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The recently discovered HEAT-like repeat (HLR) DNA glycosylase superfamily is widely distributed in all
domains of life. The present bioinformatics and phylogenetic analysis shows that HLR DNA glycosylase
superfamily members in the genus Bacillus form three subfamilies: AIkC, AlkD and AIKF/AIKG. The crystal
structure of AIKF shows structural similarity with the DNA glycosylases AlkC and AlkD, however neither
AIKF nor AIKG display any DNA glycosylase activity. Instead, both proteins have affinity to branched DNA
structures such as three-way and Holliday junctions. A unique B-hairpin in the AIKF/AIKG subfamily is
most likely inserted into the DNA major groove, and could be a structural determinant regulating DNA
substrate affinity. We conclude that AIKF and AIkG represent a new family of HLR proteins with affinity
for branched DNA structures.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

Genomic DNA is constantly modified by chemical agents and
physical processes of endogenous or exogenous origin, including
reactive metabolites, environmental toxins and ionizing radiation
(Lindahl, 1993). To withstand the harmful effects of these sources
of potential mutagenesis or genomic instability, several DNA repair
pathways have evolved (Friedberg et al., 2006). Base excision re-
pair (BER) is the main cellular pathway for correcting non-bulky
DNA base lesions. The BER pathway is initiated by a DNA glycosy-
lase that recognizes and excises the damaged base by cleavage of
the N-glycosylic bond between the 2’-deoxyribose and the base.
The DNA glycosylases can be divided into five different structural
superfamilies (Berti and McCann, 2006; Stivers and Jiang, 2003;
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Dalhus et al., 2009). Recently, Bacillus cereus AIkC and AlkD were
shown to belong to the fifth structural superfamily of DNA glycosy-
lases (Alseth et al., 2006; Dalhus et al., 2007). The enzymes within
this superfamily are built entirely from o-helices in a solenoid-
like-superhelix fold similar to ARM- and HEAT-repeat-containing
proteins and has been termed the HEAT-like repeat (HLR) DNA gly-
cosylase superfamily (Dalhus et al., 2007, 2009). The enzymes within
this family was shown to display specific activities towards N3- and
N7-alkylpurines (Alseth et al., 2006). So far, B. cereus AIKD is the only
HLR DNA glycosylase with a thoroughly investigated 3D structure,
first determined by homology modeling (Dalhus et al., 2007), and
later confirmed experimentally by X-ray crystallography (Rubinson
et al., 2008). The structure of AlIkD has also been solved in complex
with DNA, demonstrating a novel lesion capture mechanism, appar-
ently not involving base flipping (Rubinson et al., 2010).

Here we present a clustering analysis suggesting that the newly
discovered HLR DNA glycosylase superfamily can be categorized
into three subfamilies: AIkC, AlkD and AIKF/AIkG. Unexpectedly,
biochemical and genetic analysis demonstrates that AIKF and AIkKG
possess no DNA glycosylase activity. Instead these proteins bind
branched DNA, such as Holliday junctions (HJ) and 3-way junctions
(3W]). A crystal structure of AIkF without DNA and a computer
model of the protein in complex with DNA, suggest a model for
DNA binding which is unique for the AIKF/AIKG family.

1047-8477/$ - see front matter © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jsb.2013.04.007


http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jsb.2013.04.007&domain=pdf
http://dx.doi.org/10.1016/j.jsb.2013.04.007
mailto:magnar.bjoras@rr-research.no
http://dx.doi.org/10.1016/j.jsb.2013.04.007
http://www.sciencedirect.com/science/journal/10478477
http://www.elsevier.com/locate/yjsbi

P.H. Backe et al./Journal of Structural Biology 183 (2013) 66-75 67

2. Material and methods
2.1. PCR amplification, cloning and site-directed mutagenesis

The genes encoding proteins AlKF (BC3264, GenBank accession
NP_833004) and AIkG (BC2926, NP_832674) were amplified by
the polymerase chain reaction (PCR) from B. cereus type strain
ATCC 14579 genomic DNA using standard protocols. Forward and
reverse primers were 5'-ctagctagcatggattttaaaacagttatge-3’ and
5’-cgcggatccttaacaccttacatacttacge-3’, respectively, for  AlkF
(restriction sites Nhel and BamHI are underlined) and 5’-atatc-
catggtccatatgatgttacttgaagaagtaatge-3’ and 5'-cgcggatccttatttcacttt-
ctttttttcage-3’, respectively, for AIKG (restriction sites Ncol and
BamHI are underlined). After amplification, the PCR products were
digested with Nhel/Ncol and BamHI and cloned into the pET28b
vector (Novagen) in-frame with an N-terminal hexahistidine tag
separated from the inserted coding regions by a thrombin protease
cleavage peptide to give pET28b-AIKF and pET28b-AIkG. Site-direc-
ted mutagenesis was performed according to the QuikChange
mutagenesis protocol (Stratagene). The Arg203Ala, Lys206Ala and
Lys207Ala mutations were simultaneously introduced by use of a
single oligonucleotide and a complementary oligo, to give the AlkF
mutant (AIkF mut): 5’-gtatagttgaagtcaaagcggataatgcggegageagt
ttgttaaatg-3'. The mutant constructs were verified by sequencing.

2.2. Protein expression and purification

The pET28b-AIKF/G vectors were transformed into the E. coli
BL21CodonPlus(DE3)-RIL strain (Stratagene) for protein expres-
sion. Cells were grown in LB-medium supplemented with 50 ng/
ml kanamycin at 37 °C until an ODggo of 0.7 was reached and
expression was induced by the addition of isopropyl-s-D-thioga-
lactopyranoside (IPTG) to a final concentration of 0.5 mM. After
an additional 3 h incubation at 37 °C, cells were collected by centri-
fugation at 6000g for 30 min and stored at —20 °C. The thawed cell
pellet was resuspended in 10 mM Tris-HCl pH 8.0, 300 mM Nacl,
10 mM B-mercaptoethanol (B-ME) and 10 mM imidazole buffer,
using 15 ml buffer per liter of cell culture. Cells were sonicated
for 3 x30s at 4°C, followed by centrifugation at 27000g. The
supernatant was loaded onto a Ni-NTA column pre-equilibrated
with the sonication buffer. Bound AIkF, AIKF mut or AlkG was re-
leased from the resin using 10 mM Tris—HCI pH 8.0, 300 mM Na(l,
10 mM B-ME and 300 mM imidazole buffer. Both AIKF, AIKF mut
and AIKG proteins were separated from their His-tags by thrombin
cleavage with concomitant dialysis against 10 mM Tris—HCl pH 8.0,
50 mM NaCl and 10 mM B-ME (buffer A). The AIKF protein was fur-
ther purified by use of a 6 ml Resource S cation exchange column,
with a linear NaCl gradient in buffer A from 50 mM to 1 M NaCl.
Fractions rich in AIKF protein were pooled and dialyzed against
buffer A. The purification of AlkF, AIKF mut and AIKG was com-
pleted by a size exclusion polishing step using a Superdex75 gel fil-
tration column with buffer A as the running buffer. Fractions with
pure protein were pooled and concentrated to 18.5 mg/ml (AIKF),
24.0 mg/ml (AIKF mut) and 12.5 mg/ml (AIKG).

2.3. Crystallization, data collection, structure determination and
refinement of AlkF

AIKF was crystallized by the hanging drop vapor diffusion meth-
od. A 1.0 pl protein droplet was mixed with 1.0 pl of precipitant
solution containing 20% PEG 3350 and 0.15 M ammonium chloride,
and equilibrated against the precipitant reservoir at room temper-
ature. Crystals grew within a few days. The crystals were briefly
soaked in 20% PEG 3350, 0.15M ammonium chloride and 10%
PEG 400 before being flash-frozen in liquid nitrogen and then ex-

Table 1
Crystallographic data collection and refinement statistics.

Data collection and crystal statistics

Beam line BW7A - DESY
Wavelength (A) 1.0000
Temperature (K) 100

Space group P2:2,24

Cell dimensions (A) a=5292,b=87.16, c=112.60

Mosaicity (°) 0.60
Oscillation range (°) 0.25
Resolution (A) 50.00-1.58 (1.64-1.58)"
I/ol 25.97 (3.76)
Total no. of reflections 281308
Unique reflections 72160
Average redundancy 3.90 (3.3)
Completeness (%) 99.6 (98.5)
R-sym’ 0.050 (0.31)
Refinement statistics

No. of reflections in refinement 68454

No. of reflections in test set 3629
Rwork/Rfree (%) ]6~5/20'5
Number of water molecules 662
Number of nonhydrogen atoms 4529

Mean overall atomic B-factor (A?) 21.55

Rms deviation from ideal bond length (A) 0.027

Rms deviation from ideal bond angles (°) 2.263
Ramachandran plot statistics (%)

Residues in

Most favourable region (%) 93.7
Additional allowed region (%) 5.8
Generous allowed region (%) 0.2
Disallowed region (%) 0.2

“ Numbers in parenthesis correspond to the highest resolution bin (1.64-1.58 A).
T Roym = S ill(hkl);— < I(hKI) > | /300355 < 1(hKD); >.

posed to X-rays. Crystallographic data to 1.58 A resolution were
collected at the BW7A Macromolecular Crystallography Beamline
at the DESY synchrotron in Hamburg, Germany. The data was pro-
cessed and scaled with Denzo and Scalepack within the HKL2000
package (Otwinowski and Minor, 1997). Data collection statistics
are summarized in Table 1. The crystal belongs to the primitive
orthorhombic space group P2:2:2;, with unit cell parameters
a=52.92,b=87.16 and c = 112.60 A. The structure was determined
by molecular replacement using MolRep/CCP4 (CCP4, 1994) with
atomic coordinates taken from PDB deposition 1TO6. The structure
was refined to 1.6 A resolution with Refmac5/CCP4 (Murshudov
et al., 1997) interspersed with model building in Coot (Emsley
and Cowtan, 2004). 5% of randomly distributed reflections were
flagged for cross-validation during all steps of the refinement and
not included in the model refinement. Improvement of the model
was confirmed by the steady decrease in both Ry and Reee. The
final model has an Ry and Reee of 0.165 and 0.205 respectively.
The final model contains two protein chains, each with 235 resi-
dues, as well as 662 solvent water molecules with full occupancy.
The refinement statistics are summarized in Table 1. The atomic
coordinates and structure factors have been deposited in the
Protein Data Bank (Accession code: 3ZBO).

2.4. DNA substrates

HPLC purified oligonucleotides were purchased from Eurofins
MWG Operon. The synthetic HJ (X26), was made by combining
the oligonucleotides 1-4 in Table 2 as previously described (Con-
stantinou et al., 2001). The 3W] was made by combining the oligo-
nucleotides 5-7 in Table 2 as previously described (Witte et al.,
2008). The double-stranded (ds) linear non-damaged DNA was
made by combining the oligonucleotides 8 and 9 in Table 2. Radio-
active labelled oligonucleotides were annealed to their respective
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Table 2
Oligonucleotides used in DNA substrates.

The synthetic Holliday junction (X26) was made by combining the oligonucleotides 1-4 as previously described Constantinou et al. (2001)
1: 5'-CCGCTACCAGTGATCACCAATGGATTGCTAGGACATCTTTGCCCACCTGCAGGTTCACCC-3'

2: 5'-TGGGTGAACCTGCAGGTGGGCAAAGATGTCCTAGCAATCCATTGTCTATGACGTCAAGCT-3’

3: 5'-GAGCTTGACGTCATAGACAATGGATTGCTAGGACATCTTTGCCGTCTTGTCAATATCGGC-3'

4: 5'-TGCCGATATTGACAAGACGGCAAAGATGTCCTAGCAATCCATTGGTGATCACTGGTAGCGG-3'

The 3-way junction was made by combining the oligonucleotides 5-7 previously described in Witte et al. (2008)

5: 5" GGATACGTAACAACGCTTATGCATCGCCGCCGCTACATCCCTGAGCTGAC 3’
6: 5 TGTGTTCGATCTCGATCAGAATGACGATGCATAAGCGTTGTTACGTATCC 3’
7: 5" GTCAGCTCAGGGATGTAGCGGCGGAGTCATTCTGATCGAGATCGAACACA 3’,

The ds linear undamaged DNA was made by combining the oligonucleotides 8-9
8: 5'-TACGATCACGGATGATGGGAGTCGACGCAGTGGCCGG 3’
9: 5'-CCGGCCACTGCGTCGACTCCCATCATCCGTGATCGTA 3’

complementary strands by heating the solution to 95 °C for 5 min
and slowly cooling to room temperature. In all substrates, one of
the strands was labeled at the 5’ end prior to the annealing using
[y->?P]ATP and T4 polynucleotide kinase. Labeled substrates were
purified by non-denaturing 10% PAGE.

2.5. Electrophoretic mobility shift assay (EMSA)

To investigate the DNA binding properties of recombinant AIKF,
AIKF mut and AIkG we used HJ, 3W]J and ds linear DNA. Purified
protein was mixed with 32P-labelled substrate DNA (10 fmol) in
reaction buffer (70 mM MOPS (pH 7.5), 1 mM DDT, 1 mM EDTA
and 5% glycerol) to a final volume of 10 pl on ice. After 30 min
incubation on ice, protein-DNA complexes were analyzed by
non-denaturing PAGE using 8% gels in low ionic strength buffer
(taurin) on ice. Gels were analyzed by Phosphorlmager (Typhoon
9419, GE Healthcare).

2.6. Formamidopyrimidine (faPy) and alkyl base (MNU) DNA
glycosylase assays

All enzyme activities were assayed in reaction buffer as above.
Calf thymus DNA containing alkylated bases or faPy was prepared
by treatment with N-[>H]-methyl-N-nitrosourea ([>*H]-MNU)
(1.5 Cimmol ') as described (Alseth et al., 1999; Bjelland et al.,
1993). Briefly, 2.5pug alkylated or faPy containing DNA
(6000 dpm pg 1), was incubated for 30 min at 37 °C with purified
protein (20 pmol) in a total volume of 50 pl. DNA was precipitated
with ethanol and the radioactivity in the supernatant was quanti-
fied in a liquid scintillation counter (Tri-Carb 2900TR, Paxkard).
Purified human 8-oxoguanine DNA glycosylase (hOGG1) and hu-
man alkyladenine DNA glycosylase (AAG) were used as positive
controls in the faPy- and MNU-assay, respectively.

2.7. Assay for enzyme cleavage of DNA oligonucleotides containing
base lesions

Double-stranded DNA oligonucleotides containing single base
damages including 7,8-dihydro-8-oxoguanine, 5-hydroxycytosine,
uracil, ethenoadenine and inosin were generated as previously de-
scribed (Alseth et al., 1999). Briefly, the 5’ end of the damage-con-
taining oligonucleotides were labeled using T4 polynucleotide
kinase and [y->2P]ATP (3000 Ci mmol~!), and annealed to comple-
mentary strands. The labelled DNA substrates (10 fmol) and pro-
teins were incubated at 37 °C for 30 min in a total volume of
10 wl of reaction buffer (same as above). The resulting abasic sites
after base removal were cleaved by adding 100 mM NaOH and
continuing incubation for 20 min at 70 °C. The reactions were
stopped by adding 100 mM HCl and 10 pul DNA loading buffer
(90% formamide, 5 mM EDTA, 0.01% bromophenol blue), followed

by heat denaturation at 80 °C for 3 min and separation of reaction
products on 7 M urea-20% polyacrylamide gels. The radiolabelled
fragments were visualized using a Phosphorlmager (Typhoon
9419).

2.8. Construction of alkF~ and alkG~ knock-out mutants in B. cereus

Markerless single mutants of alkF~ and alkG™ as well as an alkF~
alkG~ double mutant were constructed in B. cereus ATCC 14579
basically as previously described (Arnaud et al., 2004; Janes and
Stibitz, 2006). In short, the method involves cloning of a gene-
replacement fragment containing the fused up- and downstream
regions flanking the gene to be knocked out into a suicide vector.
The gene-replacement fragment for alkF was cloned into a pMAD
vector, modified to contain a I-Scel recognition site, whereas the
gene-replacement fragment for alkG was cloned into pBK]236,
which also contains a I-Scel site. The plasmids pMAD (Arnaud
et al., 2004) and pBKJ236 (Janes and Stibitz, 2006) are shuttle vec-
tors able to replicate in E. coli as well as in B. cereus at a permissive
temperature. The presence of the I-Scel recognition site enables
forced recombination following insertion of the plasmids into the
chromosome and introduction of a plasmid encoding I-Scel into
that mutant. In addition, the pMAD vector contains the bgaB gene
under control of a constitutive promoter that expresses a thermo-
stable B-galactosidase. This enables blue/white screening of mu-
tants carrying the plasmid which facilitates the identification of
clones that has lost the plasmid following recombination. After
transformation, the gene-replacement fragments of the vectors
were recombined into the chromosome of B. cereus. Since autono-
mous replication of pBKJ236 and pMAD is restricted at 37 °C, selec-
tion of recombinants was done on LB plates containing
erythromycin (5 pg/ml) at 37 °C. Recombinants were controlled
by PCR using primers annealing to the chromosome 5’ and 3’ of
the gene-replacement fragment. Correct recombinants were
clean-streaked twice on LB plates supplemented with erythromy-
cin (5 pg/ml). Next, recombinants were spread on LB agar plates
and grown overnight at 37 °C. Resulting colonies were screened
for erythromycin sensitivity on LB agar plates as well as LB agar
plates containing erythromycin (5 pg/ml). Bacteria that had under-
gone the second recombination step were identified as erythromy-
cin sensitive colonies. Screening for markerless mutants was done
by PCR amplification using primers annealing to the chromosome
up- and downstream of the knocked out genes. Deletions muta-
tions were confirmed by sequencing.

2.9. RNA isolation

B. cereus were harvested by diluting the cultures with an equal
volume of ice-cold methanol followed by centrifugation at 4000g
for 5 min at 4 °C. Cells were disrupted by using a Precellys® 24 tis-
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sue homogenizer. RNA isolation was performed using the RNeasy
Mini Kit (Qiagen, Germany) according to the manufacturer’s proto-
col, including the optional on-column DNAse treatment. After elu-
tion, the RNA was treated with Turbo DNAse (Applied Biosystems,
USA) according to the manufacturer’s manual followed by a second
round of purification using the RNeasy Mini Kit. The concentration
and purity of RNA was determined by UV-spectrophotometry and
the integrity of the RNA was controlled by agarose gel
electrophoresis.

2.10. Quantitative RT-PCR

Complementary strand DNA was synthesized from 1 pg of RNA
using the Superscript Il reverse transcriptase (Invitrogen) accord-
ing to the manufacturer’s instructions. The cDNA was diluted 1:5
(1:2500 for the reference gene 16S). 3 pl of diluted cDNA was
mixed with primers (0.5 pM) as well as qPCR&GO™ LC480 green
master mix (MPBiomedicals, USA) to a final volume of 15 pl. Prim-
ers were designed to give an amplicon of approximately 100 bp.
Quantitative PCR was performed with a Roche Lightcycler 480
(Roche Diagnostics GmbH, Germany). The cycling conditions were
95 °C for 1.5 min followed by 45 cycles with the following three
steps: 95 °C for 10's, 58 °C for 10 s and 72 °C for 10 s. The crossing
point (Ct) values were determined by the 2nd derivative maximum
of two technical replicates per biological replicate. Results were
calculated by the AACt approximation. Expression ratios are aver-
ages of at least 2 biological replicates using 16S as the reference
gene for normalization.

2.11. Sporulation assay

Bacteria were grown at 30 °C in LB medium overnight. A precul-
ture was started by diluting the ON-culture 1:100 in fresh LB med-
ium. The preculture was grown at 30 °C until ODggo reached 1.
Bacteria were diluted to an ODggo of 0.01 in 10 ml modified G-med-
ium (MGM) in 100 ml Erlenmeyer flasks. The cultures were supple-
mented with nalidixic acid (NAL) at 0, 10 and 50 pg/ml, and were
grown for 24 h at 30 °C. Samples were taken at regular intervals for
analysis of sporulation efficiency. At each time point two samples
(A and B) were taken from each culture. Sample A was incubated
at 70 °C for 20 min to kill all vegetative cells, leaving only the
heat-resistant spores intact. In the meantime sample B was diluted
in ice-cold water and plated on LB-agar plates. Similarly, following
heat treatment, sample A was diluted in ice-cold water and plated
on LB-agar plates. Sample B gives a measure of the total number of
viable bacteria (cells and spores) present in the sample. Plates were
incubated for 10-12 h at 30 °C before colonies were counted. The
number of colony forming units (CFU) in the spore sample A was
compared to the number of CFU in the viable bacteria sample B.
The resulting ratio designates the sporulation efficiency at a spe-
cific condition. Each experiment was carried out in two biological
replicates, with two technical replicates for each biological repli-
cate. The experiments were repeated twice for the control sample
(0 pg/ml NAL) and at least seven times for the NAL (10 or 50 pig/ml)
stressed cells.

2.12. Sensitivity to genotoxic stress

Single knock out mutants of alkF~ and alkG~ as well as the alkF~
alkG~ double mutant in B. cereus were analyzed for genotoxic
stress using methyl methanesulfonate (MMS), NAL, cisplatin (CP),
hydrogen peroxide, gamma (vy) and ultraviolet (UV) radiation.
Wild-type and mutant cells were grown to reach the exponential
phase in LB-medium at 30 °C. The cells were diluted serially in
MQ water and spotted onto LB plates containing MMS (3.0 mM),
NAL (3.0 uM) or CP (1.3 uM) and incubated at 30 °C overnight.

For hydrogen peroxide, the cells were exposed for 60 min at
600 uM concentration before spotting the cells to the plate. For y
and UV radiation exposure, 250 Gy and 30 ] respectively, the cells
were radiated after spotting the cells onto the LB plates. All exper-
iments were performed in at least three replicates.

2.13. Sequence analysis

In order to identify homologs of the AIkC and AlkD DNA glyco-
sylases that have been characterized earlier (Alseth et al., 2006),
the AIkC and AIKD sequences from B. cereus strain ATCC 14579
(accessions NP_832800 and NP_834586, respectively) were used
as queries for PSI-BLAST searches (Altschul et al., 1997) in the NCBI
Reference Sequence (RefSeq) protein database (Pruitt et al., 2012)
as of September 2012. PSI-BLAST was run with default parameters
and was terminated after five iterations. Both searches gave
approximately 1700 hits (expect values below 0.01) with more
than 95% overlap between the sets. Very short (<180 residues)
and long (>400) sequences were discarded in order to avoid erro-
neously annotated protein fragments or fusion genes resulting in
a total of 1597 sequences. From this set, 244 proteins belonging
to the Bacillus genus, 98 separate strains, were selected for further
analysis.

An all-vs-all sequence comparison was performed using the
SWIPE optimal local sequence alignment search tool (Rognes,
2011). Proteins aligned with expect values not greater than
0.0001 were considered significantly similar. The 244 sequences
were subsequently clustered using a simple single-linkage cluster-
ing algorithm that allows only one sequence from each organism in
the same cluster, in order to place paralogs in separate clusters.
This procedure resulted in three separate networks with seven
clusters. Cytoscape (Smoot et al., 2011) was used to draw protein
network graphs using the force-directed layout with the alignment
score as a parameter.

3. Results

3.1. Sequence searching reveals two new members of the HEAT-like
repeat DNA glycosylase superfamily in B. cereus, AlkF and AlkG

Using PSI-BLAST, 244 homologs (see Supplementary Table S1)
of the AIkC and AIkD proteins within the Bacillus genus were iden-
tified. All pairs of these protein sequences were aligned to each
other and then clustered into seven clusters containing no more
than one protein from each strain. A protein similarity network
graph of the proteins was generated (Fig. 1). The AlkC and AIKD
homologs identified in Bacillus form three separate networks, i.e.
they belong to three protein families. The first network contains
AIkC, the second network contains AIKD, and the third network
contains two previously unstudied proteins from the B. cereus
ATCC 14579 type strain. These new proteins are termed AIKF and
AIKG in order to highlight their evolutionary relationship with AlkC
and AIkD, and because they are built from HEAT-like repeats (see
below), recently suggested to be denoted ALK repeats (Rubinson
and Eichman, 2012). The previously described B. cereus AIKE (Als-
eth et al., 2006) is evolutionary unrelated to the HEAT-like repeat
superfamily.

Some Bacillus strains have an additional AlkF-like protein (Fig. 1,
cyan), while other strains have one or two additional AlkC-like pro-
teins (Fig. 1, light blue and orange). The B. cereus ATCC 14579 type
strain has proteins belonging to four of the clusters, while five of
the Bacillus strains examined had proteins in five different clusters.
No strains examined had more than five. A multiple sequence
alignment of B. cereus ATCC 14579 AIKF and AIKG and a number
of homologs is shown in Supplementary Fig. S1. AIkF and AIKG



70 P.H. Backe et al./Journal of Structural Biology 183 (2013) 66-75

Fig.1. Network graph of the AlkD protein and homologs within the Bacillus genus.
The nodes represent protein sequences, and significant similarities (expect values
<10~*) between them are indicated by lines between the nodes. Nodes are coloured
according to which cluster they belong to. The widths of the lines are proportional
to the alignment score for each protein pair. Proteins that are more similar to each
other will generally be located closer to each other than less similar proteins. Also,
sets of proteins that have many connections to each other will be located closer to
each other than other proteins. The original AIkC and AIkD proteins from Bacillus
cereus characterized earlier (Alseth et al.,, 2006), as well as the AIKF and AIkG
proteins characterized in this work, are indicated with a yellow border. The proteins
form three separate networks, each corresponding to a protein family, where each
network is tightly connected. The network at the top contains the AlkC protein
(YP_002339053) (red) that is most similar to the originally characterized AlkC
protein. This network also contains light blue and orange nodes (paralogs) that are
located at some distance from the red nodes. The middle network contains the AlkD
protein (ZP_03237343) (blue) that is most similar to the first characterized AIkD
protein. All nodes in this network belong to the same cluster. The bottom network
contains the AIkF (NP_833004) (pink) and AIkG (NP_832674) (green) proteins. The
pink and green nodes are clearly separated in the network. There are also some cyan
nodes located in between the pink nodes. Four of the Bacillus strains studied had
proteins belonging to all of these three clusters (pink, green, cyan). A list of strains
and accession numbers for the proteins included in this figure is provided in
Supplementary Table S1.

have a sequence identity of approximately 36% and are clearly in
the same protein family. Pairwise sequence identity between
AIKF/AIKG, AIKC, and AIKD are well below 20% and sequences
belonging to the three separate families cannot be reliably aligned
based on sequences alone (see discussion below).

In total, more than 1500 homologs of the AIKC and AIkD pro-
teins were identified by sequence searching. As previously shown

(Rubinson et al., 2010) proteins belonging to the AIKD family are
found in all three domains of life. Members of the AIkC and AIKF/
AIKG families, however, appear to be rare, if at all present, in Ar-
chaea and Eukaryota. Within the bacterial domain of life, all three
families are wide-spread in Firmicutes, common in Actinobacteria
and Bacteroidetes/Chlorobi, but rare or completely missing in
other phyla such as the Proteobacteria, Chlamydiae and
Cyanobacteria.

3.2. AIKF and AIkG exhibit no DNA glycosylase activity

Since both AIKF and AIKG are remote homologs of the AlkC and
AIkD DNA glycosylases, we examined the abilities of recombinant
AIKF and AIkG to remove alkylated bases from MNU-treated
DNA, or faPy from faPy-containing DNA. The relative amounts of
alkylated methylpurines present in the MNU-treated DNA sub-
strate are 65% 7-methylguanine, 10% 3-methyladenine and 0.7%
3-methylguanine (Bjelland et al, 1993). These experiments
showed that neither AIKF nor AIKG are able to remove alkylated
DNA bases or formapyrimidines (Fig. 2A and B). Further, AIKF and
AIKG showed no DNA glycosylase activity towards other types of
DNA base lesions such as other oxidative DNA base lesions, ethe-
noadenine or deaminated DNA bases (data not shown). It thus ap-
pears that B. cereus AIKF and AIKG are structural, but not functional
homologs of the AlkC and AlkD HEAT-like repeat DNA glycosylases.

3.3. AIkF and AlkG bind Holliday and 3-way junctions DNA with higher
affinity than linear DNA

We used EMSA to study the DNA binding capability of purified
recombinant AIkF and AlkG. Branched DNA such as HJ and 3W]J,
and ds linear undamaged DNA were used as substrates. We ob-
served very weak binding of both AIKF and AIKG to linear duplex
DNA (Fig. 2C), even at the highest concentration. In EMSAs with
HJ and 3W] DNA as substrates, we observed progressively slower
migrating species with increasing concentrations of protein, indi-
cating that the proteins form multimeric complexes with DNA.
These results demonstrate that both AIKF and AIkG bind to H]J
and 3W]J with higher affinity as compared to ds linear DNA. It thus
appears that AIKF and AIKG bind preferentially to branched DNA
structures. Moreover, the triple mutant protein AIkF mut, in which
the three positive residues Arg203, Lys206 and Lys207 within the
B-hairpin have been mutated to alanine, displays significantly
weaker binding towards the H] DNA compared to wild type AlkF
(Fig. 2D).

3.4. alkF~ alkG~ double mutant displays very low sensitivity to
genotoxic stress

To investigate a possible role of alkF and alkG in response to
genotoxic stress, single and double mutants were constructed in
B. cereus and examined for sensitivity towards MMS, NAL, CP,
hydrogen peroxide, and y and UV radiation by survival assays.
The single and double mutants displayed no sensitivity to geno-
toxic stress except for a very weak sensitivity towards MMS and
NAL (Fig. 3), indicating that alkF and alkG are not essential for
DNA repair.

3.5. The structure of AIKF resembles the HEAT-like repeat AlkD DNA
glycosylase

The 3D structure of AIKF was determined by X-ray crystallogra-
phy to 1.58 A resolution (Fig. 4A). The overall structure of AIKF is
similar to that of AIKD (rigid superimposition with Rapido (Mosca
et al., 2008) gives a RMSD of 4.5 A of 172 residues aligned), adopt-
ing a typical HEAT-like repeat fold that comprises 13 o-helices
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Fig.2. Enzymatic activities and DNA binding of AIKF and AIKkG. Alkylbase (A) and faPy (B) DNA glycosylase activity of recombinant AIKF and AlkG. 2.5 pg alkylated or faPy
containing DNA was incubated for 30 min at 37 °C with purified protein (20 pmol) in a total volume of 50 pl. The DNA was ethanol precipitated and the supernatant subjected
to scintillation counting. Purified human OGG1 and human AAG were used as positive controls (Pos Ctrl) in the faPy- and alkylbase DNA glycosylase assay, respectively.
Dilution buffer (25 mM HEPES pH 7.9, 15% glycerol, 1 mM EDTA, 1 mM DTT and 0.1 mg of BSA/ml) was used as negative control (Neg Ctrl). A three-parallel experiment was
performed for both substrates. (C) Structure specificity of DNA binding by AIKF and AIKG. Panels i-iii are gel assays showing binding of AIKF and AIKG to the structures
depicted. Binding reactions contained 1 nM of the 32P-labelled substrate and AIKF and AIkG as indicated. The asterisks indicate 32P label at the 5’-end DNA. (D) Binding of AIKF
and AIKF mut to HJ DNA. Binding reactions contained 1 nM of the 3?P-labelled substrate and AIKF and AIKG as indicated. The asterisks indicate 2P label at the 5'-end DNA.

(alA-aM) with one concave and one convex surface (Fig. 4A and B).
The dense packing of the a-helices results in a scoop-shaped over-
all structure containing a wide groove on the concave side of the
protein. Mapping the electrostatic potential onto the molecular
surface of AIKF, reveals that the molecule acts as a dipole, with
the groove/concave side of the protein being positively charged
and the convex side mainly negatively charged, making the protein
overall neutral (Fig. 4D). As for AlkD, 12 of the a-helices pair in an
antiparallel way to form six tandemly repeated o-oi-motifs (atA/aC,
oD/oE, oF/aG, aH/ol, of /oK and aL/oM). However, the C-terminal
region comprising the helices oL and oM, does have some charac-
teristic differences compared to the AIkD structure. A 16 residue
long loop, forming a two-stranded antiparallel B-sheet (B-hairpin),
is inserted between helix oL and oM (Fig. 4A-C). This B-hairpin
seems to be to a certain extent flexible as it displays two different
conformations in the two molecules in the asymmetric unit. Max-
imum movement/distance measured for the B-hairpin when the
two molecules are superimposed is about 8.6 A, see Fig. 4A. Inter-
estingly, this B-hairpin partly covers the shallow cleft at the center

of the concave surface corresponding to the active site of AIkD
(Fig. 4A).

The alignment of AlkD (PDB structure 3BVS (Rubinson et al.,
2008)) and AIKF (this study) by the Dali structural alignment pro-
gram (Holm and Rosenstrom, 2010) (Supplementary Fig. S2A)
clearly demonstrates that the two proteins are in the same struc-
tural superfamily (Z-score = 13), but in two separate protein fami-
lies. The Dali alignment shows that the sequence identity between
full length AIKF and AIKD is approximately 12% (Supplementary
Fig. S2B).

3.6. Molecular modeling of AIKF in complex with DNA

Attempts to co-crystallize AIKF and AlkG with ds DNA and other
DNA substrates have so far been unsuccessful. In order to predict
important residues for the interaction between AIKF and DNA, we
generated a theoretical docking model of a putative AIKF in com-
plex with linear duplex DNA. Atomic coordinates were extracted
from the structure of AIkD in complex with a 12-mer ds DNA con-
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Fig.3. Characterization of sensitivity of B. cereus alkF~ and alkG~ single and double
mutants to genotoxic stress. B. cereus wild type (WT) and mutants were analyzed
for sensitivity against MMS, NAL, CP, hydrogen peroxide, and y- and UV-radiation
with doses as indicated. An aliquot of 10 pL serially diluted mid-log phase cultures
of wild type, alkF~, alkG~ (single mutants) and alkF~ alkG~ (double mutant) were
spotted onto LB plates and incubated at 30 °C overnight.

taining 3-deaza-3-methyladenine (3d3 mA), a structural 3 mA mi-
metic in which the N3 nitrogen is replaced with carbon (PDB struc-
ture 3JX7 (Rubinson et al., 2010)), and superimposed onto the
three-dimensional structure of AIKF. The model (Fig. 5A) suggests
that the DNA backbone interacts with conserved Lys and Arg resi-
dues along the edges of the wide AIKF groove in a similar fashion as
AIKD. Furthermore, in the model, the B-hairpin which is only found

in the AIKF/AIKG family of the HLR DNA glycosylase superfamily, is
inserted into the major groove of the DNA, suggesting it may have
a role as a sensor/anchoring point. Interestingly, within this loop
there are four positively charged amino acids, of which three
(Arg203, Lys206 and Lys207) are directed towards the DNA back-
bone (Fig. 5B).

3.7. Expression of alkF but not alkG is increased upon entry into
stationary phase

Analysis of the growth of B. cereus ATCC 14579 and its isogenic
alkF~ alkG~ double mutant showed that the double mutant grow
similarly to the wild type in LB medium at 30 °C (Fig. 6A), indicat-
ing that AIKF and AIKG are not essential for maintaining normal
growth in rich medium. To determine the gene expression level
of alkF and alkG under optimal growth conditions, qRT-PCR analy-
sis was carried out at regular intervals of growth in LB medium at
30 °C (Fig. 6B). This experiment indicates that alkF, but not alkG
expression, is increasing upon entry into stationary phase of
growth. Moreover, the absolute expression level of alkG in expo-
nential phase is approximately 1% as compared to that of alkF (data
not shown), suggesting that AIKF may have a specialized function
not required under normal physiology.

3.8. alkF and alkG are not essential to the sporulation process

Two recent reports demonstrated that the DisA (DNA integrity
scanning protein) controls a Bacillus subtilis sporulation checkpoint
in response to DNA damage by binding branched DNA structures
such as HJ (Bejerano-Sagie et al., 2006; Witte et al., 2008). In order
to examine if alkG or alkF are involved in the sporulation process,
experiments analyzing the sporulation efficiency of the B. cereus
ATCC 14579 (wild type) and the isogenic alkG™ alkF~ double mu-
tant were conducted. The bacteria were grown in MGM medium
at 30 °C and samples were taken for analysis at regular intervals.
The samples were analyzed by microscopic examination as well

B-hairpin

Fig.4. Structural characteristics of AIKF. (A) Cartoon representation of the overall fold and tertiary structure of B. cereus AIKF. The figure shows a structural superposition of the
two molecules in the asymmetric unit. (B) Superposition of AIKF (blue) and AIkD (grey). Structural superposition was done using RAPIDO (Mosca et al., 2008). (C) sA-weighted
composite omit map at 1.0 s calculated using the CCP4 software (CCP4, 1994) showing the B-hairpin between helix oL and oM. (D) Electrostatic potential (—7 to + 7 kT/e) of
AIKF mapped onto the solvent-accessible protein surface (blue indicates positive regions; red indicates negative regions). Electrostatic potential was calculated using APBS
(Baker et al., 2001). All panels were prepared with PyMOL <http://pymol.org>. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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Fig.5. Proposed AIKF-DNA complex. (A) Theoretical model of AIKF in complex with
double stranded DNA, illustrating possible, but weak, binding of DNA in the
positively charged groove and how the B-hairpin (in blue) might be inserted in the
major groove of the DNA double helix. (B) The theoretical model shows that three of
the four positively charged amino acids (Arg203, Lys206 and Lys207) in the
B-hairpin are directed towards the DNA backbone. DNA coordinates was extracted
from PDB entry 3JX7 (Rubinson et al., 2010) and superimposed onto the three
dimensional structure of AIKF using RAPIDO (Mosca et al., 2008).

as by comparing the number of colony forming units after heat
treatment (70 °C for 20 min) with the total number of viable cells
in a sample. The results showed no difference in sporulation be-
tween the wild type and the alkG™ alkF~ double mutant. Both
strains start to sporulate after approximately 8 h (starting at
ODggp of 0.01) as determined by the appearance of endospores
and the occurrence of a heat resistant sub-population of bacteria.
After 24 h incubation in the precense of NAL (10 pg/ml), the ratio

-
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—&—Double mutant

Absorbance (600 nm) >

400
Time (min)

0 200 600

of heat resistant to viable cells was 79.5%+18.6% and
76.8% +9.6% for the wild type and alkF~ alkG~ double mutant
respectively. It should be noted that in the presence of NAL, the
absolute number of heat resistant as well as viable cells at a given
time point varied between experiments. This may be explained by
the microscopic examination of the cultures, which revealed a de-
formed filamentous cell morphology/growth pattern. This pheno-
type was similar in both the wild type and the alkF~ alkG~
double mutant. It thus appears that alkF and alkG are not essential
to sporulation.

4. Discussion

We have previously shown that AlkD and AIKkC are single do-
main DNA glycosylases belonging to a new, fifth structural super-
family of DNA glycosylases (Alseth et al., 2006; Dalhus et al., 2007).
It is generally accepted that the 3D structure is more conserved
than sequence in distantly related proteins. Protein domains with
significant sequence similarity, usually better than roughly 30% se-
quence identity, are classified as belonging to the same protein do-
main family. Protein domains that have very low or insignificant
sequence similarity, but still clearly are evolutonary related based
on 3D structure and functional features, are classified in the same
protein domain superfamily. This protein domain classification
scheme is for example employed in the most widely used domain
classification hierarchies, SCOP (Andreeva et al., 2008) and CATH
(Sillitoe et al., 2013), where a major fraction of the domain super-
families comprises several families. AIkD and AIkC have a right-
handed alpha-alpha superhelix fold related in structure to ARM/
HEAT-repeat containing proteins (Andrade et al., 2001; Rubinson
and Eichman, 2012). AlkD and AlkC belong in the same structural
superfamily of proteins, but clearly in separate protein families
due to very low sequence identity, well below 20%. AIKF and AIkG,
here described for the first time, belong in a third unique protein
family, with sequence identity between AIkD and AIKF at roughly
12%. This value is based on a structural alignment of a previously
published AIkD 3D structure and the present AlKF structure (Sup-
plementary Fig. S2B). At this low level of sequence identity, well
below the “twilight zone” (Rost, 1999), it is not possible to make
meaningful alignments of the protein sequences, or derive reliable
phylogenies, based on sequences alone.

Mapping the sequence conservation of the AlkD family proteins
onto the AIKD structure shows a concentrated patch of highly con-
served residues with solvent exposed side-chains in one end of the
wide DNA-binding cleft. We and others have previously shown
that this is the active site region for the AIkD DNA glycosylases
(Dalhus et al., 2007; Rubinson et al., 2008, 2010). Rubinson and
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Fig.6. Bacterial growth and gene expression analysis. (A) Growth of B. cereus ATCC 14579 wild type (diamonds) and the isogenic alkF~ alkG~ double mutant (squares) in LB
medium at 30 °C. Bacteria were diluted 1:100 from a logarithmically growing pre-culture (ODggo ~ 1) which resulted in a starting OD of approximately 0.01. Shown are
averages and standard deviations from two independent experiments. The lines that are perpendicular to the growth curve indicate the boundaries of the logarithmic growth
phase as well as the beginning of the stationary phase. (B) Gene expression analysis of alkF and alkG by qRT-PCR. Averages and standard deviations from three experiments are
shown. The relative expression of alkF and alkG at different ODggg values is normalized to the expression level of each gene respectively, at ODgoo of 0.05. The expression level
of alkG in exponential phase is approximately 1% to that of alkF. 16S RNA was used as a control to normalize the data.



74 P.H. Backe et al./Journal of Structural Biology 183 (2013) 66-75

co-workers (Rubinson et al., 2010) listed 3 catalytic residues and
15 additional residues directly involved in DNA binding and other
DNA interactions in AIkD (Supplementary Fig. S2B). Among these
residues only Thr39 is conserved in AIkF (as residue Thr36).
However, this residue is not conserved in either the AlkD or the
AIKF/AIKG families (See Refs. (Rubinson et al., 2008, 2010) and Sup-
plementary Fig. S1). It may be speculated that AIKF residues Lys40,
Tyr92, Asp96, and Lys219 functionally correspond to the AIkD cat-
alytic and DNA-binding residues Arg43, Trp109, Asp113, and
His220 (Supplementary Fig. S2B). These residues are conserved in
the AIKF/AIKG family, but are not invariant (Supplementary
Fig. S1). In conclusion, few, if any, of the functionally important
residues in AIkD are conserved in AlKF.

Unlike the AIKD family, there is no patch of highly conserved
residues with solvent exposed side-chains on the surface of the
AIKF/AIKG family proteins. Among the 25 invariant residues in
the AIKF/AIKG family (Supplementary Fig. S1), only B. cereus AlKF
Gly33 (Gly36 in AIkD), Ala68 (Ala80), Trp116 (Trp138), and
Ser119 (Ser141) are conserved in B. cereus AlkD. Only Gly33/
Gly36 is invariant in both the AIKF/AIKG and AlkD families (Rubin-
son et al., 2008, 2010), making this residue a candidate as the sin-
gle fully conserved residue in this protein superfamily. More or less
all 25 invariant AIKF/AIKG residues have buried side-chains and
their conservation appears to be important mainly for maintaining
the correct protein fold.

Conserved residues with solvent exposed side chains in the
AIKF/AIKG family appears to be limited to Lys and Arg residues lin-
ing the cleft on the concave side of the proteins. Among these are B.
cereus AIKF residues Lys19, Lys20, Lys40, Lys47, Argl166, Lys219,
and residues 229-231 (Supplementary Figs. S1 and S2). These res-
idues appear to be ideally located for interacting with negatively
charged phosphate groups in bound DNA in a similar fashion as
in AIkD. However, the lack of an obvious patch of highly conserved
residues that could indicate an active site suggests that neither
AIKF nor AIKG are DNA glycosylases. This is supported by the bio-
chemical characterization of AIKF and AIKG, showing no glycosy-
lase activity for a range of DNA lesions, including alkylated,
oxidized and deaminated bases. This is in contrast to AlkC and AlkD
in which the recombinant enzymes excised methylated bases from
DNA substrates containing 7-methylguanine, 3-methyladenine,
and 3-methylguanine lesions (Alseth et al., 2006; Rubinson et al.,
2008, 2010). In addition, the alkF~ alkG~ double mutant bacteria
displayed modest if any sensitivity to genotoxic stress induced
by the DNA damaging agents MMS, NAL, CP and hydrogen perox-
ide, as well as y- and UV-radiation.

AIKF and AIKG both bind preferentially to branched DNA. It is
tempting to speculate whether the proteins may have a function
in other processes than DNA repair, including replication, cell divi-
sion, transcription or nucleoid compaction. Interestingly, the newly
discovered checkpoint protein DisA recognizes branched DNA
structures in prokaryotes (Bejerano-Sagie et al., 2006; Witte
et al.,, 2008). DisA scans the genome of B. subtilis and induces a
sporulation checkpoint in response to chromosomal damage.
Although the alkF~ and alkG~ single and double mutants show no
or very low sensitivity to genotoxic stress or apparent alterations
in sporulation, it is possible that AIKF and AlkG operates as sensory
proteins in signaling a DNA damage response by scanning/moni-
toring the genome for specific DNA structures or lesions. Our
experimental structure of AIKF and the corresponding model of
AIKF binding to DNA show a DNA-protein interface with several
charged residues interacting with the DNA backbone, but no pock-
et for base recognition. In addition, our model of AIKF in complex
with DNA indicates that the B-hairpin, containing positively
charged amino acids and unique to the AIKF/AIKG subfamily, inter-
acts with the major groove of DNA. Indeed, by mutating the three
positive residues Arg203, Lys206 and Lys207 within the B-hairpin

to alanine, we demonstrated a significantly weaker binding mu-
tated AIKF to HJ DNA compared to wild type AIKF protein. Although
this model does not reflect a complex with branched DNA like
three-way or Holliday junction, the B-hairpin may have a role as
a DNA sensor/anchoring point, possibly by binding to specific
structures in DNA without the need for an active site for recogni-
tion of a particular sequence/base signature.
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