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SENSITIVITY ANALYSIS IN A MARKET WITH MEMORY

D. R. BAÑOS, G. DI NUNNO, AND F. PROSKE

Abstract. A general market model with memory is considered. The formulation is
given in terms of stochastic functional differential equations, which allow for flexibility in
the modeling of market memory and delays. We focus on the sensitivity analysis of the
dependence of option prices on the memory. This implies a generalization of the concept
of delta. Our techniques use Malliavin calculus and Fréchet derivation. When it comes
to option prices, we consider both the risk-neutral and the benchmark approaches and we
compute the delta in both cases. Some examples are provided.

1. Introduction

In this paper we are interested in the study of price sensitivities of financial claims
(”greeks”) in markets with memory. The fundamental case we study is the so-called
”delta”, which is the sensitivity to the knowledge of the asset price at time t = 0. The
delta typically takes the form

(1.1) ∆(η) :=
∂

∂η
p(η)

where

(1.2) p(η) = EQη

[
Φ(ηST )
ηN(T )

]
is the price of the claim (or option) Φ(ηST ) with respect to the underlying asset process
ηSt, 0 6 t 6 T at maturity T . Here Φ is a pay-off function, ηN(t), 0 6 t 6 T , some
numéraire, and Qη a certain probability measure (e.g. risk neutral measure). We assume
that ηSt, 0 6 t 6 T describes e.g. a commodity or stock price process on a market with
memory, that is we require that ηSt, 0 6 t 6 T depends on some memory η modeled
e.g. by a function. Hence, we may interpret the price sensitivity in (1.1) as a ”functional
derivative” of the price with respect to the ”market history” η.
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Prices of goods or commodities exhibit frequently behavioral aspects that may be hard
to interpret or model accurately. In the literature we find several works vindicating the
presence of memory in markets, meaning that, prices of financial instruments are affected
in some way by their values in the past. This phenomenon is discussed, for instance, in
[1] and [2], where a market model with delay is presented and a Black-Scholes formula
for the European call-option is derived. The model presented provides enough flexibility
for a better fit than the classical Black-Scholes model when assessed against real market
observations. Other authors dealing with markets with memory are for instance [4], [5],
[9], [12] and [15]. In [14] the authors propose a model whose dynamics take the past of
the prices into account in order to clarify the presence of random cyclical fluctuations in
the market. We also mention the work [24], where a stochastic delay equation is used to
model stock prices ηSt, 0 6 t 6 T . Here, the occurrence of delay in the model is explained
by the influence of insider traders on stock prices who have access to information about
certain events prior to the beginning of the trading period. The model we employ in the
present paper captures all models with memory mentioned here above.

In this paper we aim at analyzing sensitivities of prices of financial claims both in the
risk neutral valuation and the benchmark approach. The benchmark approach for pricing
contracts and financial options has been vigorously studied by e.g. [21], [19], [3], [6]. It
has the main advantage of not requiring the existence of an equivalent martingale measure
(risk neutral probability) in order to price claims, but the existence of a numéraire portfolio
(i.e. the growth optimal portfolio), that is, a portfolio process for which discounted price
processes are martingales with respect to the physical measure. Therefore, there is no
necessity to change measure.

In the next section, we introduce a general stochastic functional differential equation
(SFDE), which will then model a general asset price dynamics involving delay, and memory
in general. Moreover, we present important results on stochastic and Fréchet derivatives
that will be crucial in the computation of sensitivity parameters. Indeed we focus on the
delta as the parameter of sensitivity with respect to the initial condition. We stress that
the initial condition is the memory η in (1.1) that, in this framework, is a whole random
path. Hence we identify the need to extend the concept of delta. Our techniques deal with
Fréchet derivatives and Malliavin derivatives in Hilbert spaces. This paper contributes
to the analysis of prices of financial derivatives or insurance linked-derivatives when the
price of the underlying depends on its past. The computation of the delta and its very
concept for markets with memory are tackled for the first time in this paper. From the
mathematical point of view we derive, in the context of SFDE’s, an explicit formula that
connects the Fréchet derivative of the solution with respect to initial condition with its
Malliavin derivative.

It is in Section 3 where we focus on the computation of the derivative of expectations
in a general set-up. This results will then be applied in Section 4 where we study option
pricing in the risk neutral valuation and in the benchmark approach. The option prices
depend on the past of the underlying and we compute the sensitivity to this memory. We
stress that our techniques suit path dependent options. Some examples of models with
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delay or memory are presented. An appendix summarizing the used results in Malliavin
calculus is given with the aim of providing a self-contained reading.

2. Stochastic functional differential equations

In this section we present the general setup for stochastic functional differential equations
(SFDE’s) that we will adopt to model delays in market dynamics. Our framework is
inspired by and generalizes [1], [2] and [14].

2.1. The model. We consider W = {W (t, ω); ω ∈ Ω, t ∈ [0, T ]} an m-dimensional stan-
dard Brownian motion on the complete filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) where
the filtration is the one generated by the increments of W containing all P -null sets and
F = FT .

We are interested in stochastic processes x : [−r, T ]×Ω→ Rd, r > 0, with finite second
order moments and a.s. continuous sample paths. So, one can look at x as a random
variable x : Ω→ C([−r, T ],Rd) in L2(Ω, C([−r, T ],Rd)). In fact, we can look at x as

x : Ω→ C([−r, T ],Rd) ↪→ L2([−r, T ],Rd) ↪→ Rd × L2([−r, T ],Rd).

So, from now on, we denote M2([−r, T ],Rd) := Rd × L2([−r, T ],Rd) the so-called Delfour-
Mitter space endowed with the norm

‖(v, ϕ)‖ =
(
|v|2 + ‖ϕ‖2

2

)1/2
, (v, ϕ) ∈M2([−r, T ],Rd),(2.1)

where ‖ · ‖2 stands for the L2-norm and | · | for the Euclidean norm in Rd. For short we
denote M2 := M2([−r, 0],Rd).

The interest of using such space comes from two facts. On the one hand, the space M2

endowed with such norm has a Hilbert structure which allows for a Fourier representation of
its elements. On the other hand, as we will see later on, the point 0 plays an important role
and therefore we need to distinguish between two processes in L2([−r, 0]) that have different
images at the point 0. Finally, it is also a natural space to use since it coincides with the
space of continuous functions C([−r, 0],Rd) completed with respect to the norm presented
in (2.1), by taking just the natural injection i(ϕ(·)) = (ϕ(0), ϕ(·)) for a ϕ ∈ C([−r, 0],Rd)
and by closing it.

In general, given a Banach space E, we denote by L2(Ω, E) the space of all random
variables with finite second order moments taking values in E, and we endow this space
with the seminorm

‖x‖L2(Ω,E) =

(∫
Ω

‖x(ω)‖2
EP (dω)

)1/2

.

So, L2(Ω, E) is a Fréchet space. It is important to differentiate between the space L2(Ω, E)
and the space L2(Ω, E) := L2(Ω, E)/ ∼ where the equivalence class is given by

x, y ∈ L2(Ω, E) x ∼ y ⇐⇒ ‖x− y‖L2(Ω,E) = 0.

Moreover, we can restrict ourselves into the subspace of L2(Ω, E) of all (Ft)t∈[0,T ]-adapted
processes x ∈ L2(Ω, E), which means that, for all t ∈ [0, T ] the random variable x(·)(t) ∈
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L2(Ω,Rd) is Ft-measurable. We will denote the restriction of all (Ft)t∈[0,T ]-adapted pro-
cesses by L2

A(Ω, E). Respectively, L2
A(Ω, E) denotes the subspace of L2(Ω, E) of elements

that admit an (Ft)t∈[0,T ]-adapted modification. In our case E = M2.
To deal with memory and delay we use the concept of segment of x. So, given a process

x, some delay gap r > 0, and a specified time t ∈ [0, T ], we will consider the segment of
x in its past time interval [t − r, t]. We denote it by xt(ω, ·) : [−r, 0] → Rd defined as:
xt(ω, s) := x(ω, t + s) for all s ∈ [−r, 0]. So xt(ω, ·) is the segment of the ω-trajectory of
the process x, and contains all the information from the past down to time t− r. Indeed a
segment xt is a Ft-measurable random variable with values in M2, i.e. xt(ω, ·) ∈M2 given
ω ∈ Ω.

The segment of x relative to time t = 0, i.e. x0, carries information from before t = 0. It
represents the initial knowledge about the process x. Let us consider a trivially measurable
variable η ∈ L2(Ω,M2). To shorten notation we write η ∈M2.

Consider then, the stochastic functional differential equation (SFDE),{
dx(t) = f(t, xt)dt+ g(t, xt)dW (t), t ∈ [0, T ]

x0 = η ∈M2

(2.2)

where
f : [0, T ]×M2

//// Rd

(t, ϕ) //// f(t, ϕ)

and
g : [0, T ]×M2

// // L(Rm,Rd)

(t, ϕ) //// g(t, ϕ).

Here g(t, ϕ) is a full rank matrix. Under suitable hypotheses on the functionals f and g,
one obtains existence and uniqueness of strong solutions (in the sense of L2) of the SFDE
(2.2). The solution is a process x ∈ L2(Ω,M2([−r, T ],Rd)) admitting an (Ft)t∈[0,T ]-adapted
modification, that is, x ∈ L2

A(Ω,M2([−r, T ],Rd)).
By uniqueness in L2(Ω,M2([−r, T ],Rd)) we mean the following: given two processes

x1, x2 ∈ L2(Ω,M2([−r, T ],Rd)), we say that they are L2(Ω,M2([−r, T ],Rd))-unique, or
unique in the sense of L2(Ω,M2([−r, T ],Rd)), if

‖x1 − x2‖L2(Ω,M2([−r,T ],Rd)) = 0

i.e.,

(∫
Ω

(
|x1(ω)(0)− x2(ω)(0)|2 +

∫ T

−r
|x1(ω)(t)− x2(ω)(t)|2dt

)
P (dω)

)1/2

= 0.
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In such a case, we will just say that the two processes are L2-unique or unique in the L2

sense.
The hypotheses we need to ensure existence and uniqueness of solutions of the SFDE

(2.2) are here below.

Hypotheses (H):

(i) (Local Lipschitzianity) The drift and diffusion functionals f and g are Lipschitz on
bounded sets in the second variable uniformly w.r.t. the first, i.e., for each integer
n > 0, there is a Lipschitz contant Ln independent of t ∈ [0, T ] such that,

|f(t, ϕ1)− f(t, ϕ2)|Rd + ‖g(t, ϕ1)− g(t, ϕ2)‖L(Rm,Rd) 6 Ln‖ϕ1 − ϕ2‖M2

for all t ∈ [0, T ] and functions ϕ1, ϕ2 ∈M2 such that ‖ϕ1‖M2 6 n, ‖ϕ2‖M2 6 n.
(ii) (Linear growths) There exists a constant C > 0 such that,

|f(t, ψ)|Rd + ‖g(t, ψ)‖L(Rm,Rd) 6 C (1 + ‖ψ‖M2)

for all t ∈ [0, T ] and ψ ∈M2.

Now, we are in a position to state the theorem accurately.

Theorem 2.1 (Existence and Uniqueness). Given Hypotheses (H) on the coefficients f
and g, the SFDE (2.2) has a solution ηx ∈ L2

A(Ω,M2([−r, T ],Rd)) for a given initial
condition η ∈M2 and it is unique in the sense of L2.

The solution (or better its adapted representative) is a process ηx : Ω × [−r, T ] → Rd

such that

(1) ηx(t) = η(t), t ∈ [−r, 0].
(2) ηx(ω) ∈M2([−r, T ],Rd) P -a.s.
(3) For every t ∈ [0, T ], ηx(t) : Ω→ Rd is Ft-measurable.

Proof. The proof is based on a similar approach as in the classical deterministic case by
using successive Picard approximations and can be found in [16], Theorem 2.1. �

Hence, it makes sense to write

ηx(t) =

{
η(0) +

∫ t
0
f(u, ηxu)du+

∫ t
0
g(u, ηxu)dW (u), t ∈ [0, T ]

η(t), t ∈ [−r, 0].

Observe that the above integrals are well-defined. In fact, the process (ω, t) 7→ xt(ω) ∈M2

is adapted since x is pathcontinuous and adapted, and the composition with the deterministic
coefficients f and g is then adapted as well.

Note that ηx represents the solution starting off at time 0 with initial condition η ∈M2.
One could consider the same dynamics but starting off at a later time, let us say,

s ∈ [0, T ], with initial condition η ∈M2. Namely, we could consider:
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{
dx(t) = f(t, xt)dt+ g(t, xt)dW (t), t ∈ [s, T ]

x(t) = η(t− s), t ∈ [s− r, s].
(2.3)

Again, under (H) the SFDE (2.3) has the solution,

ηxs(t) =

{
η(0) +

∫ t
s
f(u, ηxsu)du+

∫ t
s
g(u, ηxsu)dW (u), t ∈ [s, T ]

η(t− s), t ∈ [s− r, s]
(2.4)

The right hand superindex here, ηxs, denotes the starting point. We will omit the su-
perindex when starting at 0, ηx0 = ηx. The interest of defining the solution starting at
a later time comes from the semigroup property of the flow of the solution which we will
present in the next subsection.

2.2. Differentiability of the solution and properties. Since we aim at studying the
influence of the initial path η on the solution of (2.2) we need differentiability conditions
on the coefficients in order to ensure existence of an at least once differentiable stochastic
flow for (2.2).

In general, suppose we have E and F Banach spaces and U ⊆ E an open set. We write
L(E,F ) for the space of linear bounded operators from E to F endowed with the topology
generated by the norms on each space. Then a functional f : U → F is said to be of class
C1 if Df : U → L(E,F ) is continuous on bounded sets in U . The derivative D is taken in
the Fréchet sense. In the sequel, we will just focus on the Hilbert space E = M2.

Now, following [17] we give the definition of stochastic flow.

Definition 2.2. Denote by S([0, T ]) := {s, t ∈ [0, T ] : 0 6 s < t < T}. Let E be a
Banach space. A stochastic C1-semiflow on E is a random field X : S([0, T ])×E×Ω→ E
satisfying the following properties:

(i) X is (B(S([0, T ]))⊗ B(E)⊗F ,B(E))-measurable.
(ii) For each ω ∈ Ω, the map

X(·, ·, ·, ω) : S([0, T ])× E // // E

(s, t, η) //// X(s, t, η, ω)

is continuous.
(iii) For fixed (s, t, ω) ∈ S([0, T ])× Ω the map

X(s, t, ·, ω) : E //// E

η //// X(s, t, η, ω)

is C1.
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(iv) If 0 6 s 6 u 6 t, ω ∈ Ω and x ∈ E, then

X(s, t, η, ω) = X(u, t,X(s, u, η, ω), ω).

(v) For all (t, η, ω) ∈ [0, T ]× E × Ω, one has X(t, t, η, ω) = η.

In our setup, we consider the definition given above in the space E = M2. Let us
define X(s, t, η, ω) := ηxst(ω) = (ηxs(t)(ω),η xst(ω)) ∈ M2 for ω ∈ Ω, s 6 t, where ηxs is
the solution of the SFDE (2.3) with initial condition η. Observe here, that we make an
abuse of notation when we write xst(ω) ∈ M2, we already mean that xst(ω) is of the form
(xs(t)(ω), xst(ω)) ∈M2 where xs(t)(ω) ∈ Rd and xst(ω) = 1[−r,0)x

s
t(ω) ∈ L2([−r, 0],Rd). We

can see that X is indeed a Fréchet differentiable stochastic flow associated to (2.3) under
the following conditions:

Hypotheses (D):

(i) The functional f : [0, T ] ×M2 → Rd is jointly continuous. For each t ∈ [0, T ], the
map

f(t, ·) : M2
// // Rd

ϕ //// f(t, ϕ)

is Lipschitz on bounded sets in M2 uniformly with respect to t ∈ [0, T ]. For each
t ∈ [0, T ] the map

f(t, ·) : M2
//// Rd

ϕ //// f(t, ϕ)

is C1 uniformly with respect to t ∈ [0, T ].
(ii) For each t ∈ [0, T ], the functional g(t, ·) : M2 → L(Rm,Rd) is C1, with Fréchet

derivative Dg(t, ·) globally bounded. For each ϕ ∈M2, the map

g(·, ϕ) : [0, T ] // // L(Rm,Rd)

t //// g(t, ϕt)

is square-integrable and locally of bounded variation. For each t ∈ [0, T ] and ω ∈ Ω
the functional

g(t, ·) : L2([−r, T ],Rd) //// L2([0, T ], L(Rm,Rd))

ϕ //// g(t, ϕt)

is C1 and globally bounded.
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We have the following result due to [17], Theorem 3.1.

Theorem 2.3. Suppose that Hypotheses (D) are fulfilled and moreover that there exists a
constant C := C(T ) > 0 and γ := γ(T ) ∈ [0, 1) such that

|f(t, ϕ)| 6 C
(
1 + ‖ϕ‖γM2

)
(2.5)

for all t ∈ [0, T ] and ϕ ∈M2. Then the following is true:

(i) For each ω ∈ Ω, the map

X(·, ·, ·, ω) : S([0, T ])×M2
// // M2

(s, t, ϕ) //// X(s, t, ϕ, ω)

is continuous and for fixed (s, t, ω) ∈ S([0, T ])× Ω, the map

X(s, t, ·, ω) : M2
//// M2

ϕ //// X(s, t, ϕ, ω)

is C1.

(ii) For each ω ∈ Ω and (s, t) ∈ S([0, T ]) with t > s + r the map X(s, t, ·, ω) : M2 → M2

carries bounded sets into relatively compact sets. In particular, each Fréchet derivative
DX(s, t, ϕ, ω) : M2 → M2 with respect to ϕ ∈ M2, is a compact linear map for t > s + r,
ω ∈ Ω.

(iii) The maps

(s, t, ϕ, ω) 7→ X(s, t, ϕ, ω) ∈M2

(s, t, ϕ, ω) 7→ DX(s, t, ϕ, ω) ∈ L(M2,M2)

(s, t, ϕ, ω) 7→ ‖DX(s, t, ϕ, ω)‖L(M2,M2) ∈ R+

are (B(S(T ))⊗ B(M2)⊗F ,B(M2))-measurable, (B(S(T ))⊗ B(M2)⊗F ,Bs(L(M2,M2)))-
measurable, and (B(S(T ))⊗ B(M2)⊗F ,B(R+))-measurable, respectively.

Remark 2.4. Note that condition (2.5) is sufficient. One may exchange it by other tech-
nical assumptions. We refer to [17] for a list of other sufficient conditions.

Henceforward, we assume that the hypotheses from Theorem 2.3 are fulfilled. In such a
case we know that the SFDE (2.2) is well-posed, it has a L2-unique solution, and it admits
a global Fréchet differentiable stochastic flow. See [17].

We will, from now on, use the following notation Xs
t (η, ω) := X(s, t, η, ω) = ηxst(ω). By

Theorem 2.3 and item (iv) in Definition 2.2 we have that equation (2.2) has the following
property: For each s, t ∈ [0, T ], s 6 t,

X0
t = Xs

t ◦X0
s .
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Observe that this property defines a family of operators {Xs
t }06s6t6T that conforms to

a semigroup. These operators will be used extensively in the sequel.
Finally, recall that we also have Malliavin differentiability of ηx(t) ∈ L2(Ω,Rd) and ηxt,

see [25]. The latter x : Ω→M2([−r, 0],Rd) is a random variable taking values in a Hilbert
space. We have summarized the used elements of Malliavin calculus for Hilbert space valued
random variables in the Appendix. We will denote by Ds, 0 6 s 6 T , differentiation in
the Malliavin sense.

In relation to (2.3) we also define the following family of operators. For any u ∈ [−r, 0],
define ρu : M2 → Rd as the evaluation at u, that is, ρu((v, ϕ)) := v1{0}(u) + ϕ(u)1[−r,0)(u)
for any (v, ϕ) ∈M2. We observe here that the random variable ηx(t) is an evaluation at 0
of the process Xs

t = ηxst . Indeed, for u ∈ [−r, 0],

ρu ◦Xs
t (η, ω) = ρu(

ηxst)(ω) = ηxst(u)(ω) = ηxs(t+ u)(ω).

Next result details an important relationship between the Malliavin derivative of the
solution of (2.2) at s and the Fréchet derivative of (2.3) with respect to the initial path.
We would like to highlight here that we wish to compare two objects with different natures.

On the one hand, the Malliavin derivative Ds ηxt is a process which takes values in
the space L2(Ω,M2), i.e. it is an equivalent class. On the other side, we are considering
solutions to the SFDE (2.3) in a pathwise sense and then computing the Fréchet derivative
DXs

t (η, ω), which is an object in L(M2,M2) for each ω ∈ Ω. In order, to compare the
two we specify that we consider the representative of DsX0

t (η, ·) that is adapted, which we
denote by (DsX0

t (η, ·))(ω), ω ∈ Ω∗ where Ω∗, P (Ω∗) = 1, is the set for which DsX0
t (η, ·)

is adapted. Then for such representative and ω ∈ Ω∗ we compute the Fréchet derivative
of the stochastic flow X0

t (η, ω). Finally, we compare the two. This relation plays a crucial
role in the study of the sensitivity of (2.2) to the initial path condition.

Theorem 2.5. In the hypotheses of Theorem 2.3. For any t ∈ [0, T ] and η ∈M2, X0
t (η, ·)

is Malliavin differentiable and for s, t ∈ [0, T ]: s 6 t and ω ∈ Ω, Xs
t (η, ω) is Fréchet

differentiable with respect to η ∈M2. Moreover, we have the following relationship between
random variables:

DXs
t

(
X0
s (η, ω), ω

)
=
(
DsX0

t (η, ·)
)

(ω) g−1
R (s,η xs(ω)) ρ0, P − a.s.(2.6)

Here, fixed s, t ∈ [0, T ], DX t
s(X

0
s (η, ω), ω) stands for the Fréchet derivative of the flow

Xs
t (·, ω) given ω ∈ Ω, then evaluated at the point X0

s (η, ω). Finally, g−1
R denotes the right-

inverse of the deterministic (d×m)-matrix g.

Proof. For t ∈ [0, T ] the Malliavin and Fréchet differentiability of ηx(t) have already been
discussed in the previous section and can be found, respectively, in [25] and [16]. Hereafter,
for simplicity in notation we omit the dependence in ω when confusion does not arise.

First of all, we make the following observation: for any u ∈ [−r, 0]

Dρu(X
s
t ) = ρu ◦DXs

t for any u ∈ [−r, 0].

This implies that the segment process of the element D η̃xs(t) is the same as the Fréchet
derivative of the segment process η̃xst for a given η̃ ∈M2. The same holds for the Malliavin
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derivative

Ds ρu(X0
t ) = ρu ◦ DsX0

t .

but in this case one uses the chain rule in the framework of random variables taking values
on Hilbert spaces, we refer to the appendix for further details. Such observation allows us to
prove identity (2.6) in the finite dimensional case for arbitrary evaluations ρu, u ∈ [−r, 0].
In fact, it suffices to do it just at the point 0 thanks to the semigroup property of the flow
of the solution.

Then we start by computing the Malliavin derivative (Ds ηx(t)) (·) of the random variable
ω 7→ ηx(t)(ω) at the point s ∈ [0, t]. So,

Ds ηx(t) =

∫ t

s

Ds[f(u, ηxu)]du+ g(s, ηxs) +

∫ t

s

Ds[g(u, ηxu)]dW (u),

hence,

Ds ηx(t) =

∫ t

s

D[f(u, ηxu)] ◦ Ds(ηxu)du+ g(s, ηxs)

+

∫ t

s

D[g(u, ηxu)] ◦ Ds(ηxu)dW (u).

(2.7)

In the previous expression we used the chain rule for the Malliavin derivative of random
variables taking values in a Banach space, see [22], Proposition 3.8. We include also an
ad-hoc version of the chain rule in the appendix.

Thanks to Theorem 2.3, we know that the solution process ηx admits a stochastic dif-
ferentiable flow which we denote by Xs

t (η, ω) = ηxst(ω), s 6 t, ω ∈ Ω and its evaluation at
zero is namely ρ0(Xs

t (η, ω)) = ηxs(t, ω). For any 0 6 s 6 t 6 T we look at representative
of the solution in a pathwise sense, as an operator with input η ∈M2 and output ηxs(t)(ω)
in Rd. Hence, from (2.4) we have

·xs(t) = ρ0(·) +

∫ t

s

f(u, ·) ◦Xs
u(·)du+

∫ t

s

g(u, ·) ◦Xs
u(·)dW (u)

where here the dot stands for the function η. Then, we compute the Fréchet derivative of
the above operator at a generic point η̃ ∈M2. To do so, we need to compute the derivative
of the stochastic integral. It is not immediate that one may do so by exchanging integral
with derivation. In order to justify that this can be done, one can refer to the work done
by E. Fournié et al. in for instance [10] or [11] where the same approach is used for the
computation of sensitivities. Thus

D η̃xs(t) = Dρ0(η̃) +

∫ t

s

D[f(u, ·) ◦Xs
u(·)](η̃)du+

∫ t

s

D[g(u, ·) ◦Xs
u(·)](η̃)dW (u).

We recall that ρ0 is a linear operator and its Fréchet derivative is itself, so Dρ0(η̃(ω)) =
ρ0 ∈ L(M2,Rd). For the other two terms we apply the chain rule. First,

D[f(u, ·) ◦Xs
u(·)](η̃) = Df(u,Xs

u(η̃)) ◦DXs
u(η̃),
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where Df(u,Xs
u(η̃)) ∈ L(M2,Rd) and DXs

u(η̃) ∈ L(M2,M2). Finally, for g we have

Dg(u,Xs
u(η̃)) ◦DXs

u(η̃) ∈ L(M2, L(Rm,Rd))

where Dg(u,Xs
u(η̃)) ∈ L(M2, L(Rm,Rd)). Thus, in a summary

D η̃xs(t) = ρ0(·) +

∫ t

s

Df(u,Xs
u(η̃)) ◦ DXs

u(η̃)du(2.8)

+

∫ t

s

Dg(u,Xs
u(η̃)) ◦DXs

u(η̃)dW (u)

where both left-hand side and right-hand side are operators in L(M2,Rd).
In particular, let us consider η̃ = X0

s (η, ω) = ηx0
s(ω) = ηxs(ω) ∈ M2 for ω ∈ Ω∗

where we recall that Ω∗ is the full-measure set for which DsX0
t (η, ·) is adapted. We use

the semigroup property of the flow Xs
u ◦X0

s = X0
u and we obtain:

D η̃xs(t) = ρ0(·) +

∫ t

s

D[f(u, ηxu)] ◦DX0
u(η)du(2.9)

+

∫ t

s

D[g(u, ηxu)] ◦DX0
u(η)dW (u).

At this point, we see that there is a similarity between equation (2.9) and equation (2.7).
However, we note that equation (2.9) for ω fixed represents an operator in L(M2,Rd) while
in equation (2.7), after choosing the adapted representative ω ∈ Ω∗, P (Ω∗) = 1, we have
an operator in L(Rm,Rd). Next step is then to transport equation (2.7) to (2.9). We may
do it by means of an operator τs ∈ L(M2,Rm) such that, ω ∈ Ω∗,

g(s, ηxs(ω)) ◦ τs(·) = ρ0(·).
We recall that g(s, ηxs(ω)) ∈ L(Rm,Rd). So, we define:

τs : M2
// // Rm

ϕ //// τs(ϕ) = g−1
R (s, ηxs(ω))ϕ(0)

where g−1
R denotes the right-inverse of the d × m matrix g(s, ηxs(ω)), which is m × d-

dimensional, applied to ϕ(0) ∈ Rd. Observe that the operator τs depends on the solution
xs(ω). In fact, in this case we have

ϕ ∈M2
τs−→ g−1

R (s, ηxs(ω))ϕ(0) ∈ Rm ◦g(s, ηxs(ω))−−−−−−−→ gg−1
R ϕ(0) = ϕ(0) ∈ Rd.

Hence, g(s, ηxs(ω)) ◦ τs(·) = ρ0(·). Moreover for ϕ ∈M2

(Ds ηx(t)) (ω) ◦ τs(ϕ) =

∫ t

s

D[f(u, ηxu(ω))] ◦ (Ds(ηxu)) (ω) ◦ τs(ϕ)du+ ϕ(0)

+

∫ t

s

D[g(u, ηxu(ω))] ◦ (Ds(ηxu)) (ω) ◦ τs(ϕ)dW (u).
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By uniqueness of the solutions (2.3) we obtain the desired formula. Indeed, denote C := C([−r, 0],Rd).
For all ϕ ∈M2 we will show that,(

D η̃xs(t)(ϕ)
)
t

L2(Ω,C)
= (Ds ηx(t) ◦ τs(ϕ))t .

The argument relies on the fact that the sup-norm is weaker than the one in M2. Again,
for the sake of simplicity we skip the dependence on ω ∈ Ω. On the one hand,(

D η̃xs(t)(ϕ)
)
t
(·) = ϕ(0) +

∫ t+·

s

Df(u, ηxu) ◦ DXs
u(η̃)(ϕ)du

+

∫ t+·

s

Dg(u, ηxu) ◦DXs
u(η̃)(ϕ)dW (u).

On the other hand,

(Ds ηx(t) ◦ τs(ϕ))t (·) = ϕ(0) +

∫ t+·

s

D[f(u, ηxu)] ◦ Ds(ηxu) ◦ τs(ϕ)du

+

∫ t+·

s

D[g(u, ηxu)] ◦ Ds(ηxu) ◦ τs(ϕ)dW (u).

Therefore,

‖
(
D η̃xs(t)(ϕ)

)
t
− (Ds ηx(t) ◦ τs(ϕ))t ‖

2
L2(Ω,C)

= E

 sup
t′∈[−r,0]
t+t′>s

∣∣∣∣ ∫ t+t′

s

D[f(u, ηxu)] ◦ (DXs
u(η̃)(ϕ)−Ds(ηxu) ◦ τs(ϕ)) du

∣∣∣∣2


+ E

 sup
t′∈[−r,0]
t+t′>s

∣∣∣∣ ∫ t+t′

s

D[g(u, ηxu)] ◦ (DXs
u(η̃)(ϕ)−Ds(ηxu) ◦ τs(ϕ)) dW (u)

∣∣∣∣2
 .

Then, Hölder’s inequality, martingale inequality, the Itô isometry, and the continuity of
Dh and Dg together with the fact that [−r, 0] is compact yield,

‖
(
D η̃xs(t)(ϕ)

)
t
− (Ds ηx(t) ◦ τs(ϕ))t ‖

2
L2(Ω,C)

6 2C2
f t

∫ t

s

‖DXs
u(η̃)(ϕ)−Ds(ηxu) ◦ τs(ϕ)‖2

L2(Ω,C)du

+ 2MC2
g

∫ t

s

‖DXs
u(η̃)(ϕ)−Ds(ηxu) ◦ τs(ϕ)‖2

L2(Ω,C)du

where Cf and Cg stand for the constants from the boundedness of Df and Dg respectively
and M the constant coming from the martingale inequality. Gronwall’s lemma gives the
desired L2-uniqueness. �

Corollary 2.6. In particular, under the conditions of Theorem 2.5, we also have the
following relationship between the Malliavin derivative of η(ω)xst(ω) and the Fréchet and
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with respect to η ∈M2,

DX0
t (η, ω) =

(
DsX0

t (η, ·)
)

(ω)g−1
R (s,η xs(ω))ρ0 ◦DX0

s (η, ω), P − a.s.(2.10)

Proof. This is an immediate consequence of the semigroup property of the stochastic flow
X, that is:

Xs
t ◦X0

s = X0
t .

We compute the Fréchet derivative in both sides of the equation above at the point η ∈M2,
D[Xs

t ◦X0
s ](η) = DX0

t (η) and use the chain rule

DXs
t (X

0
s (η)) ◦DX0

s (η) = DX0
t (η).

The result follows by Theorem 2.5. �

3. Sensitivity analysis to the initial path condition

Having option pricing at focus, we present the necessary mathematical tools and the-
oretical formulae to study the sensitivity of the derivative prices to the initial condition.
Specifically, we aim at giving expressions for the so-called delta. Note that we consider
underlying price dynamics with memory, hence the initial condition is actually a whole
process. Then we suggest a new definition for the parameter delta by extending classical
concepts.

Before entering the specifics of the financial pricing frameworks, we detail the mathe-
matical approach. Let us consider a function Φ : M2 → R+ such that Φ(X0

T (η)) ∈ L2(Ω),
a fixed positive time T <∞, and the functional

p(η) = E [Φ(ηx(T ), ηxT )] , η ∈M2(3.1)

where ηx is the solution of the SFDE (2.2) with η as initial condition. Recall that the
stochastic flow of the solution is denoted by X0

T (η, ω) = (ηx(T )(ω), ηxT (ω)). Functionals
of this type appear in pricing formulae of financial derivatives

Φ(ηx(T ), ηxT ) : Ω // // R+

ω //// Φ(X0
T (η, ω)).

The sensitivity of prices to the initial condition of the underlying is then to be reconducted
to the study of variations of p(η) to perturbations of η. The Fréchet derivative of p in η
is a linear operator Dp(η) ∈ L(M2,R) and it describes the fluctuations of p(η) around η.
Hence, it is natural to define the delta as

∆(η) := Dp(η) : M2 → R(3.2)

If one would like to produce an index of the robustness of prices to their initial path
condition, then one could apply several definitions of robustness. For example, by taking
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directional derivatives one would get

∆h := lim
ε→0

p(η + εh)− p(η)

ε
=

d

dε
p(η + εh)

∣∣∣∣
ε=0

, h ∈M2(3.3)

and this represents the rate of change near η along the direction h ∈M2. Observe that the
existence of Dp(η) implies that the limit in (3.3) exists and it is finite.

Having an expression for Dp(η) one could also take evaluations at functions h ∈ M2

such that ‖h‖ = 1, i.e.

∆(h) := Dp(η)(h) ∈ R
and compare ∆(h1) ∼ ∆(h2), h1, h2 ∈M2, ‖h1‖ = ‖h2‖ = 1.

Also one can simply use the operator norm as sensitivity parameter ∆:

∆ := |||Dp(η)||| := sup
ψ∈M2
ψ 6=0

|Dp(η)(ψ)|
‖ψ‖M2

.(3.4)

In this case the ∆ in (3.4) gives a form of ”worst case scenario” of all possible perturbations
around η.

Our aim is then to give a formula for the evaluation of Dp(η) and ∆. Our techniques are
inspired by the Malliavin approach to the computation of the delta in a classical Brownian
diffusion setup introduced by E. Fournié, J-M. Lasry, J. Lebuchoux, P-L Lions and N.
Touzi in [10].

Next theorem gives an expression for ∆(η) which is independent of the Fréchet derivative
of Φ for smooth payoff functions Φ. Thereafter, we will relax the smoothness assumption
on Φ.

Theorem 3.1. Let hypotheses from Theorem 2.3 be fulfilled and denote by X0
t (η, ω), ω ∈ Ω,

t ∈ [0, T ], η ∈M2, the flow associated to SFDE (2.2). Let Φ : M2 → [0,∞) be a measurable
function such that Φ(X0

T (η)) ∈ L2(Ω). Consider the functional

p(η) = E [Φ(ηx(T ), ηxT )] .

Then for any bounded measurable function a : [0, T ]→ R integrating to 1, we have that

∆(η) = E
[
Φ(X0

T (η))w∆(η)
]

(3.5)

where, for each η, w∆(η) is an element in L2(Ω, L(M2,R)) defined as

w∆(η) :=

∫ T

0

a(s)g−1
R (s,η xs)ρ0 ◦DX0

s (η)dW (s).

Moreover, we may define a delta-index as

∆ := sup
ψ∈M2

‖ψ‖M2
=1

|E
[
Φ(ηx(T ), ηxT )w∆(η)(ψ)

]
|

Proof. Step 1: At first we consider the case Φ ∈ C1
b (M2,R), i.e. Fréchet differentiable with

continuous bounded derivative.
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We will first show that the Fréchet derivative of the functional p : M2 → R indeed
corresponds to the expectation of the pathwise Fréchet derivative of Φ(ηx(T )(ω), ηxT (ω)).
To do so, just observe the following, for η, ψ ∈M2∣∣∣∣p(η + ψ)− p(η)− E

[
DΦ(ηx(T ), ηxT )

]∣∣∣∣2 =

=

∣∣∣∣E
[

Φ(η+ψx(T ), η+ψxT )− Φ(ηx(T ), ηxT )−DΦ(ηx(T ), ηxT )

]∣∣∣∣2
6 E

[∣∣∣∣Φ(η+ψx(T ), η+ψxT )− Φ(ηx(T ), ηxT )−DΦ(ηx(T ), ηxT )

∣∣∣∣2
]

=

∫
Ω

∣∣∣∣Φ(η+ψx(T )(ω), η+ψxT (ω))− Φ(ηx(T )(ω), ηxT (ω))

−DΦ(ηx(T )(ω), ηxT (ω))

∣∣∣∣2P (dω).

Now since Φ ∈ C1 we know that for almost all ω ∈ Ω we have∣∣∣∣Φ(η+ψx(T )(ω), η+ψxT (ω))− Φ(ηx(T )(ω), ηxT (ω))

−DΦ(ηx(T )(ω), ηxT (ω))

∣∣∣∣2 6 C‖ψ‖2
M2

for some constant C > 0. Then taking expectation at both sides it follows that∣∣∣∣p(η + ψ)− p(η)− E
[
DΦ(ηx(T ), ηxT )

]∣∣∣∣2 6 C‖ψ‖2
M2

and therefore

Dp(η) = E
[
DΦ(X0

T (η))
]
.(3.6)

Now we proceed to show (3.5) for the case of smooth Φ ∈ C1(M2,R). The chain rule gives

Dp(η) = E
[
Φ′(ηx(T ),η xT ) ◦DX0

T (η)
]
.

Here Φ′(X0
T (η, ω)) denotes the Fréchet derivative of Φ at the point X0

T (η, ω) which is an
element in L(M2,R) and DX0

T (η, ω) ∈ L(M2,M2). Now, we choose a bounded scalar
function a : R→ R that integrates to 1 and we use Corollary 2.6, then we obtain

DX0
T (η, ω) =

∫ T

0

a(s)DX0
T (η, ω)ds

=

∫ T

0

DsX0
t (η, ω)g−1

R (s,η xs(ω))ρ0 ◦DX0
s (η, ω)ds(3.7)
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Then plugging (3.7) inside (3.6), we have

Dp(η) = E

[
Φ′(X0

T (η)) ◦
∫ T

0

DsX0
T (η)a(s)g−1

R (s,η xs)ρ0 ◦DX0
s (η)ds

]
= E

[∫ T

0

Φ′(X0
T (η)) ◦ DsX0

T (η)a(s)g−1
R (s,η xs)ρ0 ◦DX0

s (η)ds

]
= E

[∫ T

0

DsΦ(X0
T (η)) ◦ a(s)g−1

R (s,η xs)ρ0 ◦DX0
s (η)ds

]
Next step is to use the duality formula for the Malliavin derivative. Observe though that
now, a(s)g−1

R (s, ηxs(ω))ρ0 ◦ DX0
s (η, ω) ∈ L(M2,Rm) then we write δ(a(·)g−1

R (·,η x·)ρ0 ◦
DX0

· (η) where a(s)g−1
R (s,η xs)ρ0 ◦ DX0

s (η) ∈ L2(Ω, L(M2,Rm)) and δ is the Skorokhod
integral. Theory on Skorokhod integral of random variables taking values in a Banach
space can be found in [13]. Nevertheless, note that when we apply a function ψ ∈ M2 to
the operator a(s)g−1

R (s,η xs)ρ0 ◦DX0
s (η), we obtain an element in Rm for which a classical

duality formula can be used, see for instance [8], Theorem 3.14. Altogether, the Fréchet
derivative Dp(η) ∈ L(M2,R) is given by

Dp(η) = E

[
Φ(X0

T (η))

∫ T

0

a(s)g−1
R (s,η xs)ρ0 ◦DX0

s (η)δW (s)

]
= E

[
Φ(X0

T (η))δ

(
a(·)g−1

R (·,η x·)ρ0 ◦DX0
· (η)

)]
.

Observe also that the process g−1
R (s,η xs)ρ0 ◦DX0

s (η) ∈ L2(Ω, L(M2,Rm)) is Fs-measurable
so the Skorokhod integral is actually an Itô integral.

Define w∆(η) :=
∫ T

0
a(s)g−1

R (s,η xs)ρ0 ◦DX0
s (η)δW (s), then

Dp(η) = E
[
Φ(X0

T (η))w∆(η)
]

where w∆(η) is an element in L(L2(Ω,M2), L2(Ω,R+)) ↪→ L2(Ω,M∗
2 ) ∼= L2(Ω,M2).

Take ψ ∈M2 and apply it to Dp(η):

Dp(η)(ψ) = E
[
Φ(X0

T (η))w∆(η)
]

(ψ) = E
[
Φ(X0

T (η))w∆(η)(ψ)
]

= E

[∫ T

0

{
DsΦ(X0

T (η)) · a(s)g−1
R (s,η xs)ρ0 ◦DX0

s (η)
}

(ψ)ds

]
.

Now, we compute the integrand operator applied to ψ : [−r, 0]→ Rd,{
DsΦ(X0

T (η)) · a(s)g−1
R (s,η xs)ρ0 ◦DX0

s (η)
}

(ψ) = DsΦ(X0
T (η))·a(s)g−1

R (s,η xs)ρ0(DX0
s (η)(ψ)).

Since a(s)g−1
r (s, ηxs) · ρ0 ◦ DX0

s (η)(ψ) is an Rd-valued random variable, we apply the
finite-dimensional duality formula and get

Dp(η)(ψ) = E

[
Φ(X0

T (η))

∫ T

0

a(s)g−1
R (s, ηxs) · ρ0 ◦DX0

s (η)(ψ)dW (s)

]
(3.8)

and w∆(η)(ψ) =
∫ T

0
a(s)g−1

R (s, ηxs) · ρ0 ◦DX0
s (η)(ψ)dW (s).
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Step 2: Next, we consider that Φ is bounded and continuous (in particular Φ(X0
T (η)) ∈ L2(Ω)).

Indeed, we can approximate Φ by a sequence of {Φ}n>0 ⊂ C1
b (M2,R) such that Φn(ψ)

n→∞−−−→ Φ(ψ)
for ψ ∈M2. Define

∆̄(η) := E[Φ(X0
T (η))

∫ T

0

a(s)g−1
R (s,η xs)ρ0 ◦DX0

s (η)dW (s)].(3.9)

The objects p(η) and p̄(η), η ∈ M2 are well-defined since Φ(X0
T (η)) ∈ L2(Ω) and using

Cauchy-Schwarz inequality and Itô’s isometry property we have that

|∆̄(η)| 6 E[|Φ(X0
T (η))|2]1/2

(∫ T

0

E|a(s)g−1
R (s,η xs)ρ0 ◦DX0

s (η)|2ds
)1/2

<∞

since a and g−1
R are bounded and E[|ρ0 ◦DX0

T (η)|2] <∞ by Hypotheses (D). Then we ap-
proximate pn(η) = E[Φn(X0

T (η))] and by the step 1 we have thatDpn(η) = E[Φn(X0
T (η))w∆(η)]

. Then pn(η)→ p(η) for all η ∈ M2 and again using Cauchy-Schwarz inequality and Itô’s
isometry we have

|∆pn(η)− ∆̄(η)| 6 E
[
|Φn(X0

T (η))− Φ(X0
T (η))|2

]1/2
E[|w∆(η)|2]1/2.

Again E[|w∆(η)|2]1/2 <∞ and since Φn and Φ are continuous and bounded we have

sup
η∈J
|Dpn(η)− p̄(η)| n→∞−−−→ 0

for all bounded closed subsets J ⊂ M2. Thus, p defined is Fréchet differentiable with
derivative ∆p(η) = ∆̄(η).

Step 3: Let us denote

G := {Φ : M2 → [0,∞), continuous and bounded}.

It is clear that G is a multiplicative class, i.e. ψ1, ψ2 ∈ G then ψ1ψ2 ∈ G.
Further, let H the class of functions Φ : M2 → [0,∞), for which (3.5) holds. From step

2, G ⊂ H. Then, H is a monotone vector space on M2, see e.g. [23, p.7] for definitions.
Indeed, from dominated convergence we have monotonicity. In fact, if {Φ}n>0 ⊂ H such
that 0 6 Φ1 6 Φ2 6 · · ·Φn 6 · · · with limn Φn = Φ and Φ is bounded then Φ ∈ H.
Furthermore, denote by σ(G) := {f−1(B), B ∈ B(R), f ∈ G} where B(R) denotes the
Borel σ-algebra in R. Then we are able to apply the monotone class theorem, see e.g.
[23, Theorem 8] and conclude that H contains all bounded and σ(G)-measurable functions
Φ : M2 → [0,∞). Nevertheless, σ(G) coincides with the Borel σ-algebra of M2 since G
contains all continuous bounded functions.

Step 4: The last step is to approximate any B(M2)-measurable function Φ : M2 → [0,∞)
such that Φ(X0

T (η)) ∈ L2(Ω) by a sequence {Φ}n>0 of bounded B(M2)-measurable func-
tions. For instance,

Φn(ψ) = Φ(ψ)1{Φ(ψ)6n}, n > 0.
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Then Φn ∈ H for each n > 0. Define ∆̃(η) := E[Φ(X0
T (η))w∆(η)]. Then by Cauchy-

Schwarz inequality and Itô’s isometry again we obtain that

sup
η∈J
|DpΦn(η)− p̃(η)| 6 C sup

η∈J
E[|Φn(X0

T (η))− Φ(X0
T (η))|2]1/2

for some constant C > 0 and closed bounded subsets J ⊂M2. Finally, observe that

E[|Φn(X0
T (η))− Φ(X0

T (η))|2]
n→∞−−−→ 0

thus proving the result. �

We remark that the case in which Φ only depends on the initial value of the process
(2.2) can be treated within the result above. In fact, we observe that for

p(η) = E [Φ(ηx(T ))] = E [Φ(ρ0( ηx(T ),η xT ))] = E
[
Φ̃(X0

T (η))
]

(3.10)

with

M2
ρ0 // Rd Φ // R

Φ̃
++

where we recall that ρ0 is an evaluation at 0 that can also be seen as a projection onto Rd

which we defined earlier as ρ0((v, ϕ)) = v for each (v, ϕ) ∈M2.

4. A market model with memory and the delta

4.1. Market model. In the same filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) as before,
we consider a market with a price process S = {S(t, ω); t ∈ [0, T ], ω ∈ Ω} and a risk-less
bond B with dynamics dB(t) = B(t)κ(t)dt such that B(0) = 1 with κ ∈ L1([0, T ],R+).
One could consider several risky assets as well, but for the sake of simplicity of nota-
tion we restrict ourselves to the 1-dimensional case where also the Brownian motion is
1-dimensional.

For the price process we consider the SFDE with memory:{
dS(t)
S(t)

= µ(t, St)dt+ σ(t, St)dW (t), t ∈ [0, T ]

S0 = η ∈M2, t ∈ [−r, 0]
(4.1)

See (2.2) with d = 1 and m = 1. In equation (4.1) the functionals µ, σ : [0, T ]×M2 → R are
such that S(·)µ(·, S·) and S(·)σ(·, S·) satisfy (D). We still denote by Xs

t (η, ω) := η(ω)St(ω)
the stochastic flow associated to equation (4.1).

Note that if r = 0, no memory is included and we recover an SDE for which the Black-
Scholes model is a particular case. Moreover, (4.1) with r > 0 includes the models with
memory as presented by G. Stoica in [24], where he uses a model with delay by choosing
µ and σ functions of S(t − r). Also the cases studied in M. Arriojas, Y. Hu, S-E A.
Mohammed and G. Pap, see [1] and [2], are covered by (4.1). Note that [2] presents a
more general model than the one in [1] by taking µ(t, St) = 1

S(t)
f(t, St) for some functional

f , and σ an evaluation at some point in the past. And again (4.1) generalizes the model
in [5] where M-H Chang and R. K. Youree compute the price of a European option for a
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model with distributed delays, that is, taking µ(t, St) =
∫ 0

−r S(t+ u)dνµ(u) and σ(t, St) =∫ 0

−r S(t+ u)dνσ(u) for some measures νµ and νσ.
The model given in (4.1) under hypotheses (D) admits a unique strong solution

S(t) = ηS(t) =

{
η(0) +

∫ t
0
S(u)µ(u, Su)du+

∫ t
0
S(u)σ(u, Su)dW (u), t ∈ [0, T ]

η(t), t ∈ [−r, 0].

Recall that for all t ∈ [0, T ] the function (t, ω) 7→ St(ω, ·), ω ∈ Ω, is Ft-measurable and µ
and σ are jointly continuous deterministic functionals. Hence, the integrals are well-defined
with (Ft)t∈[0,T ]-adapted integrands and thus S(t) is a semimartingale.

In this context, we can not say much about the distributions of S(t) for a given t ∈ [0, T ],
but, assuming that St is known at time t ∈ [0, T ], we know that the conditional distributions

of S(t)
S(0)
|St satisfy

S(t)

S(0)

∣∣St ∼ logN

(∫ t

0

µ(u, Su)du,

∫ t

0

σ2(u, Su)du

)
.

On the other side, if we assume that the coefficients µ and σ are regular enough, namely
that they admit an integral-type expression, with possibly delay, like


µ(t, St) = µ(0, η) +

∫ t
0
µ1(u, S(u), S(u− r))du+

∫ t
0
µ2(u, S(u), S(u− r))dWµ(u),

σ(t, St) = σ(0, η) +
∫ t

0
σ1(u, S(u), S(u− r))du+

∫ t
0
σ2(u, S(u), S(u− r))dWσ(u),

S(t) = η(t), t ∈ [−r, 0].

(4.2)

where the random processes Wµ, Wσ may or may not be independent of W . Exploiting
the integral representation (4.2) for the coefficients µ and σ we can solve equation (4.1) as
follows: for t ∈ [0, r] we have that S(t− r) = η(t− r), which is known. So, the expressions
in (4.2) for µ and σ have no longer delay, namely
µ(t, St) = µ(0, η) +

∫ t
0
µ1(u, S(u), η(u− r))du+

∫ t
0
µ2(u, S(u), η(u− r))dWµ(u), t ∈ [0, r],

σ(t, St) = σ(0, η) +
∫ t

0
σ1(u, S(u), η(u− r))du+

∫ t
0
σ2(u, S(u), η(u− r))dWσ(u), t ∈ [0, r],

S(t) = η(t), t ∈ [−r, 0].

and therefore equation (4.1) becomes an ordinary SDE which can be solved for t ∈ [0, r].
Denote S1(t) the solution related to the interval [0, r], then we can move to t ∈ [r, 2r]
using the same arguments, and so on. Thus the solution is the concatenation of all piece
solutions

S(t) =
∞∑
k=0

Sk(t)1[(k−1)r,kr∧T ](t).

Observe that price dynamics of type (4.1) are stochastic volatility models.
Given the model (4.1) we now proceed to obtain a pricing formula for price derivatives

on the underlying price process S. First of all, we deal with the risk-neutral evaluation of
such derivatives. In a second stage we will consider the benchmark approach.
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4.2. Risk-neutral pricing and the delta. Let us consider the market model described
above. The following version of Girsanov’s theorem provides us with the existence of an
equivalent martingale measure (or risk-neutral measure) Q, that is, a probability measure

Q equivalent to P under which the process S(t)
B(t)

is a Q-martingale.

Theorem 4.1 (Girsanov). Let WQη(t), t ∈ [0, T ] be an Itô process of the form

dWQη(t) = θd(t,
ηSt)dt+ dW (t),

where

θd(t,
ηSt) :=

µ(t, ηSt)− κ(t)

σ(t, ηSt)
,(4.3)

also known as the market price of risk. Put

ηM(t) := exp

{
−
∫ t

0

θd(u,
ηSu)dW (u)− 1

2

∫ t

0

θ2
d(u,

ηSu)du

}
.

Assume that ηM(t), t ∈ [0, T ] is a martingale with respect to (Ft)t∈[0,T ] and P . Define the
measure

dQη = ηM(T )dP.

Then Qη is a probability measure on FT and WQη(t) is a Brownian motion with respect to
Qη.

By applying Theorem 4.1 we obtain a unique risk-neutral measure Qη. Observe that this
market is complete. Moreover, notice that in the memory setting, the risk-neutral measure
depends on the past values of S and hence on η ∈M2.

Let us consider now a (path dependent) option depending on ST ∈ L2(Ω,M2). The
payoff Φ(ST ), is given by Φ : M2 → R+ such that Φ(ηST ) ∈ L2(Ω). An option like this one
depends on the last portion of the price process, that is, on the values of S(t) for every
t ∈ [T−r, T ]. Therefore, we will refer to such an option as a European option with memory.

At time t = 0, we can define the price operator pRN of such an option under the risk
neutral measure Qη as a functional of the initial process η ∈ M2. We denote by EQη the
expectation taken with respect to the measure Qη. Then

(4.4)
pRN : M2 −→ R+

η 7−→ pRN(η) :=
1

B(T )
EQη [Φ(ηST )].

As presented in Section 3, the delta operator is then:

(4.5)
∆(η) := DpRN(η) : M2 −→ R

ψ 7−→ DpRN(η)(ψ) :=
1

B(T )

(
DEQη [Φ(ηST )]

)
(ψ).

Observe that the risk-neutral measure depends on η ∈M2. In other words,(
DEQη [Φ(ηST )]

)
(ψ) =

(
DE[ηM(T )Φ(ηST )]

)
(ψ).
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By Theorem 3.1 we can compute the derivative with respect to η. In general, the product
rule for Fréchet derivatives of operators taking values on Banach spaces does not necessarily
hold but in our case it does since all operators have range in R and the usual product rule
holds.

Recall that θd(t,
ηSt) = µ(t,ηSt)−κ(t)

σ(t,ηSt)
and that, by assumption µ(t, x(ω)) and σ(t, x(ω))

are Fréchet differentiable with respect to x(ω) ∈ M2. Thus, ω-wise, by Theorem 3.1 and
Lemma ?? we obtain

(4.6) DpRN(η)(ψ) =
1

B(T )
EQη [Φ(ηST )w̃∆(η)(ψ)],

where the weight w̃∆(η) is given by:

w̃∆(η)(ψ) := D log ηM(T )(ψ) + ηM(T )w∆(η)(ψ)(4.7)

= −
∫ T

0

θd(t,
ηSt)Dθd(t,

ηSt)(ψ)dt−
∫ T

0

θd(t,
ηSt)Dθd(t,

ηSt)(ψ)dW (t)

+ ηM(T )w∆(η)(ψ)

= −
∫ T

0

θd(t,
ηSt)

σ(t, ηSt)
[Dµ(t, ηSt)− θd(t, ηSt)Dσ(t, ηSt)] ◦DX0

t (η)dt

−
∫ T

0

[
Dµ(t, ηSt)− θd(t, ηSt)Dσ(t, ηSt)

σ(t, ηSt)

]
◦DX0

t (η)dW (t).

+ ηM(T )w∆(η)(ψ)

and, as before,

w∆(η)(ψ) =

∫ T

0

a(s)(σ(s, ηSs)X
0
s (η))−1ρ0 ◦DX0

s (η)(ψ)dW (s).(4.8)

4.3. Benchmark approach to pricing. Hereafter, we retrieve the benchmark approach
for the market model introduced before. We refer to [21], [19], [3] and [6] for an overview on
the pricing of options in this approach. Here we summarize by saying that the foundation
is in the existence of a suitable strictly positive portfolio defined through the following
property: the market price processes expressed in units of this portfolio are P -martingales.
For this reason this portfolio is generally known as P -numéraire portfolio. This property
leads to martingale-type properties for processes linked to the market so that one can
easily work under the real world measure. We provide here the so-called real world pricing
formula, i.e. an alternative pricing formula written as the expectation under P of the
option payoff expressed in units of the P -numéraire. Before proceeding we point out that
the P -numéraire portfolio can be characterized as the growth optimal portfolio, see [20] or
[21], i.e. as the solution to the optimization problem with log-utility.

Following this argument, let us consider a strategy π = {π(t) = (π0(t), π(t))}, where
π0(t) and π(t) denote the portions of wealth invested in the bond B and in S respectively.
Hence, π0(t) + π(t) = 1, P -a.s. for all t ∈ [0, T ]. Let V π denote value process associated
to the strategy π, with a fixed initial value at time t = 0, V π(0) = x.
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We derive now the growth optimal portfolio which we denote by G(t, ω), t ∈ [0, T ], ω ∈ Ω,
by using the approach proposed in [21]. We wish to find a strictly positive and self-financing
portfolio π∗, such that, the value associated to this portfolio is the one satisfying

V π∗(T ) = sup
π∈A

E[log V π(T )]

where A denotes the set of all strictly positive and self-financing portfolios. So, G := V π∗ .
The SFDE for the value process becomes,

dV (t)
V (t)

= [κ(t) + (µ(t, St)− κ(t))π(t, St)]dt+ σ(t, St)π(t, St)dW (t), t ∈ [0, T ]
dS(t)
S(t)

= µ(t, St)dt+ σ(t, St)dW (t), t ∈ [0, T ]

V (0) = x, S0 = η ∈M2 t ∈ [−r, 0]

(4.9)

which can be seen as a two-dimensional SFDE for Y = (V, S). The fraction π depends also
on the past of S(t). Nevertheless, we stress that the M2-valued random variable St(·) is
known at time t. The process V is a semimartingale, with quadratic variation

[V, V ](t) =

∫ t

0

V (u)2σ2(u, Su)π
2(u, Su)du.

Applying Itô formula to log V (t) we get,

d log V (t) =

[
κ(t) + (µ(t, St)− κ(t))π(t, St)−

1

2
σ2(t, St)π

2(t, St)

]
dt+σ(t, St)π(t, St)dW (t).

By integrating and applying expectation, we get rid of the Brownian part. So we remain
with a Lebesgue-type integral with integrand,

gπ(t, St) := κ(t) + (µ(t, St)− κ(t))π(t, St)−
1

2
σ2(t, St)π

2(t, St).

For all t ∈ [0, T ] and given St, we have that the concave random variable gπ attains its
maximum at

π∗(t, St) =
µ(t, St)− κ(t)

σ2(t, St)
.

Recall (4.3), then the SFDE for the growth optimal portfolio is obtained as the solution
to, 

dG(t)
G(t)

= [κ(t) + θ2
d(t, St)]dt+ θd(t, St)dW (t), t ∈ [0, T ]

dS(t)
S(t)

= µ(t, St)dt+ σ(t, St)dW (t), t ∈ [0, T ]

G(0) = 1, S0 = η ∈M2, t ∈ [−r, 0].

(4.10)

Note that G = ηG depends on η. For completeness, hereafter, we show that the bench-
marked price S

G
is a P -martingale. First, we derive the expression for d 1

G(t)
using Itô

formula:

d
1

G(t)
=
−1

G(t)2
dG(t) +

1

G(t)3
d[G,G](t) = − 1

G(t)
[κ(t)dt+ θd(t, St)dW (t)] .
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Then, we compute d S(t)
G(t)

again using Itô formula and the expression for d 1
G(t)

:

d
S(t)

G(t)
= S(t)d

1

G(t)
+

1

G(t)
dS(t) + d

[
S,

1

G

]
(t) =

S(t)

G(t)
[σ(t, St)− θd(t, St)]dW (t).

with initial condition S(0)
G(0)

= S(0) = η(0). We see that the benchmarked underlying security

S is driftless, one can easily check that S
G

lies in L2([0, T ]×Ω) which implies that the process
S(t)
G(t)

, t ∈ [0, T ] is a P -martingale.

Consider the European option with memory Φ(ηST ) ∈ L2(Ω) and the value of its hedging
portfolio V (t, ω), t ∈ [0, T ], ω ∈ Ω with V (T ) = Φ(ST ). As motivation for the concept of
fair portfolio we review the following argument which shows that the benchmarked value
process is driftless. Indeed, by the Itô formula, we have

d
V (t)

G(t)
=

(
∂V

∂t
(t, S(t)) + µ(t, St)S(t)

∂V

∂S
(t, S(t))

+
1

2
σ2(t, St)S(t)2∂

2V

∂S2
(t, S(t))− κ(t)V (t, S(t))− S(t)σ(t, St)θd(t, St)

∂V

∂S
(t, S(t))

)
dt

+

(
S(t)

G(t)
σ(t, St)

∂V

∂S
(t, S(t))− V (t)

G(t)
θd(t, St)

)
dW (t).

Observe that, µ(t, St) − σ(t, St)θd(t, St) = κ(t), and the value of the hedging portfolio
satisfies the Black-Scholes PDE. Hence the drift vanishes and

d
V (t)

G(t)
=

(
S(t)

G(t)
σ(t, St)

∂V

∂S
(t, S(t))− V (t)

G(t)
θd(t, St)

)
dW (t).(4.11)

Refer to [21] for the following concept.

Definition 4.2 (Fair portfolio). A portfolio value process V (t), t ∈ [0, T ], is fair if its

benchmarked value process V (t)
G(t)

, t ∈ [0, T ], is an (Ft)t∈[0,T ]-martingale under the real world

measure P .

Under our model assumptions, the volatility term belongs to L2([0, T ] × Ω) and V (t)
G(t)

,

t ∈ [0, T ] is then a P -martingale. So, from now on, all hedging portfolios are assumed to
be fair.

The price pB(t), under the benchmark approach, of a European option with memory
Φ(ηST ) at time t ∈ [0, T ] is the value of the fair replicating portfolio

p(t) := ηV (t) = ηG(t)E

[
ηV (T )
ηG(T )

|Ft
]

= ηG(t)E

[
Φ(ηST )
ηG(T )

|Ft
]
.

There are several approaches on how to compute this price. One would be to use the
Feynman-Kac formula in the delay setting studied by F. Yang and S-E. A. Mohammed in
[25] under the assumption that Φ ∈ C2

2(M2). We know, on the other hand, that the process
St, t ∈ [0, T ] is Markovian, so we could use the following approach when the option only
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depends on its past. Define for every 0 6 t 6 T ,

u(t, T, η) := E [H(ηST ,
ηG(T ))| ηSt]

for a real valued and positive function such that E|H(ηST ,
ηG(T ))| < +∞ defined as

H(x, y) := Φ(x)
y

. The Markovianity of ηSt allows us to write the price as,

pB(t)
ηG(t)

= u(t, T, ηSt) = E

[
Φ(

ηStST )
ηG(T )

]
.

4.4. The delta in the benchmark approach. As before, we consider a European op-
tion Φ(ηST ) ∈ L2(Ω,R+). Note here that we need the assumption on Φ being Fréchet
differentiable with bounded derivative to carry out our computations but that the final
expression in independent of Φ′ and can be relaxed as we did in Section 3. The initial time
price of this option is given by,

(4.12)
pB : M2 −→ R+

η 7−→ pB(η) = E

[
Φ(ηST )
ηG(T )

]
.

The Fréchet derivative at the point η is an operator,

DpB(η) : M2
//// R+

ψ //// DE
[

Φ(ηST )
ηG(T )

]
(ψ)

By virtue of Theorem 3.1 we may compute the delta by first computing the ω-wise Fréchet

derivative of Φ(ηST (ω))
ηG(T,ω)

with the difference that now ηG depends on η. Thus

D
Φ(ηST )
ηG(T )

=
Φ′(ηST ) ◦DηST

ηG(T )− Φ(ηS(T ))DηG(T )
ηG(T )2

(4.13)

=
Φ′(ηST ) ◦DηST

ηG(T )︸ ︷︷ ︸
(I)

− Φ(ηST )D log ηG(T )
ηG(T )︸ ︷︷ ︸

(II)

.

For a more accurate expression we proceed similarly as in (4.7) to obtain (II) and for the
term (I) we apply Theorem 2.5 and the method used in Section 4. Finally,

Dp(η) = E
[
Φ(ηST )w∆(η)

]
,(4.14)

where,

w∆(η) = δ

(
a(·) (σ(·, ηS·)X0

· (η))
−1
ρ0 ◦DX0

· (η)
ηG(T )

)
− D log ηG(T )

ηG(T )
∈ L(M2,R+).(4.15)

Here, the integral is a genuine Skorokhod integral. Once, again, if the option depends also
on ηST , we apply the chain rule as mentioned in Section 4.
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We use the classical Black-Scholes model (with no delay) to illustrate that this covers the
case where the market has no delay, then we also use as example both the model proposed
by U. Küchler and E. Platen in [14] and Arriojas, Hu, Mohammed and Pap in [1].

Example 4.3 (Black-Scholes model). We choose the functionals f and g to be evaluations
at zero followed by a multiplication by µ and σ respectively, and B(t) = eκt, so that we get,{

dS(t) = µS(t)dt+ σS(t)dW (t), t ∈ [0, T ]

S(t) = η(t), t ∈ [−r, 0].
(4.16)

Observe that the initial condition is just relevant at the point t = 0. Equation (4.16)
satisfies trivially hypotheses (D) so we have existence of a stochastic flow Xs

t (η, ω) =
η(ω)Sst (ω). Then, the Fréchet derivative of X0

s at a point η given ω ∈ Ω is an operator
defined as follows,

DX0
s (η) : M2

//// M2

ψ //// DX0
s (η)(ψ) := ψαs

where ψαs is the segment of a process α ∈ L2(Ω,M2([−r, T ],R)) solution a linear SFDE
with coefficients the Fréchet derivatives of f and g. Namely

ψα(s) =

{
ψ(0) + µ

∫ s
0
Df(u,X0

u(η))(αu)du+ σ
∫ s

0
Dg(u,X0

u(η))(αu)dW (u), s ∈ [0, T ]

ψ(s), s ∈ [−r, 0]

which in this case are evaluations at 0. So

ψα(s) =

{
ψ(0) + µ

∫ s
0
α(u)du+ σ

∫ s
0
α(u)dW (u), s ∈ [0, T ]

ψ(s), s ∈ [−r, 0].

Hence,
ψα(s) = ψ(0)e(µ− 1

2
σ2)s+σW (s).

Then, we apply formula (3.8) and choose, for simplicity, the scalar function a to be a ≡ 1
T

.
So

DpRN(η)(ψ) = E

[
Φ( ηST )

ψ(0)

η(0)σT
W (T )

]
.

Finally, we can also consider

∆ = |||DpRN(η)||| = sup
ψ∈M2

‖ψ‖=1

|DpRN(η)(ψ)| =
∣∣∣∣E [Φ(ηST )

W (T )

η(0)σT

]∣∣∣∣ ,
modulus the measure under which the expectation is taken.

In reality, the price in the risk-neutral approach is computed under the risk-neutral mea-
sure and the numéraire used is the process B(t), t ∈ [0, T ]. If we wished to compute the
∆ magnitude under the real world measure P , we should do it using G(t), t ∈ [0, T ] as
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numéraire. Note that G depends also on the initial condition. In this easy example we

have, G(t) = e(κ+ θ2

2
)t+θW (t) where θ = µ−κ

σ
. So,

DpB(η)(ψ)E
[
Φ(ηST )w∆(η)(ψ)

]
,

where

w∆(η)(ψ) = δ

(
ψ(0)

Tη(0)σG(T )

)
=

1

G(T )
δ

(
ψ(0)

Tη(0)σ

)
− ψ(0)

Tη(0)σ

∫ T

0

Ds
1

G(T )
ds.

Here we used the integration by parts formula for the Skorokhod integral, see for instance
Theorem 3.15 in [8]. Moreover, Ds 1

G(t)
= 1

G(t)
Ds log 1

G(t)
= − 1

G(T )
θ for all s ∈ [0, T ]. So,

w∆(η)(ψ) =
1

G(T )

ψ(0)

Tη(0)σ
(W (T ) + θT ) .

Finally,

∆ = sup
ψ∈M2

‖ψ‖=1

|DpB(η)(ψ)| =
∣∣∣∣E [ 1

G(T )

Φ(ηST )

Tη(0)σ
(W (T ) + θT )

]∣∣∣∣ =

∣∣∣∣EQη [ Φ(ηST )

B(T )Tη(0)σ
WQη(T )

]∣∣∣∣ .
As we can see, the expression is in concordance with the one usually used under the prob-

ability dQ/dP = B(T )
G(T )

= M(T ).

Example 4.4 (Küchler-Platen model). We consider the market model with delay intro-
duced by U. Küchler and E. Platen in [14]. The authors study the random cyclical fluctua-
tions in commodity prices and propose an explanation and a model involving the presence
of time delay. The model for the price process is explicitly written as

S(t) = α1 exp {α2Y (t) + α3t} , t ∈ [0, T ]

where α1, α2 and α3 are parameters that can be estimated from market observations and
explain economical aspects. Then the process Y (t), t ∈ [0, T ] is governed by the following
stochastic differential delay equation

dY (t) =

{
−µY (t− r)dt+ σdW (t), t ∈ [0, T ]

η(t), t ∈ [−r, 0].
(4.17)

Consequently, the price process is

S(t) = α1 exp

{
α2

(
η(0)− µ

∫ t

0

Y (u− r)du+ σW (t)

)
+ α3t

}
, t ∈ [0, T ].(4.18)

Using Itô’s formula we see that S(t) satisfies

dS(t)

S(t)
= µ̃(t)dt+ σ̃(t)dW (t)(4.19)

where

µ̃(t) := −C1Y (t− r) + C2, σ̃(t) = C3
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and

C1 := α1α2µ, C2 := α1α3 +
1

2
α2

2σ
2, C3 := α1α2σ.

Equation (4.19) depends on some external process Y (t) in a non-Markovian manner, so S
depends indeed on {η(t), t ∈ [−r, 0]}.

Let then Φ(ηST ) be a European option with memory. The price of such option in the
benchmark setting is given by

pB(η) = E

[
Φ(ηST )
ηG(T )

]
.

The delta operator is

(4.20) DpB(η) = E[Φ(ηST )w∆(η)],

with weight

w∆(η) =
1

C3

∫ T

0

a(s)ρ0 ◦DX0
s (η)

ηG(T )X0
s (η)

δW (s)− DηG(T )
ηG(T )

,(4.21)

where X here represents the flow of S. Then the Fréchet derivative of η 7→ ρ0 (ηX0
s ) is

Dρ0

(
X0
s (η)

)
= X0

s (η)α2

[
ρ0 − µ

∫ s

0

DηY (u− r)du
]
.

For a close expression, we assume that t ∈ [0, r], then Y (t− r) = η(t− r) and so DηY (t−
r) = ρt−r. For an arbitrary t ∈ [0, T ] one may use an iteration argument for solving Y
explicitly piecewise. Finally, an expression, under the benchmark approach, for DpB(η) is

DpB(η) = E
[
Φ(ηST )w∆(η)

]
(4.22)

with

w∆(η) =
α2

C3

∫ T

0

a(s)
ηG(T )

[
ρ0 − µ

∫ s

0

ρu−rdu

]
δW (s)− DηG(T )

ηG(T )
.(4.23)

The derivative of θd(t,
η St) is given by

Dθd(t,
η St) =

1

C3

ρt−r ◦DX0
t (η).

So
DηG(T )
ηG(T )

=
1

C3

∫ T

0

θd(t,
η St)ρt−r ◦DX0

t (η)dt+
1

C3

∫ T

0

ρt−r ◦DX0
t (η)dW (t).

Example 4.5 (Arriojas, Hu, Mohammed and Pap model). Consider now a slightly sim-
plified version of the model proposed by authors in [1] with dynamics{

dS(t)
S(t)

= µ(t)S(t− r)dt+ σ(t)dW (t), t ∈ [0, T ]

S0 = η ∈ C([−r, 0],R)
(4.24)

for befitting functions µ, σ : R → [0,∞) such that σ(t) > 0 a.e. t ∈ [0, T ] and η(0) > 0
so that the model is feasible. The above equation is explicitly solvable as explained earlier
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by stepwise construction. For simplicity, consider t ∈ [0, r]. Observe that the volatility
term is free for delay, this is due to the fact that, an SFDE invoving discrete delay in the
stochastic part does not admit a stochastic flow, see [16, p.144] or [17].

Then the price process is given by

S(t) = η(0) exp

{∫ t

0

(
µ(u)η(u− r)− 1

2
σ(u)2

)
du+

∫ t

0

σ(u)dW (u)

}
.(4.25)

As before, denoting by X0
t (η, ω), ω ∈ Ω the flow associated to equation (4.24). We have

DX0
t (η) = X0

t (η)

(
1

η(0)
ρ0 +

∫ t

0

µ(u)ρu−rdu

)
.

Finally, the ∆-sensitivity under the risk-neutral measure is given by formula (4.6)

DpRN(η)(ψ) =
1

B(T )
EQη

[
Φ (ηST ) w̃∆(η)(ψ)

]
w̃∆(η)(ψ) := D log ηM(T )(ψ) + ηM(T )w∆(η)(ψ)(4.26)

and here

w∆(η)(ψ) =

∫ T

0

a(s)

σ(s)

(
1

η(0)
ψ(0) +

∫ s

0

µ(u)ψ(u− r)du
)
dW (s).(4.27)

Appendix A. The Malliavin derivative

In this section we give further details on the Mallivin derivative Dsxt of xt ∈ L2(Ω,M2)
as it appears in Section 2. For convenience we present two approaches which lead to the
same concept. The authors in [22] develop a general Malliavin calculus for random variables
taking values in a particular type of Banach spaces that include a wide class, also Hilbert
spaces. The approach is similar to the one presented in [18]. Here, we exhibit the definition
adapted to the case of a random variable taking values in a Hilbert space, namely M2. Let
(Ω,F , P ) be a probability space, let {W (h), h ∈ H} be an isonormal Gaussian process
with H a Hilbert space, which in our framework will be chosen to be L2([0, T ]). Then,
consider the random variables of the type

F = f(W (h1), . . . ,W (hn))⊗ x, for h1, . . . , hn ∈ H, x ∈M2, f ∈ C∞b (Rn).

It follows that this class of random variables is dense in L2(Ω;M2). Then, we define the
Malliavin derivative DF as the random variable DF : Ω→ L(H,M2) given by

DF =
n∑
i=1

∂if(W (h1), . . . ,W (hn))⊗ (hi ⊗ x)

Moreover, the operator D is closable from L2(Ω,M2) to L2(Ω, L(H,M2)). It turns out that
in fact, the image space L(H,M2) of DF is the space of Hilbert-Schmidt operators from
H to M2 commonly denoted by S2(H,M2), i.e. for each ω ∈ Ω the operator DF (ω) is of
Hilbert-Schimdt type and furthermore it is a known fact that such space is isometrically
isomorphic to H∗ ⊗M2

∼= H ⊗M2.
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On the other hand, we may also give a more explicit representation of DtF when F ∈
L2(Ω,M2). For our interest, F = xt ∈ L2(Ω,M2) a random variable defined as xt : Ω→M2

such that xt(ω, u) := x(ω, t + u) for all u ∈ [−r, 0]. The space M2 has a Hilbert structure
given by the scalar product

〈f, g〉 = f(0)g(0) +

∫ 0

−r
f(u)g(u)du, f, g ∈M2.

So, given ω ∈ Ω we can expand the element xt(ω, ·) by its Fourier series as follows

xt(ω, ·)
M2=

∞∑
k=0

〈xt(ω, ·), ek(·)〉ek(·)

for a given Hilbertian basis {ek}∞k=0 ⊂M2.
Since the above sum converges uniformly thanks to Parseval’s identity, then the Malliavin

derivative of xt at a middle point s ∈ [0, t] is

Dsxt(ω, ·) =
∞∑
k=0

Ds
(
xt(ω, 0)ek(0) +

∫ 0

−r
xt(ω, u)ek(u)du

)
ek(·)

=
∞∑
k=0

(
Dsx(ω, t)ek(0) +

∫ 0

−r
Dsx(ω, t+ u)ek(u)du

)
ek(·)

=
∞∑
k=0

〈Dsxt(ω, ·), ek(·)〉ek(·).

Hence, Dsxt(ω, ·) = {u 7→ Dsx(ω, t + u)} ∈ L2(Ω × [−r, 0],Rd) ∼= L2(Ω,M2) for ev-
ery u ∈ [−r, 0]. As a process in s ∈ [0, T ], we can see Dsxt(ω, ·) as an element in
L2 ([0, T ]× Ω,M2) ∼= L2(Ω;H ⊗ M2) with H = L2([0, T ]) which is consistent with the
approach introduced before.

Next, we give the chain rule for the Malliavin derivative used in Section 2, Theorem 2.5
for the case we are concerned with. See [22], Proposition 3.8 for the general result.

Proposition A.1 (Chain rule of the Malliavin derivative). Let f : M2 → Rd be a
Fréchet differentiable operator with continuous bounded derivative as the one in (2.2). Let
t ∈ [0, T ] be a fixed time and s ∈ [0, t]. If xt ∈ L2(Ω,M2) is Malliavin differentiable then
f(xt) ∈ L2(Ω,Rd) is also Malliavin differentiable with

Dsf(xt) = Df(xt)Dsxt.
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