
A Python interface to Diffpack-based classes and
solvers

by

Heidi Vikki Munthe-Kaas

Thesis
for the degree of

Master of Science

(Master i Anvendt matematikk og mekanikk)

Faculty of Mathematics and Natural Sciences
University of Oslo

September 2013

Det matematisk- naturvitenskapelige fakultet
Universitetet i Oslo

Preface

This report is written for my Master of Science degree at the Department of Mathematics,
University of Oslo. The thesis was written at Simula Research Laboratory with Joakim Sundnes
as my supervisor. The work done in this thesis is based on work done by Westlie [15], Thorsen
[14], chapter 8 in Langtangen and Tveito [8], and the SWIG documentation ([12]).

All files, folders and scripts described in this thesis can be found in the PulseWrap directory
at

http://folk.uio.no/heidivm/PulseWrap.tar.gz

To make use of the PulseWrap directory, it is expected that the following programs are
installed (versions used in this thesis in parenthesis): SWIG (version: 2.0.9), Python (version:
2.6.8), Diffpack (version: 4.2.00), Gcc (version: 4.7.2) and Pulse (version: 0.9.0).

This report constitutes the end of a very long year filled with both joy and frustration. Joy
when things finally were moving along, and problems worked on for a long time suddenly were
fixed. Frustration when things that should work didn’t, and small problems made hindrances
for the rest of the work.

I would like to thank my supervisor Joakim Sundnes for giving me this incredibly interesting
project, being supportive and helping me with pointers and guidance when I have needed it.

I would like to send a very big “Thank you” to everyone who have beared1 with me for the
past months when I have been frustrated beyond belief, or had low blood sugar and were cranky.
There have been ups and downs, and you have been there for me. Those owed a particular
thank you are my friends Ingvild Skartveit, Simen Tennøe and Aila Aspås, who have helped
me through rough patches, and all of the people at Realistforeningen for being supportive and
awesome!

I also want to especially say thank you to Eirik B. Sundmark, who have been the best
boyfriend anyone could want, and who have supported me and listened to me during the whole
period.

1figure 1 on page iv

iii

Figure 1: Artist: Jo Tryti

iv

Abstract

Python is a programming language that has gained a lot of popularity during the last 15 years,
and as a very easy-to-learn and flexible scripting language it is very well suited for computa-
tional science, both in mathematics and in physics. Diffpack is a PDE library written in C++,
made for easier implementation of both smaller PDE solvers and for larger libraries of simu-
lators. It contains large class hierarchies for different solvers, grids, arrays, parallel computing
and almost everything needed to solve PDEs. Pulse, a Diffpack based PDE heart simulator, is
made for simulating electrical and mechanical behavior in the heart.

Making an interface to Pulse in Python will hopefully merge the positive qualities from
both C++ and Python. Taking advantage of the fact that the original code is written in C++ and
therefore effective, and the flexibility of Python, can make for both a highly effective solver,
and one it is easy to test and debug.

SWIG was used to wrap the original C++ code into Python, as it had been tested with suc-
cess on Diffpack classes in an earlier thesis. This thesis consist of two parts. The first explains
how to wrap the Heat1 class into a Python module, and how to implement the timeLoop and
solveAtThisTimestep functions in Python, focusing on what problems may occur during
the procedure. The second part explains the wrapping procedure used when wrapping Pulse, and
how to implement Python versions of the Circulation::timeLoop, Heart::simpleTimeLoop,
Heart::solveCellsAndDiffusion and Heart::initTimeLoop functions.

Contents

1 Introduction 1
1.1 Python for computational science . 1
1.2 Wrapping of compiled code using SWIG . 1
1.3 Diffpack . 2
1.4 Goal and procedure for the project . 3

1.4.1 Heart modelling and Pulse . 3
1.4.2 Outline of thesis . 3

2 Python interface for a simple simulator, Heat1 5
2.1 Wrapping with Swig . 5

2.1.1 First attempt at wrapping Heat1 . 5
2.1.2 Warnings . 7
2.1.3 Wrapping Diffpack classes . 10

2.2 Testprogram . 15
2.2.1 TimeLoop . 20
2.2.2 solveAtThisTimeStep . 22

3 Python interface for Pulse 25
3.1 Wrapping a single class in Pulse . 25
3.2 Compilation and build of all modules . 27

3.2.1 heart . 28
3.2.2 cellmodel . 29
3.2.3 diffusion . 29
3.2.4 mechanics . 31
3.2.5 ode . 31

3.3 Example of use . 31

4 Summary and discussion 43
4.1 Challenges and results . 43

4.1.1 Plots from cells.track in Pulse . 46
4.2 Remaining work . 50

A Setup of PulseWrap 51
A.1 Directory structure of PulseWrap . 51
A.2 Python module . 52

iii

A.3 Include files in Diffpack . 53

B Code 55
B.1 The fixSwigMakefile.py script . 55
B.2 Heat1 testscripts . 56
B.3 Pulse testscripts . 59
B.4 Compilation and setup scripts . 64

iv

List of Figures

1 Artist: Jo Tryti . iv

2.1 The first compilation of Heat1 . 6
2.2 checkDpMode . 7
2.3 Unrecognized option -c . 7
2.4 -lswigpy . 7
2.5 Operator warnings . 8
2.6 Renaming example . 8
2.7 Ignoring 401 warnings . 9
2.8 Heat1.i . 10
2.9 Recipe on wrapping Diffpack files . 11
2.10 Mkdir . 11
2.11 Wrong order of classes to CLASSES option 12
2.12 initDiffpack problem . 13
2.13 missing initDiffpack . 13
2.14 btTypeInfo . 14
2.15 TypeInfo . 14
2.16 DpString problem . 15
2.17 Warnings when wrapping DpString.i . 16
2.18 Renaming in DpString . 16
2.19 initDiffpack error in DpString . 16
2.20 The testfil.py script . 18
2.21 Memory error . 19
2.22 Avoid garbage collector error . 19
2.23 Local timeLoop function, Heat1 . 21
2.24 TimePrm tip AttributeError . 21
2.25 Printout of dif(solver.tip()) . 21
2.26 Undefined symbol error . 22
2.27 Original Heat1::timeLoop . 22
2.28 segfault from LinEqAdm . 23
2.29 Original Heat1::solveAtThisTimestep . 23
2.30 Python Heat1::solveAtThisTimestep . 24

3.1 Undefined reference error . 26
3.2 Pulselibrary included in .cmake2 in CellModel 26
3.3 undefined reference to MAIN__ . 27

v

3.4 Lines added to .cmake2 (f2c error) . 27
3.5 Include statements in CellModel.i . 27
3.6 Error with superlu library . 28
3.7 SuperLU added to .cmake2 . 29
3.8 Pulse/cellmodel/create.i . 29
3.9 DpString problem . 30
3.10 VecSimplestGridCollector_Handle . 30
3.11 non-virtual destructor in Materials . 31
3.12 createODEsolver and createRootFinder . 32
3.13 main function in Isometric . 32
3.14 main function in Isotonic . 33
3.15 readFile() . 34
3.16 Module imports in test.py . 35
3.17 Circulation::timeLoop . 36
3.18 Heart::solveCellsAndDiffusion . 36
3.19 Heart::simpleTimeloop . 37
3.20 Heart::initTimeLoop() . 40

4.1 Error at end of program . 44
4.2 Results from scripts in Heat1 . 45
4.3 Plot isometric_all nr 0 . 46
4.4 Plot isometric_all nr 6 . 46
4.5 Plot isometric_all nr 12 . 46
4.6 Plot isotonic_all nr 0 . 47
4.7 Plot isotonic_all nr 6 . 47
4.8 Plot isotonic_all nr 12 . 47
4.9 Plot isometric_all t=500 nr 0 . 48
4.10 Plot isometric_all t=500 nr 6 . 48
4.11 Plot isometric_all t=500 nr 12 . 48
4.12 Plot isotonic_all t=500 nr 0 . 49
4.13 Plot isotonic_all t=500 nr 6 . 49
4.14 Plot isotonic_all t=500 nr 12 . 49

vi

Chapter 1

Introduction

1.1 Python for computational science

Scripting languages are high level programming languages that are interpreted (not compiled)
on the fly. They are often used for making small programs (“scripts”) that can automate tasks/-
computations. They can be very useful when it comes to “gluing” different programs together,
and providing a program with an easy-to-use user interface, as well as being easy to debug and
fast to learn. The programmer also doesn’t have to worry about memory usage or anything else
going on underneath, but concentrating on the task at hand. Scripting languages like Python
have become very popular thanks to their flexibility and ease of use. When the user doesn’t
have to decide what type a variable should have, the program gains a kind of flexibility that it
is harder to reproduce with more traditional statically typed languages. One function can then
take one argument, but depending on the type of input, perform a variety of different tasks.
The function could also have 30 different arguments, but some (or all) with default arguments,
which would mean that the user could still use the function without having to set every variable
if it wasn’t needed. Example:

def plot(func, xaxis, yaxis, xlabel=’x’, ylabel=’y’, label="Plot")

Many people with background in mathematics are often used to programming in Matlab or
Maple, but when it comes to scientific computing in general, Python is a more powerful tool.
It is first of all free of cost, the environment is open and usable on a lot of different platforms,
and you can contain a module with lots of functions in a single file (in contrast to Matlabs huge
amount of M files). Python is also object oriented, and includes a lot of fast working libraries
(many programmed in C/C++).

1.2 Wrapping of compiled code using SWIG

The Simplified Wrapper and Interface Generator program (SWIG)
1 [...] is a software development tool that simplifies the task of interfacing different
languages to C and C++ programs. In a nutshell, SWIG is a compiler that takes

1From page 7 in [12]

1

C/C++ declarations and creates the wrappers needed to access those declarations
from other languages including Perl, Python, Tcl, Ruby, Guile, and Java.

Wrapping code written in C and C++ can be a very difficult and time consuming task, but
it has a lot of advantages. While a lot of scripting languages like Python may be easier to use,
makes the programs smaller, easier to read and also easier to debug, the problem with languages
like this is that they are much slower than e.g. C++. Very often there are certain parts of a
program that would be beneficial to have implemented in C++ (the bottlenecks in the program),
or there exist a library (or a program) already written in C++ that you would like to use, but
your main program would benefit from being programmed in Python. The solution to this is
to wrap the parts of your program written in C++ (or the function/class that you would like to
use from another library) into Python usable code. This is where SWIG comes in. It makes the
wrapping procedure much easier, and does most of the work for you. For small programs/short
snippets of code, it takes almost no time to do. For larger libraries or programs, like Diffpack
and Pulse, the process may take som time, and is no trivial task, but the final result makes it
worth it.

Using SWIG gives a programmer the option of combining the good qualities from both high
level languages like Python with the ones from compiled languages like C++. Combining flex-
ibility, easy debugging and good user interfaces with high performance and number crunching
can suddenly be achieved, and you don’t have to be an expert programmer to accomplish it.

SWIG can generate most of the interface needed to wrap C++ code directly from the C++
code, and the interfacefile generated can be adjusted and added to by the user when needed.
There are a few things regarding statically typed languages like C++ that makes them more
difficult to wrap into usable Python code, but they can often be solved by using functionality
already implemented in SWIG. Problems often arise because C++ declarations are used directly
when wrapped, which can cause conflicts with already existing keywords of functions in Python
(or whichever scripting language you want to wrap the code to). The solution is to use the
%rename directive2, and give the functions or declarations new names.

There exists of course several other programs that can be used for wrapping C++ into Python
(Boost.Python[1] and PyCXX[10]), but they were tried and found wanting in [15] compared to
SWIG, and since the work done in [15] and [14] were already accomplished with SWIG it
would make the work in this thesis easier to build on their work and continue with SWIG.

1.3 Diffpack

Diffpack[4] is a software library written in C++ for solving partial differential equations. It
is quite extensive, and is often used for developing new simulators, as it contains a lot of the
functionality needed when programming PDEs.

3[...] the library contains class hierarchies for arrays, linear systems, linear system
solvers and preconditioners, grids and corresponding fields for finite difference,
element, and volume methods, as well as utilities for data storage, adaptivity, multi-
level methods, parallel computing, etc.

2See page 39 in [12]
3from page 223 [7]

2

An aspect of Diffpack is that it is written in C++, a compiled language. It has the advantage
that it is object oriented, and is one of the best languages to program with when you need
your code to be fast, but the code needs to be recompiled whenever you make a change (which
can be time consuming), and if (when) you get a bug, it may be difficult to locate and fix.
Because of the memory management in C++, new users may have a difficult time just getting a
simple program to work without memory leaks4. When programming PDEs, the time element
is very important, as they can be very time consuming to compute. Programming Diffpack in
C++ makes therefore much sense, but may at the same time make it more difficult to use for
mathematicians and physicists for whom Python and other scripting languages are more natural
to program with.

Using Python to make an interface between the Diffpack based code and the users will make
both testing the program and using it easier. There already exist a couple of Master thesis’ that
have wrapped Diffpack code into scripting languages, one with Python ([15]) and one with
Ruby ([14]). The work in this thesis will be based on some of the work that were done in them.

1.4 Goal and procedure for the project

1.4.1 Heart modelling and Pulse

Pulse is a Diffpack-based heart simulator (written at Simula Research Laboratory), containing
a large number of classes simulating electrical and mechanical behavior in the heart. Many
classes are called in succession, and a Python interface to each class will give a very flexible
system that are easy to use.

Simulating the human body is a very complex and difficult task, of which simulating the
heart and the brain may be the most difficult because of their complexity. Describing the pro-
cesses both on a cellular level and on a larger scale, and then having a model that are both
complex enough to give a detailed picture, as well as being simple enough to be computable, is
a task that aren’t easily accomplished.

Pulse makes use of the large and flexible PDE solver library Diffpack, which gives easy
access to a range of different methods for PDE solvers, both finite difference, finite element and
finite volume methods.

1.4.2 Outline of thesis

Python has in the past (as seen in [15]) been proven to be a very flexible programming language
for wrapping code written in more traditional compiled programming languages (in this case,
C++). Based on the master thesis written by Magne Westlie on construction of a Python inter-
face for the Diffpack library ([15]), the goal for this master thesis was to wrap the entire Pulse
library into Python usable code, and equip the simulator with an interface written in Python that
does all the communication between the C++ classes from the Python layer. The project plan
was to do this in 3 steps:

4Segmentation faults, caused when a program tries to access an invalid section of memory, makes the program
halt ungracefully, and may not be easy to fix.

3

1. Wrap a simple Diffpack based application into Python and implement a timeLoop func-
tion in Python (to be used in a testfile), to outline the potential technical difficulties.

2. Wrap the entire Pulse library, and make testscripts that compare the results from the
original C++ based Pulse code with the Python implemented test cases.

3. Design an interface to Pulse where the communication between the relevant C++ classes
are done through the Python layer.

4

Chapter 2

Python interface for a simple simulator,
Heat1

2.1 Wrapping with Swig

2.1.1 First attempt at wrapping Heat1

When starting working on the thesis, it was clear that in order to be able to wrap a large simulator
(such as Pulse), it would be useful to know which problems might arise during the work, and
how to solve them. It is conceptually easy to wrap small C++ programs with SWIG, but because
of heavy integration with Diffpack (which is a large and complicated library), it can become
quite difficult to wrap even a small solver class. With that in mind, the first part of the work was
to be able to successfully wrap (and use) a smaller example-solver also based on Diffpack. To
that end, the diffusion class Heat1 (which can be found in the standard Diffpack library in the
directory $NOR/doc/Book/src/fem/Heat1)1 was used.

All files in the directory (including the hidden files) were copied into a local directory, so as
not to make any changes in the original directory by mistake. When wrapping Heat1, the proce-
dure described in chapter 8 in [8] was used, heavily relying on the two scripts MkDpSWIGMakefile
and MkDpSWIGInterface. The MkDpSWIGMakefile script creates a Makefile that is
used to compile the wrapper code and links it correctly with the Python and Diffpack libraries.
The MkDpSWIGInterface script generates an interface file Heat1.i which is used for more
easy wrapping, and which can be adjusted afterwards if needed. First test, when residing in the
Heat1 directory, can be seen in figure 2.1 on the next page.

I first compiled the original C++ program, giving the Makefile the option MODE (which can
be either “opt” or “nopt”)2. I then made a new directory in Heat1 (for the wrapper code) called
swig, and moved into it, before running the MkDpSWIGMakefile and MkDpSWIGInterface
scripts.

When using the MkDpSWIGMakefile script, the option DPDIR is the directory where the
Diffpack code and compiled program resides, in this case the parent directory. The option MODE
tells the compiler which MODE was used when compiling the original Diffpack-program (“opt”
or “nopt”). The option CLASSES in MkDpSWIGInterface tells the script which classes are

1$NOR is an environment variable set in .bashrc when you install Diffpack, and is the path to /.../Diffpack/NO
2Make must be used with a capital M, since it invokes a special Diffpack make command.

5

1 ~/Heat1$ Make MODE=opt
~/Heat1$ mkdir swig

3 ~/Heat1$ cd swig
~/Heat1/swig$ MkDpSWIGMakefile MODULE=Heat1 DPDIR=.. MODE=opt

5 Generated DpMakefile.defs and Makefile
~/Heat1/swig$ MkDpSWIGInterface MODULE=Heat1 CLASSES=Heat1 FILES=Heat1.h

7 Adding Handle_GridFE to interface!
Adding Handle_DegFreeFE to interface!

9 Adding Handle_FieldFE to interface!
Adding Handle_FieldFE to interface!

11 Adding Handle_LinEqAdmFE to interface!
Adding Handle_TimePrm to interface!

13 Adding Handle_FieldsFE to interface!
Adding Handle_SaveSimRes to interface!

15 Adding Handle_FieldFunc to interface!
Adding Handle_FieldFE to interface!

17 SWIG interface file written to Heat1.i
~/Heat1/swig$ Make

Figure 2.1: The first compilation of Heat1

in the Heat1 files. Usage: CLASSES="ClassA ClassB ClassC ...". When you com-
pile the programs, you need to be careful when using the MODE option, so that you give the
same option to both the C++ Makefile and the wrapper code. If you use MODE=opt for the
compilation of the original program, and use MODE=nopt for the wrapper code, you will not
get any problems right away, but when trying to import the module, you might get an error
saying that there are undefined symbols/functions3. To see what the undefined symbol actu-
ally looks like, you can use the command c++filt hasClassType__C8HandleId with
the result (in this case) HandleId::hasClassType(void) const. The error appears
because the program has linked with the wrong library version when the MODE option was
mixed up. Of course, you may get that error without having done anything wrong, which then
happens because there are functions defined in the header file that haven’t been implemented in
the C++ file. The easy way to fix this is to simply comment out the unimplemented definitions
in the header file and recompile the program. When you have edited either the original code, or
the interface file, you will need to recompile both of them. In the swig directory, there exist
a configure.sh script that is used to run the MkDpSWIGMakefile script again with the
options you gave when you originally ran the command. This can be used both when you have
made adjustments, and if you want to move your code to another directory or computer.

The result after running the commands in figure 2.1 was an error message, see figure 2.2 on
the next page. When I was unable to locate the checkDpMode.py script, I commented out that
part in the Makefile, and recompiled. I then got another error message instead (see figure 2.3 on
the facing page), which was resolved when I removed the -c option. Yet another error message
occurred, after recompilation, see figure 2.4 on the next page.

When I was unable to find any swigpy library (and it later turned out that it was from an old
version of SWIG4), I removed the part of the Makefile that used the swigpy library. To be able

3see page 334 in [8]
4from page 189 in [11] ”[...]swigpy is a special purpose library that contains the SWIG pointer type checker

and other support code”

6

~/Heat1/swig $ Make
2 checkDpMode.py MODE= DPDIR=..
make: checkDpMode.py: Command not found

4 make: *** [python] Error 127

Figure 2.2: Errormessage nr.1 from Makefile when wrapping Heat1

swig -python -c++ -c -shadow -I. -I..
2 ...
swig error : Unrecognized option -c

4 Use ’swig -help’ for available options.
make[1]: *** [python_cpp] Error 1

Figure 2.3: The second error message from Makefile when wrapping Heat1

to make the compilation process easier, without having to comment out or remove the same
lines or options for every recompilation, I made a script (called fixSwigMakefile.py,
residing in $PULSEWRAP/src) which does the necessary augmentations in the Makefile5.
After adjusting the Makefile, the program compiled (although a lot of warnings were generated,
see figure 2.5 on the next page), but using the program would not work properly before the
issues in the warnings were solved.

2.1.2 Warnings

Of the warnings generated by the compiler (as seen in figure 2.5 on the following page), the
362 and the 509 warning are the easiest to fix. Looking at page 78 in [12], it is apparent what
the problem causing the 509-error is. When you have several functions in C++ with the same
name, but with different inputs, it causes a problem when wrapping it into Python. With stat-
ically typed languages, you have to make several different versions of the same function if
you want it to be able to take an argument with varying types. Since Python isn’t a statically
typed language, you cannot have several functions with the same name. In this case, one of the
warnings is caused by the Handle_GridFE::Handle_GridFE() function. There are two
equally named functions, one taking a GridFE * object, the other taking a GridFE const

& object. This is of course perfectly legal in C++, but in a scripting language such as Python
this causes problems, since in Python there would only excist one type of GridFE object, and
it can’t differentiate between the two. Since SWIG doesn’t know how to handle it, it causes
a warning. The way to solve it is by giving one of the functions a new name to distinguish it
from the other, which means that for each of the 509-warnings given, I needed to insert a di-

5One more adjustment was done in fixSwigMakefile.py later on, and are described in section A.3 on page 53

1 /usr/bin/ld: cannot find -lswigpy
collect2: ld returned 1 exit status

3 make[1]: *** [python_cpp] Error 1

Figure 2.4: The third error message from Makefile when wrapping Heat1

7

1 Heat1.i:89: Warning 362: operator= ignored
Heat1.i:90: Warning 362: operator= ignored

3 Heat1.i:91: Warning 362: operator= ignored
Heat1.i:211: Warning 302: Identifier ’Handle_FieldFE’ redefined (ignored),

5 Heat1.i:165: Warning 302: previous definition of ’Handle_FieldFE’.
Heat1.i:17: Warning 401: Nothing known about base class ’FEM’. Ignored.

7 Heat1.i:81: Warning 509: Overloaded method Handle_GridFE::Handle_GridFE(GridFE *)
effectively ignored,

Heat1.i:80: Warning 509: as it is shadowed by Handle_GridFE::Handle_GridFE(GridFE
const &).

Figure 2.5: Examples of warnings from compilation of the Heat1 interface

%rename(H_GFE__assign__) Handle_GridFE::operator = (const Handle_GridFE&);
2 %rename(H_GFE__assign__And) Handle_GridFE::operator = (const GridFE&);
%rename(H_GFE__assign__Star) Handle_GridFE::operator = (const GridFE*);

Figure 2.6: Example of renaming operator functions

rective in the Heat1.i interface file called %rename. Example: %rename(H_GFE_H_GFE)
Handle_GridFE::Handle_GridFE(GridFE *); As long as the names given are dis-
tinguishable from each other, it doesn’t really matter which names you give, but it will help for
later usage of the program to give names that explains which function it is. For instance the Han-
dle_GridFE could also be renamed %renameHandle_GridFE_Handle_GridFE_Star

The 362-warning is handled in much the same way as 509-warnings. It appears when there
are operator functions in the program, e.g. operator +, operator [] etc. The operator
functions are handled by SWIG just like any other function, but the problem here is that the
name they get in scripting languages are strings like "operator +", which is an illegal
identifier. The solution is the same as with the 509 warnings, simply renaming the functions6.
In the Heat1 class (as in many other Diffpack classes), there may be more than one operator
= function, which means that each of them will need to be renamed to have an unique identifier.
For naming conventions regarding other operator functions, see [9].

The 401-warning is issued because the Heat1-class inherits the FEM-class from Diffpack,
but SWIG hasn’t been given any information about it. This is solved by including the FEM
interface file in the Heat1 interface by adding this line to Heat1.i: %include "FEM.i"7.
Since SWIG must see the information about the base classes before they are actually inherited,
it is good custom to add the %include line before any class documentation. As an example,
see figure 2.8 on page 10. Of course, to be able to include FEM.i, I would need to create
an interface for the FEM class first. But I will come back to that process in section 2.1.3 on
page 10.

It is important to not ignore the warnings issued by SWIG, because they will cause prob-
lems later on. If you haven’t included FEM.i in Heat1.i (or have ignored warnings), you will
get problems when trying to implement a timeLoop function in Python (see section 2.2.1 on
page 20) later on. The 401 warning, if ignored, will see to it that you don’t have access to the

6As seen in figure 2.6
7For explanation of how SWIG will find the correct interface file, see figure A.3 on page 53

8

1 #Example without %include FEM.i
>>> from Heat1 import *

3 --

*** Diffpack Version 4.2.00 - Development Edition (internal use only) ***
5 --
>>> h=Heat1()

7 >>> h.u
<Swig Object of type ’Handle_FieldFE *’ at 0x7f6c9d4a5b10>

9 >>> dir(h.u)
[’__class__’, ’__cmp__’, ’__delattr__’, ’__doc__’, ’__eq__’, ’__format__’, ’__ge__

’, ’__getattribute__’, ’__gt__’, ’__hash__’, ’__hex__’, ’__init__’, ’__int__’,
’__le__’, ’__long__’, ’__lt__’, ’__ne__’, ’__new__’, ’__oct__’, ’__reduce__’, ’
__reduce_ex__’, ’__repr__’, ’__setattr__’, ’__sizeof__’, ’__str__’, ’
__subclasshook__’, ’acquire’, ’append’, ’disown’, ’next’, ’own’]

11

#Example with %include FEM.i
13 >>> from Heat1 import *
--

15 *** Diffpack Version 4.2.00 - Development Edition (internal use only) ***
--

17 >>> h = Heat1()
>>> h.u

19 <Heat1.Handle_FieldFE; proxy of <Swig Object of type ’Handle_FieldFE *’ at 0
x7f0f233e85a0> >

>>> dir(h.u)
21 [’FFEAnd__assign__’, ’FFEStar__assign__’, ’FFE_rebind’, ’HFFE__assign__’, ’

__call__’, ’__class__’, ’__del__’, ’__delattr__’, ’__deref__’, ’__dict__’, ’
__doc__’, ’__eq__’, ’__format__’, ’__getattr__’, ’__getattribute__’, ’__gt__’,
’__hash__’, ’__init__’, ’__lt__’, ’__module__’, ’__ne__’, ’__new__’, ’
__reduce__’, ’__reduce_ex__’, ’__ref__’, ’__repr__’, ’__setattr__’, ’__sizeof__
’, ’__str__’, ’__subclasshook__’, ’__swig_destroy__’, ’__swig_getmethods__’, ’
__swig_setmethods__’, ’__weakref__’, ’detach’, ’getPtr’, ’getPtrAdr’, ’getRef’,
’ok’, ’rebind’, ’this’]

Figure 2.7: Problems when ignoring 401 warning

inherited variables when you’re attempting to use the python program later on. An example can
be seen in figure 2.7, where you can see that it is not possible to get access to the functions
belonging to the variable u when FEM.i is not included. Lesson learned: warnings are there for
a reason!

As seen in figure 2.5 on the preceding page, you can also get a warning called 302, looking
like this:

Listing 2.1: 302 warning

1 Heat1.i:211: Warning 302: Identifier ’Handle_FieldFE’ redefined (ignored),

Heat1.i:165: Warning 302: previous definition of ’Handle_FieldFE’.

The warning states that the class Handle_FieldFE is already defined, and is solved by
removing the redundant definition from the interface. In many cases when wrapping Diffpack
classes, there will be multiple superfluous definitions of different Handle-classes. Removing the
class definitions that triggers the 302-warnings from the interface file will remove the warnings.

9

1 %module Heat1
%{

3 /* necessary header files to compile the wrapper code: */
#include </home/.../Heat1.h>

5 %}

7 %rename(H_GFE__assign__) Handle_GridFE::operator = (const Handle_GridFE&);
%rename(H_GFE__assign__And) Handle_GridFE::operator = (const GridFE);

9 %rename(H_GFE__assign__Star) Handle_GridFE::operator = (const GridFE*);
%rename(H_GFE_H_GFE) Handle_GridFE::Handle_GridFE(GridFE *);

11 %rename(H_GFE_rebind) Handle_GridFE::rebind(GridFE const &);

13 %init%{
const char* p[] = { "Calling Diffpack from Python" };

15 initDiffpack(1, p);
%}

17

%include "/home/.../FEM/swig/FEM.i"
19

class Heat1 : public FEM
21 {
public:

23 ...
}

25 ...

Figure 2.8: Heat1.i example

After compiling an interface for the first time, the best order to solve the warnings in is to follow
this recipe:

1. fix 401 warnings (%include “FEM.i”)

2. Make (recompile)

3. fix 302 warnings (remove redundant classes)

4. Make (recompile)

5. fix 509 and 362 warnings (%rename() the operators and the overloaded functions.)

2.1.3 Wrapping Diffpack classes

Often when wrapping Diffpack classes, you will need to wrap more than just the solver you are
currently working on (or use already wrapped versions if they exist). This will either be because
your solver has a base class that it needs access to, or because you in your program will need
to make objects of (or access) classes that are defined in other files. They may in turn also be
based on other classes, so there may be quite a lot of classes that needs to be wrapped for one
program. This is the case with the Heat1 solver.

Heat1 inherits the FEM class, which made it necessary to generate an interface for the class.
As with Heat1, I copied the FEM files from the Diffpack library, and then repeated the procedure

10

Make MODE=opt
2 mkdir swig
cd swig

4 MkDpSWIGMakefile MODULE=Heat1 DPDIR=.. MODE=opt
python fixSwigMakefile.py

6 MkDpSWIGInterface MODULE=Heat1 CLASSES="A B C" FILES=Heat1.h
Make

8 %fix warnings
Make

10 Check that "python -c ’from Heat1 import *’" works

Figure 2.9: Short summary of wrapping Diffpack files

$ ls -a
2 . .. FEM.h FEM.cpp
$ Mkdir FEM

4 The directory FEM is created.
Here are all the files in FEM:

6 total 32
drwxrwxr-x 2 heidi heidi 4096 Aug 8 15:16 ./

8 drwxr-xr-x 3 heidi heidi 4096 Aug 8 15:16 ../
-rw-rw-r-- 1 heidi heidi 385 Aug 8 15:16 .cmake1

10 -rw-rw-r-- 1 heidi heidi 652 Aug 8 15:16 .cmake2
-rwxr-xr-x 1 heidi heidi 16165 Aug 8 15:16 Makefile*

12 $ mv FEM.h FEM.cpp FEM
$ cd FEM

14 /FEM $ ls -a
. .. .cmake1 .cmake2 FEM.cpp FEM.h Makefile

Figure 2.10: How to use the Diffpack Mkdir command

from Heat1, see figure 2.9. In this case, there weren’t an already existing Makefile I could use to
compile the C++ file FEM.cpp, so I would have to generate one. Luckily, there exist a command
called Mkdir8 from Diffpack that is used to generate a Makefile that compiles and links the
Diffpack program correctly. As an example on usage, see figure 2.10. The Makefile generated
by Mkdir is not to be adjusted, but in some cases it needs more information on which libraries
to link with when the program is based on more libraries than Diffpack. This is done by adding
a few lines to the hidden file .cmake2, which I will come back to in section 3.1 on page 25.

The SWIG wrapping is done in the same way as with Heat1, with one variance. The
Heat1 file consist of only óne class, in the FEM file there are several classes. This gives
a slightly different input to the MkDpSWIGInterface script. The CLASSES then looks
like this: CLASSES=“FEM IntegrandCalc ElmMatVecCalc ElmMatVecCalcStd

MassMatIntg SmoothDerivField SmoothField”.
One thing that it may be useful to be aware of: if you’re not careful when writing the

CLASSES option, e.g. if you write an extra space between two classes (CLASSES="FEM
IntegrandCalc"), or misspell a class name, you will get an output which includes warnings
like this:

8See page 6 in [6]

11

"Warning 401: Base class ’A’ undefined.
2 Warning 401: ’A’ must be defined before it is used as a base class."
instead of

4 "Warning 401: Nothing known about base class ’A’. Ignored."

Figure 2.11: Warning given when wrong ordering of the classes in the CLASSES option

Listing 2.2: Warning when running MkDpSWIGInterface

1 Use of uninitialized value $classdeclaration in pattern match (m//) at /home/heidi

/Programs/diffpack/NO/bin/MkDpSWIGInterface line 60.

Use of uninitialized value $classdeclaration in concatenation (.) or string at /

home/heidi/Programs/diffpack/NO/bin/MkDpSWIGInterface line 67.

, and the interface file will be generated without the necessary definitions. Also remember to
give the class names in the right order, since there will be problems if a class that inherits another
class in that file is given to the CLASSES option before the parent class. If class B inherits class
A, and you give the class names like this: CLASSES="B A ...", you will get a 401 warning
like earlier, except with slightly different wording9.

Since the FEM class inherits the SimCase class (which in turn inherits the HandleId class),
I also needed to generate interfaces for them. The SimCase class is a part of the MenuSystem
directory in Diffpack, and because it would be necessary to make use of the MenuSystem when
working with the wrapped Heat1 class, I wrapped the whole of the MenuSystem directory (all
of the files)10.

When recompiling the FEM interface after having included the HandleId.i file, I got an error
saying that the variable const char* p [] had already been declared, see figure 2.12 on
the next page. This was because the ’init’ function containing the initDiffpack command
(that always must be declared when using a Diffpack program) was defined several places, both
in the HandleId-, the SimCase- and the FEM-interface. This could be solved by commenting
out (or removing completely) the whole %init part in the HandleId and the SimCase file, and
would need to be done for every file that was wrapped afterwards that was inherited by another
class.

So as to not get any more problems regarding the initDiffpack function, I removed it
from the interface of every class/file I wrapped, except in the main program Heat1 and other
classes I would need to make an object of in my program11. If the initDiffpack command
is left out completely, you will get an error message when trying to run the program (see 2.13
on the facing page). The best thing to do may be to remove it from all files that you will need to
access (but not necessarily make an object of) in Python, and let it remain in the main file and
the classes you need to make an object of in the Python program (like the MenuSystem class).
I then wrapped the SimCase file similarly, and recompiled FEM with HandleId and SimCase
included. Recompiling Heat1 then gave no error messages.

9see figure 2.11
10see chapter 2.1.3 on the facing page
11For instance MenuSystem

12

FEM_wrap.cxx: In function â void init_FEM() â :
2 FEM_wrap.cxx:16339: error: redeclaration of â const char* p [] â
FEM_wrap.cxx:16333: error: â const char* p [1] â previously declared here

4 make[1]: *** [] Error 1

Figure 2.12: Problems with initDiffpack

>>> import Heat1
2 >>> dir(Heat1)
[’Heat1’, ’Heat1_swigregister’, ’_Heat1’, ’__builtins__’,\

4 ’__doc__’, ’__file__’, ’__name__’, ’__package__’, ’_newclass’,\
’_object’, ’_swig_getattr’, ’_swig_property’, ’_swig_repr’, \

6 ’_swig_setattr’, ’_swig_setattr_nondynamic’]
>>> h=Heat1.Heat1()

8 >>>>> Handling a fatal exception: getCommandLineOption reports:
You must call initDiffpack at the beginning of main!

Figure 2.13: When missing initDiffpack-command

MenuSystem

Diffpack programs make use of an implemented menu system, which can be found in

%NOR/bt/src/libs/bt2/menu/MenuSystem/

This makes it easier to give input, and as said on page 5 in [5]:

This is a hierarchical data management system used at run time to define initial
values of all entities used in a Diffpack program. Such entities may be simple
numerical parameters, but may as well be more abstract quantities such as matrix
formats, algebraic solvers, convergence criteria, numerical integration schemes, el-
ement types, etc. Thus, the menu system gives any application the ability to select,
at run time, all program entities, from simple constants to the numerical algorithms
that will be used.

To be able to use the Heat1 solver, I would need to be able to make a MenuSystem-
object in the Python program. I copied the whole of the MenuSystem directory from Diff-
pack, and wrapped each of the individual files. It mostly worked as expected, except for
the MenuItems file. When trying to compile the SWIG interface (after running the usual
Mkdir, MkDpSWIGMakefile and MkDpSWIGInterface commands), I got an error mes-
sage saying that it couldn’t find a matching function to a call to TypeInfo(), because the
arguments were wrong (see figure 2.15 on the next page). After having tried many differ-
ent things (of which none worked), I included the btTypeInfo.i-file12 in MenuItems.i, which
seemed to work. I got one warning, MenuItems_wrap.cxx:7045:24: warning:

variable ’arg1’ set but not used [-Wunused-but-set-variable], which
didn’t cause any problems.

12btTypeInfo.i was generated by the commands seen in figure 2.14 on the following page, following a recipe
given on page 25 in [15]

13

1 >>> swigm MODULE=btTypeInfo DPDIR=.. MODE=opt
Generated DpMakefile.defs and Makefile

3 >>> fixSwigMakefile
>>> swigi MODULE=btTypeInfo CLASSES=TypeInfo FILES=btTypeInfo.h

5 (then remove the %init% part from btTypeInfo.i, and compile)

Figure 2.14: How to wrap btTypeInfo

1 MenuItems_wrap.cxx: In function â PyObject*
_wrap_Handle_MenuItemBase_type_info_get(PyObject*, PyObject*) â :

MenuItems_wrap.cxx:6912:12: error: no matching function for call to â TypeInfo::
TypeInfo() â

3 MenuItems_wrap.cxx:6912:12: note: candidates are:
In file included from /home/heidi/Programs/diffpack/NO/bt/include/genclass.h:21:0,

5 from /home/heidi/Programs/diffpack/NO/bt/include/IsOs.h:36,
from /home/heidi/Programs/diffpack/NO/bt/include/MenuItems.h:17,

7 from MenuItems_wrap.cxx:3078:
/home/heidi/Programs/diffpack/NO/bt/include/btTypeInfo.h:82:8: note: TypeInfo::

TypeInfo(const char*)
9 /home/heidi/Programs/diffpack/NO/bt/include/btTypeInfo.h:82:8: note: candidate

expects 1 argument, 0 provided
/home/heidi/Programs/diffpack/NO/bt/include/btTypeInfo.h:29:7: note: TypeInfo::

TypeInfo(const TypeInfo&)
11 /home/heidi/Programs/diffpack/NO/bt/include/btTypeInfo.h:29:7: note: candidate

expects 1 argument, 0 provided
make[1]: *** [python_cpp] Error 1

13 make[1]: Leaving directory ‘/home/heidi/PulseWrap/Diffpack/Menu/MenuItems/swig’
make: *** [python] Error 2

Figure 2.15: TypeInfo error message

14

>>> from Heat1 import *
2 --

*** Diffpack Version 4.2.00 - Development Edition (internal use only) ***
4 --
>>> from Menu import *

6 --

*** Diffpack Version 4.2.00 - Development Edition (internal use only) ***
8 --
>>> h = Heat1()

10 >>> m = MenuSystem.MenuSystem()
>>> a = "Heat1"

12 >>> b = "Heat1menu"
>>> type(a)

14 <type ’str’>
>>> m.init(a,b)

16 Traceback (most recent call last):
File "<stdin>", line 1, in <module>

18 File "/home/heidi/PulseWrap/src/Menu/MenuSystem.py", line 112, in init
def init(self, *args): return _MenuSystem.MenuSystem_init(self, *args)

Figure 2.16: Attempting to test Heat1

2.2 Testprogram

After successfully wrapping and compiling the Heat1 class into a Python module (and wrapping
the MenuSystem module, along with any inherited classes) the next step was to make sure that
the Heat1 class could be used in a Python program, and see if it would be possible to implement
a few methods in the Heat1 class purely in Python. Testing the Heat1 module, and thereby
finding out what other problems that may arise when working with it, would also be paramount
to be able to wrap the Pulse module successfully, and make sure that the interface used by the
programmer could be implemented in Python.

Before actually making a test program, the first part that needed to be checked was if it
(with the work already done) was possible to import Heat1 and the Menu module into a Python
script, and then be to be able to make an object of each. As seen in figure 2.16, the import13

of the modules worked, as did making objects of each, but there was a problem when I was
trying to call the MenuSystem.init()-function with string arguments. The init-function takes two
arguments in the form of String const &, while the arguments I sent in were of type str.
Diffpack has its own String class that it uses. To be able to send in arguments of the correct type,
I would have to wrap the DpString.cpp file (containing Diffpacks String function), import the
DpString module and make variables with a call to DpString.String("Heat1").

Operator renaming in DpString was a little different than with the Heat1 class (SWIG warn-
ings for DpString can be seen in figure 2.17 on the next page). The 362 warning was accompa-
nied by a 389, 314 and a 503 warning, of which some were solved differently than the earlier
warnings. The 389 warning was solved in the same way as the 362, and the 314 was renamed
according to the proposal given in the warning, see figure 2.18 on the following page.

13To be able to import the Heat1 module and the Menu module anywhere in your file system, you will need to
make it visible to Python, see section A.2 on page 52.

15

1 DpString.i:72: Warning 362: operator= ignored
DpString.i:123: Warning 314: ’del’ is a python keyword, renaming to ’_del’

3 DpString.i:143: Warning 314: ’from’ is a python keyword, renaming to ’_from’
DpString.i:89: Warning 389: operator[] ignored (consider using %extend)

5 DpString.i:150: Warning 503: Can’t wrap ’operator ==’ unless renamed to a valid
identifier.

DpString.i:152: Warning 503: Can’t wrap ’operator !=’ unless renamed to a valid
identifier.

7 DpString.i:155: Warning 503: Can’t wrap ’operator <’ unless renamed to a valid
identifier.

Figure 2.17: Warnings from DpString.i

1 %rename(_del) del;
%rename(_from) from;

3 %rename(String__aref__) String::operator[](int);
%rename(String__assign__) String::operator=(const char*);

5 %rename(String__neq__) operator!=(const String& , const char*);

Figure 2.18: Renaming in DpString.i

1 DpString_wrap.cxx: In function â void init_DpString() â :
DpString_wrap.cxx:7953:20: error: â initDiffpackâ was not declared in this

scope
3 make[1]: *** [python_cpp] Error 1
make[1]: Leaving directory ‘/home/heidi/PulseWrap/Diffpack/DpString/swig’

5 make: *** [python] Error 2

Figure 2.19: Error message if initDiffpack was not removed from DpString.i

16

The 503 warning needed to be solved a little differently. Having tried the usual way14

without any notable differences in the warnings, I checked the source code for DpString. The
operator == () and the other functions with 503 warnings were (according to DpString.h)
“friend functions”15 of the String class. For a definition of what exactly a “friend function”
is, I found the explanation at [16] very helpful:

[...]private and protected members of a class cannot be accessed from outside the
same class in which they are declared. However, this rule does not affect friends.
If we want to declare an external function as friend of a class, thus allowing this
function to have access to the private and protected members of this class, we do it
by declaring a prototype of this external function within the class, and preceding it
with the keyword friend.

The solution for the 503 warning was simply to not give the String class as the class operator=
belonged to, but rename without the class name (since the friend function isn’t really a member
of that class). Using %rename(...) operator=(...) instead of %rename(...)
String::operator=(...) solved the problem. As mentioned earlier, the naming con-
ventions for operator functions can be found on [9].

When DpString was wrapped, the testing could resume. I copied some of a test program
from page 325 in [8], which can be seen in figure 2.20 on the next page. The first hiccup in
the program happened when the program tried to call Heat1.scan(). The following error
message says that the program hadn’t called the SimCase::attach() function:

Listing 2.3: SimCase::attach error

1 Handling a fatal exception: SimCase::getMenuSystem() reports:

This function cannot return a MenuSystem& reference

3 because the SimCase::attach(MenuSystem&) function has not

been called. You should call that function from your adm

5 routine in your simulator. This will bind the menu system

to internal data in SimCase such that you can access the

7 menu system through the getMenuSystem() function later.

9 -> TERMINATION due to fatal error.

In the Heat1 class, this is done in the adm() routine. The problem is that the adm()

routine starts an interactive session, which is what I wanted to avoid. I wanted to be able to
make a Python script that can put in the parameters needed without running the adm() routine,
so that everything could be done in one Python script. Having to use an interactive routine
would negate most of the point with this thesis. I tried several ways to make this work, but none
did. Trying to call the Simcase.attach(menu) in the python function before heat.scan() still gave
the error that the attach() function wasn’t called. The workaround that solved the problem was
in this case to add SimCase::attach(menu) in the Heat1::define() function in the
original C++ code. If you actually want to use the adm() routine, the attach function is called
twice, but that doesn’t seem to cause any problems. I also found after having solved it that this

14%rename(String__eq__) String::operator==(const String&,const char);
15friend /inline/ bool operator==(const String& x, const char s);

17

1 from Heat1 import *
from Menu import *

3 from DpString import *
import math

5

def run(dt, T, dx, a):
7 xnodes=int(1./dx)

grid_str="P=PreproBox | d=2 [0,1]x[0,1] |\
9 d=2 e=ElmB4n2D div=[%d,%d] grading=[1,1]" % (xnodes, xnodes)

grid_str = String(grid_str)
11 a.menu.set(String("gridfile"), grid_str)

time_str = "dt = %e t in [0,%e]" % (dt, T)
13 time_str= String(time_str)

a.menu.set(String("time parameters"), time_str)
15 a.solver.scan()

a.solver.solveProblem()
17 a.solver.resultReport()

return
19

class A:
21 def __init__(self):

self.menu = MenuSystem.MenuSystem()
23 self.solver = Heat1()

self.menu.init(String("Heat1 menu"), String("Heat1Menu"))
25 self.solver.define(self.menu)

27 if __name__==’__main__’:
a = A()

29 T = 2.0
dt =pow(2,-6)

31 dx = pow(2, -2)
run(dt,T,dx,a)

33 a.menu.thisown = 0
a.solver.thisown = 0

Figure 2.20: The testfil.py script for Heat1

“trick” was tried before with success, on page 34 in [14], which would indicate that I was on
the right track. After having adjusted the Heat1::define() method, the program worked
and printed out the correct numbers (see figure 4.2 on page 45).

Another problem arose when the program terminated. The garbage collector was trying
to delete an object that had already been deleted, and this triggered a segmentation fault (see
figure 2.21 on the next page). Python and C++ doesn’t cooperate well when it comes to garbage
collection, because they don’t know who is in charge of the object and therefore should delete
it. From page 46 in [15] you can see that this can be solved by making the MenuSystem- and
the Heat1-object class variables, and then setting the object variable thisown=016, as seen in
figure 2.22 on the facing page. This makes the garbage collector work correctly.

16From page 46 in[15]: When thisown=1, the object is owned by Python. When it is set to 0, it is owned by
Diffpacks Handler.

18

bt1/HandleId.cpp:121
2 >>>>> Handling an exception: ~HandleId reports:
Trying to delete this object (dynamically allocated),

4 but there are 1 references! (the number may be nonsense).
Compile in non-optimized mode and re-run to get more

6 information. This is a serious error (twice delete is
possible). Ignore this message if the program was aborted.

8

Segmentation fault

Figure 2.21: Error message after program was done

1 class A:
def __init__(self):

3 self.menu = MenuSystem.MenuSystem()
self.solver = Heat1()

5 self.menu.init(String("Heat1 menu"), String("Heat1Menu"))
self.solver.define(self.menu)

7

9 if __name__==’__main__’:
a = A()

11 T = 2.0
dt =pow(2,-6)

13 dx = pow(2, -2)
run(dt,T,dx,a)

15 a.menu.thisown = 0
a.solver.thisown = 0

Figure 2.22: How to avoid problems with garbage collector

19

2.2.1 TimeLoop

The next step in the testing of Heat1 was to see if it would be possible to implement the
Heat1::timeLoop function in Python, and then try to get Heat1::solveAtThisTimestep
to work when implemented purely in Python. If it is possible to reconstruct a C++ function from
Heat1 purely in Python, using functionality from the original Heat1 class, it will give a lot more
control over the program. Being able to implement the solveAtThisTimestep function
in the Python script, and within it control the calls to the different functions residing in other
classes will make it possible to at a later stage make an interface for the Pulse module which
makes all of the communication between the classes in Python.

The program used is the same as in figure 2.20 on page 18, with the difference that the call
to Heat1:solveProblem() in the run method is replaced by a call to a locally defined
solveProblem method implemented in Python, that in turn calls the local timeLoop func-
tion, see figure 2.23 on the facing page. When running the program, the process halted already
in the first line in the timeLoop() method, with an error that the TimePrm variable tip
didn’t have any attribute called initTimeLoop. To be able to see what was accessible of the tip
variable’s functions and objects in the program, I printed out dir(solver.tip()). As seen
in figure 2.25 on the next page, it was not possible to access the initTimeLoop function just
yet.

Python needs to be able to access the functions and variables contained in the TimePrm
object, but cannot do this directly from Heat1. For the script to be able to do anything with
functions and objects belonging to Heat1s variables, it would be necessary to wrap the classes
those variables belonged to. Since tip was of type TimePrm, I needed to wrap that class, and
import the TimePrm module into the timeLoop script. Before I wrapped TimePrm, I made all
variables and functions public, so that I would be able to access the ones I needed later on. In
solveAtThisTimeStep, the function prints the time at each time step, and to be able to do
this from the Python version of the function, I needed to be able to access the time variable. The
wrapping didn’t cause any problems, and importing the module into the program went without
a hitch17.

A few other classes would need to be wrapped to access the functions and objects needed to
implement the timeLoop function. The classes that needed to be wrapped was the SaveSimRes
class (since the database variable was of this type, and it would be necessary to access
SaveSimRes.dump() function) and the TimePrm class (because of already mentioned reasons).

A couple of new problems arose when I was wrapping SaveSimRes that hadn’t appeared be-
fore. One error message (see figure 2.26 on page 22) was saying that the SaveSimRes::dump()
function was undefined. As mentioned in section 2.1.1 on page 6, the first thing to check was
that the program was compiled with MODE=opt both when compiling the C++ program and
the wrapper code, but recompiling with MODE=opt in both cases didn’t fix the problem. I
then checked the header file and the .cpp file belonging to SaveSimRes, and it turned out that
there were several functions defined in the header file that weren’t implemented in the .cpp
file. After commenting out the function definitions that weren’t implemented18 and recompil-

17Add from TimePrm import * to the Python program
18dump(FieldsWithPtValues,...), dump(FieldWithPtValues...), dump(FieldFV...), dump(FieldsFV...),

lineCurve(FieldFV...)

20

def timeLoop(self):
2 tip=self.solver.tip()

tip.initTimeLoop()
4 self.solver.setIC()

self.solver.database().dump(self.solver.u(),tip,"initial condition")
6 while tip.finished()==False:

tip.increaseTime()
8 #local solveAtThisTimeStep function

self.solveAtThisTimeStep()
10 self.solver.u_prev = self.solver.u

return

Figure 2.23: The local timeLoop function

1 File "timeloop.py", line 97, in <module>
run(dt,T,dx)

3 File "timeloop.py", line 77, in run
solveProblem(menu,heat)

5 File "timeloop.py", line 84, in solveProblem
timeLoop(menu, solver)

7 File "timeloop.py", line 32, in timeLoop
solver.tip.initTimeLoop()

9 File "/home/heidi/PulseWrap/Diffpack/Heat1/swig/Heat1.py", line 748, in <lambda>
__getattr__ = lambda self, name: _swig_getattr(self, Handle_TimePrm, name)

11 File "/home/heidi/PulseWrap/Diffpack/Heat1/swig/Heat1.py", line 55, in
_swig_getattr

raise AttributeError(name)
13 AttributeError: initTimeLoop

Figure 2.24: Error when first trying to call TimePrm tip from Heat1

1 [’H_TP__assign__’, ’H_TP__assign__And’, ’H_TP__assign__Star’, \
’H_TP_rebind’, ’__call__’, ’__class__’, ’__del__’, ’__delattr__’, \

3 ’__deref__’, ’__dict__’, ’__doc__’, ’__eq__’, ’__format__’, ’__getattr__’, \
’__getattribute__’, ’__gt__’, ’__hash__’, ’__init__’, ’__lt__’, ’__module__’, \

5 ’__ne__’, ’__new__’, ’__reduce__’, ’__reduce_ex__’, ’__ref__’, ’__repr__’, \
’__setattr__’, ’__sizeof__’, ’__str__’, ’__subclasshook__’, ’__swig_destroy__’,\

7 ’__swig_getmethods__’, ’__swig_setmethods__’, ’__weakref__’, ’detach’, ’getPtr’,
\

’getPtrAdr’, ’getRef’, ’ok’, ’rebind’, ’this’]

Figure 2.25: Outprint of dir(solver.tip()) before wrapping of TimePrm

21

>>> import SaveSimRes
2 Traceback (most recent call last):

File "<stdin>", line 1, in <module>
4 File "SaveSimRes.py", line 26, in <module>

_SaveSimRes = swig_import_helper()
6 File "SaveSimRes.py", line 22, in swig_import_helper

_mod = imp.load_module(’_SaveSimRes’, fp, pathname, description)
8 ImportError: ./_SaveSimRes.so: undefined symbol:

ZN10SaveSimRes4dumpER18FieldsWithPtValuesPK7TimePrmPKcS6

Figure 2.26: Undefined symbol error when importing

#Original timeLoop function copied from Heat1.cpp
2 void Heat1:: timeLoop()
{

4 tip->initTimeLoop();
setIC();

6 database->dump (*u, tip.getPtr(), "initial condition");

8 while(!tip->finished())
{

10 tip->increaseTime();
solveAtThisTimeStep();

12 *u_prev = *u;
}

14 }

Figure 2.27: The original timeLoop function in Heat1.cpp

ing, the import statement worked as it should. Another problem was that a segmentation fault
was triggered if the %init command was removed from SaveSimRes’ interface file, so that was
put back into the interface file. After having fixed the errors and imported TimePrm and SaveS-
imRes, there didn’t seem to be any more problems when running the program. The output from
timeloop.py (the error field) matched the output when using the C++ version of the timeLoop
function, and can be seen in figure 4.2 on page 45.

2.2.2 solveAtThisTimeStep

Implementation of the solveAtThisTimeStep function in Python was done in much the same
way as the timeLoop function19. A few variables used in the solveAtThisTimeStep were of
types that weren’t already wrapped and imported: the dof variable of type DegFreeFE, the
u_summary of type FieldSummary and lineq of type LinEqAdmFE. These classes needed
to be wrapped and imported.

After having wrapped and imported the classes into the program, a segmentation fault was
triggered, and the error message when using the gdb debugger can be seen in figure 2.28 on the
facing page. The LinEqAdmFE inherits LinEqAdm, where the error occurs. It turned out that
removing the %init command from LinEqAdm caused the segfault (or at least that keeping it

19For the original code of this function, see figure 2.29 on the next page

22

swig/python detected a memory leak of type ’Vec_real *’, no destructor found.
2 Program received signal SIGSEGV, Segmentation fault.
LinEqAdm::cputime (this=this@entry=0xa35fc0) at linsol/gen/LinEqAdm.cpp:115

4 115 if (proc_manager->master()) {

Figure 2.28: segfault from LinEqAdm

void Heat1:: solveAtThisTimeStep ()
2 {

fillEssBC (); // incorporate time-dep. ess. b.c.
4

System (*dof,*lineq); // FEM’s assembly algorithm
6

dof->field2vec (*u, linsol); // use most recent u as start vector
8 lineq->solve (); // solve linear system

s_o << "t=" << tip->time();
10 int niterations; bool c; // for iterative solver statistics

if (lineq->getStatistics(niterations,c)) // iterative solver?
12 s_o << oform(" solver%sconverged in %3d iterations\n",

c ? " " : " not ",niterations);
14 s_o << ’\n’; s_o.flush(); // flush() forces output _now_

16 dof->vec2field (linsol, *u); // load linsol into the field u
database->dump (*u, tip.getPtr(), "some comment if desired...");

18 u_summary.update (tip->time()); // keep track of max/min u etc

20 // compute smooth flux -k*grad(u);
FEM::makeFlux (*flux, *u);

22 database->dump(*flux, tip.getPtr(), "smooth flux -k*grad(u)");
}

Figure 2.29: The original code used in Heat1::solveAtThisTimestep()

makes it not happen), as was the case with the SaveSimRes interface.
In the solveAtThisTimestep function, the time in each iteration is printed out, but the TimePrm::time()

function returns a Swig Object of type ’real *’. To be able to print out the time
in each iteration, the TimePrm::t variable was used directly: print "t=%f" % tip.t.
This was not an optimal solution, but for me to be able to continue with the Pulse part of the
project, it would have to do for the time being. After having imported the modules needed and
correcting the other errors, the program worked and got the same results as the testfil.py and the
timeLoop.py script (see figure 4.2 on page 45).

The test scripts for Heat1 can be found in $PULSEWRAPDIR/testing/testHeat1/20.

20$PULSEWRAPDIR is the directory where the PulseWrap directory is installed

23

1 def solveAtThisTimeStep(self):
self.solver.fillEssBC()

3 self.solver.makeSystem(self.solver.dof(),self.solver.lineq())
u = self.solver.u()

5 linsol=self.solver.linsol
tip = self.solver.tip()

7 flux = self.solver.flux()
self.solver.dof().field2vec(u, linsol)

9 self.solver.lineq().solve()
print "t=%f" % tip.t

11 self.solver.dof().vec2field(linsol, u)
print

13 self.solver.database().dump(u, tip, "some comment if desired...")
self.solver.u_summary.update(tip.time())

15 self.solver.makeFlux(flux, u)
self.solver.database().dump(flux, tip, "smooth flux -k*grad(u)")

17 return

Figure 2.30: The local solveAtThisTimestep function

24

Chapter 3

Python interface for Pulse

With the Heat1 module wrapped and tested, the biggest part of the project still remained: getting
the Pulse library wrapped correctly, and testing it. After having wrapped the files belonging to
the library, the test program should implement a solver (preferably one already implemented
with the original Pulse program so that the solvers could be compared) and a timeLoop function
that calls the solveAtThisTimestep from different classes.

Before wrapping the files, I copied the pulse-cmake/pulse/src directory to a local
one (called Pulse) with the same goal in mind as with the Heat1 directory: avoid changing
anything in the original program. The Pulse directory consists of 5 directories, cellmodel,
diffusion, heart, mechanics and ode. Each of these directories consists of several
files, of which some consists of more than one class. For each file, a new directory containing
a Makefile needed to be generated, and the Mkdir command was used as it was in figure 2.10
on page 11.

3.1 Wrapping a single class in Pulse

As an example of how a Pulse file was wrapped, the CellModel file was chosen. In contrast
with the Heat1 program, the compilation (or rather the linking of the libraries) of the original
C++ code did not go smoothly. As seen in figure 3.1 on the next page, the compiler gener-
ated a lot of "undefined reference to" error messages during the linking part of the
compilation. The reason for the errors was that the compiler didn’t find the libraries it should
link with, which was solved (in this case) by adding a few lines to the hidden file .cmake21

consisting of which library to link with, and where it resided, thereby giving the Makefile the
information it needed to link correctly. I then had to copy the Pulse library libpulse.so into
the /usr/lib directory2. After adding the required lines to the .cmake2 file, the program
compiled, and the wrapping could begin.

CellModel inherits several other classes (ExplicitODEeqUDC, ODE, SimCase), which
needed to be wrapped, so that they could be included in the interface file.ExplicitODEeqUDC
and ODE are from the ode part of Pulse, while SimCase is from the Menu module from Diff-

1as seen in figure 3.2 on the following page
2Remember when you build (using ccmake) the Pulse library, that you specify that it should be built with shared

libraries, so that libpulse.so is generated

25

>>> Make MODE=opt
2

...
4

---------- linking ./CellModel.o ----------
6

g++ -L. -L/usr/X11R6/lib -L/home/heidi/Programs/diffpack/NO/dp/lib/linux-gcc-4/
opt -L/home/heidi/Programs/diffpack/NO/la/lib/linux-gcc-4/opt -L/home/heidi/
Programs/diffpack/NO/bt/lib/linux-gcc-4/opt -L/home/heidi/Programs/diffpack/NO/
ext/linux-gcc-4/lib -o app ./CellModel.o -ldpU -ldpK -llineq -larr3 -larr2 -
lbt2 -larr1 -lf2c -lm -ldl

8 ./CellModel.o: In function ‘CellModel::defineStatic(MenuSystem&, int)’:
/home/heidi/PulseWrap/Pulse/cellmodel/CellModel/CellModel.cpp:9: undefined

reference to ‘ODE::defineStatic(MenuSystem&, int)’
10 /home/heidi/PulseWrap/Pulse/cellmodel/CellModel/CellModel.cpp:14: undefined

reference to ‘hierODEsolver()’
./CellModel.o: In function ‘CellModel::scan(MenuSystem&)’:

12 /home/heidi/PulseWrap/Pulse/cellmodel/CellModel/CellModel.cpp:27: undefined
reference to ‘ODE::scan(MenuSystem&)’

...
14 ./CellModel.o:(.data.rel.ro._ZTC16ExplicitODEeqUDC8_6DynSys[_ZTV16ExplicitODEeqUDC

]+0x60): undefined reference to ‘DynSys::handleRoot(DynamicState&, int)’
./CellModel.o:(.data.rel.ro._ZTC16ExplicitODEeqUDC8_6DynSys[_ZTV16ExplicitODEeqUDC

]+0x90): undefined reference to ‘typeinfo for DynSys’
16 collect2: error: ld returned 1 exit status
make: *** [app] Error 1

Figure 3.1: Error messages when compiling the C++ code of CellModel

1 LDPATH += -L/home/heidi/Programs/pulse-cmake/local/lib
LIBS += -lpulse

3 INCLUDEDIRS += -I/home/heidi/Programs/pulse-cmake/local/include

Figure 3.2: Lines added to .cmake2 in CellModel

pack. SimCase was already wrapped during the work on the Heat1 problem, so I only needed
to do the same to ODE and ExplicitODEeqUDC.

ExplicitODEeqUDC also had problems when compiling the C++ code, but the error mes-
sage was different from the one in CellModel. This time, the problem was with the f2c li-
brary. The error messages is listed in figure 3.3 on the next page. After a lot of googling,
and not being able to find any explanation, I tried rearranging the order the libraries were
linked in. The solution was to switch the order f2c and Pulse was linked, by adding the lines
seen in figure 3.4 on the facing page to the .cmake2 file belonging to ExplicitODEeqUDC.
ExplicitODEeqUDC compiled, and I could proceed with wrapping it. Both ExplicitODEeqUDC
and ODEwere wrapped without problems. I then included the interface files for ExplicitODEeqUDC,
ODE and SimCase in the CellModel interface. This caused a TypeInfo-error (as seen in fig-
ure 2.15 on page 14), which was solved in the same way as it was in Heat1 (see section 2.1.3 on
page 13) by including btTypeInfo.i in the interface file. The last remaining warning was a 302
warning that the Handle_DynamicState class was defined both in ODE.i and in DynSys.i
(which was included from ExplicitODEeqUDC), and was solved by adding an %ignore

26

1 ---------- linking ./ExplicitODEeqUDC.o ----------

3 g++ -L. -L/usr/X11R6/lib -L/home/heidi/Programs/pulse-cmake/local/lib/pulse -L/
usr/lib/ \

-L/home/heidi/Programs/diffpack/NO/dp/lib/linux-gcc-4/nopt -L/home/heidi/Programs
/diffpack/NO/la/lib/linux-gcc-4/nopt \

5 -L/home/heidi/Programs/diffpack/NO/bt/lib/linux-gcc-4/nopt -L/home/heidi/Programs
/diffpack/NO/ext/linux-gcc-4/lib -o app \

./ExplicitODEeqUDC.o -ldpU -ldpK -llineq -larr3 -larr2 -lbt2 -larr1 -lpulse -
lf2c -lm -ldl

7 /usr/lib//libf2c.so(main.o): In function ‘main’:
/build/buildd/libf2c2-20090411/main.c:138: undefined reference to ‘MAIN__’

9 collect2: error: ld returned 1 exit status

Figure 3.3: Error message when compiling ExplicitODEeqUDC

1 INCLUDEDIRS += -I/usr/local/include
LDPATH += -L/usr/lib/

3 LIBS += -lf2c
INCLUDEDIRS += -I/home/heidi/Programs/pulse-cmake/local/include

5 LDPATH += -L/home/heidi/Programs/pulse-cmake/local/lib/pulse
LIBS += -lpulse

Figure 3.4: Switching the order of linking with the f2c and the pulse library (in .cmake2)

Handle_DynamicState between the inclusion of ODE and ExplicitODEeqUDC. The
compilation then continued without any problems3

3.2 Compilation and build of all modules

When I started compiling and wrapping all of the files in Pulse, a problem was early discovered
in almost all of the .cpp and .h files. The header files that were included in the .cpp and .h files
were included from the local directory using #include "File.h" instead of including the
global files using #include <File.h>. This would cause problems when I created new
local directories for all of the classes in Pulse (using Mkdir), and moved the .cpp and the .h files
into them, since the compiler wouldn’t be able to find the files when they no longer resided in
the same directory.

At the beginning of the project, I could not know if I would need to make any alterations

3Code snippet from CellModel can be seen in figure 3.5

%include "btTypeInfo.i"
2 %include "ExplicitODEeqUDC.i"
%ignore Handle_DynamicState;

4 %include "ODE.i"
%include "SimCase.i"

Figure 3.5: Include statements in CellModel.i

27

1 ---------- linking ./SuperLU.o ----------

3

g++ -L. -L/usr/X11R6/lib -L/home/heidi/Programs/pulse-cmake/local/lib -L/home/
heidi/Programs/diffpack/NO/dp/lib/linux-gcc-4/opt -L/home/heidi/Programs/
diffpack/NO/la/lib/linux-gcc-4/opt -L/home/heidi/Programs/diffpack/NO/bt/lib/
linux-gcc-4/opt -L/home/heidi/Programs/diffpack/NO/ext/linux-gcc-4/lib -o app
./SuperLU.o -ldpU -ldpK -llineq -larr3 -larr2 -lbt2 -larr1 -lpulse -lf2c -lm
-ldl

5 /usr/bin/ld: ./SuperLU.o: undefined reference to symbol ’Destroy_CompCol_Matrix’
/usr/bin/ld: note: ’Destroy_CompCol_Matrix’ is defined in DSO /usr/lib/libsuperlu.

so.3 so try adding it to the linker command line
7 /usr/lib/libsuperlu.so.3: could not read symbols: Invalid operation
collect2: error: ld returned 1 exit status

9 make: *** [app] Error 1

Figure 3.6: Error after adding Pulse to the linking problem

in the C++ files, and therefore would need to use a local version of the header files and not
those residing in the pulse-cmake directory. I therefore made a few changes to the in-
clude statements in the Pulse header files whenever a header file from Pulse was used. I re-
placed the #include "File.h" (or, if it was using a file in another directory, #include
<pulse/heart/File.h>) with #include <Pulse/cellmodel/File/File.h>4,
thereby making sure that the files used were residing in my PulseWrap/Pulse directory and
not in pulse-cmake/pulse. All of the include statements in the Pulse files were then al-
tered.

Most of the wrapping of Pulse went without a hitch, but there were a few files that had
different problems than had been seen in Heat1 or CellModel. In most of the .cmake2 files, I
would need to add Pulse to the libraries to be linked with, as was done in figure 3.2 on page 26
to make the compilation of the C++ files work correctly. From here on out, I will only mention
the files that had new problems, or where it could be useful to remember how to fix the more
usual errors.

3.2.1 heart

The heart directory was the first to be wrapped, with few hitches, except for the SuperLU and
the SuperLU_MT. There were problems with the linking in SuperLU, even after having added
Pulse to the libraries. The error message said that it had problems with libsuperlu, as seen in
figure 3.6. Adding the SuperLU library to the .cmake2 file made the linking go smoothly (see
figure 3.7 on the facing page).

SuperLU_MT needed to be linked with both the Pulse and the f2c library (as was done in 3.4
on the previous page), but since I hadn’t been able to install the SuperLU_MT library on my
computer, it wasn’t possible to wrap it either. Since I didn’t have any need for the SuperLU_MT
library, this was of no big concern.

4Note: the directory containing the local version of the Pulse library needs to be added to the path, so that
Python and C++ can find the files).

28

1 LDPATH += -L/usr/lib/
LIBS += -lsuperlu

3 INCLUDEDIRS += -I/usr/include/superlu

Figure 3.7: Add SuperLU to the libraries Makefile should link with

1 %module create
%{

3 /* necessary header files to compile the wrapper code: */
#include </home/heidi/PulseWrap/Pulse/cellmodel/create/create.h>

5 %}

7 %rename(createODE_nthreads) createODE (const String&,int);

9 /*
%init%{

11 const char* p[] = { "Calling Diffpack from Python" };
initDiffpack(1, p);

13 %}

*/
15

// Some global variables
17 extern const char** hierODE();
extern CellModel* createODE (const String& problem);

19 extern CellModel** createODE (const String& problem,int nthreads);

Figure 3.8: The interfacefile create.i

3.2.2 cellmodel

In the cellmodel directory, there was a type of C++ file that I hadn’t wrapped before, consist-
ing only of functions and no classes. It consisted of the extern functions hierODE and
createODE. When I used the MkDpSWIGInterface script, it only generated the %module
and %init part of the interface, since there weren’t any classes to be given to the script. It was
therefore necessary to add code to the interface that defined the functions, if I wanted to be
able to access the functions later (if nothing was done, the dir() command couldn’t find the
functions when the module was imported into Python). The code added to the interface file can
be seen in figure 3.8. I also needed to add #include <DpString.h> to create.h, because
of an error message when compiling the interface (see figure 3.9 on the next page). The rest of
the cellmodel directory went smoothly.

3.2.3 diffusion

In diffusion, the two difficult files to wrap were the VecSimplestGridCollector_Handle
and the VecSimplestDiffusion_Handle, the problem there being how the classes were
named. Which name should be given to the option CLASSES? After a few tries and fails, I
found a pattern that worked with both files, which can be seen in figure 3.10 on the following
page.

29

1 ...
In file included from create_wrap.cxx:3067:0:

3 /home/heidi/PulseWrap/Pulse/cellmodel/create/create.h:9:39: error: â S t r i n g â
does not name a type

/home/heidi/PulseWrap/Pulse/cellmodel/create/create.h:9:47: error: ISO C++ forbids
declaration of â problemâ with no type [-fpermissive]

5 /home/heidi/PulseWrap/Pulse/cellmodel/create/create.h:10:40: error: â S t r i n g â
does not name a type

/home/heidi/PulseWrap/Pulse/cellmodel/create/create.h:10:48: error: ISO C++
forbids declaration of â problemâ with no type [-fpermissive]

7 create_wrap.cxx: In function â PyObject* _wrap_createODE(PyObject*, PyObject*) â
:

create_wrap.cxx:3232:3: error: â S t r i n g â was not declared in this scope
9 create_wrap.cxx:3232:11: error: â a r g 1 â was not declared in this scope
...

Figure 3.9: Error in create because of DpString.h not included

swigi MODULE=VecSimplestGridCollector_Handle CLASSES=
VecSimplest_Handle_GridCollector FILES=VecSimplestGridCollector_Handle.h

2 swigi MODULE=VecSimplestDiffusion_Handle CLASSES=VecSimplest_Handle_DiffusionMG
FILES=VecSimplestDiffusion_Handle.h

4 /*
#define Type Handle(DiffusionMG)

6 #include <VecSimplest_Type.h>
#undef Type

8

-> CLASSES=VecSimplest_Handle_DiffusionMG
10 */

Figure 3.10: How to wrap VecSimplestGridCollector_Handle and VecSimplestDiffu-
sion_Handle

30

Materials_wrap.cxx: In function â PyObject* _wrap_delete_Material(PyObject*,
PyObject*) â :

2 Materials_wrap.cxx:3353:10: warning: deleting object of polymorphic class type
â Materialâ which has non-virtual destructor might cause undefined behavior
[-Wdelete-non-virtual-dtor]

Materials_wrap.cxx: In function â PyObject* _wrap_delete_TransverseIso(PyObject*,
PyObject*) â :

4 Materials_wrap.cxx:4993:10: warning: deleting object of polymorphic class type
â TransverseIsoâ which has non-virtual destructor might cause undefined
behavior [-Wdelete-non-virtual-dtor]

Materials_wrap.cxx: In function â PyObject* _wrap_delete_ModSVK(PyObject*,
PyObject*) â :

6 Materials_wrap.cxx:6239:10: warning: deleting object of polymorphic class type
â M o d S V K â which has non-virtual destructor might cause undefined behavior [-
Wdelete-non-virtual-dtor]

Materials_wrap.cxx: In function â PyObject* _wrap_delete_Holzapfel(PyObject*,
PyObject*) â :

8 Materials_wrap.cxx:6488:10: warning: deleting object of polymorphic class type
â Holzapfelâ which has non-virtual destructor might cause undefined behavior
[-Wdelete-non-virtual-dtor]

Materials_wrap.cxx: In function â PyObject* _wrap_delete_Holzapfel2(PyObject*,
PyObject*) â :

10 Materials_wrap.cxx:6851:10: warning: deleting object of polymorphic class type
â Holzapfel2â which has non-virtual destructor might cause undefined
behavior [-Wdelete-non-virtual-dtor]

Figure 3.11: Warnings when wrapping Materials

3.2.4 mechanics

The mechanics directory contained the fewest files and classes - eig3, Myocardium and Mate-
rials. The eig3 file needed to have both Pulse and f2c in the .cmake2 file. In the interface file, I
did the same as in figure 3.8 on page 29, to be able to access the function. The wrapping of Ma-
terials didn’t cause any errors, but I got a lot of warnings I hadn’t seen before (see figure 3.11).
As far as I could tell, there weren’t any problems regarding the warnings.

3.2.5 ode

In ode, the following files needed both f2c and Pulse added as libraries to link with in .cmake2:
CombinedDynamicState, CombinedDynSys, ExplicitODEeqUDC, createODEsolver
and ODEsolver_prm. In CombinedDynamicState, CombinedDynSys and EmsODEsolver,
I needed to include btTypeInfo.i in the interface files. Both createODEsolver and createRootFinder
needed extra lines added to the interface for Python to be able to access the functions defined in
them, see figure 3.12 on the next page.

3.3 Example of use

After the wrapping of the files were completed, the next step was to implement a couple of test
programs. The chosen programs were the isotopic_all.i and isometric_all.i in the pulse-cmake/
tests/thinslab/ directory, which meant that it would be possible to compare results from

31

//createODESolver
2 extern ODEsolver* createODEsolver (ODEsolver_prm& pm);
extern const char** hierODEsolver ();

4 //createRootFinder
extern RootFinder* createRootFinder (String name);

6 extern const char** hierRootFinder ();

Figure 3.12: The lines added to the interface files for createODEsolver and createRootFinder

def main(self):
2 self.menu.init(String("Isometric"), String("isometric test"))

casename = "testbox"
4 cellmodel = "WinslowRice"

self.infile = "isometric_all.i"
6 cmd = String(cellmodel)

mech_model = "TransverseIso"
8 self.simulator = Circulation(cmd, String("Something"), String(mech_model)

)
self.simulator.thisown = 0

10 self.simulator.define(self.menu)
menu = self.menu

12 menu.initFromCommandLineArg("--cmd", cmd, cellmodel)
menu.initFromCommandLineArg("--casename", String(casename), casename)

14 return

Figure 3.13: The main() function in the Isometric class implemented in Python

the original version with the Python implementation. In the thinslab directory there were
already implemented programs that could be used to run the isometric and isotopic test
cases, and the input variables given in those programs were used in the Python version also5.

The solver class in Pulse is the Circulation class residing in heart, which in the
original test programs is called from main, and therefore also used in the Python implementation
of the test programs. It is a simple model for the circulation system, and is necessary to set
the correct boundary conditions for the heart model. The Circulation class initializes the
Heart class, and calls functions to model the electrical activity and mechanics in the heart.

The test programs were implemented in three scripts. The main program resides in test.py,
where the Python implementations of the functions that were needed reside, as well as the run
method and readFile function. In testisometric.py and testisotonic.py the Isometric and
Isotonic classes were implemented, and were then imported into the test.py script. The
testisometric.py script initializes the Circulation class, makes a MenuSystem object, and
sets the correct infile and initial cell model and mechanics model in the class. The same is done
in testisotonic.py with the isotonic case. The main function in the Isometric class can be
seen in figure 3.13, and the main function in the Isotonic class can be seen in figure 3.14 on
the next page

The constructor in the Circulation class needed 3 arguments, the cellmodel (for in-
stance WinslowRice), the heart solver (SingleCell, Mono or Heart) and mechanics model (for

5The test programs from thinslab were called run_isotopic_all.verify and
run_isometric_all.verify

32

1 def main(self):
casename = "testbox"

3 cellmodel = "WinslowHMT"
self.infile = "isotonic_all.i"

5 self.menu.init(String("Isotonic"), String("isotonic test"))
cmd = String(cellmodel)

7 mech_model = "TransverseIso"
self.simulator = Circulation(cmd, String("Something"), String(mech_model)

)
9 self.simulator.thisown = 0

self.simulator.define(self.menu)
11 menu = self.menu

menu.initFromCommandLineArg("--cmd", cmd, cellmodel)
13 menu.initFromCommandLineArg("--casename", String(casename), casename)

return

Figure 3.14: The main() function in the Isotonic class implemented in Python

instance TransverseIso). To be able to insert the commands from isometric_all.i and iso-
tonic_all.i directly into the MenuSystem object (and thereby avoiding the adm() function),
a readFile() function was made. The forceAnswer function from MenuSystem was
used to give the input directly into the menu. Just inserting the commands directly into the
forceAnswer function wasn’t received very well from MenuSystem, at least not the set
command6, which resulted in the following error message:

Listing 3.1: Error when using the set prefix in readFile()

1 >>>>> Handling a fatal exception: MenuSystem::get reports:

When setting menu answers with the aid of the answers list (StringList)

3 in the MenuSystem class, the command must not be prefixed by "set".

Here we have encountered "set heart time integration parameters" which is illegal.

5 Check the functions where statements on the form

menu.answers.append (aform("set ..."))

7 appear, and remove the "set" prefix.

The readFile() function was then adjusted to give the command without the prefix set. It
also ignores any line starting with “!”, since they are comments or lines not used, and any blank
lines. The readFile() function can be seen in figure 3.15 on the following page.

The init-files (isometric_all.i and isotonic_all.i) were adjusted a little bit before testing to
make the program run smoother, and to avoid having to make a more complicated readFile
function. The commented out lines were removed (for the most part), the last part of any line
where there were comments on the end (or other possible values for the input)7 were removed,
and also any curly brackets (“{”)8 since they would add to the complexity of the readFile
function.

During the run of the test.py program, there was an error message from MenuSystem,

6For instance “set heart time integration parameters ...”
7Example of line before and after editing:set mech #1: residual type = ORIGINAL_RES !

PSEUDO_RES ! LEFTPREC_RES !, set mech #1: residual type = ORIGINAL_RES
8example of line where curly brackets were removed: “set udc bodygridfile = {input/thinslab_dir.grid}”

33

readfile = open(Aobject.infile, "r")
2 for line in readfile:

splitline = line.split()
4 if (len(splitline)!=0) and (splitline[0][0]!="!"):

if splitline[0] =="set":
6 Aobject.menu.forceAnswer(String(line[3:]))

elif splitline[0] =="ok":
8 Aobject.menu.forceAnswer(String(line[0]))

readfile.close()
10 return

Figure 3.15: A readFile() function to insert commands into MenuSystem

which resulted in adjustments of the init-files. The MenuSystem class didn’t recognize the
PrecML preconditioning type given by set preconditioning type PrecML, which
resulted in the following error:

Listing 3.2: Error when reading from input file

1 >>>>> Handling a fatal exception: Precond_prm::create reports:

Classname "PrecML" is not in Precond hierarchy.

3 Legal names are:

S/PrecNone/PrecUserDefLU/PrecUserDefInv/PrecUserDefMat/PrecUserDefProc/PrecRILU/

PrecJacobi/PrecSOR/PrecSSOR/PrecJacobiIter/PrecSORIter/PrecSSORIter/

5

-> TERMINATION due to fatal error.

The preconditioning type was then changed to PrecNone9 in both isometric_all.i and iso-
tonic_all.i, which didn’t seem to make any difference in the result. After having adjusted the
init-files, the readFile function functioned as expected.

As with the Heat1 solver, the SimCase::attach function (used in Circulation::adm())
needed to be added to the Circulation::define() function to get the program to work
without using the interactive interface. Also, to have access to different variables in the Heart-,
Myocardium- (the mechanics solver), DiffusionMG- and Circulation-classes from Python, the
header files (and also the interfacefile) belonging to the classes were adjusted to make all vari-
ables public.

After having adjusted the files satisfactorily, the implementation of the test script could re-
sume. For the test script to have the wanted control over the solver, the timeLoop function
from the Circulation class and the solveCellsAndDiffusion function from Heart

(used in timeLoop) would have to be implemented. To gain access to the variables and func-
tions needed in the script, the modules in figure 3.16 on the next page were imported in the
test.py file: The Circulation, MenuSystem and DpString modules were imported di-
rectly into the testisometric.py and testisotonic.py scripts.

Because the diffusion variable used in Heart::solveCellsAndDiffusionwere
of type VecSimplest(Handle(DiffusionMG)) (and not just a Handle function of Dif-

9The input was adjusted from the original init-file:set preconditioning type = PrecML !
PrecNone ! to set preconditioning type = PrecNone

34

1 from testisotonic import *
from testisometric import *

3 from pulse_heart.Heart import *
from pulse_heart.Cells import *

5 from pulse_mechanics.Myocardium import *
#for access to the diffusion variable in solveCellsAndDiffusion()

7 from pulse_diffusion.DiffusionMG import *
from TimePrm import *

Figure 3.16: Module imports in test.py

fusionMG), it weren’t enough to just import the DiffusionMG module to gain access to the
functions and objects belonging to the variable. I got this error when I tried to run the program:

Listing 3.3: VecSimplest(Handle_DiffusionMG) error

1 /home/heidi/Programs/diffpack/NO/bt/include/VecSimplest_Type.cpp:264

>>>>> Handling an exception: VecSimplest(Handle_DiffusionMG)::operator= reports:

3 No assignment operator can be available for this class

since operator= is not required for class Handle_DiffusionMG. Use

5 class VecSimple instead. When you get this message,

you can take two weeks off, that is about the time it

7 took to discover that some core dump was due to a

VecSimplest=VecSimplest, where the operator= was undefined

9 and C++ made its own, wrong version.

Importing VecSimplestDiffusion_Handle as well into the script didn’t solve it either. After
having tried using the VecSimple version (as was suggested in the error message), and not
getting any results, it turned out that the solution of the problem was to also add %include
"VecSimplestDiffusion_Handle.i" to the Heart interfacefile as well as importing
DiffusionMG into the script. After this, the diffusion variable was called and used with-
out fault.

In timeLoop, the TimePrm variable tip is used a lot. When the program just needs to ac-
cess the tip.time() function to insert the result into another function, nothing more than import-
ing the TimePrm module is needed, as SWIG just sends a pointer to the returned variable and not
the variable itself. Trying to print out tip.time() gives this output: <Swig Object of type

’real *’ at 0x2954fc0>. If you want to actually print the real value of tip.time(), or
need to access it for other reasons (for instance as in solveCellsAndDiffusion: while
tip_diff.time() < tip.time()), this gives more problems. In my program I tem-
porarily solved this issue by instead of using the time() function to return the value, I ac-
cessed the tip.t value directly when I wanted to print it. This is not a good permanent solu-
tion, but it made it possible to continue with the program without working too long on that is-
sue. Example of use: print "Global time is now: " + str(tip.t) instead of
print "Global time is now: " + str(tip.time()). The timeLoop func-
tion can be seen in figure 3.17 on the following page, and the solveCellsAndDiffusion
function can be seen in figure 3.18 on the next page.

It turned out during the testing that the isometric and isotonic test, in the timeLoop function,

35

1 def timeLoop(Aobject):
"""

3 Python implementation of Circulation.timeLoop
"""

5 solver = Aobject.simulator
tip = solver.tip()

7 heart = solver.heart
tip.initTimeLoop()

9 solver.dt = tip.Delta()
save_dt = 0.0

11 if (heart.dynamicBC()):
heart.initTimeLoop(solver.p_cav, solver.restart_time)

13 solver.V_heart = heart.getVheart()
while (not tip.finished()):

15 print "Global time is now: " + str(tip.t)
print "----------- NEW STEP ---------------"

17

tip.increaseTime()
19 solveCellsAndDiffusion(Aobject)

try:
21 solver.solveMechDynamic()

except:
23 print "Convergence failure at t = " + str(tip.t) + ", exiting

program!"
sys.exit(1)

25

solver.dt = tip.Delta()
27 heart.updateAndSaveMechVars(solver.dt, save_dt)

solver.writePVfiles(tip.time(), solver.p_cav ,solver.V_heart)
29 print"Succesfully completed Circulation:: timeLoop()"

31 else:
#simplified BCs, no circulation model:

33 #solver.heart.simpleTimeLoop()
simpleTimeLoop(Aobject)

35 return

Figure 3.17: The Circulation::timeLoop function implemented in Python

def solveCellsAndDiffusion(Aobject):
2 heart = Aobject.simulator.heart

tip_diff = heart.tip_diff()
4 tip = heart.tip()

6 while tip_diff.t < tip.t:
dt_diff = tip_diff.Delta()

8 t0_diff = tip_diff.time()
print "Solving cell model ODEs..."

10 heart.cells.solveAtThisTimeStep(t0_diff,dt_diff)
print "...done with cell step."

12 print "Solving diffusion equations..."
heart.diffusion(1)().solveAtThisTimeStep()

14 print "...done with diffusion step."
return

Figure 3.18: The Heart::solveCellsAndDiffusion function implemented in Python

36

def simpleTimeLoop(Aobject):
2 save_dt = 0.0

solver = Aobject.simulator
4 tip = solver.tip()

heart = solver.heart
6 dummy2 = 0.0

dummy = 1
8 #heart.initTimeLoop(dummy, dummy2)

heartInitTimeLoop(Aobject)
10 while (not tip.finished()):

print "Global time is now: %d " % tip.t
12 print "----------- NEW STEP ---------------"

tip.increaseTime()
14 solveCellsAndDiffusion(Aobject)

try:
16 heart.solveMechSimple();

except:
18 print "Convergence failure at t = %d, exiting program!" % tip.t

heart.updateAndSaveMechVars(tip.Delta(), save_dt)
20 print "Successfully completed Heart::timeLoop."

return

Figure 3.19: The Heart::simpleTimeLoop function implemented in Python

jumped to the Heart:simpleTimeLoop function, since the call to heart.dynamicBC()
returned False. Since the timeLoop function therefore couldn’t be tested thoroughly with the
test cases chosen, the simpleTimeLoop function was also implemented in test.py. The next
problem that appeared (and the one I worked most on solving during the testing of the pro-
gram) was with the Ptv(real) class, used in the simpleTimeLoop function when calling
Heart::initTimeLoop(const Ptv_real& cavity_p, real restart_t). In
the wrapper, the Python name of the class was Ptv_real. According to [2], the Ptv(real)
class resided in the Ptv_real.h file, and should be possible to wrap. The hope was that it would
be possible to make Ptv_real objects in Python and give them as arguments to functions that re-
quired Ptv(real) as arguments, just as it was done with the DpString class in the Heat1 chapter.
The problem was that to wrap the classes in the file, I would need to know how SWIG would
rename them to give the class names as an input to the MkDpSWIGInterface script. This
was easier said than done, for of course the class wasn’t really named Ptv_real in Ptv_real.h.
Another class type had replaced it, and was defined by

Listing 3.4: New version of Ptv(real)

#define PtvGenDIM 0

2 #include <PtvGen_Type.h>

typedef PtvGen(Type,PtvGenDIM) Ptv(Type);

4 #undef PtvGenDIM

where PtvGenDIM could be any integer from 0 to 3. I found out that it was possible to wrap
header files when I attempted to wrap a file involving the Ptv class, VecSimplest_Ptv_int, where
the class definitions looked like this:

37

Listing 3.5: VecSimplest_Ptv_int class

#define Type Ptv(int)

2 #include <VecSimplest_Type.h>

#include <VecSimple_Type.h>

4 #undef Type

The class definitions in Python was VecSimplest_Ptv_int and VecSimple_Ptv_int, as I would ex-
pect. But with the Ptv_real.h class, I couldn’t find any version of the class name that MkDpSWIGInterface
would accept. When working with another problem in the test script (which I will come back
to later in this section), I added these lines to Circulation.i:

Listing 3.6: Added to the Circulation interface

%include "typemaps.i"

2

%typemap(in) real& {

4 real *d = new real(PyFloat_AsDouble($input));

$1 = d;

6 printf("Received a float: %d\n", $1);

}

8 %typemap(in) double& {

double *d = PyFloat_AsDouble($input);

10 $1 = d;

}

Compiling the Circulation wrapper, the following warning appeared, which gave me the
solution to what class names should be used in Python:

Listing 3.7: Error that gave the name to use for classes in Ptv_real.h

1 Circulation_wrap.cxx: In function â PyObject* _wrap_Circulation_writePVfiles(

PyObject*, PyObject*) â :

Circulation_wrap.cxx:6867:41: warning: format â % d â expects argument of type

â i n t â , but argument 2 has type â Ptv_real* {aka Ptv0dreal*} â [-Wformat]

3 Circulation_wrap.cxx:6872:41: warning: format â % d â expects argument of type

â i n t â , but argument 2 has type â Ptv_real* {aka Ptv0dreal*} â [-Wformat]

After running MkDpSWIGInterface MODULE=Ptv_real CLASSES="Ptv0dreal Ptv1dreal

Ptv2dreal Ptv3dreal" FILES=Ptv_real.h, the interface for Ptv_real was gener-
ated and the file could be wrapped.

Unfortunately, making Ptv0dreal objects in the test.py script wasn’t the solution to the orig-
inal problem (which was to make a Ptv_real object and passing it as an argument to one of the
C++ functions). It was not recognized as a Ptv_real (and as such not accepted), even if the wrap-
per obviously (as can be seen from the previous warning) knew that Ptv_real and Ptv0dreal were
the same class type. The only solution I could find that worked was to insert a few typemaps
into the various interface files where I would need to input Ptv_real variables from the Python
script.

38

A typemap10 can be used to specify what an input or output to or from a function wrapped
with SWIG should give, and how to convert it between C++ types and (in this case) Python
types. It can either be a general conversion for all inputs and outputs of that type, or it can be
specified to one certain variable. The latter is the one I chose to use, as I found out how to
solve my problem with Ptv_real at a late date and therefore didn’t have time to make it more
general, and I this way at least avoided to automatically convert any integer input into Ptv_real
objects (which could make later use much more problematic). The typemap I used that solved
the Ptv_real problem looked like this:

Listing 3.8: Typemap for the const Ptv_real & cavity_p variable

1 %typemap(in) const Ptv_real& cavity_p {

$1 = new Ptv_real(PyInt_AsLong($input));

3 }

and were put into the Heart class in the Heart.i file. This little code snippet made sure that all
inputs of the variable cavity_p into any Heart function where the input was of type int would
be converted to const Ptv_real&, and would not do anything about other arguments or
variables.

It was also necessary to make a typemap for a few variables of type real, which weren’t
converted correctly by SWIG. Two were the variables sent as arguments into updateAndSave-
MechVars(const real& dt, real& save_dt) in the simpleTimeLoop function, and the third variable
was the second argument into the Heart::initTimeLoop function called in the timeLoop
function. The variables were converted in these typemaps set in Heart.i:

Listing 3.9: Typemap added to Heart.i

1 %typemap(in) real restart_t {

real *a = new real(PyFloat_AsDouble($input));

3 $1 = *a;

}

5 %typemap(in) const real& dt {

$1 = new real(PyFloat_AsDouble($input));

7 }

%typemap(in) real& save_dt {

9 $1 = new real(PyFloat_AsDouble($input));

}

To make sure that I had encountered most of the problems that could arise in an implementation
of a solver using Pulse, Heart::initTimeLoop function was also implemented in test.py
and can be seen in figure 3.20 on the following page.

As was shown earlier, there will arise problems if you try to input values to a function
that takes arguments of Ptv_real without having a typemap that converts the type correctly. The
same is true if you assign a value to a variable that expects an Ptv_real object. In the assignment

10From chapter 10, page 139, in [12]: “’typemaps’ are an advanced customization feature that provide direct
access to SWIG’s low-level code generator.”

39

def heartInitTimeLoop(Aobject):
2 cavity_pressure = 1

restart_time = 0.0
4 solver = Aobject.simulator

heart = solver.heart
6 mech = heart.mechanics()

tip = heart.tip()
8 tip.initTimeLoop()

tip_diff = heart.tip_diff()
10 tip_diff.initTimeLoop()

heart.p_cav = cavity_pressure
12 while (tip.t < restart_time):

tip.increaseTime()
14 while (tip_diff.t < tip.t):

tip_diff.increaseTime()
16

if heart.diffusion.size() == 1:
18 heart.diffusion(1)().attachIntegrands()

else:
20 print "Heart:: initTimeLoop Diffusion has wrong size - should be 1"

sys.exit(1)
22

heart.diffusion(1)().initBlocks()
24 heart.diffusion(1)().makePreconditioner()

a = heart.diffusion(1)().getNoOfGrids()
26 heart.diffusion(1)().getDataStructureOnGrid(a)

28 if heart.dynamic_mech_BC:
try:

30 heart.V_heart = mech.computeNewVolume(heart.p_cav, 0.0)
mech.dumpDeformedGridAndFibers()

32 #print "..Initial Conditions, p = %d V =%d" %(heart.p_cav, heart.
V_heart)

except:
34 print "Convergence failed for initial cavity pressure, exiting."

sys.exit(1)
36

else:
38 heart.solveMechSimple()

mech.saveResults()
40 mech.computeLambda()

mech.updateActivationFields()
42 mech.dumpTrackPoints()

if (heart.moving_bidomain):
44 heart.diffusion(1)().updateDeformedConds(mech.getInverseCField())

return

Figure 3.20: The Heart::initTimeLoop() function implemented in Python

40

heart.p_cav = cavity_pressure in heartInitTimeLoop(), that is what happens. To
avoid errors, a typemap in Heart.i looking like this will correct it:

Listing 3.10: Typemap in Heart.i

1 %typemap(in) Ptv_real p_cav {

Ptv_real *a = new Ptv_real(PyInt_AsLong($input));

3 $1 = *a;

}

The call to Myocardium::computeNewVolume in heartInitTimeLoop also needed addi-
tional typemaps included in Myocardium.i.

Listing 3.11: Typemaps added to Myocardium.i

%typemap(in) const Ptv_real& p_cav {

2 $1 = new Ptv_real(PyInt_AsLong($input));

}

4 %typemap(in) const real& lin_stress {

$1 = new real(PyFloat_AsDouble($input));

6 }

One new problem arose that I hadn’t seen before, but which was kind of similar to other
encounters: I was trying to call

a = heart.diffusion(1)().getNoOfGrids()

heart.diffusion(1)().getDataStructureOnGrid(a)

and got this error:

Listing 3.12: Error when trying to get the heart.diffusion(1)().getNoOfGrids()

File "/home/heidi/PulseWrap/src/pulse_diffusion/DiffusionMG.py", line 879, in

getDataStructureOnGrid

2 def getDataStructureOnGrid(self, *args): return _DiffusionMG.

DiffusionMG_getDataStructureOnGrid(self, *args)

TypeError: in method ’DiffusionMG_getDataStructureOnGrid’, argument 2 of type ’

SpaceId’

The SpaceId type was defined in MLSolver_enum.h. When I added %include "MLSolver_enum.h"

in the DiffusionMG.i file so that the wrapper could identify the type used, the problem was
solved.

After having wrapped, imported and included what was needed to get the test.py script to
work, the results were promising. The cells.track files generated by the test scripts were plotted
and compared to the original cells.track files generated from the C++ version, and they turned
out to be the same. Both with the isometric and the isotonic case, the scripts were tested with
both t=20 and t=500, and plots from both cases can be seen in section 4.1.1 on page 46.

41

Chapter 4

Summary and discussion

4.1 Challenges and results

Not all challenges encountered when testing the wrapped Pulse library were solved, due to too
little time left at the end of the project. Memory handling and deletion of variables and objects
are a constant source of trouble when working with a combination of C++ and Python code.
The most obvious error was triggered when C++ and Python were quarreling about who was
the owner of the objects made in Python of C++ classes, as seen in figure 2.21 on page 19,
and was solved by setting the objects thisown variable equal to 0. Even if this problem
was solved, other warnings were constantly generated throughout the testing of both Heat1 and
Pulse which I didn’t have time to resolve:

Listing 4.1: Memory warning

1 swig/python detected a memory leak of type ’Vec_real *’, no destructor found.

swig/python detected a memory leak of type ’real *’, no destructor found.

3 swig/python detected a memory leak of type ’Ptv_real *’, no destructor found.

From what I have understood, the warning is triggered because Vec_real, Ptv_real and
real are types of which SWIG has to little information available, but they don’t cause any
problems that I can see. Another problem has been that I didn’t have time to properly learn the
typemap functionality, so I hadn’t time to get this print statement in heartInitTimeLoop to
work:print "..Initial Conditions , p = %d V =%d" , %(heart.p_cav,

heart.V_heart) Since heart.p_cav is of type Ptv_real, it would not print out the
value, only something like this: <Swig Object of type ’Ptv_real *’ at 0xc55d80>

A more serious error occur at the end of program, see figure 4.1 on the next page. This is a
problem that occur if I do something in the program after the computation is done, like when I
use the subprocess module’s functionality to move the files generated into another directory
(used inside the python program). If a print statement is added between the call to the run
function and the call to subprocess , the program runs as it should, and no error occur. Or,
that is not exactly true. At the end of all run-throughs of testscripts, both with Heat1 and Pulse,
a strange error was triggered:

*** glibc detected *** python: double free or \

43

corruption (!prev): 0x00000000012e0960 ***@

But the program generates the correct files, and since the glibc error is triggered after the
program is done running, it doesn’t interfere with the process.

Plots from the cells.track file for both the isometric case and the isotonic case can be seen
in 4.1.1 on page 46 compared with the original test programs output. The results gained from
both the original C++ program and the Python implementation are the same, and the project can
therefore be viewed as a success. I tested with both t=20 and t=500 in both the isometric and
the isotopic case. All plots and files can be found in the $PULSEWRAPDIR/testing/testPulse
directory. The Heat1 test case generated the same output of error field both in the original and
Python version, and the output from the program can be found in figure 4.2 on the next page.

1 Traceback (most recent call last):
File "test.py", line 164, in <module>

3 subprocess.Popen(args, shell=True)
File "/usr/lib/python2.6/subprocess.py", line 569, in __init__

5 _cleanup()
File "/usr/lib/python2.6/subprocess.py", line 438, in _cleanup

7 for inst in _active[:]:
TypeError: a float is required

9 Exception AttributeError: "’Popen’ object has no attribute ’_child_created’" in <
bound method Popen.__del__ of <subprocess.Popen object at 0x7f0c737be190>>
ignored

Figure 4.1: Error when no print statement

44

1 heidi@baffel ~/Master/Swig/Heat1/swig $ python testfil.py
--

3 *** Diffpack Version 4.2.00 - Development Edition (internal use only) ***
--

5 --

*** Diffpack Version 4.2.00 - Development Edition (internal use only) ***
7 --

9 Grid: P=PreproBox | d=2 [0,1]x[0,1] |d=2 e=ElmB4n2D div=[4,4] grading=[1,1]

11

L1-error= 8.32617e-17, L2-error= 1.03140e-16, max-error= 2.01193e-16
13

15 [25] nodal values of the error field $
(1,1)= 0.000000e+00 (2,1)= 0.000000e+00 (3,1)= 0.000000e+00

17 (4,1)= 0.000000e+00 (5,1)= 0.000000e+00 (1,2)= 0.000000e+00
(2,2)=-1.146857e-16 (3,2)=-1.621901e-16 (4,2)=-1.146857e-16

19 (5,2)= 6.197791e-34 (1,3)= 0.000000e+00 (2,3)=-1.621901e-16
(3,3)=-2.293715e-16 (4,3)=-1.621901e-16 (5,3)= 8.765000e-34

21 (1,4)= 0.000000e+00 (2,4)=-1.146857e-16 (3,4)=-1.621901e-16
(4,4)=-1.146857e-16 (5,4)= 6.197791e-34 (1,5)= 0.000000e+00

23 (2,5)= 6.197791e-34 (3,5)= 8.765000e-34 (4,5)= 6.197791e-34
(5,5)= 1.073403e-49

25

L1-error= 8.32617e-17, L2-error= 1.03140e-16, max-error= 2.01193e-16

Figure 4.2: Results from the scripts in Heat1

45

4.1.1 Plots from cells.track in Pulse

Figure 4.3: Plot of isometric_all nr 0, left, python, right: C++

Figure 4.4: Plot of isometric_all nr 6, left: python, right: C++

Figure 4.5: Plot of isometric_all nr 12, left, python, right: C++

46

Figure 4.6: Plot of isotonic_all nr 0, left: python, right: C++

Figure 4.7: Plot of isotonic_all nr 6, left: python, right: C++

Figure 4.8: Plot of isotonic_all nr 12, left: python, right: C++

47

Figure 4.9: Plot of isometric_all (with dt=0.25, t=500) nr 0, left: python, right: C++

Figure 4.10: Plot of isometric_all (with dt=0.25, t=500) nr 6, left: python, right: C++

Figure 4.11: Plot of isometric_all (with dt=0.25, t=500) nr 12, left: python, right: C++

48

Figure 4.12: Plot of isotonic_all (with dt=0.25, t=500) nr 0, left: python, right: C++

Figure 4.13: Plot of isotonic_all (with dt=0.25, t=500) nr 6, left: python, right: C++

Figure 4.14: Plot of isotonic_all (with dt=0.25, t=500) nr 12, left: python, right: C++

49

4.2 Remaining work

A lot of time went into just getting the wrapping of the Heat1 test case to work, and even
more time into getting the test programs to work. The same was the case with Pulse, and the
test programs in the testPulse directory weren’t actually working until the last week before
deadline. The last part of the project, design and possible implementation of a Python interface,
was therefore not achieved. With more time it would be possible to make a user interface that
does all of the communication between the classes in Python, and also evaluate the efficiency
and flexibility of the Python wrapped simulator compared to the original C++ version.

Because of too little time remaining to understand the typemap functionality of SWIG, the
solution to a few of the problems when using the Pulse library in Python was solved for only
the specific variables and functions needed in the test program (test.py). More general solutions
that could be implemented in the other classes to set and get variables, could be solved if more
time had been possible. The readFile() function could easily be made more general, and use the
MenuSystem functionality more, so that the user didn’t have to adjust the input files for already
implemented Pulse solvers.

50

Appendix A

Setup of PulseWrap

A.1 Directory structure of PulseWrap

51

A.2 Python module

When you work with scripting or with programming in general, you often make programs that
you want to reuse later, either small scripts that make everyday life simpler, or larger programs
that may be useful to be able to reuse in later projects. There are two different ways to reuse
code that it is good to know of. One is to be able to run the script from command line from
anywhere in your directory tree, the other is to import the script as a module into another Python
script.

To be able to run a script from anywhere in your home directory, you will first need to
add a shebang line1 to the top of your script: #!usr/bin/env python. This makes your
system understand that it is a script, and to run it using Python. The next step is to make a
directory where you want to store your scripts, and to make the script executable using chmod
+x script.py. Then you need to add the path to your directory to the $PATH variable so
the scripts can be found2.

If you want to use previously defined functions and classes in a new program/script, you
will have to make a Python module/package of it. Make a directory where you want to store
your Python modules, then add the path to that directory to $PYTHONPATH in .bashrc3.
When you import a module into your program, it will be searched for in this order: first the
directory where the script you work on resides, then PYTHONPATH, and lastly the installation
dependent default.

Listing A.1: Example of directory structure for python modules

Scriptdir/
2 __init__.py

Pythonmodule1/
4 __init__.py

script1.py
6 script2.py

Pythonmodule2/
8 __init__.py

script3.py
10 script4.py

12 script5.py
script6.py

A Python module can be either a single python file, or a directory containing several Python
scripts. Figure A.1 is an example of a directory containing several python modules, two con-
sisting of several files, and two single python scripts (which may contain several classes and
functions). Every directory with Python modules needs to contain an __init__.py file,
which can be either empty or with initialization code. The __init__.py file is necessary for
Python to understand that the directory contains packages, and if you have a subdirectory with

1From [13]”In computing, a shebang [...], when it occurs as the initial two characters on the initial line of a
script, is the character sequence consisting of the characters number sign and exclamation mark (that is, “#!”).”

2Add export PATH=/path/to/dir:$PATH to .bashrc
3export PYTHONPATH=/path/to/dir:$PYTHONPATH

52

several python files you want to import as a single module, the __init__.py file inside that
directory needs to contain an __all__ variable. The __init__.py file in Pythonmodule1
would e.g. contain __all__=["script1", "script2"]. To import the module into
your script, you could either use import Pythonmodule1 or from Pythonmodule1

import *. The __all__ is necessary if you want to use the from module import *.
For further explanation, see [3].

A.3 Include files in Diffpack

As mentioned earlier, you will need to add an %include file.h" statement to your inter-
facefile if one of your classes inherits a parent class residing in another file. To avoid having
to give the whole path to the file (and as a result making your program less usable by other
people), you want to let Diffpack find the directories where your include files/interface files
resides. This is done by adjusting the Makefile generated by MkDpSWIGMakfile, by adding
-I$(PULSEWRAP)/include to the SWIGOPT parameter. I adjusted my fixSwigMakfile.py
script, so that in addition to removing the things that were redundant and hindered the compila-
tion of the SWIG wrapper, it also adds the PulseWrap/include directory to the directories
Diffpack should look through.

I have also added a configuration file to the PulseWrap directory called PW.conf4 that
contains all the necessary environment variables needed to use PulseWrap. Instructions and ex-
planations on how to compile and install the PulseWrap directory can be found in the README
file in the PulseWrap directory.

4You will need to make a few adjustments in PW.conf, explanations on how can be found as comments (#) in
the file.

53

Appendix B

Code

B.1 The fixSwigMakefile.py script

Listing B.1: fixSwigMakefile.py

#!/usr/bin/env python

2 """

This script is used to fix the Makefile made by the MkDpSWIGMakefile-command.

4 It removes the "-c", comments out the checkDpMode.py-line, and removes the

-lswigpy, since it belongs to an older version.

6 """

import sys

8

M=open("Makefile", "r")

10

#lines=M.readlines()

12 lines=M.readlines()

14 c=lines[10]

check=lines[21]

16 swigpy=lines[25]

if c[14]=="c":

18 c=c[0:12]+c[15:]

if c[30:38]=="-I$(NOR)":

20 c = c[0:29]+ " -I$(PULSEWRAP)/include " + c[30:]

if check.strip()[0]!="#":

22 check="#"+check

if swigpy[73:80]=="lswigpy":

24 swigpy=swigpy[0:72]+swigpy[80:]

lines[10]=c

26 lines[21]=check

lines[25]=swigpy

28 lines="".join(lines)

M.close()

30 M=open("Makefile", "w")

M.write(lines)

32 M.close()

55

B.2 Heat1 testscripts

Listing B.2: testfil.py

#!/usr/bin/env python

2 """

File to test if the Heat1 problem is functional after being wrapped with Swig,

4 and to check if the MenuSystem is functional.

Code mostly copied from "Advanced Topics in Computational Partial Differential

Equtions: Numerical Simulations,...diffpack programming" by H.P. Langtangen,

Aslak Tveito

6 """

from Heat1 import *
8 from Menu import *
from DpString import *

10 import math

12 def run(dt, T, dx, a):

xnodes=int(1./dx)

14 grid_str="P=PreproBox | d=2 [0,1]x[0,1] |\

d=2 e=ElmB4n2D div=[%d,%d] grading=[1,1]" % (xnodes, xnodes)

16 grid_str = String(grid_str)

a.menu.set(String("gridfile"), grid_str)

18 time_str = "dt = %e t in [0,%e]" % (dt, T)

time_str= String(time_str)

20 a.menu.set(String("time parameters"), time_str)

a.solver.scan()

22 a.solver.solveProblem()

a.solver.resultReport()

24 return

26 class A:

def __init__(self):

28 self.menu = MenuSystem.MenuSystem()

self.solver = Heat1()

30 self.menu.init(String("Heat1 menu"), String("Heat1Menu"))

self.solver.define(self.menu)

32

if __name__==’__main__’:

34 a = A()

T = 2.0

36 dt =pow(2,-6)

dx = pow(2, -2)

38 run(dt,T,dx,a)

a.menu.thisown = 0

40 a.solver.thisown = 0

Listing B.3: timeloop.py

1 #!/usr/bin/env python

"""

56

3 Program to check if I can implement the timeLoop function belonging to Heat1 in

Python

"""

5 from TimePrm import *
from SaveSimRes import *

7 from Menu import *
from DpString import *

9 from Heat1 import *

11 #database SaveSimRes

#tip TimePrm

13

class A():

15 def __init__(self):

self.solver = Heat1()

17 self.menu = MenuSystem.MenuSystem()

self.menu.init(String("Heat1 menu"), String("Heat1Menu"))

19 self.solver.define(self.menu)

21 def run(self,dt, T, dx):

xnodes=int(1./dx)

23 grid_str="P=PreproBox | d=2 [0,1]x[0,1] | d=2 e=ElmB4n2D div=[%d,%d]

grading=[1,1]" % (xnodes, xnodes)

grid_str = String(grid_str)

25 self.menu.set(String("gridfile"), grid_str)

time_str = "dt = %e t in [0,%e]" % (dt, T)

27 time_str= String(time_str)

self.menu.set(String("time parameters"), time_str)

29 self.solver.scan()

#Local solveProblem function

31 self.solveProblem()

self.solver.resultReport()

33 return

35 def timeLoop(self):

tip=self.solver.tip()

37 tip.initTimeLoop()

self.solver.setIC()

39 self.solver.database().dump(self.solver.u(),tip,"initial condition")

while tip.finished()==False:

41 tip.increaseTime()

self.solver.solveAtThisTimeStep()

43 self.solver.u_prev = self.solver.u

return

45

def solveProblem(self):

47 self.timeLoop()

return

49

51 if __name__==’__main__’:

a = A()

53 T = 2.0

57

dt = pow(2,-6)

55 dx = pow(2, -2)

a.run(dt,T,dx)

57 a.menu.thisown=0

a.solver.thisown=0

Listing B.4: solveAtThisTimestep

#!/usr/bin/env python

2 """

Program to check if I can implement the solveAtThisTimeStep function belonging to

Heat1 in Python

4 """

from Menu import *
6 from Heat1 import *
from DpString import *

8 from TimePrm import *
from SaveSimRes import *

10 from DegFreeFE import *
from LinEqAdmFE import *

12 from FieldSummary import *
from ErrorNorms import *

14 from FieldFE import *
#database SaveSimRes

16 #tip TimePrm

#u FieldFE

18 #u_summary FieldSummary

#dof DegFreeFE

20 #lineq LinEqAdmFE

22 #u FieldFE

#flux FieldsFE

24

class A():

26 def __init__(self):

self.solver = Heat1()

28 self.solver.thisown=0

self.menu = MenuSystem.MenuSystem()

30 self.menu.thisown=0

self.menu.init(String("Heat1 menu"), String("Heat1Menu"))

32 self.solver.define(self.menu)

return

34

def run(self,dt, T, dx):

36 xnodes=int(1./dx)

grid_str="P=PreproBox | d=2 [0,1]x[0,1] | d=2 e=ElmB4n2D div=[%d,%d]

grading=[1,1]" % (xnodes, xnodes)

38 grid_str = String(grid_str)

self.menu.set(String("gridfile"), grid_str)

40 time_str = "dt = %e t in [0,%e]" % (dt, T)

time_str= String(time_str)

42 self.menu.set(String("time parameters"), time_str)

58

self.solver.scan()

44 #Local solveProblem function

self.solveProblem()

46 self.solver.resultReport()

return self.solver.L2_error

48

def timeLoop(self):

50 tip=self.solver.tip()

tip.initTimeLoop()

52 self.solver.setIC()

self.solver.database().dump(self.solver.u(),tip,"initial condition")

54 while tip.finished()==False:

tip.increaseTime()

56 #local solveAtThisTimeStep function

self.solveAtThisTimeStep()

58 self.solver.u_prev = self.solver.u

return

60

62 def solveAtThisTimeStep(self):

self.solver.fillEssBC()

64 self.solver.makeSystem(self.solver.dof(),self.solver.lineq())

u = self.solver.u()

66 linsol=self.solver.linsol

tip = self.solver.tip()

68 flux = self.solver.flux()

self.solver.dof().field2vec(u, linsol)

70 self.solver.lineq().solve()

print "t=%f" % tip.t

72 self.solver.dof().vec2field(linsol, u)

print

74 self.solver.database().dump(u, tip, "some comment if desired...")

self.solver.u_summary.update(tip.time())

76 self.solver.makeFlux(flux, u)

self.solver.database().dump(flux, tip, "smooth flux -k*grad(u)")

78 return

80

def solveProblem(self):

82 self.timeLoop()

return

84

86 if __name__==’__main__’:

a = A()

88 T = 2.0

dt = pow(2,-6)

90 dx = pow(2, -2)

L2 = a.run(dt,T,dx)

B.3 Pulse testscripts

59

Listing B.5: test.py

#!/usr/bin/env python

2 from testisotonic import *
from testisometric import *

4 from pulse_heart.Heart import *
from pulse_heart.Cells import *

6 from pulse_mechanics.Myocardium import *
#for access to the diffusion variable in solveCellsAndDiffusion()

8 from pulse_diffusion.DiffusionMG import *
from TimePrm import *

10 import subprocess

import sys

12 import datetime

import shutil

14

16 def readFile(Aobject):

readfile = open(Aobject.infile, "r")

18 for line in readfile:

splitline = line.split()

20 if (len(splitline)!=0) and (splitline[0][0]!="!"):

if splitline[0] =="set":

22 Aobject.menu.forceAnswer(String(line[3:]))

elif splitline[0] =="ok":

24 Aobject.menu.forceAnswer(String(line[0]))

readfile.close()

26 return

28 def solveCellsAndDiffusion(Aobject):

heart = Aobject.simulator.heart

30 tip_diff = heart.tip_diff()

tip = heart.tip()

32

while tip_diff.t < tip.t:

34 dt_diff = tip_diff.Delta()

t0_diff = tip_diff.time()

36 print "Solving cell model ODEs..."

heart.cells.solveAtThisTimeStep(t0_diff,dt_diff)

38 print "...done with cell step."

print "Solving diffusion equations..."

40 heart.diffusion(1)().solveAtThisTimeStep()

print "...done with diffusion step."

42 return

44 def timeLoop(Aobject):

"""

46 Python implementation of Circulation.timeLoop

"""

48 solver = Aobject.simulator

tip = solver.tip()

50 heart = solver.heart

60

tip.initTimeLoop()

52 solver.dt = tip.Delta()

save_dt = 0.0

54 if (heart.dynamicBC()):

heart.initTimeLoop(solver.p_cav, solver.restart_time)

56 solver.V_heart = heart.getVheart()

while (not tip.finished()):

58 print "Global time is now: " + str(tip.t)

print "----------- NEW STEP ---------------"

60

tip.increaseTime()

62 solveCellsAndDiffusion(Aobject)

try:

64 solver.solveMechDynamic()

except:

66 print "Convergence failure at t = " + str(tip.t) + ", exiting

program!"

sys.exit(1)

68

solver.dt = tip.Delta()

70 heart.updateAndSaveMechVars(solver.dt, save_dt)

solver.writePVfiles(tip.time(), solver.p_cav ,solver.V_heart)

72 print"Succesfully completed Circulation:: timeLoop()"

74 else:

#simplified BCs, no circulation model:

76 #solver.heart.simpleTimeLoop()

simpleTimeLoop(Aobject)

78 return

80 def simpleTimeLoop(Aobject):

save_dt = 0.0

82 solver = Aobject.simulator

tip = solver.tip()

84 heart = solver.heart

dummy2 = 0.0

86 dummy = 1

#heart.initTimeLoop(dummy, dummy2)

88 heartInitTimeLoop(Aobject)

while (not tip.finished()):

90 print "Global time is now: %d " % tip.t

print "----------- NEW STEP ---------------"

92 tip.increaseTime()

solveCellsAndDiffusion(Aobject)

94 try:

heart.solveMechSimple();

96 except:

print "Convergence failure at t = %d, exiting program!" % tip.t

98 heart.updateAndSaveMechVars(tip.Delta(), save_dt)

print "Successfully completed Heart::timeLoop."

100 return

102

61

def heartInitTimeLoop(Aobject):

104 cavity_pressure = 1

restart_time = 0.0

106 solver = Aobject.simulator

heart = solver.heart

108 mech = heart.mechanics()

tip = heart.tip()

110 tip.initTimeLoop()

tip_diff = heart.tip_diff()

112 tip_diff.initTimeLoop()

heart.p_cav = cavity_pressure

114 while (tip.t < restart_time):

tip.increaseTime()

116 while (tip_diff.t < tip.t):

tip_diff.increaseTime()

118

if heart.diffusion.size() == 1:

120 heart.diffusion(1)().attachIntegrands()

else:

122 print "Heart:: initTimeLoop Diffusion has wrong size - should be 1"

sys.exit(1)

124

heart.diffusion(1)().initBlocks()

126 heart.diffusion(1)().makePreconditioner()

a = heart.diffusion(1)().getNoOfGrids()

128 heart.diffusion(1)().getDataStructureOnGrid(a)

130 if heart.dynamic_mech_BC:

try:

132 heart.V_heart = mech.computeNewVolume(heart.p_cav, 0.0)

mech.dumpDeformedGridAndFibers()

134 #print "..Initial Conditions, p = %d V =%d" %(heart.p_cav, heart.

V_heart)

except:

136 print "Convergence failed for initial cavity pressure, exiting."

sys.exit(1)

138

else:

140 heart.solveMechSimple()

mech.saveResults()

142 mech.computeLambda()

mech.updateActivationFields()

144 mech.dumpTrackPoints()

if (heart.moving_bidomain):

146 heart.diffusion(1)().updateDeformedConds(mech.getInverseCField())

return

148

def run(Aobject):

150 readFile(Aobject)

Aobject.simulator.scan()

152 timeLoop(Aobject)

return

154

62

if __name__=="__main__":

156 try:

if sys.argv[1]=="isometric":

158 t = Isometric()

run(t)

160 print dir(t)

args = "mv *.grid *.track Nodemap isometric"

162 subprocess.Popen(args, shell=True)

164 elif sys.argv[1]=="isotonic":

t = Isotonic()

166 run(t)

print dir(t)

168 args = "mv *.grid *.track Nodemap isotonic_large"

subprocess.Popen(args, shell=True)

170 except:

print "Missing input, isometric,isotonic or canine"

Listing B.6: testisometric.py

1 #!/usr/bin/env python

from pulse_heart.Circulation import *
3 from Menu import *
from DpString import *

5

class Isometric():

7 def __init__(self):

self.menu = MenuSystem.MenuSystem()

9 self.menu.thisown = 0

self.main()

11 return

13 def __del__(self):

del self.infile

15 return

17

def main(self):

19 self.menu.init(String("Isometric"), String("isometric test"))

casename = "testbox"

21 cellmodel = "WinslowRice"

self.infile = "isometric_all.i"

23 cmd = String(cellmodel)

mech_model = "TransverseIso"

25 self.simulator = Circulation(cmd, String("Something"), String(mech_model)

)

self.simulator.thisown = 0

27 self.simulator.define(self.menu)

menu = self.menu

29 menu.initFromCommandLineArg("--cmd", cmd, cellmodel)

menu.initFromCommandLineArg("--casename", String(casename), casename)

31 return

63

Listing B.7: testisotonic.py

#!/usr/bin/env python

2 from pulse_heart.Circulation import *
from Menu import *

4 from DpString import *

6 class Isotonic():

def __init__(self):

8 self.menu = MenuSystem.MenuSystem()

self.menu.thisown = 0

10 self.main()

return

12 def __del__(self):

del self.infile

14 return

16 def main(self):

casename = "testbox"

18 cellmodel = "WinslowHMT"

self.infile = "isotonic_all.i"

20 self.menu.init(String("Isotonic"), String("isotonic test"))

cmd = String(cellmodel)

22 mech_model = "TransverseIso"

self.simulator = Circulation(cmd, String("Something"), String(mech_model)

)

24 self.simulator.thisown = 0

self.simulator.define(self.menu)

26 menu = self.menu

menu.initFromCommandLineArg("--cmd", cmd, cellmodel)

28 menu.initFromCommandLineArg("--casename", String(casename), casename)

return

B.4 Compilation and setup scripts

Listing B.8: PW.conf: setup for the Pulsewrap package

1 #Source this file in your .bashrc file to get the correct configuration of

PulseWrap. Read through so you are sure they are set correctly.

3 #Make sure that you have installed Diffpack, SWIG and Pulse correctly first,

5 #PulseWrap: insert path to the directory where you have saved the PulseWrap

directory.

export PULSEWRAPDIR=$HOME/.../PulseWrap

7 #Input the correct path to your local installation of Pulse in PULSEDIR, and make

sure that pulse.conf is correct.

export PULSEDIR=$HOME/.../pulse-cmake

64

9 # For SuperLU files in Pulse

#Make sure that your SuperLU directory is called superlu, and give the path to

11 #the directory where you have installed it.

export SUPERLUDIR=/path/to/dir/superlu

13 #For SWIG

#Insert path to directory containing SWIG.

15 export SWIGSRC=$HOME/.../swig-2.0.9

17 #Python: You may have to export the path to your PYTHON directory.

#export PYTHONPATH=/usr/lib/python2.6:$PYTHONPATH

19 #export C_INCLUDE_PATH=/usr/lib/python2.6:$C_INCLUDE_PATH

#export CPLUS_INCLUDE_PATH=/usr/lib/python2.6:$CPlUS_INCLUDE_PATH

21

23

#NOR is a Diffpack environment constant.

25 export CPLUS_INCLUDE_PATH=$NOR/md/include:$CPLUS_INCLUDE_PATH

export C_INCLUDE_PATH=$NOR/md/include:$C_INCLUDE_PATH

27 export PYTHONPATH=$NOR/md/include:$PYTHONPATH

29 export CPLUS_INCLUDE_PATH=$NOR/dp/include:$CPLUS_INCLUDE_PATH

export C_INCLUDE_PATH=$NOR/dp/include:$C_INCLUDE_PATH

31 export PYTHONPATH=$NOR/dp/include:$PYTHONPATH

33 export CPLUS_INCLUDE_PATH=$NOR/md/src/libs/multilevel/hidden:$CPLUS_INCLUDE_PATH

export C_INCLUDE_PATH=$NOR/md/src/libs/multilevel/hidden:$C_INCLUDE_PATH

35 export PYTHONPATH=$NOR/md/src/libs/multilevel/hidden:$PYTHONPATH

37

#For Pulse

39 source $PULSEDIR/build/pulse.conf

export CPLUS_INCLUDE_PATH=$PULSEDIR/local/include/:$CPLUS_INCLUDE_PATH

41 export C_INCLUDE_PATH=$PULSEDIR/local/include/:$C_INCLUDE_PATH

export PYTHONPATH=$PULSEDIR/local/include/:$PYTHONPATH

43 export CPLUS_INCLUDE_PATH=:$SUPERLUDIR:$CPLUS_INCLUDE_PATH

export C_INCLUDE_PATH=:$SUPERLUDIR:$C_INCLUDE_PATH

45 export PYTHONPATH=:$SUPERLUDIR:$PYTHONPATH

47 #For PulseWrap

export PYTHONPATH=$PULSEWRAPDIR/src:$PYTHONPATH

49 export PATH=$PULSWRAPDIR/src:$PULSEWRAPDIR

51 export PYTHONPATH=$PULSEWRAPDIR:$PYTHONPATH

export CPLUS_INCLUDE_PATH=$PULSEWRAPDIR:$CPLUS_INCLUDE_PATH

53 export C_INCLUDE_PATH=$PULSEWRAPDIR:$C_INCLUDE_PATH

export CPLUS_INCLUDE_PATH=$PULSEWRAPDIR/include:$CPLUS_INCLUDE_PATH

55 export C_INCLUDE_PATH=$PULSEWRAPDIR/include:$C_INCLUDE_PATH

export PYTHONPATH=$PULSEWRAPDIR/include:$PYTHONPATH

Listing B.9: install.py: compile the PulseWrap package

#!/usr/bin/env python

65

2 import os, subprocess, shutil

"""

4 The installationscript for PulseWrap.

Do what the README file says, then run this script with

6 >>> python install.py

"""

8

10

def install(pathname):

12 """

root: current path

14 folders: directories in root

filenames: files in root of type other than dir.

16 """

paths = [pathname+"/Diffpack", pathname+"/Pulse"]

18 for path in paths:

print path

20 for root, folders, filenames in os.walk(path):

filepath = root + "/"

22 if "Makefile" in filenames and ".cmake2" in filenames:

#Compile the C++ files

24 subprocess.call(["Make", "MODE=opt"], cwd=filepath)

elif "Makefile" in filenames:

26 #Compile the Python/Swig files

subprocess.call(["./configure.sh"], cwd=filepath)

28 fix = "fixSwigMakefile.py"

subprocess.call([fix], cwd=filepath)

30 subprocess.call(["Make"], cwd=filepath)

#Copy files into include and src

32 for fil in filenames:

if fil.endswith("py") or fil.endswith("so"):

34 if (root.split("/")[-3])=="SimRes":

shutil.copy(filepath + fil, pathname + "/src/SimRes")

36 elif (root.split("/")[-3])=="Menu":

shutil.copy(filepath + fil, pathname + "/src/Menu")

38 elif (root.split("/")[-3])=="heart":

shutil.copy(filepath + fil, pathname + "/src/pulse_heart")

40 elif (root.split("/")[-3])=="cellmodel":

shutil.copy(filepath + fil, pathname + "/src/

pulse_cellmodel")

42 elif (root.split("/")[-3])=="diffusion":

shutil.copy(filepath + fil, pathname + "/src/

pulse_diffusion")

44 elif (root.split("/")[-3])=="ode":

shutil.copy(filepath + fil, pathname + "/src/pulse_ode")

46 elif (root.split("/")[-3])=="mechanics":

shutil.copy(filepath + fil, pathname + "/src/

pulse_mechanics")

48 else:

shutil.copy(filepath + fil, pathname + "/src")

50 if fil.endswith("i") or fil.endswith("h"):

shutil.copy(filepath + fil, pathname + "/include")

66

52

return

54

56 if __name__==’__main__’:

pathname = os.getcwd() #current working directory

58 install(pathname)

67

Bibliography

[1] Boost.Python. URL: http://www.boost.org/doc/libs/1_54_0/libs/python/doc/index.
html (visited on 09/04/2013).

[2] Diffpack Kernel and Toolboxes Documentation 4.0.00. URL: http : / / diffpack . com /
diffpack/refmanuals/current/index.html (visited on 09/11/2013).

[3] Python Software Foundation. Modules. 2013-08-29. URL: http://docs.python.org/2/
tutorial/modules.html (visited on 08/29/2013).

[4] inuTech GmbH. Diffpack 4.0.11 Kernel and Toolboxes Documentation. 2012. URL: http:
//inutech.de/diffpack_reference/ (visited on 08/06/2013).

[5] inuTech GmbH. Diffpack Technical Summary. URL: http://www.diffpack.com/products/
what_is_dp.html (visited on 08/09/2013).

[6] Hans Petter Langtangen. Computational Partial Differential Equations: Numerical Meth-
ods and Diffpack Programming. 1st ed. Springer, 2003.

[7] Hans Petter Langtangen. Python Scripting for Computational Science. 3rd ed. Springer,
2009.

[8] Hans Petter Langtangen and Aslak Tveito. Advanced Topics in Computational Partial
Differential Equtions: Numerical Methods and Diffpack Programming. Springer, 2003.

[9] Operator Renaming for Swig. 2011. URL: http://scion.duhs.duke.edu/vespa/gamma/
wiki/SwigOperatorRenaming (visited on 08/06/2013).

[10] PyCXX. URL: http://cxx.sourceforge.net/ (visited on 09/04/2013).

[11] SWIG Users Manual. 1997. URL: http://www.swig.org/Doc1.1/PDF/SWIGManual.
pdf (visited on 08/07/2013).

[12] SWIG. Swig-2.0 Documentation. 2013. URL: http://www.swig.org/Doc2.0/SWIGDocumentation.
pdf (visited on 08/06/2013).

[13] Shebang (Unix). 2013. URL: http://en.wikipedia.org/wiki/Shebang_(Unix) (visited on
08/29/2013).

[14] AsbjÃ¸rn Reglund Thorsen. “Ruby-grensesnitt til Diffpack og analyse av kompilator-
opsjoner ved bruk av modifisert ACOVEA.” MA thesis. The University of Oslo, 2005.

[15] Magne Westlie. “Utvikling av et Python grensesnitt til Diffpacks C++ biblioteker.” MA
thesis. The University of Oslo, 2004.

[16] cplusplus.com. C++ Language Tutorial: Friendship and inheritance. 2000-2013. URL:
http://www.cplusplus.com/doc/tutorial/inheritance/ (visited on 08/09/2013).

69

http://www.boost.org/doc/libs/1_54_0/libs/python/doc/index.html
http://www.boost.org/doc/libs/1_54_0/libs/python/doc/index.html
http://diffpack.com/diffpack/refmanuals/current/index.html
http://diffpack.com/diffpack/refmanuals/current/index.html
http://docs.python.org/2/tutorial/modules.html
http://docs.python.org/2/tutorial/modules.html
http://inutech.de/diffpack_reference/
http://inutech.de/diffpack_reference/
http://www.diffpack.com/products/what_is_dp.html
http://www.diffpack.com/products/what_is_dp.html
http://scion.duhs.duke.edu/vespa/gamma/wiki/SwigOperatorRenaming
http://scion.duhs.duke.edu/vespa/gamma/wiki/SwigOperatorRenaming
http://cxx.sourceforge.net/
http://www.swig.org/Doc1.1/PDF/SWIGManual.pdf
http://www.swig.org/Doc1.1/PDF/SWIGManual.pdf
http://www.swig.org/Doc2.0/SWIGDocumentation.pdf
http://www.swig.org/Doc2.0/SWIGDocumentation.pdf
http://en.wikipedia.org/wiki/Shebang_(Unix)
http://www.cplusplus.com/doc/tutorial/inheritance/

	Introduction
	Python for computational science
	Wrapping of compiled code using SWIG
	Diffpack
	Goal and procedure for the project
	Heart modelling and Pulse
	Outline of thesis

	Python interface for a simple simulator, Heat1
	Wrapping with Swig
	First attempt at wrapping Heat1
	Warnings
	Wrapping Diffpack classes

	Testprogram
	TimeLoop
	solveAtThisTimeStep

	Python interface for Pulse
	Wrapping a single class in Pulse
	Compilation and build of all modules
	heart
	cellmodel
	diffusion
	mechanics
	ode

	Example of use

	Summary and discussion
	Challenges and results
	Plots from cells.track in Pulse

	Remaining work

	Setup of PulseWrap
	Directory structure of PulseWrap
	Python module
	Include files in Diffpack

	Code
	The fixSwigMakefile.py script
	Heat1 testscripts
	Pulse testscripts
	Compilation and setup scripts

