
Game Theory and Cancer
Using Game Theory to Model Host-Tumor Interactions

Knut Dagestad Rand
Master’s Thesis Spring 2013





Game Theory and Cancer

Knut Dagestad Rand

Spring 2012



ii



Abstract

Cancer can be seen as an evolutionary disease, where natural selection
works on the cells in an organism to promote traits that are detrimental to
the organism. Evolutionary game theory (EGT) is a field using the methods
of game theory, which is usually concerned with the behaviour of rational
agents, to model adaptive systems. The basis for EGT is that the stable rest
points of the adaptive system correspond to stable equilibrium solutions to
related games.

EGT has been used to model the cellular evolution in cancer with focus
on the interactions between different cancer cells, and between cancer
cells and normal cells. This thesis is an attempt to model the relationship
between the host and the cancer cells using game theory.

Simplified systems of differential equations simultaneously describing
the cellular evolution within organisms as well as organismal evolution
are presented, and a correspondence between stable rest points of these
systems and stable equilibrium solutions to a class of extensive games are
shown.

The game theoretical models are applied to modified versions of cell-
cell interaction games from the literature. The results show that it is
evolutionarily plausible for multicellular organisms to develop tactical
elements in their anti-cancer strategies.
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Chapter 1

Outline

This thesis is about the application of game theory to cancer modelling. The
idea is to see the relationship between an organism and its cells as a game
where the cells act in their self interest and the organism acts in its self
interest. Cancer cells in this context is seen as cell with a ’strategy’ that is
good for the cell itself, but bad for the organism.

In order to establish this idea in proper form, a few steps have to be
taken.

• Firstly, a mathematical consept of a game is established, this is done
in the next chapter in the introduction to game theory.

• To apply the theory of games to biology, evolutionary game theory is
introduced

• Lastly the evolutionary aspects of cancer is introduced, needed to
apply to evolutionary game theory to cancer

Naturally, a full introduction to game theory, evolutionary game theory and
the evolutionary biology of cancer is to much for the background material
of a Master’s thesis. I will therefore limit the presentation of the fields to
the bare minimum neede for for this thesis to be reasonably mathematically
self contained, and for a reader with some experience in the fields to know
the terminology and notation used. For more detailed introductions, the
reader is referenced to existing litterature.
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Chapter 2

Game Theory

The name game theory is deceptive in two ways. Firstly, it implies that it is
only useful for analyzing games of the which most people are familiar such
as chess, bridge or poker. Although it can be used for this, the concept of
a game in game theory is much more abstract and game theory has a wide
range of applications such as finance, politics, linguistics and, important
for this thesis, biology. Secondly the name implies a light subject while
game theory is often very complex both in it’s applied and pure form. A
full account of game theory and it’s applications is therefore more suited
for a book format then the introduction of a Master’s thesis, so I will
limit this introduction to the framework and interpretation of game theory
that is important for this thesis. For a full introduction to the subject
see [28][29]. Although the mathematics become complicated and abstract
there is usually an intuitive concept behind. The goal of this introduction is
to clarify the mathematical language I use in the thesis and connect them
to the intuitive concepts they represent.

2.1 Extensive Games

Extensive games[21] are games that explicitly define the order of moves in a
game as well as it’s strategies and payoffs. In this thesis I use the definition
from [28] (framed definitions are taken from [28]).

Definition 1. ([28] Def 200.11) An extensive game with perfect
information has the following components.

• A set N (the set of players).

• A set H of sequences (finite or infinite) that satisfies the following
three properties.

– The empty sequence is a member of H .

– If (ak )k=1,...,K ∈ H (where K may be infinite) and L < K then
(ak )k=1,...,L ∈ H

5



– If an infinite sequence (ak )∞k=1sati s f i es(ak )k=1,...,L ∈ H for
every positive integer L then (ak )∞k=1 ∈ H .

(Each member of H is a history; each component of a history is an
action taken by a player.) A history (ak )k=1,...,K ∈ H is terminal if it
is infinite or if there is no aK +1 such that (ak )k=1,...,K+1 ∈ H . The
set of terminal histories is denoted Z .

• A function P that assigns to each nonterminal history (each
member of H
Z ) a member of N ∪ {c}. (P is the player function, P (h) being the
player who takes an action after the history h. If P (h) = c then
chance determines the action taken after the history h.)

• A function fc that associates with every history h for which
P (h) = c a probability measure fc (̇|h) on A(h), where each such
probability measure is independent of every other such measure.
( fc (a|h) is the probability that a occurs after the history h.)

• For each player i ∈ N a partition Ii of {h ∈ H : P (h) = i } with the
property that A(h) = A(h′) whenever h and h′ are in the same
member of the partition. For Ii ∈Ii we denote by A(Ii ) the set A(h)
and by P (Ii ) the player P (h) for any h ∈ Ii . (Ii is the information
partition of player i ; a set Ii ∈Ii is an information set of player i .)

• For each player i ∈ N a payoff function πi : Z →R

The interpretation of this is that at each possible history h ∈ H , a player
P (h) can choose between the actions in A(h) where an action a ∈ A(h) leads
to a new history h2 = (h, a) where a player P (h2) chooses between the actions
in A(h). The game continues in this way until a terminal history ht ∈ Z is
reached. Each player p ∈ P then gets the payoff πP (ht ). The goal for each
player is to maximize it’s own payoff, or in other words that the game should
end up in a terminal history with a high payoff. The game is complicated by
the fact that at each history h ∈ H , the player p = P (h) does not know exactly
which is the current history, only which information partition Ip ∈ Ii it is
in.

Example 1. Chess. The game of chess can be defined as an extended game
by:

• The white and black player N = (W,B)

• H is every sequence of legal moves in chess. The terminal Z ⊂ H is
every history leading to checkmate or remis

• The function P is defined by

– P (;) =W , meaning that white starts the game.
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– P (h) =W when the length of the history h is divisible by two and
P (h) = B when it is not.

• The set A(h) is every legal move available to P (h) after the history h

• The information partitions IW = {{h} | P (h) ∈W } and IB {{h} | P (h) ∈W },
meaning that at each stage in the game, the players exactly what has
happened up to that point.

• The payoff function

πW (h) =


1 if h represents white check mating black

0 if h represents black check mating white

1/2 if h represents remis

and opposite for πB (h)

Example 2. A coin toss game with two players, where one player chooses
either Tails (T ) or Heads (H) and wins if a subsequent coin toss gets the
same outcome can be described by the following.

• Two players N = {A,B}

• The histories H = {;, (H), (T ), (H , H), (H ,T ), (T, H), (T,T )} where the
terminal histories are Z = {(H , H), (H ,T ), (T, H), (T,T )}

• P (;) = A, P ((H)) = P ((T )) = c

• The probability function

fc ((H , H)|(H)) = fc ((H ,T )|(H)) = fc ((T, H)|(T )) = fc ((T,T )|(T )) = 0.5

• IA = {;} and IB =;
•

πA((H , H)) =πA((T,T )) =πB ((H ,T )) =πB ((T, H)) = 1

πA((H ,T )) =πA((T, H)) =πB ((H , H)) =πB ((T,T )) = 0

When two players make a move at the same time, one can model this as
one player moving first, but where the second player does not know what
the other player has chosen. I show this using the Rock, Scissor Paper game.

Example 3. In the Rocks, Scissor, Paper game, two players simultane-
ously choose between three strategies: rocks(r ), paper (p) or scissors (s). If
both choose the best strategy it’s a tie, otherwise rock beats scissors, scis-
sors beats paper and paper beats rock.

• The players N = {A,B}

7



• H = {;, (R), (P ), (S), (R,R), (R,P ), (R,S), (P,R), (P,P ), (P,S), (S,R), (S,P ), (S,S)}
and Z = {(R,R), (R,P ), (R,S), (P,R), (P,P ), (P,S), (S,R), (S,P ), (S,S)}

• P (;) = A, P ((R)) = P ((P )),P ((S)) = B

• IA = {{;}}, IB = {{(R), (P ), (S)}}

•

πi ((R,R)) =πi ((P,P )) =πi ((S,S)) = 1/2 ∀i ∈ {A,B}

πA((R,P )) =πA((P,S)) =πA((S,R)) = 0

πB ((R,P )) =πB ((P,S)) =πB ((S,R)) = 1

πA((P,R)) =πA((S,P )) =πA((R,S)) = 1

πB ((P,R)) =πB ((S,P )) =πB ((R,S)) = 0

This framework for defing games is a bit cumbersome, but it is very
flexible, and it is hard to imagine anything that can be considered a game
which can not be modelled in this framework. The graphical representation
of games make the concepts more intuitive.

2.2 Graphical Representation

When H is a finite set, the game can be represented visually as a graph.
In this thesis I use the following rules to define a graph for a game Γ =<
N , H ,P, fc , (Ii ), (πi ) >:

• Each history h ∈ H is represented as a node on the graph.

• Each node h in H/Z is labeled by the value of the player function of
that node P (h).

• For each node h ∈ H the action set A(h) is represented by an edge from
h to the node representing (h, a) for all a ∈ A(h). The edges are labeled
as the action a it represents.

• The information partitions are represented by a dotted line between
all the histories in a partition

• The chance probability distributions fc are represented by labels
below the action edges corresponding to the probability of that action.

• Each terminal history ht ∈ Z is labelled with a tuple representing the
payoff πi (ht ) for all players i ∈ N

Example 4. The Rock, Scissor, Paper game from example example 3 can
be represented by the graph:
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A

B

(1/2,1/2)

R
(1,0)
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(0,1)
P

R

B

(0,1)

R
(1/2,1/2)

S

(1,0)
P

S

B

(1,0)

R
(0,1)

S

(1/2,1/2)
P

P

The coin toss game from example 2 can be represented as:

A

c

(1,0)0.5

H

(0,1)

0.5
T

H

c

(0,1)0.5

H

(1,0)

0.5
T

T

2.3 Strategies and Outcomes

A game Γ=< N , H ,P, fc , (Ii ), (πi ) > describes what can happen in a game, or
in other words the rules of the game. To describe what actually happens in
a game a concept of a strategy, or game plan, is needed. The most intuitive
form of strategy in an extensive game is that of a pure strategy:

Definition 2. ([28] Def 203.1) A pure strategy of player i ∈ N in an
extensive game < N , H ,P, fc , (Ii ), (πi ) > is a function that assigns an
action in A(Ii ) to each information set Ii ∈Ii .

A pure strategy is thus a predefined choice defined for all possible
situations the player can be in during a game. An extension of this
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concept, where players are allowed to randomize their choices is given
by the following definition:

Definition 3. ([28] Def 212.1) A behavioral strategy of player i is
a collection (βi (Ii ))Ii∈Ii of independent probability measures, where
βi (Ii ) is a probability measure over A(Ii )

A behavioral strategy gives a probability to each action in the action set
of each information set in the game.

Pure strategies can be seen as a behavioural strategy where all the
probability distributions give probabilities either 1 or 0 to each action.

Together, a strategy for each player in a game is called a strategy profile.
If a strategy profile for a game is given, the outcome of the game O(s),
defined as a probability distribution over the terminal histories, can be
calculated.

Example 5.

sA({;}) = R

sB ({(R), (S), (P )})P

are pure strategies for A and B in the rock, paper, scissors game. Together
they make the strategy profile s = (sA , sB ) with the outcome

O(s)(h) =
{

1 ifh = (R,P )

0 otherwise

The collections sA = (βA(;)) and sB = (βB ({R,S,P })) where, for I A = ;, IB =
{(R), (P ), (S)},

βA(I A)(R) =βA(I A)(P ) =βA(I A)(S) = 1/3 (2.1)

βA(IB )(R) =βA(IB )(P ) =βA(IB )(S) = 1/3 (2.2)

(2.3)

are behavioural strategies for A and B in the RPS game. The outcome is a
probability distribution O(s) over Z where

O(s)((ht )) = 1/9 ∀ht ∈ Z

Definition 4. The expected payoff for player i for a strategy profile s is
defined as:

Ei (s) = ∑
ht∈Z

O(s)(ht )πi (ht )
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2.3.1 Game Equilibrium

One of the most fundamental concepts in game theory is that of a game
equilibrium. An equilibrium of a game is a strategy profile that fulfils
certain criteria. The most important equilibrium concept is that of a Nash
Equilibrium [26].

Definition 5. A Nash equilibrium of an extensive game is a strategy profile
s∗ that fulfils the following criterium:

Ei (s∗i , s∗−i ) ≥ Ei (si , s∗−i )

I denote by N E(Γ) the set of strategy profiles which are Nash Equilibria for
the game Γ

In words, a Nash Equilibria is a strategy profile such that no player can
benefit from unilaterally changing his strategy.

2.3.2 Subgames

Given a set of histories H and a history h ∈ H , let H |h define the set of
histories after h: H |h = h′ | (h,h′) ∈ H .

Definition 6. An independent history in a game Γ=< N , H ,P, fc , (Ii ), (πi ) >
is a history h ∈ H such that

• {h} ∈IP (h)

• If h′ ∈ H |h then the information set I ∈ IP ((h,h′)) containing (h,h′) has
the following property:

∀i ∈ I ∃h′ ∈ H |h | i = (h,h′)

An independent history is then a history h in the game where the the
player P (h) knows exactly which history it is in, and for every history h′

following h the player P (h′) knows that the game has been in history h.

Definition 7. ([28] Def 97.1 2) Given an extensive game Γ =<
N , H ,P, fc , (I), (π) >. For every history h ∈ H such that {h} ∈ IP (h),
the subgame of Γ following h is the game: The subgame of Γ =<
N , H ,P, fc , (I), (π) > that follows the independent history h is the
extensive game Γ(h) =< N , H |h ,P |h , fc |h , (Ii |h), (πi |h) > where H |h is the
set of sequences h′ of actions for which (h,h′) ∈ H , P |h is defined by
P |h(h′) = P (h,h′) for each h ∈ H |h , fc |h associates with every history
h′ ∈ H |h for which P |h(h′) = c, Ii |h = {

Ii ∈Ii : h′i nH |h∀h′ ∈ Ii
}

and πi |h
is defined by πi |h(h′) =πi (h,h′)
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A subgame of Γ following h can then be seen as the game starting from
history h in Γ. The following important concept was introduced by Selten
[30].

Definition 8. ([28] Def. 97.2 3) A subgame perfect Nash equilibrium
(SPNE) of a game Γ is a strategy profile s∗ such that s∗|h is a Nash
equilibrium of Γ|h for all independent history h in Γ

A SPNE is then a Nash Equilibrium where at each point in the game, if
a player knows exactly what history it is in, it plays a Nash Equilibria in the
subgame following that history.

2.4 Symmetric Two-Player games

A special class of games that is of special importance to Evolutionary
Game Theory is the one-shot symmetric two-player games (STG). These are
games with two players where the roles of the players can be interchanged
without changing the dynamics of the game. In an STG, each player has
only one information set, and the action set on each set is equal.

Definition 9. Given a set Σ and a function f :Σ×Σ→R, the symmetric two
player game generated by the set Σ, f denoted STG(Σ, f ) is the game given
by:

• Two players N = A,B

• The histories H = I A ∪ IB ∪Z where

I A = {;}

IB = {(a) : a ∈Σ}

Z = {
(a1, a2) : a1, a2 ∈Σ}

• P (;) = A, P (h) = B∀h ∈ IB

• The empty probability distribution fc

• The information partitions IA = {I A}, IB = {IB }

• The payoff functions πA((a1, a2)) =πB ((a2, a1)) = f (a1, a2) ∀a1, a2 ∈Σ

An S2G with finite strategy space Σ can be represented as by a table
showing the payoff value for each combination of strategies s ∈ Σ2. Each
column and each row represents a strategy and the elements in the table
represent the payoff for a player when playing the strategy represented by
the row if the other player plays the strategy represented by the column.

12



R S P
R 1/2 1 0
S 0 1/2 1
P 1 0 1/2

Table 2.1: Rock, Scissor, Paper

Example 6. The rock,scissor, paper game from example example 3 is a
symmetric two player game STG(Σ, f ) where Σ = {R,P,S} and payoff function
described by the table.

Since each player has only one information set in an STG, the be-
havioural strategies are just a probability distribution over the trait set Σ.

Definition 10. Given two sets Σ1, st sp2 and two functions f 1 :Σ1 ×Σ2 →R

and f 2 : Σ2 × Σ1 → R, the Leader-Follower game LF ((Σ1,Σ2), ( f 1, f 2)) is
defined as the extensive game Γ :< N , H ,P, fc , (Ii ), (πi ) > where:

• Two players N = {A,B}

• The histories H = {;}∪{
(a)|a ∈Σ1

}∪Z where Z = {
(a1, a2)|a1 ∈Σ1, a2 ∈Σ2

}
• The player function P where

P (;) = A

P (h) = B ∀h ∈ {
(a)|a ∈Σ1}

• fc =;

•

IA = {
{(a)} |a ∈Σ1}

IB = {{
(a1, a2)

} |a1 ∈Σ1, a2 ∈Σ2}

• Tha payoff functions:

πA((a1, a2)) = f 1(a1, a2)

πB ((a1, a2)) = f 2(a2, a1)

Example 7. The Leader-Followerversion of the rock scissor game
LF (({R,S,P } , {R,S,P }), f A , fB ) is given by the game tree:
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A

B

(1/2,1/2)

R
(1,0)

S

(0,1)
P

R

B

(0,1)

R
(1/2,1/2)

S

(1,0)
P

S

B

(1,0)

R
(0,1)

S

(1/2,1/2)
P

P

Here player A and B knows which
strategy A has chosen. The only rational strategy for player B is then
α= {((R) : P ), ((S) : R), ((P ) : S)} which ensures him a payoff of 1. Player A can
not expect any payoff no matter what strategy it chooses. Thus any strategy
profile where player B chooses α is a subgame perfect Nash Equilibrium.

2.5 Population Games

Another concept that is important for EGT is population games. Population
games are description of games where a large group of players have the
same role. The payoff for each player depends on which strategy it chooses
and on what strategies the rest of the population chooses, but not on which
player does what.

Definition 11. A population game ΓP =< Σ,F > consists of a trait space Σ
and a payoff function F where:

• The trait set Σ is the possible strategies for each player

• The function F : Σ×X → R, where F (σ, x) is the payoff to a player with
strategy σ when the population is in state x. Here X is the possible
population states where a population state is a distribution over the
strategy space Σ given by (xi )i∈Σ | ∑i∈Σ xi = 1. A population state can
therefore be seen as a probability distribution over Σ
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Chapter 3

Evolutionary Games

In evolutionary game theory, the interpretation of a game is different from
classical game theory. Where game theory traditionally models rational
agents choosing strategies to maximize their payoff, evolutionary game
theory models players? who are programmed to play a certain strategy in a
game where a player’s payoff represents his darwinian fitness. Often these
two processes end up with the same result. The basis for much of EGT lies
in the replicator equation, developed by Taylor and Jonker [31].

Definition 12. ([31] The replicator equation for a population game <
Σ,F > is the system of differential equations given by:

ẋi = xi (Fi (x)− ∑
j∈Σ

x j F j (x))

where xi denotes the proportion of the population playing strategy i .

I include a derivation of the replicator equation here, since a modified
version of the equation is used in this thesis. The replicator equation is used
in different fields of EGT [replicatoreqs ] including economics, biology
and linguistics, and there are therefore different derivations for the same
equation. I include here a version outlined in [31], based on the language
and formalism from [35].

Derivation 1. (based on [35] p. 71-73) Let P (t ) be a population of
replicator, called units from now, at time p, and let Σ be a set of traits
which the units can have. pi (t ) is the number of units in the population
which have the trait i ∈ Σ and xi (t ) = pi (t )/p(t ) be the proportion of units
with trait i ∈ Σ. Each unit have a birth rate β and a death rate δ. The birth
rate for a unit with strategy is given by a constant baseline birth rate β0

and a term given by the result of a population game with payoff function F .
Thus βi (t ) =β0+F (i , x(t )). The death rate is equal for all units. It is assumed
that the offspring of a unit inherits the parent units trait. Thus the number
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of units with trait i after a time difference? d t is given by:

pi (t +d t ) = pi (t )+pi (t )(β0 +F (i , x(t ))−δ)d t

pi (t +d t )−pi (t )

d t
= pi (t )(β0 +F (i , x(t ))−δ)

ṗi = pi (β0 +F (i , x)−δ)

And the total number of units p(t ) is given by:

ṗ = ∑
i∈K

ṗi

ṗ = ∑
i∈K

(pi (β0 −δ)+pi F (i , x))

ṗ = p(β0 −δ)+ ∑
j∈K

p j F ( j , x))

By the division rule for differentiation the time derivative of xi is then given
by:

ẋi = ṗi p −pi ṗi

p2

ẋi =
pi (β0 +F (i , x)−δ)p −pi (p(β0 −δ)+∑

j∈K p j F ( j , x))

p2

ẋi = xi
(β0 +F (i , x)−δ)p − (p(β0 −δ)+∑

j∈K p j F ( j , x))

p

ẋi = xi ((β0 +F (i , x)−δ)− (β0 −δ+
∑
j∈K

x j F ( j , x)))

ẋi = xi (F (i , x)− ∑
j∈K

x j F ( j , x))

Which is the replicator equation.

There are a some important things to note about the replicator equation
and it’s derivation.

• The population size need to be big in order that it is plausible for pi

and xi to be differentiable functions of time.

• The equation is not dependent on the base birthrate and death rate

• The equation says nothing about what the replicators are. In this
thesis, both cells and organisms are considered to be replicators

• The replicators’ traits are assumed to ’breed true’, meaning that the
offspring of a replicator inherits the trait of it’s parent with 100
percent probability. This excludes the possibility of mutations, and
the effects of sexual reproduction.
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The replicator equation assumes that the population is big enough that
one can view the population state as a differentiable function of time. The
replicator equation describes the dynamics of a biological system when the
fitness of a trait depends on the makeup of the population. This dependency
can take many forms, but in most uses it is thought of as being the result of
random matching of a symmetric game [35]

Definition 13. A random matching of a symmetric two-player game
Γ = STG(Σ,π), denoted by RM(Γ) is a population game < (Fi ),Σ > where:
Fi (x) = Ei (x).

The fitness of a strategy, or trait, in a random matching game is
the expected payoff from playing the associated STG against a random
opponent from the population. The replicator equation of a random
matching game can then be interpreted as follows.

• Each member of the population is randomly paired with another
member of the population to play a symmetric game

• The payoff a member receives from the symmetric game represents
its fitness , or expected number of viable offspring.

• The offspring of a member inherits the member’s trait

• By the law of large numbers the average number of offspring for the
members with a given trait is proportional with the expected payoff
from the symmetric game.

Theorem 1. ([18]) Every Symmetric Nash equilibrium of a symmetric
two-player game corresponds to a rest point in the replicator equation of
the derived random matching game. Every stable rest point in the derived
replicator equation is a Nash Equilibrium of the symmetric two player
game.

A rest point corresponding to a mixed Nash Equilibrium is called a
polymorphic equilibrium, meaning that more than one trait is present in
the population in an equilibrium.

Definition 14. The support of a population state x is the set of strategies
j ∈Σ such that x j is not zero.

supp(x) = {
j ∈ st sp | x j 6= 0

}
Theorem 2. Every rest point x∗ of the replicator equation corresponds
to a Nash Equilibrium of a population game restricted to supp(x∗).

ẋ∗ = 0 ⇒ x∗
|supp(x∗) ∈ N E(< supp(x∗),F|supp(x∗) >)

3.0.1 Classification of symmetric 2×2 games

A general STG with two strategies can be described by the payoff matrix:

W =
(

a b
c d

)
Based on the ordering of the payoff values the number and

nature of the Nash equilibria.
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Domination If a > c ∧ b > d strategy 1 dominates strategy 2 and the
only nash equilibrium is (1,1). Correspondingly if a < c ∧b < d strategy 2
dominates strategy 1 and the only Nash equilibrium is (2,2).

Coordination If a > c∧b < d there are two pure strategy Nash equilibria:
(1,1) and (2,2),and a mixed strategy Nash equilibrium given by p = q =

d−b
a+d−b−c . Both pure equilibria represent a stable rest point in the derived
dynamics. The mixed strategy equilibrium is unstable, and a small
perturbation to either side leads to the fixation of the fixation of one of the
strategies.

Anti-Coordination If a < c ∧b > d there are two non-symmetric pure
strategy Nash equilibria: (1,2) and (2,1) and one symmetric mixed strategy
Nash equilibrium: p = q = d−b

a+d−b−c . The mixed strategy equilibrium
represents a stable rest point.

A similar classification exists for three strategy games[10], where there
are 33 different classes.

3.1 Non Deterministic Models
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Chapter 4

Cancer from an
Evolutionary Perspective

Cancer is a common and deadly disease [20]. The There are many aspects
of cancer that are relevant to an evolutionary analysis, but I will focus here
on only on those that are essential to the understanding of this thesis. In the
first section I will introduce the multistep process of cancer and the traits
known as the ’hallmarks of cancer’. In the second section I will discuss
the evolutionary relationship between the organism and the cell as the unit
of selection. For a general introduction to the biology of cancer, I refer
the reader to the book by Weinberg [36]. And for specificaly evolutionary
perspectives of cancer see: [1]

4.1 The Somatic Evolution of Cancer

Cancer can be seen as a evolution of the somatic cells within an organism,
where cells acquire mutations and the selection pressure between cells se-
lects for advantageous mutations [27]. The complexity of this evolutionary
process is gradually being elucidated, seeing that the cellular environment
within the body, often called the microenvironment, has impact on the evo-
lutionary process[22].

4.1.1 The Hallmarks of Cancer

In [17] (and later [16]) Hanahan and Weinberg defined a set of cellular traits
common in cancer cells as Hallmarks of Cancer. These traits are important
for the somatic evolution of cancer, because cancer cells need to acquire
them in order to become fully malignant.

Sustaining Proliferative Signaling The cell growth in normal tissue
is a controlled process. Cells are dependent on proliferative signals to grow
and divide. The production of these signals is usually tightly controlled,
and cancer cells need to escape this control. Common mechanisms for this
includes producing its own proliferative signals, manipulating other cells
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to produce proliferative signals or become more sensitive to the signals by
expressing more of the receptors for the signals on the cell wall.

Evading Growth Suppressors Growth suppressors are signals with
the opposite effect of proliferative signals. Growth suppressors signals
the cell to stop proliferating. Cancer cells can evade this mechanism by
becoming insensitive to them.

Resisting Cell Death Cells in the body are programmed to self destruct
under various circumstances. Many of the common steps in cancer
progression are supposed to trigger this mechanism, among them genomic
instability and abundance of growth factors. In order to survive the cells
need to circumvent this program.

Inducing Angiogenesis Somatic cells receive nutrients and oxygen
from the bloodstream. When the tumor size increases, the limited supply
make the cells suffer from lack of nutrients and oxygen. For continued
growth of the tumor the cancer cells need to activate vascularisation of
the tumor. Mutations which activate, directly or indirectly, signalling to
endothelial cells to produce new vasculature gives tumors the possibility to
increase further in size.

Enabling Replicative Immortality Somatic cells does not have limit-
less replicative potential. For each cell division the telomeres at the ends of
each chromosome shortens. The telomeres are important for the structural
integrity of the chromosomes, so when they become to short, a senescence
or apoptosis program is initiated. If these programs are compromised in
the cell, the cell continues to replicate leading to genomic instability . This
will in most cases lead to lower fitness for the cell, but this instability can
also lead to advantageous mutations which can, given that the cell regains
genomic stability, lead to a fitness increase and a higher degree of variability
in the cell population. Mutations that reactivate the telomerase gene, which
is active in immortal stem cells and germ-line-cells, can stop the telomerase
degeneration and give the cell replicative immortality.

Activating Invasion and Metastasis Different organs are separated
by boundaries which prevent cells from one organ to migrate to another.
These boundaries serve to contain tumours from spreading. Tumors that
are contained to non-vital organs are seldom lethal. In order to become
fully malignant tumors need to cross the barrier. In epithelial cancer this
means penetrating the basement membrane. If cancer cells are able to
access either the bloodstream or the lymphatic system, they can spread to
remote organs. In order to do this they must have mutations enabling them
to survive in the bloodstream and also to survive in a remote organ.
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Avoiding Immune Destruction Both the innate and the adaptive
immune system is involved in the hosts defence against cancer [12]. NK-
cells and macrophages from the innate immune system produce anti-
angiogenic factors, produce cytotoxic substances and induces apoptosis in
cancer cells. T-cells from the adaptive immune system also induces tumor
cell death by various mechanisms. Resistance to these immune responses
are needed for cancer cells to survive.

4.2 Cancer Effects on Organismal Fitness

When viewing the organism as the unit of selection, cancer has a negative
effect on the fitness. As such it is natural to ask why it is so common.
The field of evolutionary medicine offers some general rules for why we
are vulnerable to disease. Explanations include (adopted from [15] Chapter
11, and [1] Box 1):

“Selection Does not operate to maximize Health or Longevity”
[15] While cancer has high morbidity, it does not necessarily have a
big impact on fitness. Most cancer rates grow exponentially with age
[32] 1. This is an effect of the multistep nature of cancer, but is also an
indication that selection has favoured organisms that does not get cancer
in reproductive life stages.

“Co-evolution with pathogens”[1] Many cancer types are associated
with infections of various microbial life forms [25][3][33]. The evolutionary
relationship between human organisms and microbial life forms often take
the form of arms races. Thus when some microbes benefit from inducing
cancerogenic phenotypes in cells, this mechanism can prevail even though
the host evolves defences against it since the microbes can evolve counter-
mechanisms against it.

"Constraints on Evolution" [1] Many of the cancer associated genes
are highly conserved across many multicellular species, implying that they
are connected with the ’core machinery’ of multicellularity. Germ line
mutations in this machinery have a very low probability of giving a fitness
advantage, even if they lower cancer risk, since they

“An Evolutionary Mismatched or Novel Environment”[15] In
rapidly changing environments, the forces of evolution might not be strong
enough to ensure that everyone is at a fitness maximum. The novel
mutagenic substances introduced by human culture increase cancer risk,
but the body has not yet evolved to cope with this increased risk.

1At very high ages(≈ 100) the rates go down
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The Result of an Evolutionary Trade Off Mechanisms to prevent
cancer can be envisioned that are more effective than what humans have.
The idea of an evolutionary trade off suggests that such a mechanism could
have negative side effects which outweigh the reduced cancer risk.
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Chapter 5

A Review of Game Theory in
Cancer Modelling

The Beginning

The first attempt to model cancer-interactions using game-theory was done
in 1997 by Tomlinson and Bodmer’s article "Modelling the consequences
of interactions between tumour cells" [34]. They argue that “... some
mutations might cause tumour cells to adopt strategies that involve
interacting with other cells in the tumour” and use evolutionary game
theory (EGT) to model two plausible scenarios where this is the case.
The first scenario they model is one with two strategies concerning the
production of growth factor (GF). A+ cells produces a GF that gives them
and the cells they interact with a benefit ( j ), while A- does not. Production
of the growth factor represents a cost (i) to the A+ cells. This gives the
payoff ?? on page ??:

A+ A-
A+ 1− i + j 1− i + j
A- 1+ j 1

Table 5.1: Growh Factor

The proportion (xA+) of A+ cells in equilibrium is then:

xA+ = 1− (1− i + j )

(1− i + j )− (1− i + j )− (1+ j )+1)
= i − j

j
= 1− i

j

This shows that a polymorphic equilibrium can occur if the cost of
producing the growth factor is smaller than the benefit it gives.

The second model includes paracrine GF-producers (PGF), autocrine
GF-producers (AGF) and a wild-type (W). a denotes the cost of producing
the paracrine GF and b the benefit of receiving it. b denotes the net benefit
from producing the autocrine GF. The payoff table is given in ?? on page ??:

In this case the PGF-strategy is dominated by the wild type if the cost
of producing the GF is non-zero. And the wild type is dominated by the
autocrine GF-strategy if the net benefit of producing GF is positive.
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PGF AGF W
PGF 1−a +b 1−a 1−a
AGF 1+b + c 1+ c 1+ c
W 1+b 1 1

Table 5.2: Angiogenesis

The article gives two important insights. That a polymorphic equilib-
rium between different traits can exist in the cancer population and that
traits that are good for the tumor as a whole, will not prevail if it is disad-
vantageous to the cell itself.

In [19] Tomlinson shows that even traits that are detrimental to the
tumor as a whole can be selected for. Here he models a scenario where
one cell-type (P) produces a cytotoxin which is harmful ( f ) to the cells it
interacts. The production of the cytotoxin incurs a production cost (e) and
a benefit from affecting others (g ). The model also includes cells (R) that
are resistant to the cytotoxin at a cost (h) to itself, and a wild type (W) which
neither produces nor is resistant to the cytotoxin.

P R W
P 1−e − f + g 1−h 1− f
R 1−h 1−h 1
W 1− f 1 1

Table 5.3: Cytotoxin Production (modified from [19])

which gives the equilibrium frequencies:

xP = h

f

xR = e

g
− h

f

xW = 1− e

g

The calculation shows that, depending on the value of the costs, all
polymorphisms except between the resistant and wild type strategies
are possible. He also shows that this can also be the case when the
different types have different replicative advantages independent of the
other frequencies of cell-types.

Bach et al. [5] add a spatial aspect to GF-model of [19] by giving each
cell a 3-neighbourhood consisting of itself and two other cells. A cell will
only get benefits from GF if two of the three cells in its 3-neighbourhood
produces it. This leads to a 3-player game instead of the 2-player game in
Tomlinson’s model. The payoff table is given in ?? on page ??:
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A+,A+ A+,A- A-,A+ A-,A-
A+ 1− i + j 1− i + j 1− i + j 1− i
A- 1+ j 1 1 1

Table 5.4: 3-player Growth Factor Game

leads to two equilibrium values for the proportion (xA+) of A+ cells:

xh∗
A+ = 1+√

1−2i / j

2

x l∗
A+ = 1−√

1−2i / j

2

which both disappear at when j < 2i , leading to extinction of A+ cells. For
j >= 2i , the xh∗

A+ will be an attractor for all frequencies xA+ > x l∗
A+, while 0

will be an attractor for xA+ < x l∗
A+.

The novel result from this model was that even if the benefit is over
twice as large as the cost, the survival of the A+ cells depends on the initial
frequencies of cell-types. In addition to a stable equilibrium where the
frequency of A+ type cells is above 0.5, there is an unstable equilibrium
with the A+ frequency below 0.5. If the initial A+ frequency is below this
equilibrium, the A+ cells will go extinct while a polymorphic equilibrium
will be reached if it is above. The authors notes that “During tumorigenesis,
it must be assumed that local collaboration is possible which may allow
this critical threshold to be crossed locally.” This article shows that taking
(spatial considerations/three player game) can alter the dynamics of the
model, drastically.

An explicitly spatial adaption of the same model was introduced in [6].
In the spatial model, cells are organized in a 100×100 grid. For each time
step, some cells are killed, according to an update rule, and replaced by a
cell in it’s neighbourhood according to a revision protocol. Different update
rules and revision protocols were considered as well as different definitions
of a cells neighbourhood. With synchronous updating (SU) a fixed number
of cells were killed each iteration, with asynchronous updating one cell
was killed each iteration, and with semi-synchronous updating each cell
had a fixed probability of being killed each round. Deterministic and
probabilistic revision protocols were also considered. In both cases each
cell in the killed cells neighbourhood gets a fitness defined as the sum
of the payoffs of games played with each other cell in its neighbourhood.
In the deterministic protocol, the cell with the highest fitness gets to
replace the killed cell, while in the probabilistic protocol, the cells have
a probability proportional to its fitness to replace it. The neighbourhood
definitions considered were: the Von Neumann-neighbourhood consisting
of the cells 4 neighbours, the Moore neighboorhood consisting of the cells 8
nearest neighboors, and the extended Moore-neighbourhood consisting of
the nearest 15 neighbours. Simulations with the different combinations of
revision protocol, update rule and neighbourhood size were run, with focus
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on semi-synchronous updating and probabilistic revision protocol, since
those were considered more biologically relevant. Different adaptations
of the game were also simulating, corresponding to the hawk-dove game
and the prisoners dilemma game. They found that with deterministic
revision protocol, the cooperative types could prevail where they did
not in the non-spatial game. But with semi-synchronous updating and
probabilistic revision protocol, the results resembled those from the non-
spatial game. They noted that the dependency of results on design decisions
like neighbourhood size, update rule and revision protocol were a problem
with the model.

Glycolysis and Invasion

Glycolysis is the lysis of oxygen to produce energy usually used by cells in
hypoxic condition. It is less effective than mitochondrial metabolism, and
produces cytotoxic waste, but is still seen in many cancers even in normoxic
conditions [13]. In [14], Gatenby et al. proposed that glycolysis “confers
a selective growth advantage on transformed cells because it allows them
to create an environment toxic to competitors but relatively harmless to
themselves”. Basanta et al [8] used this hypothesis in a EGT-model. Three
different cell types, all of which has acquired autonomous growth (AG)
are modeled. The GLY-type uses Glycolysis, the INV-type is an invasive
phenotype while the AG is a “normal” tumor cell with autonomous growth.
Using glycolysis confers a cost (k) to the GLY-type in all interactions, but
the acidity it produces gives a benefit (n) when interacting with an AG-
type cell. The INV-type has a cost (c) of motility, but does not suffer
any cost of acidity when interacting with a GLY-type cell. The AG-type
has a cost of acidity (n) when interacting with a GLY-type cell. The cells
compete resources of value 1 which has to be shared when two stationary
cells interact.

AG INV GLY
AG 1/2 1 1/2−n
INV 1− c 1− c/2 1− c
GLY 1/2−k +n 1−k 1/2−k

Table 5.5: Glycolysis Game

In the case where only AG and INV cells exists, the equilibrium-
frequency of INV cells is given by:

xINV = 1−2c

1− c

That means that a polymorphic equilibrium can be reached as long as
0 < c < 1/2, while c ≥ 1/2 leads to fixation of AG. In the case of all three
interacting the equilibrium-frequencies xINV of INV and xAG of AG cells
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are:

xINV = 1− k

n

xAG = 2kn +k − ck − cn

2n2

The frequency of the INV-type will thus not depend on the cost of motility,
only on the acidity-cost of the AG-type, and the glycolysis cost of the GLY-
type. The authors note that “... conditions favouring anaerobic glycolysis
also favour tumour invasion”.

In [7] this model is adapted to describe glioblastoma multiforme. A
INV-GLY phenotype is introduced as well as an angiogenic parameter (α)
representing the benefit of having access to vasculature. The INV-GLY
type acts as a GLY type when interacting with AG and INV cells, and
as an INV type when interacting with a GLY type. The glycolytic types
(GLY, INV-GLY) produces an angiogenic factor (an IDHD-1 mutation is
taken to affect both glycolytic type and angiogenic type), which is positive
when interacting with an AG type, but negative when interacting with a
glycolytic type since the resulting vasculature will be leaky. The authors

AG INV GLY IVN-GLY
AG 1/2+α/2 1 1/2−n +α 1/2−n +α
INV 1− c 1− c/2 1− c/3 1− c/3
GLY 1/2−k +n +α 1−k +α/2 1/2−k +α/4 1−k +α/2
INV-GLY 1/2−k +n +α 1−k +α/2 1− c/3−k +α/2 1− c/6−k +α/2

Table 5.6: Glycolysis Game 2

ran simulations on the corresponding replicator equations with parameters
taken to be relevant to a sGLM scenario. They found that at low α the INV
type became dominant, but as α increased I NV −GLY took over dominance
and the time before it reached domination decreased. The more important
access to vasculature is, the more aggressive the tumor will be.

In [24] Mansury et al. adds a game theoretic module to a spatial-
temporal model they developed in [23]. The original model described how
cancer cells proliferates and migrates depending on microenvironemental
factors. With the use of game theory they were able to extend the model
to include interactions between genotypically different cancer cells. The
extended model consist of type A and type B cells. Type A cells are more
likely to proliferate, while type B cells are more likely to migrate. A
cell’s migrational and proliferative inclination is not only determined by
it’s genotype but is also affected by gap-junction channels it forms with
other cells. This is incorporated into the model by a game-theoretic payoff
matrix which describes how the cell-cell interactions affect migratory and
proliferative inclination. These payoff-matrices is incorporated into the
model by using these values to modify each cell’s probability to migrate or
proliferate depending on the the type of it’s neighbouring cells.
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5.0.1 Cooperation

One of the central themes in game theory is cooperation. Under which cir-
cumstances can individual agents acting in self-interest end up cooperating
with each other. In [4] Axelrod et. al. investigates this theme in a cancer
population and looks at scenarios in which cooperation between genotyp-
ically different cancer cells can make the cancer as a whole reach the hall-
marks of cancer. They mention angiogenesis, production of growth factors
and metastasis as ... For example, if one subclone has a angiogenesis pro-
moting? mutation, other subclones in the cancer population will benefit
from that as well. And if one subclone produces a paracrine growth factor,
that will benefit other cells as well.

Interaction with normal cells

In [11] Dingli modelled the interaction between multiple-myeloma (MM)
(cancer) cells, osteoclasts and osteoblasts using a game-theory payoff-
matrix. Osteoclasts and osteoblasts are cells in the bone marrow that are
responsible for bone resorption and formation respectively. In a healthy
individual, the interactions between these cells leads to an equilibrium
where they balance each other out. But when these cells interact with
MM- cells, the equilibrium is disturbed. In addition to the interactions
between OC and OB cells (a,e), the interactions considered in this article
is cytokines released by MM-cells that stimulates the growth of OC-cells
(b); a possible negative effect on OB-cells caused by the secretion of DKK1
by MM-cells (d); and a positive effect on MM-cells caused by production of
growth factors by the OC-cells (c). This leads to the payoff-table given in
table 5.7: From this they showed that if c

e > 1 the OB-cells will go extinct

OC OB MM
OC 0 a b
OB e 0 −d
MM c 0 0

Table 5.7: MM Game

which leads to bone-loss. If d
b is large, the OB cells will go extinct faster

than MM cells take over, leading to bone loss without a big tumor.
Anderson et. al. [2] used a game theory model in addition to

a HDC model to investigate microenvironmental independence in tu-
mors. The model consisted of microenvironment-dependent (mED) and
microenvironment-independent (mEI) cells. mEI cells were given a con-
stant fitness of h while mED cells had baseline fitness minus the cost (c) of
getting resources from the mE which increased when interacting with other
mED cells. This gave the payoff table 5.8 (with n = 2).

which gives the proportion (p) of mEI cells at equilibrium:

p = (1−2c)−h

h + (1−2c)− (1− c)−h
= 1−2c −h

−c
= 2c +h −1

c
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mED mEI
mED 1−2c 1− c
mEI h h

Table 5.8: Microenvironmental Independence

which shows that the proportion of mEI cells increases as the cost of relying
on the mE increases. When c >= 1−h the mEI cells dominates the mE cells.

In [9] they develop this model further by introducing stromal cells. The
stromal cells can get co-opted by the mED cells to interact with them in a
mutualistic manner, giving them both a payoff of a. That gives the following
payoff table table 5.9 (note that a payoff of d has been added to the mED,
mEI interaction):

S mED mEI
S 0 a 0
mED 1− c +a 1−2c 1− c +d
mID 1−h 1−h 1−h

Table 5.9: Microenvironmental Independence 2

They used the replicator equations leading from this payoff table to
do simulations investigating how the different parameters affected the
equilibrium distribution. They found that coexistence of all three types
were possible for a small subset of parameter-space. They also found that
varying the parameters could change the dominance from mED to mEI
cells. They also ran a simulation where the parameters were changed mid-
stream, from favouring mED cells to favouring mEI cells. The population
then changed from being dominated by mED to being dominated by mEI.
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Chapter 6

Problem Statement

In this thesis I will investigate whether it is possible and useful tomodel
the host-tumor relationship using a game theory framework. Previous
works using game theory in cancer modelling have focused solely on cell-
cell interactions and only cells have been considered as active agents. Here
I will extend this framework, by using methods from evolutionary game
theory, to include interactions between the host and the cancer cells.
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Part II

Method
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Chapter 7

General Framework

An organism is thought to represent a multicellular organism. Each
organism is associated with a population of cells. This population is thought
to represent either the whole organism, or an organ or part of an organ that
is separated from the rest of the organism. A cell is thought to represent a
member of the cell population associated with an organism. An organism
possesses a trait, or strategy, that determines some of it’s function. A cell
also possesses a trait which determines some of it’s function. The premise
of the model is that:

• Some part of an organism’s fitness is determined both by it’s trait and
of the traits of the cells in it’s cell population

• Some part of a cell’s fitness is determined both by it’s trait and by the
trait of the organism it is part of

A basic example which fits this description is:

• The organism represents a human being

• The cell population represents a part of the small intestine of the
human

• The cell traits are either:

– Stay on the lining of the intestinal tract and absorb nutrients and
pass it along to the bloodstream (normal function)

– Stay inside the crypt and absorb nutrients from the bloodstream
and proliferate (abnormal function)

• The organism traits are either:

– Have an immune system that seeks out cells with abnormal
function and kill them

– Don’t have such an immune system

The fitness of the organisms is then partly determined by it’s trait, since the
immune system is costly and because it runs the risk of the immune system
misinterpreting and start attacking normal cells. It is also determined by
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the trait of it’s cell population, because cells with normal function does a
job for the organism increasing it’s fitness, while the abnormal cells just
use nutrients and doesn’t provide a useful function. Similarly the fitness of
a cell is determined by it’s trait, since an abnormal cell will proliferate and
thus have a high reproduction rate, while a normal cell will not proliferate
and thus have a reproduction rate of 0. It is also affected by the organism
trait since an abnormal cell will be killed if the organism has the immune
trait, giving it low fitness, while it will be able to continue proliferating if it
doesn’t.

I will denote these concepts in the following way:

• The role of an organism is denoted by O and the role of a cell will be
denoted by C

• The possible traits of an organism is denoted by ΣO and the possible
traits of a cell is denoted by ΣC

• The size of the organismal trait space is denoted mO and the size of
the cellular trait space mC

• The contribution to an organism’s fitness is given by the function
g :ΣO ×ΣC →R

• The contribution to a cell’s fitness is given by the function f :ΣC×ΣO →
R

A cellular cancer trait can then be consider a trait which gives the cell a high
payoff, but reduces the payoff of the organism it resides in.

The fitness functions g and f above can be considered the payoffs from
an interaction between a single cell and an organism. Since an organism
has a population of cells, fitness should be influenced by each cell in the
population and thus be a function of the cell population state. I choose to
let this function be the average payoff from an interaction with each cell in
the population.

Letting X = {
(xi )i∈ΣC |∑i∈ΣC xi = 1

}
represent the population state space

of a cell population, the fitness function for organisms is given by:

G j (x) = ∑
i∈ΣC

xi g ( j , xi ) (7.1)

(7.2)

Similarly the fitness of a cell should represent the value of the interaction
with the organism it is in. (In frequency dependent ?? dynamics the
interaction will include another cell as well). The fitness for a cell in an
organism with organismal trait j ∈ΣO is then a function of the cell strategy
i ∈ΣC . F j :ΣC →R

F j (i ) = f (i , j )
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7.1 Dynamics

7.1.1 Organismal Dynamics

I consider a population of organisms, which reproduce asexually. This
is not biologically correct for humans, or indeed most multicellular
organisms, but including the mechanisms of sexual selection complicates
matters. The birthrate is given by a baseline rate βO plus an interaction
dependent birth rate given by the fitness function G in the previous section.
Thus the birthrate of an organisms with trait j ∈ ΣO with a cell population
in state x ∈ X the birth rate is given by βO +G j (x). An organisms birth rate
is thus determined by it’s trait as well as the makeup of its cell population.
The death rate is considered to be constant and given by δO . The offspring
of an organism inherits the organism’s trait, but not its cell population;
Each new organism starts out with a cell population where all cells have the
same trait which is considered the normal trait. This represents the fact
that the evolution in a somatic cell population does not affect the genome
of the germ line cells.

Each organism’s cell population also have a dynamic. A cell’s reproduc-
tion rate is given by the base line rate βC and a term determined by the
fitness function from the last section. Thus for a cell with trait i ∈ ΣC , in
an organism with trait j ∈ ΣO and in a cell population in state x ∈ X , the
birth rate is given by βC +Fi ( j , x). The death rate is fixed at δO . Normally
the offspring of a cell inherits the cell’s trait, but in some cases a mutation
occurs giving the offspring another trait from the trait space. I make differ-
ent assumptions as to how these mutations occur, which lead to different
dynamics. The whole system can then be described by the following:

• Ω is the population of organisms

• C = {Cω |ω ∈Ω} a set containing a cell population for each organism

• Σ = (ΣC ,ΣO) a cellular trait space and an organismal trait space

• The cellular state space X ⊆∆mc

• A cellular fitness function for each cellular strategy (Fi )i∈ΣC

• An organismal fitness function for each organismal strategy (G j ) j∈ΣO

In this thesis I will make the assumption that each cell population
is sufficiently large that they can be considered infinite and that the
population state in a cell population can be considered a differentiable
function of time. Thus the cell dynamics in each organism can be
represented by a system of differential equations. I will deal first with
the dynamics leading from the assumption that the cells’ fitness are
frequency independent, then see what happens when cell-cell interactions
are considered.
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7.1.2 Assumptions

This is a very simplified description of how the dynamics. There are several
of the aspects considered in section 4.2 that are not included.

In this model the death rate is constant, while the reproduction rate
varies according to the interactions. This does not represent the fact that
cancer can be a deadly disease and therefore affect the death rate of the
organism. Similarly, different organismal traits might affect the death rate
of cells, for example an immune response. The choice to let the death rate
be fixed is motivated by two notions. One is that letting the birth rate vary is
most common in evolutionary game theory, and the a fixed death rate keeps
most in line with the current literature. Secondly, both birth and death rates
can be affected and varying both would lead to unnecessary complications.

The model also assumes that the baseline birth rate is constant
throughout the lifetime of an organism. This is not the case for humans
who have a limited reproductive age. An interpretation of the model that
accounts for this is that a death in this model means reaching the end of the
reproductive age.

To make the system representable by ordinary differential equations I
also make the assumption that the cellular dynamics are sufficiently faster
than the organismal dynamics that the cell populations can be seen as
instantaneously reaching stable equilibrium points.
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Chapter 8

Frequency Independent
Cell Dynamics

I will here consider the dynamics when a cell’s fitness is independent of the
population state of the cell population it inhabits. The cellular fitness is
then a function only of its trait and its organism’s trait. The fitness function
in an organism with organismal trait j ∈ΣO can then be written F j :ΣC →R,
where F j (i ) gives the fitness of a cell with cellular trait i ∈ΣC in an organism
with organismal trait j ∈ΣO .

The replicator equation definition 12 for the cellular dynamics in an
organism with organismal trait j then becomes:

ẋi = xi (F j (i )− ∑
k∈ΣC

xk Fk ) ∀i ∈ΣC

The only stable rest point of this dynamic is that where the fittest cell
trait is fixated. This stable rest point is given by x∗( j ) where:

x∗( j )i =
{

1 if i =α j

0 otherwise

where

α j = argmax
k∈ΣC

f (k, j )

Assuming that a small mutation rate continuously perturb the system
from rest points such that the system ends up in the stable rest point, and
that this happens so much faster than the organismal reproduction, the
population state of an organism with organismal trait j will always be in
state x∗( j ). Thus, using equation 7.1 the fitness of an organism with trait
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j ∈ΣO can be given as:

W j =G j (x∗( j ))

= ∑
i∈ΣC

x∗( j )i g ( j , x∗( j )i )

= g ( j ,α j )

Given these fitness values, the replicator equation for the organismal
dynamics, becomes:

ẏ j = y j (W j −
∑

k∈ΣO

ykWk ) ∀ j ∈ΣO

ẏ j = y j (g ( j ,α j )− ∑
k∈ΣO

yk g (k,αk )) ∀ j ∈ΣO

This system also has only one stable rest point y∗ which is given by:

y∗
j =

{
1 if j = argmaxk∈ΣO g (k,αk )

0 otherwise

This means that the organismal trait j that has the highest payoff from
an interaction with a cell trait that has the highest payoff an inter-
action with j , will be fixated in the organismal population. This re-
sult is corresponds to the subgame perfect equilibrium of a the Leader-
Followergamedefinition 10 LF ((ΣO ,ΣC ), (u, v)) where the organism role
is the leader and the cell role is the follower. Denoting the organ-
ismal strategies as ΣO = (σO

1 ,σO
2 , . . . ,σO

mO
) and the cellular strategies as,

ΣC = (σC
1 ,σC

2 , . . . ,σC
mC

), gives the following game tree for the Leader-
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Followergame:
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σ C
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mO
, σC

2 )

σC
2

.... . .

O(σO
mO

, σC
mC

)
σ

C
mC

σ
O m

O

8.0.3 Application

Let the cellular trait space include a normal trait T̄ , which represents
normal cell function, and a tumorigenic trait T that represents increased
proliferation which gives a fitness advantage a over normal cells and
decreases the organismal fitness by d . Thus ΣC = {

T̄ ,T
}
.

The organismal trait space includes a passive trait P̄ that does not
interfere with the cell dynamics; and a punishing trait P that decreases the
fitness of tumorigenic cells by p. ΣO = P̄ ,P .

The organismal payoff g and cellular payoff f from an interaction then
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becomes:

f (¬T,¬P ) = 1 f (¬T,P ) = 1

f (T,¬P ) = 1+a f (T,P ) = 1+a −p

g (¬P,¬T ) = 1 g (P,¬T ) = 1− c

g (¬P,T ) = 1−d g (P,T ) = 1−d − c

The Leader-Followergame LF ((ΣO ,ΣC ), (u, v)) can be represented by the
game tree:

O

C
(1,1)

¬T

(1−d ,1+a)T
¬P

C
(1− c,1)

¬T

(1− c −d ,1+a −p)T

P

The outcome of this game is dependent on the relationship between the
parameters a and p and between c and d . If p > a then C will respond with
¬T to P . If, in addition , c < d O will play P . Otherwise O will play ¬P and C
will play T . A punishment strategy is therefore successful if it successfully
deters the cells from playing the cancer strategy and at the same time costs
less for the organism than the detrimental effect of the cancer cells.

8.0.4 Infrequent Mutations

In the previous model, cellular mutations were thought to occur continu-
ously, thus always perturbing any unstable rest point such that the cellular
population always ended up in a stable rest point. In this section I consider
the case where tumorigenic mutations only happen occasionally. Ideally,
the mutation rates should be defined as a cellular property. The standard
way to model it is that each cell division has a given probability of gener-
ating a mutant. When the cellular population size is considered infinite, a
finite cellular mutation rate would give rise to continuously occurring mu-
tations. I therefore define the mutation rates as an organismal property. I
consider first a dynamic where the only mutations considered are from the
normal cellular strategy to one of the other cellular strategies.

For interactions given by the strategy spaces ΣO ,ΣC , where the normal
cellular strategy is denoted η ∈ΣC , and payoff functions g , f , I define µi ∀i ∈
ΣC /

{
η
}

as the mutation rate from the normal cell strategy η to the cellular
strategy i . When a mutation from η to i occurs, a small part of the cell
population mutates to the i strategy. The cellular dynamics will then lead
to either η or i fixating in the population, depending on which trait gives
the highest fitness. Define α j : ΣC /

{
η
} → [0,1] for all organismal strategies
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j ∈ΣO as:

α j (i ) = 1

{
1 if f (i , j ) > f (η, j )

0 otherwise
(8.1)

This function determines whether or not a cellular trait i will fixate in
the population if the mutation µi occurs in an organism with trait j ∈ΣO .

Dynamics

Let βO be the baseline birth rate for organisms and δO be the death rate. Let
û(i , j ) = βO + g (i , j ) be the birth rate of an organism with organismal trait
j ∈ ΣO and a cellular population consisting of cells with cellular trait i ∈ ΣC

Let p j
i (t ) represent the number of organisms with organismal trait j and a

cell population with cellular trait i . For cell non-normal cell populations
the number of organism s with organismal trait j and cell population with
trait i after time t +d t the number is then:

p j
i (t +d t ) = p j

i (t )−p j
i (t )δO d t +p j

η(t )µiα j (i )d t ∀i ∈ΣC /
{
η
}

The first term is the previous number of organisms. The second represents
the organisms that die in the time period, while the third represents the
number of organisms that had a normal cell population where a mutation
lead to the population switching to cellular trait i . The number of organisms
with a normal cell population is given by:

p j
η(t +d t ) = p j

η(t )−p j
η(t )δO d t − ∑

k∈ΣC /{η}
µkα j (k)p j

η(t )d t + ∑
k∈ΣC

û( j ,k)p j
k (t )d t

(8.2)

The first term is the previous number of organisms, the second is the
number of organisms that die in the time period, the third term is the
number of organisms where the cell population switches to another trait
and the fourth is the number of organisms that are born during the time
period.

To simplify the equations I will assume that the population size stays
constant by defining the actual birth rate for an organism with trait j and
cell population with trait i at time t as:

û( j , i )
p(t )δO∑

k∈ΣC
∑

l∈ΣO p l
k (t )û(k, l )

This makes 8.2:

p j
η(t +d t ) = p j

η(t )−p j
η(t )δO d t − ∑

k∈ΣC /{η}
µkα j (k)p j

η(t )d t + ∑
k∈ΣC

δO p(t )û( j ,k)p j
k (t )∑

k∈ΣC
∑

l∈ΣO p l
k (t )û(k, l )

d t
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This leads to the differential equations:

ṗ j
i =−p j

i δO +p j
ηµiα j (i ) ∀i ∈ΣC /

{
η
}

ṗ j
η =−p j

ηδO − ∑
k∈ΣC /{η}

µkα j (k)p j
η+δO p

∑
k∈ΣC û( j ,k)p j

k∑
k∈ΣC

∑
l∈ΣO p l

k û(k, l )

ṗ = ∑
i∈ΣC

∑
j∈ΣO

ṗ j
i

=−δO p + ∑
i∈ΣC

∑
j∈ΣO

δO p
p j

i û( j , i )∑
m∈ΣC

∑
n∈ΣO pn

mû(m,n)

= 0

Let x j
i (t ) = p j

i (t )/p(t ) be the frequency of organisms with organismal trait

j ∈ ΣO and a cell population of cellular trait i ∈ ΣC . Since ṗ = 0, ẋ j
i = ṗ j

i
p ,

which gives:

ẋ j
i =−x j

i δO +x j
ηµiα j (i ) ∀i ∈ΣC /

{
η
}

ẋ j
η =−x j

ηδO − ∑
k∈ΣC /{η}

µkα j (k)x j
η+δO

∑
k∈ΣC û( j ,k)x j

k∑
k∈ΣC

∑
l∈ΣO x l

k û(k, l )

If all the organisms in the population has the same trait j ∈ ΣO , the
only equilibrium state is given by (see appendix A.0.1 for the mathematical
derivations):

x j
η =

δO

δO +∑
i∈ΣC /{η}µiα j (i )

x j
i = µiα j (i )

δO +∑
i∈ΣC /{η}µiα j (i )

∀i ∈ΣC /
{
η
}

The average value of û is then given by:

W j =
δOû( j ,η)+∑

i∈ΣC /{η} û( j , i )µiα j (i )

δO +∑
i∈ΣC /{η}µiα j (i )

The only stable equilibrium of the system is fixation of the organismal trait
k ∈ΣO that maximises W j :

k = argmax
j∈ΣO

W j (8.3)
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The stable equilibrium state x∗ is given by:

xk
η =

δO

δO +∑
i∈ΣC /{η}µiαk (i )

xk
i = µiαk (i )

δO +∑
i∈ΣC /{η}µiαk (i )

∀i ∈ΣC /
{
η
}

x j
i = 0 ∀ j 6= k

8.0.5 Game Interpretation

The function α j (i ) 8.1 corresponds to a ’rational’ choice for a cell between
cellular traits i and η in an organism that has organismal trait j ∈ ΣO .
The organismal trait that reaches fixation 8.3 also seems like a ’rational’
choice in that it is an optimization. The mutation probabilities is best
represented as an assignment from nature. If a mutation occurs and the
mutant trait fixates in the cell population, no more mutations will occur,
and the organismal fitness is thus detirmened. If however a mutatation
occurs and the mutant gets extinct the cell population will still be normal
and further mutations are possible. Since the cell choices represents an
optimization of the fitness of the trait there and then independent of other
traits in the trait space, a cell player’s payoff must be defined as the choice
it makes there and then. Thus when more than one cellular desicions must
be made in the game, these must be made by different cell players. Define
the different chance actions as D representing the organism dieing and
(Mi )i∈ΣC /{η} where Mi defines a mutation to celluar strategy i . The

This motivates the extensive form game Γ=< N , H ,P, fc , (Ii ), (πi ) > given
by:

• The infinite countable set of players: {O,C1,C2,C3, . . .}

• The histories given by:

H = {;}∪ IM ∪ IC ∪Z

where IM , IC , Z are defined by. ( j ) ∈ IM∀ j ∈ΣO and if h in Im then:

(h,m,η) ∈ IM∀m ∈ M

.(h,m) ∈ IC∀m ∈ M

(h,D,η) ∈ Z

(h, Mi , i ) ∈ Z∀i ∈ΣC

• The player function:

P (h) =


O if h =;
c if |h|%2 = 1

C|h|/2 if |h|%2 = 0
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• The probability distribution

fc (Mi |h) = µi

δO +∑
k∈ΣC /{η}

∀h ∈ H | P (h) = c

fc (D|h) = δO

δO +∑
k∈ΣC /{η}

∀h ∈ H | P (h) = c

• The discrete partitions

• The payoff functions (πi )i∈N

πO((a1, a2, . . . , an)) =
{

û(a1,η) if an = D

û(a1, an) otherwise

πCi ((a1, a2, . . . , an)) =


f (a(2i+1), a1) if 2i < n

f (η, a1) if 2i = n

0 if 2i > n

The flow of the game is this:

• The organism is the first to move, playing a strategy from the
organismal strategy space

• The cells then make moves sequentially. If a cell plays the normal
strategy, the game continues, if it plays one of the other strategies, the
game ends. Each cell gets the payoff corresponding to the strategy the
organism played ( j ) and the strategy itself played (i) f (σO ,σC ). The
cells that do not get to play recieve a payoff of 0, but this is irrelevent
for the outcome.

• Between each cell move is a chance move, where either the organism
dies D, ending the game, or a mutation Mi occurs which leads to
another cell move.

• The organism gets the payoff corresonding to what it plays and what
the last cell plays.

Let Γ|hm be defined as the subgame following a history in Im . Let the
cellular strategies be denoted by ΣC = (η,σC

1 ,σC
2 , . . . ,σC

mC
) and let Mi denote

a mutation to strategy σC
i . Let

µ̂i = µi

δO +∑
k∈ΣC /{η}

δ̂O = δO

δO +∑
k∈ΣC /{η}
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This game can be represented graphically as:

c

Ci (πp ((hm ,D,η))p∈N
η

δ̂
O

D
Ci

Γ|(hm ,M1,η)

η
(πp ((hm , M1,T1)))p∈NT1

µ̂
1

M
1

Ci

Γ|(hm ,M2,η)

η
(πp ((hm , M2,T2)))p∈NT2

µ̂2

M2

...

Ci

Γ|(hm ,Mmc ,η)

η
(πp ((hm , MmC ,TmC )))p∈NTmc

ˆµm c
M m c

By denoting the organismal strategies: ΣO = (σO
1 ,σO

2 , . . . ,σO
mO

), the whole
game can be described by :

O

Γ(σO
1 )

σ O
1

Γ(σO
2 )

σO
2

.... . .

Γ(σO
2 )

σ
O
m o

The outcome of the subgame equilibrium of this game corresponds to the
stable rest point of the differential equations. (See appendix A.0.2 for
derivation of this result)

The fact that the cell nodes are divided between different cell players
is important since it implies that a the cell players are indifferent to the
further developments of the game. This represents ethe lack of foresight
that is characteristic of “evolutionary rationality”. If each cell desicion was
made by the same player, it would be able to consider not choosing one
cancerous strategy since by choosing the normal strategy it would have the
opportunity of a more advantageous cancerous strategy in the future.

If
∑

k∈ΣC /{η}µk << δO , the game can be reduced to a much simpler form
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by the approximations:

µi

δo +∑
k∈ΣO /{η}µkα j (k)

≈ µi

δO +∑
k∈ΣO /{η}µk

δO

δo +∑
k∈ΣO /{η}µkα j (k)

≈ δO

δO +∑
k∈ΣO /{η}µk

The games L|(σO
j ) can then be represented by the game trees:

c

Ci (g (σO
j ,η), f (σO

j ,η))
η

δ̂
O

M̄
Ci

(g (σO
j ,η), f (σO

j ,η))

η

(g (σO
j ,T1), f (σO

j ,T1))T1
µ̂

1

M
1

Ci

(g (σO
j ,η), f (σO

j ,η))

η

(g (σO
j ,T2), f (σO

j ,T2))T2

µ̂2

M2

...

Ci

(g (σO
j ,η), f (σO

j ,η))

η

(g (σO
j ,Tmc ), f (σO

j ,Tmc ))Tmc

ˆµm c
M m c

The interpretation of this is that the probability that an organism should get
a mutation that does not fixate, and then get another mutation is negliable.
Therefore the risk of a cancer from a given cancer trait is given just by the
probability of getting the mutation to that trait times the probability of that
trait fixating (0 or 1) times the reduced fitness to the organism from havin
a cell population with that trait. The organism chooses the strategy that
minimizes the sum of this risk for all the celluar traits.
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Chapter 9

Frequency Dependent Cell
Dynamics

9.1 Game Definition

In this section I look at the dynamics when a cell’s payoff from an
interaction is not not only determined by its own trait and the trait of its
organism, but also on the cellular trait of the cell it interacts with. In
this context the celluar payoff function from an interaction is a function
f : ΣC ×ΣCΣO → R, where f (i , j ,k) defines the payoff to a cell with celluar
trait i ∈ΣC interacting with a cell with trait j ∈ΣC in an organism with trait
k. I chose to let the fitness of a trait be defined as the payoff from random
matching of a symmetric two player game against a cell from the same cell
population since this is the framework that has been used in the previous
literature (chapter 5). The fitness of a cellular trait in an organism with
organismal trait j is then given by the function F j :ΣC ×X →R, where:

F j (i , x) = ∑
k∈st spC

f (i ,k, j )

9.2 Dynamics

The stable equilibrium points of the cell dynamics in an organism then
corresponds to a Nash equilibrium of the cellular population game defined
by the organism’s trait, which again corresponds to the mixed Nash
Equilibria in the STG defined by f (theorem 1). Defining the resulting
organismal dynamics is not always trivial due to the fact that an STG can
have several Nash Equilibria. I will only consider 2 and 3 strategy games
here, since the dynamics of these games are well understood [10][35]. I
consider first dynamics with only two cellular traits. The celluar population
game defined by an organismal trait can then be classified according to [35],
being either a coordination, anti-coordination or domination game. Only
coordination games have more than one ESS. The two ESS of a coordination
game correspond to fixation of either trait. The basins of attractions for the
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two ESSes is divided by a third, unstable, Nash equilibrium which acts as
an invasion barrier. Thus if one of the traits is fixated in the cell population,
the cell population is stable against invasions from the other cell trait. The
other classes of two-strategy games has a unique ESS. Given the initial cell
population, the resulting stable rest point after a pertrubing mutation can
be uniquly determined. Since I assume that all new organisms are born
with a cell population where all the cells have a trait η ∈ ΣC , this initial cell
population is given. Assuming, as in chapter 8, that a small mutation rate
is continously pertrubing the celluar populations so that they always end
up in the uniquely determined stable rest point, the cell population of an
organism with organismal trait j ∈ ΣO is always x∗( j ), where x∗( j ) is the
uniquly determined stable rest point of the game F j . Knowing this, the
fitness of an organism with organismal trait j ∈ΣO can be written:

W j =G j (x∗( j ))

= ∑
i∈ΣC

x∗( j )i g ( j , i )

Let y j be the proportion of organisms in the population with organismal
trait j ∈ Σ. The replicator equation for the organismal population then
becomes:

ẏ j = y j (W j −
∑

k∈ΣO

ykWk ) ∀ j ∈ΣO

= y j (
∑

i∈ΣC

x∗( j )i g ( j , i )− ∑
k∈ΣO

yk

∑
i∈ΣC

x∗(k)i g (k, i )) ∀ j ∈ΣO

This fitness value is constant for all organismal strategies and thus the
only stable rest point for the organismal dynamics is the fixation of the
organismal trait j ∈ ΣO for which W j is biggest. The only stable rest point
for this system is given by:

y∗
j =

{
1 if j = argmaxk∈ΣO

∑
i∈ΣC x∗(k)i g (k, i )

0 otherwise

9.3 Results

The growth factor production game in chapter 5 is an anti-coordination
game when i < j , meaning that the production cost of the growth factor
is lower than the benefit it gives.

I use this game as a basis for a game including the organism. The
cellular trait space is then ΣC = {A+, A−}. I define two organismal strategies
ΣO = {

P̄ ,P
}
, where P̄ represents a naive strategy that defines the cellular

game represented by table 5.1 and P represents a punishing strategy that
reduces the fitness of A+ cells by p but at a cost c to the organism. Thus the
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cellular payoff function f is given by:

f (A+, A+, P̄ ) = 1− i + j f (A+, A−, P̄ ) = 1− i + j

f (A−, A+, P̄ ) = 1+ j f (A+, A−, P̄ ) = 1

f (A+, A+,P ) = 1− i + j −p f (A+, A−,P ) = 1− i + j −p

f (A−, A+,P ) = 1+ j f (A+, A−,P ) = 1

I let the organismal fitness from interacting with an A− cell, be 1 for P̄
organisms and 1 − c for P organisms and let the A+ cells decrease the
organismal fitness by d such that:

g (P̄ , A+) = 1−d g (P̄ , A−) = 1

g (P, A+) = 1−d − c g (P, A+) = 1− c

This defines the following game tree, I denote one of the cell players as ’P’,
meaning population, which is the player that affects the organismal payoff.

O

P

C
(1, 1, 1)

A−
(1, 1+ j , 1+ j − i )A+

A−

C
(1−d , 1+ j − i , 1+ j )

A−
(1−d , 1+ j − i , 1+ j − i )A+

A+

¬
P

P

C
(1− c, 1, 1)

A−
(1− c, 1+ j , 1+ j − i −p)A+

A−

C
(1−d − c, 1+ j − i −p, 1+ j )

A−
(1−d − c, 1+ j − i −p, 1+ j − i −p)A+

A+

P

The interresting case is when 0 < i < j since if i > j , A− dominates A+ in all
cases leading to the outcome (P̄ , A−, A−). If however i < j , the cellular game
under P̄ has one stable symmetric equilibrium given by

x∗(P̄ )A− = i

j

x∗(P̄ )A+ = 1− i

j
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which gives the organism the payoff:

GP̄ (x∗) = x∗(P̄ )A−g (P̄ , A−)+x∗(P̄ )A+g (P̄ , A+)

= i

j
+ (1− i

j
)(1−d)

= 1−d + i

j
d

The organismal P strategy can lead to two different games dependent on
whether or not i + p > j . If i + p < j the cellular game is still an anti-
coordination game with equilibrium points:

x∗(P )A− = i +p

j

x∗(P )A+ = 1− i +p

j

which gives the organismal payoff:

GP (x∗) = x∗(P )A−g (P, A−)+x∗(P̄ )A+g (P, A+)

= i +p

j
(1− c)+ (1− i +p

j
)(1− c −d)

= 1− c −d +d
i +p

j

The P strategy is then better than P̄ if:

GP (x∗(P )) >GP̄ (x∗((̄P ))

1− c −d +d
i +p

j
> 1−d + i

j
d

d p > j c

So the P strategy is better if the fitness cost it gives to the organism times
the cellular fitness benefit given by the GF production is less than the
extra damage the A+ cells give to the organism times the fitness cost the
P strategy confers to the A+ cells.

If i+p > j , the A− trait will fixate in the cell population. The equilibrium
point is then:

x∗(P )A− = 1

x∗(P )A+ = 0

which gives the organism the payoff:

52



GP (x∗) = x∗(P )A−g (P, A−)+x∗(P̄ )A+g (P, A+)

= 1− c

. The P strategy is then better than the P̄ if:

GP (x∗(P )) >GP̄ (x∗((̄P ))

1− c > 1−d + i

j
d

−c >−d + i

j
d

c < 1− i

j
d

Which means if the organsismal cost of the P strategy is less than the
negative effect of the A+ cells under the P̄ strategy.

Taken together, these result says that the P strategy is better than the P̄
strategy if:

(i +p < j ∧ d p > j c) ∨ (i +p ≥ j ∧ c < 1− i

j
d)

The novel effect here, compared to the frequency independent cell dynam-
ics, is that the relationship between the effects on the organismal payoff and
the cellular payoff induced by an organismal strategy is relevant.

9.4 Three cellular strategies

When considering three cellular strategies, the dynamics are more com-
plicated. Three strategy STGs can be classified into 19 different classes of
dynamics, depending on how many and where the stable rest points are.
As with two strategies, the stable rest point can be determined if the initial
population state is known. Describing how this can be determined for each
of the 19 categories is out of reach for this, but use an example from the
review (chapter 5).

The game described in table 5.5 describes a game between normal
cancer cells, glycolytic cancer cells and invasive cancer cells. The conclusion
was that the equilbrium proportion of invasive cells was independent of the
cost of motility. I use this game as a base for a organsimal-cellular game
where the organism has three strategies:

• A naive strategy (Ā) leading to a cellular game identical to table 5.5

• A strategy punishing the INV type cells (Pinv), subtracting pinv from
their fitness, at a cost cinv to the organism
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• A strategy punishing the GLY type cells (Pgly), subtracting pgly from
their fitness, at a cost cgly to the organism

The cellular games is shown in table form in table 9.1. The authors found

ΓĀ AG INV GLY
AG 1/2 1 1/2−n
INV 1− c 1− c/2 1− c
GLY 1/2−k +n 1−k 1/2−k

Γinv AG INV GLY
AG 1/2 1 1/2−n
INV 1− c −pinv 1− c/2−pinv 1− c −pinv
GLY 1/2−k +n 1−k 1/2−k

Γg l y AG INV GLY
AG 1/2 1 1/2−n
INV 1− c 1− c/2 1− c
GLY 1/2−k +n −pg l y 1−k −pg l y 1/2−k −pg l y

Table 9.1: Cellular Glycolysis Game

that given c < 1/2, there was a polymorphic equilibrium given by:

x∗
AG = 2kn +k − ck − cn

2n2

x∗
INV = 1− k

n
x∗

GLY = 1−x∗
AG −x∗

INV

If c > 1/2 the AG cell would dominate. This is valid for the ΓĀ game in this
case. For the Γinv game, the coniditon is c +pinv < 1/2 and the equilibrium
is given by:

x∗
AG = 2kn +k − (c +pinv)(k +n)

2n2

x∗
I NV = 1− k

n
x∗

GLY = 1−x∗
AG −x∗

I NV

If c < 1/2, the equilibrium in the Γgly game is given by:

x∗
AG = (k +pgly)(2n +1− c)− cn

2n2

x∗
I NV = 1− k +pgly

n
x∗

GLY = 1−x∗
AG −x∗

I NV
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If the condition for a polymorphic equilibrium is not met, the AG cells will
dominate. The AG cells represent gives the organisms a baseline fitness
1, while the I NV and GLY cells reduce the organismal fitness by dinv and
dgly correspondingly. The organismal payoff function g is represented in
table 9.2 Assuming that c < 1/2 such that ΓĀ and Γgly have polymorphic

AG INV GLY
Ā 1 1−dinv 1−dgly
Pinv 1− cinv 1−dinv − cinv 1−dgly − cinv
Pgly 1− cgly 1−dinv − cgly 1−dgly − cgly

Table 9.2: Organismal Glycolysis Game

equilibria, the organismal fitness of Ā and Pgly is given by:

G Ā = x∗(Ā)AGg (Ā, AG)+x∗(Ā)I NV g (Ā, I NV )+x∗(Ā)GLYg (Ā,GLY )

= 2kn +k − ck − cn

2n2 + (1− k

n
)(1−di nv )+ (

k

n
− 2kn +k − ck − cn

2n2 )(1−dgly)

= 1−dinv +
k

n
dinv −

k

n
dgly +

2kn +k − ck − cn

2n2 dgly

= 1− (1− k

n
)dinv +

k − ck − cn

2n2 dgly

GPgly = x∗(Pgly)AGg (Pgly, AG)+x∗(Pgly)I NV g (Pgly, I NV )+x∗(Pgly)GLYg (Pgly,GLY )

= 1− (1− k +pgly

n
)dinv +

(k +pgly)(1− c)− cn

2n2 dgly − cgly

If c +pinv < 1/2 such that there is a polymorphic equilibrium inn Γinv game,
the organismal fitness is given by:

GPinv = x∗(Pinv)AGg (Pinv, AG)+x∗(Pinv)I NV g (Pinv, I NV )+x∗(Pinv)GLYg (Pinv,GLY )

= 1− (1− k

n
)dinv +

k − (c +pinv)(k +n)

2n2 dgly − cinv

otherwise, AG will dominate and the fitness is given by:

GPinv = x∗(Pinv)AGg (Pinv, AG)+x∗(Pinv)INVg (Pinv, I NV )+x∗(Pinv)GLYg (Pinv,GLY )

= 1− cinv

Comparing the strategy Pinv punishing I NV cells against the naive strategy
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Ā when c +pinv < 1/2 yields:

GPinv >G Ā

1− (1− k

n
)dinv +

k − (c +pinv)(k +n)

2n2 dgly − cinv > 1− (1− k

n
)dinv +

k − ck − cn

2n2 dgly

k − (c +pinv)(k +n)

2n2 dgly − cinv >
k − ck − cn

2n2 dgly

− (pinv)(k +n)

2n2 dgly − cinv > 0

Thus, the strategy punishing invasive cells in this game is worse than the
naive strategy if it does not punish the invasive cells enough pi nv > 1/2− c
to prevent the polymorphic equilibrium. If it does prevent the polymorphic
equilibrium, the comparison yields:

GPinv >G Ā

1− cinv > 1− (1− k

n
)dinv +

k − ck − cn

2n2 dgly

cinv < (1− k

n
)dinv −

k − ck − cn

2n2 dgly

Punishing the invasive cells is better than the naive strategy if the cost to the
organism of punishing is less than the total damage done to the organism
by the glycolytic and ivasive cell under the naive strategy.

Comparing the strategy punishing the glycolytic cells Pgly to the naive
strategy Ā yields:

GPgly >G Ā

1− (1− k +pgly

n
)dinv +

(k +pgly)(1− c)− cn

2n2 dgly − cgly > 1− (1− k

n
)dinv +

k − ck − cn

2n2 dgly

pgly

n
dinv +

(k +pgly)(1− c)− cn

2n2 dgly − cgly >
k − ck − cn

2n2 dgly

pgly

n
dinv +

pgly(1− c)

2n2 dgly − cgly > 0

pgly

n
dinv +

pgly(1− c)

2n2 dgly > cgly

pgly(
1

n
dinv +

1− c

2n2 dgly) > cgly

This shows that punishing the glycocolytic cells Pgly can be better than the
naive strategy Ā as long as the organismal cost of punishing is sufficiently
low compared to the effect on the fitness of the punished cells.

The last comparison, between punishing invasive cells enough to

56



prevent the polymorphic equilibrium and punishing glycolytic cells yields:

GPinv >GPgly

1− cinv > 1− (1− k +pgly

n
)dinv +

(k +pgly)(1− c)− cn

2n2 dgly − cgly

cinv < (1− k +pgly

n
)dinv −

(k +pgly)(1− c)− cn

2n2 dgly + cgly

Punishing the invasive cells can be better for the organism than punishing
the glycolytics cells, as long as the cost of punishng the invasive cells is
lower than the cost of punishing the glycolytic cells combined with the
damage of the remaining glycolytic and invasive cells.
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Part III

Discussion and Conclusions
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Chapter 10

Discussion

The goal of this thesis was to see if it was possible, and useful, to model the
host-tumor relationship using a game theory framework. I will here discuss
the results.

10.1 Possibility

I consider the models in this thesis as a proof of concept of game theoretic
models of the host tumor relationship. However, in making the models, I
made some assumptions which can have impact on the result. I will discuss
their impact, as well as possible methods of overcoming them, here.

10.1.1 Instantanious Cell Dynamics

I assume throughout that the cell populatinon dynamics is fast enough that
it can be seen as instantanious compared to the organismal population
dynamics.

10.1.2 Infinite Size Populations

Both the cellular and organismal population are assumed to be infinitely
large. This assumption is required to use the replicator equation and get
deterministic dynamics. The deterministic dynamics is essential to for the
population dynamics to mimic completely rational choices. Considering
finite population sizes lead to outcomes that can be important for cancer
progression.

10.1.3 Spatially Homogenous Populations

The random mathing population games used to model the cell dynamics
assumes that the population is homogenous, i.e. that every cell in the
population has the same probability of interacting with every other cell in
the population. This is not realstic for cell growth where the two offspring
of a cell division often ends up as neighbours. When assuming that the
offspring inherits the trait of the parent, this implies that every cell is
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more likely to interact with a cell of it’s own type. This has been raised
as a problem of using evolutionary game theory in the modelling of cancer
cell dynamics cite. The field of evolutionary games on graphs, provide a
possible solution to this, but I did not have time to implement it.

10.1.4 Asexual Organismal Reproduction

I assume that the organisms reproduce asexually. This is not valid for most
multicellular organisms. An investigation into how sexual reproduction
affects the outcome is therfore needed. One of the important aspects
that are lost due to this assumption is that of recessive inherited cancer
allelesrefr. In an asexually reproducing population such alleles would not
survive, at least not in a infinite population.

10.2 Usefulness

As I see it, the most useful feature fo the game theoretic model is that it
provides intuitive insights to the complex host-tumor relationship. The
model with frequency dependent cell selection in section 9.4 suggests
that multicellular organisms can develop defence mechanisms with tactical
elements, i.e. not punishing the cell traits that are most detrimental to
the organism, but the traits that lead to the cellular population wich is
most detrimental. The models in section 8.0.4 illustrates the differences
in level of rationality between cells and organisms in the relationship. The
organism can make choices that incorporate knowledge of the probability
of different game outcomes, while the cells can only make desicions based
on what is best there and then. There are some obsticals to using the model
as a method of prediction.

10.2.1 Many Parameters

A number of parameters need to be defined in each model. In a model
with mO organismal strategies and mC cellular strategies the following
parameters must be defined.

• An organismal payoff for each combination of organismal and cellular
strategy: mO ×mC

• A cellular payoff for each combinaiton of cellular and organismal
strategy: mC ×mO , or when frequency dependent cellular selection is
considered: a payoff for each combination of an organismal strategy
and two cellular strategies: mC ×mC ×mO

• For models with infrequent mutations a mutation rate for each non-
normal strategy: mC −1

• For the multistep model, a mutation rate for each combination of
cellular strategies: mC ×mC
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The number of parameters make the use of the models to describe real
biological scenarios difficult since getting biologically realistic values for
these parameters are not trivial.

10.2.2 Abstract Definition of Strategies and Payoffs

The definitions of strategies and payoffs used here is not clearly defined in
terms of biological function.

10.2.3 Abstract Game Definition

One of the good features of evolutionary game theory is its simplicity and
its intuitive nature. Random matching of symmetrical games gives rise to
a simple and easily understandable model. In this work the use of a more
abstract game definition than finite 2-player symmetric games was needed,
and this removes some of the simplicity. Especially the games considering
infrequent mutations (section 8.0.4) led to games which needed an abstract
definitions.

10.2.4 Foucus on Phenotype

The strategies or traits are thought to represent the function, or phenotype,
of the cell. The link to the genotype is not established, other than assuming
that the traits are heritable. It would be useful to look at the problem from
a genetic point of view.
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Chapter 11

Conclusions

In this thesis I have provided a proof of concept that game theory can be
used to model the host-tumor relationship. The models developed shows
that it is plausible for the host to have developed tactical cancer defence
mechanisms. They also highlight the asymmetrical ’rationaly’ relationship
between the host and the tumor cells: The host takes the structure of the
whole game into consideration while the cells only make ’myopic’ decisions,
choosing the strategy which is best there and then. The models provide an
intuitive interface to complex multilevel differential equations and is a

I hope that this work leads to further research into the subject. imortant
further steps are described below.

11.1 Further Work

• Incorporate finite and spatially heterogenous cell populations into the
model

• The implications of sexual reproduction should be worked out and
preferably included in the model.

• Develop a similar model considering strategies as genotype instead of
phenotype

• Investigate methods of finding values for parameters in the model.
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Appendix A

Mathematical Derivations

A.0.1 Infrequent Mutations

I use linearization of the differential equations to find stable restpoints. Let
R = δO and sk

v = αv (k). and let the organismal and cellular strategies be
denoted

ΣO = (σO
1 ,σO

2 , . . . ,σO
mO

)ΣC = (η,σC
1 ,σC

2 , . . . ,σC
mC

)

and z j
i = x

σO
i

σC
j

and z0
j = x

σO
j

η .

The differential equations defined in section 8.0.4 have equilbrium
points e(v) for each strategy σO

v ∈ΣO defined by:

e(v) j
i = 0 ifi 6= v

which means that w̄v = w̄ leadning to:

0 =−Re(v)0
v − (

∑
k

uk sk
v )e(v)0

v +R0

e(v)0
v = R

R +∑
k uk sk

v

0 =−Re(v) j
v +µs j

v e(v)0
v ∀ j 6= 0

Re(v) j
v =µs j

v
R

R +∑
k uk sk

v

∀ j 6= 0

e(v) j
v = µs j

v

R +∑
k uk sk

v

∀ j 6= 0

we have the following partial derivatives:
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∂ż j
i

∂z l
k

= 0

∂ż j
i

∂z0
i

=µ j s j
i

∂ż j
i

∂z j
i

=−R0

∂ż0
i

∂z l
k

=−R0
w̄i w l

k

w̄2

∂ż0
i

∂z l
i

= R0
w l

i w̄ − w̄i w l
i

w̄2

∂ż0
i

∂z0
i

=−R0 − (
∑
n
µn sn

i )+R0
w0

i w̄ − w̄i w0
i

w̄2

Define Ji , j as the matrix:

Ji , j =



∂ż0
i

∂z0
j

∂ż0
i

∂z1
j

∂ż0
i

∂z2
j

. . .
∂ż0

i

∂zmc
j

∂ż1
i

∂z0
j

∂ż1
i

∂z1
j

∂ż1
i

∂z2
j

. . .
∂ż1

i

∂zmc
j

...
...

...
. . .

...
∂żmc

i

∂z0
j

∂żmc
i

∂z1
j

∂żmc
i

∂z2
j

. . .
∂żmc

i

∂zmc
j



Ji ,i =



R
w 0

i (w̄−w̄i )
w̄ 2 −R − (

∑
n µn sn

i ) R
w 1

i (w̄−w̄i )
w̄ 2 R

w 2
i (w̄−w̄i )

w̄ 2 . . . R
w mc

i (w̄−w̄i )
w̄ 2

µ1s1
i −R 0 . . . 0

µ2s2
i 0 −R . . . 0

...
...

...
. . .

...
µmc smc

i 0 0 . . . −R



In a state e(v)∗ where e(v)k
i = 0 ∀i 6= v we get w̄v = w̄ and w̄i = 0 ∀i 6= v .
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And thus

Jv,v =


−R − (

∑
n µn sn

v ) 0 0 . . . 0
µ1s1

v −R 0 . . . 0
µ2s2

v 0 −R . . . 0
...

...
...

. . .
...

µmc smc
v 0 0 . . . −R



Ji ,i =


R

w 0
i

w̄ −R − (
∑

n µn sn
i ) R

w 1
i

w̄ R
w 2

i
w̄ . . . R

w mc
i

w̄
µ1s1

i −R 0 . . . 0
µ2s2

i 0 −R . . . 0
...

...
...

. . .
...

µmc smc

i 0 0 . . . −R



det(J −λI ) =∏
i

det(Ji ,i −λI )

det(Jv,v −λI ) = (−R −λ)mc (−R − (
∑
n
µn sn

v )−λ)

det(Ji ,i −λI ) = (R
w0

i

w̄
−R − (

∑
n
µn sn

i ))(−R −λ)mc − (−R −λ)mc−1(
∑

j
R

w j
i

w̄
µ j s j

i )

= (−R −λ)mc−1)((−R −λ)(R
w0

i

w̄
−R − (

∑
n
µn sn

i ))−∑
j

R
w j

i

w̄
µ j s j

i )

The eigenvalues of J is then λA =−R and λB =−R−(
∑

n µn sn
v ), which are both

negative, and the roots of the quadratic polynominals given by:

p Ji ,i = (−R −λ)(R
w0

i

w̄
−R − (

∑
n
µn sn

i ))−∑
j

R
w j

i

w̄
µ j s j

i

which has negative roots when:

w̄ > Rw 0
i +

∑
j w j

i µ j s j
i

R +∑
j µ j s j

i∑
j

e(v) j
v w j

v > Rw 0
i +

∑
j w j

i µ j s j
i

R +∑
j µ j s j

i

Rw 0
v +

∑
j w j

vµ j s j
v

R +∑
j µ j s j

v

> Rw 0
i +

∑
j w j

i µ j s j
i

R +∑
j µ j s j

i

73



So the only v such that e(v) is stable is given by:

v∗ = argmax
i

Rw 0
i +

∑
j w j

i µ j s j
i

R +∑
j µ j s j

i

A.0.2 Game outcome

If the organism plays strategy σO
i , the probability that the cell will play T j

in Li
k is given by

pk (T j ) = µ̂ j s j
i

. The probability that the game will continue to L j
k+1 is given by:

1− (R̂ +∑
µ̂ j s j

i )

The total probability of the last cell playing strategy T j is then given by:

p(T j ) = µ̂ j s j
i (

∞∑
k=0

(1− (R̂ +∑
µ̂ j s j

i ))k )

= µ̂ j s j
i

1− (1− (R̂ +∑
µ̂ j s j

i ))

= µ̂ j s j
i

R̂ +∑
µ̂ j s j

i

A.1 Multistep Process

The differential equations:

ż0
i =−RO x0

i − (
∑
k

q0,k s0,k
i )z0

i +R0
wi

w̄

ż j
i =−RO z j

i +
∑
k

(qk, j sk, j
i zk

i −q j ,k sk, j
i z j

i ) ∀ j 6== 0

is invariant in the hyperplanes h(v) given by:

h(v) =
{

z ∈ Z | z j
i = 0∀i 6= v

}
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Rest points in each plane r (v) ∈ h(v) is given by :

0 =−Rz0
v − (

mc∑
k=1

q0,k s0,k
v )z0

v +R
wv

w̄

0 =−Rz0
v − (

mc∑
k=1

q0,k s0,k
v )z0

v +R

z0
v (R + (

∑
k

q0,k s0,k
v )) = R

z0
v = R

R + (
∑

k q0,k s0,k
v )

and ∀ j 6= 0

0 =−Rz j
v +

mc∑
k=0

(qk, j sk, j
v zk

v −q j ,k sk, j
v z j

v )

Rz j
v +

mc∑
k=1

q j ,k sk, j
v z j

v =
mc∑

k=0
qk, j sk, j

v zk
v

z j
v =

∑mc

k=0 qk, j sk, j
v zk

v

R +∑mc

k=1 q j ,k sk, j
v
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