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Abstract

Digital analysis of seismic images is a key component in the automation of seismic
data interpretation. Other authors have explored using curvature as an attribute in
this kind of analysis, but only on data which has been manually interpreted.

In this project the subject is the use of curvature as a feature for automatic
highlighting of saltdomes in seismic images. Saltdomes are of particular interest
in seismic exploration, as they are often linked to hydrocarbon finds. By using the
so-called dip to extract discrete curve segments representing the seismic horizons
in the image, the local curvature may be estimated. This in turn requires approxi-
mation of first and second order derivatives. Derivative approximation is done by
locally fitting a parabola to each data point, and approximating the derivatives in
that point by the derivatives of the parabola.

The presented method is applied to a set of inline seismic saltdome images.
The results show the saltdomes clearly highlighted from their surroundings, with
distinct areas of positive and negative curvature values.
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1 e Introduction

Automation of manual tasks constitutes one of the most important developments
in modern society. Throughout human history, mechanical devices and machines
have replaced human labour to an increasing extent. Recently, digital image anal-
ysis has been an important component in this evolution. Fundamentally, digital
image analysis involves teaching computers to extract information from digital
images, much in the way human eyes would. However, teaching a computer to
perceive an image with the same knowledge and intuition as a human being is
an extremely complex task. Therefore, the algorithms used in image analysis are
usually tailored to a specific problem or group of problems.

One such problem is interpretation! of seismic images. To my knowledge, in-
terpretation is currently performed manually by geologists. Because this is a very
time consuming and expensive task, developing methods for automatic interpreta-
tion is a research field of interest.

The seismic data used in this project is from the Diskos repository, a Norwe-
gian common national data repository for oil exploration and production.

1.1. Problem statement

In this project the estimation of curvature in seismic images, in the context of the
specific task of highlighting salt structures, is explored. Salt structures are of par-
ticular interest because they are often linked to hydrocarbon finds. Previous work
on curvature in seismic data addresses manually interpreted data, leaving much
room for improvement in terms of automation. The method that will be presented
in this project is fully automatic.

The problem statement for this project is as follows:

Develop a method for highlighting saltdomes in inline seismic images using dip and
curvature as attributes. Explore how dip can be used to identify seismic horizons, and the
suitability of curvature as a feature for saltdome highlighting.

Curvature is a mathematical feature that describes the shape of curves or sur-
faces. The main challenge in estimating curvature in a seismic image is represent-

1 Interpretation in the context of seismic images means identifying the sedimentary layers and other
interesting structures in the data.



1. Introduction

ing the image in terms of curves. To this end, the dip feature is used to extract
curve segments that follow the shape of the seismic horizons. The image curvature
can then be estimated as the curvature of these curve segments.

In order to reduce the complexity in computation and visualisation, the work
in this project is done on two-dimensional sections of the three-dimensional seismic
data.

1.2. Project structure

This project is presented in two parts. Part I covers seismic background mate-
rial and establishes the mathematical concepts and tools needed in the rest of the
project. Part II describes the method developed followed by a study of the results.

10



Part 1.

Background & Mathematical
Theory






2. Introduction to seismic imaging

The earth consists of layers of sediments such as rocks, clay and minerals. Explor-
ing these structures is of particular interest in the oil and gas industry. By gathering
seismic data, images of the Earth’s crust can be reconstructed and inspected in or-
der to find areas of interest.

The following sections give a short introduction to the process of seismic
data acquisition, and are based on information collected from GeoCLASS [25] and
Schlumberger Oilfield Glossary [26].

2.1. Seismic acquisition

Seismic data acquisition is performed by sending energy waves into the earth.
When a wave hits a stratigraphic layer, or sedimentary bed, it is refracted. Part of
the wave is reflected and travels back to the surface, while the rest of the energy
continues to travel into the earth until it hits another layer and is refracted again.
The reflected waves are recorded by receivers. The amplitudes of the recorded
signals can be used to create images of the subsurface structure.

The process described above is the basic principle of seismic acquisition. In
marine seismics, data acquisition is usually performed by large ships that traverse
the sea-surface in a row-by-row manner. The ships tow streamers, which are large
cables that may be several kilometers long. The streamers hold the source- and
receiver instruments, which are usually airguns and hydrophones. An airgun sends

Figure 2.1.: Illustration of seismic surveying using streamers [26].

13



2. Introduction to seismic imaging

(a)

Figure 2.2.: (a) 2D and (b) 3D acquisition [25].

a signal in the form of highly pressurised air into the sea, and the signal is reflected
by the layers in the seabed, as described above. The returning signal is recorded by
hydrophones, which are the receiver part of the streamers. An illustration of this
process can be found in Figure 2.1

Other forms of marine seismic acquisition do exist. One is ocean-bottom seis-
mics, where either the source or the receiver (or both) are placed on the ocean
bottom, rather than towed along the sea surface. Another variation is down-hole
seismics, where the instruments are placed below the ocean-bottom, in wells.

2.2. 2D and 3D imaging

As described in the previous section, the data used to create seismic images is col-
lected by streamers. Using a single streamer would result in a two-dimensional
image of a vertical seabed-slice directly below the streamer. The only returning
signals that will be recorded by the receivers are the ones that travel along the ver-
tical plane directly below the streamer. Signals that are reflected in other directions
will be lost. The advantage of this 2D acquisition method is of course that less of
the costly surveying equipment is required, making it cheaper. However, although
more expensive and complex, three-dimensional surveying is much more efficient
and widespread.

In the three-dimensional case, multiple streamers are dragged by each ship.
The streamers are placed in parallel, so they form a matrix of sources and receivers.
This way, signals that are shot or reflected at an angle will be recorded as well as
the ones recorded in the two-dimensional case. The result is that a large area is
imaged, rather than a single line as in two-dimensional surveying. Figure 2.2 gives
an illustration of these two methods.

14



2.3. Processing
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Figure 2.3.: Illustration of traces with common midpoint [26].

2.3. Processing

In order to obtain a satisfactory visualization of the seismic data once it is col-
lected, it needs to be processed. Problems that may need to be tackled are aliasing,
multiples and noise, which can all be corrected by various processing methods.

Before studying some of these processing methods, an important concept in
seismics must be established. A seismic trace is the data corresponding to a single
signal journey, from the source, through the sea-floor layers, and finally back to
the receiver. In other words, a trace is a data observation that belongs to a single
source-receiver pair.

Every trace has a midpoint, which is the point where the signal is reflected.
During processing, the traces are grouped according to their midpoint, see Figure
2.3. Traces with the same midpoint are grouped together, because they describe
the same spot in the seabed. Once the traces are grouped by common midpoint the
groups can be stacked. Stacking is the process of summing all traces with common
midpoint. This is an effective way of reducing noise in the data. The noise present
will have both positive and negative values, and when the traces are added some
of the noise from one trace will cancel some of noise from another trace. The result
is a reduction in noise in the signals. This concept is illustrated in Figure 2.4. The
final result, after stacking the traces in a common midpoint group, is an image of a
vertical line through the seabed. All the midpoint stacks can then be put together
to create a three-dimensional cube which depicts a piece of the seabed.

Another processing step that may be performed is correcting for signal offset.
When the seismic signals are both sent into the earth and reflected back at an
angle, there is an offset compared to if the signal had hit the earth at a 90° angle.
This means that common midpoint signals may have very different source-receiver
travel distances. The offset concept is illustrated in Figure 2.5. Signal offset is
corrected during processing, so all signals have zero offset.

Other processing methods which may be performed are correction for the

15



2. Introduction to seismic imaging

Figure 2.4.: Illustration of stacking, where traces with common midpoint are summed
resulting in noise reduction. The noisy signals before stacking are to the left, and the
resulting post-stacked signals are to right [27].

16



2.4. Inlines, crosslines and time slices

Offset =
Source ” Receiver

Figure 2.5.: An offset may occur when the signal travels from source to receiver.

depth of the source and receiver, correction for amplitude losses, and noise reduc-
tion, which is performed by filtering the signals.

2.4. Inlines, crosslines and time slices

After processing, the seismic data can be combined to form a three-dimensional
data cube, which depicts a cube of the earth. Three-dimensional data is computa-
tionally heavy to work with and not as easy to display as two-dimensional images
are. It is common to instead work on two-dimensional sub-sections of the data
cube. Of course, there are several ways the cross sections could be made. In seis-
mics, however, they are usually horizontal or vertical.

Definition 2.1 (Inlines and crosslines). Inline and crossline sections are vertical sub-
sections in seismic images. An inline is parallel to the direction in which the data
was acquired. Crosslines are lines perpendicular to the inlines.

An inline or crossline image shows all the layers of sediment as thick horizontal
lines. Commonly both section types are used in combination when exploring a
seabed area. Figure 2.6 on the next page shows an inline seismic image. We easily
see the layers of sediment in the layered structure in the image. This particular
inline image has a salt body in the center, which is why the layers slope here. In an
area with no salt or other structural disturbances the layers would be horizontal,
as in the edges of the image.

17



2. Introduction to seismic imaging

Figure 2.6.: Example of an inline seismic image.

18



2.5. Salt structures

Definition 2.2 (Time slice). A time slice image is a horizontal cross section of the
seabed.

A single time slice contains data points with common arrival time, the elapsed time
between the source and the receiver. A time slice does not show the structure of
the seabed layers like an inline section does. This is because a time slice depicts the
points with common arrival time from above, and these points are not necessarily
part of the same sedimentary layer. Figure 2.7 shows an example of a time slice
image.

Figure 2.8 gives a visualisation of inlines, crosslines and time slices relative
to each other. The inlines are horizontal and in the same direction as the seismic
vessel, and the crosslines are horizontal lines perpendicular to the inlines. This
makes the inline and crossline sections vertical slices of the seabed. The time slice
sections on the other hand, are horizontal slices of the seabed.

2.5. Salt structures

The structure of the sediments constituting the Earth’s crust has been formed over
the span of different geological periods. Geological processes cause movement and
deformation in the layers of sediment, which in turn result in various characteristic
structures. These structures are visible in seismic images. Some structures are of
particular interest because they are often associated with hydrocarbon finds. This
section gives a brief description of salt structures, which are the main subject of
this project. Before this, another important seismic term needs to be established.

Definition 2.3 (Horizon). A horizon is a layer of rock or sediment in the seabed.

Salt in the seabed pushes upwards, piercing or changing the structure of the
above sediment layers. The salt usually forms a dome- or mushroom-like shape,
depending on how thick the layers above it are and the salts sedimentation rate
[1]. During the process the horizons are pushed upward, and their structure is
changed. In the area around the salt the horizons will slope steeply. Sometimes
they are broken, resulting in faults.! Because of their characteristic shape, these
salt structures are often referred to as saltdomes. Figure 2.9 on page 22 shows an
illustration of a saltdome. The salt has the characteristic dome-shape, and the
layers of sediment have been pushed and bent in the area surrounding the salt.
The illustration also includes a trap where oil is trapped against the side of the salt
body.

Another characteristic feature of a saltdome is that its shape is locally isotropic
[16], meaning that the shape is roughly the same in any direction regardless of the
orientation.

1 A fault is a break or planar surface in rock across which there is observable displacement [26].

19



2. Introduction to seismic imaging

Figure 2.7.: Example of a time slice image.

20



2.5. Salt structures

Inline

Crossiine

Figure 2.8.: Illustration of crosslines, inlines and a time slice [26].

The texture within a saltdome is radically different to that of the surround-
ing area. The surrounding horizons have an even, layered structure and a high
graylevel variability in the perpendicular direction. In seismic, the layers with high
graylevel variability in the vertical direction are referred to as strong reflectors. In
contrast to the horizontally layered areas, the are within the saltdome is somewhat
chaotic, with an incoherent pattern and low variability in contrast and graylevel.

Now that the most important background concepts in seismic have been es-
tablished, we are ready to go into more specifics for this project. First, we will look
at the data we will be working with. The following chapter gives a brief geologic
description of the dataset. Following that, in Chapter 4, we will define the seismic
concept dip, and look at ways of estimating it.

21



2. Introduction to seismic imaging

Salt Dome Trap

Figure 2.9.: Illustration of a saltdome.
This illustration is from www.cartografareilpresente.org/article132.html.
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3. The dataset

The following geological description of the North Sea dataset, including the figure,
is from Berthelot et al. [2], who used the same dataset in their work.

A subset of a 3D dataset from Central graben (Figure 3.1) is used in this study.
The area includes a salt diapir and a well 1/6-5 which was used to verify the top
salt. In the well 1/6-5, the Cenozoic succession overlies approximately 25 meters
of Ekofisk chalk deposits of Maastrichtian age, which again overlies Zechstein salt
of Late Permian age. In the area around the salt diapir a complete Cenozoic suc-
cession is present, indicating that the chalk located at the top of the structures was
pushed upwards through the stratigraphy in front of the salt during diapirism. The
boundary between the Chalk group and the Zechstein salt, as seen at the well site
of 1/6-5, coincides with an amplitude anomaly in the seismic data. This amplitude
anomaly was therefore interpreted as the top salt seismic reflector. Sedimentary
rocks are easily recognized by parallel to sub-parallel seismic reflectors, which are
horizontal to sub-horizontal in the area away from the salt diapir and dipping up-
ward alongside it. These upward dipping seismic reflectors represent sedimentary
layers which have been re-oriented from a sub-horizontal orientation during de-
position to become upward dipping alongside it during diapirism and successive
cutting of the sedimentary layers. Sedimentary rocks are interpreted towards the
salt diapir as close as dipping seismic reflectors are observed. However, the bound-
ary between the sedimentary rocks and the salt itself is not observed directly in the
seismic reflection data.

23



3. The dataset

Figure 3.1.: Subset of a North Sea 3D data volume together with a well 1/6-5 used to verify
the top salt (transparent area).
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40 Dip

In this project we wish to explore the seismic data described in the previous chapter
mathematically. In order to do so, a description of how the image pixels relate to
each other is needed. One way to obtain such a description is in terms of the dip
attribute. This chapter will give an introduction to what dip is, followed by a study
of methods for dip estimation. First, the term dip must be defined.

Definition 4.1 (Dip). The term dip refers to the angle at which a rock layer is
inclined from the horizontal [21]. In other words, dip refers to the angle a horizon
makes with the horizontal axis.

The dip angle is illustrated in Figure 4.1. Intuitively, the dip tells us how much,
and in what direction, a curve deviates from being horizontal. In order to estimate
dip, the image gradient is put to use.

4.1. The image gradient
Dip calculation for seismic images is often based on estimating the gradient of the

image. The details on image gradients in this chapter are based on material from
the book by Gonzalez and Woods [8].

Definition 4.2. The gradient at a point (x,y) in an image f is denoted by Vf(x,y),
and is defined as the vector

v | sy | gi(x’ y)
f(x,]/) o gv(x/y) - gf(xry> ’
v

where h and v denote the horizontal and vertical axes, respectively.

The gradient vector points in the direction of the greatest rate of change in f at
the point (x,y). The direction of the gradient, 0, is the angle between the gradient
vector and the horizontal axis. Figure 4.2 on page 27 illustrates the gradient vector,
its components g, and g,, and the gradient direction, 6. The gradient magnitude is
the length of the gradient vector. It represents the rate of change in the direction of

25



4. Dip

Figure 4.1.: The dip angle is the angle the tangent in a point on the horizon makes with
the horizontal axis.

the gradient vector in the location(x, y), and is given by the square root of the sum
of the squared gradient components,

M(x,y) = [V f(x,y)ll-

4.2. Estimating gradients

Gradient estimation is one of the key operations in image analysis, and is most
commonly used in edge detection. Image gradients are usually estimated by filter-
ing the image with a set of two gradient filter masks, one working in the horizontal
and one in the vertical direction. This results in a horizontal and a vertical gradient
component. Letting G;, and G, represent the horizontal and vertical filter masks,
respectively, the gradient components g, and g, are obtained by convolving the
image [ with the filter masks,

gn=Gp=I,
gU:GU*I'

26



4.2. Estimating gradients

Figure 4.2.: The gradient vector points in the direction of the greatest rate of change in a
point, and is decomposed in the horizontal and vertical components gj, and g,. The
direction of the gradient is given by the angle 6.

The * operator represents the convolution operator. For more on image filtering
and convolution, see Chapter 3 in Gonzalez and Woods [8]. We will now look at a
few of the most common gradient filter masks.

We have already seen that gradients represent partial derivatives. The simple
way to estimate discrete partial derivatives is by means of one-sided differences,

of(xiy)  fxiy) = f(xio1,y)

ox Ax !
of (e yi)  fOoyi) = f(xyi1)
oy Ay

Formulating the above expressions in image filter terms results in a pair of filter
masks which simply take the difference between the pixel and one of its vertical
and horizontal neighbours, respectively:

8nli,j) = f(i,j) = f(i,j = 1),
8o(i,]) = f(i,j) = f(i=1,]).

In image analysis it is more common to use centered, symmetric versions of these
filters. The equations for the centered filter masks are

8u(i,j) = f(i,j+1) = f(i,j = 1),
go(i,j) = fli+1,)) = f(i=1,j),

27



4. Dip

0 0 0 0 -1 0
-1 0 1 0 0 0
0 0 0 0 1 0

(a) (b)

Figure 4.3.: Simple difference filter masks. Filter mask (a) results in the vertical gradient
component, and filter mask (b) results in the horizontal component.

and the filters are illustrated in Figure 4.3.

Unfortunately, the difference filters described above are very sensitive to image
noise. A more robust set of gradient filter masks are the Sobel filters in Figure 4.4.
Rather than the single sided difference in the simple filter masks, these filters uti-
lize a two-sided difference calculation. In addition the filters are two-dimensional,
including more of the surrounding pixels in the gradient calculation. In the partic-
ular case of the Sobel filter, the two-sided difference calculation in one direction is
combined with a smoothing operation in the other. This reduces the presence of
noise in the resulting gradient estimates.

A third filter alternative is the Derivative of Gaussian filter, which is created by
convolving a Gaussian filter kernel,

1 X2 +y2

G(x,y) = 28

with the centered difference filters in Figure 4.3. Figure 4.5 shows one-dimensional
Gaussian filter kernel of size 100 with standard deviation and ¢ = 5. Figure 4.6
shows the derivative of this Gaussian, which was obtained by convolving the filter
kernel with a horizontally centered difference filter.

4.3. Calculating dip using the gradient
Once the gradient components have been calculated, they can be used to find the

dip. To do so, observe that the gradient, pointing in the direction of the greatest
rate of change in the image, is orthogonal to the direction with the least change.
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4.3. Calculating dip using the gradient

-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1

(@ (b)

Figure 4.4.: Sobel filter masks. Mask (a) is the horizontal filter mask and mask (b) is the

vertical filter mask.
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Figure 4.5.: A Gaussian filter kernel of size 100 and standard deviation 5.
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Figure 4.6.: Derivative of the Gaussian in Figure 4.5.

This direction is equivalent to the angle of the horizon tangent, and thereby the
dip.
Observation 4.1. For a given image point, the direction of the gradient and the

direction of the dip are orthogonal.

Figure 4.7 illustrates this observation. The figure shows the gradient vector, with
the two gradient components g, and g,, and the gradient direction 6. The dip
angle we are interested in is the angle denoted by ¢ in triangle B. Because A and
B are similar triangles, we know that this angle is equal to ¢ in triangle A. Basic
trigonometry leads us to the following expression for ¢

tan(g) = .

which is equivalent to

8n
= arctan | = | .
? <gv>

This results in the following dip estimate,
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4.3. Calculating dip using the gradient

Curve tangent

Gradient 0

\

8Sh

Figure 4.7.: The similarity of the triangles A and B allows us to calculate the dip, ¢, using
the gradient components g;, and g.

Observation 4.2 (Dip estimate). Dip may be estimated as

dip = arctan (gh> ,

v

where g;, and g, are the horizontal and vertical gradient components, respectively

[1].

To summarize, we have found that a simple way to calculate dip consists of
the following steps:

1. Estimate gradient components g, and g, by filtering image with a pair of
gradient filter masks.

2. Calculate dip as arctan (g,/gv)-

Figure 4.8 shows the result of performing the simple dip estimation on the inline
image presented in Figure 2.6 on page 18. The graylevels in the image range from
black to white, corresponding to the range of dip values from —90° to 90°. This
means that the light area on the left side of the image has positive dip, while the
darker area to the right has negative dip. The gradients here were computed with
the Derivative of Gaussian filter described in the previous section, with size 15 and
o = 1.5. Although there are clear regions of positive and negative dip, the result is
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4. Dip

Figure 4.8.: Simple dip estimate, calculated as described in Section 4.3.

very noisy. In the next section we will look at a dip estimation method designed to
reduce noise.

4.4. More robust dip estimates

In order to tackle the problem of noise sensitivity in dip estimation, Randen et al.
[19] present a method consisting of the following three steps:

1. Gradient vector estimation, as explained in the previous sections, and noise
reducing filtering. The gradients are estimated using a Derivative of Gaussian
filter.

2. Gradient covariance matrix estimation in a local window.
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4.4. More robust dip estimates

3. Eigenvector decomposition of the covariance matrix. The dip is the direction
of the principal eigenvector of the covariance matrix.

The article presents the method in R3. Applying the method in R? is equivalent to
the application in IR®.

The method operates within a local window of size N = n x n centered at the
current pixel. The first step is simply estimating the gradient components g, and
Qo for every pixel within the window. In statistical terms, the gradient components
form the matrix of observations,

8 Sh S - &Y

, 4.1
g gl @ g @1

where ¢! and g/, are the horizontal and vertical gradient components for pixel i,
when the pixels have been sequentially numbered from 1 to N. Step 2 involves
calculating the covariance matrix of the matrix of observations. The covariance
matrix is given by

E[(g), = mn) (&, — 1)) El(g, — 1) (8, — 1o)'] w2
E[(8, = 1o) (8 — 1) "] El(8, = 1o)(8, — 1o)'] | '
where the observation means yj, and ., are given by
1
mn = Elg,] = 5 D8 (4.3)
i=1
19
o = Blg,] = 5 2180 (4.4)
i=1

The covariance matrix measures how strongly the gradient components are related
to one another. Once the covariance matrix has been calculated, its eigenvectors
and eigenvalues are computed. The eigenvector corresponding to the largest of the
eigenvalues, the first principal component, points in the dominating direction of the
gradient components. This direction is equivalent to the dip. Randen et al. also
include a reliability measure of the dip estimate, based on the eigenvalues of the
covariance matrix.

Figure 4.9 presents the result of applying the above dip estimation method
to the same inline image as before, again using a Derivative of Gaussian filter of
size 15 with ¢ = 1.5. Although there is still some noise present, this is clearly an
improvement from the result presented in the previous section. This method will
be used for dip estimation throughout this project.

In the next chapter we will leave seismics for a while and move on to studying
mathematic curves.
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4. Dip

Figure 4.9.: Dip estimation as presented by Randen et al. [19].

34



5. Curvature

Curvature is a geometric property of a curve which measures how a curve bends.
It is one of the most characteristic properties of a curve [13].

This chapter is based on Curvature at Wolfram MathWorld [24], Haralick and
Shapiro [9], Curvature at Encyclopedia of Mathematics [23], and the first pages of
an article by Roberts [20] which discusses the use of curvature as an attribute in
seismics.

5.1. What is curvature?

Simply put, curvature describes how a curve bends, in terms of how much it devi-
ates from being straight, or flat. Given a particular point on the curve, the curvature
is a measure of the rate of change of the direction of the curve.

Curvature can be defined for curves in both R? and R®. As the work in this
project addresses two dimensional data, the definitions in the following are given
in IR?. A short presentation of curvature in R? will be given in Section 5.4.

Before we get into the mathematical details of curvature, a few concepts need
to be defined. The following definitions are found in Section 1.3 of Do Carmo [4],
but have been adapted from R to IR?.

Definition 5.1 (Tangent Angle). Given an interval I = [a,b] < R, leta : [ — R?
be a continuous parametrized differentiable curve given by a(t) = (x(¢),y(t)). The
derivative a/(t) is called the tangent vector at t. The tangent angle is the angle the
tangent vector makes with the horizontal axis and is denoted by ¢.

The tangent vector and tangent angle are illustrated in Figure 5.1 on the following
page. The illustration shows the tangent vector passing through the point ¢, which
is how it is commonly imagined, although in reality all vectors start at the origin.

Definition 5.2 (Arc Length). Given t € I, the arc length of a curve a : [ — R? from

the point ty is
t
s(t) = | |&/(t)|dt,

fo

where [a/(£)] = +/(x'(£))? + (' (£))*.
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5. Curvature

’

Tangent

S Horizontal axis

Figure 5.1.: The tangent angle is the angle the curves tangent makes with the horizontal
axis.
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5.2. Deriving an expression for curvature

Positive
Curvaiure

ZET0
Cuorvature
r Megative T B B
* _ Curvature, =

Syncline

Figure 5.2.: Sign convention for curvature [20].

Given a t € I = [a,b], the function &« maps ¢ to the point a(t) = (x(t),y(t)). The
variable t is the parameter of x. When describing curvature, it is common to let a
be parametrized by arc length, and we write a(s) = (x(s),y(s)). However, it can
be shown that the concepts in this chapter hold for curves parameterized by any
parameter [4, pp. 21-22].

With the above concepts in place, curvature can be defined mathematically as
follows:

Definition 5.3 (Curvature [22]). The curvature x of a curve « : [ — R? parameter-
ized by arc length, is defined as
d¢
==
where ¢ and s are the tangent angle and the arc length of «, respectively.

K

So, curvature is defined as the rate of change of the tangent angle with respect to
the arc length.

The sign of x provides further information about the local shape of the curve.
Definition 5.3 results in the same sign convention as used by Roberts [20], which
is illustrated in Figure 5.2. As shown here, a concave segment of the curve has
positive curvature, whilst the convex segment has negative curvature. Flat areas
have zero curvature. This is the sign convention used throughout this project.

5.2. Deriving an expression for curvature

Definition 5.3 defines curvature in terms of the tangent angle and arc length. How-
ever, curvature may also be expressed in terms of other parameters. In this section,
an expression for the curvature of a general parameterized curve will be derived.
When the curve « is not parameterized by arc length, but by a general param-
eter f, it can be expressed as a(t) = (x(t),y(t)). When expressed in terms of f, the
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5. Curvature

derivatives in Definition 5.3 can be restated as

dg(t) /ds(t)
K= dt/ A

For a simpler notation the parameter t will be omitted in the following. It will
be clear from the context whether we are talking about the general function, for

example ¢, or the value of the function ¢ in the point t. We will also let - denote
-
W.

We begin by looking at the derivative of the tangent angle, Z—f. The tangent of
¢ can be expressed as

% and -’ denote

tan¢g = % 6.1)

Taking the derivatives of both parts of equation (5.1) yields

1
cos? ¢

itan = !

and /i /o
_ y/x _y x/
dtx’  (x)2

Equation (5.1) now becomes

This gives

y// ¥ — y/ X

¢’ = cos’ (PW (5.2)

- 1 ]/”X, . ]//x”
~ 1+4+tanZ¢  (x)2 (53)

B 1 y//x/ o ]/,x”
= TILRREIL (5.4)
(')

]/”X/ _ y/x//
COEaR

Next, consider the arc length. Definition 5.2 defined arc length as

(5.5)

s(t) = t o/ (t)|dt.

fo
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5.3. The osculating circle

Assuming that a : [ — R? is continuous, the Fundamental theorem of calculus [14]
says that

d t

e / — !
i ), 120l = ),

given that [to, t] € I. This allows us to take the derivative of either side of Equation
5.2, resulting in an expression for the derivative of the arc length,

B xRy

Substituting this expression and (5.5) into Definition 5.3 results in

_ ﬂl B yllxl_y/x// , 5 , 2
K= S/ - (x/)z + (y/)z/ \/ (X) + (y) (56)

y// ¥ — ]// X

3 (57)

) (@) +w7?)

as the final expression for curvature. So, all one needs to calculate curvature are
the first and second derivatives of the x and y-components of the curve.

5.3. The osculating circle

An alternative way to define curvature is by the osculating circle. Given a point on
a curve in IR?, its osculating circle is the circle that makes the greatest contact with
the curve without ever crossing it [20]. In other words, the osculating circle is the
circle that best fits inside the curve. A sharp bend will have a small osculating
circle. The straighter the curve gets, the larger the osculating circle will be. The
key observation is that locally the curvature of the curve equals the curvature of
the osculating circle. So, calculating the curvature of the curve in a point amounts
to calculating the curvature of the osculating circle in that point. An illustration of
osculating circles for two different curves is displayed in Figure 5.3 on the following
page.

The radius of the osculating circle defines the radius of curvature [20]. The oscu-
lating circle and radius of curvature of a curve are illustrated in Figure 5.4. Again,
a sharply bent curve with high curvature will have a small osculating circle and ra-
dius of curvature, and the radius of curvature will increase as the curve straightens
out. This indicates that the relationship between the curvature and the radius of
curvature at a given point on the curve is inverse. This relationship can be derived
directly from Equation (5.7). To do so, observe that a circle is bent by the same
amount at every point, and thereby has constant curvature. The parameterisation
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5. Curvature

Figure 5.3.: Osculating circles. The sharp curve to the left has a smaller osculating circle

than the straighter curve to the right.

of a circle y, parameterised by arc length s, is y(s) = (Rcoss, Rsins). In the context

of Equation (5.7) the variables are

x =Rcoss, x’ = —Rsins, x" = —Rcoss,

y =Rsins, y =Rcoss, y”’ = —Rsins.
Substituting these variables into (5.7) gives

y// X — y/ X"

K = 3

(7 + )

R?sin’s + R? cos? s

NI

((—R sins)? + (R cos s)2>

RZ
(R2 sin? s + R? cos? 5) 2
R2
®)
_ 1
==

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

This proves that the curvature is equal to the reciprocal of the radius of curvature,

just as suggested.
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5.4. Curvature in three-dimensional data

Osculating Circle

Figure 5.4.: A curve with its osculating circle and radius of curvature, R. This figure is
copied from Roberts [20].

5.4. Curvature in three-dimensional data

The curves studied in this project are curves in IR>. However, most of the relevant
literature deals with curves in R® in manually interpreted seismic surfaces. Before
studying some of this literature in Section 5.5, the curvature definitions above need
to be adapted to the three-dimensional case. To do so, simply imagine cutting
through the surface with a plane. The imprint the surface makes on the plane
results in a two dimensional curve to which the above curvature definitions may
be applied. However, given a point on a 3D surface, there are infinitely many
possible two dimensional slices, and thus a surface has infinitely many curvatures
at a single point. In the following, a few of the most common 3D curvatures will
be defined.

The most commonly used 3D curvatures are normal curvatures. The normal
curvatures are those of curves defined by planes that are orthogonal to the surface
in question [20].

Many curvature attributes are formed by a combination of normal curvatures.
The mean curvature, K,,, is defined as the average of two orthogonal normal curva-
tures, K; and Kj, through the same point on a surface,

_ Ky + K
==

The mean curvature through a point on a surface is constant.

Out of all the infinitely many normal curvatures at a given point on the surface,
the one with the highest absolute curvature defines the maximum curvature, Ky;ax.
The curve perpendicular to this defines the minimum curvature, K,;,. The maximum
and minimum curvatures constitute the principal curvatures.

Kin
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5. Curvature

Figure 5.5.: Illustration of Gauss’s Theorema Egregium [7]. Isometric bending of the surface
does not change the Gaussian curvature. This illustration is copied from Lisle [15].

The principal curvatures give rise to a new curvature measure, the Gaussian
curvature. Gaussian curvature, or total curvature, is defined as the product of the
two principal curvatures, K,,;;, and K.y [20],

Kg = KininKmax-

Gauss stated that the Gaussian curvature, or fotal curvature, does not change if the
surface is bended isometrically [7]. An illustration of this theorem is displayed in
Figure 5.5.

5.5. From IR? to the discrete case

The definition of curvature presented in this chapter applies to continuous differ-
entiable curves in R?. In the case of discrete data it is not obvious how to calculate
curvature. In this section we will study some of the previous work that has been
done on this subject.

Coeurjolly, Miguet, and Tougne [3] and Flynn and Jain [6] compare the two
different approaches one can take to applying continuous mathematics on discrete
data. The first approach is to approximate the data by a continuous function, so
the continuous definitions can be applied to the disctrete data. This will usually
involve interpolation or regression. The second approach is to derive discrete ver-
sions of the continuous definitions, that can be applied directly to the discrete data.

Coeurjolly, Miguet, and Tougne [3] go on to argue that using the first ap-
proach, and interpolating the data with a continuous function, is not a good choice
as it depends on picking the right parameters and can be very computationally
heavy. This critique will be addressed in Section 8.2.5. They then point out that
when taking the second approach and finding a discrete curvature definition, there
are three different ways to proceed. These are to define curvature in terms of either
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5.5. From R? to the discrete case

tangent orientation, discrete derivatives or by osculating circles. The method pre-
sented by Coeurjolly, Miguet, and Tougne uses the last definition, and calculates
curvature based on circle estimation and arc fitting.

Given a curve parameterized by arc-length, Lewiner et al. [13] present a method
for curvature estimation consisting of fitting a second-order polynomial considered
as a function of arc-length. The local arc-length is estimated, allowing the first- and
second-order derivatives to be estimated. The fitting of the polynomial is done by
a weighted least squares method.

The method presented by Pal and Bhowmick [18] applies to curves expressed
in terms of chain codes. This is a purely discrete method, where curvature is calcu-
lated directly from the data. Earlier algorithms for calculating curvature based on
chain codes look at the difference of sums of chain codes, while Pal and Bhowmick
base their method on the sum of pairwise differences. They present the following
equation for curvature calculation,

K(pi/k) =

i

k
Z min(filJrj’ 8 — fi/Jrj)/
j=1

where f i = |fi+j — fi—j+1]- The chain code difference is defined to be the shortest
of the two differences f/ 4j and 8 — ! ,j in order to accurately estimate the true
curvature. The method shows good results, particularly in high curvature points
such as corners. It is, according to the authors, a definite improvement from the
difference of sums approach.

Roberts [20] applies the theory of discrete curvature estimation to seismic data
in particular. More specifically, he studies curvature in three-dimensional manually
interpreted horizons. The method involves locally fitting a quadratic surface to the
mapped surface using a least squares regression. In order to calculate the curvature
in a particular point the eight surrounding neighbour points are used. A general
quadratic surface is given by the equation

z=ax* + by* +cxy +dx +ey + f. (5.14)

This expression has six free variables. Because a neighbourhood of eight points
is used in the estimation this results in a overdetermined system which is solved
using the method of least squares. The result is a set of expressions for the six
coefficients in Equation 5.14. Roberts goes on to provide expressions for the 3D
curvatures presented in Section 5.4, and a few others, using these coefficients.

One of the numerical curvature estimation methods discussed by Flynn and
Jain [6] is the surface normal change method presented by Hoffman and Jain [10].
This is a 3D method that estimates the curvature in moving from pixel p to pixel g
as

n,—n
k(p,q) = MS(P/@/
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5. Curvature

where 7, is the unit vector normal to the tangent plane at pixel p and s is a sign
factor which is 1 when the curvature is positive and —1 when the curvature is
negative. The notation ||-|| denotes the Euclidean distance from the origin in 3D
space. This curvature estimate is used to define a series of 3D curvature measures.

There are clearly several challenges related to calculation of curvature for dig-
itized curves, and various approaches exist. If we follow the approach of fitting
a continuous curve to the data in order to apply the continuous curvature defini-
tions, this will usually involve some kind of derivative estimation. In this case, the
challenge is to find good and robust derivative estimates. Depending on the shape
of the curve in question, this can be a source of errors. If we choose the second
approach, and derive a discrete curvature expression, we will have to make some
assumptions about the curve. This could, again, be a source of error. However,
depending on the application, it may well be sensible to make such assumptions
about the curve.
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6. Estimating derivatives

In order to calculate the curvature of a discrete curve, the first and second order
derivatives need to be approximated. This can be done in several ways, and three
methods will be explored in this chapter. What they have in common is that they
approximate the derivatives of the discrete curve by calculating the derivatives of
a continuous function. This function is fitted to the discrete data, allowing it to be
a continuous approximation to the discrete curve.

Discrete partial derivatives have already been introduced in Chapter 4, where
they were used in image gradient estimation. The derivative estimates presented in
the following section are essentially the same as the filters introduced in Section 4.2,
only in the setting of discrete curves in R? rather than discrete images. However,
in spite of being a little repetitive, the finite difference derivative estimate will be
fully derived in the following for completeness.

The finite difference and parabola interpolation methods presented in Sections
6.1 and 6.2 are based on material from the compendium by Merken [17]. The
theoretical background for the least squares method in Section 6.3 is from the linear
algebra textbook by Lay [12].

6.1. Finite differences

The simplest and most common way to approximate derivatives is with finite differ-
ences. The finite difference approach to derivative estimation is based on approxi-
mating a curve segment with a straight line, and differentiating this line. The line
that interpolates f in the points a2 and a + h is given by

I(x) = f(a) + W(x ). 6.1)

This line is commonly known as the secant of f in the points 4 and a + h. Taking
the derivative of (6.1) yields

() = AT = 1) h}i —J@ 6:2)

So, letting I(x) approximate f locally we have

fla) = Vo) = L 210, ©3)
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6. Estimating derivatives

Alternatively, this relation can be derived through the definition of f'(x),

f/(a) _ llmf(a+h)_f(a)

lim 0 (6.4)

If we drop the limit in (6.4), and let / be an arbitrary small constant, we end up
with (6.3).

An approximation to the second derivative of f is obtained by applying the
first derivative estimate in (6.3) to f'(a):

f”(él) ~ f/(ll +h})l _f/<a) (6.5)
:f(a+h)—2];l(2u)+f(a—h)' 66)

6.2. Parabola interpolation

The finite difference method for derivative estimation can be viewed as an inter-
polation method, where the data is interpolated with straight line segments. If
prior knowledge about the shape of the data is available, it may be sensible to in-
terpolate with more complex functions than straight lines. In this section we will
look at estimating derivatives by interpolating with second degree polynomials, or
parabolas.

A general parabola has three free coefficients. Therefore, three points in a
local neighbourhood are picked and the discrete curve is approximated by forcing
a parabola through these points. Given any set of three points there exists a unique
parabola passing through those points, so this problem has a unique solution.

Parabolas are most commonly written in the form

r(t) = ao + a1t + aat?, (6.7)

where a9,a; and a, are constants, and we have let r(t) represent the curve as a
function of time, . However, for the purpose of interpolation, the Newton form is
more beneficial [17]. Given a set of three points, {tk}}':;li_l, the Newton form of a
parabola is as follows,

r(t) = ao +ar(t —tio1) + az(t — tia)(t — t;). (6.8)

We can now set up the following system of equations which can be solved to find
the constants ag, 41 and ay:

r(ti1) = ao + ar(tig — tizq) + aa(tiog — ti1) (i — £) (6.9)
r(t;) = ao +ay(t; — ti1) +az(t; — tiq)(ti — t;) (6.10)
T(ti+1) =ap+ al(ti+1 — ti_1> + az(ti+1 — ti—l)(ti+1 — ti). (6.11)
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6.2. Parabola interpolation

Several of the t’s cancel out, so we end up with

r(tiz1) = ao (6.12)
r(ti) = ao +ai(ti —ti_q) (6.13)
r(tiv1) = ao + a1 (tiv1 — tic1) + az(tipn — tiz1) (fip1 — £). (6.14)

The above equations can easily be solved using simple algebra. We have

ap = r(ti_1). (6.15)
Substituting a¢ in (6.13) gives
r(t) = r(ti1) + a1t — tiog). (6.16)
So we have
gy = T = rltia) 617)
ti—tiq

For a3 the solutions for ag and a4 are substituted into (6.14)

T(ti) — T(ti_l)

—— (tiy1 —tio1) +aa(tipr —tia) (i — 1), (6.18)
1 1—

r(tiv1) = r(tic1) +

Rearranging (6.18) results in

r(tip)—=r(tio1)  r(t)—r(ti—1)

4y — tiy1—ti—1 ti—tiq . (6.19)
tiy1 — £

We now have a general expression for a parabola that passes through the three
points r(t;_1), r(t;) and r(ti11),

r(t) =ap+a1(t —ti_1)+ax(t—ti1)(t—t;), (6.20)
where
ag = r(ti-1)
_ r(t) —r(tiog)
4 = 41
ti—tiq (6.21)
r(tip)—r(tiz1) _ r(t)—r(ti-1)
fip1—tig ti—ti—q
ay =
tiy1 — £

Equation (6.20) is easy to differentiate. The first and second derivatives are

r'(t) =a1+ a2t —t; —t;q), (6.22)
" (t) = 2a,. (6.23)
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6. Estimating derivatives

6.3. Least-squares fitting

In the interpolation method presented in the previous section, a parabola was fit-
ted locally to the discrete curve by forcing it through three data points in a local
neighbourhood. An alternative approach to the parabola fitting problem is to in-
clude more data points in the estimation. This results in an overdetermined set of
equations, to which a solution must be approximated.

Given a point, (x;,y;), we wish to locally fit a parabola to a set of points con-
sisting of (x;, ;) and a certain number of neighbours. As we saw in the previous
section, the form of a general parabola is

r(t) = ap + ayt + art?. (6.24)

Fitting a parabola to data involves determining the parameters ag, a; and a,. If
more than three data points are included in the calculation, the result is an overde-
termined system that, in general, has no solution. Solving this problem consists
of finding the parabola that best fits the set of data points, rather than forcing the
parabola through the points as in the interpolation approach described in the pre-
vious section. In the following the best fit parabola problem will be mathematically
formulated.

Given a set of points, S = {(x;, yj)}}“:l, in the neighbourhood of (x;,y;), we
wish to find the parabola that best fits the points in S. Had the data points fit the
parabola in Equation 6.24 perfectly, the parameters ag, 2; and a, would satisfy the
equations

T’(t1) =ag+ait; + let%,

r(ta) = ag + arty + aqt3,

(6.25)
r(tn) = ag + arty + at?.
This system can be written as
r = Aa, (6.26)
where
r(t) 1 4 # .
r(t 1t £ 0
r= () A= D L a=|a | (6.27)
: oo )
r(tn) 1ty £

However, because the data points most likely do not fit perfectly to the parabola,
the system has no solution. The system is, however, a least-squares problem, and
can be solved as such. For details on solving least-squares problems, see Chapter
6 in the linear algebra book by Lay [12].
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6.3. Least-squares fitting

The least-squares solution to 6.26 is the solution of the normal equations [12],

ATr = AT Aa

U

. (6.28)

1| =ATA) ATy,
2

>
Il
> D>

The solutions are denoted by 4; because they are approximations to the true a;.

Finding estimates for the derivatives now simply amounts to differentiating
(6.24) and substituting 4; with 4;, much like in Section 6.2. The derivatives of (6.24)
are

r'(t) = a1 + 2ast, (6.29)
" (t) = 2a,. (6.30)

Substituting the coefficients with the approximations results in the following deriva-
tive estimates

A1 + 24at, (6.31)
#(t) = 24. (6.32)

It must be noted that the basis {1,t,t>,13,..} is numerically ill-conditioned,
particularly in high dimensions. However, in the quadratic case it is reasonable
to assume that this will not cause problems. Furthermore, in the context of esti-
mating curvature of seismic horizons, details of which will be explained in Part II,
computational accuracy is not of great importance. The main concern is the size of
the curvature values relative to each other.

Three methods for estimation of the derivatives of a discrete curve have been
presented in this chapter. The choice of method depends on the nature of the
problem being solved. In Chapter 8, the three methods presented here will be
compared, and the method best suited for derivative approximation in the context
of curvature estimation in seismic images will be determined.

This chapter concludes the background material constituting Part I of this
project. In Part II the material presented here will be compiled into a method
for estimating curvature in a seismic image.
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7. Introduction

In Part I, the theoretical background needed for this project was established. In
this part of the project, all the theory from Part I will be put together in an attempt
to solve the problem of highlighting saltdomes in seismic images, as described in
Chapter 1.

Chapter 8 presents the method used to create an image representing the cur-
vature of the seismic data. The method consists of two parts. The first part in-
volves automatically extracting segments of seismic horizons in the form of dis-
crete curves. This is followed by estimation of the curvature of the discrete curve
segments. The result of performing these steps for every image pixel will be an
image depicting curvature.

In Chapter 9, the results of performing the method from Chapter 8 are pre-
sented. The method is first tested on the single inline image that has been studied
so far in the project, followed by an analysis of the results. Thereafter, for complete-
ness in the analysis of the method, two new inline saltdome images are presented
and the method is tested on these as well. The chapter concludes with an analysis
of the results.

In the projects final chapter, a summary of the presented method and results
will be given. This will be followed by a few thoughts on limitations, possible
improvements and further work.
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8. Pixel based curvature estimation

In this chapter, a method for estimating the curvature of an inline seismic image
will be presented. The method consists of two parts. First, the dip, as presented in
Chapter 4, is used to track horizons. This allows segments in the form of discrete
curves starting at a given pixel to be extracted.

Definition 8.1 (Discrete curve). A discrete curve is an ordered set of points of the
form {(x;,y;)}~, which form a curve segment.

After extracting the curve segment the curvature around the pixel is estimated.
This is done by estimating the curvature of the tracked curve segment, using the
curvature expression derived in Chapter 5. The first and second derivatives of
the two curve components, which are needed in the curvature calculation, are
estimated as described in Chapter 6.

The method presented in the following differs from previous work on the
subject of curvature estimation in seismic data in that it is fully automatic. While
most alternative methods address estimation of curvature for manually interpreted
horizons, the presented method uses the dip attribute to automatically interpret
the horizons before curvature is estimated. One exception is the work by Klein,
Richard, and James [11] who present a method for estimation of curvature in
three-dimensional seismic volume data. The method uses window-based cross-
correlation to propagate a small surface around each data sample. This is followed
by fitting of a least squares quadratic surface, and the sample curvature is esti-
mated as the curvature of this surface of this surface. This method is similar to the
method presented in the following, but differs in that the automatic interpretation
is performed by cross-correlation rather than dip.

8.1. Tracking curves

As described in Chapter 4, the term dip refers to the angle a curve makes with the
horizontal axis. The dip image, containing the estimated dip for every pixel in the
input image, provides valuable information about the structure of the image. In
this project, the dip estimation method presented by Randen et al. [19] in Section
4.4, is used to create the dip image. The original saltdome image, inline number
8505 from the North Sea dataset, is displayed in Figure 8.1 on the following page.
The resulting dip image can be found in Figure 8.2.
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8. Pixel based curvature estimation

Figure 8.1.: Inline number 8505 from the North Sea dataset.
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8.1. Tracking curves

Figure 8.2.: Dip image created using the method presented by Randen et al. [19].
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8. Pixel based curvature estimation

Figure 8.3.: The pixel indicated by the arrow is on a strong negative reflector and has a dip
value of 32.06.

The basic idea behind the method proposed here is to view the horizons in an
inline seismic image as parametric curves. The saltdome image in Figure 8.1 has a
clear horizontally layered structure. The seismic layers, or reflectors, curve around
the saltdome in the center of the image. This gives them distinctive curved shape.
When viewing the reflectors as curves, this shape should result in a pattern in the
curvature of the curves.

Recall from Chapter 2 that the sedimentary layers in a seismic image are called
horizons. In order to represent the horizons as digital curves, the dip is put to use.
Each pixel of the dip image holds the angle of the dominant direction for that
pixel in the original image. In other words, moving in this direction is likely to
be a movement along a horizon. As an example, consider the cropped image in
Figure 8.3. The pixel indicated by the red arrow has a dip value of 32.06. In this
example we allow the horizontal axis to have zero dip. The indicated pixel is part
of a strong negative reflector which has a gentle upward slope in the area around
the indicated pixel. Observing the shape of the reflector, it is obvious that the local
angle in the indicated pixel, relative to the horizontal axis, must be approximately
30°. This observation corresponds well to the dip value.
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8.1. Tracking curves

So, the angle given by the dip gives the orientation of the horizon the pixel in
question belongs to. The aim is to use this information to move from one pixel to its
neighbour, in a given direction, on the horizon. Repeating this for a given number
of points will result in a digital curve segment, hopefully following a horizon. To
summarize, the input to the method will be a starting pixel and the number of
pixels to be tracked, and the output should be a discrete curve.

In the following two subsections two different approaches to this problem will
be explored. The first approach uses simple trigonometry to find the exact direction
of the horizon in the pixel. In the second approach the possible dip angles are
divided into a discrete set of intervals, and one neighbouring pixel is assigned to
each interval. Then, given the dip, which of the neighbouring pixels is next on the
curve can be decided.

8.1.1. Trigonometry

Given a pixel in the dip image, we have the orientation of the horizon the pixel
belongs to. One way of using this angle to extract a curve is by fixing the step
length in the horizontal direction to one pixel. Then, the dip angle can be used to
determine the step length in the vertical direction using the simple trigonometric
relation

Av
t =—, 8.1
ang = (8.1)
where / and v are the horizontal and vertical step size, respectively, and ¢ is the
dip angle of the current pixel. Figure 8.4 on the following page gives an illustration
of this relationship. Letting the horizontal step size be one pixel, h = 1, Equation
(8.1) reduces to

v = tan ¢. (8.2)

Using (8.2) iteratively, the path along the horizon can be tracked, pixel by pixel.
The pixel coordinates, (x,y), easily translate to digital vector form, a = (xi,yi)f\i v
where N is the desired length of the curve segment. One may also wish to travel
across the image in a backwards, rather than forwards, manner. This is done by
setting the step length, i, to —1.

Figure 8.5 on page 61 shows the results of tracking 100 pixels in either direc-
tion, starting in pixels (303,528) and (631,408). Although the curves do follow the
general shape of the horizons in both sub-images, they both trail off in the far right
end. Particularly the curve in (b) makes a turn which is not as expected. It may
seem that the trigonometric curve tracking method is somewhat unstable. In the
next subsection a different approach will be explored.

59



8. Pixel based curvature estimation

Ah

Figure 8.4.: Triangle illustrating a step in tracking a horizon. The step length is set in the
horizontal direction, and, given the angle form the calculated dip, the vertical step
length is calculated.

8.1.2. A discrete approach

In the above approach to curve tracking, the horizontal step length is assumed to
always be one pixel, h = 1. This may not always be a sensible assumption. In the
case of a curve that is close to vertical, the vertical step length will quickly become
very large. In fact, theoretically, if we have a vertical curve and assume h = 1,
then v will approach infinity. This may be part of the reason why the method is
somewhat unstable.

An alternative approach is to base the algorithm on the assumption that we
in each step move from the current pixel to one of its eight neighbours. The 8-
neighbourhood for a pixel, x; , is illustrated in Figure 8.6. The possible dip values
have a total range of 180°. The dip estimation technique presented in Chapter 4
results in dip values in the interval [-90°,90°]. The discrete curve tracking method
involves splitting this interval into smaller intervals, each corresponding to one of
the neighbouring pixels.

As with the trigonometric approach presented in the previous subsection, we
can decide to move forwards or backwards from the center pixel. The current
direction decides which of the neighbouring pixels are possible to travel to. Con-
sidering that the range of possible dip values is 180°, it is quite intuitive that the
range of possible neighbouring pixels is clockwise and anticlockwise from the pixel
vertically above to vertically below the current pixel, when moving forwards and
backwards, respectively. This is illustrated in Figure 8.7 on page 63.
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(b)

Figure 8.5.: Centered curve segments tracked using the trigonometric curve tracking
method described in Subsection 8.1.1. The curve in (a) is tracked from pixel (303,528),
and (b) is tracked from pixel (631,408).
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Xi—1,j—1 Xi—1,j Xi—1,j+1
Xij—1 Xi,j Xi—1,j—1
Xit+1,j—1 Xi+1,j Xit+1,j+1

Figure 8.6.: The eight-neighbourhood of pixel x; ;.

The final question is to decide the size of the angle intervals. The most obvious
would be to split the total angle range into five equally sized intervals. However,
this would result in the pixels vertically above and below the current pixel to have
a range double of that of the other pixels, when taking both directions into account.
To avoid this, the size of the intervals for these two pixels is made half the size of
the other intervals. When the angle range is [—90°,90°], this results in the angle
intervals presented in Figure 8.7, where (a) shows the pixels for forward tracking,
and (b) for backwards tracking.

The discrete curve tracking method is tested on the inline saltdome image, us-
ing the same two starting points as with the trigonometric method in the previous
subsection. The results are displayed in Figure 8.8 on page 64. When comparing
these to the results from the previous subsection in Figure 8.5, it seems that the dis-
crete method performs better than the trigonometric method. Neither of the two
curves trails off like the curves in Figure 8.5 did. Rather, they follow the saltdome
shape in the image closely. Note that they do not follow a single reflector perfectly,
but jump between neighbouring reflectors. However, they do follow the general
shape of the structure in the image.

Considering the left segment of the curve in Figure 8.8a, it is clear that there is
some room for improvement in the curve tracking method. The curve is completely
horizontal in this area, although the underlying horizons actually have slight up-
wards dipping shape. A possible solution to this problem may be to reduce the
span of the angle interval corresponding to a horizontal move. An alternative
possible improvement could be to determine the size of the intervals analytically,
rather than letting them be uniform. However, as discussed in the previous section
the curves do follow the general shape in the image and prove to give satisfactory
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[68,90] [23,67]

Xjj [—22,22]

[—68,—-90] | [—23,—67]

(@)

[—67,—23] | [-90, —68]

[—22,22] Xij
[23,67] [68,90]
(b)

Figure 8.7.: Subfigure (a) shows the angle intervals for each neighbouring pixel of pixel
x;; that can be reached in forward curve tracking. Subfigure (b) shows the equiva-
lent pixels for backward curve tracking. The possible dip angles are in the interval
[—90°,90°], with the horizontal axis having zero dip.
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(b)

Figure 8.8.: Centered curve segments tracked using the discrete curve tracking method de-
scribed in Subsection 8.1.2. The curves in (a) and (b) are tracked from pixel (303, 528)
and (631,408), respectively.

results in the later curvature estimation, so this is not further pursued. It would,
however, be an interesting topic for further study.

The discrete curve tracking method, with the dip intervals in Figure 8.7, will
be used for the curve tracking throughout this project. Having found a successful
method for extracting discrete curves from seismic images, the following section
will explore how the curvature of these curves can be estimated in practice.

8.2. Curvature

In the previous section, a method for extracting curve segments from a saltdome
image using the dip was presented. The curve segments are in discrete form,
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N = (xi,yi)fi 1» where N is the length of the curve segment. In this section, we will
study how the curvature of these segments can be estimated.

8.2.1. Choosing a method for derivative estimation

The first step in estimating curvature is estimation of derivatives. In Chapter 6,
three ways of estimating discrete derivatives were presented. The first method
involved finite differences, the second method was based on interpolating the curve
segment with parabolas, and the third method fitted a parabola to the full set of
curve points using the method of least squares. In this section one of these three
methods will be chosen to be used in the curvature estimation.

One of the main differences between the three derivative estimation methods
is that while the least squares method takes all the available data points into ac-
count when fitting the parabola, the finite difference and parabola interpolation
methods only use three points in the estimation. This makes these two methods
more sensitive to noise in the data, as the line segments or parabolas are forced
through these points. To tackle this problem the discrete curves were filtered be-
fore any calculations were done. Mean, median and Gaussian filters with sizes
varying from 10 to 100 pixels were tested. The experiments showed that a 50 pixel
long mean filter gave the best results. The results of filtering the two curves from
Figure 8.8 are shown in Figures 8.9 and 8.10. The filtered curves are smoothed out,
but still retain the general shape of the horizons. Note that the filtering shortens
the curve segments slightly.

The least squares parabola fitting finds the curve that best fits the data points,
rather than forcing it through them as in the two interpolation methods described
above. It can therefore be considered to have the filtering step integrated in the
method. This means that the filtering which is necessary for the two other methods
is obsolete for the least squares method.

Because there are no exact derivatives to compare the estimates to, the only
way to asses them is by visual inspection. There are four derivatives being esti-
mated in each method. These are the first and second order derivatives for the x-
and y-components of the discrete curves, making twelve result images in total, all
of which will not be included here. The first order derivative of the y-component
is displayed in Figures 8.11, 8.12 and 8.13, respectively. Observe that the results of
the two interpolation methods, in Figures 8.11 and 8.12, are practically identical.
Because of the shape of the saltdome curves one could intuitively assume that a
parabola would be better suited than straight line segments in an approximation,
and be surprised by this result. However, the similarity in the results is proba-
bly due to the fact that only three data points were involved in the estimation, as
discussed in the previous section. The result of the least squares fitting method,
displayed in Figure 8.13, is much smoother than those of the two other methods.
This may be because all the available data has been included in the estimation,
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(b)
Figure 8.9.:
(a) Curve tracked from pixel (303,528) using the discrete curve tracking method from
Section 8.1.

(b) The curve in (a) filtered using a 50 point mean filter.
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(b)
Figure 8.10.:
(a) Curve tracked from pixel (631,408) using the discrete curve tracking method from
Section 8.1.

(b) The curve in (a) filtered using a 50 point mean filter.
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which means that the risk of outlier data points impacting the result is minimal.
The conclusion is that as the least squares method is the most theoretically sound
and also gives the smoothest results, this is the method that should be used for the
curvature estimation in this project.

8.2.2. Least squares parabola fitting in practice

Based on Section 6.3, the implementation of the method of least squares derivative
estimation is simple. First the t-values must be calculated. This is done iteratively
with tg = 0, using the following expression

ti=ti1+ \/(yi —Yic1)? + (xi — xi-1)2 (8.3)

Once the t-values have been calculated the derivative estimation simply consists
of setting up the matrices from Equation (6.27), calculating the coefficient approx-
imations, and estimating the derivatives using Equation (6.31). The derivatives in
the x- and y-direction are estimated independently. The curve dataset is of the
form o = (x;,y;) fi 1, giving two r-vectors which we call 7, and r,. So we have the

matrices
X1 n 1 tl t%
X7 > 1 t 12
rx = . ’ T’y = y 7 A = . . 2 (84)
Xy Yn 1 ¢, t%
Once the matrices have been set up the @ coefficients can be estimated,
ﬁOx
ay = | a | = (ATA)TATr,, (8.5)
ﬁ2x
ay=| my | =(ATA)ATy, (8.6)
aoy
The final derivative estimates are
Pe(t) = 831 + 280t (8.7)
PU(t) = 285 (8.8)
in the x-direction, and
Aly(t) = ﬁyl + 2ﬁy2tl (8.9)
?’y’(t) =24, (8.10)
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Figure 8.11.: First order derivative of y-component of discrete curve segments, estimated by
the finite difference method using curve segments of 200 points in length. To improve
readability, the intensities have been inverted and the contrast improved. This means
that the light areas correspond to negative values, and the dark areas correspond to
positive values.
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Figure 8.12.: First order derivative of y-component of discrete curve segments, estimated
by the parabola interpolation method using curve segments of 200 points in length.
To improve readability, the intensities have been inverted and the contrast improved.
This means that the light areas correspond to negative values, and the dark areas
correspond to positive values.
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Figure 8.13.: First order derivative of y-component of discrete curve segments, estimated
using the method of least squares parabola fitting using curve segments of 200 points
in length. To improve readability, the intensities have been inverted and the contrast
improved. This means that the light areas correspond to negative values, and the dark
areas correspond to positive values.
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in the y-direction.
Once the derivatives have been estimated, the curvature can be calculated.
This is the topic of the following section.

8.2.3. Curvature

With a method for tracking curve segments and for estimating their derivatives in
place, the actual curvature estimation is simply done by filling in the derivatives in
the curvature expression found in Secion 5.2,

"y %"
PR e — (8.11)

The only parameter that needs to be determined is the length of the curve segment,
which is equivalent to the number of points used in the estimation. This will be
will be discussed in the next section.

In order to create a curvature image of the saltdome image, rather than simply
estimate the curvature in a single point, the estimation needs to be performed for
every pixel in the image. So, the complete curvature image algorithm is as follows.
For each image pixel, given a curve segment length N,

1. Extract a digital curve segment of length N, centered in the current pixel.
This is done by tracking along a horizon using the method chosen in Section
8.1, n = N/2 points in the forwards and n = N/2 points in the backwards
direction.

2. Calculate derivative estimates by fitting a parabola to the curve data points
using least squares regression.

3. Calculate the curvature in the pixel using Equation 8.11.

The result of performing this algorithm for all pixels will be an image containing
the curvature estimate in every point. Note that when creating the curvature image
using centered curve segments as described above, the resulting image will be
smaller than the original. There will be a border of width n = N/2 around the
whole image, where the curvature can not be calculated, because it will not be
possible to extract a centered curve segment for the outer border pixels.

8.2.4. Determining the length of curve segments

In the curvature estimation method outlined above, the only variable that needs to
be determined is N, which is the length of the curve segment, or the number of
points to be tracked. The value should be determined based on how long the curve
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segment needs to be in order to accurately represent the underlying horizon. There
are several considerations to make when choosing a value for this parameter.

The curve segment needs to be long enough to minimize the impact of any
unevenness on the curve. If the curve segment is too short, there is a risk that un-
evenness and noise on the curve will interfere with the curvature estimation. This
situation is illustrated in Figure 8.14a on the following page. The markers mark
the end points of the curve segment being used in the estimation. The parabola,
drawn in red, has been fitted to the points between the markers. Because of the un-
evenness in the curve the estimated curvature will be quite large, when in fact the
general shape of the curve in this area is straight so the curvature should be close
to zero. The risk of this situation occurring is minimized if a longer curve segment
is used. In Figure 8.14b, the distance between the points is increased, reducing the
impact the bend has on the parabola.

On the other hand, if the curve segment is too long, there is a risk of loosing
important details in the shape of the reflector.

Determining the best value for N in this project was done experimentally. This
will be reviewed in the next chapter.

8.2.5. Critique of method

In Section 5.5 it was noted that Coeurjolly, Miguet, and Tougne [3] consider fitting
a continuous function to discrete data in order to apply continuous mathematics to
be a bad choice, because it depends on picking the right parameter values and may
be computationally heavy. Finding discrete versions of the mathematical expres-
sions is considered a preferable approach. This is a fair point. However, as seen in
the previous section, there is only a single parameter that needs to be determined
in the presented method. As we will see in the following chapter, determining its
value is not problematic. Because we are mainly interested in how the curvature
changes in an area, rather than the actual values, the possible lack in accuracy
is not an issue. Computational efficiency is, of course, of importance in general.
However, this has not been a main concern in the work on this project.

8.2.6. Related work

Some of the work presented in Section 5.5 is similar to the method presented here.

Lewiner et al. [13] present a method for estimating curvature of discrete planar
curves by approximating the local arc length in a point and using it to fit a parabola
by the method of least squares and estimate its derivatives. This method is similar
to the curvature estimation method presented here and could probably be used as
a substitute method. However, the method is mathematically more complex. A
comparison of the two methods would be interesting, but is unfortunately out of
the scope of this project.
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8. Pixel based curvature estimation

(a)

(b)

Figure 8.14.: Approximating the curve by fitting a parabola to the points between the two
markers. In (a), the length of the curve segment is too short, and the bend on the curve
impacts the resulting parabola. In (b), the length is large enough that the resulting
parabola follows the general shape of the curve without being disturbed by the bend.
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In his article, Roberts [20] studies curvature attributes for seismic data in par-
ticular. His work also involves fitting a quadratic surface to the data by the method
of least squares. However, this work is done on three-dimensional horizons which
have been manually interpreted by a geologist. The method presented in this
project aims to interpret the horizons automatically on two-dimensional slices of
the 3D data.

The two methods presented above, and some of the other methods presented
in Section 5.5, could have been used for the curvature estimation in this project.
However, what makes the method presented here unique is the combination of
automatically tracking the horizons and curvature estimation, and using this to
highlight saltdomes. To my knowledge, in practice this is currently done solely by
manual interpretation. The aim has not been to find the best method for estimating
curvature, but rather to find a complete method for automatically distinguishing
saltdomes from their surroundings.

In the next chapter, the result of running the presented method on several
saltdome images will be preseted.
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In the previous chapter, all the theoretical background from Part I was put together
to form a method for estimating the pixel by pixel curvature of a digital seismic
image. In this chapter, the results of applying this method to 2D slices of the
dataset presented in Chapter 3 will be studied. The method will first be applied to
a single curve, before expanding to estimating the curvature of the entire saltdome
image.

9.1. Testing on a single curve

Before studying the curvature of the entire saltdome image, it is useful to see how
well the method presented performs on a single curve. In an attempt to capture
the saltdome shape that we are interested in, a curve is tracked across the entire
image using the discrete curve tracking method chosen in the previous chapter.
The starting point for the curve was determined experimentally to (15,700), as this
starting point gave a complete saltdome curve. The result, after tracking pixel by
pixel across the entire image in a forwards manner from this starting point, is the
curve marked in red in Figure 9.1. The curve clearly captures the shape of the
saltdome in the image.

9.1.1. Expectations

In order to have a way of assessing the result of curvature estimation for the single
curve, we will take a moment to consider what the result could be expected to
look like. As seen in Chapter 5, as well as saying how much the curve is bent in a
particular point the curvature measure says in what way it is bent, whether it is lo-
cally convex or concave. This information is contained in the sign of the curvature.
The sign convention for curvature was illustrated in Figure 5.2 on page 37. The
concave anticline segments of the curve have positive curvature, while the convex
syncline segments have negative curvature. Both the horizontal and the dipping
plane curve segments have a curvature equal to zero.

Based on the curvature sign convention described above, the expected curva-
ture pattern for a curve spanning across a saltdome in an inline seismic image is
as follows:

1. A horizontal, flat segment with zero curvature.
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Figure 9.1.: Tracked curve starting in pixel (15,700).
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— —— Zero curvature

-------- Positive curvature
- - - - Negative curvature

Figure 9.2.: Expectation for curvature of saltdome.

2. A convex segment where the horizon begins to dip upward. Negative curva-
ture.

A flat, upward dipping segment with zero curvature.

A concave segment with positive curvature.

A flat, horizontal segment at the top of the saltdome. Zero curvature.
A concave segment with positive curvature.

A flat, downward dipping segment with zero curvature.

A convex segment with negative curvature.

v o ® N @ e W

A horizontal, flat segment with zero curvature.

This pattern is illustrated in Figure 9.2. The curvature is expected to be highest in
absolute value in the sharpest parts of the bends on the curve, and approach zero
curvature as the curve flattens out.

With these expectations in mind, we will study the actual result of calculating
the curvature of the tracked saltdome curve.

9.1.2. Result

Applying the curvature estimation method from Chapter 8 to the curve in Figure
9.1 gives the result presented in Figure 9.4 on page 81. Figure 9.5 shows the right
half of the curve enlarged, allowing for a more detailed study of the result. The
number of points N used in the derivative estimation is 300.

To make the result as readable as possible the following colour scheme of red
and green has been employed.
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Zero curvature High positive curvature

T
| —

Zero curvature High negative curvature

Figure 9.3.: llustration of the colour scheme defined in Definition 9.20.

Definition 9.1 (Colour scheme for curvature). Red and green represent positive
and negative curvature, respectively. The darker the colour, the higher the absolute
value of curvature. White represents curvature values close to zero.

The colour scheme is illustrated in Figure 9.3. Observe that the dark, almost black
colours represent the highest curvature. The colours range from very dark, through
red or green, to white, where the white areas have close to zero curvature. Note
that a threshold has been set to determine which pixels belong in the zero curvature
group. Because of this, there is not a smooth transition between the low curvature
and zero curvature pixels.

Studying Figures 9.4 and 9.5, it is clear that the sign of the curvature is as
expected. The convex curve segments in green have negative curvature, and the
concave segments in red have positive curvature, perfectly in line with the expec-
tation presented in Figure 9.2 on the previous page. Furthermore, the colours are
at their darkest in the parts of the curve where the bend is sharpest, indicating, as
expected, highest curvature in these parts. This is particularly clear in the green
segment in Figure 9.5. Between the red and green segments, on either side of the
saltdome, there are white “breaks” in the curve. These are also present at the far
ends of the curve, and are areas with zero, or close to zero, curvature. This also
corresponds well with the expectations in Figure 9.2. However, there was expected
to be a zero curvature segment at the very top of the curve, which does not seem to
be present. The curvature is positive throughout the top of the curve. This is due
to the fact that the top of this particular curve is not flat like the top of the stylised,
symmetric saltdome shape in Figure 9.2. Naturally, no tracked curve segments
will be exactly as expected in shape. However, the idea is that when studying the
entire image, rather than single curves, there will be large areas of pixels with the
expected curvature values, even though there are some exceptions.

Another possible reason why the there are no zero curvature pixels at the top
of the curve is that the number of points used in the derivative estimation is too
large. In the particular case of Figure 9.4 the number of data points used in the
estimation is 300. This is a fairly large number. However, experiments showed that
decreasing this number did not result in a zero curvature area at the top of the
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Figure 9.4.: Curvature of the curve from Figure ??. The colour scheme used is defined in
Definition and illustrated in Figure 9.3.

curve. The only result was more noise. This may, however, be relevant for other
curves, and is worth keeping in mind when determining the parameter value.

For the purpose of comparison will study another single saltdome curve, with
a slightly different shape from the previous curve. This curve is tracked starting in
pixel (15,600) and is displayed in Figure 9.6 on page 83. The curve with curvature
values represented using the same colour scheme as before can be found in Figure
9.7. The number of points used in the derivative estimation is 300, just as in the
above example. This curve has a wider top than the previous curve, and there is a
small zero curvature segment present. There are more “breaks” of zero curvature
in the sides of this curve than in the previous curve. Overall though, the curvature
is well in line with the expectations presented in the previous section and in Figure
9.2.

To summarize, the curvature estimation method presented works as expected.
The resulting curvature is highest in the points with visually higher curvature, and
approaches zero as the curve flattens out. The expectation of a zero curvature area
in the top of the curves turns out to be somewhat unrealistic, as the individual
tracked curves will vary in shape. A better way to formulate the expectation is that
the saltdome curves will have a concave shape in the top area which may flatten
out and approach zero curvature in the center.

In the following section we will estimate and study the curvature of the entire
saltdome image.

9.2. A curvature image
Having estimated the curvature for a single curve, the next step is to calculate
the curvature for every pixel in the saltdome image. The result will be an image

of curvature, hopefully with distinct positive and negative curvature areas which
stand out from the rest of the image.
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Figure 9.5.: An enlarged section of Figure 9.5. The colour scheme used is defined in Defi-
nition and illustrated in Figure 9.3.

9.2.1. Expectation

As with the single curve in the previous section, we will take a moment to consider
what results can be expected when calculating the curvature for the entire saltdome
image. Hopefully the curvature image will have the same pattern of positive, neg-
ative and zero curvature as with the single curves. However, when looking at the
entire image rather than a single curve, the areas with similar curvature will be
larger, and there is a greater chance of the presence of noise interfering with the
result.

The expected result from the curvature calculation in certain areas is illustrated
in Figure 9.8. For readability in the figure, only the non-zero curvature areas on
the saltdome have been marked. In the rest of the image curvature is expected to
be close to zero, although the non-zero areas may be slightly larger than the boxes
marked in the figure. The expected curvature pattern is the same as for the single
curves, only with larger areas. Based on the observations from the previous section,
the top area of the saltdome may be positive everywhere, with no zero curvature
area in the center. However, the curvature values are expected to be higher in the
corner areas marked with 2 and 3, than in the center.

The area within the saltdome has a chaotic, non-uniform texture. In this area
the tracking of curve segments will probably result in random curve segments and
many high curvature points, both positive and negative.

With expectations of the curvature image in place, we are ready to study the
actual result of applying the curvature estimation method to the entire image.
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Figure 9.6.: Tracked curve starting in pixel (15, 600).

B e

Figure 9.7.: Curvature of the curve in Figure ??. The colour scheme used is defined in
Definition and illustrated in Figure 9.3.
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Figure 9.8.: High curvature areas. Expectation for curvature:
1. Negative
2. Positive
3. Positive

4. Negative
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9.2.2. Result

The method for estimating the curvature of an entire seismic image was presented
in Chapter 8. The result of applying the method is an image of the curvature of
the input image. As noted in Chapter 8, because the curve segments are centered,
there will be a border along the edge of the image where the curvature can not be
estimated.

As discussed in Subsection 8.2.4, the length of the tracked curve segments,
N, which translates to the number of points used in the derivative estimation, is
the only parameter in this algorithm. We will now study the curvature images
resulting from letting the parameter take the values 100, 200, 300 and 400, shown
in Figures 9.9, 9.10, 9.11 and 9.12, respectively.

The colour scheme in the curvature images is the same as the scheme pre-
sented in Definition 9.20 and Figure 9.3, and used in the presentation of the indi-
vidual curves in the previous section.

Estimating curvature based on curve segments of length 100 points results in
the curvature image in Figure 9.9 on the next page. The image does have areas of
coherently positive and negative curvature values. Particularly the green, negative,
curvature areas at the beginning and the end of the saltdome are fairly large and
uniform. However, there is a lot of noise present in the image, both within the salt-
dome, and in the surrounding area. Also, there are hardly any areas of white, zero
curvature, pixels within the saltdome. Although the desired pattern in curvature
is partially present, this image does not highlight the saltdome to a satisfactory
extent. This indicates that the number of points used in the estimation should be
more than 100.

Increasing the number of points to 200 resulted in the curvature image in
Figure 9.10 on page 87. This is a clear improvement from the 100 point image in
that there are much larger coherent areas of positive and negative curvature pixels
in the expected locations. At the top of the saltdome there is a large area of positive
curvature, with high curvature values in the corners and lower values in the center,
as expected. However, there is still some noise present in the non-saltdome area, in
the form of non-zero curvature pixels. Also, the expected areas of zero curvature in
the sides of the saltdome are not present. Rather, these areas have a chaotic pattern
of curvature, with a combination of positive and negative curvature values.

Figure 9.11 on page 89 shows the result of using 300 points for curvature esti-
mation. The image is somewhat similar to Figure 9.10. However, one difference is
the larger variation in curvature values, particularly in the green, negative curva-
ture areas. Also, there are more zero curvature pixels in the sides of the saltdome
than seen previously. Furthermore, there is less non-zero curvature noise present
in the surrounding area, compared to in the previous image. The saltdome area
clearly stands out from the rest of the image. This can be observed in the lower part
of the image in particular. However, increasing the length of the tracked curves has
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Figure 9.9.: Image of curvature, where the curve segments used for curvature estimation
are 100 pixels long. The colour scheme used is defined in Definition and illustrated in
Figure 9.3.
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Figure 9.10.: Image of curvature, where the curve segments used for curvature estimation
are 300 pixels long. The colour scheme used is defined in Definition and illustrated in
Figure 9.3.
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increased the width of the border where curvature cannot be calculated.

Finally we will consider the curvature image based on 400 point curve seg-
ments, displayed in Figure 9.12 on page 90. The most notable difference between
this image and the image in Figure 9.11 is that there are fewer pixels which are
very dark in colour, with high curvature. This is particularly clear in the nega-
tive curvature areas. Furthermore, in the top of the saltdome the curvature peaks
in the center rather than to the sides as in previous images. This is because the
curve segments are long enough to capture the entire top of the saltdome in a
single curve. The noise in the surrounding area that has not been cropped by the
increased border is further reduced.

9.2.3. Testing on other images

All work so far has been based on the same inline image, displayed in Figure 8.1
on page 56. For a more complete analysis of the proposed method, the method is
applied to two different inline images. The new images are timeslices 750 and 1150
from the north sea dataset, and can be found in Figures 9.13 and 9.14, respectively.
Observe that both images contain a saltdome with roughly the same shape as in
the original image. However, in Figure 9.13 the top of the saltdome is quite flat,
and also slightly tilted to the right. In Figure 9.14 the saltdome appears more
symmetric.

The results of estimating the curvature for the image in Figure 9.13 using curve
segments of lengths 200, 300 and 400 points are displayed in Figures 9.15, 9.16 and
9.17, respectively. The corresponding results for Figure 9.14 can be found in Figures
9.18, 9.19 and 9.20. Images based on curve segments of length 100 have not been
included, due to the poor result obtained using this curve length for the original
image, see Figure 9.9.

First consider the curvature images based on 200 point curves, in Figures
9.15 and 9.18. There are clear coherent areas with positive and negative curva-
ture present in the images. The amount of noise present in the area surrounding
the saltdome is similar to that in the corresponding result for the original image.
However, note that in the inline 1150 image in Figure 9.18 the zero curvature areas
in the sides of the saltdome are much more distinct than previously.

Next, consider the 300 point based curvature images in Figures 9.16 and 9.19.
The noise in the surrounding areas has been greatly reduced. Furthermore, as
observed with the original image, there is more variation in the curvature values,
and the curvature reaches its highest values in the expected locations. Again, the
inline 1150 image has very clear zero curvature areas in the sides of the saltdome.
These coherency of these areas is improved compared to in the 200 point image.

Finally, Figures 9.17 and 9.20 show the results of using curve segments of 400
points in the curvature estimation. As expected, the surrounding noise has been
further reduced, particularly for the inline 1150 image. The variation in curvature
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9.2. A curvature image

Figure 9.11.: Image of curvature, where the curve segments used for curvature estimation
are 300 pixels long. The colour scheme used is defined in Definition and illustrated in
Figure 9.3.
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Figure 9.12.: Image of curvature, where the curve segments used for curvature estimation
are 400 pixels long. The colour scheme used is defined in Definition and illustrated in
Figure 9.3.
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9.2. A curvature image

Figure 9.13.: Inline slice 750 from the north sea dataset.
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Figure 9.14.: Inline slice 1150 from the north sea dataset.
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9.2. A curvature image

Figure 9.15.: Curvature image of inline 750 from Figure 9.13 on page 91, obtained using
curve segments of length 200. The colour scheme used is defined in Definition and
illustrated in Figure 9.3.
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Figure 9.16.: Curvature image of inline 750 from Figure 9.13 on page 91, obtained using
curve segments of length 300. The colour scheme used is defined in Definition and
illustrated in Figure 9.3.
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values is less than in the 300 point based results, just as was observed in the origi-
nal. The extent of the coherent positive and negative curvature areas is equivalent
to that in the 300 point based images.

To summarise, the curvature image estimation method presented in the previ-
ous chapter works consistently well for three different inline saltdome images. This
gives reason to believe that it would work for other data sets as well. Continuous
areas of positive and negative curvature are present in the expected locations, as
presented in Figure 9.8, in all the images. However, the images based on 100 and
200 point curve segments contain a considerable amount of noise in the area sur-
rounding the saltdome. The images created using segments of length 300 and 400
points, on the other hand, contain considerably less noise. The images based on 300
point segments have a greater variation in curvature value in the high curvature
areas than the 400 point images, and obtain higher maximum curvature.
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Figure 9.17.: Curvature image of inline 750 from Figure 9.13 on page 91, obtained using
curve segments of length 400. The colour scheme used is defined in Definition and
illustrated in Figure 9.3.
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9.2. A curvature image

Figure 9.18.: Curvature image of inline 1150 from Figure 9.14 on page 92, obtained using
curve segments of length 200. The colour scheme used is defined in Definition and
illustrated in Figure 9.3.
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Figure 9.19.: Curvature image of inline 1150 from Figure 9.14 on page 92, obtained using
curve segments of length 300. The colour scheme used is defined in Definition and
illustrated in Figure 9.3.
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9.2. A curvature image

Figure 9.20.: Curvature image of inline 1150 from Figure 9.14 on page 92, obtained using
curve segments of length 400. The colour scheme used is defined in Definition and
illustrated in Figure 9.3.
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10. Concluding remarks

This chapter starts by giving a brief summary of the method and results presented
in this project. This is followed by a few thoughts on possible improvements and
further work.

10.1. Summary of method and results

The aim of this project has been to develop a method for highlighting curved struc-
tures, saltdomes in particular, in two-dimensional sections of seismic data. This has
been done using dip and curvature attributes. Given the dip image and the length
of the curve segments, N, to be used in the curvature estimation, the method pre-
sented traverses the image and performs the following operations for every image
pixel:

1. Using the dip image, track n = N/2 pixels forwards and backwards across
the image, extract a discrete curve segment representing the horizon the pixel
belongs to.

2. Based on the extracted curve segment, estimate the first and second deriva-
tives in the pixel by fitting a parabola to the curve using the method of least
squares, and calculating the derivatives of this parabola.

3. Calculate the pixel curvature using the derivative estimates.

The result of performing these steps for every image pixel is an image where every
pixel holds the curvature for that point, except for a border of width N/2 where
the curvature cannot be estimated.

The number of points N used in the least squares parabola fitting is the only
parameter that needs to be determined. As seen in Chapter 9, the choice of value
for N depends somewhat on the desired properties of the result. One may prioritise
a high variation in curvature values in which case, for a given example image,
setting N = 300 was shown to give the best result. If, on the other hand, the
highest priority is to minimize the number of non zero curvature pixels outside
the saltdome area, setting N = 400 gives the best results. Parameter values lower
than 300 resulted in a considerable amount of noise both within the saltdome and
in the surrounding area.
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The saltdome highlighting method outlined above was tested on three differ-
ent inline cross section images of the saltdome, using a variety of parameter values.
The method proved to perform well, and gave results well in line with the expecta-
tions. In the result images presented in Chapter 9, the saltdome area clearly stands
out from its surroundings in all three inline sections, and there are clear areas of
positive and negative curvature values in the expected locations.

The presented results indicate that curvature based on automatically tracked
curve segments would be useful as part of a set of features for saltdome classifi-
cation. However, note that in order to uniquely identify the curved shape of the
saltdomes, the curvature feature would benefit from being combined with the dip.
This would mean that, for example, the leading convex segment of a saltdome
would be identified with negative curvature and positive dip. Such an extension
is easy to implement, but was not included in this project as the focus has been
saltdome highlighting rather than classification.

10.2. Limitations and further work

Although the developed method for curve detection and saltdome highlighting
is considered successful it does have some limitations, and improvements could
certainly be made. This section will study a few of these and consider possible
extensions and further work.

10.2.1. Extending to three dimensions

As discussed previously in the project, the seismic data is originally three dimen-
sional. Having highlighted saltdomes in the two-dimensional data sections, a nat-
ural next step would be to unite these to form three dimensional result data. This
would consist of running the saltdome highlighting method on a large set of both
inline and crossline cross sections, and combining the results. For a review of the
difference between inlines and crosslines, refer to Section 2.4. Such a three dimen-
sional visualisation has not been a part of this project, as the focus has been on
the mathematical and computational elements rather than visualisation of results.
However, a three-dimensional visualisation would be an interesting and necessary
element in further work on the subject.

10.2.2. Classification

One of the most relevant applications of the saltdome highlighting feature devel-
oped in this project is as part of a set of features in a classification algorithm for
seismic structures. In such a classification the saltdome highlighting curvature fea-
ture would be combined with several other features based on, for example, shape
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and texture. Texture would be of particular importance because of the character-
istic random texture that is present within saltdomes. The saltdome highlighting
curvature feature could be used in the pixel-based form presented here. However,
a better alternative may be to create a window based feature using the curvature
attribute. A few examples of possible window-based curvature features are the
variation in curvature values, total summed curvature, or the total number of non
zero curvature pixels within the window, to name a few examples.

A possible alternative approach could be to traverse the data in a certain direc-
tion, and consider the data to be in one of a set of different states. The states could
be zero curvature, positive curvature and negative curvature, much as illustrated
in Figure 9.8 on page 84. Combined with the sign of the dip, the sequence of states
could be used to uniquely classify the data, as described in the previous section.
The classification step could be performed using a hidden Markov model (HMM),
much in the same way as done for traffic surveillance by Eikvil and Huseby [5].

10.2.3. Non-uniform dip intervals

As mentioned in Section 8.1, a weakness in the horizon tracking method presented
is that the dip angle intervals which decide which neighbouring pixel to move
to are uniformly distributed. This may not be the best approach because certain
details in the horizons may not be captured. For an example of this, refer to the
tracked curve in Figure 8.8a on page 64. The left part of the curve is completely
horizontal and does not seem to follow the structure in the horizons which are
slightly upward dipping. This is due to the low dip values in this area, and may
indicate that the size of the interval of dip values resulting in a horizontal move
should be reduced. Finding the optimal division of dip values would have been an
interesting extension to this project.

10.2.4. Other seismic shapes

Another subject that would be interesting to explore is the use of the presented
method for highlighting other seismic structures of interest besides saltdomes. An
example of such a structure is channels. Channels are convex depressions in the
sedimentary layers which have a shape similar to an upside-down saltdome. This
shape indicates that the method presented in this project may indeed perform well
in channel detection. During the work with this project the presented method
was briefly tested on inline images of channels, but with little success. Positive,
negative and zero curvature areas were present in the results, but did not display
a clear pattern as in the saltdome images. The main challenge was that the dip
values were not strong enough to give a successful horizon tracking. In order
to work for channels, the horizon tracking method would have to be adjusted in
some way, either by improving the dip estimation or replacing it with some other
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pixel relation measure. Changing the size of the angle intervals, as described in
the previous section, may also improve the results. As the focus in this project
has been on saltdomes, such adjustments have not been a priority. However, this
would certainly be an interesting area for further research.

10.2.5. Comparison with previous work

A comparison of the performance of several curvature estimation methods on the
automatically tracked seismic curves would have been an interesting extension to
this project. Such a comparison was not performed mainly because the work here
treats automatically tracked horizons, and as such differs in nature from other
methods. However, this would be an interesting topic for further work.
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