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Notation

Ω A subdomain in Rn.

Ω(t) A subdomain in Rn that varies with time t.

∂Ω The boundary of Ω.

Lp(Ω) Legesgue space p.

Cp(Ω) Space of functions which are p times differentiable.

Cp0 (Ω) Space of functions which are p times differentiable with compact support.

u Velocity field. We will not use common bold notation for vector functions as
it will become clear due to the context if a function is vector or not.

n The outward pointing normal of the boundary of a given domain. In the case
of an integral the domain will be the one that is integrated over.

dx We will use x as our variable over integration for all volume integrals, and it
will be assumed that the functions to be integrated are functions of x.

dS We will use dS to denote surface integration.

(u, v)Ω The inner product in L2. Defined as
∫

Ω uv dx for scalars,
∫

Ω u ·v dx for vector
functions and

∫
Ω u : v dx for matrices.

‖u‖L2(Ω) The norm of L2. Defined as
√

(u, u)Ω.

|a| The absolute value of a for a scalar or the Euclidean norm for vectors.

S Averaging operator over time.

W p
k Sobolev space.

H1 The Sobolev space W 2
1 .

CGq Continuous Galerkin space.
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Chapter 1

Introduction

An aneurysm is an acquired abnormal dilation of a blood vessel caused by a
weakness in the vessel wall. Aneurysms in the brain are called intracranial
aneurysms. It is believed that the movement of the blood and the force it
exerts on the wall of the blood vessel plays a key role in aneurysm formation
and progression [5]. The hemodynamic forces splits into forces that act normal
and parallel to the wall. The parallel force is often called wall shear stress
(WSS), and is caused by the friction between the wall and the moving blood.
In Chapter 2 we explain more about the severity of the aneurysm phenomena.

The blood flow in an aneurysm can be calculated using a 3-D description of
the aneurysm and solving the famous Navier-Stokes equations. This require
good 3-D imaging techniques and access to enough computational power both
of which have been achieved these past two decades. These breakthroughs has
encouraged a lot of research into using computational fluid dynamics (CFD)
to investigate aneurysms. Measures for detecting aneurysm formation, growth
or rupture have been studied [3, 12, 17, 22, 27] and the WSS is usually a key
part in these measures. Whether high or low WSS is a cause of growth or
rupture in aneurysms is not known and contradictory results have been made
[20]. Other research have focused on assumptions and variables in the simu-
lation model. The emphasis have mostly been on the effects of assuming rigid
artery walls, modeling blood with constant viscosity (i.e. assuming blood is a
Nwetonian fluid) and various outflow boundary conditions (these assumptions
will be explained in Chapter 3). The implications of using different heart rates
as inflow conditions however have not been studied extensively to our knowl-
edge. One study [11] have examined heart rate changes in two aneurysms.
They explored the nature of vortex formation and stress distribution in the
aneurysm. The conclusion was that the flow became more complex and stress
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8 CHAPTER 1. INTRODUCTION

on the aneurysm rose as the heart rate increased. They did not compare the
changes to other common variables.

We will in this study investigate the difference in blood flow pattern and WSS
between high and low heart rate in aneurysms. Proper orthogonal decomposi-
tion (POD), described in Chapter 5, will be used to quantify the complexity of
the flow. We will investigate these changes in twelve different patient specific
aneurysms. The results we find will be set in context with the changes in
modeling blood with a varying viscosity.

Logically one might assume that an elevated heart rate will enhance the risk of
rupturing an aneurysm, as the blood changes more rapidly and exerts higher
levels of stress on the vessel (even though it has not been shown that high stress
relates to rupture). However, the relationship between heart rate and rupture
is hard to examine as one have to rely on interviewing patients about their
activity before the time of rupture and in many cases it is impossible to gain
that information due to disability or death. Even though the evidence is not
sufficient to draw a definitive conclusion, some studies have shown a positive
correlation between physical exercise and rupture of aneurysms [1, 19].

CFD may one day become a powerful tool used in medicine. Serving as a good
way to decide whether or not to precede with medical treatment, and if so de-
cide on the best available treatment. This is highly relevant for patients with
aneurysms considering the high uncertainty of success that different treat-
ments have. CFD analysis may be able to help assess the risk of rupture
versus the risk of medical treatment. With computers it is possible to run
simulations of different scenarios and find the consequences without risking
complications to the patient.

The power of CFD is that time and space can be discretized to a very high
accuracy. This makes quantities such as stress from the blood easier to obtain
with higher sample rate and accuracy.

We will use a finite element library called FEniCS to implement the compu-
tational models in this thesis. Using highly optimized second hand tools it
solves the matrix equations wrapped in a python interface called Dolfin. This
makes it easy to solve complicated equations, which the Navier-Stokes equa-
tions are, in a highly efficient way. A modified verson of nsbench1 will be used
as our solver which is compatible with FEniCS version 1.2. Source code can
be found at http://folk.uio.no/haakonoo/master/sourcecode/.

1Code can be found at https://launchpad.net/nsbench/.

http://folk.uio.no/haakonoo/master/sourcecode/
https://launchpad.net/nsbench/


Chapter 2

Medical background

An aneurysm is an acquired, abnormal dilation of a blood vessel that is caused
by a weakness in the vessel wall. Aneurysms often look like balloons at-
tached to the vessel. These are called saccular aneurysms. Different kinds of
aneurysms exist, but these are uncommon and will not be discussed in this
thesis. Saccular aneurysms are split into bifurcation aneurysms; where the
aneurysm lies in the division between two branching blood vessels and side-
wall aneurysms, where the aneurysm is placed on one side of the vessel wall.
It is belived that an aneurysm will rupture when the wall tension exceeds the
strength of the wall.

Intracranial aneurysms mostly occur in and around the Circle of Willis (CoW);
a series of arteries coupled together at the base of the brain (see Figure 2.1).
These vessels in the brain course through the subarachnoid space which is an
area located between the skull and the brain. Filled with a liquid it protects
the brain from damage. If an aneurysm rupture, blood will flow into the
subarachnoid space causing subarachnoid haemorrhage (SAH).

The incidence of SAH due to a ruptured aneurysm is about 9 per 100000
people per year [6]. The consequences of a ruptured aneurysm may be fatal.
The mortality and morbidity rates of ruptured aneurysms are 50% and 30%
respectively [4, 26]. Considering that the general mortality rate is about 800
per 100000 per year [9]1, deaths due to ruptured aneurysms is a large portion
of that rate and makes it well worth studying to gain a better understanding
of the overall phenomena.

1The mortality rate varies from country to country. The number given is for the U.S. in
2010
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10 CHAPTER 2. MEDICAL BACKGROUND

Figure 2.1: Illustration the blood vessels in the brain. The Circle of Willis
consists of the following arteries: Anterior cerebral artery (ACA), Anterior
communicating artery (ACOMA), Internal carotid artery (ICA), Posterior
cerebral artery (PCA), Posterior communicating artery (PCOMA), basilar
artery (BA) and Middle cerebral artery (MCA).

Since they rarely experience any form of symptoms patients with aneurysms
are often not aware of their condition. Several studies have been conducted to
find the occurrences of intracranial aneurysms in the general population, with
results ranging from less than 1% to over 10%. Though most studies states
the prevalence within the range of 5% to 7% [21].

The overall causes of aneurysm formation, growth and rupture has yet to be
fully understood. Many factors seem to be relevant and several studies have
been done trying to isolate the different factors and sometimes with contradic-
tory results. The probable cause for the contradictory results is that a single
quantity is not sufficient to determine whether or not an aneurysm will grow
or rupture [5]. However, there are isolated factors that generally have been
confirmed. Females and individuals in the age group 50-55 have a greater risk
of developing aneurysms [21]. Smoking, hypertension and excessive alcohol
intake are modifiable factors that lead to nearly doubling the risk of SAH [26].
Patients with the genetic disease Autosomal Dominant Polycystic Kidney Dis-
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Figure 2.2: Factors that contributes to growth and rupture of aneurysms.
Reprinted from Cebral and Raschi [5].

ease (ADPKD) have been reported to have five times more aneurysms than
the general population [5]. The geometry(size and shape) of an aneurysm may
contribute to the risk of rupture. A study found that if the aneurysm had an
aspect ratio2 higher than 1.6 they where much more likely to rupture [24].
The different factores are illustrated in Figure ??.

2.1 Blood vessels and blood properties

A blood vessel is categorized into three layers. From inner to outer layer they
are [13]:

• Tunica intima, consists of an innermost layer of endothelial cells and
some connective tissue.

• Tunica media, consists of smooth muscle fibers with elastic fibers.

• Tunica adventita, consists of relatively loose connective tissue and nerve
fibers.

2The ratio between the width and the height of a shape
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The thickness of the layers varies throughout the cardiovascular system and
the intracranial vessels generally have a thinner media compared to other
vessels. Between the intima and media it exists an elastic membrane called
the internal elastic lamina. In some parts of the cardiovascular system there
exist an elastic membrane between the media and adventita as well. However,
the intracranial blood vessels lack this membrane [10].

The aneurysm wall generally consists of a thicker intima, a fragmented or
absent internal elastic lamina, a thin or absent layer of the media and an
adventita that is the same as the parent vessel [2, 13]. Hence the wall is
thinner, and is less responsive to hemodynamic forces.

The endothelial cells are elastic cells protecting the other layers of the blood
vessel from the flowing blood [10]. These cells stretch with the WSS and
become more ellipsoidal as WSS increase [7, 15]. If the WSS exceeds a critical
limit the endothelial cells may get damaged and expose the hemodynamic
forces to the other unprotected parts of the artery wall. This may lead to the
formation of an aneurysm. This critical limit is different for every individual
but endothelial cells have been observe to take damage when exposed to WSS
magnitude of 40Pa [10].

Blood consists of plasma, red blood cells, white blood cells and platelets.
While the latter two are important, they account for less than 2% off the
volume. The distribution of the plasma and the red blood cells are approxi-
mately 55% plasma and 45% red blood cells. While plasma contains mostly
water (92%) and behaves more or less like water, the red blood cells do not
[14]. In large blood vessels the individual red blood cells are relatively small in
volume, therefore the Newtonian assumption is valid. However, as vessels be-
come smaller the non-Newtonian effects are more relevant. The arteries in the
brain varies in size, but studies suggests that the effects of a non-Newtonian
blood model is small compared to other variables [28]. We will model blood
as a Newtonian fluid and as stated in Chapter 1 use a non-Newtonian model
as a reference.



Chapter 3

Mathematical formulation

The Navier-Stokes equations is the equations governing gases and fluids in
motion. It relates u, the velocity vector field, and p, the pressure field, of the
fluid/gas. Parameters needed to solve this equation is ρ for the density of the
fluid, and µ the dynamic viscosity. The equations will be used in this thesis to
model the blood in motion within the arteries of the brain. The Navier-Stokes
equations are derived from two basic principles, namely the conservation of
mass and the conservation of momentum.

3.1 Derivation of Navier-Stokes equations for
incompressible fluids

We consider the fluid to be a continuum. This means that we assume the
mass to be continuous and to fill up the space it occupies completely.

For the derivation of the Navier-Stokes equations we need some notation and
tools. Let Ω(t) ∈ Rn be an arbitrarily chosen domain in the fluid that can
change with time. The following theorem called Reynolds transport theorem
is needed for the derivation.

Theorem 3.1. Let f : Ω(t) × [0, T ] → R be a differentiable function. Then
the following holds

d

dt

∫
Ω(t)

f(x, t) dx =

∫
Ω(t)

∂f(x, t)

∂t
dx+

∫
∂Ω(t)

f(x, t)(u · n) dS.

13



14 CHAPTER 3. MATHEMATICAL FORMULATION

Conservation of mass

At any given time the mass inside a volume should remain constant. This give
rise to the equation

d

dt

∫
Ω(t)

ρ dx = 0. (3.1)

Use the transport theorem on (3.1) and get∫
Ω(t)

∂ρ

∂t
dx+

∫
∂Ω(t)

ρ(u · n) dS = 0. (3.2)

Transform the surface integral to a volume integral by Gauss/Greens theorem∫
∂Ω(t)

ρ(u · n) dS =

∫
Ω(t)

(∇ · u)ρ+ u · ∇ρ dx. (3.3)

Put this in equation (3.2)∫
Ω(t)

∂ρ

∂t
+ (∇ · u)ρ+ u · ∇ρ dx = 0. (3.4)

Since Ω(t) is chosen arbitrarily the integrand must be equal to zero

∂ρ

∂t
+ (∇ · u)ρ+ u · ∇ρ = 0. (3.5)

Let us assume that the fluid is incompressible i.e. ρ is constant. Then the
equation (3.5) gives

∇ · u = 0. (3.6)

Conservation of momentum

Newtons second law of motion states that the change in linear momentum is
equal to the force acting on the body. This gives the equation∑

F =
d

dt

∫
Ω(t)

ρu dx. (3.7)

Use the transport theorem on (3.7) and get

d

dt

∫
Ω(t)

ρu dx =

∫
Ω(t)

∂ρu

∂t
dx+

∫
∂Ω(t)

ρu(u · n) dS. (3.8)
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S = σ · n

St

S
nf

Figure 3.1: Forces on the artery wall. Body forces f is usually gravity. The
arrows are not to scale.

Use the Gauss/Green theorem on the boundary term in (3.8) and assume an
incompressible fluid

d

dt

∫
Ω(t)

ρu dx =

∫
Ω(t)

ρ
∂u

∂t
+ ρu(∇ · u) + ρ(u · ∇u) dx. (3.9)

Since we have an incompressible fluid ∇ · u = 0 we are then left with

d

dt

∫
Ω(t)

ρu dx =

∫
Ω(t)

ρ
∂u

∂t
+ ρ(u · ∇u) dx. (3.10)

The forces can be split into two forces: forces acting on the body f like gravity
and forces acting on the surface of the body S (see Figure 3.1). The surface
force can be written as S = σ · n where n is the inward pointing normal and
σ is the stress tensor. The stress tensor varies with the velocity u and the
pressure p. This leads to the equation∑

F =

∫
Ω(t)

ρf dx+

∫
∂Ω(t)

σ · n dS. (3.11)

Use Gauss/Green again and transform the surface integral to a volume inte-
gral ∫

∂Ω(t)

σ · n dS =

∫
Ω(t)

∇ · σ dx. (3.12)

Using (3.10 - 3.12) and gathering all terms on one side gives∫
Ω(t)

ρf +∇ · σ − ρ∂u
∂t
− ρ(u · ∇u) dx = 0. (3.13)
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Again since Ω(t) is an arbitrary domain the integrand must be zero hence the
equation becomes

ρ
∂u

∂t
+ ρ(u · ∇u) = ρf +∇ · σ. (3.14)

Given the incompressibility assumption, the stress tensor σ can be derived
[14] as

σ = −pI + 2µε(u), (3.15)

where ε(u) is the strain rate tensor given as the symmetric gradient

ε(u) =
1

2
(∇u+∇uT ). (3.16)

Inserting (3.15) into (3.14) gives

∂u

∂t
+ (u · ∇u) = f − 1

ρ
∇p+∇ · (2µ

ρ
ε(u)). (3.17)

The kinematic viscosity is defined as ν = µ
ρ . By using this viscosity we get

∂u

∂t
+ (u · ∇u) = f − 1

ρ
∇p+ 2∇ · νε(u). (3.18)

3.2 Boundary conditions

To get a unique solution of the equations it is necessary to have conditions
on the boundary. We will preform simulations on patient specific geometries
with aneurysms. As we are mainly interested in the flow in and around the
aneurysm, we cut off the domain a distance away from it getting boundaries
for the inflow and outflow as well as on the wall. The boundary can therefor
be split into inflow boundaries ∂ΩI , outflow boundaries ∂ΩO and artery wall
boundaries ∂ΩW (see Figure 3.2). The whole boundary ∂Ω can now be written
as

∂ΩI ∪ ∂ΩO ∪ ∂ΩW = ∂Ω. (3.19)

Wall boundary

In this thesis we will assume that the walls of the artery are stationary and
stiff, known as the rigid-wall assumption. Rigid walls is clearly a simplification
since arteries move around, stretches and contracts due to the forces of the
blood flowing inside. Implementing elastic walls is possible. This would mean
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Inflow

Outflow

Wall

Figure 3.2: The different boundary conditions.

a fluid-structure interaction (FSI) model with parameters for the elasticity
of the arteries. This would also be more computationally demanding which
means that the computational error would be greater. Simulations done with
a FSI model show that with rigid walls we may give some changes in flow
pattern. It may also result in a higher WSS than what the FSI model predicts
[23].

We will also assume that the velocity of the fluid relative to the boundary
is zero and is known as the no-slip condition. It is a well known and tested
condition. These two assumptions gives that the velocity is zero at the walls

u|Γ = 0 for Γ ∈ ΩW . (3.20)

Inflow boundary

For the inflow we can prescribe a velocity uI . We will use the solution of
flow in a cylinder as the inflow profile. We do this because we have no prior
information about the flow at the inflow boundary. This means we can not
know how this profile should have been. However as the distance away from
the cut-off increases the error in the assumption will decrease. This implies
that if we choose the inflow artery to a sufficient length we minimize the
possible error of this assumption.

We assume that the flow is laminar and fully developed. The cylinder laminar
fully developed flow is called Poiseuille flow and we can find an exact solution.
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This derivation of the exact solution is taken from Kundu et al. [14]. We use
cylindrical coordinates (x, r, θ) and a cylinder with radius R letting x be the
direction along the cylinder. Since we have laminar flow the velocity is only in
the direction of the cylinder and since the flow is fully developed the velocity
is only dependent of r

u = w(r)i. (3.21)

By using Newtonian fluid the Navier-Stokes equations can be written as

Du

dt
= f − 1

ρ
∇p+ ν∆u (3.22)

where Du
dt = ∂u

∂t +(u ·∇u) is called the material derivative, or the acceleration.
Since a fully developed flow has no acceleration (3.22) becomes

− 1

ρ
∇p+ ν∆u = 0. (3.23)

Using the Laplacian for cylindrical coordinates we get

− dp

dx
+ µ

1

r

d

dr

(
r
dw

dr

)
= 0 (3.24)

∂p

∂r
=
∂p

∂θ
= 0. (3.25)

We recognize p as only a function of x. Since w is a function of r the only
way we can have (3.24) is when the two terms are constant. By rearranging
equation (3.24) we get

d

dr

(
r
dw

dr

)
=
∂p

∂x

r

µ
. (3.26)

The solution to (3.26) is

w(r) =
dp

dx

1

4µ
r2 +A ln(r) +B. (3.27)

Since w need to be bounded we must have A = 0, and with the no-slip
boundary condition w(R) = 0 we get the solution

w(r) =
dp

dx

1

4µ
(r2 −R2). (3.28)

We indentify the solution as a parabolic profile with magnitude dp
dx

1
4µ . We

will use this as our inflow condition

uI = A(t)(R2 − r2)n (3.29)

where R is the radius of the inflow artery, n the inward pointing normal and
A(t) is the magnitude of the inflow (see Figure 3.3).
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Figure 3.3: Parabolic inflow boundary condition.

Figure 3.4: Doppler image of magnitude of flow in right MCA with 70 beats
per minute.

The magnitude of the inflow can be measured by a Doppler echocardiography.
It is a non-invasive procedure that examines the speed in which the blood
flows for a specified artery. The echocardiography gives us an image (seen in
Figure 3.4) of the speed of the blood in a specified vessel over several cardiac
cycles. Given such images we extracted data points yi for the speed and ti for
the time of the image for one cardiac cycle using a tool called xyscan. To get
several cycles we repeated this cycle over again, assuming that the cycle does
not change.

We use splines to create a continuous curve from the data points A(t). To
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(a) HR 70 (b) HR 127

Figure 3.5: Curve fitted to Doppler images of right MCA for high and low
heart rate.

Name Heart rate [beat/min] Average speed [mm/s] Peak systole [mm/s]

Low 70 572 911

High 127 498 1139

Table 3.1: Properties of the inflow rates used in this thesis.

verify that the curve A(t) approximates the magnitude of the given Doppler
image well, the curve was plotted over the image and observed that it coincided
with the image. In this thesis we will use the two curves produced by the
images in Figure 3.5. We will refer to the two heart rates as high and low
heart rate. Properties of the inflow rates can be viewed in Table 3.1. It would
be preferable to use patient specific images but this data is not available.

An interesting property is that the average speed of the low heart rate is
greater than the one for high heart rate. This will have implications for the
results as the WSS are dependant on the inflow flux. Since we use a scaled
parabolic inflow, the inflow flux can calculated by

Q =

∫
∂ΩI

uI dS =

∫
∂ΩI

A(t)(R2 − r2)n dS = CA(t). (3.30)

Hence the average inflow flux and WSS will be larger in the low heart rate
compared to the high heart rate. The ratio between the average inflow flux
between high and low heart rate will be

Qh

Ql
=
CAh

CAl
=

498

572
= 0.87. (3.31)
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Outflow boundary

For the outflow arteries we will apply the Neumann condition for the ve-
locity, meaning the normal derivative is zero (∇u · n = 0). For simplicity,
the homogeneous Dirichlet condition will be used on the pressure. Since the
Navier-Stokes equations are only dependant on the gradient of the pressure,
we need a Dirichlet condition to determine the pressure value. This condition
is called the traction-free boundary condition.

3.3 Initial condition

The Navier-Stokes equations are time dependent, implying the need for an
initial starting velocity and pressure for t = 0. The solution become less
dependant on the condition set at t = 0 as the solution develops in time.
Since it is easy and convenient to set zero as our initial condition we will do so,
u(x, 0) = 0, p(x, 0) = 0. This satisfy the equations and is easily implemented.
To make sure that the error in the initial condition is negligible we will run
our simulations for three cardiac cycles before gathering the simulations at
the fourth.

3.4 Wall shear stress computation

The wall shear stress can be computed from the forces on the surface of the
domain. These forces are defined as

S = σ · n (3.32)

where n is the inward pointing normal. This can be decomposed into a normal
and tangential component Sn and St (see Figure 3.1). We get the normal and
tangential component by

Sn = (S · n)n St = S − Sn. (3.33)

The magnitude of the WSS will be denoted by τ .

τ =
√
St · St. (3.34)
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3.5 Viscosity, density and units

We need to pick the units for length, time and mass. The meshes provided
will be in millimeter so this will be our unit of length. We pick gram as the
unit for mass such that the unit for force per area will become the SI-Unit
Pa (see Table 3.2a). The units of the computed values can be found in Table
3.2b.

Mostly we will model blood as a Newtonian fluid in this thesis i.e. the viscosity
is constant. The constants for viscosity and density are found in academic
literature [14] and provided in Table 3.2c. The non-Newtonian model we will
use is a modified Cross model. It depends on the shear rate

γ =
√

2‖ε(u)‖F (3.35)

where F denotes the Förbenius norm and is defined as [28]

µ =
µ0 − µ∞

(1 + (λγ)m)a
+ µ∞. (3.36)

The parameters are set to

µ0 = 0.056
g

smm
µ∞ = 0.003451 g

smm
λ = 3.736s m = 2.406 a = 0.254.

(3.37)

1There will be a small difference in the general viscosity between the Newtonian and
non-Newtonian model. This because µ in the Newtonian case is not equal µ∞. This was
discovered late in the process and were not possible to correct.
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Quantity SI-Unit Unit Used

Length m-meter mm-millimeter

Time s-second s-second

Mass kg-kilogram g-gram

(a) Units

Quantity Notation Unit

Velocity field u(x, t) mm
s

Pressure p(x, t) Pa

Wall shear stress τ(x, t) Pa

(b) Computed

Quantity Notation Unit Value

Dynamic viscosity µ g
smm 3.2 · 10−3

Density ρ g
mm 1.054 · 10−3

Kinematic viscosity ν mm2

s 3.036

(c) Constants

Table 3.2: Units and values of computed quantities and constants.
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3.6 Assumptions and final model

In the mathematical model we have made several assumptions. The assump-
tions made are listed as following:

• Blood behaves as a Newtonian fluid.

• Arteries are modelled as stationary and stiff.

• Blood has a constant density.

• Parabolic inflow profile.

• Homogeneous outflow conditions.

• Gravity is negligible.

The final problem description is stated in equations (3.38 - 3.41).

ut + u · ∇u = −1

ρ
∇p+ 2∇ · νε(u) + f

∇ · u = 0

u(x, 0) = 0

p(x, 0) = 0


for x ∈ Ω (3.38)

u(x, t) = 0 for x ∈ Ωw (3.39)

u(x, t) = uI for x ∈ ΩI (3.40)

p(x, t) = 0 for x ∈ ΩO (3.41)



Chapter 4

Numerical formulation

The Navier-Stokes equation is a highly non-trivial problem to solve. Although
it is an old problem, new schemes are continually developed to find better so-
lutions more efficiently. The Incremental Pressure Correction Scheme (IPCS)
will be used for the simulations of blood in this thesis. Using FEniCS, it is
shown to have good accuracy and efficiency for a variety of different problems
[18].

4.1 Weak formulation

In partial differential equations (PDEs) there are two common ways of de-
scribing the problem. They are called the strong and the weak form of the
equations. The strong form is the classical PDE and can be formulated by a
differential operator L and a source term f . The equation becomes:

Find u ∈ V for a suitable function space V such that

Lu = f. (4.1)

The weak form can be formulated by two functionals a(u, v) and l(v). The
weak problem formulation is:

Find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V̂ (4.2)

for suitable function spaces V and V̂ . It is always possible to go from the
strong form to the weak form by simply multiplying with a test function

25
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v ∈ V̂ and integrating over the domain Ω in which the equation is defined

Lu = f =⇒ Lu · v = f · v =⇒
∫
Ω

Lu · v dx =

∫
Ω

f · v dx. (4.3)

Similarly if u is a solution of the strong form, it will also be a solution to the
weak form. The opposite is however not necessarily true. Solutions of the
weak form can have the property of weak derivatives hence the name weak.
Weak derivatives is defined by using the property of integration by parts:

Definition 4.1. A function u is said to have a weak derivative in direction i
if for all φ ∈ C∞0 (Ω) there exist a function vi ∈ L1(Ω) such that∫

Ω

uφxi dx = −
∫
Ω

viφ dx (4.4)

vi is referred to as uxi in the weak sense.

In other words, a function is said to have a weak derivative if it is differentiable
up to measure of zero.

The property of weak derivatives gives rise to function spaces called a Sobolev
spaces in which the solutions of the weak form will lie. We will only use one
particular Sobolev space in this thesis, namely W 1,2 which is often denoted
H1.

Definition 4.2. The Sobolev space H1(Ω), Ω ∈ Rn, consists of functions
u : Ω→ R such that uxi exist and u, uxi ∈ L2(Ω) for i = 1, 2, ..., n, where uxi
is the derivative in the weak sense. The norm is defined as

‖u‖H1 = (‖u‖2L2(Ω) + ‖∇u‖2L2(Ω))
1
2 . (4.5)

This can be defined for vector functions as well, by simply letting every com-
ponent be a H1(Ω) function

H1(Ω) = {u : Ω→ Rd|ui ∈ H1(Ω) for i = 1, 2, ..., d}. (4.6)

In this thesis we will only work in 2-D and 3-D so d = 2, 3.

4.2 Finite Element Method

In the field of PDEs we require a tool to discretize the equations into finite
approximations of the real solution. The reason being that finding an ana-
lytical solution is in many cases hard and may often be impossible. Another
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issue, regarding the Navier-Stokes equation, is that the existence of a solu-
tion is not shown. In this thesis the Finite Element Method (FEM) will be
used to discretize the equations. The strengths of the FEM is how easy it is
to adopt to different complex domains and solve equations over a mesh with
varying cell size. These advantages allows us to simulate flow in different pa-
tient aneurysms and discretize the domain such that we get higher accuracy
with less computational demand.

The Finite Element Method can be described with these steps:

• Identifying the weak form of the PDE.

• Discretize the domain and find a finite dimensional function space that
is contained in the space where the solution of the equation lies.

• Defining a new problem from the weak form and the finite dimensional
space. This problem will have finitely many degrees of freedom.

• Deriving an algorithm to find the degrees of freedom.

Using finite element the goal is to transform a infinite-dimensional problem
into a finite dimensional one. This is done by choosing finite dimensional
function spaces Vh, V̂h such that they are subsets of the original function spaces

dim(Vh), dim(V̂h) <∞ Vh ⊂ V, V̂h ⊂ V̂ . (4.7)

Using the weak form of the equation we can formulate a new problem:

Find uh ∈ Vh such that

a(uh, vh) = l(vh) ∀vh ∈ V̂h. (4.8)

This is a problem with finitely many unknowns and is solvable. How to choose
these finite dimensional spaces and what kind of basis functions to use for the
function space is the trick in the FEM.

A finite element is defined as:

Definition 4.3. Let

• K ⊂ Rn be a bounded closed set with nonempty interior and piecewise
smooth boundary (the element domain),

• P be a finite-dimensional space of functions on K (the space of shape
functions) and
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Figure 4.1: Nodes for langragian elements of degree 1 and 2 in 2D and 3D

• N = {N1, N2, ..., Nk} be a basis for P∗ (the set of nodal variables), where
P∗ denotes the dual space of P.

Then (K,P,N ) is called a finite element.

Here K is usually a triangle in 2-D and a tetrahedron in 3-D. These elements
defines our finite dimensional spaces. Elements come in many forms, but
we will only use one type of element in this thesis, namely the Lagrangian
elements.

Lagrangian elements of degree q is where the space of shape functions is q-
degree polynomials and the set of nodal variables Ni is defined as

Ni(v) = v(xi) ∀v ∈ P for nodes xi ∈ K (see Figure 4.1). (4.9)

Another helpful definition is the one of the nodal basis. This will be the basis
of our finite dimensional function space.

Definition 4.4. Let (K,P,N ) be a finite element. A basis φ1, φ2, · · · , φk of
P is called a nodal basis if Ni(φj) = δij for i, j = 1, 2, · · · , k.
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Figure 4.2: CG1 function on 2D triangle mesh

Let us assume that the domain Ω can be discretized in a collections of element
domains T ⋃

Ki∈T
Ki = Ω (4.10)

and for simplicity, think of them as triangles. Glue together the Lagrangian
elements and assure the common edges of two neighboring element domains
have the same nodal variables. For every node xi in the finite elements there
will be a basis function φj . Using this we can then make a finite dimensional
space

CGq =

uh : Ω→ R

∣∣∣∣∣∣uh =

n∑
j=1

Ujφj for Uj ∈ R

 . (4.11)

The way the Lagrangian elements are constructed the functions in CGq will
be piecewise q-degree polynomials on Ki and continuous over the domain Ω

CGq =
{
uh : Ω→ R|uh ∈ C0 and uh|Ki ∈ Pq for Ki ∈ T

}
(4.12)

Since the functions in CGq are piecewise smooth functions and are glued
together in a continuous matter, the measure of non-smoothness is zero. Hence
CGq is a subset of H1. At this point we can use these function spaces as the
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finite dimensional spaces in the weak formulation Vh, V̂h = CGq and (4.8) are
reduced to:

Find Uj ∈ R such that

a(
n∑
j=1

Ujφj , φi) = l(φi) for i = 1, 2, . . . , n. (4.13)

This is a system of algebraic equations and can be solved by several methods.
As we will see in this thesis a(u, v) will be bilinear and we get a linear system
to solve, hence (4.13) becomes a matrix vector equation

AU = b (4.14)

where A and b are given as

Aij = a(φj , φi) bi = l(φi). (4.15)

In this thesis we use the linear elements CG1 (see Figure 4.2). The reason
being we would like the surface of our mesh to be as smooth as possible, hence
we need more spatial grid points. This means that A becomes incredibly large
and to get a solution in reasonable time, linear elements is the preferable
choice.

4.3 Incremental Pressure Correction Scheme

The Incremental Pressure Correction Scheme (IPCS) is based on an operating
splitting method. This means transforming the complicated Navier-Stokes
equations, to a series of easy-to-solve equations. The first step is to neglect the
incompressibility condition to get a tentative velocity, then use this computed
velocity and correct it by ensuring that the final velocity is divergence free.

The discretization in time is done with backward Euler

∂u

∂t
(tn+1) ≈ un+1 − un

∆t
. (4.16)

Backward Euler is a good choice since we get a lower stability criterion on ∆t,
meaning we can take longer time steps without the solution blowing up and
becoming unstable. By using backward Euler we implicitly assume laminar
flow because the scheme dampens fluctuations in the solution.
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Inserting (4.16) in the Navier-Stokes equations and evaluating the viscosity
term ν := ν(un) we get

un+1 + ∆tun+1 · ∇un+1 = −∆t

ρ
∇pn+1 + 2∆t∇ · νε(un+1) + ∆tfn+1 + un

(4.17)

∇ · un+1 = 0. (4.18)

The non-linearity un+1 · ∇un+1 can be dealt with in several ways, but in this
thesis we will linearize the term by un · ∇un+1. The equation then becomes

un+1 + ∆tun · ∇un+1 = −∆t

ρ
∇pn+1 + 2∆t∇ · νε(un+1) + ∆tfn+1 + un (4.19)

The tentative velocity is calculated by evaluating∇p as the previous computed
value, and neglecting the incompressibility condition. It will be denoted by
u∗

u∗ + ∆tun · ∇u∗ = −∆t

ρ
∇pn + 2∆t∇ · νε(u∗) + ∆tfn+1 + un. (4.20)

We impose the same boundary condition on u∗ as we would on un+1.

Let us = un+1 − u∗. Then subtracting equation (4.20) from (4.19) we get

us + q(us) = −∆t

ρ
∇φ (4.21)

∇ · us = −∇ · u∗ (4.22)

where q(us) = ∆t(un · ∇us− 2∇ · νε(us)) and φ = pn+1− pn. We now neglect
the q term from the equation which is an O(∆t) approximation. Multiplying
(4.21) with ∇ and using (4.22)

∆t

ρ
∆φ = ∇ · u∗ (4.23)

we get a Poisson problem for φ.

After solving this mixed system we can update the new velocity and pressure
explicitly

un+1 = u∗ − ∆t

ρ
∇φ (4.24)

pn+1 = φ− pn. (4.25)

To summarize the IPCS we
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• Solve u∗ according to equation (4.20).

• Solve φ according to equation (4.23).

• Update un+1 and pn+1 according to (4.24) and (4.25).

The weak form of IPCS

The IPCS can now be transformed into a weak form, with the purpose of using
finite elements to solve the equations. The equation for the tentative velocity
is

u∗ + ∆tun · ∇u∗ = −∆t

ρ
∇pn + 2∆t∇ · νε(u∗) + ∆tfn+1 + un. (4.26)

Multiplying with a test function v and integrating over the domain Ω gives

(u∗, v)Ω + ∆t (un · ∇u∗, v)Ω − 2∆t (∇ · νε(u∗), v)Ω =

− ∆t

ρ
(∇pn, v)Ω + ∆t

(
fn+1, v

)
Ω

+ (un, v)Ω . (4.27)

Let a1(u∗, v) be the right hand side and L1(v) be the left hand side. Doing
an integration by parts lets us search for a solution in a less strict space

(∇ · νε(u∗), v)Ω =

∫
Ω

(∇ · νε(u∗)) · v dx (4.28)

= −
∫
Ω

νε(u∗) : ∇v dx+

∫
∂Ω

νε(u∗)n · v dS (4.29)

= −
∫
Ω

νε(u∗) : ∇v dx+
1

2

∫
∂Ω

ν∇u∗n · v dS +
1

2

∫
∂Ω

ν(∇u∗)Tn · v dS. (4.30)

The test function v is defined such that v is zero on the part of the boundary
where Dirichlet boundary condition are imposed. Hence the term ∇u∗n · v is
equal to zero on the whole boundary. Using this and (4.30), a1(u∗, v) becomes

a1(u∗, v) = (u∗, v)Ω + ∆t (un · ∇u∗, v)Ω

+ 2∆t (νε(u∗),∇v)Ω −∆t
(
ν(∇u∗)Tn, v

)
∂Ω
. (4.31)

For L1 we get

L1(v) = −∆t

ρ
(∇pn, v)Ω + ∆t

(
fn+1, v

)
Ω

+ (un, v)Ω (4.32)

=
∆t

ρ
((pn,∇ · v)Ω − (pnv, n)∂Ω) + ∆t

(
fn+1, v

)
Ω

+ (un, v)Ω (4.33)
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Using Korn’s inequality it can be proven that there exists a unique solution
to the problem a1(u, v) = L1(v).

Multiplying the pressure equation with a test function q and integrating gives

(∆φ, q)Ω =
ρ

∆t
(∇ · u∗, q)Ω (4.34)

Integration by parts of the Laplace term gives

(∆φ, q)Ω = − (∇φ,∇q)Ω + (∇φ, qn)∂Ω (4.35)

= − (∇φ,∇q)Ω −
ρ

∆t
(us, qn)∂Ω (4.36)

From the definition of us we have that us|ΩW∪ΩI
= 0. For the pressure we

have Dirichlet conditions on ΩO hence q|ΩO
= 0. This implies that us · qn = 0

on the whole boundary, hence (us, qn)∂Ω = 0. The pressure equation can now
be written as

(∇φ,∇q)Ω = − ρ

∆t
(∇ · u∗, q)Ω . (4.37)

Existence and uniqueness of the Poisson equation is well known.





Chapter 5

Proper Orthogonal
Decomposition

Proper Orthogonal Decomposition (POD) is a method for decomposing a time-
varying function u(x, t) into an orthonormal basis in space ui(x) ∈ L2 and
orthogonal time coefficients ai(t)

u(x, t) =
N∑
i

ai(t)ui(x). (5.1)

In this thesis we have discretized the temporal domain and have a collection
of vector functions {un ∈ CGq} for n = 1, 2, · · · ,M representing the velocity
field at time tn. We will do a discretized version of POD such that {un} can
be written as an orthonormal basis {θi ∈ CGq} and orthogonal coefficients
{ani }

un =
M∑
i=1

ani θi (5.2)

(θi, θj)Ω = δij ai · aj = |ai|δij . (5.3)

The POD basis is constructed in such a way that it is the best basis for {un}
in the L2 norm.

Definition 5.1. The best basis {θi} with coefficients {ani } of a collection of
functions {un} is such that for any other basis {ψi} and coefficients {bni } we
have

1

M

M∑
n=1

‖un −
k∑
i=1

ani θi‖2 ≤
1

M

M∑
n=1

‖un −
k∑
i=1

bni ψi‖2 (5.4)

for all k ∈ {1, 2, · · · , N}, for some norm ‖ · ‖.
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The POD can be viewed as finding the best basis for portraying the kinetic
energy of a collection of velocity fields. Basis function θi and the coefficients
ani are often called mode number i.

5.1 Derivation of method

The problem of finding these basis functions can be set up as a calculus of
variation problem [8]:

Find the extrema of the functional

J(θ) =
M∑
n

| (un, θ)Ω |2 − λ(‖θ‖2L2(Ω) − 1). (5.5)

A necessary condition for the extrema is that the functional derivative is zero

d

dδ
J(θ + δψ)

∣∣
δ=0

= 0 (5.6)

for an arbitrary function ψ ∈ L2. This can be reduced to an eigenvalue
problem ∫

Ω

1

M

M∑
n=1

un(x)(un(y) · θi(y)) dy = λiθi(x). (5.7)

The eigenfunctions of this problem are orthogonal [16]. We want to have a
discrete eigenvalue problem to solve. By transforming the problem into an
eigenvalue problem for the coefficient {ani }, this is exactly what is obtained.
Rearranging (5.7), we get

1

M

M∑
n=1

un (un, θi)Ω = λiθi. (5.8)

Multiply with um and integrate over Ω

1

M

M∑
n=1

(un, um)Ω (un, θi)Ω = λi (um, θi)Ω . (5.9)

The orthogonality of {θi} implies that (un, θi)Ω = ‖θi‖2L2(Ω)a
n
i , hence we get

1

M

M∑
n=1

Cmna
n
i = λia

m
i (5.10)
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for Cmn = (um, un)Ω. Arranging this into a vector matrix equation we get the
desired eigenvalue problem for ai

1

M
Cai = λiai. (5.11)

The matrix C is symmetric, hence the eigenvalues are real and non-negative
and the eigenvectors are orthogonal. The numbering of the basis will come
from the eigenvalues and will be from largest to smallest

λ1 ≥ λ2 ≥ · · · ≥ λr > 0. (5.12)

In order for {θi} to be an orthonormal basis, as was the goal, we need to scale
the eigenvectors such that

ai · ai = Mλi (5.13)

and compute the basis with the scaling

θi =
1

Mλi

M∑
n=1

ani u
n for i=1,2,...,r. (5.14)

5.2 Properties of POD

Since the POD basis is the best basis (see Definition 5.1), the first modes will
contain the main part of the flow. This gives a low-dimensional basis for the
flow. Investigating how the velocity field is decomposed for different heart
rates will help us gain knowledge of the differences that occur.

The amount of modes needed to express the velocity field may be a good
indicator of the complexity of the flow. For a non-complex flow we might
assume that the first mode will dominate the other modes. This is investigated
in Section 7.3.

The orthogonality of the basis is a useful property when working with the
modes, as it makes it possible to calculate measures of the different modes
without having to find the basis itself

‖ani θi‖2L2(Ω) = (ani )2. (5.15)

Also the norm of a POD approximation up to k can easily be computed by

‖
k∑
i=1

ani θi‖2L2(Ω) =

(
k∑
i=1

ani θi,
k∑
i=1

ani θi

)
Ω

=
k∑
i=1

(ani )2. (5.16)





Chapter 6

Verification

When we do numerical computations of PDEs it is important to verify that the
numerical schemes are correctly implemented. One way of verifying the solver
is to find the exact solution to the problem. Then observe that the computed
numerical solution converge to the exact solution when the discretization pa-
rameters tend to zero. There are several methods to find an exact solution
and in this thesis we will use a method called manufactured solution.

6.1 Manufactured solution

The manufactured solution method follows these steps.

• Choose a velocity and a pressure and insert this into the governing equa-
tions.

• Calculate the body force term f .

• Insert this f into the solver

If the solver is correct, it should reproduce the chosen velocity and pressure.
The chosen pressure and velocity will have to fulfill the boundary conditions
and the divergence free condition. For this test we will consider a 2-D channel
domain with length L in the x-direction and radius R. The corresponding
meshes will have uniform cell size.
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We choose the pressure and the velocity to be

u(x, y, t) = v(y, t)i = Aeat sin
(πny
R

)
i (6.1)

p(x, y, t) = q(x, t) = − sin(8πt)x. (6.2)

For this choice of velocity the no-slip boundary condition is fulfilled and∇·u =
0. The pressure is chosen such that the sine function has four cycles in the
domain t ∈ [0, 1]. The pressure gives the boundary conditions on the inflow
p(0, y, t) and the outflow p(L, y, t). Now we can calculate f using the Navier-
Stokes equations

f =

(
(vt − νvyy) +

1

ρ

∂p

∂x

)
i (6.3)

=

((
a+

νπ2n2

R2

)
Aeat sin

(πny
R

)
− 1

ρ
sin(8πt)

)
i (6.4)

The constants have been varied to ensure that the same result is obtained for
different values of the constants. In the results given, the constants are set to

A = 1.3 a = −0.1 n = 2 R = 2 L = 4. (6.5)

The error is usually expressed as a functional of the quantity we wish to
examine. We want the functional to be chosen such that it captures any sort
of error that might be present. We will use the L2 measure as our functional

E = ‖(uh − ue)|t=T ‖L2(Ω) (6.6)

where uh is the approximated solution by the solver and ue is the exact solu-
tion. The error is calculated by interpolation of ue onto CG4 and using this
as the exact solution. This measure of error captures whether the magnitude
or the direction of the velocity field is correct over the whole domain.

To investigate the convergence rate we do a numerical experiment. We make
an ansatz that the error is on the form

E = C∆t+Dhr (6.7)

where C and D are constants, h is the circulumradius1 of a triangle in the
mesh and r ∈ (0, N ] for a finite N ∈ R. This is a fair assumption since the
IPCS neglects a term of order ∆t and the discretization in time is of first
order.

Let j be an integer. By choosing the mesh such that h = A2−j and ∆t = B2−rj

we should expect the error to be decreasing with 2−jr as j increases, or put
in another way Ej2

rj = C for a constant C. So to find r we can plot Ej2
rj

for different values of r and observe which plots that converges to a constant.
We did this in Figure 6.1, and we can see that r ≈ 2.

1The circulumradius is the radius of a sphere to which the whole triangle can be inscribed
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(a) Convergence plot for r = 1.
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Number of iterations j
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4.7
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4.9
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Error measured as E = ||(uh − ue)|t=T ||L2(Ω)

E22j

(b) Convergence plot for r = 2.

Figure 6.1: Plots of Ej2
rj for r = 1 and r = 2.



42 CHAPTER 6. VERIFICATION

Given that a normal Poisson problem has a convergence rate of h2 with linear
elements one might assume that the convergence rate should be in the same
region. Hence we can say with some confidence that our solver is correct.

6.2 WSS verification

To check the stress calculations we can compute the analytical solution of the
wall shear stress. This serves as a double confirmation that the solver works
as the WSS is a functional of the velocity field. To compute the WSS we first
look at the wall y = −R such that n = j and compute the stress.

S = σn = µ(∇u+∇uT )n− pn (6.8)

= µ
∂u

∂y
|y=−Ri− p|y=−Rj. (6.9)

From this we can find the WSS

τ |y=−R = |St|y=−R = µ|∂u
∂y

i|y=−R (6.10)

= µ
πn

R
|Aeat cos

(πny
R

)
|y=−R = µ

πn

R
|A|eat (6.11)

Similarly the WSS at the wall y = R is

τ |y=R = µ
πn

R
|A|eat. (6.12)

To meassure the error we take the average of the WSS in the middle of the
domain to test against the analytical expression for the WSS

E =
|τe − τh|

τe
. (6.13)

We measured the error with the same mesh parameters as in the numerical
experiment in Section 6.1 with r = 2. The result viewed in Figure 6.2 shows
the computed WSS tends to the exact WSS as the h and ∆t tends to zero and
we conclude that the stress calculations are correct.
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E

Figure 6.2: Error of WSS as h and ∆t tends to zero.





Chapter 7

Qualitative results

This chapter presents ideas, results and the preparation upon which the rest
of the research in this thesis is based on.

We have used one aneurysm to investigate how the flow and the WSS changes
for high and low heart rate. Blood was modeled as a Newtonian fluid with the
parameters presented in Table 3.2c. As inflow rates we used the two different
heart rates discussed in Section 3.2. These can be seen in Figure 7.1 with the
marked points systole, early diastole, middle diastole and end diastole.

The results that span over time was mapped to t = [0, 1] making the time scale
one cardiac cycle. We do this to easier compare high and low heart rate. The
ParaView visualization tool was used for all the images involving the flow or
the WSS. For both simulations 100 velocity fields were stored over one cardiac
cycle to use for post-processing.

7.1 Convergence

First of all the parameters for the time stepping and mesh size must be chosen.
To find suitable values for these parameters we did four simulations with
different values of time steps and cell size. The simulations will be referred to
as cases a-d. If the flow converges in some of these cases the parameters are
sufficient to continue an analysis. The parameters are presented in Table 7.1.

To view the convergence we used the slice tool in ParaView which displays
the magnitude of the flow in a 2-D plane (see Figure 7.2). This was done at

45



46 CHAPTER 7. QUALITATIVE RESULTS

Figure 7.1: Cardiac cycles for high and low heart rate, mapped to [0, 1].

Figure 7.2: Plane used to conclude convergence.
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Case a b c d

Time steps 800 2000 4000 8000

Number of cells 97000 267000 525000 1027000

Table 7.1: Convergence test cases.

(a) (b)

(c) (d)

Figure 7.3: Convergence of flow. Simulations are done with the parameters
given in Table 7.1.

systole time and is shown in Figure 7.3. Case c and d are similar. They are
not identical but they portray the same features which is good enough for
this purpose. The conclusion is that the flow does not change considerably
between c and d, hence a sufficient range of time steps is 4000 − 8000 and a
sufficient range of the mesh size is 525000− 1027000 cells. For the rest of this
chapter the simulations with case d parameters have been used.



48 CHAPTER 7. QUALITATIVE RESULTS

7.2 Simulations

The velocity fields for high and low heart rate are visualized in Figure 7.4
and 7.5. We can see a difference in the magnitude of the flow between the
two heart rates. This is expected since the speed of the inflow varies. In the
high heart rate case we can see noticeable changes in the pattern at early and
middle diastole.

The WSS magnitude for the different heart rates can be viewed in Figure 7.6
and 7.7. At systole and early diastole we see an overall higher WSS in the
high heart rate case. The opposite is true for the middle and end of diastole.
There are some changes in the distribution of the WSS for the two heart rates.
At early diastole there are larger areas with high WSS in the high heart rate
case. At the middle diastole the WSS pattern changes in the high heart rate
from the right side to the left side, which is not observed in the low heart rate.
This is visualized with a red circle. The region with highest WSS is at the
apex of the aneurysm and has not changed with the higher heart rate.
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(a) Systole (b) Early Diastole

(c) Middle Diastole (d) End Diastole

Figure 7.4: The velocity field for different parts of the low heart rate cardiac
cycle.
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(a) Systole (b) Early Diastole

(c) Middle Diastole (d) End Diastole

Figure 7.5: The velocity field for different parts of the high heart rate cardiac
cycle.
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(a) Systole (b) Early Diastole

(c) Middle Diastole (d) End Diastole

Figure 7.6: The WSS for different parts of the low heart rate cardiac cycle.
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(a) Systole (b) Early Diastole

(c) Middle Diastole (d) End Diastole

Figure 7.7: The WSS for different parts of the high heart rate cardiac cycle.
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7.3 Proper Orthogonal Decomposition

As part of the post-processing a POD of the velocity field stored after the
simulation was done. We did two different decompositions, one normal de-
composition and one where the aneurysm was isolated and the flow restricted
to this part of the geometry. They will be referred to as the normal decompo-
sition and aneurysm decomposition respectively.

The basis

In Figure 7.8 - 7.10 we visualized the basis functions for low and high heart
rate and for the normal and aneurysm decomposition.

We see that the first basis is fairly similar in both high and low heart rate.
The high basis is pushed a bit closer to the wall. This is evident from the
inner product between the two which is 0.99 for the normal decomposition
and 0.97 for the aneurysm decomposition

The second basis is much more spread out for the high heart rate compared
to the low heart rate. The low basis has one certain area it wants to correct
while the high basis tries to correct more sections at the same time. These
observations is apparent for the third basis as well.

Looking at the normal basis we observe that the first basis contains most of
the in- and out-going flow. The second and third basis is mostly distributed
inside the aneurysm. Because of this and the fact that we are mostly interested
in the flow inside the aneurysm, we will use the aneurysm decomposition for
the remainder of this chapter.

We made an animation of the cardiac cycles where the basis was plotted
separately over time

ani θi for i=1,2,3. (7.1)

The modes go from left to right such that mode 1 is on the left side and mode
3 is on the right side.

The animation can be found at http://folk.uio.no/haakonoo/master/animation/.

http://folk.uio.no/haakonoo/master/animation/
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(a) Low HR. (b) High HR.

(c) Low HR aneurysm. (d) High HR aneurysm.

Figure 7.8: Basis 1 for low and high heart rate. Normal decomposition is a-d
and aneurysm decomposition is c-d. The inner product between a-b is 0.99
and between c-d is 0.97.
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(a) Low HR. (b) High HR.

(c) Low HR aneurysm. (d) High HR aneurysm.

Figure 7.9: Basis 2 for low and high heart rate. Normal decomposition is a-d
and aneurysm decomposition is c-d. The inner product between a-b is −0.55
and between c-d is 0.59.
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(a) Low HR. (b) High HR.

(c) Low HR aneurysm. (d) High HR aneurysm.

Figure 7.10: Basis 3 for low and high heart rate. Normal decomposition is a-d
and aneurysm decomposition is c-d. The inner product between a-b is 0.75
and between c-d is 0.44.
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Complexity of flow

We want to distinguish between complex and non-complex flow to explore
whether there is a difference between high and low heart rate. Our hypothesis
is that if more modes are needed to get a good representation of the velocity
field, the flow can be considered to be more complex.

The square norm of the different modes divided by the square norm of the
velocity was plotted

gi(n) =
‖ani θi‖2E
‖un‖2E

for modes i = 1, 2, ..., k. (7.2)

In L2 (because orthogonality), gi has the nice property that all they sum up
to one

r∑
i=1

gi(n) =

r∑
i=1

‖ani θi‖2L2(Ω)

‖un‖2
L2(Ω)

=
‖∑r

i=1 a
n
i θi‖2L2(Ω)

‖un‖2
L2(Ω)

=
‖un‖2L2(Ω)

‖un‖2
L2(Ω)

= 1. (7.3)

In the plots we will also be able to see where in the cardiac cycle we get a
more complex flow.

To test the hypothesis we plotted gi for the flow in a cylinder with the same
inflow condition as the aneurysm. The flow in a cylinder is a Poiseuille flow
(the same as derived in Section 3.2) and can be considered to be non-complex.
As a result of that we should expect the first mode to dominate completely.
This we find to be true (see Figure 7.11), hence it justifies the hypothesis
which was stated.

The norm we choose may affect the outcome of the result. We want to find
the norm that best represents the velocity field. The H1 norm contains the
gradient of the velocity field and may give us information that the L2 norm
do not. This is because the rotation is captured in the gradient. The basis
computed in the POD is optimal in L2 and displays the kinetic energy, so L2

should not be discarded. The orthogonality in L2 is also a useful property.

We can see from Figure 7.12 that the differences in H1 and L2 are substantial
for the first mode, especially for high heart rate. However, the other modes
are fairly similar in shape and placement. It is also clear that the deviations
that exists become greater in the H1 norm. This is not surprising since the
POD finds the best basis for the L2 norm. We also find that the first drop
in the H1 norm is after the systole where the WSS was highest. This means
that the H1 norm should be considered.
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(a) Low HR L2 norm (b) High HR L2 norm

Figure 7.11: POD mode plot for high and low HR on a cylinder. We see that
the first mode dominates the other modes.

We see a big difference in the complexity between high and low heart rate.
For low heart rate we see that the first mode is fluctuating and does not have
a massive drop. The high heart rate however has a big drop at the middle
diastole and several modes are required to get a good approximation in the
middle diastole time period. This is the same observation we made from the
velocity and WSS pattern. These observations give reason to conclude that
the flow with high heart rate is more complex than the low heart rate flow.

Another measure that can be used to state the complexity of the flow is the
error of the span of k basis functions

f(k) =

∑M
n=1 ‖un −

∑k
i=1 a

n
i θi‖2E∑M

n=1 ‖un‖2E
. (7.4)

We plotted this quantity for increasing values of k, see Figure 7.13. The L2

norm gives a decreasing graph in such a way that the decrease in f becomes
less and less as k increases, making the graph of f convex. It comes to a point
where f decreases with almost the same amount for every k. Firstly this is
expected as the POD basis is the best basis for un. Secondly it gives reason
to conclude that after the first few basis functions are used, the remaining
basis functions are equally important for portraying the flow. We also see
that the first basis is by far the most important. We can see that the graph
for both high and low heart rate has the same shape and that the difference
in f between high and low heart rate are small as k increases.

We see that the H1 norm is much higher than the L2 norm. In H1 we see that
the graph for high heart rate in Figure 7.13b is not convex hence H1 does not
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(a) Low HR L2 norm (b) Low HR H1 norm

(c) High HR L2 norm (d) High HR H1 norm

Figure 7.12: Comparison of high and low HR with different norms. Rows
represent heart rate and columns represent different norms. We see a difference
in high and low heart rate. The H1 norm displays different qualities than the
L2 norm.

share this property with L2.

7.4 Findings

High heart rate may change the pattern of the blood flow in an aneurysm.
The observations shows that the maximum WSS is larger due to heart rate
increase and heart rate changes how the WSS is distributed. We have seen
that the POD basis for high and low heart rate differ and that the best way
of using POD is to isolate the aneurysm from the rest of the geometry and
use the flow in the aneurysm to find the decomposition.
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(a) L2 norm (b) H1 norm

Figure 7.13: Comparison of the error in POD approximation for high and low
HR with different norms.

We have observed that H1 captures the WSS changes that may not be found
in L2. POD analysis showed that the high heart rate was more complex and
needed more basis functions to approximate the solution well. However, after
the first few basis functions were used, the error in the basis approximations
were essentially the same for high and low heart rate and the error decreased
by the same amount when we used more basis functions. We found that
the first basis function is by far the most important in the POD. The other
functions of the POD can be thought of as corrections of the first mode in
some parts of the cardiac cycle.

The observations made here encouraged us to continue the study with more
aneurysms and to attempt to find a correlation between changes in flow and
rupture.



Chapter 8

Quantitative results

In this chapter we have used twelve different aneurysms, both sidewall and
bifurcation, where seven are known to have ruptured at a later time. We
have marked the aneurysms from A1 to A12. The properties of the different
aneurysms are given in Table 8.1. All the aneurysms are found in the MCA
and are part of the database at the Simula research laboratory.

The aneurysms were segmented from CT angiograms using the Vascular Mod-
elling ToolKit. Isolated aneurysm meshes as well as meshes with inflow and
outflow arteries were available in the database. We did two simulations per
aneurysm, one for low and one for high heart rate, both with the Newtonian
fluid assumption. The mesh is chosen with number of cells from 700000 to
1900000. We used 8000 time steps in both low and high heart rate cases and
100 velocity fields were saved evenly distributed over the course of the last
cycle.

For the post-processing of the aneurysms we calculated the average angle
difference of the WSS between high and low heart rate

φ(x) = cos−1

(
Sht (x) · Slt(x)

|Sht (x)||Slt(x)|

)
for x ∈ ∂Ω. (8.1)

We also calculated the average WSS magnitude ratio between high and low
heart rate

τr(x) =
|Sht (x)|
|Slt(x)|

for x ∈ ∂Ω. (8.2)

As discussed in Section 3.2 it is a difference in the average inflow flux ratio. If
no changes are present and the WSS is linearly dependent on the inflow flux

61
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Aneurysm Status Geometry type

A1 Unruptured Sidewall

A2 Unruptured Bifurcation

A3 Ruptured Bifurcation

A4 Unruptured Sidewall

A5 Unruptured Sidewall

A6 Ruptured Bifurcation

A7 Ruptured Bifurcation

A8 Ruptured Bifurcation

A9 Ruptured Sidewall

A10 Ruptured Bifurcation

A11 Ruptured Bifurcation

A12 Unruptured Bifurcation

Table 8.1: Properties of aneurysms studied.

we should expect the value of τr to be constant and to be equal to the inflow
flux ratio 0.87.

The POD was computed on the isolated aneurysms. The inner product was
computed between the different basis for high and low heart rate (see Table
8.3) and the functions f and g (defined in Section 7.3) were computed for both
L2 and H1.

We plotted φ and τr and as a reference we plotted |Slt|. Together with these
quantities we plotted f and g for both L2 and H1. These plots can be viewed
in Figures 8.2 - 8.13.

To compare the changes we found in the heart rates we did simulations with
the non-Newtonian viscosity model modified Cross (see Section 3.5) and used
the low heart rate as inflow.
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8.1 Changes between high and low heart rate

By the Figures 8.2 - 8.13 we can see that there are changes in the WSS between
the two heart rates. For the angle we see changes up to 30 ◦. There are regions
where the WSS magnitude for the high heart rate are twise of that for the low
heart rate case and regions where the opposite is true

τr(x) ≥ 2 for some x τr(y) ≤ 0.5 for some y. (8.3)

We see as predicted that the WSS ratio 0.87 is in the parent and outflow
arteries, hence it will be most useful to look at the changes that differ from
this value. It is also worth noticing that even though cases A3, A4 and A9
give high values in the angle and ratio plots, we can see from the reference
plot that the WSS very low in these regions.

Aneurysm Angle Magnitude

A1 0.010 0.111

A2 0.025 0.079

A3 0.014 0.090

A4 0.000 0.007

A5 0.001 0.074

A6 0.023 0.041

A7 0.019 0.134

A8 0.172 0.406

A9 0.004 0.187

A10 0.032 0.068

A11 0.001 0.003

A12 0.002 0.194

Table 8.2: Portion of noticeable changes in angle and magnitude of the WSS
between high and low heart rate.

To get a better measure of the changes we calculated the portion of the area
with noticeable angle and magnitude changes. We defined this as

Area(Γφ)

Area(ΩWSS)
for Γφ = {x ∈ ΩWSS : φ(x) ≥ 20 ◦} (8.4)
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Area(Γτ )

Area(ΩWSS)
for Γτ = {x ∈ ΩWSS : τr(x) ≤ 0.87

1.3
or τr(x) ≥ 0.87 ·1.3} (8.5)

where ΩWSS = {x ∈ ∂ΩA : Slt(x) ≥ 1Pa} and ΩA denotes the isolated
aneurysm. The measure 8.4 signifies the portion of the aneurysm that have
WSS angle differences greater than 20 ◦. The measure 8.5 signifies the portion
of the aneurysm that have WSS magnitude differences greater than 30% with
respect to the influx ratio 0.87. The calculated values can be viewed in Table
8.2. The A8 aneurysm sticks out with considerably higher values on the angle
and magnitude than any of the other aneurysms. The mean value is 0.0256
for the angle and 0.116 for the magnitude.

We can see by the plots g and f for both L2 and H1 that the error in the POD
approximation is larger in the high heart rate case. As a measure of complexity
we use f(1). We calculated that the measure range from 0.02 − 0.07 for low
heart rate and 0.08 − 0.24 for high heart rate in L2. The ratio fh(1)/f l(1)
is greater than 1.8 for all cases by using L2 and for nine out of the twelve
cases this ratio is greater than 3. With the H1 norm the measure range from
0.15 − 0.25 for low heart rate and 0.27 − 0.56 for high heart rate. The ratio
here varies from 1.6 − 2.3. These observations lead us to conclude that the
high heart rate flow is more complex than the low heart rate flow.

It is high agreement in the inner product between the first POD basis functions
(see Table 8.3). Again A8 stands out as the most different. For the other
modes we see that A6 is most different. We investigated A6 and found that(
φl2, φ

h
3

)
Ω

= 0.802 and
(
φl3, φ

h
2

)
Ω

= −0.763. Also when we look at the mode
plots and the POD error (Figure 8.7) we see that basis two and three have very
little impact on the over all solution. Basis three in A2 have low agreement,
but again by the mode plots (Figure 8.3 red line) we see that mode three have
very little impact. Other aneurysms with differences in the inner product
basis two and three are A3, A7 and A8.

8.2 Rupture

We want to investigate if there is a correlation between rupture and changes
in flow or WSS.

We use the computed values in Table 8.2 to group the aneurysms with changes
in average WSS angle and magnitude. For the differences in WSS angle we
can use values that are greater than 0.01 to differentiate into groups. Cases
with this property is A1-A3, A6-A8 and A10, hence two out of five unrup-
tured aneurysms and four out of seven ruptured. For the differences in WSS
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Aneurysm Mode 1 Mode 2 Mode 3

A1 0.989 −0.917 0.819

A2 0.994 0.929 −0.466

A3 0.995 −0.867 0.616

A4 0.990 0.930 0.922

A5 0.991 0.974 0.941

A6 0.998 0.205 0.218

A7 0.991 0.759 0.770

A8 0.942 0.695 −0.511

A9 0.991 0.928 −0.886

A10 0.991 −0.931 0.845

A11 0.994 0.854 0.854

A12 0.989 −0.944 0.957

Table 8.3: Inner product between modes of high and low heart rate.

magnitude we can use values that are greater than 0.1. Then we get cases
A1, A7-A9 and A12, hence two of five unruptuerd and three of seven rup-
tured aneurysms. Based on these results one can not make a claim that more
changes in flow or WSS as a result of heart rate implies higher rupture risk.

For the complexity there is no clear value for f(1) where we can distinguish the
aneurysms into groups with high complexity vs groups with low complexity.

8.3 Changes from heart rate compared to changes
in non-Newtonian blood modeling

To set the changes between high and low heart rate in perspective we will
compare them to the changes in Newtonian and non-Newtonian modeling of
blood.

To compare the two we will use Pearson correlation

rxy =

∑n
i=1(xi − x)(yi − y)

σxσy
(8.6)



66 CHAPTER 8. QUANTITATIVE RESULTS

were σ is the standard deviation. It is a measure of how correlated a quantity
is and |rxy| = 1 means there is a linear relationship between x and y. Any
other value of rxy indicate the degree of linear dependence between x and y
(zero being no linear dependence at all).

We used the average WSS magnitude over the aneurysm to compute the cor-
relation, that is we calculate rxy by letting

xi = |Sat (zi)| yi = |Sbt (zi)| for zi ∈ ∂ΩA (8.7)

were a, b denotes either low and high heart rate or Newtonian and non-
Newtonian modeling of blood. Calculations can be viewed in Table 8.4. We
also plotted the average WSS magnitude vector for the three different simu-
lations high heart rate Newtonian fluid, low heart rate Newtonian fluid and
low heart rate non-Newtonian fluid (see Figure 8.1). By Table 8.4 we see
that there are strong correlations for both heart rate and viscosity. The mean
correlation is lower in the heart rate case (0.991 to 0.986) due to the lower
correlation in A1 and A8. In seven of the aneurysms the viscosity correlation
is lower than the heart rate, in two of the cases the correlation was equal and
the remaining three the correlation were higher for heart rate. However, the
differences are not substantial.

We calculated the measures 8.4 and 8.5 (where the influx ratio is 1) for New-
tonian and non-Newtonian flow as well. These can be found in Table 8.5.
The changes in WSS magnitude were fairy the same as in the heart rate case.
The mean value was 0.096 compared to 0.116 as we found in Section 8.1 and
the highest value was 0.440 compared to 0.406. The WSS angle changes were
also fairly similar, with the exception of the A8 aneurysm. The mean value in
Newtonian case is 0.008 where as it was 0.025 in the heart rate case and the
maximum is 0.027 compared to 0.172 in the heart rate case.

Based on these observations we conclude that the changes in the WSS magni-
tude from heart rate are in the same order as the changes we get from using a
varying viscosity model. The direction of the WSS may prone to more changes
when heart rate is increased compared to if one uses a non-Newtonian model.
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(a) A4 (b) A8

Figure 8.1: Average WSS magnitude vector plotted for low heart rate non-
Newtonian flow, high heart rate Newtonian flow and low heart rate Newtonian
flow. A4 showed highest correlation while A8 showed lowest correlation.

Aneurysm Heart rate Newtonian

A1 0.953 0.989

A2 0.995 0.995

A3 0.996 0.993

A4 0.999 0.989

A5 0.996 0.996

A6 0.994 0.986

A7 0.985 0.995

A8 0.940 0.989

A9 0.998 0.995

A10 0.987 0.985

A11 0.995 0.989

A12 0.994 0.993

Table 8.4: Pearson correlation number r for the average WSS. Column 2 is
for the correlation between high and low heart rate. Column 3 is for the
correlation between Newtonian and non-Newtonian blood modeling.
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Aneurysm Angle Magnitude

A1 0.001 0.022

A2 0.012 0.047

A3 0.027 0.127

A4 0.000 0.440

A5 0.000 0.031

A6 0.018 0.109

A7 0.005 0.056

A8 0.007 0.061

A9 0.002 0.113

A10 0.012 0.075

A11 0.005 0.039

A12 0.003 0.032

Table 8.5: Portion of noticeable changes in angle and magnitude of the WSS
between Newtonian and non-Newtonian blood modeling.
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(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.2: A1.
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(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.3: A2.
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(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.4: A3.
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(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.5: A4.
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(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.6: A5.
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(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.7: A6.
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(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.8: A7.
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(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.9: A8.
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(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.10: A9.
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(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.11: A10.
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(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.12: A11.



80 CHAPTER 8. QUANTITATIVE RESULTS

(a) Angle φ (b) WSS ratio τratio (c) WSS average

(d) Mode plot low L2 (e) Mode plot high L2 (f) POD error L2

(g) Mode plot low H1 (h) Mode plot high H1 (i) POD error H1

Figure 8.13: A12.



Chapter 9

Discussion

We have demonstrated that the flow in aneurysms change for different heart
rates. The severity of the changes were dependent on the geometry of the
aneurysm, however we did not find any particular type of aneurysm more prone
to these changes. We found that the POD error increased when we used high
heart rate inflow. The error increased by a factor of three for almost all cases
in L2 and by a factor of 1.6−2.3 in H1. Four out of seven ruptured and two out
of five unruptured aneurysms had noticeable WSS angle changes. Three out of
seven ruptured and two out of five unruptured aneurysms had noticeable WSS
magnitude changes. This is in the range of expected in a random selection
and we can not claim a correlation with changes and rupture.

In perspective, changes in WSS magnitude were of the same order as the
changes we find using a non-linear viscosity model. We found high correlation
of the WSS in both with respect to the two viscosity models and the two heart
rates. We found that in one case (A8) there were considerable differences in
WSS direction in the heart rate case (angle difference greater than 20 ◦ in
17% of the aneurysm). Changes of this magnitude were not found using non-
Newtonian blood modeling.

9.1 Limitations of the study

In this study we used several assumptions and generalized the mathematical
model. First we only used one set of inflow heart rates and they were not
patient specific. To draw a firmer conclusion we would have to test for many
sets of different inflow profiles and do a statistical analysis of the result. Also
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the inflow heart rates came from Doppler images and where we took measures
to be sure the profiles extracted matched the images, we can not be sure of
the error in the image itself.

Secondly, the rigid wall assumption may be a cause of error. Elastic walls may
help to dampen the impact of the blood flow on the aneurysm and prevent
pattern changes to occur. This may again lead to less complex flow espe-
cially for the higher heart rate as the hemodynamic forces are prone to faster
changes.

Thirdly, the laminar flow assumption may be a source of error and the reason
we were not able to get a clear distinctions in the complexity. Valen-Sendstad
et al. [25] did a study of flow on the same aneurysms used in this thesis
without the use of the laminar assumption. They found that cases A3, A6-A8
and A101 had unstable flow with turbulent fluctuations.

Finally we have other assumptions in our model like traction free outflow
boundary, Newtonian fluid and neglecting gravity all of which may have an
effect on the solution and the results.

9.2 The importance of this study

CFD studies will always be subject to assumptions and different variables.
When a study is to be performed one is faced with picking variables and
assumptions in the study. Therefore it is important to quantify which as-
sumptions and variables that makes most impact on the solution such that
this knowledge can be used to perform better studies. This study is a part of
this process regarding a variable which seldom gets noticed. We found that
as long as the Newtonian assumption is used there will be no need to consider
the heart rate as a variable. Øyvind Evju [28] analysed the non-Newtonian ef-
fects in intracranial aneurysms concluding that the effects are small compared
to other variables. For our study this means that the effects of heart rate is
relatively small as well and can be neglected.

9.3 Conclusion

We have shown that heart rate may change the pattern of the velocity field in
aneurysms. The velocity field may become more complex due to an increase

1The aneurysms have been renumbered in this thesis.
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in heart rate. The increase in complexity do not result in big differences in the
average WSS. We found that the changes is of the same order as the changes
from modeling blood as a non-Newtonian fluid. Seeing as other studies have
concluded that the non-Newtonian effects is negligible we conclude that the
heart rate is not important to consider in further studies.
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