
of the forces. The current cosmological models are all based on Einsteins field equations
and the solutions allow us to model the universe from the early big bang up until today
and into the future.

Unsolved problems

Even though we have discovered a lot about the evolution of the universe in the last
century, there still are much we do not know. A few of todays biggest unsolved problems
are:

Dark matter. Dark matter is a type of matter that neither emits nor absorbs elec-
tromagnetic radiation and only interacts through its gravitational effect. It was
introduced to explain the missing matter density of the universe. A small portion of
Dark Matter is likely baryonic astronomical objects that emit no or close to no elec-
tromagnetic radiation. Examples of such objects are non-luminous gas or Massive
Astrophysical Compact Halo Objects (MACHO) such as black holes, neutron stars,
brown dwarfs and planets. The other possible type is non baryonic dark matter of
which there exists 3 different types: Cold Dark Matter (CDM), Warm Dark Matter
(WDM) and Hot Dark Matter (HDM) or a combination of these (Davis et al. 1985).
Cold dark matter is the currently the most viable candidate, and the energy density
of CDM in the universe is measured to be ΩCDM = 0.227.

Dark energy. Dark energy is an even bigger mystery than dark matter and it constitutes
∼ 73% of the matter-energy density of the universe. The two leading theories are a
cosmological constant and quintessence. The biggest difference between these is are
that the cosmological constant is constant in time and space, while quintessence is
dynamic and changes with time. Dark energy is thought to be very homogeneous,

4

not dense, not know to interact through any of the fundamental forces other than
gravity and it has ω < −1/3.

Cosmic inflation. We are not yet sure the phase in the history of the universe called
inflation actually happened and if it did happen, what the mechanism behind it
was.

In addition to these there is a plethora of other unanswered questions in cosmology, so
there still is considerable work left to be done. One avenue being explored in the attempt
to answer some of the above questions are modified gravity theories. Modified gravity
changes some of the aspects of GR by adding new properties to the spacetime. Some of
these models can explain several of the unexplained observed phenomena, but fall short
when used to explain others and as such they need thorough testing. Inventing a new
modified gravity model is the less challenging part of this process, testing the validity of
the model afterwards is the more complicated part.

This is a field where computer simulations play an increasing part in the quest to
understand the universe. One of the ways to test proposed modified gravity models is by
looking at how they affect the evolution of large scale structures in the universe and how
the predicted large scale structures compare to the observed large scale structures. The
only way to get the large scale structure evolution is by performing N-body simulations.
These are simulations which simulate how a dynamical system of particles behave and
evolve under the influence of physical forces. A large number of particles are put into the
simulation volume under the effect of gravitational forces and the evolution is computed.
Once such a simulation have been performed for a specific modified gravity model, we
want to compare the data from such a N-body simulation to the observed universe. This
cannot be done directly from the output of a N-body simulation, such a simulation only
outputs each particles position, mass, velocity and similar particle properties, and it is
not possible to compare such data with the positions and velocity of observed galaxies in
the universe.

Because of this we need to do a halo finding process which determine how galaxies
are grouped together in halos and then generates relevant properties for these halos. This
data can then be compared to observations. Up until this thesis GR have been used in
the halo finding process, no one has taken into account the differences between standard
GR and different modified gravity theories in their halo finders. The validity of other halo
finders in the realms of modified gravity is therefore not know. This is what we would
like to improve upon in this thesis, by implementing a halo finder, called MORPH, that is
independent of the modified gravity model used in the N-body simulations. By doing this
we get a halo finder that can properly be used to test the results from modified gravity
n-body simulations to see if the model is correct. As such this thesis improves a small
step in the process of determining if modified gravity models can be used to explain some
of the unsolved problems in cosmology. We are also going to test the implemented halo
finder to make sure it gives correct results in the standard GR regime when compared
to other known halo finders, and take a closer look at how different methods behave in
modified gravity regime.

5

6

Chapter 2

Modern Cosmology

The underlying principle of modern cosmology is the Copernican principle, which states
that no place in the universe is special. More explicitly it states that on large scales
the universe is isotropic and homogeneous. Isotropic means that there is no preferred
direction, the universe looks the same no matter in which direction we look. That the
universe is homogeneous means that it looks the same independently of our position. It
is more precisely explained by using a co-moving observer which is an observer at rest
and unaccelerated with respect to nearby matter. The universe is homogeneous if all
co-moving observers see identical properties, and isotropic if all comoving observers see
no preferred direction.

We need to introduce the concept of horizons, cosmologists work with two different
types of horizons.

� Event horizon.

The event horizon is the boundary that divides all events into two groups. Those
who have been, are, or at some time will be observed as opposed those that the
observer never will be able to see.

� Particle horizon.

The particle horizon is the maximum distance that particles could have traveled
during the age of the universe, it marks the boundary between the observable and
unobservable regions. The particle horizon is important because it gives us the size
of regions where causal physics can operate.

Before we try to figure out the evolution of the universe there are a few key concepts
that is useful to know, the first being the curvature of the universe. We live on the surface
of earth, which is a two dimensional curved surface. The universe can have a curvature in
the same way, just expanded to more dimensions. The geometry of a curved space can be
described by a constant k, called the curvature constant. There are three distinct shapes
our universe can have, a positively curved universe, k = +1, a negatively curved universe,
k = −1 and a flat universe, k = 0. Each of these have different properties, as seen in
figure 2.1. If we have two lines that starts out as parallel to each other in a positively
curved universe, the lines will meet at great distances and the angles of a triangle adds
up to more than π. Such a universe is called a open universe. In a universe with negative
curvature, two parallel lines are going to diverge, while the angles of a triangle adds up

7

Figure 2.1: Difference between a positively curved, k = +1 universe, a negatively curved
universe, k = −1 and a flat universe, k = 0.

to less than π, called a closed universe. Lastly, in a flat universe two parallel lines are
going to remain parallel forever and the angles of a triangle adds up to exactly π. It is
possible to imagine that combinations of these curvatures existed e.g. the universe has
positive curvature in one place, while it is flat elsewhere. But this breaks the cosmological
principle, giving a non-homogeneous universe, so we only need to take into account these
three distinct curvatures and disregard any combinations between them.

One of the more basic properties of space is the distance between two different points,
the line element. For a curved expanding space, which observations suggest is the case
with our universe, the line element ds is given by the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric (Bergstrom 2006),

ds2 = c2dt2 − a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
, with dΩ2 = dθ2 + sin2 θ dφ2. (2.1)

(r, θ, φ) are comoving coordinates, which are coordinates fixed with respect to the expan-
sion of the universe, and as such they follow the Hubble flow. Most large collections of
matter, such as galaxies, are nearly comoving, their velocity through space is low so they
only move due to expansion. The time coordinate t is the cosmic time, which is measured
with a clock moving with the same rate as the expansion of the universe.

Much of this chapter have been inspired by Ryden (2002),ø ystein elgarøy (2010) and
Dodelson (2004), as well as other various minor sources.

2.1 Cosmic dynamics, the Friedmann equations

As previously mentioned we would like to know the evolution of a(t), which can be ob-
tained from the Friedmann equations. This is a set of equations that govern the expansion
of space in homogeneous and isotropic universe models. We start with the FLRW metric
and solve Einsteins field equations for a curved universe with curvature k and a cosmo-
logical constant Λ. The first Friedmann equation is derived from the 00 component of
Einstein’s field equations, while the second is derived from the trace, since GR is needed

8

we simply state the two resulting equations here,

H2(t) +
kc2

a2
=

8πGρ

3
+

Λc2

3
(2.2)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
. (2.3)

Here ρ is matter and energy density, p is pressure and Λ is the cosmological constant.

2.1.1 Equation of state

We now want to solve the Friedman equations. The first equation we need is an equations
of state, a relation between pressure, p, and matter/energy density, ρ. Fortunately we
only need the simplest form of the equation of state possible, given as

p = ωρc2, (2.4)

where ω is a constant that depends on the type of matter and c is the speed of light.

Dust, ω ≈ 0

Most of the matter in the universe is moving at non-relativistic speeds. In cosmology
such matter is called dust, since on cosmological scales even the sun is just a small speck
of matter. The equation of state for a ideal, non-relativistic gas is

p =
NkBT

V
, (2.5)

which can be rewritten

p =
kBT

mc2
ρc2. (2.6)

The relation between the mean square speed of the particles in a gas and temperature is

m〈v2〉 = 3kBT, (2.7)

when inserted into the equation above, it gives

p =
〈v2〉
3c2

c2ρ. (2.8)

So from this we see that dust has

ω =
〈v2〉
3c2

. (2.9)

Since this was a non-relativistic gas, with v � c it is a good approximation to use ω ≈ 0,
so dust is pressureless with an equation of state

p = 0. (2.10)

9

Radiation, ω = 1/3

For a gas of massless particles1, such as photons the equation of state is

p =
1

3
ρc2, (2.11)

and thus, ω = 1
3
. Today the universe is filled with relic radiation, the CMB radiation,

but its contribution to the current energy density is negligible, meaning the universe is
independent of radiation at the present time. In the past however, when the universe
was hotter and denser, radiation was the dominant component of the energy density. So
while we can ignore the radiation density today, it dominated the evolution of the early
universe.

Cosmological constant Λ, ω ≈ −1

After Albert Einstein formulated the theory of general relativity he applied it to the
universe as a whole. He assumed a static, homogeneous, dust filled and isotropic universe.
Such a universe gives ȧ = ä = 0, Λ = 0 and a(t) = a0 and the Friedmann equations become

kc2

a2
=

8πGρ

3
, (2.12)

0 = −4πG

3

(
ρ+

3p

c2

)
a. (2.13)

From the last equation we see that we must have either a = a0 = 0 or ρ = p = 0.
Neither of these options work well with our existence. The first corresponds to having
no universe while the second corresponds to an empty universe. With this solution one
should conclude that a static, dust filled universe is impossible, but all observations at that
time pointed to the universe being static, so to make a static solution possible, Einstein
introduced the cosmological constant, Λ, as a repulsive parameter. In his way of thinking
this corresponds to assigning a curvature to empty space. The second Friedmann equation
in such a universe, with a(t) = a0 = constant gives

Λ = 4πGρ0. (2.14)

Inserting this into the first Friedmann equation we observe that the curvature must be
positive, since the right hand side of the equation is positive, giving

a0 =
c√

4πGρ0

=
c

Λ
. (2.15)

This is called an Einstein universe. Einstein himself was never pleased with having to
introduce this constant, and referred to it as the ”Biggest blunder of his life” (Gamow
1970). One of the problems with this method, that force a static universe, is that it
is unstable. Any small perturbation away from a0 makes it so either the Λ-term or
the dust-term will dominate. Today the understanding of the cosmological constant has

1Neutrinos are treated as radiation, they have a mass though it is so small we approximate them as
massless.

10

changed from Einstein’s view, and the cosmological constant is interpreted as a result of
Heisenberg’s uncertainty principle. Empty space is not empty, but have an energy density
due to quantum mechanical processes. Writing the Friedmann equations correspondingly
gives

H2(t) +
kc2

a2
=

8πG

3
(ρ+ ρΛ), (2.16)

ä

a
= −4πG

3

(
ρ+ ρΛ +

3pΛ

c2

)
, (2.17)

where

ρΛ =
Λ

8πG
. (2.18)

We insert this relation into Friedmann’s second equation, equation 2.17 and compare it
with equation 2.2 for a dust filled universe, p = 0,

− 4πG

3

(
Λ

8πG
+

3pΛ

c2

)
=

Λ

3
. (2.19)

Giving
p = −ρc2. (2.20)

So we see that the equation of state gives ω = −1 for the cosmological constant and for
Λ > 0 we have negative pressure.

Using a Newtonian point of view, the cosmological constant give rise to the repulsive
contribution to the gravitational force. Once Edwin Hubble discovered that the universe
was expanding (Hubble 1929), the cosmological constant dropped out of fashion, since it
was possible to find expanding solutions of the Friedmann equations without it. Contrary
to this, modern observational data indicates that we live in a universe with accelerated
expansion, dominated by the cosmological constant.

2.1.2 Evolution of the energy density of the universe

Another thing we need to know is how the energy density of the universe behaves. The
first law of thermodynamics is valid in a GR regime, so we have

TdS = dE + pdV, (2.21)

were T is temperature, S is entropy, p is pressure, E is energy and V is volume. When
we apply this to the universe we see that the volume must be proportional to a3, V ∝ a3.
The energy of the universe is given by the energy density multiplied by the volume,
ρc2V ∝ ρc2a3. The first law of thermodynamics now become

dS = dEpdV, (2.22)

∝ d(ρc2a3) + p(da3), (2.23)

= 3a2ȧρc2 + a3ρ̇c2 + 3pa2ȧ, (2.24)

= a3c2

(
ρ̇+ 3

ȧ

a

(
ρ+

p

c2

))
. (2.25)

11

The universe is expanding adiabatically, a diabatic expansion would mean that heat would
flow in or out of a given volume, violating homogeneity and isotropy. It is also hard to
imagine what would happen if heat were leaving the universe, which violates energy
conservation. An adiabatic expansion has dS = 0, which means we have,

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
. (2.26)

Inserting the equation of state p = ωρ2 gives,

ρ̇ = −3
ȧ

a

(
ρ+

ωρ2

c2

)
, (2.27)

= −3
ȧ

a
(1 + ω) ρ. (2.28)

This gives us the following differential equation,

dρ

dt
= −3

da

dt

1

a
(1 + ω) ρ, (2.29)

dρ = −3
1

a
(1 + ω) ρda. (2.30)

We integrate both sides from today, t0 until t. Using ρ(t0) = ρ0 and a(t0) = a0,∫ ρ

ρ0

1
dρ = −3 (1 + ω)

∫ a

a0

1

a′
da′, (2.31)

ln

(
ρ

ρ0

)
= −3 (1 + ω) ln

(
a

a0

)
, (2.32)

ρ = ρ0

(a0

a

)3(1+ω)

. (2.33)

We now have the general equation for how the energy density evolves and we will take a
look at the different possibilities we have for ω. In a dust filled universe, ω = 0, and

ρ = ρ0

(a0

a

)3

. (2.34)

This is expected, the density decreases inversely proportional to the volume, which is
proportional with a3. Then for radiation, with ω = 1/3 we get,

ρ = ρ0

(a0

a

)4

. (2.35)

Again this is what we would expect, the energy density decreases as the universe expands,
which is inversely proportional to a3. In addition the energy of each wave decreases as
the wave gets redshifted due to the expansion, which is the cause of the last factor of 1/a.
For the cosmological constant, ω = −1, it gets more interesting, since

ρ = ρ0. (2.36)

12

The density of the cosmological constant is constant in time, it does not decrease as the
universe expands. This fits with the cosmological constant being tied to the vacuum
energy, when more space is created we also get more vacuum energy, thus keeping the
energy density constant.

There are several components of the total energy density of our universe. Fortunately
for us they are additive, which means the total energy density can be written

ρtotal =
∑
i

ρ̇i = −3
ȧ

a

∑
i

(
ρi +

pi
c2

)
, (2.37)

∑
i

[
ρ̇i + 3

ȧ

a

∑
i

(
ρi +

pi
c2

)]
= 0. (2.38)

The only way to guarantee that this sum becomes zero is for the individual terms to
cancel out,

ρ̇i + 3
ȧ

a

∑
i

(
ρi +

pi
c2

)
= 0. (2.39)

From this we see that the energy densities are independent of each other, and it is possible
to solve for each separately and then insert the results into the Friedmann equations.

It is normal to measure the density in terms of the density parameter Ω. It is defined
as the ratio of the actual density ρ to the critical density of the universe, ρc.

Ω ≡ ρ

ρc
. (2.40)

The critical density gives the mass density of a universe where the expansion stops right
after infinite cosmic time has elapsed. We find an expression for the critical density by
assuming no cosmological constant, Λ = 0 in a flat universe, k = 0. This gives us

H2 =
8πGρ

3
. (2.41)

Today this become

H2
0 =

8πGρ0

3
, (2.42)

1 =
8πGρ0

3H2
0

. (2.43)

We see that
3H2

0

8πG
must have units of density and it is named the critical density, ρc,

ρc0 ≡
3H2

0

8πG
, (2.44)

2.2 The flat ΛCDM universe

Observations indicate that we live in a universe filled with dust, in the form of dark
matter, and a cosmological constant, in the form of dark energy. We want to use our
newfound knowledge on such a universe model, to see how it behaves.

13

2.2.1 Friedmann equations for a ΛCDM universe

In such a universe we get ΩΛ0 = 1 − Ωm0 and the Friedmann equations can be solved
analytically. We rewrite them using the density parameter,

H2

H2
0

= Ωm0

(a0

a

)3

+ (1− Ωm0). (2.45)

The Ωm0

(
a0
a

)3
term is the contribution from matter and is always positive and the (1 −

Ωm0) term is the contribution from the cosmological constant. There exist two different
solutions for this universe, the first one being Ωm0 > 1 giving ΩΛ0 < 0. Then the right
hand side of the equation changes sign at amax and starts to contract. This value of amax

is found by

Ωm0

(
a0

amax

)
= Ωm0 − 1, (2.46)

amax = a0

(
Ωm0

Ωm0 − 1

)1/3

. (2.47)

Rewriting and solving the Friedmann equations gives us the solution

H0t =
2

3
√

Ωm0 − 1
sin−1

[(
a

amax

)3/2
]
. (2.48)

So this universe will collapse in a Big Crunch after a time

tcrunch =
2π

3H0

1√
Ωm0 − 1

. (2.49)

If we solve for the scalefactor a instead of t we get

a = a0

(
Ωm0

Ωm0 − 1

)1/3 [
sin

(
3

2

√
Ωm0 − 1H0t

)]2/3

. (2.50)

This case corresponds to the universe containing enough matter to overcome the repulsive
force from the cosmological constant, so gravity wins and the universe undergoes a Big
Crunch at time tcrunch.

The other solution comes about if we have Ωm0 < 1 giving ΩΛ0 > 0. Now the right
hand side will always be positive, and the universe will keep on expanding. For this case
there exist a value of the scale factor where the contribution from matter becomes equal
to the contribution from the cosmological constant. This value is found by

Ωm0

(
a0

amΛ

)
= 1− Ωm0 (2.51)

amΛ = a0

(
Ωm0

1− Ωm0

)1/3

. (2.52)

For a < amΛ matter dominates while for a > amΛ the cosmological constant dominates.
Integrating the Friedmann equation gives

H0t =
2

3
√

1− Ωm0

sinh−1

[(
a

amΛ

)3/2
]
. (2.53)

14

Figure 2.2: Evolution of the scalefactor for universes with Ωm0 = [0.9, 1.0, 1.1]

We can solve this for the scalefactor a to get

a = a0

(
Ωm0

1− Ωm0

)1/3 [
sinh

(
3

2

√
1− Ωm0H0t

)]2/3

. (2.54)

When we insert a = a0 into this equation we find the present age of the universe

t0 =
2

3H0

√
1− Ωm0

sinh−1

(√
1− Ωm0

Ωm0

)
. (2.55)

Using Ωm0 = 0.3 and ΩΛ0 = 0.7 we get t0 = 13.5 Gyr, which is consistent with the oldest
observed objects in the universe. The change from deacceleration to acceleration happens
at

aacc = a0
1

2

(
Ωm0

1− Ωm0

)1/3

=

(
1

2

)1/3

amΛ. (2.56)

Figure 2.2 is a plot of how the scale factor evolves for different values of Ωm0. One
interesting feature of such a universe is the accelerated expansion we get when Ωm0 = 0.9
and ΩΛ0 = 0.1. A positive cosmological constant is effectively a gravitational repulsion
and gives rise to an accelerated expansion of the universe. This means the universe will
end in a Big Rip, when the expansion becomes so rapid that everything will be ripped
apart into elementary particles. When we have Ωm0 = 1.1 and ΩΛ0 = −0.1 gravity
dominates and the universe will contract and end in a Big Crunch as the scale factor goes
towards zero. We also see that a flat universe with Ωm0 = 1 and ΩΛ0 = 0 will have a
continuous expansion with ä = 0.

15

Figure 2.3: Evolution of the universe, image courtesy of wikipedia.

2.3 A shorter history of nearly everything

The Big Bang theory is the prevailing scientific model of how the universe came into
being and evolved over time into the shape it has today. We assume it started from a
singularity at t = 0. In the first time after the big bang, the Planck area, t = [0, 5 ·10−44],
the universe was filled with highly relativistic elementary particles, such as quarks, leptons
and gauge bosons. What actually happened up until t = 5 ·10−44 are purely speculations
as our theories are incomplete. Figure 2.3 shows the general evolution of the universe.

2.3.1 Inflation

The Big Bang theory is highly successful, and explains many of the features we observe
in the universe. But there are some puzzles that are harder to solve, the three most
important being the flatness problem, the horizon problem and the magnetic monopole
problem.

The flatness problem

Today the energy density is very close to the critical density, giving us a flat universe with
k = 0. If we extrapolate backwards in time it means that the energy density close to the
big bang must have been extremely fine tuned, the density must have been closer to the
critical density than one part in 1060.

The horizon problem

Another even more puzzling problem is the horizon problem. The CMB is isotropic around
2.7K, to a part of one in 105 across the whole sky, meaning two different regions of the
universe far into the past have been in thermal equilibrium. But the problem arises when
we take into account the particle horizon of the photons. At the time of last scattering,

16

which is the last time the photons could have been in contact, the particle horizon for a
photon was θPH ∼ 1.8 degrees. So how is it possible that photons that are separated by
as much as 180 degrees have almost exactly the same temperature when these two areas
are causally disconnected?

The magnetic monopole problem

The monopole problem is the lack of observed magnetic monopoles. This is not a purely
cosmological problem, but arises from the combination of the big bang theory and Grand
Unified Theory (GUT) that combines the strong and electroweak force at high temper-
atures. When the universe cools down it goes trough a phase transition where it lose
symmetry and the physical forces change behavior. This should give rise to point like
topological defects that would act as magnetic monopoles, but there are no evidence that
magnetic monopoles exist today. This last problem is not as serious as the first two.
Today there does not exist a single definitive Grand Unified Theory, and in some variants
magnetic monopoles do not exist. So it might very well be that the problem is in the
GUT and not the Big Bang theory.

Inflation

It is now the idea of inflation comes to the rescue. Alan Guth published the idea of
inflation in 1981 (Guth 1981), which solves these three problems that otherwise have no
satisfactory solution. Inflation is a short period, from t = 10−43s to t = 10−33s, right after
big bang where the universe underwent a rapid expansion. The universe increased in size
by a factor of

a(tf)

a(ti)
= eN , (2.57)

where a(ti) is the time inflation starts, tf the time inflation has ended and N is the
e-folding number, given as

N = Hi(tf − ti). (2.58)

It depends on the specific model, but it is generally assumed that N∼ 60. A note, even
though this inflationary epoc seems to contradict that nothing can move faster than the
speed of light there is an important difference. It was space itself that expanded, and not
the particles in the universe moving away from each other. Thus the particles did not
move through space faster than light.

If the universe expands exponentially during the inflationary epoch, the difference
between the energy density and (1.) would decrease. If we start out with a curved
space, but expand it to a large size, the initial curvature can become infinitesimally small.
The horizon problem is solved by the fact that a small area, smaller than the particle
horizon, can have been in thermal equilibrium before inflation started. Inflation then
expands this area to a size larger than the observable universe, meaning that photons
from different sides of the observable universe were causally connected far in the past.
The monopole problem is easily solved, if magnetic monopoles were created before or
during the inflationary period, the magnetic monopole density might have been reduced
to undetectable levels during the inflation. So they exist, but because of inflation they
have been dispersed so much we are unable detect them.

17

Such an expansion happens in a de Sitter universe, which is a flat universe dominated
by the cosmological constant, Λ, where we have something that gives negative pressure,
but even though a de Sitter universe provides us with the desired expansion, it has no
mechanism that ends the exponential growth. So unfortunately we do need a more com-
plicated model. The cause of inflation is not yet well understood, the most common theory
is that the inflation was driven by a scalar field. But one of the largest problem with this
is that there exists no know scalar field that can drive inflation.The main thing we should
know about a scalar field is that it has a kinetic and a potential energy associated with
it, and thus an energy density and pressure. Let us take look at a homogeneous scalar
field φ, which makes it a function of time only. The energy density is given by

ρφc
2 =

1

2~c3
φ̇2 + V (φ), (2.59)

and the pressure is given by

pφ =
1

2~c3
φ̇2 − V (φ), (2.60)

where V (φ) is the potential energy of the scalar field. If the field changes slowly with
time, such that it has more potential energy than kinetic, we have

φ̇2

2~c3
� V (φ), (2.61)

the equation of state becomes
pφ = ρφc

2, (2.62)

and it will behave similar to the cosmological constant in the de Sitter universe. It is this
fact that is the basis for using a scalar field to drive inflation, as long as the homogeneous
scalar field has much the same dynamics as a single particle moving in a potential. Similar
to a ball being released from far up the side of a hill, the scalar field will ”roll” down the
potential until it reaches minimum. If it rolls slowly enough the potential energy can
be treated as a constant most of the way down, this is the slow roll approximation. As
long the scalar field has not reached the minima, the potential energy is greater than
the kinetic, and we will have exponential expansion of the universe. Once the slow roll
approximation has broken down, the scalar field will start oscillating around the minima.
There is a friction term associated with the scalar field, which means the oscillations
will be dampened and lose energy to the surroundings. The energy stored in the field
will because of this friction go into creating ”normal” particles, a process called reheating.
After the reheating the universe enters the radiation dominated era and evolution proceeds
as usual. Heisenberg’s uncertainty relation limits how homogeneous the scalar field can
be. As a consequence of this inflation starts and ends at slightly different times in different
regions of space, causing perturbations in the energy density that is the basis for the large
scale structure of the universe.

2.3.2 The Big Bang Nucleosynthesis

Shortly after inflation ended, at around t ≈ 1 s, the Big Bang Nucleosynthesis (BBN)
started. Previously when the universe was much hotter and denser, neutral atoms and

18

bound nuclei did not exist. In the early universe free neutrons combined with protons
to form deuterium, but the resulting nuclei was immediately broken up by high energy
photons, with a energy equal or greater than the deuterium’s binding energy of 2.22 MeV.
Due to this deuterium production can not begin before there are less photons with a energy
above or equal 2.22 MeV than baryons. And since there are roughly 109 times as more
photons than baryons, the average photon energy must be much lower than 2.22 MeV.
Because of this there is no deuterium production before the temperature falls bellow 0.1
MeV. Almost no elements heavier than helium was formed in the BBN, with the exception
of small traces of lithium. This is because reaction rates for the processes necessary to
produce heavier elements is too low at temperatures below 0.1 MeV.

2.3.3 Recombination

Recombination2 is the epoch where electrons bind with protons and neutrons without
being instantly excited. This happens when the temperature is so low that the high-
est energy photons no longer immediately ionizes the atoms, when the temperature has
dropped to 1 eV. This temperature is again lower than the binding energy of neutral
hydrogen, 13.6 eV, for the same reasons as the delay in the start of the BBN. Before
recombination photons could not move freely over long distances, matter and radiation
were tightly coupled through the Compton and Coulomb scattering, so it is in this era
that the universe became transparent, the mean-free-path of the photons became equal to
the size of the observable universe. The photons from this time is what we observe as the
CMB radiation. These photons originally had a temperature of ∼ 3000K, but due to the
expansion of the universe the temperature has dropped to 2.7K at the present time. The
CMB radiation is a valuable tool as it gives us a look at the universe when it was only
300 000 years old, and it is one of our best sources of information of the early universe.

2.3.4 Re-ionization

Following recombination the universe entered a calm era and did not undergo any major
changes for quite some time, it continued to expand and cool down. Clouds of gas inter-
acted through gravity and started to cluster together due to small perturbations from the
inflationary epoch. After some time these gas clouds became so dense that they collapsed
due to gravity, leading to a massive increase in temperature. When the pressure and
temperature became high enough, new nuclear reactions started and the first stars in the
universe was born. These stars started to send out photons with high enough energy to
ionize the rest of the gas in the universe, returning it to its previous ionized state, but
at this time the gas was so diluted, compared to earlier stages, that the universe still
remained transparent.

2.3.5 Structure formation

If the universe was completely homogeneous after the big bang it would have stayed
so forever. Looking at the universe today we see that this is not the case, so there

2Even though it is the first time electrons and nuclei combined to form neutral atoms, this era is called
recombination.

19

must have been perturbations in the original density. Inflation seems to be one way to
introduce fluctuations in the primordial energy density. From here on the idea behind
what happens is simple, where there are overdensities in the matter density, more matter
gathers, attracting even more matter, creating larger and larger structures. But even
though the idea is simple, the calculations are complicated, as they should be done in an
expanding universe with several different components on a multitude of objects. Due to
this N-body simulations are often used to understand the dynamics behind the structure
formation. Observations indicate that the universe is largely composed of voids, with
densities as low as 1/10 of the average density while the matter condenses into large
filaments with a web like structure of galaxies, galaxy groups, clusters and super clusters,
which confirms the results from N-body simulations.

20

Chapter 3

Gravity

3.1 Introduction

The theory of general relativity was developed by Albert Einstein and published in 1916
(Einstein 1916). GR combines space and time into one entity, called spacetime. Gravity
is a geometric property of spacetime, where spacetime curves due to the effects of matter
and energy density. The relation between the two is given by Einstein’s field equations,
which is a system of differential equations. It is important to note that in general relativity
gravity is no longer considered a force, but simply the effect of the curvature of the four
dimensional spacetime. General relativity is the basis for modern cosmology as none of
the other forces work on cosmological distances, as mentioned previously, so to be able to
understand how the universe evolves we need to know the basics of general relativity.

Much of this chapter have been inspired by ø vind Grø n (2007), Capozziello et al.
(2009), De Felice & Tsujikawa (2010), Hammami (2013), (Clifton et al. 2012) and (Sotiriou
& Faraoni 2010).

3.1.1 Equivalence principle

The basis for general relativity is the equivalence principle (Einstein 1908). It states that:

� You cannot perform any experiment that will distinguishing between a uniform
gravitational field and being in a uniformly accelerated reference frame.

This is easily explained by a thought experiment, consider an observer in an elevator
placed at the surface of Earth. The elevator is in every way sealed from its surroundings.
We drop different objects and measure how much time it takes for each to reach the floor
and their acceleration is measured to be g. The elevator is then moved into space, far
away from the influence of any gravitational sources and is given a constant acceleration
equal to g in the upwards direction. If we do the same experiment we will get the exact
same measurements. The objects will in both cases fall to the floor with an acceleration
equal to g and there is no way we as observers can distinguish between the two cases. An
additional effect of the equivalence principle is that light will bend in a gravitational field.

21

3.1.2 Preliminaries

To be able to do calculations in GR there are several useful relations and conventions we
need to know that are of a purely mathematical nature and we will introduce a few of
them now.

Conventions

In general relativity the norm is to use Einstein’s summation convention, which is useful
when working on vectors, matrices and tensors. Instead of writing the summation sign
explicitly, it is assumed when we have the same index in the upper and lower subscript.
So

y =
3∑

µ=0

gµx
µ = g0x

0 + g1x
1 + g2x

2 + g3x
3, (3.1)

is reduced to

y = gµx
µ. (3.2)

Time is the 0 component and 1, 2 and 3 the spatial components. Another convention is
that the Greek alphabet is used for space and time components, where the indices takes
the values 0, 1, 2, 3 and the Latin alphabet is used for spatial components only, with values
1, 2, 3.

Friedman-Lemaitre-Robertson-Walker metric

The metric gµν is a symmetric tensor that is very useful in GR and cosmology. It is
non-degenerate, meaning its determinant is not equal zero, g = |gµν | 6= 0, and an inverse
metric gµν exists

gµνgνσ = δµσ , (3.3)

where δµσ is the Kronecker delta, defined as

δµσ ≡
{

0, if µ 6= σ
1, if µ = σ

. (3.4)

The metric gives the connection between values in the coordinate system and the line
element ds2. The Friedman-Robertson-Walker metric, mentioned in the previous chapter
is

gµν =

−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 . (3.5)

gµν is the inverse of gµν ,

gµν =

−1 0 0 0
0 1/a2(t) 0 0
0 0 1/a2(t) 0
0 0 0 1/a2(t)

 . (3.6)

22

In four dimensional space-time, using Einstein’s summation notation, the line element
is given as

ds2 = gµνdx
µdxν . (3.7)

Here dxµ is an infinitesimal displacement in the direction xµ.

3.2 Einstein equations

The defining equations of GR, and the basis for modern cosmology is the Einstein field
equations (Einstein 1916), which relates the geometry of space-time to the energy-momentum
content of space. The equation is given as

Gµν ≡ Rµν −
1

2
gµνR = κ2Tµν . (3.8)

Gµν is the Einstein tensor and κ2 = 8πG is a constant only. The left hand side of this
equation is a function of the geometry (metric) of the universe while the right hand side
is a function of the energy it contains. This equation might seem simple, but when fully
written out it is a system of 10 coupled, nonlinear, hyperbolic-elliptic partial differential
equations.

Ricci tensor, Rµν, and Ricci scalar, R

The Ricci tensor, Rµν , depends on the metric and its derivatives. It is, expressed in terms
of Christoffel symbols,

Rαβ = Γαµν,α − Γαµν,ν + ΓαβαΓβµν − ΓαβνΓ
β
να. (3.9)

If we contract the Ricci tensor we get the Ricci scalar, as seen in (3.8),

R = Rµ
µ = gµνRµν . (3.10)

Christoffel symbol Γ

One of the most useful relations in GR is the Christoffel symbol, Γ,

Γµαβ =
gµν

2

(
∂gαν
∂xβ

+
∂gβν
∂xα

+
∂gαβ
∂xν

)
. (3.11)

In GR commas in a subscript is used to symbolize the derivative with respect to x, for
example

∂gµν
∂xα

≡ gµν,α. (3.12)

We use this to write the Christoffel symbol as

Γµαβ =
gµν

2
(gαν,β + gβν,α + gαβ,ν) (3.13)

Another important derivative is the covariant derivative, denoted by a ”;” and defined as

xµ;ν = xµ,ν + Γµανx
α. (3.14)

23

The stress-energy tensor T µν

The stress-energy tensor T µν is a symmetric rank 2 tensor that describes material char-
acteristics. It characterizes the matter and energy content of the universe and is thus
an important part of the Einstein equations. Since we cannot derive the matter and en-
ergy content of the universe, we need observations to get the content of the stress-energy
tensor. Because this is a rank 2 tensor it can be displayed in matrix form,

T µν =

T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 12 T 22 T 23

T 30 T 31 T 32 T 33

 , (3.15)

and the different components are:

� T 00 represents energy density

� T i0 represents momentum density

� T ii represents normal stress

� T ij represents shear forces (i 6= j)

As we have seen previously, perfect fluids are used to great effect in cosmology, the energy-
momentum tenor of a perfect fluid is

Tµν =
(
p+

p

c2

)
µµµν + pgµν . (3.16)

In a comoving orthonormal basis the four velocity components are µµ̂ = (c, 0, 0, 0) and
the stress-energy tensor for a perfect fluid can be written as

Tµ̂ν̂ =

ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 , (3.17)

where p > 0 is pressure and p < 0 is tension. There are three different types of perfect
fluids that is of use in cosmology,

1. Dust or non-relativistic gases, given by p = 0 and Tµν = ρµµµν + pgµν .

2. Radiation or relativistic gases, p = 1
3
ρc2.

3. Vacuum energy, if it is a perfect fluid we have p = −ρc2.

24

3.2.1 Lagrange formalism of general relativity

General relativity can be seen as a classical field theory, it is therefore possible, as in other
field theories1, to derive the Einstein equations from a given action, S,

S = SEH + SM , (3.18)

where SEH is the Einstein-Hilbert action and SM is the action for the matter field.

SEH =
1

2κ2

∫
(R− 2Λ)

√
−gd4x, (3.19)

SM =

∫
L
√
−gd4x, (3.20)

where R is the Ricci scalar, Λ the cosmological constant and L the Lagrangian density
for matter and energy. Following the standard algorithm we apply the principle of least
action,

δS = δSEH + δSM = 0. (3.21)

So we have
δSEH = −δSM . (3.22)

We solve for each side separately, first for the Einstein-Hilbert part δSEH , then for the
matter Lagrangian part δSM .

δSEH =
1

2κ2

∫ √
−gδR + (R− 2Λ)δ

√
−gd4x, (3.23)

since δΛ = 0. We now need to find δ
√
−g and δR. Lets start with δ

√
−g. Jacobi’s

formula for differentiating a determinant gives us,

δg = δ det(gµν),

= ggµνδgµν .

Using this we get

δ
√
−g =

1

2
√
−g

δg, (3.24)

=
1

2

√
−g(gµνδgµν). (3.25)

We now use that

gµνg
µν = gµνgµν , (3.26)

to get

δ
√
−g = −1

2

√
−ggµνδgµν . (3.27)

1An interesting observation, even though we can use variational calculus to derive the laws of physics,
it is rare that this principle is used to get these laws initially. Most often the laws are first found by other
means and then variational calculus is used to derive the same laws from a given action.

25

Now if we take a look at δR and use the definition of the Ricci scalar, equation 3.10, it
gives

δR = Rµνδg
µν + gµνδRµν .

The first term is already proportional to δgµν . Using Stoke’s theorem on the second term
we see that it vanish when integrated and does not contribute to the variation of the
action. We put what we have found into the equation for δSEH to get

δSEH =
1

2κ2

∫ √
−gRµνδg

µν − (R− 2Λ)
1

2

√
−ggµνδgµνd4x, (3.28)

δSEH =
1

2κ2

∫ √
−g
(
Rµν − (R− 2Λ)

1

2
gµν

)
δgµνd4x. (3.29)

We now take a look at the matter Lagrangian part δSM ,

δSM =

∫ √
−gδL+ Lδ

√
−gd4x, (3.30)

=

∫ √
−g
(
δL
δgµν

− 1

2
Lgµν

)
δgµνd4x. (3.31)

The stress tensor Tµν is by definition given as,

Tµν = −2

(
δL
δgµν

− 1

2
Lgµν

)
. (3.32)

Giving us

δSEH =

∫ √
−g
(
−1

2
Tµν

)
δgµνd4x. (3.33)

Going back to the principle of least action,

δSEH = −δSM , (3.34)

1

2κ2

∫ √
−g
(
Rµν − (R− 2Λ)

1

2
gµν

)
δgµνd4x = −

∫ √
−g
(
−1

2
Tµν

)
δgµνd4x. (3.35)

Which leads to

1

2κ2

(
Rµν − (R− 2Λ)

1

2
gµν

)
=

1

2
Tµν . (3.36)

And this gives us the Einstein equation,

Rµν −
1

2
gµνR + Λgµν = κ2Tµν . (3.37)

26

3.2.2 Geodesic equation

A geodesic describes the motion of a point particle under the influence of gravity alone,
it gives the shortest path between two points in curved spacetime. The path taken by
a falling rock, a satellite in orbit and the motion of a planet are all geodesics in curved
spacetime. This can be found by writing the equation for the distance between two points
in curved spacetime and minimizing this length using calculus of variation. For a geodesic
curve we then have the following equation

uµ;νu
ν = 0. (3.38)

This is called the geodesic equation, writing it out gives,

(uµ,ν + Γµανu
α)uν = 0. (3.39)

We now use
d

dλ
= uν

∂

∂xν
. (3.40)

and the notation ˙ = d
dλ

to get,
ẍµ + Γµαν ẋ

αẋν = 0, (3.41)

which is the better known version of the geodesic equation.

3.3 Modified Gravity

General relativity is a very successful model, and have passed all observational tests, so
why would we want to modify something that works this well?

3.3.1 Motivation for modified gravity

The first attempts at modifying gravity was motivated by curiosity and in an effort to
further understand the new theory. Today we see that there are several shortcomings
with the standard ΛCDM model and therefore we try to modify gravity in the hope that
it can explain/solve the shortcomings of the ΛCDM model.

Cosmological constant problem

One of the most serious shortcomings with the ΛCDM model is the cosmological constant
problem2. Vacuum fluctuations seems to exist in nature and to have normal gravitational
properties and it can be argued that it is equal to the cosmological constant. The problem
appear when we calculate this value using quantum field theory, we end up with a number
heavily contradicting cosmological observations. The difference is extreme, performing
the calculations we get a number that is 107 orders of magnitude higher than the upper
bounds set by data from the voyager spacecraft, which is largest disagreement between
observations and theoretical predictions in the entire history of physics (Dutra 2005).

2Similar to the ultraviolet catastrophe, this have been dubbed the vacuum catastrophe.

27

Postulations

The ΛCDM model comes at the price of several postulations, such as inflation, dark matter
and dark energy. Together dark matter and dark energy amounts to around 96% of the
matter-energy of the universe and as previously mentioned, very little is known about
either. This means that our most successful model is mostly based on matter and energy
that we have no clue to how behaves and of which we have very few direct observations.
A model that is this highly dependent on two pieces of undiscovered physics is a serious
fundamental problem. Dark energy is one problem that might be explained by modified
gravity theories while the inflation of the universe is another, there also exist theories that
try to explain both at the same time.

Coincidence problems

The present value of Λ has another problem associated with it, the energy density of Λ
is of the same order of magnitude as the average matter density of the universe today,
ρΛ0 ∼ ρm0. Which leads to a coincidence problem, these two values scale with the size
of the universe in very different ways, so to assume that they are similar today purely
by coincidence is naive. Another coincidence problem also exists, namely why the dark
matter energy density is so close to the baryon energy density. They have very different
production mechanisms so once more it is naive to assume it is by chance.

Galaxy structure

We have another potential problem with missing satellites. The ΛCDM model predicts
there to be numerous dwarf galaxies around the main galaxies, but to use the Milky way
as an example, only 30 dwarf galaxies have been observed. It might be though, that the
rest are dark galaxies consisting of dark matter and therefore have not been observed yet,
but it is still a noteworthy potential problem.

Solution

Modified gravity might solve several of these problems. A hope is that modified gravity
might explain how the universe works and evolves without having to introduce exotic
particles such as dark energy or that we can explain inflation. But even if it turns out that
the classical understanding of gravity is correct, by questioning its merits and introduce
changes to see what happens, we gain an increased understanding of the theory.

3.3.2 Modifications of Einstein’s equations

If we want to modify Einstein’s equation there are two ways we can do it, either change
the right hand side or the left hand side. By changing the right hand side we obtain

Gµν = κ2(Tµν + TDEµν). (3.42)

This is equivalent with adding another form of matter-density to our universe model, such
as dark energy or dark matter. If we change the left hand side we obtain

Gµν +GMod
µν = κ2(Tµν). (3.43)

28

This is the equivalent of changing our understanding of the spacetime, without having to
introduce new exotic particles to the universe.

We have to be careful when modifying GR, it is a highly successful theory and has
so far passed all tests performed. This means that any modification of GR must keep
intact the success of the original theory, and make sure we get the same results on the
scales we have performed experiments and observations on. A ”screening”-mechanism is
often used to make sure this happens, this is any sort of mechanism that makes sure that
gravity behaves as observed, it shields us from the changes in the modified general theory
on local scales.

3.4 Alternative gravity theories

There exist many different types of modified gravity theories, but there are three general
classes:

� Theories of Gravity with extra fields, such as Scalar-Tensor Theories

� Higher Derivative and Non-Local Theories of Gravity, for example f(R)-theories

� Higher Dimensional Theories of Gravity, such as Kaluza-Klein Theories of Gravity

Each of these are again divided into a multitude of different subgroups of theories.

3.4.1 Theories of Gravity with Extra Fields

In general relativity the gravitational force is mediated through a rank 2 tensor field.
While there are good reasons to couple matter fields to gravity in this way, there is
nothing that explicitly prevents us from adding additional fields. The simplest form is
the addition of a scalar field, but it is also possible to add other fields such as vector,
tensor or higher rank fields.

Scalar-Tensor theories

Scalar-Tensor theories are some of the best established and well studied theories of mod-
ified gravity and they are very good examples of the methods we can use to modify GR.
They are also of particular interest as the field equations they give are simple enough to
allow analytical solutions to several interesting physical problems. If we reduce the num-
ber of dimensions in higher dimensional theories, such as Kaluza-Klein and string models,
we can end up with scalar-tensor theories. One example of a Scalar-Tensor theory is the
symmetron model, which will be covered in greater depth in section 3.6.

3.4.2 Higher Derivative and Non-Local Theories of Gravity

The field equations of GR has at the most only second order derivatives. One way to
expand GR is then to permit higher order derivatives in the field equations. A problem
with this way of modifying gravity is that they are susceptible to introducing instabilities
into the theories. One such theory is f(R)-gravity, which will be discussed further in
section 3.5.

29

3.4.3 Higher Dimensional Theories of Gravity

Riemann, Cayley and Grassmann were some of the first to study higher dimensional ge-
ometry, called Riemann geometry. In the mid 19th century they developed tools to do
calculations on this geometry. It is a central piece of general relativity as spacetime is
based on Riemann geometry. Since Riemann geometry is not restricted to 3+1 dimen-
sions, we have the tools needed to formulate GR in higher dimensions. Some serious
problems appear by doing this, the most dire being that gravity does not behave as a > 3
dimensional force. The Newtonian potential in N-dimensional spacetime generally follows

φN ∝
1

rN−3
. (3.44)

For N 6= 4, we cannot have stable planetary orbits and it is clear that gravity cannot
appear as a > 3 dimensional force in our solar system. The extra dimensions added
are therefore most often hidden in some way. In most theories it is spatial dimensions
that are added, the addition of extra time dimensions have been studied, but extra time
dimensions might lead to problems with causality as two time dimensions permit closed
time-like curves in the form of circles in the plane.

Kaluza-Klein Theories of Gravity

Kaluza-Klein theory grew from an attempt to unify gravity and electrodynamics. The
basic idea behind a Kaluza-Klein theory is to look at GR on a 4+1 dimensional manifold,
a manifold with N dimensions is a topological space that close to each point resembles
normal N-dimensional Euclidean space. One of the spatial dimensions is assumed to be
small and compact. We can then perform a harmonic expansion of all fields along that one
extra dimension, creating an effective 3+1 dimensional theory. This is the same idea used
by 10 dimensional string theories and 11 dimensional M-theory. Each different method
used to reduce the theory to four dimensions give a new four dimensional theory, so there
is a plethora of different effective theories. But there are complex unanswered question
with such a theory, for example why one of the spatial dimensions is much smaller than the
others, and what mechanism is behind the expansion of the three extended dimensions?

3.5 f(R) gravity

f(R) gravity is one of the simpler forms of modified gravity and was first proposed by
Hans Adolph Buchdahl in 1970 (Buchdahl 1970). These theories generalize the Einstein-
Hilbert action by adding additional scalar curvature invariants, done by replacing the
linear function of the Ricci scalar with a more general function, f(R). It is a family of
theories that is defined by this function of the Ricci scalar3. These theories have been
studied extensively and are well known, they can lead to a period of accelerated expansion
early in the history of the universe and can thus explain inflation. Recently f(R) gravity
have also been of interest as a possible explanation for the observed accelerated expansion
of the Universe today. f(R) theories behave in such a way that the mass of the scalar

3It is from here the name originates.

30

field becomes large near dense bodies, making the force short ranged, thus effectively
suppressing the magnitude of the scalar force in denser regions, such as our solar system.

The actual modification from standard general relativity is made by generalizing the
Lagrangian of the Einstein-Hilbert action,

SEH =
1

2κ

∫ √
−gRd4x. (3.45)

and R is replaced by a function of R, f(R),

SEH =
1

2κ

∫ √
−gf(R)d4x. (3.46)

The field equations we derive from this action are covariant and Lorentz invariant for
the exact same reasons that Einstein’s equations are. To get standard gravity from a
f(R)-theory we just set

f(R) = R. (3.47)

There are 2 different variational methods used to reduce the Einstein-Hilbert action
to Einstein’s field equations. One is the metric (or second order) formalism, here the
field equations are derived by variation of the action with respect to the metric tensor
gµν . The affine connection Γαβγ depends on gµν . The other formalism is Palatini (or first
order) formalism, where Γαβγ and gµν are independent variables. Because of this, as we
intuitively might expect, there exists several variants of f(R) gravity. By using the metric
formalism we get metric f(R) gravity while Palatini formalism gives Palatini f(R) gravity.
There also exists a third variant of f(R) gravity: metric-affine f(R) gravity. This is a
more general theory, and by making certain assumptions it can be reduced to both metric
f(R) gravity and Palatine f(R) gravity. Metric-affine f(R) gravity is derived by using
Palatine formalism, but without the assumption that the matter action is independent of
the connection.

Various f(R) models

Since f(R) gravity changes with the chosen function, there exists an infinite amount of
f(R) models. The changes can also be made arbitrarily small, which makes it hard to test
f(R) models against standard general relativity or even against other f(R) models. To
reduce this problem it is often assumed that the function f(R) takes the form of a Taylor
expansion.

f(R) =
∞∑
i=0

aiR
i (3.48)

= a0 + a1R + a2R
2 + (3.49)

Here the first term is similar to a cosmological constant and setting the second term to
a1 = 1 give us standard general relativity. The most realistic f(R) model to date is found
by using the function f(R) = R + αR2, it was the first inflation model introduced by
Starobinsky in 1979 (Starobinskǐi 1979). Generally the function follows f(R) = R+αRn,
but as shown by Hwang and Noh (Hwang & Noh 2001), there is only one viable option,
with n ≈ 2. The αR term leads to the accelerated expansion of the universe while the
linear R term makes sure that inflation ends smoothly. This is a viable theory to the
standard scalar field inflation.

31

3.6 Symmetron model

Much of recent research have focused on developing screening mechanisms to explain why
scalar field have not been detected in local experiments of gravity, such as in the solar
system. The symmetron model, a scalar field theory, elegantly provides such a screening
mechanism. It is one of the known mechanisms for screening a fifth force, and thus
recover general relativity in the dense regions of the universe. It contains a scalar field
that permeates the universe and is the cause of a new force that interacts between massive
objects, this field is called the symmetron field, φ. The key property of this field is that
it is symmetric in regions with high density, while in regions of low density the symmetry
is broken and the field mediates a new force. When the symmetry is broken the field
couples to matter with a given matter coupling energy.

In this theory the vacuum expectation value (VEV) of the scalar field depends upon the
local matter density, the VEV of an operator is the operators expected value in vacuum.
The VEV becomes large in regions with low matter density and low in regions with high
matter density. In vacuum the scalar field gets VEV 6= 0, which breaks symmetry φ→ −φ.
In high density matter fields φ is confined close to zero.

Since the matter density of the universe changes with time, the effective potential of
the symmetron field evolves and we get a phase transition when the matter density falls
below a critical value. For a different range of initial conditions the symmetron scalar
field reaches this symmetry-breaking vacuum at the present time. N-body simulations of
the evolution of structure formation shows that there are differences in halo structure for
halos formed before and after this phase transition.

The symmetron model was first introduced with a hope that it could explain the
accelerated expansion of the universe, but it has been showed that the energy density of
the symmetron field is too low to be able to contribute to the dark energy. The symmetron
model therefore needs to add a cosmological constant to restore the accelerated expansion,
and because of this the background evolution of the symmetron model is indistinguishable
from the ΛCDM universe, (Hinterbichler et al. 2011). But since the symmetron model
provides an elegant screening mechanism, there have been proposed theories that use the
symmetron model as a switch that turns on f(R)-gravity once the symmetron field reaches
the symmetry broken phase (Bamba et al. 2012).

The symmetron model is specified by the following action

S =

∫ √
−g
[
R

2
M2

pl −
1

2
(∂φ)2 − V (φ)

]
d4x+ Sm(g̃µν , ψi). (3.50)

Here Mpl is defined as Mpl ≡ 1√
8πG

, ψi are the various matter fields. g̃µν is a conformal
rescaling of gµν given by

g̃µν = A2(φ)gµν . (3.51)

We can the obtain the Einstein equations from equation 3.50 similar to how we did
in section 3.2.1. The cosmology obtained from a coupled scalar field model is strongly
constrained by local measurements of gravity putting constrains on the coupling strength
and range of the scalar field.

The fifth force is generally stronger for smaller halos than large ones, because small
halos are most often located in low density regions of space where there is less suppression
of the force. Because the fifth force is dependent on matter density, dark matter halos

32

in high density regions will generate a different fifth force in comparison to similar halos
in low density regions. At large scales the galaxies in the universe is divided into galaxy
filaments, these are among the largest known cosmic structures in the universe. They are
massive, thread like structures that form boundaries of large voids in the universe. Due
to contrast in matter density inside the filaments compared to the voids, halos along these
filaments are going to experience a direction dependence in the fifth force. This has an
impact on the shape of the halos, they can become elongated.

3.7 Tests of general relativity

3.7.1 Classical tests

Einstein proposed three different tests of general relativity in 1916 (Einstein 1916), called
the classical tests of gravity. Shapiro proposed another test, the light travel time delay test
(Shapiro 1964), which also is considered one of the classical tests. All modified theories
of gravity must be able to explain and reproduce the observed values in these tests. The
classical tests are:

Perihelion precession of Mercury’s orbit
The perihelion of Mercury’s orbit is rotating around the sun. This precession de-
viates from the predicted precession calculated using Newtonian mechanics, but is
fully explained using general relativity.

Gravitational lensing
A matter distribution bends the trajectory of light moving close to it. This was one
of the first observational confirmations of general relativity.

Gravitational redshift of light
Light moving out of a gravitational field is redshifted when it is observed in a region
with a weaker gravitational field.

Light travel time delay
This is a relativistic delay in the round trip a radar signal takes when bouncing of
a planet in the solar system. The measurements are performed so that the signal
moves close to the sun, to maximize the effect of the suns gravitational potential.

3.7.2 Modern tests

In addition to the classical tests, there are several other tests that a modified gravity
theory must pass in order to be accepted. As with the classical tests, all modified theories
of gravity must be able to explain and reproduce the observed values.

Completeness
To be complete, a theory must be able to analyze every experiment of interest.
If a theory cannot predict gravitational redshift or the orbit of planets, it is not
complete. It must also mesh with all other physical theories.

33

Agreement with the Newtonian mechanics
In the limit of a weak gravitational field created by slow moving objects the model
must agree with Newtonian mechanics as well as special relativity.

Cosmological tests
Cosmological tests are fairly new, and these are better at discerning between differ-
ent gravitational theories. They are explained in more detail later in this section.

Frame-dragging tests
In general relativity a massive rotating object will affect the metric of spacetime.
This will make the orbit of a nearby test particle precess.

Cosmological tests

Gravitational waves are one of the best methods to test different theories of gravity. A
gravitational wave is a ripple in the curvature of spacetime, it propagates as a wave,
traveling outwards from the source. All known modifications of general relativity predict
the existence of gravitational waves, but not the same properties. The type of the observed
gravitational wave will rule out several modified gravity theories. The gravitational waves
can take on a lot of different forms and there are several ways we can discern between the
gravitational waves predicted by the different theories. One property that varies is the
speed the waves propagate with. In GR the speed of the waves are equal to the speed
of light in vacuum, while in many other theories the speed is lower. By comparing the
arrival time of the electromagnetic radiation with the arrival time of the gravity waves
several models can easily be eliminated.

A better, second test is to measure the polarity of the gravitational wave. General
relativity is the only theory that predicts radiation with helicity modes ±2. How much
observations of the polarity can constrain the gravity theories depends upon if we can
identify the source of the waves. If the source can be identified it is possible to obtain the
polarization mode, if not it might still be constrained to a limited amount of possibilities.
There exist six different polarization states giving us six different tests for modified gravity
theories, one for each mode. In GR the radiation is always quadrupole radiation that
carries away positive energy while many other theories predict dipolar radiation where
they sometimes carry away negative energy. This could be used as an additional test.

Gravitational waves have not yet been directly detected, making these tests unable to
be performed, but there are indirect evidence for gravity waves existence (Hulse & Taylor
1974).

Parameterized post-Newtonian formalism

Post-Newtonian formalism is a tool that expresses theories of gravity in terms of the lowest
order derivations from Newtonian gravity. Parameterized post-Newtonian formalism is a
version of this, that in explicitly states how the parameters in the modified theories of
gravity differs from Newtonian gravity. This is a useful tool when comparing modified
gravity theories to Newtonian gravity in the limit of a weak gravitational field created by
a slow moving object. It is also very useful when comparing different modified theories of
gravity against each other.

34

N-body simulations

To be able to observe the evolution of structure formation in the universe in the non-
linear regime we are required to perform N-body simulations, these simulations are an
important tool to see how the large scale structure of the universe evolves in different
schemes of modified gravity. As mentioned, some theories of modified gravity, such as
the symmetron model, affects the shape of halos. So when we know the evolution of
the structure formation for a given theory, we can compare it with observations to see
how well the fit is. To be able to make sense of the output of a N-body simulation we
need to perform a halo finding, as it makes no sense to compare the individual particles
from the simulations with actual observations. What the halo finding process entails is
to determine where there are groups of galaxies bound together by gravity. Once these
groups are found we can compare them with observational data.

35

36

Chapter 4

N-body simulations

4.1 Introduction

N-body simulations simulate how a dynamical system of N particles behave and evolve
under the influence of physical forces.Numerical simulations of N-body systems have a
surprisingly long history, the first calculations was done by Sebastian von Hoerner in
1960, who performed simulations with 16 particles (von Hoerner 1960). From then on the
number of simulated particles have evolved in accordance with Moore’s law (Moore 1965)
roughly doubling every 18 months.

The particles treated by an N-body simulation often correspond to actual physical
objects, but not necessarily. An example is a N-body simulation of a cloud of gas, it is
not feasible to have each molecule in the cloud represented as a particle, instead each
particle in the simulation represents a much larger quantity of gas. On the other hand, if
we simulate a solar system it is natural to assign each physical object as particle in the
simulation. Cosmological N-body simulations are often used to study the evolution of the
large scale structures in the universe, in this case each ”particle” is often a gathering of
dark matter the size of a billion solar masses.

The general idea behind a N-body code is quite simple, the code only consists of two
major modules, one to calculate the force on all particles from a given particle configu-
ration at a given time and another to move all particles according to the force affecting
them. This general algorithm can be seen in Algorithm 1. The complications come from
the sheer number of particles being simulated, both these modules are computationally
intensive, especially the force calculation, making optimization of the code vitally impor-
tant.

Algorithm 1 Pseudocode for a N-body simulation

for each time step t do
for each particle i do

calculate F (xi(t))
integrate to calculate change in position, ∆xi
xi(t+ ∆t) = xi(t) + ∆xi

end for
end for

37

There exist two major types of N-body calculations, collisional and collisionless. Here
collisional does not mean actual collisions between objects, but rather close encounters
between them. The latest collisional N-body simulations have reached more than 106

particles (Harfst et al. 2007), while collisionless calculations have reached over 109 particles
(Springel et al. 2005; Teyssier et al. 2009; Stadel et al. 2009; Iliev et al. 2010). The
difference between collisional and collisionless N-body simulations can be explained using
the relaxation time of the system, commonly defined to be the time it takes for an object’s
velocity to change by a order of itself. Collisional N-body simulations are dynamically old,
the dynamic time is short compared to their age and the relaxation time is shorter than
the simulated timespan. An example of such a system is globular clusters, which most
often orbit deep within the gravitational potential of a host galaxy. The accumulated
effect of many small close encounters between objects significantly affects the evolution
of the system.

In a collisionless N-body simulation the long term effect of two body encounter are neg-
ligible.The most often encountered collisionless system is galaxies and systems of galaxies,
here the number density is so low and the time scale so large that stellar encounters no
longer play an important role. As such cosmological N-body codes are collisionless. If
there are no initial perturbations, a collisionless system settles into a dynamic equilibrium.

The universe is large compared to the area of interest in a cosmological N-body sim-
ulation and the simulation volume can not be assumed to exist in isolation. If there are
empty space outside the simulation volume, matter tends to collapse towards the center
of the volume. The simplest solution to avoid this is to use periodic boundary conditions.
Due to this, most simulations are performed inside a cubical volume, as that is the natural
geometrical volume to use with periodic boundary conditions.

4.2 Numerical methods for calculation of the force

The computation of the gravitational force is the most time consuming part of any cos-
mological dark matter N-body simulation, thus a lot of work have been done to develop
fast force calculation algorithms.

4.2.1 Direct summation

Direct summation is the easiest and most precise method to compute the force, but by
far the slowest. The contributions to the force on a particle is summed up from all other
particles, and the process repeated for each particle. This method scales as O(N2), so
direct summation quickly becomes useless as the number of particles increase.

4.2.2 Tree codes

The tree code was developed by Barnes and Hut(Barnes & Hut 1986). The idea behind
this algorithm is to approximate the long range interactions between particles by gathering
the far away particles into groups. Then the force from each group is computed, instead
of from individual particles. There are now less interactions to be calculated, a tree code
therefore scales as O(N log(N)) compared to the O(N2) of the direct summation. The

38

Figure 4.1: Example of an octree, image courtesy of wikipedia

disadvantage with this method is that the approximations introduce small errors in the
force calculations.

An octree is used to store the particles; it is a tree data structure in which each internal
node has exactly eight children. The octree is generated by dividing the volume cube into
eight, one partition for each node in the octree and then loop through all particles. Each
particle is put into the appropriate node, if the given node already contains a particle,
that node is split into eight, and the original particle is put into the correct node before
the new particle is tried to be assigned to a node. This process continues until the new
particle is in a node by itself. A visualization of a quadtree can be seen in figure 4.1.
This process is repeated for each particle until all have their own node. The quadtree is
then traversed from the bottom up and the center of mass and total mass for each node
is calculated.

This tree is used when the forces is calculated when the particles are far away from
the given particle we do not traverse completely through the tree, but stop once the given
threshold is reached and use the total mass and position of that node. The octree does
not need to be recomputed for each time step, which saves valuable CPU time. This
threshold is called the opening angle, θ, which determine how far away particles must be
before they are grouped together. The opening angle is given by

θ =
s

D
, (4.1)

where s is the width of the region represented by the internal node, and D is the distance
between the particle and the node’s center of mass. The node is deemed sufficiently far
away when θ is smaller than a given value. The parameter θ gives the accuracy of the
simulation, larger values increase the speed of the simulation but decrease accuracy. When
θ = 0 the algorithm degenerates to a direct sum algorithm, as no internal node is treated
as a single group.

39

4.2.3 Particle Mesh codes

The particle mesh (PM) scheme is a different way to speed up the calculations. This
scheme is based on representing the gravitational potential on a Cartesian grid and then
solve the Poisson equation for this grid. The PM method consist of three steps. The
first is to calculate the density field. The simplest method is to assign each particle to
the closest grid point (NGP), but this method creates large truncation errors. A better
method is to use multi-linear interpolation to assign a particle to the eight closest grid
points, called Cloud-in-Cell (CIC). What makes this method so fast is the Fourier space
solution of the Poisson equation, given as

φ̂(~k, t) = −4πGa2

k2
~ρ(~k, t). (4.2)

Here φ̂ and ρ̂ are the discrete Fourier transforms of gravitational potential and the mass
density. The last step is then to interpolate the gravitational force back to the particles.
The PM method scales as O(N) + O(Ng logNg), where Ng is the number of grid points
used. For standard grid sizes the PM method is faster and needs less memory than he
tree algorithm. The disadvantage with this method is that it does not cover close particle
interactions very well since the method has low short range accuracy.

4.2.4 Particle-Particle Particle-Mesh codes

This scheme, called a P3M scheme, is a hybrid algorithm between a Particle Mesh code
and a direct particle-particle code and tries to improve the resolution of the PM scheme.
The idea is to split the force into a long range and a short range force, the PM method is
used to calculate the long range force, while Particle-Particle interaction is used to correct
the force at shorter distances, when particles are within two or three grid spacings. In the
presence of a dense cluster of particles the Particle-Particle step significantly slows the
code down, to avoid this, an adaptive mesh is often chosen (Adaptive Mesh Refinements
- AMR), so that we have a finer resolution in regions of high density. Pair summation
is still done, but now for particle pairs within two or three grid spacings of the subgrid.
Adaptive P3M codes scales as O(N logN). At the present time parallel adaptive P3M
schemes seems to be the best choice for large cosmological N-body simulations.

4.3 Gas dynamics

If baryons are present in the simulations gas dynamics must be taken into consideration.
The strong non-linearity of the gas dynamical equations makes it difficult to develop
numerical methods whose accuracy can be proven. One of the more popular methods is
to use Smooth-particle Hydrodynamics (SPH), in this algorithm the fluid variables, such
as baryon density, temperature, velocity, etc., are represented as fixed mass particles.
The baryonic mass density is calculated by smoothening each particle by a smoothening
function, W . Since SPH makes use of particles it is an extension of N-body methods,
making it easy to extend existing N-body codes with this method.

40

4.4 Numerical methods for moving particles

Once the force have been calculated the particles need to be moved, which is done by
integrating the equations of motion. The equations of motion for a set of particles only
interacting through gravity can be written as (Bagla & Padmanabhan 1997).

ẍ+
ȧ

a
ẋ = − 1

a2
∇xϕ, (4.3)

∇2
xϕ =

3

2
H2

0 Ω0
δ

a
, (4.4)

here x is the comoving coordinates, ϕ is the gravitational potential due to perturbations
and δ the density contrast. These equations are then numerically integrated for each
particle. Any numerical integration scheme can be chosen, for example the leap-frog
method or second/fourth order Runge-Kutta. The fourth order Runge-Kutta method is
shown as an example. We have an unknown function y(t), and know how it changes with
time

ẏ = f(t, y), y(t0) = y0. (4.5)

A step length h is chosen and the notation y(t+ nh) = yn is used, where n is the number
of steps taken. The scheme now becomes

yn+1 = yn + 1
6
h (k1 + 2k2 + 2k3 + k4) , (4.6)

tn+1 = tn + h, (4.7)

for n = 0, 1, 2,. . . , where

k1 = f(tn, yn), (4.8)

k2 = f(tn + 1
2
h, yn + h

2
k1), (4.9)

k3 = f(tn + 1
2
h, yn + h

2
k2), (4.10)

k4 = f(tn + h, yn + hk3). (4.11)

The fourth order Runge-Kutta method is as the name implies a fourth-order method, so
the local truncation error is on the order of O(h5) while the total accumulated error is of
order O(h4).

4.5 Ramses

An example of a N-body code is RAMSES (Teyssier 2002). RAMSES is based on Adaptive
Mesh Refinements, with a tree data structure that allows recursive grid refinements. These
refinements are created and destroyed dynamically from cell to cell, which makes the code
more flexible and better able to capture complicated flows. The hydrodynamical solver
in RAMSES is based on the Godunov scheme, a scheme for solving partial differential
equations, and is used to treat the evolution of baryons. The refinements are found by
an algorithm based on a ”quasi-Lagrangian” mesh evolution, ensuring that the two body
relaxation can be ignored. The numerical integration method is a second-order midpoint
scheme. RAMSES outputs a file for each processor, that contains the position and velocity
of each particle at a given time, calculated by the given processor.

41

4.6 ISIS

Another example of a N-body code is ISIS (Llinares et al. 2013), this is the code that
provides the datasets our halo finder is tested on later in this thesis. ISIS is based in
RAMSES but can additionally solve for a large class of scalar-tensor theories of modified
gravity. The large modification is that a non-linear implicit solver have been added to
take into account the equation of motion of the scalar field in a static approximation
instead of the standard linear Poisson solver implemented in RAMSES.

42

Chapter 5

Halo Finders

5.1 Introduction

As seen in Chapter 4, a cosmological N-body simulation typically calculates the evolution
of a set of particles and output the position and velocity of each particle at a given time.

N-body simulations are stochastic, the initial conditions are random and the evolution
chaotic. Comparing the particles positions and velocity directly with observations are
optimistic. Due to this there have been developed a series of different statistics that
we can use instead. Examples are the N-pint correlation function, the distribution of
particles in each cell, the velocity distribution of single particles, etc. For this thesis the
most interesting statistics is the internal properties of clusters of galaxies, halos, but as
such we need to find the clusters and which particles belong to a cluster. This is the job of
a halo finder. The field of halo finding is fast expanding, in the last ten years the number
of halo finders have tripled (Knebe et al. 2013).

The first generation of halo finders focused on finding isolated halos, while modern
halo finders look for halos within the uniform background density of the universe as well
as subhalos contained within larger host halos. There are also new challenges with regard
to the size of the simulations. The simulation data have become to large to analyze on
a single CPU in a reasonable amount of time and thus the developers have started to
parallelize their halo finders to cope with the problem. There also is a starting trend to
include halo finders in the N-body simulation codes to reduce the amount of data that
needs to be stored. The problem with such a combination of N-body code and halo finder
is if the halo finder is incomplete or we want to look at new properties of the halos, it
would then be necessary to rerun the entire simulation, as the raw simulation data is lost
in the halo finding process and only a reduced dataset is saved.

5.1.1 What is a Halo?

Since it is desirable to write a program that identifies halos in the resulting chaos of a
N-body simulation it might be useful to know what a halo is. Unfortunately this is a
surprisingly hard question to answer and it has been the focus of several studies (Maccio
et al. 2003; Prada et al. 2006). It is commonly agreed that a halo is a gravitationally
bound object (Knebe et al. 2011), but even with this simple definition there exists several
problems.

43

The first problem arises from the fact that halos may have substructures. Should the
mass of a subhalo be considered as a part of the mass of the host? The answer to this
depends on the specific scientific problem investigated, for example studies of gravitational
lensing need to know the complete mass of both the host and its subhalos. It is important
to note that in some halo finders return the host mass including the mass of substructure,
e.g AHF (Knollmann & Knebe 2009), while others do not.

The second problem is how to define the edge of a halo. The most commonly used
method assumes spherical symmetry and uses a theoretically calculated factor for the
reference density, which varies from halo finder to halo finder. To complicate matters, it
is not certain that dark matter halos can be approximated as spherical, especially when
the effects of modified gravity theories is taken into account, as mentioned in section
3.6. The above mentioned problems regarding substructure of a halo is also the cause
of differences when defining the edge of a halo, should the subhalos be included in the
definition of the edge of the host halo or not?

As we can see from this short discussion there are several different definitions of some
of the most basic properties of a halo and none are more correct than the others. The
author of a halo finder code choose a definition that fits the specific problem to be studied.
As such it is important to note that different halo finders will get different results, even
when analyzing the same dataset.

5.1.2 The need for a modified gravity adjusted halo finder

Since there already exist several halo finders why is there a need to implement another?
The problems with existing halo finders is that none of them is equipped to handle sim-
ulation data from N-body simulations that have incorporated modified gravity theories.
That is to say, they run on such datasets, but the implemented equations are derived from
standard general relativity and as such the validity of the results are unknown. Previously
this has not been a big problem, but recently there has been developed a modified gravity
N-body code at the University of Oslo, ISIS, (Llinares et al. 2013). Because of this we
want to write a halo finder, MORPH, that takes into account modified gravity theories
and examine the effects, as there is a need for such a code to complement ISIS.

5.2 The General Method of Halo Finding

The first two halo finders that showed up in literature are the foundation for most halo
finders today. These are the spherical overdensity (SO) method (Press & Schechter 1974)
and the friends-of-friends (FOF) algorithm (Davis et al. 1985). These two methods can
be generalized as Density Peak Locators and Particle Collectors:

Density Peak Locators
Density Peak Locators, such as the SO method, works by finding peaks in the matter
density field by different means. One example is to use a particle simulation to detect
the centers particles gravitate towards. Once the peaks in the matter density field
are located, particles are added in spherical shells of increasing size until the enclosed
mass falls below a predetermined density threshold, derived from a spherical top-hat

44

Figure 5.1: The general steps performed by a halo finder.

collapse. AHF, Amiga’s Halo Finder (Knollmann & Knebe 2009), an example of a
Density Peak Locator, is described in section 5.5.

Particle Collectors
Particle Collectors, mainly FOF algorithms, link together particles that are close
to another in either 3D or 6D phase-space. It is a purely geometric method and
connects particles that are closer than a prescribed length, called the linking length.
There exist a few problems that may arise with this algorithm, the foremost being
the risk of two halos linked together via a ”linking bridge”, figure 6.7. If there is
one particle that is within linking range of two halos, that particle cause the two
separate halos to be linked together as one big halo. It is also impossible to find
substructures within a halo if a fixed linking length is used. Rockstar (Behroozi
et al. 2013), an example of a Particle Collector, is described in section 5.6.

An overview of the general steps in a halo finder can be seen in figure 5.1.

5.2.1 Identification of possible halo candidates

The first step in almost all non-FOF halo finders is to generate a list of potential halo
centers. This is done by either locating peaks in the density field or minimums in the
gravitational potential field. One method is to simulate water particles flowing in the
gravitational potential field and see where they gather, which are at the positions of the
minimum points in the potential. There exists techniques that avoid this step by using
velocity (e.g. STF (Elahi et al. 2011)) or phase-space (e.g. Rockstar (Behroozi et al.
2013)) based methods.

45

5.2.2 Particle Collection

After the list of potential halo centers have been generated particles belonging to these
objects must be gathered, how this collection is accomplished varies from halo finder to
halo finder and the differences affect the final results. One difference stems from the choice
whether a particle can belong to more than one object at any given time. If it can not,
the mass of a subhalo is not considered a part of the mass of the host halo. If a particle
can, it may be assigned as both a member of a subhalo and the subsequent host halos.

5.2.3 Calculating position and velocity of halos

Once a list of possible particle candidates have been created for each potential halo their
position needs to be determined. There is a wide array of different ways to do this, some
halo finders use the center of mass for a given fraction of the particles while others use
the position of the density peak or the minimum in the gravitational potential used in the
identification of possible halo candidates step. The same must to be done for the velocity
of each halo, which can be calculated by a simple average of all particles, a central subset
or using the velocity of the most bound particle.

5.2.4 Unbinding procedure

The purpose of the unbinding procedure is to remove particles that are not gravitationally
bound to a halo. Such a particle would, after a given time have moved away from the
halo and it would be wrong to consider it a part of the halo. The unbinding criterion is
given by the escape velocity of a particle

vesc =
√

2φ, (5.1)

where φ is the gravitational potential. Particles are removed from a halo if their velocity
v > vesc. The unbinding procedure can be linked to the calculation of the position and
velocity of halos, since it removes particles from a halo, and may thus introduce a need
for the velocity and position to be recalculated. The unbinding procedure can also be
considered partly linked to the particle collection algorithm. Some halo finders rely on
the fact that particles that do not belong to a halo are removed in this step. They can
therefore use collection methods that are less conservative, as particles can be added to a
halo without fear of it not being an actual member of the halo.

All halo finders treat halos as if they are in isolation in the unbinding procedure, it is
not a part of a host halo and there are no subhalos around. There are several variations
in how different halo finders calculate the gravitational potential, the order in which
they remove particles and when to stop the unbinding procedure. This leads to some
discrepancies between the halo finders in their final results. Some codes calculate φ using
a tree structure, while others assume spherical symmetry. Furthermore there are codes
that remove one particle at a time before recalculating φ, while others remove all particles
found to be unbound in one iteration before reiterating the entire unbinding process,
others again restart the process once a fraction of the particles have been unbound. In
addition there also exists different termination criteria, some codes stop when there are
no more particles to be removed while others stop once a fraction of the particles have

46

been removed. It also has to be mentioned that there exists codes that do not have any
unbinding procedures, for example ADAPTAHOP (Aubert et al. 2004).

All configuration space halo finders need an unbinding procedure no matter how con-
servative the particle collection, to make up for false positives (Knebe et al. 2013). 3D
space halo finders are essentially converted into mock 6D phase-space halo finders by the
inclusion of an unbinding procedure, since they then take into account a particle’s velocity
when deciding if the particle is to stay as a member of the halo. Phase-space halo finders
are more reliable when creating the particle list, as they take into account both velocity
and position of each particle. Thus there is a lesser need for an unbinding procedure and
a smaller percentage of particles needs to be unbound.

It should be mentioned that the unbinding procedure is not a physically motivated
method, particles can become momentarily unbound to later become bound again. If we
remove these particles because they are unbound, we remove particles that should belong
to the halo. One way to get around this is to track the particles over several time steps.
The need for an unbinding procedure is also dependent on the physical problem being
addressed, and not only the algorithm used in the particle collection. If we only want to
look at the mass of halos, the mass of a few particles that should be removed only give a
small error in the final result. On the other hand parameters such as the spin of a halo,
are sensitive to such interlopers.

5.2.5 Calculating halo mass and edge

This is one of the more problematic topics, as discussed in section 5.1.1, and have given
rise to several different definitions, below are a few taken from Knebe et al. (2013).

� The halo edge is the distance to the farthest bound particle.

� The halo edge is defined via the spherical top-hat collapse model.

� The halo edge is the ’zero-velocity’ radius.

� Do not define an edge, just give the bound particle list.

� It should be defined dynamically, only particles that stay with the halo for several
time steps are considered a part of the halo.

As we can see from this, it depends on the actual scientific problem which method we
should choose when calculating halo mass and edge.

5.3 Source of the scatter in the final result

As we have seen, halo finding is not as easy as applying a filter to the results from a
N-body simulation. It requires several steps, and many of these steps can be done very
differently, changing the results depending on the method used. Because of this we will
get a scatter in the physical properties of a halo depending on the halo finder used, this
is unfortunate as we would like to get the same result independently of the code.

There are two major reasons for this scatter:

47

Quantity Scatter
Set of common objects:
Position < 1%R200

Bulk velocity < 1%Vmax

M200c 3%
Vmax < 1%
Rmax 2%
Shape 5%
Spin 18%

Full cataloges:
Mass function 10 %
Rmax function 20 - 30 %

Table 5.1: Scatter in the main properties computed by halo finders, from Knebe et al.
(2013)

� Halo finder methodology.

� Definition of halo properties.

The scatter from halo definitions can be taken unto account as we know which defi-
nitions are used, and can change them as needed. Thus the scatter must originate from
the halo finder methodology. Here there are two possibilities, the halo finding scheme or
the unbinding method. Knebe et al. (2013) examined these sources closer and found that
most of the scatter in the halo finder methodology comes from the initial particle collec-
tion. They tested the scatter between halo finders for a set of common objects versus the
full halo catalog, their results are in table 5.1. As can be seen from the set of common
objects the scatter in Vmax < 1% and M200c 3%

One of the current goals of halo finders are to get more consistent results, at the
present halo finders can give 10% error bars on halo mass and 20-30% error bars on Vmax
(Knebe et al. 2013).

5.4 Astrophysical Applications

The applications of halo and sub-halo information are spread over several different fields of
astrophysics. Galaxy formation, dark matter detection, gravitational lensing and modified
gravity simulations are described below. Other possible applications are examining halo
streams and tidal debris, large-scale structure formation and near-field cosmology.

5.4.1 Galaxy formation

Simulating the evolution of the visible universe is a harder task than to just track dark
matter. Visible matter have several types of dynamics that dark matter does not have.
This creates additional challenges for halo finders, as we need a well defined treatment of
gas particles.

48

5.4.2 Dark Matter Detection

There are two distinct ways to detect dark matter, direct and indirect detection. Indirect
detection tries to observe secondary particles from either the decay or self-annihilation of
dark matter while direct detection searches for the nuclear signature recoil of dark matter
collisions. Both of these methods are sensitive to dark matter substructure in dark matter
halos. The emission for indirect detection scales with the density, therefore subhalos can
enhance the signal compared to the signal from a smooth dark matter halo (Stoehr et al.
2003). Direct dark matter detection is sensitive to the local velocity distribution and
because of this subhalos can distort the signal. To be able to theoretically model the
received signal we need an accurate model of the complete structure of the dark matter
halo along with the velocity distribution, so we know what the signal we are searching for
looks like.

5.4.3 Gravitational Lensing

A gravitational lens is a distribution of matter, such as a halo, that lies between us and
a distant object, e.g. a galaxy. This matter distribution bends the light from the distant
object and this can be used to find the mass distribution for the object the light is lensed
around (Einstein 1936). There exist three distinct types of gravitational lensing, strong-,
weak- and micro-lensing. Halo finders are not of immediate relevance for micro lensing
and it is therefore ignored.

Strong Lensing

In strong lensing we get multiple images of the distant object. We can use the particular
features of the multi-image to determine the matter distribution of the lens. To be able
to do this we need reliable models for how the matter could be distributed. These models
are primarily acquired from simulations of the cosmic structure formation, which in turn
use one or more halo finders to find the dark matter halos.

Weak Lensing

Most gravitational lenses are weak, which differs from strong lensing in that we do not get
separate images, but only a distortion of the original image. Weak gravitational lensing is
one of the key methods used to test cosmological models, and dark matter and dark energy
distributions. As with strong lensing we need reliable models of the matter distribution
of the lens, and therefore need halo finders for the same reasons.

5.4.4 Modified Gravity Simulations

This is the field most relevant for this thesis. There have been developed N-body codes
at the University of Oslo that simulate the evolution of particles according to a specific
modified gravity theory (Llinares et al. 2013). We can use these codes to test MG theories
to see which might be plausible and which can be discarded. Many of the standard halo
properties, such as virial radius, rotation curve, spin, etc., are calculated using GR and
therefore must be changed to take into account modified gravity models. This also means

49

that the results of the unbinding procedure are affected when using modified gravity, and
as such MG must be taken into consideration when the unbinding is performed.

5.5 AHF

AHF (Knollmann & Knebe 2009) is a Density Peak Locator that is parallelized with MPI
and OpenMP. The halo finding algorithm is fully recursive and automatically identifies
halos, sub-halos, sub-sub-halos, etc. AHF starts by covering the simulation area in a grid
of user defined size and in each cell the particle density is calculated using a triangular
shaped cloud weighing scheme. If the particle density is above a given threshold the cell
is divided into a finer grid with half the cell size and the density is recalculated. If the
density still is above the threshold the process is repeated until no further refinements are
needed. By doing these refinements we get a grid that follows the density field.

We now start with the finest cells and mark isolated regions as potential halos. Then
the same is done with the slightly coarser grid, but it is also linked together with the
inner halo. Following this procedure, a tree of nested halos is created, that follow the
halos from high density to low density. If two isolated patches are linked together, the
two branches of the two trees are joined. This creates a tree structure of nested grids
that follows the density contour levels. Once this is done substructure can be determined.
The tree is traversed from top to bottom, if the tree splits up, the number of particles in
each branch are counted and the branch with the most particles is considered the host
halo while the other branches are subhalos. This is done for each level where the tree
branches. Now AHF runs the unbinding procedure, the halos are treated as if they are
in isolation and the gravitational potential is calculated using standard general relativity,
see section 6.5.1. Particles that have a velocity greater than the local escape velocity are
removed and the removed particles from the subhalos are tested against the host to see if
they instead are bound there. It is important to note that subhalos are included in their
host halos.

5.6 Rockstar

Rockstar (Behroozi et al. 2013) is a phase-space based halo finder. It is designed to
maximize halo consistency across several time steps, in addition to a focus on efficiency
and parallelization. This halo finder MORPH most closely resembles.

The first step Rockstar performs is to run a fast 3D FOF method and the found groups
are used to divide the simulation up into separate work units. Rockstar uses a modified
FOF algorithm, as usual neighboring particles are assumed to be a part of the same halo
if they are within the linking length, but if a particle has more than 16 neighbors, the
neighbor-finding process is skipped for these particles and Rockstar checks for the particles
up to twice the linking length. If any of those particles are within this new linking length
and belong to another FOF group, the two groups are linked together. This algorithm
makes it so neighbors must be calculated over a larger distance, but it needs far fewer
of these calculations. It also makes it so that Rockstar can use a larger linking length,
with b > 0.2, than usual in FOF-based halo finders. The algorithm becomes faster when
a bigger linking length is chosen.

50

For each FOF group, Rockstar creates a hierarchy of FOF subgroups in phase space
and adaptively calculates a phase space linking length. The phase-space distance between
two particles, p1 and p2, is given as:

d(p1, p2) =

(
|~x1 − ~x2|2

σ2
x

+
|~v1 − ~v2|2

σ2
v

)1/2

, (5.2)

here σ2
x and σ2

v are the particle and velocity dispersion for this specific FOF group. For
each particle the distance to the nearest particle is calculated and the linking length is
chosen such that a fraction, f = 0.7, of the particles have a neighbor closer than the
linking length. If there are more than 10,000 particles in the halo, a random subset of
10,000 particles are used to calculate the linking length, this is to speed up the code since
this algorithm scales as O(N2). Once subgroups are found this process is repeated for
each subgroup until the minimum number of particles is reached for each subhalo. A seed
halo is generated for each such subgroup at the lowest level and particles are recursively
assigned to the closest seed halo. This distance is computed by

d(h, p) =

(
|~xh − ~xp|2

r2
vir

+
|~vh − ~vp|2

σ2
v

)1/2

, (5.3)

rvir =

(
Mh

4
3
πρvir

)1/3

. (5.4)

Here h denotes the halo and p the particle. σv the velocity dispersion of the halo, MH the
mass of the seed halo and vir the virial overdensity. The authors use the halo radius rvir
to make sure that the particles are close to the main density peak, even if they are close
in velocity space. rvir makes it so that if two halos are within each other virial radius,
velocity space becomes the dominant method of distinguishing between two halos. For
all seed halos the Poisson uncertainty are calculated for the velocity and position, if this
uncertainty is within 10σ the two seed halos are merged.

The halo position and velocity is found by averaging the positions and velocity for the
lowest level seed halo that best minimizes the Poisson error. For the halo masses Rockstar
calculates spherical overdensities, using all particles in all substructures. Rockstar unbinds
particles using a single pass modified Barnes-Hut method to calculate the gravitational
potential and then removes particles that are not gravitationally bound to the halo. The
typical boundness value for a Rockstar run is 98%.

The master process divides the simulation into separate rectangular regions, and then
sends each particle to the appropriate processor, along with particles in the corresponding
ghost zones. Each processor then does 3D FOF calculations and each of the groups found
this way are distributed further for phase-space analysis. A single FOF group is not split
up into several tasks, so the minimum analysis time needed is equal to the analysis time
of the largest FOF group, independently of the number of processors.

51

52

Chapter 6

MORPH Algorithms

The goal of this thesis have been to implement a halo finder that takes into account the
effects of modified gravity. We will now take a look at the methods and algorithms used
in MORPH and describe the new algorithms used to gain independence from the general
relativity method used while performing the N-body simulation. The steps performed by
MORPH are the following:

� Load the N-body data.

� Perform a friends-of-friends (FOF) grid method to split the dataset into FOF groups.

� Send the FOF groups to different slave processors for further refinement.

� Perform a 6D phase space FOF method.

� Calculate the desired statistics.

� Gather the results in the master processor.

6.1 Loading routines

The first step in any halo finder is to read the data from a N-body simulation into memory.
The output of a N-body simulation are doubles describing each particle’s position, velocity
and acceleration, and if applicable other properties such as mass, potential energy and
similar attributes, the exact output differs from code to code. A halo finders task is to
gain meaningful information from such a dataset. Most N-body codes give the output
in binary form, both to increase the speed and to reduce the size of the data files. Each
N-body code uses its own format for storing the data and we must most likely write a new
loading routine for MORPH when working on data from a new N-body code. MORPH
uses 1D arrays to initialize objects, they are on the form in figure 6.1, where the numbers
of the Halo arrays and Particle arrays are put into the appropriate array. The loading
routine simply needs to generate such an array to be able to initialize the data. A typical
N-body dataset looks like figure 6.2, where the position of each particle have been plotted.

53

Figure 6.1: Illustration of array structure.

54

Figure 6.2: Plot of the positions of every 25th particle for the 1283 particle dataset.

6.2 Parallelization

MORPH is designed with parallelization in mind, which impacts the algorithms chosen
and introduces additional steps into the computations. A combination of a 3D FOF and a
6D FOF method have mainly been used. The naive way to perform the halo finding would
be to directly run the 6D phase-space splitting, but the problem is that this algorithm
scales as O(N2), so it would be horribly slow. This is where the idea for the parallelization
enters. If we first run a 3D friends-of-friends algorithm to split the particles up into a set
of independent 3D friends-of-friends groups (FOF groups) we can then send these FOF
groups to different processors to execute the slow 6D phase-space splitting.

A single FOF group is never split up for analysis between different processors. The
reason for this is that we already have done a 3D space friends-of-friends method and all
particles might be bound to a single halo. Therefore all particles must be tested against
all other particles. The analysis time for the largest FOF group thus sets a lower limit
for the wall time of the 6D phase space splitting, this lower time limit is independent
of the number of processors. Because of this we sort all friends-of-friends groups from
highest number of particles to lowest and perform the phase space splitting for the FOF
groups with the highest number of particles first. This ensures that we avoid the case
were the phase space splitting is finished for all FOF groups except the largest, having
one processor working while others are idle. This method helps to minimize the analysis
time, but when the number of halos � number of processors this will generally not be a
problem.

55

6.3 Friends-of-friends algorithms

Recall that the idea behind the friends-of-friends algorithm, as mentioned in section 5.2,
is to connect particles that are close to another in either 3D space or 6D phase-space. It
is a purely geometric method that links particles that is closer than a prescribed length,
the linking length. There are two different methods to do this, first FOF separation,
a non-grid routine1 that scales as O(N2) and a much faster grid version that scales as
O(N logN). The first routine was implemented as a test function, to make sure that both
schemes provide the same answer. It is also easier to grasp the general idea behind the
FOF algorithm by looking at the most basic version.

6.3.1 Friends-of-Friends N 2

The non-grid version is the simplest form of the friend-of-friend methods and have existed
for a long time (Davis et al. 1985), but unfortunately it is also one of the slowest. The
method is quite simple, for each particle we check whether all other particles are within a
pre-specified linking length. If a particle is closer to the original particle than the linking
length it is considered to belong to the same group. Then for all particles found in the first
pass a new search is done, finding particles that are within the linking length of the newly
added particles and attaching them to the same group. This process is repeated until no
new particles are found. If the number of particles is larger than a given threshold, set
to 20 particles, we save the linked particles as a friends-of-friends group, if not they are
discarded. Once this is done the next particle that have not been tested or assigned to a
FOF group is found and the process is repeated until all particles have been tested.

The linking length is chosen as a fraction b of the mean inter-particle distance, in
MORPH this is calculated as the cube root of the mean particle volume:

Linking length =
1

NrParticles3 . (6.1)

The value for b is chosen to b = 0.21, see section 6.8.2 for how this was selected.
Pseudocode for the basic FOF algorithm can be found in Algorithm 2 and the method

used to find the neighboring particles and add them to the halo in Algorithm 3. Since
this FOF scheme scales as O(N2) it is horribly slow for larger simulations and is therefore
nearly useless for any practical purposes.

6.3.2 Friends-of-Friends grid

The FOF grid algorithm is much faster than the standard FOF method. The idea is that
we divide the particles into a grid and if the size of a single grid cell is larger than the
linking length we only need to check all the 26 neighboring grid points as we are assured
that particles in any other cell is further away than the linking length. This negates most
of the unnecessary testing done in the N2 method. We then do almost the same as in
the basic algorithm, but with a few additional steps, this pseudo code can be found in
Algorithm 4. In addition to creating the linked list over all particles at the start, we need
to create a grid over all particles, with a grid size larger than the linking length. This

1This algorithm is interchangeably called both non-grid and N2

56

Algorithm 2 Pseudocode FOF-algorithm

Create linked list over all particles
while True do

Find the next particle not already in a halo from the linked list
if No particles left in the linked list then

Break loop
else

//Find all the neighboring particles and add them to the halo
findNeighbors(Particle, Halo)
if Particles in Halo > minimum number of particles then

Save halo
end if

end if
end while

Algorithm 3 Pseudocode for findNeighbors(Particle, Halo)

function findNeighbors(Particle, Halo)
Add Particle to Halo
Remove Particle from the linked list
for each particle in the linked list, TestParticle do

CalculateDistance(Particle, TestParticle)
if Distance < Linking length then

Add TestParticle to Halo
Remove TestParticle from the linked list

end if
end for
for Each particle found as a neighbor in the previous process do

findNeighbors(Particle, Halo)
end for

end function

57

grid goes from (-1,-1,-1) to (1,1,1) and all particle positions are scaled to this scale. The
width of each cell is given by

Width =
2

LinkingLength
. (6.2)

The grid is then populated, and the particles are inserted into their corresponding grid
cell according to the particles position. Each grid cell contains a linked list of all particles
belonging to that cell, making it fast to access and easy to remove and add particles. We
have a new neighbor finding algorithm, see Algorithm 5. Since the FOF grid method is
only used to divide the simulation into FOF groups that is going to be processed further,
we use a slight modification of the original FOF algorithm. If a particle is found to have
more than a given number of neighbors, set to 10 particles, we immediately drop the
neighbor-finding process and instead calculate the neighboring particles for up to thrice
the linking length, see section 6.3.2. All particles found within this distance are linked
together as before. This means that neighbors must be calculated over a larger distance,
but fewer of these calculations must be made. A comparison between different values of
the scalefactor and the linking length was done to select these values, see below.

This also solves an additional problem that showed up for larger datasets, number
of particles ≥ 5123. The neighbor-finding routine uses recursion to find the neighboring
particles, but for large datasets it takes so many passes through the routine that the stack
gets filled up with function calls, resulting in a segmentation fault. Because of this we
choose a scaling factor > 1. Since this routine now checks for an increased linking length
in dense areas, fewer function calls are made in the recursive routine.

Algorithm 4 Pseudocode for FOF grid algorithm

Create linked list over all particles
Create a grid
Populate the grid with all particles
while True do

Find the next particle not already in a halo from the linked list
if No particles left in the linked list then

Break loop
else

//Find all the neighboring particles and add them to the halo
findNeighborsGrid(Particle, Halo)
if Particles in Halo > minimum number of particles then

Save halo
end if

end if
end while

We ran the FOF-grid algorithm on the test dataset with 1283 particles and plotted
every 25th particle, see figure 6.3. When compared to figure 6.2 it can be seen that many
particles have been removed and that reasonable FOF groups have been found.

58

Algorithm 5 Pseudocode for findNeighborsGrid(Particle, Halo)

function findNeighborsGrid(Particle, Halo)
Add Particle to Halo
Remove Particle from the linked list
Get Particle position in Grid
for Each neighboring Grid point do

if Number of neighbors > 12 then
Break
Flag = True;

end if
for All particles in each Grid point, TestParticle do

if Number of neighbors > 12 then
Break

end if
CalculateDistance(Particle, TestParticle)
if Distance < Linking length then

Add TestParticle to Halo
end if

end for
end for
if Flag == True then

for Each grid point within 2 cells do
for All particles in each Grid point, TestParticle do

CalculateDistance(Particle, TestParticle)
if Distance < Linking length then

Add TestParticle to Halo
end if

end for
end for

end if
for Each particle found as a neighbor in the previous process do

findNeighborsGrid(Particle, Halo)
end for

end function

59

Figure 6.3: The positions of every 25th particle for the 1283 particle dataset, after the 3D
FOF algorithm

Scalefactor of the linking length and number of particles needed before scaling

We did a series of runs, using only the FOF grid algorithm, for the 1283 particle dataset
with different values for the scalefactor and number of particles needed before the linking
length was scaled, see section 6.3.2, and got the wall time for each run. The results can
be seen in figure 6.4. As seen, we obtain the best performance when the linking length is
tripled if more than 10 particles are found as neighbors.

6.3.3 FOF N 2 vs FOF grid runtime

A comparison of the runtime for both the FOF-N2 and FOF-grid method for different
number of particles have been performed. A plot of the FOF-N2 runtimes can be found
in figure 6.5 and for the FOF-grid in figure 6.6. As can be seen from these plots the grid
method is vastly superior to the N2 method, as expected, and will therefore be the one
used in MORPH.

6.4 6D phase-space splitting

As we saw from figure 6.3, we have already split our dataset into what seems like reasonable
halos, so why do we need to perform an additional splitting routine? One problem that
arises with only a 3D splitting is that we can get linking bridges between neighboring FOF
groups. An example of such a configuration can be seen in figure 6.7. These are clearly

60

Figure 6.4: Runtime for MORPH using different parameters for the nr of particles needed
for the scaling and the scaling itself.

61

Figure 6.5: Runtime for the FOF-N2 scheme for different number of particles.

Figure 6.6: Runtime for the FOF-Grid scheme for different number of particles

62

Figure 6.7: An example of a linking bridge affecting a FOF group.

Particles Mass x y z Vx Vy Vz
16206 1.5205 · 1014 16.623 56.225 18.231 0.000989 0.017172 0.011939

Table 6.1: FOF group information,. Positions are given as Mpc/h, velocities as Mpc/Gyr
and mass as M�.

two distinct halos that have been connected through a linking bridge of a few particle and
they need to be separated.

We have only considered the positional information in the 3D splitting, but we also
need take into account the velocity of the halos. There might exist two independent halos
that are moving through each other, where they would occupy the same place in position
space, but not in velocity space. The 3D splitting would find such a configuration of
halos to be a single halo. Such an example can be seen in figure 6.8, the positions do not
indicate anything special, but looking at the velocity of the halo, figure 6.9, we see that
there are indications of several halos. We see this spread in figure 6.10, which is three
plots of position vs velocity in each direction (x,y,z). Especially the y vs vy plot show
signs of a differences in velocity space. Another characteristics left out by only doing a
3D splitting is the information on halo substructures.

The solution to this issue is to perform a 6D phase space FOF routine in order to
separate possible halos in each 3D FOF group. If two halos are moving through each
other they would be separated in phase space, since they have different velocities. The
problem we have now is embarrassingly parallel, each FOF group found is independent of
the others, so we can distribute each FOF group to separate processors for the 6D phase
space splitting.

63

Figure 6.8: Plot of the positions of the particles in a single FOF group.

Figure 6.9: Plot of the velocities of the particles in a single FOF group, after the 3D FOF
algorithm.

64

Figure 6.10: Plot of the x-position vs x-velocity, y-position vs y-velocity and z-position
vs z-velocity for the particles in a single halo, after the 3D FOF algorithm.

65

f Time
0.5 78.258
0.6 82.74
0.7 80.24
0.8 85.11
0.9 105.87

Table 6.2: Runtime for MORPH with f = [0.5, 0.6, 0.7, 0.8, 0.9]

6.4.1 6D phase space friends-of-friends algorithm

When the FOF group is received on a slave processor, we only need to process one FOF
group at the time. A flowchart for the 6D phase space friends-of-friends method is depicted
in figure 6.11.

Creating the substructure

The first order of business when wanting to split a FOF group into separate halos and
subhalos is to create the substructure hierarchy. In this step MORPH uses an adaptive
phase space linking length and creates a hierarchy of substructures with decreasing linking
length, corresponding to tighter isodensity contours in the phase space density field. This
gives us a way to distinguish between different levels of substructures in the main FOF
group. First the phase-space distance to the closest neighbor is calculated for each particle.
The phase-space distance between two particles, p1 and p2, is defined as

d(p1, p2) =

(
|~x1 − ~x2|2

σ2
x

+
|~v1 − ~v2|2

σ2
v

)1/2

, (6.3)

here σ2
x and σ2

v are the particle and velocity dispersion for this specific FOF group. The
phase space linking length is chosen such that a fraction f of all particles are linked
together with at minimum one other particle, they have a closest neighbor. f is basically
the fraction of particles kept from host group to subgroup. For large FOF groups, number
of particles > 10000, this operation can be very costly. This problem is mitigated by only
calculating this linking length for a random 10 000 particle subset of the FOF group. This
value can be changed if needed, but 10 000 particles are enough to determine the linking
length to a reasonable precision without a too high computational cost. How to choose f
depends upon two considerations. If f is too large, f > 0.9, the algorithm will run slower
and might not find significant particle subgroups. If it on the other hand is too small,
f < 0.5, it runs much faster, but the algorithm might not recognize smaller substructures
that are of interest. We timed MORPH for f = [0.5, 0.6, 0.7, 0.8, 0.9], the results can be
found in table 6.2 while the results from the code are in figure 6.12. As seen from figure
6.12, changing f has no effect on the final results. From table 6.2 we see that we get the
best runtime when f = 0.5, such that 50% of the particles have a closest neighbor.

For the host FOF group we first calculate the linking length using the above mentioned
method. For each particle in the FOF group we check if all other particles are closer in
phase space than the adaptively chosen linking length.

If a particle is closer, it is attached to the halo. Then for all particles found in the
first pass we do a new search, finding particles that are within the linking length of the

66

Figure 6.11: Flowchart of the 6D phase space friends-of-friends method.

67

Figure 6.12: Mass functions for f = [0.5, 0.6, 0.7, 0.8, 0.9].

newly added particles and attach them to the same halo. This process is repeated until no
new particles are found closer than the linking length. If the number of particles is above
a given threshold, set to 20 particles, we save the linked particles as a halo, if not, we
discard them. Once this is done we find the next particle in the linked list not attached
to a halo and repeat the procedure. When this method is finished we repeat this process
for each subgroup. A new linking length is calculated, and the group finding process is
repeated. This continues until we reach the minimum limit of particles in the deepest level
of substructure hierarchy, which is set to 20 particles. Increasing this value would speed
up the phase space finding as fewer recursions are needed before reaching the innermost
halo. This might be interesting in the case where we only wish to look at larger halos or
if a detailed view of the subhalo structure is not needed. After the substructure hierarchy
is complete we calculate the statistics for the structures found, most importantly position
and velocity. The pseudo code for these steps can be found in Algorithm 6 and 7.

Determining seed halos

The halos at the deepest levels in the FOF structure are considered seed halos, which are
the spawn point of each ”real” halo. We go through the hierarchy and create a list of all
these seed halos and calculate the Poisson uncertainties in position and velocity. If two
seed halos have position and velocity within 10σ of the uncertainties they are merged.

68

Algorithm 6 Pseudocode for SplitHalo()

function SplitHalo
if Number of particles < lower seed limit then

Return
end if
FriendOfFriendPhaseSpace()
Clean up all data
for Each SubHalo found do

SplitHalo()
end for

end function

Algorithm 7 Pseudocode for FriendOfFriendPhaseSpace()

function FriendOfFriendPhaseSpace
Calculate the statistics of the halo
Create a linked list of all particles
Calculate the new Linking Length for this halo
while linked list ! = empty do

Find the next Particle in the linked list
Remove this Particle from the linked list
//Find all neighboring Particles and add them to the halo
findNeighborsPhaseSpace(Particle, Halo, LinkingLength)
if Particles in Halo > minimum number of particles then

Save halo
end if

end while
end function

Algorithm 8 Pseudocode for findNeighborsPhaseSpace(Particle, Halo, LinkingLength)

function findNeighborsPhaseSpace(Particle, Halo, LinkingLength)
Add Particle to Halo
for each particle in the linked list, TestParticle do

CalculateDistance(Particle, TestParticle)
if Distance < Linking length then

Add TestParticle to Halo
Remove TestParticle from the linked list

end if
end for
for Each particle found as a neighbor in the previous process do

findNeighbors(Particle, Halo, LinkingLength)
end for

end function

69

The uncertainties are calculated as

µx =
σx√
N
, (6.4)

µv =
σv√
N
, (6.5)

with σx and σv the position and velocity dispersion and N is the number of particles, all
calculated from the smallest of the two halos. The criteria for merging is√

(x1 − x2)2

µ2
x

+
(v1 − v2)2

µ2
v

< 10
√

2, (6.6)

or, for numerical ease

(x1 − x2)2

µ2
x

+
(v1 − v2)2

µ2
v

< 200. (6.7)

If two halos are merged the process is stopped and rerun from start. This step is repeated
until no halos are merged. By doing this we are ensured that several halos can be merged
together, while we also prevent mergers that should not happen. It is possible to imagine
a case were three halos would be merged, but restarting the algorithm might prevents a
third merging.

Assigning particles to the seed halos

We have now found all seed halos in the FOF group, and all the other halos from the
previous step can be discarded. The next part in determining the phase space halos is
to remove all particles from the seed halos while keeping halo information intact, such as
position, velocity, number of particles assigned to the seed halo and so on. Each particle
is then reassigned to the closest seed halo in phase space, as given by equation 6.8. This
distance is given by

d(H, p) =

(
|~xH − ~xp|2

r2
vir

+
|~vH − ~vp|2

σ2
v

)1/2

, (6.8)

Here H denotes the halo and p the particle. σv is the velocity dispersion of the halo,
MH is the mass of the seed halo and vir is the virial overdensity. For MH we use the
total mass of the particles originally found to be a part of the seed halo. Other halo
finders, such as Rockstar (Behroozi et al. 2013) use the definition of vir from Bryan &
Norman (1998), but this assumes standard gravity and could therefore provide the wrong
results when considering modified gravity simulations. To avoid this potential problem we
calculate Rvir as shown in section: 6.6. Using the halo radius Rvir ensures that particles
assigned to subhalos cannot be to far from the main density peak even if they are close
in velocity space. Intuitively, the largest effect is that velocity information becomes the
controlling factor when distinguishing membership to halos when two halos are within
each others virial radius. By doing this it is ensured that we can calculate the mass of the
substructures accurately and independently of the choice of f . We also make sure that

70

particles belonging to a host halo are not mis-assigned to a subhalo, because the particles
in the center of the host will be closer in phase space to the true host center than to any
of the subhalo centers clustered around it. The pseudo code for assigning particles to a
seed halo can be seen in Algorithm 9. After all particles have been assigned we loop over
seed halos and remove those which have fewer particles than the lower limit, and reassign
the particles belonging to these halos to the new closest seed halo.

Algorithm 9 Pseudocode for assignParticles()

function assignParticles
Remove all particles from each seed halo
for All each Particle do

for All SeedHalos do
Calculate phase space distance between SeedHalo and Particle

end for
Find the minimum phase space distance
Assign Particle to the closest SeedHalo

end for
Remove halos with fewer particles than the halo limit.
Add the particles that were removed to the now closest SeedHalo

end function

Determining substructure membership

We are now required to determine the full subhalo structure to be able to obtain the
correct mass. The standard definition of a subhalo is as follows:

� a halo contained within another, larger halo.

However, what ”contained” entails is not well defined. The mass of a halo often includes
the mass of substructures, so if mass is used as a deciding factor for which halo is the largest
an interesting problem is encountered. We need to know the mass before determining the
substructure, but before the mass can be calculated we need to know the substructures.
This problem is inter dependable is omitted by using instead the number of particles
assigned to each halo. Each halo is assigned as a subhalo of the closest largest halo,
in phase space. The phase space distance is calculated using equation 6.3, treating the
halo centers as particles. The pseudo code for doing this can be found in Algorithm 10.
However, there is a possibility for refinement here that have not been implemented. If
the N-body simulation contains data from previous time steps it is possible to perform
the same process for this step. Then it could be determined which halo in the previous
time steps has the largest amount of particles contributing to a given halo’s particles, at
the present time step. Host-subhalo relationships could then be rearranged, if necessary,
to correspond with the host-subhalo relationships in the previous step. However we have
not been able to obtain such a dataset.

71

Algorithm 10 Pseudocode for determining substructure membership

Sort all seed halos from smallest to largest number of assigned particles
if Number of seed halos == 1 then

Copy the seed halo into the halo structure
Return

end if
for All seed halos, SeedHalo, in the sorted list do

for All seed halos in the sorted list, SeedHalo2, beginning at SeedHalo do
if SeedHalo < SeedHalo2 then

Calculate the phase space distance between SeedHalo and SeedHalo2
end if

end for
Find the seed halo with minimum phase space distance
if Not the largest seed halo then

Assign SeedHalo as a subhalo of the seed halo with minimum phase space dis-
tance

end if
end for
Copy the largest seed halo into the halo structure
Remove all seed halos

6.5 Unbinding

An important step in all halo finders is the unbinding procedure (Knebe et al. 2013). In
this step particles that are not gravitationally bound to a halo are removed. If a particle
has a velocity larger than the escape velocity of the halo, it should be considered unbound
since it will eventually escape the halo. The escape velocity of an object in isolation in a
gravitational potential is given by

vesc =
√

2|φ|, (6.9)

where φ is the gravitational potential of the object.
The need for an unbinding procedure is tightly linked to the particle collection method.

3D space halo finders need to perform an unbinding procedure since they find several false
positives, particles that are within the borders of a halo, but have a velocity much too
high to be gravitationally bound to the object. They need to do this no matter how
conservative their particle collection methods are. By including the unbinding step, every
3D space halo finder is converted to a mock phase space halo finder. 6D phase space
halo finders do not have the same need for an unbinding process, as they already take
into account the velocity of each particle in their initial particle collection, but it is still
recommended (Knebe et al. 2013). The need for unbinding also depends on the physical
problem studied. Some properties of halos, such as the halo mass, are unresponsive to
a few particles that should not be there, while others, for example halo spin, are highly
sensitive to these few extra particles.

There are many different algorithms on how to both unbind particles and calculate
φ. Most halo finders use a tree for this calculation while others simplify the problem by
assuming for instance spherical symmetry (Knollmann & Knebe 2009). In the unbinding

72

process there are codes that remove a single particle before reiterating the process, others
eliminate all particles in one go while some remove particles until a certain fraction of
particles have been eliminated. There are also differences in the termination criteria,
some stop when no more particles are to be removed and others when a certain fraction
of particles have been unbound.

6.5.1 Calculating φ using a spherical approximation

Here we use the same method as Knollmann & Knebe (2009) to calculate φ, we also
assume each halo is in isolation, which is an assumption all halo finders make. To get φ
we integrate Poisson’s equation, assuming standard general relativity,

∇2φ = 4πGρ. (6.10)

We assume spherical symmetry, which gives ρ(φ, θ, r) = ρ(r) and φ(φ, θ, r) = φ(r).

∆φ =
1

r

d

dr

(
r2dφ

dr

)
, (6.11)

1

r

d

dr

(
r2dφ

dr

)
= 4πGρ(r), (6.12)

d

dr

(
r2dφ

dr

)
= 4πrGρ(r), (6.13)

integrating both sides

r2dφ(r)

dr
−
[
r2dφ(r)

dr

]
r=0

= 4πG

∫ r

0

ρ(r′)r′2dr′, (6.14)

r2dφ(r)

dr
−
[
r2dφ(r)

dr

]
r=0

= GM(< r), (6.15)

r2dφ(r)

dr
∝M(< r). (6.16)

The last equation shows that for r → 0 then dφ(r)
dr
→ 0, which gives

r2dφ(r)

dr
= GM(< r), (6.17)

dφ(r)

dr
=
GM(< r)

r2
. (6.18)

Integrating both sides again

φ(r) =

∫ r

0

GM(< r′)

r′2
dr′ + φ0. (6.19)

The integration constant, φ0, is found by requiring that φ(∞) = 0, using the assumption
that the halo is in isolation,

φ(∞) =

∫ ∞
0

GM(< r′)

r′2
dr′ + φ0. (6.20)

73

We split this integral into two separate parts, at Rvir

=

∫ Rvir

0

GM(< r′)

r′2
dr′ +

∫ ∞
Rvir

GM(< r′)

r′2
dr′ + φ0, (6.21)

we assume that the halo is truncated at Rvir

=

∫ Rvir

0

GM(< r′)

r′2
dr′ +GMvir

∫ ∞
Rvir

1

r′2
dr′ + φ0, (6.22)

=

∫ Rvir

0

GM(< r′)

r′2
dr′ +G

Mvir

Rvir

+ φ0, (6.23)

which gives

φ0 = −
∫ Rvir

0

GM(< r′)

r′2
dr′ −GMvir

Rvir

, (6.24)

We now need to solve these integrations numerically. One problem is that the distance
between two neighboring particles is random. Using a simple trapezoidal rule we get an
integral of a discrete function f(r), henceforth using the notation f(ri) = fi, which with
irregular spacing becomes:

I =
N∑
i=1

(
fi (ri − ri−1) +

1

2
(fi − fi−1) (ri − ri−1)

)
, (6.25)

which gives us

I =
N∑
i=1

1

2
(3fi − fi−1) (ri − ri−1) . (6.26)

In this case the function is given by

fi =
M(< ri)

r2
i

, (6.27)

and the integral from 0 to Rvir becomes

I =

ri<Rvir∑
i=1

1

2

(
3
M(< ri)

r2
i

− M(< ri−1)

r2
i−1

)
(ri − ri−1) . (6.28)

We implemented this spherical approximation in our code, with pseudo code listed in
Algorithm 11.

The disadvantages with this method is that we assume the halo is spherical, that we
have standard general relativity and that the halos are in isolation. These assumptions
are not expected to work well with simulation data from modified gravity theories.

74

Algorithm 11 Pseudocode for calculating φ, using a spherical approximation.

Calculate the virialization radius
Sort all particles with regards to distance from center of halo, stored in r
Mass = 0
resPhi0 = Mvir/Rvir
prevPhi0 = resPhi0
for All particles do

if distance from center of halo > Rvir then
break

end if
Mass += MassOfParticle
Phi0 = Mass/(r[i]*r[i])
resPhi0 += 0.5*(3*Phi0 - prevPhi0)*(r[i]-r[i-1])
prevPhi0 = Phi0;

end for
resPhi0 *= -GravitationalConstant
Mass = 0
Phi[0] = resPhi0
previousPhi = resPhi0
for All Particles do

Mass += MassOfParticle
currentPhi = GravitationalConstant*Mass/(r[i]*r[i])
Phi[i] = 0.5*(3*currentPhi - previousPhi)*(r[i]-r[i-1]) + Phi[i-1]
previousPhi = currentPhi

end for

75

6.5.2 Using φ using the acceleration of each particle

Another method for unbinding the particles is to utilize the individual particle accelera-
tions. A collisionless system, such as a cosmological N-body simulation, is described by
the collisionless Boltzmann equation (CBE)

df

dt
=
∂f

∂t
+
∂f

∂x
· ẋ +

∂f

∂x
· ẍ = 0, (6.29)

with f(x, ẋ, t) being a probability density function defined:

dN = f(x, ẋ, t) d3x d3ẋ. (6.30)

The potential energy can be derived from the CBE, as shown by Max Grönke (2013),

W =

∫
V

d3xρx · ẍ. (6.31)

When we have a set of discrete particles the potential for a particle pi becomes

Wi = mi (xi − xH) · ẍi. (6.32)

The escape velocity is obtained when the total energy at ∞ is 0.

Ei =
1

2
miv

2
i +Wi > 0, (6.33)

1

2
v2
i > | (xi − xH) · ẍi|. (6.34)

This gives the following escape velocity

vi >
√

2| (xi − xH) · ẍi|, (6.35)

for numerical ease, the requirement becomes

v2
i > 2| (xi − xH) · ẍi| (6.36)

In the modified gravity regime we have an additional acceleration, the fifth force
acceleration, which is included in

ẍ = ẍNewtonian + ẍfifth force. (6.37)

We use the relative position of each particle since we wish to compare the escape velocity
to the halo center. As long as the N-body code has implemented modified gravity, the
halo finder will be independent of the specific modified gravity model. The only thing
requires from the N-body code would is to output acceleration along with the other data.
This method has a couple of advantages compared to other methods. The first being that
it does not assume spherical symmetry, it is completely independent of the shape of the
halos and all that is needed is the position of the center of the halo. Second, and more
important, the method does not assume standard general relativity, and there is thus no
need to make changes in the code to accommodate a specific modified gravity model.

76

6.5.3 Using φ from the N-body simulation

The output from the N-body code contains the potential at the position of each particle,
so it would be possible to use this to perform the unbinding. However, the problem with
this approach is that there is a problem with the scaling of the potential, the potential
no longer approach zero at large distances since it does not exist in isolation. When we
approach larger larger radii we expect to enter a new halo, because halos exist within
each other’s potential wells. The potential of several halos numbered [50, 150, 200, 300,
500, 1000, 5000, 10000, 15000], sorted from largest to smallest mass using lcdm1 dataset
without unbinding, was plotted against the radius in figure 6.13. From this, different
potential wells can be seen to coexist within the same halo. The escape velocity in the
case of using the potential from the N-body code can be found by

Ei =
1

2
miv

2
i +Wi > C. (6.38)

The challenge is to determine C, especially since the environment is non symmetric, so C
would be dependent of the direction. One way to calculate the normalization is to assume
that the central particles of the halo are independent of the environment and then use
direct summation to calculate the potential of these particles. The N-body potential is
then normalized using the direct summation values. But even after the normalization, the
N-body potential differs from the direct summation potential, see Max Grönke (2013).

Since we have better methods to calculate the potential, see section 6.5.2, this method
is not fully implemented2.

6.5.4 Unbounding

The unbounding in itself is straight forward once φ or the criteria for the unbinding has
been calculated. We loop through each particle in the halo and remove it if

(vParticle − vHalo)2 > chosen criteria. (6.39)

If more than a given amount of particles are removed, currently set to 0, either φ or the
criteria is recalculated and the unbinding procedure repeated. If the number of particles
removed is below this limit, the unbinding procedure is considered finished. Here MORPH
differs from Rockstar, where they only perform a single pass of the unbinding routine.

6.6 Calculating Rvir

We introduce a new way to calculate the virial radius (Shaw et al. 2006). The standard
method (Bryan & Norman 1998),

Rvir =

(
MH

4
3
πρvir

)1/3

, (6.40)

2On the other hand, a simple unbinding method using the potential directly from the N-body code,
without any normalization, have been implemented.

77

(a) Halo nr 50 (b) Halo nr 100 (c) Halo nr 200

(d) Halo nr 300 (e) Halo nr 500 (f) Halo 1000

(g) Halo 5000 (h) Halo nr 10000 (i) Halo nr 15000

Figure 6.13: Potential from the N-body potential for different halos after the 6D phase-
space splitting.

78

does not take into account effects of modified gravity, and is therefore incorrect when it
comes to modified gravity N-body simulations. The new method use properties of the
virialization constant βvir. We make use of the well known virial equation

1

2

d2I

dt2
= 2T +W − ES, (6.41)

where T is the kinetic energy, ES the surface pressure term and W the potential energy.
For a halo positioned in empty space the surface pressure term is zero (Shaw et al. 2006).

An object is defined to be fully virialized when

1

2

d2I

dt2
= 0, (6.42)

giving us
2T − ES = −W, (6.43)

which is the well known virial theorem.
We introduce a virialization constant βvir, similar to how Shaw et al. (2006) does.

This constant is given by

βvir =
2T − ES

W
+ 1. (6.44)

βvir measures the relaxation level of an object. Stable gravitational objects are virialized
and βvir helps us find the border between bound objects and unbound objects. A halo is
defined to be sufficiently virialized as soon as |βvir| falls below a given threshold, which is
set to 0.2 (Shaw et al. 2006), and this method is used to obtain the virialization radius.
One advantage with this method is that the virialization radius by definition is where
the halo changes from virialized to unvirialized. We are now required to calculate the
different terms of equation 6.44.

Kinetic energy, T

Calculating the kinetic energy of a halo is straightforward,

T =
1

2

N∑
i=1

mi|vi − vH|2, (6.45)

where the velocity of a particle i is vi, relative to the halo velocity vH.

Potential energy, W

There exists several different ways to calculate the potential energy of a halo

1. Direct summation.

2. Summing up the gravitational potentials at each particle position.

3. Using the particle acceleration.

79

The first method is computationally very expensive, scaling as O(N2). As such, it is not
a good way to calculate the potential energy as long as there exist other valid methods.

Some N-body codes provide the gravitational potential at the position of each particle.
This can be used to find the total potential energy of a halo,

W =
N∑
i=1

miφi. (6.46)

As previously mentioned, this method is differs from the direct summation (Max Grönke
2013).

The method using the particles acceleration has a couple of advantages over the other
two. First, it is computationally inexpensive to calculate and secondly, it takes into
account any fifth forces from modified gravity theories, as long as they are incorporated
into the acceleration in the N-body simulation. In addition, acceleration is an output we
can obtain from N-body codes. The potential energy is, as previously shown,

W =
N∑
i=1

mi (xi − xH) · ẍi. (6.47)

This method is the one used in MORPH.

Surface pressure term, ES

Any particle that is bound to a halo outside the virial radius is by standard conventions
not included when we calculate the kinetic and gravitational potential energy for the
halo, but they still contribute significantly to the pressure at the boundary. Taking this
into account we incorporate a surface pressure term in the virial theorem(Chandrasekhar
1961).

ES =

∫
PS(r)r · dS. (6.48)

The surface pressure is often ignored, since this term is zero for halos in empty space. But
for halos with particles clustered around it, or where the border of the halo is arbitrarily
set to be at a given radius, it is not the case. The pressure term, PS can be approximated
using the ideal gas law

Ps =
1

3

∑N
i=0miv

2
i

VRvir−0.8

. (6.49)

Here the volume VRvir−0.8 is the volume occupied by the outermost 20% of the particles

V =
4πR3

vir

3
− 4πR3

0.8

3
=

4πR3
vir

3
(1− 0.83). (6.50)

The radius of the innermost particle in this shell is labeled as R0.8 and the outermost as
Rvir. The surface pressure term can now be approximated as

Es ≈ 4πR3
0.9Ps. (6.51)

R0.9 is the median radius between R0.8 and Rvir. The effect of including this surface
pressure term is to shift the distribution of βvir towards smaller values (Shaw et al. 2006).

80

6.6.1 Algorithm

We proceed to determine at which radius the halo transitions from virialized to unvirial-
ized. This is achieved by calculating βvir for a number of different radii and observe for
which radius βvir falls below the threshold. We divide the halo into a number of spher-
ical shells, set to 200, and calculate βvir for each shell. There is a minimum number of
particles needed per shell, set to three and if there are fewer particles than this, the total
number of shells is reduced in order to retain the lower limit. We now calculate βvir for
each shell and if it falls below the threshold this is defined to be the virialization radius.
If βvir never falls below this threshold we set the virialization radius to be equal to the
radius of the furthest particle. Rvir must be larger, but since there are no other particles
bound to the halo we cannot have a larger radius.

There are two different ways to split up the radii for the different shells. The first is to
split the distance into equal parts, which leads to a large amount of empty shells, again
leading to numerous wasted computations. The other is to go by number of particles per
shell, making the increase in particles constant. The advantage with this method is that
it is adaptive as there are more shells in denser areas of the halo. Because of this the
second option is chosen where a pseudo code for calculating βvir is shown in Algorithm
12.

6.7 Results of the 6D phase space friends-of-friends

algorithm

Figure 6.14 is the plot of a halo before and after the 6D phase-space splitting, the different
colors corresponding to different subhalos. As we can see the phase-space FOF algorithm
successfully isolates different subhalos. A plot of each separated halo are depicted in
figure 6.15, and a table with statistics can be found in table 6.3. We note there are a
three larger halos, Halo 0, 4 and 9, which corresponds to the three main bulges. As such
this algorithm proved the result we intuitively would expect.

6.8 Mass estimation

The mass estimation MORPH uses is the total mass of all particles assigned to one halo
in addition to the mass of all subhalos. The mass of particles linked together by the FOF
algorithm is not very well interpreted theoretically, but extremely easy algorithmically.
An advantage is that it is independent of the cosmological model used in the N-body
simulation.

6.8.1 Mass function

The cumulative mass function is a plot of the number of halos with a mass larger than a
given mass, most often plotted as a log-log plot. This is the main statistics used to verify
MORPH and to test whether modified gravity models should be accounted for in halo
finders when working on modified gravity datasets.

81

Algorithm 12 Pseudocode for calculating βvir.

if Number of shells > NrParticles/minimum particles per shell then
Shells = NrParticles/minimum particles per shell

else
Shells = Number of shells;

end if
if Shells == 0 then

Particles per shell = NrParticles;
else

Particles per shell = NrParticles/Shells;
end if
for Each shell, n do

R = r[n∗Particles per shell]
Calculate βvir(R)
if βvir(R) <= 0 then

Rvir = R
break

end if
end for
if Rvir not found then

Rvir = radius for the furthest away particle
end if
Mvir = 0;
for each Particle, i do

if r[i] > Rvir then
break

end if
Mvir += Mass of Particle;

end for

82

Figure 6.14: Positions of the particles in a single FOF group, after the 3D FOF algorithm
(top) and after the 6D splitting (bottom).

83

(a) Halo 0 (b) Halo 1 (c) Halo 2

(d) Halo 3 (e) Halo 4 (f) Halo 5

(g) Halo 6 (h) Halo 7 (i) Halo 8

(j) Halo 9 (k) Halo 10 (l) Halo 11

(m) Halo 12 (n) Halo 13

Figure 6.15: Plot of the positions of the particles for each halo in a single FOF group,
after the 6D FOF algorithm.

84

Halo Particles Mass x y z Vx Vy Vz
0 4784 1.5200 · 1014 16.105 56.191 18.3858 0.0172 0.0021 -0.0024
1 113 1.0602 · 1012 16.491 55.900 18.4842 0.0282 0.0440 0.0164
2 35 6.0986 · 1011 16.064 56.645 17.6798 0.0157 0.0450 -0.0592
3 30 2.8148 · 1011 16.313 56.711 17.8574 0.0337 0.0427 -0.0594
4 3498 4.4558 · 1013 17.259 58.223 17.9371 -0.0208 -0.0107 0.0347
5 20 1.8765 · 1011 17.395 58.079 17.8372 -0.0280 -0.0468 0.0661
6 62 5.8173 · 1011 17.070 58.509 18.0020 0.0503 -0.0484 0.0061
7 46 4.3160 · 1011 17.345 58.903 17.6021 0.0044 -0.0460 0.1043
8 532 7.4872 · 1012 16.869 58.774 18.4347 -0.0387 -0.0143 0.0164
9 3578 4.4043 · 1013 16.304 53.710 18.1195 -0.0206 0.0478 0.0297
10 136 1.8953 · 1012 16.523 54.304 18.6643 -0.0123 -0.0101 0.0146
11 66 6.1925 · 1011 16.396 54.210 18.1742 0.0136 0.0186 0.0177
12 99 3.7249 · 1012 16.481 53.326 18.3501 0.0075 0.0865 -0.0496
13 184 1.7264 · 1012 16.627 52.600 18.1007 -0.0016 0.0955 -0.0043

Table 6.3: 6D split FOF group halo information,. Positions are in units of Mpc/h,
velocities in Mpc/Gyr and mass in M�.

6.8.2 Choosing b

Lastly we need to determine the best choice for parameter b, introduced in section 6.3.1.
The most common is to set b = 0.2, while Rockstar uses a larger value of b = 0.28.
Because of this we want to test MORPH for b = [0.2 − 0.3], in 0.01 increments, on the
lcdm1 dataset to see which value for b gives the best fit with Rockstar. The results are
in figure 6.16 and the best fit is for b = 0.21, see figure 6.17. This analysis was done
using the accelerated unbinding as this is the unbinding method that is independent of
the gravity model, see section 6.5.

85

(a) b = 0.20 (b) b = 0.21 (c) b = 0.22

(d) b = 0.23 (e) b = 0.24 (f) b = 0.25

(g) b = 0.26 (h) b = 0.27 (i) b = 0.28

(j) b = 0.29 (k) b = 0.3

Figure 6.16: Mass functions for b = [0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3].

86

Figure 6.17: Mass function for b = 0.21.

87

88

Chapter 7

Results

We have developed MORPH, a halo finder that is independent of the gravity model used
in N-body simulations. The simulation datasets that have been analyzed are summarized
in table 7.1. The lcdm128 simulation was mainly used as a debugging dataset, since it
only contains 1283 particles. This has provided an invaluable tool to quickly test MORPH
after making changes or implementing new methods. The 5123 datasets are from a series
of simulations: one ΛCDM run, four runs with different symmetron models and three
with f(R) models, all using the same initial conditions. The details of each symmetron
model is listed in table 7.2, where L is the cosmological range of the fifth force in Mpc/h,
zssb the redshift for when the spontaneous symmetry breaking occurs and β the strength
of the fifth force relative to gravity. The details of the f(R) models are listed in table
7.3, with the parameters being the value of df/dR today and n. The particles have a
mass of 9.26138 · 109M�/h, a matter content of 26.7%, with ΩCDM,0 = 0.222, Ωb,0 = 0.045
and ΩΛ,0 = 0.733. The size of the simulations are 256Mpc/h with periodic boundary
conditions. The snapshots are taken at z = 0.

7.1 Unbinding routines

One of two new methods that takes into account modified gravity is the unbinding routine.
Three different unbinding routines have been implemented, accelerated unbinding (section

Dataset Nr Particles Mass [M�/h] Box size [Mpc/h] Acceleration Φ
lcdm128 1283 9.38 · 109 64 No No
lcdm1 5123 9.26138 · 109 256 Yes Yes
symm A 5123 9.26138 · 109 256 Yes Yes
symm B 5123 9.26138 · 109 256 Yes Yes
symm C 5123 9.26138 · 109 256 Yes Yes
symm D 5123 9.26138 · 109 256 Yes Yes
fofr4 5123 9.26138 · 109 256 Yes Yes
fofr5 5123 9.26138 · 109 256 Yes Yes
fofr6 5123 9.26138 · 109 256 Yes Yes

Table 7.1: Analyzed dataset details.

89

Dataset zssb β L
symm A 1 1 1
symm B 2 1 1
symm C 1 2 1
symm D 3 1 1

Table 7.2: Symmetron model details.

Name |fR0 − 1| n
fofr4 10−4 1
fofr5 10−5 1
fofr6 10−6 1

Table 7.3: f(R) model details.

6.5.2), spherical unbinding (section 6.5.1) and a simplified unbinding using the potential
from the N-body simulation (section 6.5.3), which promptly will be ignored. We wished to
compare the first two models with the case of no unbinding and the results from Rockstar.
In addition, we examined the accelerated unbinding method in the Newtonian case. In
order to do this we ignored the acceleration for the fifth force, ẍfifth force = 0, and only
ẍNewtonian is used in equation 6.37. A series of runs using the chosen unbinding routines
along with no unbinding was performed on each of the 512 datasets. The cumulative mass
function was plotted for each method alongside the Rockstar results.

The plots for the corresponding datasets are in the following figure: lcdm1 - figure
7.1, symm A - figure 7.2, symm B - figure 7.3, symm C - figure 7.4, symm D - figure 7.5,
fofr4 - figure 7.6, fofr5 - figure 7.7 and fofr6 - figure 7.8.

The fractional difference was calculated between the accelerated method for MG and
for the Newtonian case. The plot for lcdm1 and symm A - symm B are in figure 7.9 and
the plot for fofr4 - fofr6 are in figure 7.9.

We also calculated the unbinding percentage for each unbinding routine for all datasets,
table 7.4.

7.2 Rvir

The other routine that have been made independent of the gravity model is the calculation
of Rvir through the use of the virialization constant βvir (section 6.6). To test the effects of
this routine we performed the previously mentioned runs, but used equation 6.40 calculate
Rvir, , and not the primary method implemented in MORPH. The fractional difference
between these two methods was calculated for each dataset and are depicted in figure
7.11.

We also calculated the unbinding percentage for each unbinding routine for all datasets,
which is in table 7.5.

90

Figure 7.1: Mass function for lcdm1, four different unbinding routines.

Figure 7.2: Mass function for symm A, four different unbinding routines.

91

Figure 7.3: Mass function for symm B, four different unbinding routines.

Figure 7.4: Mass function for symm C, four different unbinding routines.

92

Figure 7.5: Mass function for symm D, four different unbinding routines.

Figure 7.6: Mass function for fofr4, four different unbinding routines.

93

Figure 7.7: Mass function for fofr5, four different unbinding routines.

Figure 7.8: Mass function for fofr5, four different unbinding routines.

94

Figure 7.9: Fractional difference between the accelerated unbinding for MG and the New-
tonian case, smoothened over neighboring bins to remove noise that appear in the binning,
for lcdm1 and symm A - symm B.

Figure 7.10: Fractional difference between the accelerated unbinding for MG and the
Newtonian case, smoothened over neighboring bins to remove noise that appear in the
binning, for fofr4 - fofr6.

95

Dataset Unbinding method % of particles unbound
lcdm1 None 0
lcdm1 Spherical 31.48
lcdm1 Accelerated 33.6
lcdm1 Newtonian 33.55
symm A None 0
symm A Spherical 38.27
symm A Accelerated 34.30
symm A Newtonian 39.00
symm B None 0
symm B Spherical 56.79
symm B Accelerated 34.91
symm B Newtonian 47.72
symm C None 0
symm C Spherical 54.10
symm C Accelerated 36.33
symm C Newtonian 49.25
symm D None 0
symm D Spherical 73.78
symm D Accelerated 34.90
symm D Newtonian 54.50
fofr4 None 0
fofr4 Spherical 54.53
fofr4 Accelerated 33.78
fofr4 Newtonian 45.11
fofr5 None 0
fofr5 Spherical 48.90
fofr5 Accelerated 33.50
fofr4 Newtonian 43.16
fofr6 None 0
fofr6 Spherical 37.47
fofr6 Accelerated 33.87
fofr6 Newtonian 37.94

Table 7.4: The unbinding values for the different unbinding routines for each dataset

96

(a) lcdm1 (b) symm A (c) symm B

(d) symm C (e) symm D (f) fofr4

(g) fofr5 (h) fofr6

Figure 7.11: Fractional difference between the two methods to calculate Rvir.

97

Dataset Unbinding method % of particles unbound
lcdm1 None 0
lcdm1 Spherical 31.48
lcdm1 Accelerated 33.6
symm A None 0
symm A Spherical 38.27
symm A Accelerated 34.30
symm B None 0
symm B Spherical 56.79
symm B Accelerated 34.91
symm C None 0
symm C Spherical 54.10
symm C Accelerated 36.33
symm C Loaded 4.95
symm D None 0
symm D Spherical 73.78
symm D Accelerated 34.90
fofr4 None 0
fofr4 Spherical 54.53
fofr4 Accelerated 33.78
fofr5 None 0
fofr5 Spherical 48.90
fofr5 Accelerated 33.50
fofr6 None 0
fofr6 Spherical 37.47
fofr6 Accelerated 33.87

Table 7.5: The unbinding values for the different unbinding routines for each dataset,
using the standard method to calculate Rvir.

98

Chapter 8

Conclusions and outlook

In this chapter we draw conclusions from the provided results and give a brief outlook on
what future work will focus on.

8.1 Conclusions

We now have a working halo finder that is independent of the modified gravity model.
From figure 7.1 it can be seen that Rockstar, AHF, MORPH with spherical unbinding and
MORPH with accelerated unbinding all are in good agreement for the standard gravity
case.

Calculation of Rvir

One of the two new methods implemented to gain independence from the gravity model
is the calculation of Rvir. In section 6.6 we showed that this algorithm is an improvement
upon previous algorithms with regard to modified gravity runs. As can be seen from figure
7.11, together with comparing table 7.4 with table 7.5, there is no difference between using
βvir to calculate Rvir compared to equation 6.40 in the final results. This result is not
unexpected, as seen in section 6.4.1, MORPH uses only Rvir in the 6D FOF-method to
calculate the phase space distance between particles and the seed halos. The seed halos
are small, close to 20 particles, and are located in the densest part of the halos. This
means that all the particles are well within the virialization radius for both methods. It
also implies that if the two methods obtain different virial radii, the difference between
the these numbers will be small, since the particles are clustered tightly together. In
addition, the virial radius is only used to calculate assignment of particles to seed halo
where a difference in Rvir does not change much when assigning particles. All of the above
points to the fact that the choice of Rvir has little or no effect on the final results.

Unbinding

The unbinding procedure is the second method implemented to gain independence of the
gravity model. From figure 7.1 it can be seen that Rockstar, AHF, MORPH with spherical
unbinding and MORPH with accelerated unbinding are in good agreement for the ΛCDM
model. However, there are discrepancies when no unbinding is performed. An unbinding

99

routine is needed to obtain reasonable results (Knebe et al. 2013), as we clearly see, and we
will disregard the no unbinding case. The Newtonian case for the accelerated unbinding
is identical to the full accelerated unbinding method, which is exactly as expected in the
ΛCDM model. Any other result would suggest there are bugs in the code. Compared with
the results from previously verified halo finders, Rockstar (Behroozi et al. 2013) and AHF
(Knollmann & Knebe 2009), it can be concluded that MORPH provides correct results
for both the spherical unbinding and the accelerated unbinding in the ΛCDM case.

We now look at the four symmetron models analyzed, as shown in figure 7.2-7.5.
It can be observed that there are increasing discrepancies between Rockstar and the
accelerated method compared to the spherical unbinding and the accelerated method
in the Newtonian case. We also note that there are differences between the spherical
unbinding and the accelerated method in the Newtonian limit. The spherical unbinding
also has a weird inverted s-shape when observing lower mass halos, and there should not
be any physical effects that could lead to this behavior. This suggests that there are
some bugs in the spherical unbinding method that show up in the more extreme modified
gravity simulations. Until this issue is addressed, the spherical unbinding is not trusted
and will from here on be ignored.

The more telling result is the difference between the accelerated method for modified
gravity and in the Newtonian case. The only difference between them is that one takes
modified gravity into account while the other does not. This shows the main effect
modified gravity has on the unbinding procedure, where figure 7.9 depicts the fractional
difference between these two methods. Note that there is a large difference between them,
much more than the 10% error bar that current halo finders have. We observe the same
behavior in figure 7.6-7.8 and figure 7.10. We therefore conclude that modified gravity
must be taken into consideration when performing the unbinding routine for modified
gravity N-body data.

Rockstar makes no specific corrections for modified gravity models in its unbind-
ing routine, so why does Rockstar provide such accurate results in the modified gravity
regime? The main reason for this is most likely the implementation of the 3D and 6D
FOF methods employed by Rockstar. As previously shown in this thesis, how Rvir is
calculated has no visible effect on the final results. In Rockstar, the only method left that
is dependent on the modified gravity model is the unbinding routine. Rockstar typically
has a boundness value of 98% (Behroozi et al. 2013), so even if the unbinding method is
inaccurate in the modified gravity regime, it will not have a great impact on the results.
Comparing this number with the unbinding percentages of MORPH for the acceleration
method, table 7.4, we see that MORPH unbinds a much higher percentage of particles,
∼ 34− 35%. As such the unbinding procedure has a greater impact on the final results in
MORPH than in Rockstar. To summarize, while Rockstar gives close to correct results
for the tested models this is due to the fact that Rockstar’s unbinding routine does not
do much work, and the errors are thus less visible. To improve their results for modified
gravity simulations Rockstar should implement a modified gravity independent unbinding
routine.

100

8.1.1 Do we need a halo finder that takes into account modified
gravity models?

The main question this thesis set out to answer was whether there is a need for a modified
gravity adjusted halo finder. What can be concluded from the above is that the choice of
unbinding procedure affects the halo finding on modified gravity datasets. When working
in the modified gravity regime we need to take the unbinding procedure into consideration,
preferentially making the halo finder completely independent of the gravity model in order
to perform precision halo finding.

On the other hand, the problem is that the errors in the subhalo mass is of the order
10% and for Vmax of the order 20-30% (Knebe et al. 2013), all resulting from the intrinsic
particle gathering algorithms. For the worst case in the Newtonian limit, ∼ 1.65 times
too many particles are unbound. Even if the same happens with Rockstar this would
give an error of ∼ 1.3%, which is much less than the current error bars for halo finders.
As such we do not yet need to take modified gravity into account for Rockstar, as there
are other steps in the halo finding algorithms that introduces greater errors. But once
they have been eliminated, modified gravity must be incorporated into the halo finders.
The conclusion is that modified gravity must be taken into consideration when we wish
to analyze halos in modified gravity datasets. However, only if the halo finders have a
high unbinding percentage, making the errors from the unbinding routine larger than the
current error bars for halo finding.

8.2 Outlook

This thesis have just started to scratch the surface on what can be done with MORPH
and there is a much work left to do that this thesis have not had the time to focus on. This
future work is divided into two distinct paths, the first is improve the results obtained
from MORPH. The other is to focus on improving the code, adding features, fixing bugs
and optimizing the code for speed and memory consumption.

8.2.1 Result improvements

There are a few obvious results that we would like to generate in future works, listed
below in no particular order.

Examine why spherical unbinding does not work

One thing to examine is why the spherical unbinding fails in the modified gravity regime.
There are three possible sources for the error, the spherical approximation, assuming stan-
dard gravity when solving the Poisson equation and numerical errors in the integration.
The contribution from each source would also be interesting to investigate.

Calculate and test relevant halo statistics for dependency on the modified
gravity model

There are several halo properties of interest currently not calculated, such as the spin of a
halo and total energy. The routines that calculate these properties should be implemented

101

in MORPH. As previously mentioned some halos properties, such as the halo mass, are
unresponsive to a few particles that should not be there, while others, for example halo
spin, are highly sensitive to these few extra particles (Knebe et al. 2011). Because of this
it would be of interest to examine the dependency on the modified gravity model for these
halo properties.

Run on several modified gravity models

One relation that would be interesting to examine is the relation between the deviations
and the models. This can be done by performing analysis on a series of modified gravity
N-body simulations with identical initial conditions and changing variables for modified
gravity model and then record the deviations from the accelerated unbinding procedure
in MORPH. A variation of this is to run on more extreme gravity models, to see if we get
visible deviations from Rockstar, further confirming our results from the previous section.

Run on several datasets

One test that should be done to confirm our results is to get a hold of a large number of N-
body simulations, preferably > 100, using the same modified gravity model with different
initial conditions and then run MORPH on each. This would give a large number of runs
that a average and standard deviation could be calculated for. Then we could see if the
observed deviations are statistical outliers or if the average of the spherical unbounding is
outside the standard deviation from the accelerated unbinding. The problem with this is
that we need a large amount of simulations, which cost an enormous amount of CPU hours
to compute, unfortunately this is at the current time not feasible due to the resources
available.

Test Rvir

The effects of using the new method to calculate βvir should be examined closer. There
is no difference in the final results, but Rvir for all the found halos should be looked at.

Test on Halos gone MAD datasets and compare more thorough with other
halo finders

One obvious test is to compare MORPH with the halo finders tested in Knebe et al.
(2011), on the same datasets. These tests have not been prioritized as they are not
representative of the halos expected to be found in real simulations, they only considered
spherical NFW or Plummer halos with little to no substructure. Instead of this, we have
focused on running MORPH on actual simulations. This have been more important than
usual, as we have been working on modified gravity halos that might deviate more from
these test halos than what standard gravity halos would. But doing this test would give
additional confirmation that MORPH are correct in the standard gravity regime.

8.2.2 Code improvements

There are several aspects of the code that can be improved upon in future works, some
of the more important are listed below in no particular order.

102

Add unbound particles to other possible halos
At the moment particles found to be unbound in the unbinding routine are perma-
nently removed. Instead what should be done is to test if the unbounded particles
might be bound to one of the other halos found in that FOF-group. If they are
gravitationally bound to several halos, the one closest in phase space should be
chosen.

Remove memory leaks
Currently there are several memory leaks in MORPH. These are not serious as
the worst have been fixed, but there should optimally be none. This gets more
important the larger the dataset analyzed are.

Improve usability
There is much work left to be done to improve the usability of MORPH. More
methods to read output from standard N-body codes should be added and a method
to choose which from the .ini file should be implemented. Optimally the user should
not need to change anything in the source code. Another thing needed is to clean
up the code and add more comments. There are also code segments and functions
that are outdated and no longer needed which should be removed.

Optimizing MORPH
There are several steps that can be done to optimize the code of MORPH.

Speed
A lot of work has already been put into increasing the speed of MORPH, but
there is still more that can be done. One of the main limiting factors is that
the 6D phase space splitting algorithm has a lower limit on the wall time set
by the analysis time for the largest halo. To increase the effect of multiple
processors we need to split the 3D FOF groups into smaller FOF subgroups
and implement a stitching algorithm that correctly combines the results back
into the halos. Much can also be done by optimizing the speed of the current
implemented algorithms.

Use the GPU instead of the CPU
Utilizing the GPU instead of the CPU is one way to speed up the calculations.
A GPU consist of thousands of cores optimized for high parallel efficiency, and
we can utilize this to do our 6D phase space splitting. To be fully able to utilize
the advantages of thousands of cores we need to implement a better 6D phase
space algorithm, as discussed above. The GPU support would be implemented
using CUDA, a parallel computing platform and programming model created
by NVIDIA.

Memory
The larger the datasets the more important memory optimization is. The 512
datasets analyses in this thesis contain 15 doubles per particles, which means
that at a bare minimum we need 5123 ∗ 15 ∗ 8 bytes = 16.11 GB of memory
to hold the data and this is without any of the data computed by MORPH.
We want to run MORPH on datasets larger than 5123 particles, and memory
consumption then becomes a concern.

103

HaloFinding@Home
This is mostly a curiosity, but would be an interesting concept to do with a halo
finder when working on extremely large datasets. The @Home suffix is used for dis-
tributed computing services like SETI@Home and Folding@Home. The idea behind
these services is to utilize the thousand of unused home computers around the world
instead of using large expensive computer clusters to do the calculations. In our
case this would be used to do the 6D phase space splitting, replacing the MPI part
of the code with a code that sends and gathers tasks to and from home computers
that have the appropriate software installed.

104

Appendix A

MORPH, Libraries

A short summary of the source code is in table A.1.

A.1 Libraries

MORPH use only a few standard libraries, making it easier to compile on new machines.
The libraries are:

� <boost/algorithm/string.hpp> for easier handling of strings.

� <vector> to get better handling of arrays.

� <fstream> for file handling.

� <iostream> to get standard input/output.

� <sstream> to be able to do string manipulations, this will be removed from the
code as this only is used for testing purposes.

� ”MPI.h” to get MPI support.

Language Files Code Comment Comment % Blank Total
cpp 26 3750 1247 25.0% 1553 6550
python 23 550 154 21.9% 217 921
c 3 154 119 36.4% 179 406
make 1 45 45 57.7% 28 106
Total 53 4541 1565 25.6% 1877 7983

Table A.1: Code summary, from ohcount.

105

106

Appendix B

Code parameters

MORPH comes with a MORPH.ini file. This file contains a number of parameters that
can/must be changed, depending on the physical problem examined. Most of the parame-
ters should not be changed without a good reason, as the most appropriate values already
have been chosen.

BoxSize = 256.0 Size of the simulation box, in Mpc/h.

Mass = 9.26 · 109 Mass of the simulation particles, in M�/h.

source = ./source/ Path of the source directory.

inData = ./inData/ Path of input data folder.

outData = ./outData/ Path of output data folder.

convMass = 1 · 1010 Conversion factor to convert mass from input file to M�.

convDistance = 1 Conversion factor to convert distances from input file to Mpc/h.

convVelocity = 1.02 · 10−3 Conversion factor to convert velocities from input file to
Mpc/Gyr.

convAcceleration = 3.223 · 1010 Conversion factor to convert acceleration from input
file to Mpc/Gyr2.

convPhi = 1.045 · 10−12 Conversion factor to convert Φ from input file to Mpc2/Gyr2.

G = 4.49 · 10−15 The gravitational constant in units of Mpc3M−1
� hGyr−2.

ScaleDensity = 360 Virial overdensity.

b = 0.21 Scaling factor for the linking length we calculate.

HaloLimit = 20 All halos with less particles than this is discarded, this give the lower
limit for the size of a halo.

HaloSeed = 20 Numbers of particles needed to create a halo seed.

107

f = 0.5 f is the fraction of particles kept from parent group to subgroup, it is used to
calculate the adaptive linking length in the 6D phase-space splitting.

NrLinking = 10000 Number of random particles used to calculate the above linking
length. A higher number is more accurate, but makes the calculations slower.

MaxHalos = 1000 This is the maximum number of halos expected to be found in the
6D phase-space splitting. This value is used to allocate the array that the results
from the slave processor is stored in. If the number of halos found in the slave
is larger we get a segmentation fault, as the mpi routine then tries to write to
unallocated memory. A larger value could always be chosen, but that increases
memory consumption.

NrParticlesDouble = 10 Number of particles that the 3D FOF routine needs to find
belonging to the same halo before the linking length is increased.

LinkingLenghtScale = 3 When the above number of particles is reached this gives the
scale that the linking length is multiplied by.

minUnbind = 0 This is the ending criteria for the unbinding process. When we reach
this number of particles unbound in one iteration, the unbinding process for that
halo is ended.

NrShells = 200 The number of shells used to calculate βvir.

minParticlesShell = 3 The minimum number of particles per shell when calculating
βvir. If there are less than minParticlesShell×NrShells particles the number of shells
used is reduced to follow this criteria.

BetaVirThreshold = 0.2 Threshold for when a halo is considered virialized, when
βvir < BetaVirThreshold.

Warning, the following parameters can, but should not in almost any circumstance, be
changed. These are used by the lower level routines and changing any of these will result
in MORPH crashing spectacularly. If these are changed the code needs to be rewritten to
work, this should not be attempted without intimate knowledge of how MORPH works.

ParticleSize = 11 Number of numbers in a CParticle, used among other things to create
particle arrays.

HaloSize = 14 Number of numbers specific to a CHalo, used among other things to
create halo arrays.

ArrayExtraSize = 10 Numbers of extra spaces allocated in a CArray. The higher the
value the more memory is allocated extra for each array, and fewer allocations need
to be made when one want to increase the number of numbers stored in a CArray.
This can be increased, but that would lead to an increased memory consumption.
The current value is chosen such that it is low enough to reduce memory usage, but
still high enough so that in most cases we do not need to allocate more memory.

108

Bibliography

Aubert, D., Pichon, C., & Colombi, S. 2004, mnras, 352, 376

Bagla, J. S. & Padmanabhan, T. 1997, Pramana, 49, 161

Bamba, K., Gannouji, R., Kamijo, M., Nojiri, S., & Sami, M. 2012, ArXiv e-prints

Barnes, J. & Hut, P. 1986

Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, Astrophys.J., 762, 109

Bergstrom, L. 2006, Cosmology and particle astrophysics (Berlin New York: Springer)

Bryan, G. L. & Norman, M. L. 1998, apj, 495, 80

Buchdahl, H. A. 1970, mnras, 150, 1

Capozziello, S., De Laurentis, M., & Faraoni, V. 2009

Chandrasekhar, S. 1961

Clifton, T., Ferreira, P. G., Padilla, A., & Skordis, C. 2012, Phys.Rept., 513, 1

Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, apj, 292, 371

De Felice, A. & Tsujikawa, S. 2010, Living Rev.Rel., 13, 3

Dodelson, S. 2004, Modern Cosmology (Academic Press)

Dutra, S. M. 2005, Cavity quantum electrodynamics the strange theory of light in a box
(New York: J. Wiley)

Einstein, A. 1908, Jahrbuch der Radioaktivität und Elektronik, 4, 411

Einstein, A. 1916, Annalen der Physik, 354, 769

Einstein, A. 1936, Science, 84, 506

Elahi, P. J., Thacker, R. J., & Widrow, L. M. 2011, mnras, 418, 320

Gamow, G. 1970, My world line : an informal autobiography (New York: Viking Press)

Guth, A. H. 1981, Phys.Rev., D23, 347

Hammami, A. 2013, Master’s thesis, University of Oslo

109

Harfst, S., Gualandris, A., Merritt, D., et al. 2007, na, 12, 357

Hinterbichler, K., Khoury, J., Levy, A., & Matas, A. 2011, 84, 103521

Hubble, E. 1929, Proceedings of the National Academy of Science, 15, 168

Hulse, R. A. & Taylor, J. H. 1974, apjl, 191, L59

Hwang, J.-c. & Noh, H. 2001, Physics Letters B, 506, 13

Iliev, I. T., Moore, B., Gottloeber, S., et al. 2010

Knebe, A., Knollmann, S. R., Muldrew, S. I., et al. 2011

Knebe, A., Pearce, F. R., Lux, H., et al. 2013

Knollmann, S. R. & Knebe, A. 2009, Astrophys.J.Suppl., 182, 608

Llinares, C., Mota, D. F., & Winther, H. A. 2013

Maccio, A. V., Murante, G., & Bonometto, S. A. 2003, Astrophys.J., 588, 35

Max Grönke. 2013, Master’s thesis, University of Oslo

Moore, G. E. 1965, Electronics, 38, 114

ø vind Grø n. 2007, Lecture Notes on the General Theory of Relativity (Springer)

ø ystein elgarøy. 2010, AST4220: Cosmology I

Penzias, A. A. & Wilson, R. W. 1965, apj, 142, 419

Prada, F., Klypin, A. A., Simonneau, E., et al. 2006, Astrophys.J., 645, 1001

Press, W. H. & Schechter, P. 1974, apj, 187, 425

Ryden, B. 2002, Introduction to Cosmology (Benjamin Cummings)

Shapiro, I. I. 1964, Physical Review Letters, 13, 789

Shaw, L. D., Weller, J., Ostriker, J. P., & Bode, P. 2006, apj, 646, 815

Sotiriou, T. P. & Faraoni, V. 2010, Rev.Mod.Phys., 82, 451

Springel, V., White, S. D. M., Jenkins, A., et al. 2005, nat, 435, 629

Stadel, J., Potter, D., Moore, B., et al. 2009, mnras, 398, L21

Starobinskǐi, A. A. 1979, Soviet Journal of Experimental and Theoretical Physics Letters,
30, 682

Stoehr, F., White, S. D. M., Springel, V., Tormen, G., & Yoshida, N. 2003, mnras, 345,
1313

Teyssier, R. 2002, Astron.Astrophys., 385, 337

110

Teyssier, R., Pires, S., Prunet, S., et al. 2009, aap, 497, 335

von Hoerner, S. 1960, zap, 50, 184

111

	Introduction
	The beginning of modern cosmology

	Modern Cosmology
	Cosmic dynamics, the Friedmann equations
	Equation of state
	Evolution of the energy density of the universe

	The flat LCDM universe
	Friedmann equations for a LamdaCDM universe

	A shorter history of nearly everything
	Inflation
	The Big Bang Nucleosynthesis
	Recombination
	Re-ionization
	Structure formation

	Gravity
	Introduction
	Equivalence principle
	Preliminaries

	Einstein equations
	Lagrange formalism of general relativity
	Geodesic equation

	Modified Gravity
	Motivation for modified gravity
	Modifications of Einstein's equations

	Alternative gravity theories
	Theories of Gravity with Extra Fields
	Higher Derivative and Non-Local Theories of Gravity
	Higher Dimensional Theories of Gravity

	f(R) gravity
	Symmetron model
	Tests of general relativity
	Classical tests
	Modern tests

	N-body simulations
	Introduction
	Numerical methods for calculation of the force
	Direct summation
	Tree codes
	Particle Mesh codes
	Particle-Particle Particle-Mesh codes

	Gas dynamics
	Numerical methods for moving particles
	Ramses
	ISIS

	Halo Finders
	Introduction
	What is a Halo?
	The need for a modified gravity adjusted halo finder

	The General Method of Halo Finding
	Identification of possible halo candidates
	Particle Collection
	Calculating position and velocity of halos
	Unbinding procedure
	Calculating halo mass and edge

	Source of the scatter in the final result
	Astrophysical Applications
	Galaxy formation
	Dark Matter Detection
	Gravitational Lensing
	Modified Gravity Simulations

	AHF
	Rockstar

	MORPH Algorithms
	Loading routines
	Parallelization
	Friends-of-friends algorithms
	Friends-of-Friends N2
	Friends-of-Friends grid
	FOF N2 vs FOF grid runtime

	6D phase-space splitting
	6D phase space friends-of-friends algorithm

	Unbinding
	Calculating phi using a spherical approximation
	Using phi using the acceleration of each particle
	Using phi from the N-body simulation
	Unbounding

	Calculating Rvir
	Algorithm

	Results of the 6D phase space friends-of-friends algorithm
	Mass estimation
	Mass function
	Choosing b

	Results
	Unbinding routines
	R_vir

	Conclusions and outlook
	Conclusions
	Do we need a halo finder that takes into account modified gravity models?

	Outlook
	Result improvements
	Code improvements

	MORPH, Libraries
	Libraries

	Code parameters

