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Abstract

Machine learning enables a computer to learn a relationship between two
assumingly related types of information. One type of information could thus
be used to predict any lack of information in the other using the learned
relationship. During the last decades, it has become cheaper to collect biological
information, which has resulted in increasingly large amounts of data.

Biological information such as DNA is currently analyzed by a variety of tools.
Although machine learning has already been used in various projects, a flexible
tool for analyzing generic biological challenges has not yet been made.

The challenges of representing biological data in a generic way that permits
machine learning is here discussed. A flexible machine learning application is
presented for working on currently available biological DNA. Also, it targets
biological challenges in an abstract manner, so that it may become useful for
both current and future challenges.

The application has been implemented in The Genomic HyperBrowser and is
publicly available. An use case inspired by a biological challenge demonstrates
the application usage. A machine learned model is analyzed and used for making
predictions. The results are discussed and further actions of how to improve the
model is proposed.

The application offers a new way for researchers to investigate and analyze
biological data using machine learning.
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Motivation

Biological challenges are interesting because they deal with the very foundations
of mankind. Addressing the current challenges is key to develop medicine to
both prevent and cure diseases. Machine learning is a tool, one among many, for
addressing the challenges.

Machine learning aims to make computers learn models or patterns which
could be used for analysis, intepretation and decision making. A computer may
learn from mathemathical techniqes (i.e regression analysis), complex computer-
algorithms (data-mining, artificial intelligence), amongst others. Regression
analysis [12, 42] is a statistical technique for understanding and interpreting
relationships between independent and dependent mathematical variables,
by estimation. A (probable) relationship may be examined using various
techniques which explains one or more dependent variables based on one or
more independent variables using a statistical model. A model is deterministic
if it explains (in a complete manner) the dependent variables based on the
independent ones. In many real-world scenarios, this is not possible. Instead,
statistical (or stochastic) models tries to approximate exact solutions, by
evaluating probabilistic distributions. The decisions made by using such models
may be supported by various indicators (e.g. a confidence interval). Creating
models and using probability distributions and indicators for decision making
and forecasting are closely related with machine learning, even though machine
learning may be understood more widely since it also have a branch to artificial
intelligence.

In 1962, Arthur Lee Samuel programmed a checkers game on his computer
which later on beat him in the same game [30]. He accomplished this applying
a technique, later known as machine learning. The computer learned checker
moves (positions) which would maximize its likelihood of winning, by playing
thousands of times against itself. Then, after learning the relationship between
moves (independent variables) and outcomes (dependent variables), the author
of the program stood no chance against the computer. Later on, the computer
created a small revolution by winning against a self-proclaimed master player
of checkers. This particular checkers program is thought to be the first self-
learned program. By knowing all checker-states and outcomes, the computer
would naturally select the best available move (from any given situation) which
would maximize its possibility of winning the game.

If a computer knows all moves and outcomes, so that it always will select
the optimal move, then the game is said to be solved. The question of whether
a computer is able to learn, still remains a philosophical question. Enthusiast
would probably underline that being able to predict a correct answer concerning
a given problem most of the time, is the same as having learned how to deal with
it. Others would say that making errors is what makes us human.

Personally, this has given me the passion to explore in what ways, and
possibly how well, machine learning could be used to answer current challenges
or problem formulations by using available genomic data.
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Related Work

Various projects (e.g. [28, 31]) have already applied various machine learning
approaches to challenges dealing with biological (genomic) data. Much effort
has resulted in machine learning techniques applicable for dealing with genomic
data in the sense of reading, storing, learning and analysing it. A common focus
of such projects has mainly been towards creating, improving and optimizing one
or more models for a specific case. Thus, because the project goal is closely related
to the machine learning goal of learning and prediction data with a highest
possible accuracy.

Little work, if any, has yet been focused on bringing such already known
techniques together for building a general purpose tool for dealing with the
challenges in a broader and more general sense, in the context of genomic data.
Such a tool may be beneficial for users with little or no programming skills in
order to perform dynamic machine learning investigations and seek answers
to their specific questions. The potential power of machine learning might be
hidden for users with none or little knowledge about it.

Focus and challenges

Challenges of building a generic and flexible machine learning application has
been the following:

• The transformation and representation of genome (genomic) data in a way
which enables standard machine learning algorithms to work on it.

• The adaptation of a tool implementation, within an already complex and
existing framework.

• The adversity of building a tool which bridges the fields of machine learning
and biology when not having dealt with any of it previously.

Covered topics

Topics of special interest, which are devoted extra attention are:

• How to build a machine learning tool, having the flexibility and power to
solve a wide range of both current and future biological challenges.

• Creating measures which capture genomic data and which are both flexible
and reusable in multiple genomic data contexts.

• The treatment of the enormous available amount of data, when dealing
with sparse data (rare cases) and skewness (imbalanced data).

Uncovered topics

While the thesis deals with the already mentioned topics, the work does not
involve developing any new algorithms, nor adjusting or extending any existing

4



ones. Nor does it try to fit algorithms to already available feature data, or try to
select algorithm to best-fit a given feature set.

Though some results are presented, the focus is only to explain general
concepts or uses of mentioned algorithms and techniques. It has never been
the intention to optimize results or fine-tune algorithms only for performance
purposes.

Method

Extensive research has been done searching through online resources and
libraries to find material on (prior) work within the field of data mining, machine
learning and bioinformatics. Access to the libraries has been authorized by The
University of Oslo1.

To get hands-on experience with machine learning applications, an online
course in machine learning2, has been completed while writing the thesis. Five
increasingly challenging tasks was early solved with the focus of learning both
statistic linear- and multiple-regression as well as the development-framework
where the development took place. Concretely, the tasks were in general solved
by using R and rpy3. Each of the task results was displayed and described at a
dedicated wikipedia website for internal use.

Figure 1: An abstract 8-step methodology to make sense of the human genome.

The work of the thesis focuses on the 4 inner steps (3,4,5 and 6) of the abstract
8-step methodology for meaking sense of the human genome, shown in figure 1.
The first covered topic (of building a machine learning tool) aims to investigate
step 4, while the second topic (of creating measures) aims to investigate step 5.
Step 6 and 7 are investigated through building an application for learning and

1The University of Oslo, website: https://www.uio.no/ (2013-04-29)
2 Machine Learning (https://www.coursera.org/course/ml (2013-04-29)) course, by

Andrew Ng.
3 The rpy is an extension module (binding) of the programming language R and Python.

5
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making estimates. Furthermore, the methodology relies on the accuracy of the
existing finds and representation of genomic information.

The application development has throughout the thesis been implemented
in Python4 using the «extreme programming» methodology without the pair-
programming part. Test driven development (TDD) has been followed on a case-
to-case basis. It has been a firm focus on unit testing key components with
Python’s built-in unittest package. Frequent releases has been followed by
solving multiple minor problems, which later has been combined and refactored
whenever it was found to be necessary. My supervisor has played the role as an
active customer; asking for functionality which has directed me towards building
a beneficial end product.

The application implementation relies on three Python libraries, namely
numpy5, scipy6 and sklearn7 (SciKit).

Modelling has mainly been done using the Dia8 program for creating UML
class diagrams, and Graphviz dot9 for other illustrations.

Environment

Large scale analysis and simulations requires a solid and powerful development
environment. Development, implementation and execution of tool functional-
ity has been done on the infrastructure and installation of The Genomic Hyper-
Browser10 (HyperBrowser)[34]. It is based on the Galaxy project11, which is built
for interactive large-scale genomic analysis. The HyperBrowser developer com-
munity is continuously improving and building new tools for genomic analysis,
in cooperation with statisticians and biologists.

The HyperBrowser executes on the invitro computer-cluster, which is a subset
of the Abel12 computer cluster, located in Norway. The cluster was ranked (in
June 2012) as the 96th most powerful computer system in the world according
to Top50013. It has more than a total of 10000 cores (CPUs) and 40 TebiBytes of
memory.

Application access and usage

The application is publicly available at http://hyperbrowser.uio.no/ml/. Anyone
who finds this work interesting is encouraged to use the application on their
biological challenges.

4Python (version 2.7.3), website: http://www.python.org/ (2013-04-29)
5Numerical python, website: http://numpy.org/ (2013-04-29)
6Scientific Python, website: http://scipy.org/ (2013-04-29)
7SciKit (version 0.12), website: http://scikit-learn.org/ (2013-04-29)
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Chapter 1

Background

1.1 Machine Learning

Machine learning techniques [1, 42] has been increasingly popular over the last
decades, due to the large amounts of available data («big data»[21]) and the
access to freely available tools, e.g. Hadoop1. The field of machine learning
offers many multi-purpose algorithms for operating on both small, large and
huge datasets. In addition to this, many smart processing approaches has been
proposed. Machine learning can also be viewed as extracting knowledge from
data. However, the objective is not to store it, but to detect and use patterns for
prediction purposes.

The key idea is to make a machine (computer) learn a model (hypothesis) by
enough data of a given type, so it becomes able to identify one or more patterns
within it. Identified (learned) patterns may then be used for making estimates
(predictions) on yet unseen data of similar type as the data which was used to
learn the pattern. The amount of required data may vary based on the difficulty
of the pattern to learn. The learning process is often referred to as training,
while the process of making decisions is called classification.

There are mainly two types of learning. The first type, when data is given
to the computer in addition to directly pointing out the pattern answer, is called
supervised learning. The second type, when no such out-pointet answers are
given, is called unsupervised learning. Sometimes, unsupervised learning is
performed while providing answers at a later stage in the process to make
adjustments or fine-tune one or more parameters. This is called semi-supervised
learning, since it is a combination of the two main types. Notice that other
machine learning variants of the types do exists (e.g. reinforcement learning),
but are not discussed in the thesis.

1.1.1 Supervised Learning

Supervised learning is to learn an hypothesis (model) using «answers» to help the
machine figure out patterns. By this, the patterns to be learned is assumed to be
known when the learning process begins. For the learning to have any meaning,

1Hadoop website: http://hadoop.apache.org/
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there must be at least one pattern to learn. Thus, the outcome of all instances
(samples) could either represent the presence or absence of the pattern.

The supervision part, is (for each sample) to «tell» the machine if a pattern
is present or not. A sample instance where a pattern is present is denoted a
positive sample. Equally, a sample where a pattern is not present (absent) is
denoted a negative sample.

As an example, imagine that a dog is trained to find drugs hidden in a vehicle.
The goal is to make it bark whenever a positive sample, e.g. a car with drugs, is
presented to it. The training process is done presenting the dog with enough cars
with drugs and reward it accordingly with some great candy whenever it barks
when discovering drugs. In the same way, the dog may be «punished» when
barking whenever drugs are not present in a car, by doing something which is
unpleasant for the dog but not harmful. The supervision is done by stimulating
the dog to respond to positive samples by rewarding it, and equally not to respond
to negative samples by «punishing» it. Hopefully, the dog then obtains a built-in
feeling (hypothesis) for barking whenever drugs are present in various vehicles.
The evaluation process is done presenting the dog with a car which has not been
used in the training process. By this, it is regarded as unknown to the dog. But,
the dog should by its built-in feeling for what a vehicle with drugs smells and
looks like, be able to transfer this knowledge to the presented car. The dog must
then consider and decide whether or not it wants to signal the presence of drugs
by barking.

1.1.2 Binary- and multi-class classification

A model (or hypothesis) which is used to predict two outcomes is known as binary
classification. For instance, it may predict or classify a sample to be either
positive or negative. Multiclass classification is when there are more than two
possible outcomes (classes). In general, a n-class classifier may classify n possible
outcomes. There is no such thing as a one-class classifier (n = 1) since there is no
classes to distinguish between.

In some cases a binary classifier may be used as a multiclass classifier. This is
known as a «one-vs-all» or «one-vs-rest» classifier. The idea is to build a collection
C of n binary classifiers (c), one for each class, and then select the i -th classifier
which estimates the highests probability for a given sample x.

argmax
x

c(x) = {
c(xi ) | ∀ j ∃ c(x j ) ≤ c(xi )∧ ci ,c j ∈C

}
1.1.3 Unsupervised Learning

Unsupervised learning encourages the computer to figure out patterns by itself
and learn an hypothesis without explicitly pointing out any answers for it. Such
learning is particularly good in discovering segments within a data set, often by
exploring relationships between huge amounts of data (big data). Examples of
such segmentation could be detecting customer groups for targeted marketing
or discovering solar system relationships. Applications which applies techniques
from this field are usually somewhat related to artificial intelligence.
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As an example, imagine that a soccer team wants to order new shirts for their
players. To save costs and the effort of measuring the players exact shirt-size,
they have found a company which delivers the shirts they want, by only getting
the height and weight of each player. The samples are shown (as points) in figure
1.1.A. The company have three types of shirt-sizes, namely small (S), medium
(M), and large (L). This corresponds to three segments. The company runs the
given data of heights and weights on their unsupervised learning algorithm,
asking it to return the samples as a group of three segments. The three segments
(S, M and L) are shown in figure 1.1.B.

Figure 1.1: Segmentation of shirt-sizes for a soccer team. The dataset,
illustration and the idea is partly taken from the machine learning course at
Coursera.

1.1.4 Data mining

Data mining [37, 42] is used to detect patterns in data through analysis, to gain
new insights. Patterns are interesting because they reveal information about
trends and behaviors amongst the data, which are usually not visible by looking
at the data separately. Thus, the insights reveal themselves when information is
put together in a broader context. The insights reveal information «within» the
information.

The data to be used in such an analysis should therefore, at least, be assumed
to be a carrier of such information. Usually, the more data available at hand - the
more precise the prediction model becomes. In addition, a data mining analysis
should per definition be automatic2, to be sure of that no man has added any
interpretation. An analysis should then focus on carefully describing a series of
the wanted mining steps, before execution time.

1.1.5 Concept

A specific pattern of interest is sometimes referred to as a concept or class. A
machine learning concept [40, 42] can be viewed as a learned computational

2Automatic analysis usually means computer-driven.
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understanding. It is a pattern which repeatedly appears or sticks out from the
rest of the data. A concept is usually desirable and its discovery the goal of an
analysis.

Usually, it proves difficult to fully represent a concept, due to the imperfection
and variety of the world we live in. The goal, as in regression analysis, is to
approximately estimate a concept as good as possible. If so, then there is a good
chance of predicting the presence or absence of a concept in yet unknown data.

A concept may be represented differently by the algorithms that learns it,
because of the way the algorithm is implemented. However, in abstract terms, a
concept remains the same. How an algorithm represents it and how it is learned
is much less important than how well it may be predicted in yet unseen data.

In statistical terms, a concept is a dependent variable on the independent
variables inside the data. The explanation of a concept is learned by certain
characterizations or measures of the concept, created from the data, and is
known as features.

1.1.6 Features

When a machine learning algorithms learns a concept, it relies on learning from
features that represents the data in a manner which explains its nature. Such
features are usually created according to the data to be learned, on a case-to-case
basis. Thus, features are used to distinguish between concepts.

Even though features are vital for any algorithm to be able to make good
predictions, it is not always intuitive to know what a good feature looks like.
Thus, creating proper features is a key challenge.

Feature example

A newly wedded couple enters a bank to ask for a loan of 2,000,000 NOK to
buy the house of their dreams. The banker behind the desk looks through
their financial situation, as displayed in table 1.1, in order to estimate (and
decide) if the couple is able to repay the loan or not. Each column may
represent the corresponding feature so that F1 = Savings, F2 = Yearly income,
F3 = Yearly car costs and F4 = Private loan. The two possible outcomes (C) are to
give the loan (cyes ∈ C) or not (cno ∈ C). The banker may use a (machine) learned
model h, which is learned from collected historical data of other customers and
their repayment capability using the same features. The model is in this case
represented as an vector h = [1,4,−2,−1]. The table row (sample) could also be
represented as a vector x = [150000,550000,25000,350000].

Savings (F1) Yearly income (F2) Yearly car costs (F3) Private loan (F4)

150000 550000 25000 350000

Table 1.1: Feature example of the financial situation of a newly wedded couple.
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max AmountToLend(x|h) = x1 ×h1 +x2 ×h2 +x3 ×h3 +x4 ×h4

= x1 ×1+x2 ×4+x3 ×−2+x4 ×−1

= 150000×1+550000×4+25000×−2+350000×−1

= 150000+550000×4+25000×−2+350000×−1

= 150000+2200000−50000−350000

= 1900000

g i veLoan(x, sum) =
{

cno, maxAmountToLend( x ) < sum
cyes, otherwise

The calculation result maxAmountToLend show that the maximum amount
to lend the couple is 1,900,000 NOK. However, it does not look like the banker is
able to give the newly wedded couple the loan to buy the house of their dreams
since giveLoan(x, 20000000) returns negative (cno).

To underline the importance of selecting "proper" features, imagine that
another model h′ was learned based on a different set of features. Concretely,
only using the three first features of the ones used in h (without the private loan
feature, F4). Then, h′ would not have taken the major drawback of the -350,000
NOK in prvate loan into account. As a result, h′ might be more generous towards
the newly wedded couple, since all of their other features are more positive than
negative, in general.

1.1.7 The learnable

When dealing with patterns and concepts, the question of whether it is possible
to learn a given concept arises. A learnable concept has been defined by Valiant
[40] by following these criteria:

1. It must be characterized in order to know how to what situations it applies.

2. It must be computable in a feasible amount of steps. It should also be
computable in polynomial time. If it is not computable in reasonable
amount of time, it is per definition not learnable.

3. It must be non-trivial and for general purpose knowledge. It should be
valuable and handle at least some variety of situations.

1.1.8 Data partitioning

Learning an hypothesis h and measuring its performance, usually makes use of
data from the same source of origin. The data is therefore often partitioned in a
beneficial manner which seeks to optimize the performance of h. Often, the total
amount of available data is partitioned into 80% training data and the remaining
20% to test data. Both partitions should represent a relatively equal distribution
of samples, so that training data may be verified by the test data.

In situations which requires tuning of certain parameters, an additional
cross-validation partition may be beneficial. Its role is to evaluate and fine-tune
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parameters of h to improve the fitting of the training data. Afterwards, the test
data may (as usual) be used to predict its performance. The partition sizes are
then usually 60% training data, 20% cross validation data and 20% test data.

1.1.9 Learning curve

A learning curve is a graphical tool for evaluating a learning progress based on
the amount of added samples. It is often used in error analysis when optimizing
a model. Typically, the progress is evaluated for a every k added samples. Thus,
if k = 1 the learning progress would evaluate the hypothesis for every single
sample. Usually, k is selected as a larger number on large sample sets to reduce
computation time.

The learning progress usually targets the evaluation score of a learned
hypothesis on both the added training samples and on the cross-validation set.
Ideally, the prediction error in both the training and cross-validation set would
approach 0 by adding «enough» samples. If the graph fails to meet this objective,
it indicates that the sample set contains unclear representations of its concepts.

In addition, the visualization helps interpreting the results of the learning
progress. Consequently, it may imply how the dataset would perform if more
samples or more accurate samples were to be used. Futhermore, adjusting
learning parameters such as the regularization parameter (for smoothening
decision boundaries) could be another alternative to improve the learning
process.

Figure 1.2 show a learning curve with 100 (k = 100) intervals. It seem that
adding increasingly more samples are lowering the cross validation error, but
is gaining more tarining error at the same time. Furthermore, the lines (error
rates) are moving towards a common error rate, by the amount of samples that
are added. Thus, adding even more samples (if possible) could be fruitful path
to follow. Another path could be to inspect the mis-classified samples and create
features that target these specifically.

Figure 1.2: A learning curve illustration.
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1.2 Bioinformatics

Computer science, dealing with biological challenges is known as bioinformatics.
Biologists and computer-scientists work together, using computer power, to gain
insights of how the human body operates (internally). The insights might be used
to create even better medicine to cure or prevent diseases. A key challenge has
been to figure out what normal DNA looks like. Having proper understanding of
what normal DNA is, facilitates detection of anomalies and changes.

1.2.1 DNA and the human genome

Figure 1.3: The DNA bases are adenine
(A), thymine (T), guanine (G), and cytosine
(C). Image taken from Encyclopedia Bri-
tannica.

The human genome consists of
about 3 billion base-pairs, known
through the language of DNA (de-
oxyribonucleic acid) which consists
of 4 bases, namely A, C, T and G
as shown in figure 1.3. The genome
contains all our genes. More pre-
cisely, it contains the alleles which
codes for the genes, but may differ
on base-pairs, due to changes such
as mutations.

1.2.2 DNA sequencing

DNA sequencing [25] is the pro-
cess of reading biological material
and translating it into a computer
readable data representation which
may be used by scientists and re-
searchers for a multiple of ana-
lytical purposes. The sequencing
process is complex and introduces
many challenges such as gaps be-
tween reads, lack of coverage and various other sequencing errors.

In 2001, a draft sequence of the human genome[27] was published for the
first time using a technique based on the one introduced by Sanger in 1977
[35]. Earlier, only fragments of smaller reads had been examined. The larger
continuous read (in 2001) created an overview or landscape [26], enabling prior
fragments to be put into a context. Such a context is still of great use in
many areas, such as detecting gene transcription, chromatin structure, genetic
variation, association to inherited diseases and more.

The following decade after the draft sequence breakthrough, more precise
sequencing techniques was formed, resulting in increasingly large amounts of
available reads, as well as more accurate reads. In 2004, the read of 2001 was
greatly improved, covering ∼99,7% of the genome, having only 300 gaps. The
first-generation sequencing technique introduced by Sanger was able to read
about 25,000 bases in a week [26], having 250,000 gaps and ∼90% genome
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coverage. In contrast, the current, third-generation, sequencing techniques
makes it possible to read 250 billion bases per week, with a nucleotide errors rate
of only 1/100,000. The field is continously trying to detect more effecient ways
of performing sequencing, where «cloud» sequencing[38] is one of the newest
approaches. It offers great scalability and «pay-as-you-go» solutions.

1.2.3 Reference genomes

A practical way of acquiring and assembling genomic information of whole
genomes is often done by genome assembly. Genome assembly is the process of
assembling multiple fragments (often millions) of DNA sequenced reads to one
single continuous read. This is mostly done by comparing overlaps amongst the
fragments and combining them in a smart way. In addition to the large number
of fragment-comparisons, the accuracy of keeping track of genome coordinates
(fragments positions) inside the genome is a huge challenge. It was, in fact,
the work on genome assembly which led to the first draft sequence of the
human genome in 2001[27], which created a reference genome for later genome-
assemblies. Various assembly techniques usually achieve good accuracy, though
the greatest challenge is in regards of speed.

Multiple techniques and software programs are currently available for
performing genome assemblies. Each of them tries to propose a smart way of
overcoming the huge task of fragment-comparisons (string comparisons), while
at the same time aiming at increased accuracy. An assembly job is usually ran
on a larger computer cluster with lots of resources. One of the most famous
assembly strategies is the whole-genome shotgun[41] (WGS) strategy, used by
e.g. PCAP[23] for assembling whole genomes.

The WGS strategy clones a given genome a fixed number of times, and breaks
each of the clones into fragments through shearing. By this, the fragments
(splits) may be read individually. Parallel sequencing of individual fragments
leads to a tremendous increase of speed. The resulting sequence reads are
then re-assembled by a computer, looking for overlaps in the reads. Ideally,
all fragments should overlap in a manner which results in a single (correct)
continuous read. Special cases such as gaps and sequencing errors are handled
in final post-processing steps.

Genome assemblies has been used in many projects[5, 6, 11] which have
aimed to build a human «reference genome». Such a genome reference should
have specific information about the genes, the functional elements, known
variations and more. In 2003, the «Human Genome Project» [5] identified
3,2 billion base pairs and about 25,000 genes, while the ENCODE[11] project
identified functional elements in 1% of the human genome[10].

1.2.4 Genomic annotation tracks

Genomic annotation tracks are computer-readable files, formatted in a struc-
tured way to provide information about one or more features across a genome or
piece of DNA. An annotation track usually specifies which features it represents,
and provides meta-data to specify genome coordinates and more. The UCSC
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Figure 1.4: An illustration of the whole-genome shotgun strategy (WGS). Image
taken from Commins, J., Toft, C., Fares, M. A. CC-BY-SA-2.5, via Wikimedia
Commons.

(University of California, Santa Cruz) genome browser3 is an open source, in-
teractive, browser for inspecting and querying data based on annotation tracks,
amongst other functionality. It was created for the Human Genome Project[5]
and was used to compute the draft sequence of the human genome in 2001[27].
The browser offers a huge database of annotation tracks, and enables users to
both download and upload annotation tracks and inspect the tracks with some
provided visualization tools. The ENCODE project has systematically mapped
regions of transcriptions, transcription factor associations, chromatin structures
and histone modifications[14], using annotation tracks, to assign biochemical
functions for 80% of the genome.

A large number of data formats exists due to researchers need to represent,
arrange and store their content. By this, features have been represented in a
multitude of ways through various data formats.

1.2.5 Data formats

DNA sequencing information of a whole genome is often stored as a single file
on a computer. The file may also contain meta-information like positions of
chromosomes and genes, depending on the data-format specification. There are
many formats, but the most popular are BED[32] and WIG[24].

In 2011, the GTrack format[15] was published to represent many of the
various formats uniformly. The format is carefully specified4 to support an easy

3USCS genome browser, website: http://genome.ucsc.edu/.
4GTrack specification is avalable at http://hyperbrowser.uio.no/hb/static/
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conversion from both BED, WIG and others using freely available tools at the
Hyperbrowser’s website5.

1.2.6 Analyzing genomic data

Projects which deals with genomic data, usually analyze the representation
formats (e.g. annotation tracks) in one way or another. For instance, the UCSC
genomic browser allows anyone with educational (academic) purposes to freely
download and possibly create their own tools if needed.

The Genomic Hyperbrowser is an online application, built for statistical
analysis of large-scale genomic data. The process of using it to analyze a
biological question, is illustrated in figure 1.5. The data representation («Data»)
uses two annotation tracks («Track 1» and «Track 2») and is represented in the
GTrack format. The «Analysis» consists of selecting a proper statistic, possibly
selecting a question to be answered and defining hypotheses. The «Result»
may be interpreted by inspecting measurements such as correlation, p-value or
others.

Figure 1.5: Illustration of analysing genomic data in the HyperBrowser. The
image is taken from the HyperBrowser article[34]. It illustrates the three main
Galaxy parts, namely «Data», «Analysis» and «Result».

hyperbrowser/gtrack/GTrack_specification.html.
5Left panel of http://hyperbrowser.uio.no/ contains GTrack tools.
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1.3 Challenges and solutions in related research

In bioinformatics, much research has already applied machine learning tech-
niques on genomic data and the human genome [28, 31]. Common to most of the
projects, are the focus on optimizing performance within a single or specific con-
text. A common challenge which often arises, is the challenges of «imbalanced
data».

1.3.1 Imbalanced data

The imbalanced data problem [20] is the challenge of learning from data where
there are more samples of a given class (or concept) than others. The imbalance
between two or more classes are called between-class imbalance, while imbalance
inside a given class is called within-class imbalance. The class with most
examples are denoted the majority class, while a class with relatively few
samples are denoted the minority class. The distinction between majority
and minority classes are usually done when the imbalance reaches a certain
(imbalance) ratio, e.g. 1:2, 1:10, 1:100, 1:1000 or more.

A high imbalance ratio tend to give majority classes a high accuracy (1̃00%),
while minority classes are left with much less accuracies (0̃-10%). A key
challenge is to improve the accuracy of the minority classes without «hurting»
(lowering) the accuracy of the majority class too much.

There are some common naming conventions to group «related» or «similar»
imbalance problems together. If a ratio between majority and minority classes
are (almost) constant when acquiring new samples, then the imbalance is
relative. If acquiring more samples only increase the amount of samples of a
majority class (leaving minority classes unchanged), then the balance is said to
be absolute. Imbalance, due to the nature of the problem where the samples are
gathered from, is called intrinsic imbalance. If a problem is not intrinsic, then
it is extrinsic. If a minority class has a large enough sample data variety, it is a
rare case problem and is a type of within-class imbalance.

1.3.2 Over and under-sampling

Two techniques for balancing an imbalanced data set are oversampling and
undersampling[9]. When undersampling, some of the available samples from
the majority class, are dismissed, in order to make the imbalance smaller. A
potential downside of this, is loosing valuable samples for learning a subconcept
of the majority class. When oversampling, the minority class samples are
replicated by making some (randomized) small changes to feature values
and adding the resulting «new» (synthetic) samples to the minority class.
Oversampling may raise new challenges (or hinders) in classification, like over-
fitting.

1.3.3 Over and under-fitting

Heavily optimizing an algorithm may cause negative effects on predicting unseen
data in a learned hypothesis h. If such cases, h is said to be overfitted[1]. Over-
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fitting if often caused by learning a too specific model with small or no "margins"
between the concepts to be learned; it does not generalize its hypothesis to fit
unseen data. To prevent overfitting, more data (samples) is often used to train
a more nuanced hypothesis. A second option is to introduce a smoothening
parameter, known as the regularization value. A higher regularization value
would then lead to increasingly larger margins between classes. If the margins
becomes too large, then the possibility of under-fitting h arise. When a model
is under-fitted[1], it leaves unnecessary large margins between classes, which
could lead to bad generalization of h and thus hurt its performance.

1.3.4 Synthetic sampling and data generation

Replicated samples (from oversampling) are called synthetic samples because
they try to mimic the absence or fill the void of a «thought» original sample.
Creating synthetic samples for balancing out the minority and majority classes,
has been approached in a multitude of ways, e.g. SMOTE, SMOTEBoost[4],
ADASYN[19] or DataBoost-IM[16].

The Synthetic Minority Over-sampling TEchnique (SMOTE)[3] over-
samples minority classes by adding synthetic samples. It claims that creating
synthetic samples provides better results than replacing or adjusting existing
samples.

The algorithm is inspired by the work on handwritten numeral recogni-
tion[17], where synthetic handwritten digits samples were created using vari-
ous perturbation types (e.g. rotation) to achieve an increase in performance (e.g.
prediction accuracy).

The SMOTE algorithm operates is feature space and not in data space, by
adding synthetic samples after a dataset has been created. By contrast, adding
more samples before sampling equals operating in data space. A synthetic
sample Snew is created based on the k nearest neighbours of a sample Si from the
minority class. The sample Snew is then randomly created in-between Si and the
k nearest neighbours. The amount of samples to be created is based on a given
percentage p. If p = 100, then 100% synthetic samples are created, meaning the
minority class would double its size. Figure 1.6 displays a set of samples, where
(a) is before and (b) is after (post) performing synthetic sampling.

The ADAptive SYNthetic sampling (two-class classification) algorithm
(ADASYN)[19] is inspired by SMOTE, but offers an approach that focuses on
improving sample balancing. It aims to both reduce «the bias introduced by class
imbalance» and «shifting the classification decision boundary toward the difficult
examples».

Balancing the samples are done by first calculating the degree of imbalance.
If the degree is less than a set degree d , then the amount of samples needed to
establish balance, are calculated. The amount of synthetic samples to be created
for each of the minority samples are then carefully calculated by the use of a
density distribution.
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Figure 1.6: The image show (a) Original data set distribution. (b) Post-SMOTE
data set. (c) The identified Tomek Links. (d) The data set after removing Tomek
links. Image is taken from [20].

The tomek links data cleaning technique

Contrary to adding more samples, is reducing repetitive elements. Data cleaning
techniques both aims to reduce less important samples and clean up misplaced
(noise) samples or confusing border samples.

The tomek links[9, 20, 39] is an algorithm for detecting closely related n-
vector pairs in Rn of different classes. A tomek link is a pair of samples from
the full sample set, which has the smallest possible (euclidean) distance between
them, and which has a non-equal class. Such a pair may exist by either being
a misplaced (noise) sample, or a border-sample. Thus, the two aims of the
data cleaning techiques are met. However, removing the pair would ease the
classification. At the same time, it would introduce the risk of removing samples
carrying critical classification information. Figure 1.6 displays the identification
of such pairs in (c) and the sample set after their removal in (d).

1.3.5 Cost-Sensitive Learning

In contrast to editing a dataset, another approach called cost-sensitive learning
has been proposed[20]. The key idea is that the cost for misclassifying a minority
class sample could be given a higher cost, than misclassifying a majority class
sample. A higher cost would result in larger margins «around» associated
concepts by expanding or moving decision boundaries.

Currently, the work on this has only been case-specific. Cost-sensitivity
improvements are often specific to individual learning algorithms, and little, if
any, theoretical general-purpose improvements have yet been published.
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Part II

Work
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Chapter 2

Methods

A list of definitions may be found at the end of the chapter, at section 2.3.

2.1 Representing genomic data for use with machine
learning algorithms

The human genome may be represented computationally in many ways and
formats, e.g. as annotation tracks. The challenge is to «translate» available
formats into a format which is both readable and understandable for machine
learning algorithms, in order to make use of them. An essential step towards
creating such a format is to use the common matrix representation which all
algorithms understands. A matrix S may represent its m samples as rows,
and its n measures as columns[42]. Notice that supervised learning algorithms
use the last (n-th) measure column to store the class (or concept). The n
measurements are then computed as the sum of the feature measures, possibly
plus a response measure.

mSn =


s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · · s2,n
...

... . . . ...
sm,1 sm,2 · · · sm,n

=Sm,n

Furthermore, the representation of (human) genomic data in a matrix form
relies on the definition of what a sample and a measure is. However, the
smallest common representation in most formats deals with base-pair positions.
Representing each base-pair, or its position, as a sample would then enable both
learning and predicting the smallest entities, and probably be a safe and proper
definition. Naturally, if samples represents baise-pair positions, the measures
should focus on capturing its information.
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2.1.1 Abstracting and grouping genomic data challenges

Even though genomic challenges may appear complex and unique, there is a
chance that any challenge share common problem formulations with another
genomic challenges. Grouping (abstractly) equal challenges together could thus
be a done in a manner similar to computational complexity.

Computational complexity theory[2, 7] deals with grouping challenges of
shared difficulty. A challenge may be «reducible» to a group, which means that
the challenge is only «disguised» as another challenge. Thus, it follows that
solving any one of these challenges will automatically solve all the others within
the group.

By the same analogy as for computational complexity, genomic challenges
may share common abstract problem formulations. Representing the genomic
data in a generic way could be a tool to group equal abstract problem
formulations together. The work on solving a common (group) challenge could
then at the same time work to solve the generic challenge, abstractly.

The «worst case» scenario of grouping together (abstractly) equal challenges
occur when there are no common challenges to be grouped. Grouping challenges
into only separate groups would not do any direct harm, other than the effort
of grouping them. On the other side, the potential of benefitting from such a
grouping is potentially relatively large.

Another great benefit of reasoning about generic problem formulations is that
it helps detect the underlying natures of the challenge without being distracted
or limited by any difficulties of any concrete case. Concerns which may be
constrained such a concrete case is thus not a hinder in the abstract context.
Solid work on creating an abstract model will rather incorporate and express
such concerns as «tradeoffs» between two or more options.

2.1.2 Strategy for representing samples and features uniformly

An electronic genomic data representation d , in a format such as an annotation
track, could be «translated» into a matrix representation S. Any genomic data to
be translated must specify its content in a structured way and provide genome
coordinates. The genomic context of d could for instance specify the whole
genome, a chromosome or a range of a chromosome. A translation strategy could
be based on three principles:

1. Each position in the context of d is represented as an unique
sample s (matrix row) in S.

2. Every sample s (∈S) must provide exactly one value v for each
of the n assigned feature (and possibly class) measures.

3. When a response measure exists, the response column must
contain at least two (n = 2) distinct values for S to be a learnable
dataset.
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2.1.3 Representing samples

Figure 2.1: The position of a
track and its possible values.

A practical way of working with the multitude
of electronic genomic data representations, is to
represent the collection of various data format
information uniformly. Such a representation
enables working with the genomic data in a
generic way, through defined structures.

2.1.4 The track structure

A track T is an ordered collection of n subse-
quent, non-negative integers N0 = {0,1,2,3,4, ...},
denoting its members as positions. The theoret-
ical upper bound of n is ∞ (infinity). The length
of T is n, expressed as |T | = n. The first posi-
tion, the start position, is always 0. By this, the
set of positions equals the interval [0,n − 1] for
n > 1, with the position at n −1 as the end posi-
tion. If n = 1, then both the start and end posi-
tion equal the very same 0 position. T is unde-
fined for n < 1, since a track without any content
does not make any sense, and certainly cannot be used to learn anything. T must
have minimum one position, and at least one of its position must be occupied. A
position k in a track T could be occupied by either a point or a segment, or is
otherwise left open.

2.1.5 The track elements

A point or a segment are the only possible elements of a track T. Only one element
may occupy a position at any given time, meaning two elements can never share
a position k.

The length of an element equals the number of positions it occupies. A point
can only occupy a single position. Thus, the length of a point is always 1. By
contrast, a segment is a sequence of points, and may therefore occupy two or
more connected, open, positions.

The distance between any two given elements is calculated by subtracting
the end position of the preceding element by the start position of the subsequent
element. By this, the distance between any two subsequent elements is always 0.
Informally, the distance between two elements are the number of open positions
between them.

An element e can either be valued or unvalued. In any case a value is assigned
e. If unvalued, e is assigned the undefined value (null). If e is valued, a value v
(v ∈R) is assigned to all the positions occupied by e.
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2.2 Creating measures

Any given track T contains (by its definition) one or more elements. All elements
have the properties of position, length and value. In addition, elements may
have distance properties in regards to other elements. Thus, the challenge
becomes to define measures which capture the available information afforded
by the properties of T.

2.2.1 Capturing properties

The strategy of section 2.1.2 states that a sample si is created for every position i
in a track T, providing a value si , j for every j -th measure in the generated matrix
representation |T |Sn (i ≤ 1 ≤ n,1 ≤ j ≤ |T |, s ∈S). Ideally, all «available» information
should be accessable at any position i in T. A list1 of standard properties could
be:

• The current position i .

• A condition, determining if the current position is open or occupied.

• A condition, determining if the current position is a point or a segment.

• A condition, determining if the current position is valued or unvalued.

• The assigned value v .

• The length of the element which occupies the current position i . If i is open,
then no element is present and the element length is undefined.

• The distance to the preceding element. If no preceding element exists, the
distance is undefined.

• The distance to the subsequent element. If no subsequent element exists,
the distance is undefined.

2.2.2 Using properties to create measures

A measure can make use of as many of the available properties as it desires. Any
measure is only limited by the available properties and the creativity of the user.
Designing «all» measures which might become useful is an overwhelming task.
However, enabling dynamic creation of measures on a case-to-case basis might
be a more fruitful path to follow.

2.2.3 Measurement utilization

Creating «good» features plays a key role in retrieving information from genomic
data to learn concepts for classification. A good feature[18] collects unique data,
which is not yet captured by any other feature (feature-feature inter-correlation),
while having a high correlation to a concept (feature-class correlation).

1The list does not claim to be complete. More «available» properties may be added in the future.
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The features are grouped based on their nature, which means that they act
in a certain way which is common for other features within the same group. The
groups are «distance», «value» and «condition».

Distance group
Features of the «distance» group deals with both distances between genomic
elements (points and segments), as well as any other range related
distances.

Value group
Features of the «value» group targets function tracks, where all positions
inside the track is both connected, occupied an valued.

Condition group
Features of the «condition» group outputs only a discrete number of
values. The theorethically minimum amount of values are two, in order
to represent the presence or absence of a property.

2.2.4 Transformations

A transformation t adds an (optional) extra layer of flexibility to and reuse of
a measure m. It is a function which enables the output of m to be changed
dynamically, rather than statically (programatically). It is optional, because not
all measures need to change its output. The purpose of t is to «map» a single
real number xunmapped to a corresponding real number xmapped number, using a
mapper. Concretly, if t is added to m, then any ouput xunmapped of m is mapped
into xmapped before stored in the dataset S.

xmapped = T (xunmapped) | xunmapped, xmapped ∈R

A mapper can either be static or dynamic, depending on if it’s inner (mapper)
variables is regulated by m. Variables used by the mapper of t may either be set
dynamically or statically. A transformation is only static if all its variables are
static. Otherwise, it is dynamic. A dynamic variable is a variable which may
be set by m at runtime2, where a static variable (by contrast) can not. A static
variable must be set before runtime. A dynamic variable must allways have a
specified default value, in case it is not set at runtime.

Regardless of whether a mapper is static or dynamic, the output must be a
consistent equivalence relation to be reliable. All flexibility must be achieved by
using a combination of the available structures, and not left to a single structure.
Thus, a dynamic variable may not be changed after it has been used at runtime
(in a way which changes this relation) during runtime.

There is no theorethical upper limit for how many transformations which
could be added to m. Every transformation which is added to m, is to be chained.
Thus, the output of one transformation would simply be the input of the next.
By keeping track of the order of which n transformations are added, a mapping
«pipeline» of all transformations would look like:

2Runtime is when the program executes.
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xmapped =Tn(Tn−1( . . . T1( xunmapped ) ) ) , where |T| = n

A transformation t could also be configured to respond differently to various

situations and still uphold the equivalence relation. Thus, it is yet another way
of affording flexibility. A situation s is a conditional evaluation offered by m
for every output as a dynamic variable. Thus, t may (by its configuration) either
choose to respond by either executing or skipping its mapping. Thus, it is possible
to configure transformations to only execute under certain situations. However,
t should execute in all situations by default if not explicitly configured otherwise.

2.2.5 Transformation utilization

Transformations may be generalized into groups by the nature of their
operations, e.g. exponential, polyomial, etc. Operations should aim to enhance
certain genomic behaviour, in a generic and flexible way.

Favouring transformation
A favouring transformation aim to favour a part of a genomic range over
another part of the same range. The favouring may be beneficial when
there exists insights in regards to how certain areas should be weighted
over other areas.

Relativity transformation
A relativity transformation makes use of the mathemathical similtude
property, for comparing values found in a single situation to another similar
situation using a relatively equal scale.

Condition transformation
A condition transformation «clamp» a measurement range into a discrete
amount of values. Thresholds are used to evaluate the selection of the
discrete values.

Logarithmic transformation
A logarithmic transformation aim to improve help distinguis between
distinct values which lie relatively close to each other. It aims to make
the distance of relatively close elements smaller, while keeping relatively
distant elements relatively further away.
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2.3 Definitions

position A genomic coordinate (integer), specified as an offset inside a
chromosome or the genome as a whole, depending on the genomic context.
May be occupied by an element or is otherwise left open.

element A genomic element may occupy (be present) at a position. There are
two types of elements, namely points and segments.

point A genomic element, which may occupy a single position.

segment A genomic element, which may occupy two or more positions. A
sequence of points.

genomic context A specified genomic enviroment, e.g. the whole genome, one
or more chromosomes or a range within a chromosome.

range An interval of all positions from a given start position to an end position
within a genomic context. The genomic context selects the first position as
the start position and the last position as the end position by default.

start position The first position of a range.

end position The last position of a range.

length The amount of positions in a range. Computed by subtracting the end
poisition by the start position. Assumes the actual positions are from the
same genomic context.

value A number n ∈R.

undefined value A specially set value (null), which denotes the absense of
another value.

gap A gap is a series of one or more connected, open, positions between two
elements (regardless of whether it is a point-point, segment-segment,
segment-point or point-segment relation). The gap between two connected
occupied positions are always 0.
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Chapter 3

Implementation

Figure 3.1: An illustration of the
implemented machine learning ap-
plication, fitted within the existing
HyperBrowser.

This chapter describes the implemented
machine learning application based on the
methods and components of chapter 2.
The application aims to offer a flexible
toolset for solving generic and abstract ge-
nomic problem formulations, and thereby
making sense of the human genome.

The application is integrated into the
HyperBrowser as illustrated in figure 3.1,
but is designed to be a stand-alone appli-
cation. It is implemented in Python and
interacts with the existing HyperBrowser
framework by having a factory-inspired
API. It relies on three Python libraries,
namely numpy, scipy and sklearn.

The first section introduces a generic
data format used as an annotation track
for (internal) use within the application.
Furthermore, the implemented structures
for creating measures and samples from
annotation tracks will be presented.

The second section introduces a ge-
nomic data representation technique for
using the measures and structures to gen-
erate a dataset to be used by the application. The technique is both described
and exemplified.

The third section introduces an adaptation of a selected set of existing ma-
chine learning algorithms within the application. The algorithms performance
on the generated (genomic) dataset is illustrated.

The fourth section reason about the application design. It establishes design
goals and guidelines while giving an overview of the various implementations.

The fifth section introduces a custom made programming language for
enabling the application users to create, modify and thus optimize performance
in learnability and accuracy by creating custom measures.
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3.1 Machine learning components

The application to be presented is built using various components, which is
defined in this section.

3.1.1 The machine learning track

A machine learning track (MLTrack) T implements the track structure presented
in 2.1.4. It is implemented to be a generalization of the GTrack format. The
track elements (points and segments) are therefore equivalently supported as in
the GTrack implementation.

The representation of T uses a file-like notation for internal use, but it may
also be useful for purposes of storage and sharing. All occupied positions of T are
ordered by start position and written as separate lines. There are two types of
lines, namely the «comment» line and the «data» line.

Figure 3.2: An overview of the eight reserved columns in the GTrack format and
their associations to the different track type. The overview is a subset of Table 1
from the GTrack specification, with an additional row for the added MLTrack (in
bold).

The comment line is optional, but may only occur once in any MLTrack file.
If present, it must be the first line within the file and must start with four ’#’
signs (e.g. "####") followed by a minimum of one key-value pair separated with
the ’=’ symbol. Multiple key-value pairs may be separated with the semicolon
’;’ sign. The commont line notation is, in fact, a generalization of the «bounding
region specification line» (3.B) of the GTrack specification. By this, any valid
GTrack notation will pass as a MLTrack notation, but not necessarily the other
way around.
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A data line must contain the four tabular-separated columns seqid, start,
end and val. By this, the format may be seen as an extension of the GTrack
format, since the following 5 GTrack formats (P,VP,S,VS,F)1 may be mapped to
the MLTrack. Concretely, since valued segments (VS) and functions (F) contain
the four columns explicitly, they may be directly mapped only adding a proper
comment line (header). The points (P) and valued points (VP) both lack the
end column in the GTrack specification, but this may dynamically be created
by the earlier definition that a point always have length of 1, meaning the end
position is 1 more than the start position in the start column (which is present).
Furthermore, the points (VP) and segment (S) is unvalued and may therefore be
assigned the null value directly or equivalently omitted.

The formats (P,VP,S,VS,F) lays the foundation for learning any abstract
relationships. Any explanatory track format could theorethically be related to
any response track format. Consequently, a total of 25 (52) possible and abstract
relationships exists.

Figure 3.2 on the facing page places the MLTrack in the context of the other
mentioned GTrack formats. Note, that the function format is actually a special
case of the valued point type, where all positions of a MLTrack T is occupied
and none of the assigned values is the null value. The similarities or differences
between two MLTrack’s is usually represented as a MLTrack itself, based on the
same reasoning as for GTrack. Note that the representation of the MLTrack does
not guarantee to be a valid GTrack. In fact, the only situation where it is valid
is in the case of segments (S) or valued segments (VS). Otherwise, if a MLTrack
is not a valid GTrack, it should always be possible to reduce it into one (from
the three remaining types P, VP or F. This is done by rearranging or removing
content which is not supported by the GTrack specification. This is possible,
because the mapping from GTrack to MLTrack is a lossless process, meaning all
prior data may be recovered from the available data.

In the rest of the chapter, whenever a (explanatory or response) track is
mentioned - the MLTrack is understood, if not explicitly stated otherwise.

MLTrack example 1: Unvalued points

Figure 3.3: An example MLTrack of the unvalued points (UP) type.

Example 1 as GTrack
##gtrack version : 1.0
##track type : points
###seqid start
####genome=hg18 ; s tart =0;end=20
chr1 2
chr1 7
chr1 9
chr1 17

Example 1 as MLTrack
####genome=hg18 ; s tart =0;end=20
chr1 2 3
chr1 7 8
chr1 9 10
chr1 17 18

1Allthough there are more GTrack formats than (P,VP,S,VS,F), the MLTrack only targets these.
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MLTrack example 2: Valued points

Figure 3.4: Visualization of an example MLTrack of the valued points (VP) type.

Example 2 as GTrack
##gtrack version : 1.0
##track type : valued points
###seqid start value
####genome=hg18 ; s tart =0;end=20
chr1 2 3.141579
chr1 6 1.0
chr1 7 2.718281828
chr1 13 1.0
chr1 15 6.0
chr1 17 1.0

Example 2 as MLTrack
####genome=hg18 ; s tart =0;end=20
chr1 2 3 3.141579
chr1 6 7 1.0
chr1 7 8 2.718281828
chr1 13 14 1.0
chr1 15 16 6.0
chr1 17 18 1.0

MLTrack example 3: Unvalued segments

Figure 3.5: Visualization of an example MLTrack of the valued segments (VS)
type.

Example 3 as GTrack
##gtrack version : 1.0
##track type : segment
###seqid start end
####genome=hg18 ; s tart =0;end=20
chr1 1 4
chr1 8 12
chr1 15 18

Example 3 as MLTrack
####genome=hg18 ; s tart =0;end=20
chr1 1 4
chr1 8 12
chr1 15 18 null
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3.1.2 The machine learning track state

A machine learning track state (MLTrackState2) S gathers information from
any given MLTrack T. S may be positioned at any position k in T (0 ≤ k < |T |).
Wherever S is positioned, it gathers and provides the «available» properties of
the current position, according to section 2.2.1 on page 26.

3.1.3 The machine learning measure

A machine learning measure (MLMeasure3) M is inspired by the traditional way
of reasoning about features (1.1.6), making use of the information provided by a
MLTrackState S on a MLTrack T. The objective of M is to use the properties of
S from T and produce a corresponding numeric representation of it, where equal
information share relative or absolute number-equality. A machine learning
feature (MLFeature4) F is a subclass of M and is used to generate explanatory
data. A machine learning response (MLResponse5) measure R is a subclass of M
as well, but outputs only numerical classes (representing concepts) so they may
be either learned or predicted. Figure 3.6 shows the class relationship between
M, F and R. Futhermore, the MLMeasure is implemented to enable adding an
unlimited number of transformations.

Figure 3.6: The relationship of the MLMeasure API and its two subclasses,
namely MLFeature and MLResponse.

3.1.4 The machine learning transformation

A machine learning transformation (MLTransformation6) T implements the
transformation structure introduced in 2.2.4.

To enhance the wanted transformation flexibility, any MLMeasure must (of
interface reasons) have one or more transformations. To comply with this, there
exists an empty transformation which implicitly is added if no transformations
are explicitly added. The empty transformation Tempty simply outputs the input
floating number.

xunmapped = Tempty(xunmapped) | xunmapped ∈R
2Implementation details are available in appendix A.1.1.
3Implementation details are available in appendix A.1.2.
4Implementation details are available in appendix A.1.3.
5Implementation details are available in appendix A.1.4.
6Implementation details are available in appendix A.1.5.
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Dynamic variables are implemented by allowing any transformation to read the
«meta-data» of the measure it is attached to. A meta-data instance is a key-value
pair, where the key is the (string) name of a specific dynamic variable reference
and the value is the set value to be used by the mapper.

3.1.5 Situation dependence

The MLTransformation implements situation dependence by using the existing
meta-data implementation. If no situation is explicitly offered by a measurement
m, then the all situation is assumed, meaning the transformation would execute
at all positions of a track. Two specific situations are implemented and used
within the application, namely the inner and outer situations. The inner
situation is set by m if a MLTrackState S is inside a segment. Otherwise, the
outer situation is set if S is outside a track segment.

The inner situation
E occur (condition is met) whenever a MLTrackState S is inside an element at
position k, and may be formally expressed as:

E(S,k) =
{

Tr ue, when S is inside an element at position k

F al se, otherwise

The outer situation
E occur (condition is met) whenever a MLTrackState S is not inside an element
at position k, and may be formally expressed as:

E(S,k) =
{

Tr ue, when S is not inside an element at position k

F al se, otherwise

3.1.6 Combining transformations

A MLMeasure M may use a combination of a set of transformations T =
{T1,T2, . . . ,Tn−1,Tn}. The transformations would then operate as a (transitive)
transformation pipeline, mapping any given real number value in the order the
transformations was added, taking any situation dependence into account. By
this, it is possible to add transformations (with situation dependance) to the
pipeline, and let the application take care of it. A transformation which is
«skipped», corresponds to skipping a pipeline step, as illustrated in figure 3.7.
The evaluation result of the pipeline may be expressed as:

x ′ = T3(T2(T1(x))) | x, x ′ ∈R | T2 ≡ Tempty

since T2 is skipped (replaced by Tempty).The act of putting the transformations
together is an act of design. It is left to the user to decide how many
transformations and in what order. It is no maximum number of transformations
which may be added, and an transformation may be added multiple times.
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Figure 3.7: A transformation pipeline, of three transformations. The original
input x is the measurement value, and x ′ is the transformed measurement value.
The pipeline first executes «Transformation 1», since this "pipe" was the first
one added. Then, the «Transformation 2» is skipped (possibly due to a situation
condition). Finally, the last transformation («Transformation 3») transforms the
output of «Transformation 1» and outputs the end result x ′.

3.1.7 Feature measures
Generic feature implementations which use the available properties, offered by
a MLTrackState S is presented in their natural groups, as described in section
2.2.3. Hopefully, these features may be used as a basis for creating «good»
features on a case-to-case basis.

Distance features

The relative distance features7 (MLFeaturePositionRelative and
MLFeaturePositionRelativeInverted) aim to capture the samples relative
position inside the length of the track (T) it operates on. It makes the assumption
that related tracks share a mathematical similitude property. At any given
position k, the feature value is computed to be the relative distance inside the
track. The track length |T | is denoted n.

FDistanceRelative(k,n) =


k

n −1
, n > 1

0, n ≤ 1

FDistanceRelativeInverted(k,n) =

1−
(

k

n −1

)
, n > 1

0, n ≤ 1

The relative center distance features8 (MLFeaturePositionRelativeCenter
and MLFeaturePositionRelativeSides) aim to capture the samples relative
position to the center of the track (T) it operates on. The distance to the sides is
thus the inverse of the distance to the center. The center position is calculated
by n

2 , where n = |T |. It makes the assumption that related tracks share the math-
ematical symmetric and similitude property. At any given position k, the feature
value is computed to be the relative distance from the center of T.

7See appendix A.2.2 for implementation details.
8See appendix A.2.2 for implementation details.
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FDistanceRelativeCenter(k,n) =



k

n −1
, k < n

2 ,n > 1

n −k

n −1
, k > n

2 ,n > 1

0, otherwise

FDistanceRelativeSides(k,n) =



1−
(

k

n −1

)
, k < n

2 ,n > 1

1−
(

n −k

n −1

)
, k > n

2 ,n > 1

0, otherwise

Element-Element distance features includes two rather similar features
based on the same idea. Both the «last distance» (MLFeaturePointDistanceLast9)
and the «future distance» (MLFeaturePointDistanceFuture10) aims to cap-
ture the notion (distribution) of element-element gaps (distances). The feature is
created based on the assumption that it may be of interest to have an numeric
way of measuring how large the gap is between any position k and the closest
element e surrounding it.

The gap between k and the last (subsequent) element l may be done
computing the absolute difference |k−l |. It is also possible to compute the relative
distance by dividing by the range length n. If no such element l exists, the
undefined value is returned.

FDistanceLast(k, l ) =
{
|k − l |, if l is defined
unde f i ned , otherwise

FDistanceLastRelative(k, l ,n) =

|k − l |

n
, if l is defined and n > 0

unde f i ned , otherwise

Capturing the gap between the current position k and the future (preceding)
element f may be done computing the absolute difference | f −k|. It is also possible
to compute the relative distance by dividing by the range length n. If no such
element f exists, the undefined value is returned.

FDistanceFuture(k, f ) =
{
| f −k|, if f is defined
unde f i ned , otherwise

FDistanceFutureRelative(k, f ,n) =

| f −k|

n
, if f is defined and n > 0

unde f i ned , otherwise

9See appendix A.2.2 for implementation details.
10See appendix A.2.2 for implementation details.
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The closest outer element distance (MLFeaturePointDistanceOuter11)
feature is a combination of the «last distance» (FDistanceLast = FDL) and «future
distance» (FDistanceFuture = FDF) features. It aims to capture the minimum
distance to the closest element from a given position k. A relative positioning
could be achieved by dividing the result by the track length, if not undefined.

FDistanceClosest(k, l , f ) =


unde f i ned , if both l and f is undefined
FDF(k, f ), if f is defined and l is undefined
FDL(k, l ), if l is defined and f is undefined
mi n(FDF(k, f ),FDL(k, l )), otherwise

The element inner distance (MLFeaturePointDistanceInner12) feature
aims to capture the distance inside of segments (only). Using the feature for
points has no meaning, since a point has no inner length, resulting in a distance
of 1. The inner distance of a segment is calculated as the distance away from the
segments center position c = n

2 . The segments start position s and end position
e is used in the calculation, and which is accessible from the tracks state reader
(MLTrackState).

FDistanceRelativeCenter(k, s,e) =



k − s

e − s
, k < e−s

2 ,e − s > 0

e −k

e − s
, k > e−s

2 ,e − s > 0

1, otherwise

Value features

The slope (MLFeatureFunctionSlope13) feature aims to capture the slope
at any position k. It computes the slope of the subsequent point s and preceding
point p, assuming that they are connected.

The slope value is computed using the mathematical slope property, by
∆y = p − s and ∆x = 3. At the start- and end-position of the track, the s and p
are not available. In such cases, the slope is computed by using the available
start- or end-point and the current point k. If neither of s and p is available, the
undefined value is returned. The current possition k is assumed to always be
defined and present.

FSlope(k, p, s) =



∆y

∆x
= p − s

3
, if both p and s is defined

∆y

∆x
= p −k

2
, if only p is undefined

∆y

∆x
= s −k

2
, if only s is undefined

unde f i ned , otherwise

11See appendix A.2.2 for implementation details.
12See appendix A.2.2 for implementation details.
13See appendix A.2.2 for implementation details.
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The strand (MLFeatureFunctionStrand14) feature aims to capture the
positive or negative property of the value v assigned to the element e which
occupies any position k. If the point is unvalued, the feature value returns
the undefined value. Though the feature fits perfectly amongst the «condition»
features, it assumes that all of a tracks positions are occupied, and does therefore
better fit with the «function» features.

FStrand(e, v) =


1, if v ≥ 0 and e is defined and v ∈R
0, if v < 0 and e is defined and v ∈R
unde f i ned , otherwise

Condition features

The «condition» group features are, in contrast to «distance» and «value» features,
known by outputting a small number of values. The conditions are based on
the information offered by a track state (MLTrackState). Other features may
also make use of conditions, but the group of «condition» features are the pure
group where output is solely dependent on conditions. A conditions is great
for detecting specific properties, e.g. detecting the start- and end-position of a
segment.

The segment start (MLFeatureSegmentStartPosition15) feature aims to
capture the start position of a (segment) element e. If a given position k is
the start of e, the condition is met, and the corresponding specified value 1 is
returned. Otherwise, when the condition is not met, the value 0 is returned.

FSegmentStart(k,e) =
{

1, if k is start position of segment e

0, otherwise

The segment end (MLFeatureSegmentEndPosition16) feature aims to
capture the end position of a (segment) element e. If a given position k is the end
of e, the condition is met, and the corresponding specified value 1 is returned.
Otherwise, when the condition is not met, the value 0 is returned.

FSegmentEnd(k,e) =
{

1, if k is end position of segment e

0, otherwise

3.1.8 Transformations

The implemented application transformations17 are generic transformations
based on section 3.1.4 which alltogether aims to enrich the flexibility of the
features of section 3.1.7.

14See appendix A.2.2 for implementation details.
15See appendix A.2.2 for implementation details.
16See appendix A.2.2 for implementation details.
17See appendix A.2.3 for implementation details.
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The favouring transformation family (MLTransformationFavour*18) im-
plements the favoring idea of section 2.2.5 on page 28.

The transformation family members favour the left, right, center or both-
sides (left and right) values of a range. They all rely on that a range of the
genomic context is set as a dynamic variable. A range may either represent
an element at position k, or a gap outside the surrounding elements if k is not
occupied. The favouring may be calculated for a range by using the start position
s and the end position e in addition to k.

TFavourLeft(x|k, s,e) =
x +x × e −k

e − s
, if e − s ≥ 1

x, otherwise

TFavourRight(x|k, s,e) =
x +x × k − s

e − s
, if e − s ≥ 1

x, otherwise

TFavourCenter(x|k, s,e) =


x +x × k − s

e − s
, k < e−s

2 ,e − s ≥ 1

x +x × e −k

e − s
, k > e−s

2 ,e − s ≥ 1

x +1, otherwise

TFavourSides(x|k, s,e) =



x +x ×
(
1− k − s

e − s

)
, k < e−s

2 ,e − s ≥ 1

x +x ×
(
1− e −k

e − s

)
, k > e−s

2 ,e − s ≥ 1

x, otherwise

The relativity transformation (MLTransformationRelative implements
the relativity idea of section 2.2.5. It may be used to facilitate situations similar
to mathematical similitude, where the lengths of ranges or elements are relative
to each other with a magnitude m at any position k.

TRelative(x|k,m) =


x ×k

m
, m > 0

unde f i ned , otherwise

The logarithmic transformation (MLTransformationLogarithmic) im-
plements the distinguishing idea of section 2.2.5. For instance, if two relatively
close points lie close to a segment, the distinction between the two points will
be smaller after applying such a transformation. However, points of relatively
larger distance would not be as much affected. The logarithm could use a base n
of 10 or any other positive integer.

TLogarithmic(x|n) =
{

logn(1+x), x ≥ 0, n ≥ 2

unde f i ned , otherwise

18The favouring family consists of * = Left, Right, Center, Sides.
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The condition transformation familiy (MLTransformationCondition*19)
implements idea of discretization from section 2.2.5 on page 28. For all of the
family transformations, a condition is evaluated using a threshold z. The input
value v is evaluated to be exactly equal to, or less, or greater than z.

TConditionEqualsValue(x|v, z) =
{

1, if v = z

0, otherwise

TConditionLessThanValue(x|v, z) =
{

1, if v < z

0, otherwise

TConditionGreaterThanValue(x|v, z) =
{

1, if v > z

0, otherwise

The roundoff transformation (MLTransformationRoundOff) aims to
«clamp» together values that lie close to each other. In situations where mul-
tiple values tend to align relatively close to each other, and may be treated as
almost equal, a round-off20 could, at a decimal position d , lead for instance two
samples to share the equal (rounded) values. The decimal position d to round off
at, is set as a dynamic variable, but may «fall back» on a default static value (e.g.
5) if not set.

TRoundOff(x|p) =
{

r ound(x, p), if x ≥ 0, p ≥ 0

unde f i ned , otherwise

The polynomial transformation (MLTransformationPolynomial) raises
a given value x to a given polynomial p. The polynomial p may be set as
a dynamic variable, buy could default to a static variable (e.g. 1). A square
transformation could be achieved by p = 2, and equally the cube transformation
with p = 3.

TPolynomial(x|p) = xp

The angle transformation (MLTransformationAngle) computes the math-
emathical angle of a given (slope) value x by the mathematical property of arcus
tangent21.

TAngle(x) = arctan(x)

The addition transformation (MLTransformationAddition) adds a given
number a, to the value x and returns the sum of a+x. For a < 0 the transformation
works equally good as a «subtraction» transformation. Note, that a must be a
static variable not to break the equivalence relation.

TAddition(x|a) = x +a

19The condition family * = EqualValue, LessThanValue and GreaterThanValue.
20The implmentation uses the round method of the math package in Python.
21The implmentation uses the arctan method of the math package in Python.
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The product transformation (MLTransformationProduct) multiplies a
given number a, to the value x and returns the product (a × x). For a < 1 the
transformation could work equally good as a «division» transformation. Note,
that a (again) must be a static variable not to break the equivalence relation.

TProduct(x|a) = x ×a

The exponential transformation (MLTransformationExponential) re-
turns the exponential value of x + 1. This, because x = 0 is common for many
features, and would lead to errors because the exponent is undefined for 0. For
x < 0, the undefined value is returned.

TExponential(x) =
{

exp(x +1), if x ≥ 0

unde f i ned , otherwise

The square root transformation (MLTransformationSquareRoot) re-
turns the mathematical square root of a given value x. For x < 0, the undefined
value is returned. The base n is set to 2 (because of «square» root), but may be
changed by replacing it with another positive integer.

TSquareRoot(x|n) =
{

n
p

x, n ≥ 2, x ≥ 0

unde f i ned , otherwise

3.1.9 Response measures

The response measures «translates» a response track T into class representation.
There are two levels of measurements, as illustrated in figure 3.8 on the following
page.

The first level (L1) corresponds to a binary classification problem by only
outputting a boolean value (True or False) based on whether a condition is met
or not. Usually, such a condition checks the existance of an element at any given
position of T.

The second level (L2) goes a step further than just checking the existence of
an element, it also takes the elements assigned value into account. Recall, that
an unvalued element is assigned the null value. Iff all elements in T only have
assigned one single value (in addition to the null value), then the problem is
(still) a binary classification problem. Otherwise, if there are n (two ore more)
assigned values, it is a n-class classification problem.

There are 5 implemented response measures, namely the «point exists»,
«point value», «segment exists», «segment value» and «function value».

The point exists (MLResponsePointExists22) response measure is a L1
measure which returns True if a MLTrackState S is positioned at an occupied
position k in a response track T. Otherwise, it will return False since the position
is open.

RPointExists(k,T ) =
{

Tr ue, if position k in T is occupied
F al se, otherwise

22See appendix A.2.2 for implementation details.
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Figure 3.8: The two levels (L1 and L2) to measure response.

The point value (MLResponsePointValue23) response measure is a L2
measure and an extension of «The point exists» response, which aims to return
the point value v of an element e at position k in a response track T, iff such an
element exists. Otherwise, the undefined value is returned.

RPointValue(k,T,e, v) =
{

v, if e exists at position k in T

unde f i ned , otherwise

The segment exists (MLResponseSegmentExists24) response measure is a
L1 measure which returns True if a MLTrackState S is positioned at an occupied
position k inside a segment of a response track T. Otherwise, it will return False
since the position is open.

RSegmentExists(k,T ) =
{

Tr ue, if position k in T is occupied by a segment
F al se, otherwise

The segment value (MLResponseSegmentValue25) response measure is a
L2 measure and an extension of «The segment exists» response, which aims to
return the value v of the segment e which occupies position k in a response track
T, iff such an element exists. Otherwise, the undefined value is returned.

RSegmentValue(k,T,e, v) =
{

v, if segment e occupies position k in T

unde f i ned , otherwise

The function value (MLResponseFunctionValue26) response measure is a
L2 measure which returns the value v at any position k in a response track T, by
assuming that it is occupied. Otherwise, the undefined value is returned.

RFunctionValue(k,T,e, v) =
{

v, if e exists at position k in T

unde f i ned , otherwise

23See appendix A.2.2 for implementation details.
24See appendix A.2.2 for implementation details.
25See appendix A.2.2 for implementation details.
26See appendix A.2.2 for implementation details.
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Selecting response measures

Selecting a track response measure is constrained by the track type. If a response
track is unvalued, then only L1 measures are available. A track is unvalued if
none of its elements are valued. The reason behind this constraint, lies in the fact
that predicting values for an unvalued track would predict the null value at all
positions, (which makes no sense). This, because both existence of an unvalued
element and non-existence of an element would (at L2) returns the null value.

By contrast, valued response tracks can choose amongst both L1 and
L2 measures. An valued element occupies a position (by definition), which
corresponds to its existance in the notion of response measures. Therefore, it
enables both (L1) existance classification an (L2) value classification. How to
select the measures, and what interpretation to put into it, is up the user on a
case-to-case basis. Notice, that it may not make any sense to detect existence of
a «function» track, since all positions are occupied by its definition.

3.2 Genomic machine learning data representation

The «translation» technique for turning genomic data content into a format which
is understandable for machine learning algorithms is called matrix generation. It
is a translation techique because it tries to retain the information of the existing
format within the new (matrix) format. The translation generates a dataset
(matrix) S = {s1, s2, . . . , sm} from an explanation track E, and possibly a response
track R, where each sample has features from E and possibly response values
(classes) from R. By this, a sample set S of m sample vectors have length m
(m =|S |). The samples of S is sorted based on their genomic coordinate positions,
being the start position by default. A single sample si ∈S (1 ≤ i ≤ m) have a length
of the n measures assigned to E and R. The application translation process uses
the strategy described in section 2.1.2 on page 24, storing the samples in a matrix
of shape mSn .

3.2.1 Example translation

To illustrate a translation process, two data examples from 3.1.1 on page 32
are used. Example 3 is selected as the explanation track E, while Example 1
is selected as the response track R. Both tracks have start position s = 0, and
end position e = 20, resulting in a total of n = 20 positions in both tracks. The
undefined value is selected to be π, because its value (3,14) is distinct and may
easily be detected by the human eye in the sample set, as well as it is positive and
is both similar to the range of other values at the same time as it is noticeably
higher. The regularization parameter (for counter-acting possible overfitting) is
set to the small positive number 3

10 to use some (but not too much) regularization.
Since E is unvalued, only L1 response measures for binary classification

are available. The MLMeasurePointExists is then chosen, in addition to 10
explanation features:
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F1 MLFeaturePositionRelative

F2 MLFeaturePositionRelativeInverted

F3 MLFeaturePositionRelativeCenter

F4 MLFeaturePositionRelativeSides

F5 MLFeaturePointDistanceLastRelative

F6 MLFeaturePointDistanceFutureRelative

F7 MLFeaturePointDistanceInnerRelative

F8 MLFeaturePointDistanceOuterRelative

F9 MLFeatureSegmentStartPosition

F10 MLFeatureSegmentEndPosition

The learning problem is a supervised learning problem since R is given as
"answers" to E. The abstract challenge is to detect a relationship between the
points of R and the segments of E. By looking at figure 3.9, it seem that points
tend to occupy positions inside or close to the segments. This would then be the
(abstract) targeted relationship. An interpretation is purposely not given to any
of the tracks. Thus, analyzing the challenge could thus possibly benefit other
abstractly alike challenges. The data is read from a MLTrack representation
which is only an annotation track, which in turn is an abstraction of a genomic
data sequencing process.

Figure 3.9: Illustration of a response track (1a) and an explanation track (1b),
aligned on top of each other.

The first point of R (at position k = 2) lie in a position which is the center of the
corresponding segment in E. The preceeding point (k = 7) lies next to the starting
position of a segment in E, while the third point (k = 9) lie inside a segment in
E. Finally, the last point (k = 17) of R also lie inside (at the end position) of a
segment in E.

To give some insight into how the translation process works, a «snapshot»
of position k = 9 is displayed in figure 3.10. The dashed arrows is directed at
position k, which is colored gray in both tracks (E and R).

The state reader (MLTrackState) attached to E contains the list of available
properties and is displayed in table 3.1. Concretely, the position k = 9 is clearly
offered. Furthermore, since it is inside a segment, it has marked the position as
occupied. Since the track format is unvalued, it holds the assigned value null.
The distance markers are, in figure 3.10, marked with circles for start- and end-
positions, a triangle for the (last) subsequent point (end-point of the segment)
and a diamond for the (future) preceding point (start-point of the segment).
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Figure 3.10: A «snapshot» of the application translation process at position k = 9.

Variable Value
Position 9
Position condition (Open or Occupied) Occupied
Position condition (Point or Segment) Segment
Position condition (Valued or Unvalued) Unvalued
Assigned value null
Length 4
Distance to preceding point or segment 3
Distance to the subsequent point or segment 4

Table 3.1: The full list of the available properties, offered by the explanation
track state at k = 9.

Variable Value
Position 9
Position condition (Open or Occupied) Occupied
Position condition (Point or Segment) Point
Position condition (Valued or Unvalued) Unvalued
Assigned value null
Length 1
Distance to preceding point or segment 7
Distance to the subsequent point or segment 1

Table 3.2: The full list of the available properties, offered by the response track
state at k = 9.

The properties of the response track state of R is shown in 3.2. It is a point,
and is therefore occupying the position at k = 9.

The resulting matrix of the translation process is shown in table 3.3 on the
next page and visualized in figure 3.11.

3.2.2 Post processing translation data

When translating genomic data, the dataset size may quickly reach millions.
By using genome-wide annotation tracks, the data samples are intrinsic, since
it is assumed that all available «content» is present. The ENCODE projects
estimation of that 80% of the human genome is regarded as noncoding[11] (junk)
DNA, is alone an indication that concept imbalance is lurking in the background.
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1.00 0.00 1.00 1.00 0.00 3.14 0.05 3.14 0.05 0.00 0.00 0.00
1.00 0.05 0.95 0.90 0.10 3.14 0.20 0.00 0.20 1.00 0.00 0.00
1.00 0.11 0.89 0.80 0.20 3.14 0.20 0.05 0.20 0.00 0.00 1.00
1.00 0.16 0.84 0.70 0.30 3.14 0.20 0.00 0.20 0.00 1.00 0.00
1.00 0.21 0.79 0.60 0.40 0.00 0.15 3.14 0.00 0.00 0.00 0.00
1.00 0.26 0.74 0.50 0.50 0.05 0.10 3.14 0.05 0.00 0.00 0.00
1.00 0.32 0.68 0.40 0.60 0.10 0.05 3.14 0.05 0.00 0.00 0.00
1.00 0.37 0.63 0.30 0.70 0.15 0.00 3.14 0.00 0.00 0.00 1.00
1.00 0.42 0.58 0.20 0.80 0.20 0.15 0.00 0.15 1.00 0.00 0.00
1.00 0.47 0.53 0.10 0.90 0.20 0.15 0.05 0.15 0.00 0.00 1.00
1.00 0.53 0.47 0.00 1.00 0.20 0.15 0.05 0.15 0.00 0.00 0.00
1.00 0.58 0.42 0.10 0.90 0.20 0.15 0.00 0.15 0.00 1.00 0.00
1.00 0.63 0.37 0.20 0.80 0.00 0.10 3.14 0.00 0.00 0.00 0.00
1.00 0.68 0.32 0.30 0.70 0.05 0.05 3.14 0.05 0.00 0.00 0.00
1.00 0.74 0.26 0.40 0.60 0.10 0.00 3.14 0.00 0.00 0.00 0.00
1.00 0.79 0.21 0.50 0.50 0.15 3.14 0.00 0.15 1.00 0.00 0.00
1.00 0.84 0.16 0.60 0.40 0.15 3.14 0.05 0.15 0.00 0.00 0.00
1.00 0.89 0.11 0.70 0.30 0.15 3.14 0.00 0.15 0.00 1.00 1.00
1.00 0.95 0.05 0.80 0.20 0.00 3.14 3.14 0.00 0.00 0.00 0.00
1.00 1.00 0.00 0.90 0.10 0.05 3.14 3.14 0.05 0.00 0.00 0.00

Table 3.3: Overview of the translated dataset. The dataset is slightly
imbalanced, with 4 samples of class=1 and 15 samples of class=0, giving an
imbalance ratio of 4 : 15 (1 : 3,75).

In general, there may be many reasons for ending up with class imbalance
of one or more majority and minority classes. A few strategies for counteracting
this effect has been implemented. The idea behind the strategies are to group
samples which are «equal enough» with others, so that they may be represented
as a single combined sample.

There are special cases, where it might be better to select a narrower track
range to learn from than using a post processing step for removing samples later
on. Such cases could arise if a certain track range was of more interest than
another, e.g. if there was a final number of positive instances of a given range
which would make the data set imbalanced due to an absolute imbalance ratio.
Of course, it is important to be aware of that by reducing the track range might
exclude useful samples which may exist outside the given range.

Intervals

By the fact that samples are ordered the same way as they were translated, it is
possible to group samples by extracting one combined sample for each interval
of size k throughout the dataset S (where all samples has the same concept).
The combined sample could be extracted in a multiple of ways, e.g. the first, the
last, the average, a random sample of the range. The application implementation
extracts an averaged sample.

The strategy requires the user to select a k value in order to know how many
samples which it should be extracted. The k value is the amount of intervals,
meaning the interval size is computed by n

k , where n =|S |.
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Figure 3.11: An visualization of the feature values of table 3.3. The illustration
aims to highlight feature values in respect to the positions of the positive samples
(class=1). The solid black (lower) line, at each feature, represents the presence
of positive samples at position 2, 7, 9 and 17. The feature values are drawn as
a (stepped) line for each position. The value scales are normalized to show the
relative differences of the values.

K-means

The unsupervised machine learning algorithm k-nearest neighbors uses k
«centroids» in the same Rn dimensional space as for the sample data set which
it operates in. By this, it is possible to group all samples to any of the k
random placed centroids, and use the centroids position as the combined sample
to represent the others in the matrix. Every sample is connected to the centroid
which is closest, measured by the smallest euclidean distance.

The strategy requires the user to select a k value in order to know how many
samples which it should be returned. The k value is the amount of centroids.
While the initialization of the centroid are randomized, there are performed a
multiple of randomizations, were the best on who has smallest total distance of
all centroids are chosen.

Roundoff

The strategy makes use of the fact that many of the samples are relatively
similar due to the focus on the elements distance to each other. If an annotation
track is relatively large (millions of positions), then two elements which are far
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(a) The (gini) impurity. (b) The information gain (entropy).

Figure 3.12: The feature similarity measurements by (a) gini and (b) entropy of
the feature data in table 3.3.

from another element may be «quite equal» to each other. For instance, two
points which has a gap of 1000 and 1001 to another element are pretty similar,
at least in that particular distance feature. If the distance feature also makes use
of the relativity, meaning it divides the value by the track length, the two points
could share a number of common decimals. The common decimals, is what this
grouping technique makes use of. It compares every sample with the rest of
the samples and only keeps the ones which equals on the first d decimals. The
strategy is implemented within the application to support the variants of both
comparing 0, 1, 2, 3 and 4 «roundoff» decimals.

3.2.3 Feature similarity

Evaluating goodness of features may be done in many ways[18]. Evaluating
feature similarity inside the application are done by using two built in feature
evaluation tools of SciKit, the impurity measure (gini) and the information gain
(entropy)27. The standard deviation is also measured and shown as the blue line
in the figure.

The gini coefficient[13] measures impurity or in-equality within a data set,
for each feature individually. Concetely, when measuring impurity of a feature
F , only the feature values of F are selected as the dataset for measuring the
impurity of F . The measurement range is [0,1], where 1 denotes the maximum
and 0 means the minimum in-equality when all feature values are positive28.
A small impurity value implies that all feature samples share similar values.
A higher number implies that there are a (relatively) larger variety of values
within the samples and possibly an in-class imbalance.

The Shannon entropy[36] measures information gain or the unpredictability
of a random variable. It detects the unique amount of available information
in a dataset. In the context of machine learning, it computes the average

27The feature evaluation is based on SciKit: http://scikit-learn.org/0.12/auto_
examples/ensemble/plot_forest_importances.html

28If some of the values are negative, the range may theorethically excceed 1.
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(a) The (gini) impurity. (b) The information gain (entropy).

Figure 3.13: The feature similarity measurements by (a) gini and (b) entropy of
the feature data in table 3.3 based on increasingly many randomizations.

information of each sample for the features, individually. A high value implies
much information gain, while a smaller value implies less gain. A gain of 0
implies no information gain.

Detection feature goodness

The similarity measures shown in figure 3.12 is conducted based on 100 sample
randomizations. However, more precise results may be achieved by doing
increasingly more evaluations. To select a standard randomization number r for
use with the various machine learning algorithms, a computation of increasingly
may evaluations is shown in figure 3.13. The graph shows that there are some
changes in the feature performances. However, it may appear that the features
generally does not change much. Feature 9 improves a lot in impurity measure,
while feature 3 drops in the entropy measure.

At around 200 evaluations, the plot more or less «flattens» out. The value r is
therefore set as 200 within hte application when computing feedback for feature
similarity. Thus, it aimsz to give a reasonable measure of feature goodness
without beeing too computational expensive.

3.2.4 Track combinations

The combination of multiple tracks into a single track is proposed as a solution
to situations that require learning from or prediction of multiple tracks. This
can be achieved in a multitude of ways as long as it does not break any of the
requirements of GTrack, MLTrack or any of their components.

A combination process of three (n = 3) single (UP) tracks (A, B and C ) into
a combined (VP) track D is illustrated in figure 3.14. The single tracks are
numbered from 0 and upwards, resulting in A = 0, B = 1 and C = 2. The points
in D is then computed using the existence property of the points in the single
tracks. If none of the single tracks contains a point, then no point is created in
D. Otherwise, a point is created in D as the binary sum of the existing points in
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the single tracks, by assigning the sum of the power of the track number for each
track that contains a point at a position i . For instance, at position 0 (i = 0), C is
the only track that has an existing point. C is numbered as track 2, which then
assignes a point to D of value 4 (22). More formally, any position i in D (Di ) may
be occupied by a new point of the assigned value vi using

vi =
n−1∑
j=0

{
2 j , if position i in track j is occupied
0, otherwise

Di =
{

point of value vi , vi > 0

open position, otherwise

where n is the length of the set {A,B ,C } of single tracks.

Figure 3.14: Combining three MLTracks into one.

3.3 Adapting machine learning algorithms

There are adopted 7 machine learning algorithms within the application, namely
«Decision Tree», «Logistic regression», «Artificial Neural Network», «Support
Vector Machine», «Anomaly detection», «K-nearest Neighbors» and «Multiple
Linear Regression». All the algorithms extends the MLAlgorithm29 interface30,
which is used by the application to execute the different algorithms in a generic
manner. In addition, it offers visualizations (e.g. a learning curve) and various
functionality performance measures (e.g. accuracy, precision and recall).

The application makes substantial use of the algorithm implementations
and various other functionality from SciKit. Two of the algorithms («Artificial
neural network» and «Anomaly Detection») are implemented using libraries from

29See appendix A.1.6 for implementation details.
30Concretely, the interface is implemented as an abstract class.
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scipy and numpy, since the algorithms were not provided in the current version
of SciKit. In general, the algorithms are more complex and holds a variety
of implementation details which is not covered in this presentation. Some
algorithms may both have a supervised and an unsupervised alternative, even
though only one variant is used by the application.

The application has adopted the selected machine learning algorithms by
focusing on learning genomic (and abstract) relationships. Consequently, only
supervised machine learning algorithms or variants thereof is adopted. To learn
a relationship, one genomic data track may thus be provided as «answers» to
another genomic data track.

Each learning algorithm is presented in the context of reading translated
genomic data based on the dataset (training set) of table 3.3. The presentation
focuses on how genomic data is read and interpreted by the algorithm on a use-
case level and not on any deep mathematical level. Thus, implementation details
and mathematical proofs are not presented, even though some equations are
provided.

Concretely, each of the learning algorithms is presented using the dataset
(training set) of table 3.3, generated by using the applications translation
strategy. To describe the prediction step, an unseen track is used as an example.
The track is unseen because it is not used in the learning step, and its response
track is unknown. The unseen track is of same type (US) as the explanatory
track used to generate the training set. A visualization of the unseen track is
shown in figure 3.15. The resulting dataset (prediction set) of the translated
unseen track (using the same features as the ones used in the learning step) is
shown in table 3.4.

The undefined value parameter is selected to be π. The data partitioning
pipeline step is chosen to be skipped in the illustration, to maintain a simple
example. The learning set is thus used for both learning and cross-validation
whenever applicable. The focus is to explain the learning and prediction step of
each algorithm in the context of working with the (translated) genomic data.

Figure 3.15: Visualization of the prediction track.

Prediction track as GTrack
##gtrack version : 1.0
##track type : segment
###seqid start end
####genome=hg18 ; s tart =0;end=20
chr1 4 7
chr1 12 16

Prediction track as MLTrack
####genome=hg18 ; s tart =0;end=20
chr1 4 7
chr1 12 16
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1.00 0.00 1.00 1.00 0.00 3.14 0.20 3.14 0.20 0.00 0.00
1.00 0.05 0.95 0.90 0.10 3.14 0.15 3.14 0.15 0.00 0.00
1.00 0.11 0.89 0.80 0.20 3.14 0.10 3.14 0.10 0.00 0.00
1.00 0.16 0.84 0.70 0.30 3.14 0.05 3.14 0.05 0.00 0.00
1.00 0.21 0.79 0.60 0.40 3.14 0.25 0.00 0.25 1.00 0.00
1.00 0.26 0.74 0.50 0.50 3.14 0.25 0.05 0.25 0.00 0.00
1.00 0.32 0.68 0.40 0.60 3.14 0.25 0.00 0.25 0.00 1.00
1.00 0.37 0.63 0.30 0.70 0.00 0.20 3.14 0.00 0.00 0.00
1.00 0.42 0.58 0.20 0.80 0.05 0.15 3.14 0.05 0.00 0.00
1.00 0.47 0.53 0.10 0.90 0.10 0.10 3.14 0.10 0.00 0.00
1.00 0.53 0.47 0.00 1.00 0.15 0.05 3.14 0.05 0.00 0.00
1.00 0.58 0.42 0.10 0.90 0.20 0.00 3.14 0.00 0.00 0.00
1.00 0.63 0.37 0.20 0.80 0.25 3.14 0.00 0.25 1.00 0.00
1.00 0.68 0.32 0.30 0.70 0.25 3.14 0.05 0.25 0.00 0.00
1.00 0.74 0.26 0.40 0.60 0.25 3.14 0.05 0.25 0.00 0.00
1.00 0.79 0.21 0.50 0.50 0.25 3.14 0.00 0.25 0.00 1.00
1.00 0.84 0.16 0.60 0.40 0.00 3.14 3.14 0.00 0.00 0.00
1.00 0.89 0.11 0.70 0.30 0.05 3.14 3.14 0.05 0.00 0.00
1.00 0.95 0.05 0.80 0.20 0.10 3.14 3.14 0.10 0.00 0.00
1.00 1.00 0.00 0.90 0.10 0.15 3.14 3.14 0.15 0.00 0.00

Table 3.4: The feature values of the translated prediction track, using the
features of section 3.2.1 on page 45.

3.3.1 Decision Tree

The «Decision Tree» algorithm[42] (MLDecisionTree31) uses a tree structure for
representing features as inner nodes and classes as leaf nodes.

In the learning step, a decision tree T i built up by feature nodes, ordered by
their level of entropy (information gain). The best feature node (with the highest
entropy of all the features) is selected as the root node. Then, the best of the
remaining feature nodes are added as the current (root) nodes first child. Each
feature node has one or more child nodes (feature nodes or class nodes). During
learning, the inner nodes learns to select which of their assigned children to
return, based on one or more (inner) conditions. The class nodes are leaf nodes
(ends of the trees branches) and have (only) children which corresponds to one or
more aswer classes. A tree is built based on some given parameters, such as how
many feature nodes to use, how many times a feature node may be used, and so
on. There are many available options. Thus, a feature node may be used once, a
multiple of times or not at all. It solely depends on the algorithm implementation
and its (optional) parameters. The SciKit implementation of the decision tree is
configured (parameterized) to use entropy32 for building the tree and it has no
upper limit of feature reuse.

In the prediction step, the inner feature nodes decide what child (branch)
to follow or return, based on individually learned conditions. Any condition is

31See appendix A.2.1 for implementation details.
32The entropy is selected to be the default configuration used by the algorihtm in the

implemented application.
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Figure 3.16: A decision tree built from the training set with 100% accuracy.

evaluated based on a given feature value from the prediction sample. Based
on the condition, an inner feature- or class-node is returned. If a class
node is returned, then the sample is predicted to be the class represented
by the class node. Otherwise, if an inner feature node is returned, more
classification consideration is needed. Thus, the process recursively evaluates
the returned child node in the same way as the current node. Figure 3.16
shows a learned decision tree (with an accuracy of 100%) for training set. The
root node is the single node on top of the figure, representing the 7th feature
(MLFeaturePointDistanceInnerRelative). It has two children which is both
(other) feature nodes. It evaluates its (learned) condition based on a given feature
value v from an unseen sample. If v ≤ 0.1669, the left branch to the 10th feature
node is selected. Otherwise, the right branch to the 6th feature node is selected.

By following the right path from the root node, only one of the leaf nodes
along the continuing path has a positive class (class=1), while the remaining
three positive sample classes are left out. It is a «dramatic» decision to exclude
3
4 of the positive classes in the very first decision, but this is precisely the aim
when using entropy. It tries to pinpoint information gain as fast as possible.
Thus, the reduction of positive classes confirms that the selected root feature is
a good selection, since the model have perfect accuracy.

The complexity of T is rather large compared to the size of the used training
set. The number of nodes in the tree is about the same as the number of samples.
It raises the question of generalization, since having a very specific model might
not suite other (possibly) different situations as good, if overfitted.

To illustrate the use of improving the generalization, another more simplistic
decision tree T’ is learned, as shown in figure 3.17. The simplicity is due to
a given «max-depth» parameter of 2. It parameter selection results in a much

55



Figure 3.17: Decision Tree applied to the sample data set with restrictions a
max depth of 2, achieving an accuracy of 85%.

simpler model with only 7 nodes (a reduction by 66,7% from 21 nodes). Even
though the accuracy drops down to 85,0% for the same training set (a reduction
of 15,0%), it is still a reasonably good performance. Furthermore, the prediction
estimates of the unseen track as shown in figure 3.18b, is less accurate than ones
in figure 3.18a.

(a) Decision tree probabilities of T. (b) Decision tree probabilities of T’.

Figure 3.18: Decision tree probabilities for predicting positive classes (class=1)
on an unseen track of the two hypothesises T and T’. The dots on the lower part
of the figure is the presence of segments in the prediction track.

3.3.2 Multiple linear regression

Multiple linear regression [42] (MLMultipleLinearRegression33) is a regres-
sion algorithm. It tries to fit a line to a dataset S by assigning a weight to each
features of the dataset. The line is a continous function, which outputs a com-
puted value v for any given input sample s (s ∈Rk , s ∈S).

h( x, β ) =β0 +x1 ×β1 +x2 ×β2 + . . .+xk−1 ×βk−1 +xk ×βk

In the learning step, the samples from the training set is represented as
points in a Rk dimensional space, based on the k features of the dataset. Then,
each parameter (β) for each of the features is adjusted to minimize the distance

33See appendix A.2.1 for implementation details.
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from any computed value to the samples. Usually the minimization function
is the least squares equation. It computes the squared sum of distances (cost)
between the "correct" (training) class values and the computed values for all the
samples, as in:

cost (S |β ) =
i=|S|∑
i=1

(
si ,k −h([si ,0, si ,1, . . . , si ,k−2, si ,k−1],β)

)2

If the model h has trained the parameters (β) perfectly, the cost would equal 0.
The β0 parameter (the bias) is the intercept which is usually adjusted to a value
which would minimize the cost.

In the prediction step, a unseen data sample may be passed to h using the
learned parameters (β), to compute its value. If the model is properly trained,
the unknown value would be at the line.

The algorithm is not used to estimate the unseen track, since it is a regression
model and not a classification model.

3.3.3 Logistic regression

Logistic regression [22, 42] (MLLogisticRegression34) is a (binary) supervised
classification algorithm. It classifies samples by a learned classification line
called a decision boundary. It is closely related to linear regression, where
such a decision boundary is a learned mathematical function for estimating
(calculating) values. The logistic function adds an extra (sigmoid) evaluation on
top of this, to be able use these values to make decisions. The sigmoid function,
shown if equation 3.1, returns a numeric value within [0,1] based on a given value
v . Thus, a threshold ε may be learned and used to decide whether v is under or
above it, so it could be classified as a positive or negative instance (class).

The decision boundary is separating at most two classes, and does by this
work naturally as a binary classifier. It is also possible to use it for multiclass
classification, using the «one-vs-all» method from section 1.1.2 on page 8.

S(v) = 1

1+e−v (3.1)

deci de(v,ε) =
{

Tr ue, if S(v) ≥ ε

F al se, otherwise
(3.2)

The learning step initializes a parameter vector (hypothesis h) of the length
of features in addition to a bias feature. The parameter values of h are adjusted
(trained) to separate class instances in a manner which minimizes the amount of
mis-classifications. The cost function used for training is a maximum-likelihood
estimation.

The prediction step classifies a sample s by using h to compute its value v
which in turn is compared to ε (the threshold). The value is used as the estimated
probability for the positive class.

The learned hypothesis h for the example dataset in table 3.3 achieves an
accuracy of 80%. The prediction estimates, shown in figure 3.19, are slightly
higher in the segment regions than in the areas outside them.

34See appendix A.2.1 for implementation details.
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Figure 3.19: Logistic regression
probabilities for predicting positive
classes (class=1) of an unseen track.
The dots on the lower part of the
figure is the presence of segments in
the prediction track.

3.3.4 Artificial Neural Network

Artificial neural network[42] (MLArtificialNeuralNetwork35) is a supervised
algorithm, inspired by the way the human neural network operates. Concretely,
it uses the notion of combining the many dendrites of an axon to multiple
other axons while learning the signal «routes» amongst these (the «network»),
individually. The simulation of such a networked relationship between axons
and dendrites are implemented by representing the axons a matricies layers and
their dendrite conncetions though matrix multiplications.

There are involved usually a minimum of three layers (matrices) when
learning such network routes, namely the input layer, the output layer and
minimum one hidden layer. The input layer size equals the number of features,
while the output layer equals the amount of response classes. The hidden layers
are usually chosen and tuned specifically (and individually) on a case-to-case
basis. Furthermore, there may be a multiple of (trained) hidden layers, which
together forms the learned hypothesis h.

The learning step uses a two step process called feed-forward and back-
propagation to train the hidden layer(s). The feed-forward step calculates the
current performance and cost of feeding the training samples through the input
layer of h. The back-propagation starts with the answers of the output layer
and moves backwards, towards the input matrix while calculating error costs for
every uncertainty in the matrices of h. These two training steps runs back and
forth until it performs either «well enough» or reach a given maximum number of
iterations. In figure 3.20, the three layers are visualised as a heat-map, where a
darker color means a higher value. The three model matrices are (in the example
case) the input layer I, the hidden layer H and the output layer O. The model
achieves an accuracy of 85%.

In the prediction step, a (input) dataset I is calculated based on the learned
hidden layer H so that 20I10 ×10H29 ×29O2 =20 R2. The two columns of 20R2 contains
the estimates for the classes. The i -th sample is classified at class= j when the
j -th column has the highest estimation value.

35See appendix A.2.1 for implementation details.
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Figure 3.20: A visualisation of an artificial neural network, leared from the
example training set. The black areas correspond to a high value while the white
areas corresponds to a low value within the range [0,1]. An additional layer factor
parameter is set to 2.9, and the regularization parameter is set to 0.

Figure 3.21: Artificial neural net-
work probabilities for predicting
positive classes (class=1) of an un-
seen track. The dots on the lower
part of the figure is the presence of
segments in the prediction track

3.3.5 K-nearest Neighbors

The k-Nearest neighbours algorithm[42] (MLKNearestNeighbor36) is an unsu-
pervised learning algorithm. It groups samples into k groups in k-dimensional
space Rk , where all samples have an euclidean distance to each other, and may
therefore be «close» or «distant» from each other through the k dimensions. The
parameter k is usually chosen as the amount of classes to classify, and denotes
the amount of segments to be grouped.

The learning algorithm randomly initializes «centroids» which take «owner-
ship» of the samples closest to its position in Rk . The k (different) centroids repo-
sition themselves increasingly closer to its nearest (and largest) group for every
iteration, until the iterations reaches its maximum or when all centroids have
found a sweet-spot. A sweet-spot is where a centroid are not befitting from any
additional repositioning. Since centroid positions are randomly initialized, the

36See appendix A.2.1 for implementation details.
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algorithm introduces a notion of chance, where one solution may be better than
the other solutions and possibly an optimal37solution. Therefore, the algorithm
is executed a set number of times which hopefully is enough to select a proper
solution with the possibly lowest total distance from all centroids to their owned
samples of the assigned classes.

Figure 3.22: A visualization of the distances in-between the learning samples.

The prediction step maps an unseen sample s (|s| = k) into Rk , and detects
its closest centroid, which represents the class (answer). The most important
(learned) distances are the in-between distances of negative samples (class=0)
and is shown in figure 3.22. The distance relationship between the samples are
shown in R2, since a true visualization in R10 is difficult38. The length of the arrow
represents the distance length. In this, specific case, the learned hypothesis h
achieves an accuracy of 85%.

The prediction estimates looks promising within the segments of the
prediction track, as shown in figure 3.23. But, the gap between the two segments
also yield high estimates.

Figure 3.23: K-nearest neighbour
probabilities for predicting positive
classes (class=1) of an unseen track.
The dots on the lower part of the
figure is the presence of segments in
the prediction track.

37An optimal solution is a solution where all pure segments are covered by the centroids in a
way that perfectly match any future prediction. Such a solution is difficult, if possible, to find.

38The visualization of points is usually limited to R3). Techniques for displaying higher
dimensions is difficult, and beyond the scope of presenting the algorithm.
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3.3.6 Anomaly Detection

Anomaly detection (MLAnomalyDetection39) is a semi-superviced (binary)
classification algorithm, which classifies samples as a normal sample or an
anomaly. It is used to discover samples which are specially different (anomal)
to the other (normal) samples. It is a semi-supervised algorithm, since it first
builds an hypothesis h of all samples which is considered to be normal, and then
sets a boundary for anomalies based on samples considered to be anomalies.

In the learning step, the algorithm «fits» a normal (gaussian) distribution
(equation 3.3) for each feature f in the training set ( f ∈ F). Each feature computes
its average value µ f and its standard deviation σ f , individually. The feature
values are usually normalized (individually) to make each feature have similar
range of values (influence) as the rest of the features. The algorithm has been
created based on the idea that a normal samples should have feature values
within the range r of µ f ±σ f . By this, an anomaly might easily be detected if the
sample falls outside r in at least one of the features.

P f (x f |σ f ,µ f ) = 1

σ f
p

2π
e
−(x f −µ f )2

/
2σ2

f (3.3)

To predict whether a sample s is an anomaly or not, the product of all feature
values is computed using the learned µ and σ for all features f ( f ∈ F). The
estimated value of s is the product of all the individual feature probabilities, as
represented in equation 3.4.

deci de( s ) =
{

Nor mal , if
(∏|F|

f =0 P f (s f )
)
≥ ε

Anomal y, otherwise
(3.4)

By looking at the example dataset (table 3.3 on page 48), there are 4 positive
(class=1) and 16 negative samples (class=0). Thus, the positive classes are
the minority and may be treated as the "anomalies". The learned normal
distributions show the distribution of the samples in figure 3.24, with positive
samples marked with crosses (×) and negative samples marked with circles (o).
An anomaly feature should conceptually gather as many negative examples at
the center top of the graph, while leaving positive values on the lower sides.
The result of applying each of the features in the left column, is shown in the
right column, with the separation boundary marked with the pipe symbol (|).
A perfect separation would put all negative samples on the right, and all the
positive samples on the left of the boundary. The prediction results of h is shown
in figure 3.25a, and achieves an accuracy of 20%.

By looking at the visualization in figure 3.24, some of the features looks to be
performing better than others. To improve the accuracy of h, the features that
performances poorly may be removed.

Therefore, a new simplified hypothesis h′ is learned solely based on the
features F5 and F7 from the original list of features in section 3.2.1 on page 45.
The predictions of h′ achieve an accuracy of 60% and is shown in figure 3.25b.
The prediction results of h′ on the unseen data is thus remarkably better than
the ones of h.

39See appendix A.2.1 for implementation details.
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Figure 3.24: The left column is the normal distributions for each feature.
The circles are the normal samples, while the crosses are the anomalies to be
detected. The right column displays the result of applying the features from the
left column. The vertical line (the «pipe» ’|’) displays the threshold. All samples
to the left for this pipe is regarded as an anomaly.

(a) The first model. (b) The simplified model.

Figure 3.25: Anomaly detection probabilities for (a) the first model and (b)
the simplified model, used for predicting positive classes (class=1) of an unseen
track. The dots on the lower part of the figure is the presence of segments in the
prediction track.
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Figure 3.26: A simpli-
fied anomaly detection
model, only using fea-
tures F5 and F7.

3.3.7 Support Vector Machine

Support vector machine (MLSupportVectorMachine40) is a supervised learning
algorithm, which separates n classes of points by the largest margins in Rn ,
known as support vectors, using «kernels». There are many types of kernels (ways
of separating classes). Any given kernel must be a «valid» kernel by satisfying
Mercer’s Theorem[29]. Figure 3.27 displays three common kernels, supported by
SciKit. As shown in the figure, the points are differently separated based on the
kernel selection.

Figure 3.27: Illustration (from the left) of the linear-, polynomial- and rbf-
kernel. Image is taken from SciKit.

The learning step maps each sample (vector) into a new «feature vector»
based on the selected kernel. The new feature vectors are then used to find
the largest margin separation boundaries by calculating the largest euclidean
distances between the feature vectors. By this, it is the sum of all the samples
kernel boundaries which makes the overall decision boundary, which therefore
may become very complex.

The prediction step maps each sample in the same way as in the learning step,
and returns the class based on its position in regards to the decision boundary.
The simplest case of bounday, is in the case of binary classification. Then, a
sample (represented as a feature vacor) may be inside or outside the boundary.
In the case of multi-class or n-class classification, the one-vs-all method is used
to learn n classifiers.

40See appendix A.2.1 for implementation details.
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Figure 3.28: Support vector machine
probabilities, for predicting positive
classes (class=1) of an unseen track.
The dots on the lower part of the figure
is the presence of segments in the
prediction track.

3.3.8 Comparing probabilities

Throughout the presentation of the algorithms, an estimation of the (unseen)
prediction track has been provided. Figure 3.29 show a comparison of the
probabilities as a combined track, which is the mean of all the tracks. Thus,
using the results of a combination of two or more machine learning algorithms
may be beneficial for either supporting or reducing the influence of each of the
individual algorithm finds.

Figure 3.29: Probabilities for the algorithms of the (unseen) prediction track in
figure 3.15 on page 53 in addition to a combined probability track of their mean
values.
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3.4 Application design

This section makes use of the components of section 3.1 and 3.1.7 for creating a
flexible machine learning application for analyzing (generic) genomic challenges.

3.4.1 Design goals

The main goal of the application is to enable biological (abstractly equivavalent)
problem formulations to be analyzed in a generic way. It aims to generalize
currently known problem formulations in hope of establishing a applicable
framework to future problem forumlations as well.

Another goal is to keeping «all options on the table» for as long as possible.
Thus, the application user may consider and explicitly choose what actions,
configurations and tradeoffs to make.

The application design guidelines are to:

• Support the representation of the genomic elements.

• Favor generalization over specialization.

• Offer a list of possible machine learning algorithms.

• Support a broad range of data input.

• Automatically perform a good parameter selection by default.

3.4.2 Framework

In order for all of the elements to work together, a framework has been created.
It is illustrated in figure 3.30.

3.4.3 Tools

The application exists of four tools representing the «natural» isolated steps of
an abstract machine learning pipeline.

Creating a tool for each of the steps aims to keep the application flexible by
allowing tools to be reused. For instance, any hypothesis could thus be used to
predict multiple genomic tracks or ranges.

Each tool makes use of both mandatory (required) or optional parameters.
However, all optional parameters is defaulted to a reasonable value in regards to
the guidelines.

The first step is to create measures, and is supported by the «Measurement
Creator Tool».

The second step is to learn an hypothesis from the created measures and
selected genomic tracks41 using the «Learning Tool».

The third step, uses the learned hypothesis to make predictions and
estimations for another genomic track with the «Prediction Tool».

Finally, the fourth step exports estimations, predictions and graphical
visualizations (plots) using the «Exportation Tool».

41Genomic tracks are provided by the HyperBrowser framework.
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Figure 3.30: A combined UML class- and state-diagram of the machine learning
framework and its relation to the HyperBrowser. The four tools are all using the
same framework API. The learning and prediction tools are mainly wrappers
around invoking the compute and predict methods.

Measurement Creator Tool

The tool produces a textfile of measures and transformations in MLL syntax
to be used by the «Learning Tool». Thus, it makes use of the applications
implementation of MLL by using the MLMachineLearningLanguageFactory for
handling the transition of measures, transformations and strings. Storing the
measures as textfiles enables sharing the measurements with others, as well as
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it hopefully ease the recievers effort of interpreting the purpose of the measures
through the high-level MLL syntax.

However, it is possible to directly upload a MLL file within the Hyper-
Browser42. Any uploaded MLL file in valid syntax could be used directly by
the «Learning Tool». Thus, the «Measurement Creator Tool» is by itself optional.

The tool offers to either produce a MLL file by either making parameter
selections or edit an existing MLL file43. The tool parameters are:

Create or change existing measures
Mandatory. Select between «creating new measures» or «edit existing
measures».

Measurement usage
Mandatory, iff44 «creating new measures» is selected. Choose the type of
measures that are to be created. The two available types are «explanation»
or «reponse» measures.

Track format
Mandatory, iff «creating new measures» is selected. Select between the 5
supported track formats, namely «segment», «valued segment», «points»,
«valued points» and «function».

Transformations
Optional, iff «creating new measures» is selected. Add45 one or more
generic transformations to each generated feature. Defaults selection is
«No transformations», where no transformations are added.

Undefined value
Optional, iff «creating new measures» is selected. Select a value v to be used
when a measurement is undefined (cannot determine v). Default selection
is the systems maximum (positive) integer46.

Existing measurements
Mandatory, iff «edit existing measures» is selected. Select47 an existing
textfile of MLL syntax to edit.

42Uploading a datafile in the HyperBrowser is done at the left menu on the frontpage under
«Galaxy Tools» -> «Get Data» -> «Upload File».

43Due to integration challenges in the framework, a textfile cannot both be created and edited at
the same time. It has to be done i two steps. An additional «work mode» parameter is also needed
to load the content of the selected MLL file at the correct time.

44«iff» is short for «if and only if».
45Adding transformations is done by an cutsom implemented selection «wizard», which enables

to select transformations in an iterative selection process. The «wizard» was created because of
integration challenges with the framework. Advanced use, as selecting a transformations multiple
times, is not supported directly. The advanced use selections are possible through manually editing
the MLL content.

46In python, the systems maximum integer is the maxint value in the sys package.
47Selection of files are done by looking at already existing tool results, stored in the «history»

pane on the right menu at the HyperBrowser.
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Learning Tool

The tool enables learning an hypothesis h from MLL measures (as textfiles) and
genomic tracks provided by the HyperBrowser framework. The only additional
(and mandatory) parameters are thus selecting the genomic context and range
to learn from. In addition, it is strongly recommended that (at least) the
machine learning algorithm to be used is selected. However, it is automatically
is guessed48 by the application if not explicitly selected.

Even though the application is built for analyzing the human genome, it is
generalized to work on any genome provided by the HyperBrowser framework.

Only a single explanation or response track may be selected. To represent
more tracks, a generalization, as shown in section 3.2.4, may be used. A track
may be uploaded using the existing functionallity of the HyperBrowser.

The tool parameters are:

Genome
Mandatory. Any genome provided by the HyperBrowser framework,
including the human genome.

Chromosome
Mandatory. Select either a single chromosome or all chromosomes from the
selected genome.

Explanation Track
Mandatory. A single GTrack of type S, US, P, VP, or F.

Response Track
Mandatory. A single GTrack of type S, US, P, VP, or F.

Explanatory measures
Mandatory. A textfile containing MLL measures with possibly associated
transformations, to be used as explanation measures (features) on the
explanation track.

Response measures
Mandatory. A textfile containing MLL measures with possibly associated
transformations, to be used as response measures (concepts) on the
response track.

Learning algorithm
Optional. The machine learning algorithm for learning an hypothesis h. It
may be either of the 7 algorithms from section 3.3. The default selection
is «Autodetect», which (naturally) aims to automatically select a proper
algorithm to learn h.

Lowest data-imbalance ratio
Optional. An integer r , to make all minority classes of ratio less than 1 : r
request imbalance «actions». The appropriate action is set by the «Data

48The application automatically selects a proper algorithm based on the explanation track
format and feature- and class-count.
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imbalance enforcement factor» parameter. Default value of r is «None»
which skips the imbalance-step.

Data imbalance enforcement factor
Optional, iff a lowest data-imbalance ratio r is not «None». An integer
factor f ( f ≥ 2) creates f × |c| synthethic samples using SMOTE, where |c|
is the number of samples in a subclass c. After creating the synthethic
samples, the tomek-links are removed, resulting in a new sample set c ′

where |c| ≤ |c ′| ≤ |c|+ f ×|c|.

Regularization value
Optional. An floating value v (v ≥ 0) used for counteracting overfitting.
For v > 0, increasingly stronger attempts of counteracting overfitting is
performed. If v is too large, then underfitting may be occur. If v = 0, no
counteraction is performed.

Maximum iterations
Optional. If the selected algorithm demands long executions when learning
h, then setting a lower iteration number will in some cases stop the learning
process at an earlier stage. Thus, it may influence the performance of h.

Learning curve
Optional. Select an inspection level for computing the learning curve. The
available levels are «none», «low», «medium» or «high». The «low» level
only evaluates the learning progress 10 times, while «medium» evaluates
100 times and «high» a 1000 times. If the «none» level is selected, then no
learning curve is generated.

Cross validation percent
Optional. A percent p (0 ≤ p < 1) which determines the cross validation size
of the translated dataset. The training dataset size is then the remaining
(1−p) percent. The default value is 0,2 (20%).

Grouping strategy
Optional. A reduction reduction strategy, for coping with replicated
samples in the translated dataset.

Grouping strategy parameters
Optional. Additional parameters to specify or configure the selected
grouping strategy.

Start position
Optional. An integer s denotes the starting position (chromosome
coordinate) of where to learn from. It is an offset of the selected genomic
context. The default value of s is 0, which is no offset.

End position
Optional. An integer e denotes the ending position (chromosome coordi-
nate) of the range to learn from, within the genomic context. The default
value of e is the full length of the genomic context.
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In addition to the list, some other (implementation specific) parameters
may extend the tool. Two such extra parameters are the «explanation track
conversion» and the «response track conversion». They are added for optional
type conversion of the explanation track and the response track.

Prediction Tool

The tool produces estimates and predictions of the concepts (classes) learned by
an hypothesis h of the «Learning Tool». To follow the design guildelines, it does
not limit the prediction range to be within the range used for learning h. Thus,
it requires the user to interpret any results and justifying them. In general, the
biggest concern is determining if a prediction suffer from extrapolation. It may
occur if the training set data is differing from the prediction set data. However,
a good choice is usually to make predictions on similar types of data as h was
learned from. The tool parameters are:

Hypothesis
Mandatory. A learned hypothesis h, the result of the «Learning Tool».

Genome
Mandatory. Any genome provided by the HyperBrowser framework,
including the human genome.

Chromosome
Mandatory. Select either a single chromosome or all chromosomes from the
selected genome.

Prediction Track
Mandatory. An annotation track for predicting its response values
according to h. The annotation track may either use the same track as
used to learn from, or another track49. Defaults to selecting the same track
as was used to learn from.

Answer measures
Mandatory. A selection of wheteher the «real» answers of the prediction
track should be computed, in order to do evaluations on it. Default value is
«No», which does not perform any evaluations.

Start position
Optional. An integer s denotes the starting position (chromosome
coordinate) of where to learn from. It is an offset of the selected genomic
context. The default value of s is 0, which is no offset.

End position
Optional. An integer e denotes the ending position (chromosome coordi-
nate) of the range to learn from, within the genomic context. The default
value of e is the full length of the genomic context.

49Selecting another track may be done by selecting «No» in the additional (and optional)
«Prediction same track?» parameter.
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Export Tool

The tool both exports the results of the «Prediction Tool» and enables visualiza-
tion of predictions and estimates for each concept (class). The predictions results
are represented in valid GTrack format to be used with other tools or diverse
functionallity on the HyperBrowser.

In addition, the tool has some parameters for «zooming» into a specific range
of the results. The default value is to visualize the full result range. However, if a
smaller range is of more interest, the zoom may be used to get a higher resolution
and a better look at the data. The parameters are:

Prediction
Mandatory. A prediction generated by the «Prediction Tool».

Export option
Mandatory. The prediction content to be exported or visualized. One of the
following:

Probability Track
Export the class probabilities for c at each position in the prediction
track range.

Class Prediction Track
Export the predicted classes for each position in the prediction track
range.

Region Track
Export the region, if which the prediction was done.

Answer Track (with correct elements)
Export the (correct) classes from the response track.

Probability Track (histogram distribution)
Visualize the probabilities for a class c as a histogram.

Probability Track (line graph)
Visualize the probabilities for a class c as a function (line) graph.

Class identifier
Mandatory. If any of the export options rely on exporting a special identified
class c, then its identifier must be specified. There may be n classes, and it
must therefore be specified which class to export.

Start zoom position
Optional. The position s to start exporting data from, where 0 ≤ s ≤ n and n
is the length of the prediction track. Furthermore, s must be smaller than
the «End zoom position» parameter. Default value of s is 0.

End zoom position
Optional. The position e is the end position for exporting data. If n is the
length of the prediction track, then s ≤ e ≤ n where s is the «Start zoom
position» parameter. Default value of e is n.
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Decimal
Optional. Enables reducing the detail level when possibly visualizing
millions of position values. If a decimal value d is set, any subsequent
points agreeing on the first d decimals (at all coordinates) are not shown.
The simplification is made due to the definition of a straight line. The points
on a straight line does not need to be drawn if the starting- and end-point
is drawn.

3.4.4 Usage and interaction

The application has been assembled with the focus of giving its users the key
functionality to solve their genomic data problems using machine learning, with
as little pre-knowledge about it as possible. In order to make it possible, the
application tries to automatically choose as many of the optional parameters as
possible, by defaulting to "standard" or likely selections. These selections aim to
be useful, but does not at any means claim to be optimal choices. By this, the
basic use, aims to fit the users of no or little machine learning knowledge, while
the advanced use targets users of more expertise.

Figure 3.31: The workflow of the machine learning application in regards to
the HyperBrowser environment. The solid lines show the basic use. The dashed
lines display more advanced use.

Basic use

The basic use, is the applications most simplistic use, with as many of the
optional parameters chosen by the application. The workflow of learning,
predicting and exporting application content is shown as the solid line in figure
3.31. The smallest set of parameters which need to be selected is the mandatory
ones (in each tool). This is the minimum selections which needs to be done, in
order to gain some results.
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Advanced use

An important part of machine learning, when learning a hypothesis, is the error
analysis. It is through error analysis, that most of the optimization and fine-
tuning of any hypothesis are done. Reasons for misclassifications are here being
spotted by trained experts.

Providing general purpose features may not always be enough to learn a
decent hypothesis. For instance, features may fail to catch certain events, which
is vital for classifying a sample correctly. This calls for another alternative
to simple point-and-click user interface. Therefore, another advanced learning
parameter is added, for users demanding more flexibility, namely the option to
manually create features and transformations. The parameter expands the basic
workflow with an alternative route for adding specialized features. It is optional,
so it has no effect on the basic use and would appear almost invisible to the
unexperienced user. For working with this, the machine learning language has
been created.

The advanced use is shown as the dotted line in figure 3.31. At any time, the
user may jump back and forth between the tools, re-starting any of the processes,
changing parameters, prediction another dataset and so forth.

3.4.5 Learning tool pipeline

Each of the four tools is implemented to use a pipeline of steps to compute their
results. Amongst the many various processing steps provided by the application,
some steps are optional and only processed if certain parameters are set. The
user interface of the implementation offers this cind of parameter selection.

The «Learning tool» is the largest and thereby the most complex pipeline
of all the tools. It is shown in figure 3.32. The pipeline is relativly complex
by having many optional steps. The many optional steps serve the flexibility
goal. Some pipeline steps are automatically selected based on other selections,
but could have been optional. For instance, selecting the «balance matrix»
step automatically selects the «Tomek link removal» step after the «Addition
of synthethic samples SMOTE» step. This is a design choice, soly based on the
assumption that it would be beneficial to clean up noise and border samples after
adding synthethic ones.

It is vital that all routes of the pipeline work together. Concretely, the ouput of
any pipeline must be an exeptable input of the optional next steps in the pipeline.
The design showed in figure 3.32 allowes this.

3.5 The machine learning language

The machine learning language (MLL) is implemented as a «proof-of-concept»
programming language for creating features and transformations for use within
the machine learning application, presented in the thesis. It is created as a
sublanguage of Python50, and is therefore an interpreted language. It is written
using uppercase letters only. In addition, to run like python code, it has some

50Python version 2.7.3.
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Figure 3.32: The pipeline of the machine learning application.

restrictions and some added macros. Normal Python operators may be used, but
thay should be in uppercase letters. The macros are used to enable the user to
make use of the variables of the MLTrackState. A Python interpreter class is
built as a «proof-of-concept» in order to show its usage.

The language has added some macros to be used to access the properties of the
MLTrackState API. However, any Python code should work «out of the box» if no
macros or reserved symbols are used in a way which is not supported. While the
language is a «proof-of-concept», it may raise some yet undiscovered challenges.

The smallest possible script for creating a feature is shown in figure 3.33.
A fully compliant feature script with a logarithmic transformation is shown in
figure 3.34.

MLL Example 1
1 FEATURE BEGIN
2 BODY BEGIN
3 OUTPUT 1
4 BODY END
5 FEATURE END

Figure 3.33: MLL sample-code for building a feature outputting 1 at all
positions in the track view.
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MLL Example 2
1 FEATURE BEGIN
2 CONFIG BEGIN
3 UNDEFINED = 105
4 TRANSFORMATIONS BEGIN
5 TRANSFORMATION BEGIN
6 CONFIG BEGIN
7 SITUATION = ’ALL’
8 UNDEFINED = 210
9 CONFIG END

10 BODY BEGIN
11 OUTPUT LOG( VALUE )
12 BODY END
13 TRANSFORMATION END
14 TRANSFORMATIONS END
15 CONFIG END
16 BODY BEGIN
17 IF STATE IS NONE:
18 OUTPUT UNDEFINED
19 ELSE:
20 IF STATE.IS_INSIDE_SEGMENT:
21 OUTPUT 1
22 ELSE:
23 OUTPUT 0
24 BODY END
25 FEATURE END

Figure 3.34: MLL sample-code for building a fuller feature, with the logarithmic
transformation added in the config block. The feature outputs 1 if the current
position is inside a segment, or otherwise 0.

3.5.1 Structure and syntax

The FEATURE and TRANSFORMATION are both structures which is used to map
to the application API. The FEATURE maps to the MLMeasure API, while
the TRANSFORMATION maps to the MLTransformation API. Both structures
encapsulates its code by BEGIN and END clauses, as shown for the FEATURE
structure (on line 1 and 5) in figure 3.33. Concretely, a transformation uses
TRANSFORMATION BEGIN and TRANSFORMATION END, while a feature uses
FEATURE BEGIN and FEATURE END. Each structure has two inner elements,
namely the optional configuration clause CONFIG, and the mandatory body
clause BODY. Both of the elements encapsluates its content in the same way as
the structures.

The configuration clause CONFIG specifies an undefined value, or adds
transformations and meta-data to it.

The BODY clause contains the MLL code which evaluates and outputs a value
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for each position of the track view. There are multiple values available through
the built-in STATE macro.

3.5.2 Macros

All macros are read-only. Variables may be created as in the same way as in
Python. However, any variable must be in upper case letters and may never
contain any of the macros as its substring.

These are the global FEATURE macros, which are available «as-is» and may be
used directly within the BODY clause.

STATE MLTrackState instance.

SIZE Integer. The range length of the genomic context.

POSITION Integer. A relative position inside the interval, from 0 to SIZE.

These are the STATE specific macros. Any inner macro, e.g. MACRONAME, should
be addressed as STATE.MACRONAME.

SIZE Integer. The length of the STATE structure.

START_POSITION Integer. The position where the STATE starts inside
interval.

END_POSITION Integer. The position where the STATE ends inside interval.

OFFSET Integer. The difference between START_POSITION and POSITION.

FUTURE_POINT 2-Tuple : (position,value). The future point is represented as
a tuple, not saying if it is a point or segment. If no future point, then None.

FUTURE_POSITION Integer. The position inside the tuple of FUTURE_POINT.

FUTURE_VALUE Float. The value inside the tuple of FUTURE_POINT.

LAST_POINT 2-Tuple : (position,value). The last observed point or segment.
If no such point, then None.

LAST_POSITION Integer. The position inside the tuple of LAST_POINT.

LAST_VALUE Integer. The position inside the tuple of LAST_VALUE.

IS_POINT Boolean. True if the element is a point, else False.

IS_SEGMENT Boolean. True if the element is a segment, else False.

IS_INSIDE_SEGMENT Boolean. True if the element is inside a segment, else
False.

IS_OUTSIDE_SEGMENT Boolean. True if the element is outside a segment,
else False.
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Chapter 4

Results

4.1 Application

The application is implemented inside The Genomic HyprBrowser and is publicly
available at http://hyperbrowser.uio.no/ml/1. It offers researchers, or anyone
interested, the opportunity to use the application on their own biological
challenges.

To illustrate the application usage, the rest of the chapter introduces an use
case for analyzing a concrete biological challenge.

4.2 Use case

The use case idea is inspired by the discovery in [33] of a possible relationship
between vitamine D receptor (VDR) binding sites and regions associated with
diceases such as diabetes, cancer, multiple sclerosis (MS) or others.

Here, the aim is to learn a relationship between vitamine D receptor binding
sites (points) and regions (segments) which could be associated with multiple
sclerosis (MS). It is a binary classification problem since the goal is to predict
the existence of a vitamine D receptor binding site for each individual base-pair
position.

In biological terms, the use case aims to learn a model which could predict if
a vitamine D receptor site is present or not at any base-pair position of a genomic
track containing regions which could be associated with MS.

Abstractly, the problem formulation is to detect the relationship of points (P)
and segments (S).

The focus of the use case is to present a walk-through of the methodology to
show the basic use of the application. The focus is not to analyze the biological
results or optimize any models thereof.

4.2.1 Data access

The actual results of the use case, with all details, are available at the
HyperBrowser «case-page»: http://hyperbrowser.uio.no/ml/u/fredrik-haaland/

h/use-case .
1Referenced to as the «homepage» in the use case.
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Abstract question
Is machine learning able to learn a relationship between points and
segments, and thus predict the existence of the points in a way which is
better than by chance?

Biological question
Could a relationship between VDR binding sites and regions associated
with a disease such as MS be learned so that the binding sites achieve
higher probabilities than average?

4.2.2 Walk-through

Selecting parameters and genomic tracks

The selected biological (genomic) data was provided by The Genomic Hyper-
Browser framework, where the «hg18» (NCBI36) human genome is selected as
the base genome parameter in all tools throughout the use case.

The chromosome 6 (chr6) with length of roughly 170,000,000 base-pairs was
selected as the range to be learned. The explanation track was selected as
a gene track of chr6

2, while the response track was selected as vitamine D
receptor binding sites3. The track files are accessible at the case-page, found
in section 4.2.1 on the previous page.

Creating measures

Measurements was created using the «Measurement Creator Tool»4.

Figure 4.1: Creating use case measures with the «Measure Creator Tool».

2To select the track in the HyperBrowser, select: «Genes and gene subsets» -> «Genes» ->
«Nscan».

3The track is a privatly added. HyperBrowser selection: «Private» -> «GkMs» -> «VdrRegs».
The track is originally in a segment format, so the midpoint of the segments were selected as the
points to be learned.

4The «Measurement Creator Tool» is found at the left panel of the homepage under the
«HYPERBROWSER TOOLS» -> «Restricted and experimental tools» -> «Generic Tool 1».
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Feature measures was created by selecting the «measurement usage» as
«explanation», the «segment» track format, and the «logarithmic» transformation
was added to all the measures. The undefined value was selected to be 100 for
both the features and the transformations. The «Point exists» response meaure
was selected, because of the aim to learn and predict the existence of points.
Figure 4.1 on the facing page show the selections.

Response measures was selected very similar to the feature measures. The
«measurement usage» was selected as «response» and «points» was selected as
track format in stead of «segments». No transformations were added. The
undefined value is left unchanged at 100. Figure 4.2 shows the selections.

Figure 4.2: Creating use case measures with the «Measurement Creator Tool».

Learning the relationship

A minimal amount of parameters are selected to show the basic use of the
«Learning Tool». Thus, all mandatory parameters are selected in addition to
a few others. Concretely, the «medium» learning curve is selected in order to
display a more detailed learning curve (for illustrative reasons) than the default
parameter. Also, the «Decision Tree» learning algorithm is selected and the
translated matrix is set to «prune»5 off samples as a post processing step. The
mandatory selections in addtion to the learning algorithm are shown in figure 4.3
on the following page.

The execution result of the «Learning Tool» contains the learning curve,
the feature similarity measures and more. Allthough chr6 has a range of
170,000,000 , the post processing step has «pruned» the sample dataset down
to 5,439 samples. The samples are partitioned into a training set of 20% and a
cross validation set of 80%, shown in table 4.1 on the next page.

The learning curve is shown in figure 4.4 on page 81. The «training» error (in
accuracy) increases while learning increasingly more samples. The x-axis show
the intervals of added samples, while the y-axis show error rates (as decimals).

5Pruning is performed by selecting the decimal d = 0 to remove all samples which agree on all
feature values without looking at any decimal differences.
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Figure 4.3: Selecting mandatory parameters for use with the «Learning Tool».
In addition, the optional «learning algorithm» parameter is selected to be
«Decision Tree».

Dataset / Class Negative samples Positive samples

Training set 4153 1049

Cross validation set 198 39

Sum 4351 1088

Table 4.1: The partition of the use case dataset.

A possible explanation of the «training» error could be generalization difficulties.
For the model to comprehend more samples, the model may not be able to
perfectly separate the amount of closely connected samples. The model may thus
select to trade some current classification error against the possibility for better
predictions of other unseen samples. The training error reaches a rate of ∼3%
when having learned all the 100 intervals (4153 samples).

The cross validation (accuracy) error is rather stable at ∼6% while increas-
ingly more samples are added. This may be a second indication of that the model
is favouring generalization, since the cross validation set is not used to train the
model.

Overall, the two error rates seem to move towards each other. It may be an
indication of that the model is learning the relationship well. However, accuracy
may not be the best way of measuring the learning performance, since it does not
distinguish between false positives and false negatives.

The features are the same and has the same numbering as the ones from
section 3.2.1 on page 45. Feature F0 and F1 are the ones who have both most
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Figure 4.4: The use case learning curve. The «training» line display the error in
accuracy as increasingly more samples are learned. The «cross validation» line
display the accuracy error of the cross validation set.

information gain and impurity. These features are based on the mathematical
similitude property which, in turn, may be harmful for generalization if used
to predict other ranges at a later stage. However, in this case the objective is
to predict probabilities within the learned track. Thus, the similitude property
could hardly be justified. Feature F8 and F9 (and possibly F10) are the features
which has a much higher information gain than impurity. Thus, it looks like
these are the best measures. Feature F2 and F3 seem to perform reasonably well,
while F4, F5, F6 and F7 are questionable. The feature similarities are shown in
figure 4.5 on the following page.

Predicting point existence

The «learned hypothesis» from the «Learning Tool» was selected in the «Predic-
tion Tool» for making predictions. All of the parameter selections are shown in
figure 4.6. The prediction track and range were selected as the ones that were
used for learning. Since the (full) range is selected, no «zooming» is performed.
Consequently, the «start position» is 06 and the «end position» is omitted7.

A list of some of the prediction results is shown in table 4.2 on page 83.
Allthough the accuracy is high (∼90%), the precision and recall is rather poor.
The average prediction for the positions which predicts point existence (class=1)

6A «start position» of 0 equals omitting it.
7By omitting the «end position», the full range length of chr6 is used by default.
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(a) Information impurity (gini).

(b) Information gain (entropy).

Figure 4.5: Feature similarity measurements of the use case features.
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is ∼59%. By contrast, the average prediction for the positions which predicts
no point existence (class=0) is ∼80%. Thus, the model is ∼59% sure of point
existence and ∼80% of no point existence whenever it makes the prediction, on
average.

Accuracy 0.90071025

Precision 0.00000518

Recall 0.37130801

F-score 0.00001037

Prediction average : Class 0 0.80413736

Prediction average : Class 1 0.59311413

Table 4.2: Selected use case prediction results.

Figure 4.6: The selected use case parameters for the «Prediction Tool».

Prediction extraction

To gain a better understanding of the predicted results, the «Export Tool»
provides options to export or visualize the data.

To get a view of the base-pair probabilities for all positions, a probability
graph of point existence for each position might be a good selection. The resulting
prediction from the «Prediction Tool» is selected as the «history element».
Furthermore, the «probability track (line graph)» is selected as «export option».
The parameter selection is shown in figure 4.7. The probabilities are shown in
figure 4.8 on the following page.
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Figure 4.7: The selecting use case parameters for the «Export Tool».

Figure 4.8: Use case probabilities for point existence at all positions of chr6 by
the «Decision Tree» algorithm. The x-axis represents the track positions while
the y-axis show the probabilities, from 0 - 100%. The lower diamonds along the x-
axis display the learned points. The use-page contans a higher image resolution.

Evaluating predicion results

A simple way to predict point existence could be done by counting the points
which overlaps8 with the segments and predict the point existence by a constant
probability. For instance, chr6 has 237 points and 1020 segments. The segments
occupies 78,311,521 positions which means that the rest of the 92,588,471
positions are left open. The overlap of points inside segments is 130 points for
chr6. Then, based on how many points which overlaps, the probabilities for all
positions i could then be computed as:

P (i ) =


points inside segment

occupied positions
= 130

78311521
= 0,00000166, if i is inside

points outside segment
open positions

= 107

92588471
= 0,000001156, if i is outside

8An overlap occur whenever a position i is occupied by both a point and a segment in their
separate tracks.
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The probabilities for a point existence would, by using the simple model,
be 0,00000166% for all positions inside a segment and 0,000001156% for all
positions outside a segment. However, the machine learned model for chr6 is
able to predict this probability individually for each position. As an example,
the 458th segment of chr6 starts at position 42,824,362 and ends at position
42,944,268 , which gives the segment a length of 119,906 positions. It overlaps
with two points at postion 42,859,126 and 42,859,531. The probability for a point
existence on the single segment is thus 2

119906 = 0.00001668% for all the segments
positions.

However, the learned model of chr6 could then be used to predict the
probabilities for the 458th segment of chr6. The figure 4.9 shows the prediction.
The dotted line is the simple constant probability, while the solid line is the
(normalized) model probabilities. The probabilities are thus higher than the
constant probability at some areas and lower at others. Allthough it gives the
highest probability for the two overlapping points, it also gives high probabilities
at other positions without any learned points.

Figure 4.9: Comparison of probabilities of a simple model (dotted line) and the
learned model (solid line). The markers are two points at the (relative) position
34,764 and 35,169. The y-axis show the probabilities (as decimal numbers). The
x-axis is the relative positioning starting from position 42,824,362 which is the
start of the 458th segment of chr6.

Figure 4.10 on the following page shows a histogram of the model proba-
bilities for point existance of figure 4.9. It shows that most positions have 0%
probabilies (for point existence) which is consistent with the existence of only
237 positions. The second largest bar is of 50% probability which is ok since it is
not pointing either way. The third largest bar of 100% probability is a bit high
by considering the relative few existing points. Allthough there is a small chance
that the other positions with high probabilities are existing points which are yet
to be discovered, the chance is much higher for an inaccuracy in the model.
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Figure 4.10: A histogram of the models probabilities for all positions of chr6.
The zero probability column is highest, as expected since there is only 237 points
that exists.

The average (point existence) prediction for the positions of the known 237
points is ∼59,5%. The average prediction for all the positions is ∼19,5%. Thus,
it might seem that the model is capable of learning the relationship between
the points and segments, and thus predict the existence of the points in a way
which is better than by chance. However, the histogram show that the two closest
prediction values are 50% and 66,7%. It might not be easy to determine which
of these values to set as the threshold for predicting point existence. A threshold
of 50% would predict 49,273,162 points which is tremendously more than 273.
However, 50% is less than the average of ∼59,5% and may thus be a rather poor
choice. A threshold of 66,7% would predict 16,968,556 points which is still an
enormous amount of possibly false positives.

4.2.3 Improving the model

Allthough the model has been evaluated and some results has been provided,
there are a few steps that possibly could improve the models performance. To
start off, the reduction of the dataset down to 5,439 samples is a rather dramatic
choice. By selecting an higher decimal d for pruning «equal» samples, then both
more samples and higher level of detail per sample is aquired. Also, a second
review of the used feature measures could benefit the learning. New and better
features may be applied to keep more information when translating the dataset.

Furthermore, a more balanced dataset could possibly enhance the learning
process. The current balance ratio is ∼ 1 : 0.05 (4153 : 198). The positive samples
could probably be doubled or trippeled to see if it has a constructive effect.

Finally, the predictions could possibly be more nuanced in combination with
additional (machine learned) model probabilities as illustrated in section 3.3.8
on page 64. Also, a prediction could possibly be used as an addition to other
statistics, e.g. for removing noise.
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Part III

Discussion
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Chapter 5

Challenges

5.1 Translation and representation

The «translation» of genomic data into a representation for use with machine
learning algorithms has been challenging. Representing base-pairs as the
smallest building blocks is done in regards of keeping the application generic.
The choice of this representation could be viewed as a «safe» solution, since it
opens up for the possibilty of combining the smaller building blocks into larger
building blocks at a later stage. Concretely, it stores information on a base-pair
level, which for instance could later be used to merge multiple base-pairs and
its information into a larger region of base-pairs. In addition, the representation
of base-pair level information may possibly be overwhelmingly large in terms
of computer resources and could cause slow performance in both learning and
prediction.

The choice of representation selected in the thesis is only one of many. For
instance, a whole track could be used as a single instance instead of a base-
pair. Such situations may seek to find patterns amongst a multiple of tracks
to predict a «common» track. This type of representation would then be more
alike a data-mining approach since aiming to detect patterns within the data.
In any case, representing a multiple of tracks is still possible using the baise-
pair representation, though the number of instances would result in an huge
dataset. Concretely, each base-pair of every track could be translated into a
matrix representation.

The capture of track properties in section 2.2.1 on page 26 does not claim to
capture «all» available properties. It aims to capture the fundamental properties,
such as length, positioning, distance and element specifics. However, the
discovery of more properties would strengthen the foundation for creating more
advanced and creative measurements.

5.2 Implementation

The implemented application is a result of following the set design goals and
guidelines for making it flexible and generic. The process of creating the
application has been increasingly challenging by trying to comprehend the
many aspects of machine learning which has become visible along the way.
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Concretely, the aspects of determining what data to be used and how it should
be represented, stored and dealt with has presented many possibilities and have
thus required many decisions to be made.

5.2.1 Overdesign

The wide range of possibilities lead to creating an early design which aimed to
enhance «all possibilies». The purpouse of creating such an application was to
aim as widely as possible in order to be as generic as possible. The design was
inspired by learning from «all known sources». Concretely, the design tried to
create interfaces for working with the basic entities, such as the «list» and «dict»
structures as well as the «int» and «float» structure. In addition, the design tried
to automatically load any Python class which implemented a known interface
and were put in a special folder. The design was a clear «overdesign», which
were actually focusing more on the idea of being generic than acting in a generic
manner to solve diverse challenges. The design was modelled and is shown in
figure 5.1 on the facing page.

Due to the overdesign, the guidelines of section 3.4.1 on page 65 was
established. Amongst many changes in the design, the focus were changed to
learning from only a single type of data (GTrack). Components that were built
only for the sake of being generic was removed1. The simplified design is shown
in figure 3.30 on page 66. One of the main reasons for the overdesign was
probably both due to the "optimistic" approach of solving «everything» at once
and the lack of experience in creating applications.

A weakness of the application is that it is currently only supporting to learn
from a single explanatory track. It requires the user to represent a multitude
of tracks through an combination track. Thus, there is no support for assigning
only some measurements to a some of the tracks. However, this is result of trying
to reduce the complexity of the early design, and has caused the application to
be less flexible.

5.3 Selection of programming language

As the HyperBrowser platform has been implemented in Python, the choice of
application programming language more or less selected from the beginning. In
order to make use of the HyperBrowser interfaces and the resources thereof, the
application required a Python compatible implementation. Implementing the
application in Python was then an natural choice.

The nature of the machine learning is somewhat related to «number
crunching». Thus, extensive use of vectorized (lower-level) libraries play a key
role for the application to run efficiently. A challenge in regards to performance
arises since Python is an interpreted language and thus not compiled. In
general, the higher level languages such as Python runs much slower than lower
level languages such as C and C++. Vectorized library bindings such as numpy
may provide efficient solutions to number crunching. However, the SciKit library

1The component implementations which were removed are not published, but may be provided
on request. It would only require a rollback operation in the revision control system.
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Figure 5.1: The initial design of the machine learning application.
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does often require parameters to passed as the list structure. Thus, much type
concersions is required to get the various components to work together.

In general, an vectorized Python implementation combines the best of the
two worlds of high-level and low-level programming. A possible way of combining
the «two worlds» is to use the Cython2 language. It is a language which compiles
Python code to equivalent C code. Even though it would be perfectly possible
to implement the application in Cython, it would make the code less flexible
and more complex to understand. It would be less flexible since parameter
changes would require methods to be compiled before execution, and it would
be more complex since each Cython module exists of three files rather than one.
In addition, the most time consuming parts of the application is already either
vectorized with numpy or using the SciKit library.

5.3.1 Working with large datasets

The application design goal of being both flexible and generic has resulted in
"loosely coupled" components. A (natural) disadvantage of this design is that it
makes it difficult to build components which work closely together. One negative
effect of this is that sharing resources becomes difficult, if not impossible.
Concretely, the memory resource, which is one of the most vital resources in
machine learning, may cause a great number of challenges. As Python is an
interpreted language, the memory lock may possibly cause two loosely coupled
components to duplicate a memory area to both work on the same data, if
parallelized. This is true for most variables since they usually are passed by
reference. If a method were to change a referenced object in memory, the object
might require to be duplicated elsewhere3. Thus, it may obtain more resources,
such as more memory or disk space. The relatively simple operation of classifying
a matrix might serve as a good illustration, when an algorithm and the output
format is loosely coupled. Instead of iterating through each matrix row and
directly writing the resultsing classes to disk (as a GTrack file), the matrix
results is first stored in memory (requiring additional memory space) before it is
returned to the «controller». In the next pipeline step (if no post-processing steps
are required), the controller outputs the result from memory to disk. Clearly, it
would be possible to optimize this operation, but it is probably not trivial if one
would like to keep the flexibility of optional post-processing steps.

Many of the steps in the learning tool pipeline, shown in figure 3.32 are
likely to work with large amounts of data, because the human genome itself
is huge. In the case of segments and points in section 4.2 on page 77, the
6th chromosome (chr6) has 170,899,992 baise-pairs where only 45 baise-pairs
positions are occupied. Representing all occupied positions of chr6 could result
in a large matrix if having such an imbalance of open and occupied positions
in addition to large gaps between the occpied positions. To represent a single
measurement for each base-pair as a 32bit float would for all positions of
chr6 require nearly 0.7 GB4 of memory. Thus, a relatively small selection of

2Cython website: http://cython.org/ (2013-04-29)
3In linux, a child process creation by fork would copy a memory area whenever it is first written

to. This is known as «copy-on-write». The HyperBrower runs on a linux operating system.
4170,899,992 base-pairs × 32 bit/base-pair = 5,468,799,744 bits = 683,599,968 Bytes ≈ 0.7 GB
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10 features and a single response measure would then require around 7,5 GB of
memory storage alone. Furthermore, performing the calculations of learning and
predicting it would require additional memory space. Finally, the whole human
genome of 3,200,000,000 base-pairs would require around 12,8 GB of memory for
each measurement. Thus, the amounts of data show to be rather large.

The combination of generic problem solving and large amounts of data has
created a "pressure" for the individual (isolated) pipeline steps of the tools to be
as efficient as possible. The total processing time of a tool is the sum of the time
spent by each of the pipeline step. Due to the flexibility design goal, there has
been created a number of available processing steps. Thus, as many steps as
possible are left optional by default. However, the output of one pipeline step
may affect the requested effort of the next. Usually, the «grouping» of similar
samples may reduce the processing time if many "less informative" (redundant)
samples could be removed. However, simply removing such samples could result
in loss in learnability. A combination of removing samples and assigning a
weight equaling the amount of removed samples using cost-sensitive learning
could probably prevent such an effect. However, the SciKit implementation in
the current version did not offer such functionallity. Implementing the machine
learning algorithms for only adding this functionallity is a too great job and above
the scope of the work of this thesis.

Some optimizations have been performed to make the isolated parts run more
efficiently. Even though many futher improvements are possible, the «focus» has
been on making the application work in a «reasonable» amount of time and not
on the optimizations themselves.

Storing executables

Storage of large dataset results to disk has been done to improve matrix
generation time. Concretely, a generated matrix is stored to disk with the
filename of an hash5 of the parameters used for its generation. Thus, the storage
space resource is used to enable faster matrix generations when working a
multiple times with the same parameters. However, the method is rather simple
and does not perform any additional checks than comparing hash-values. It may
therefore be improved to detect smaller changes in parameters which may be
used to re-use computed matrices in other ways. For instance, changes in the
"undefined value" would cause the matrix to be re-generated. A log of undefined
values, could probably be used to load the matrix and replace old undefined
values with new ones, rather than generating and storing a new matrix for every
undefined value. Furthermore, techniques for copying subsets of a generated
matrix could be done if an existing matrix contains the required range with the
same parameters.

5An hash of numbers and integers is computed using the sha224 of the hashlib in Python.
The probability of creating an equal hash for two different sets of parameters isclose to 0 and
therfore not a practical pproblem.
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The translation process

The translation process (matrix generation step), shown in figure 3.32 is the
first processing step in the pipeline of the «Learning Tool». To make use of the
full potential of any explanation track, it has to be accessible at any given time.
Being accessible does not necessarily equal being loaded into memory, if other
mechanisms are able to load the data into memory on request.

The sampling implementation of the application makes use of this by loading
elements one by one from the explanatory and possibly the response track on
request. They comply with the sampling strategy by providing information
about the current, preceding and subsequent element at any given time, by
doing file pointer jumps according to what is being requested. Currenly, only
jumps to the subsequent and preceeding elements on the track is supported.
Thus, it implements and supports the strategy of provinding information of the
preceeding and subsequent track elements. However, more advanced jumps
inside the track could be made possible if the strategy were to change. The
generated matrix is stored as an vectorized matrix, using numpy. In addition,
there are a few implementation details worth commenting upon.

First, it is difficult, if not impossible, to determine how well the average
quality (e.g. entropy) of the generated samples are during the matrix generation
process itself. By this, it becomes difficult to do feature under or over-sampling
during the process, if no pre-knowledge about the data is known. Therefore,
the matrix is generated as a single executable, isolated operation. Thus, the
process could have been implemented with a parallel processing algorithm, but
the smarter file pointer operation implementation is used instead. Concretely,
the track files are read on demand. The current element and possibly the next
element is simultaneously read at any given time.

Secondly, the matrix allocation is done in a single operation. This, because
the size of the matrix (the track length) is known before the translation begins.
The number of matrix rows equals the number of base-pairs in the selected track
range, while the number of matrix columns equals the amount of measures.

Finally, an explanatory track state is used by all feature measures. The
track state information does therefore only need to be computed once for every
change of position along the explanatory track. Performing a profiling6 of the
MLTrackState implementation revealed that many conditions where calculated
multiple of times by dynamically computing the same method calls by all feature
measures. By computing (caching) these variables once for every track position,
the matrix generation process accieved an imProvement in time performance of
55%.

The prediction

In the «Prediction Tool», each sample of the prediction dataset is predicted
independently from the other samples and only based on its feature values.
Concretely, a matrix row may be predicted individually, independently of the
rest of the matrix rows. By this, the matrix can be broken down into smaller

6Improving python performance: http://wiki.python.org/moin/PythonSpeed/
PerformanceTips (2013-04-29)
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pieces (slices) to enable multiple processes to work with them indicidually and
in parallel. The technique for performing this task is based on the idea of
MapReduce[8]. Since the application is built to run on a large computer cluster,
a multi-core approach is implemented. Thus, each worker is given a slice of the
shared matrix. Additional required memory is then limited to sum of the paralell
matrix sizes and the associated prediction cost of the calculations.

The «mapping» is done dividing specific parts of the sample set into parts
of a given size, and delegating it to k workers. The workers are implemented
as threads, for working on the same (shared) memory. They could have been
implemented as (forked) processes, but is not done so due to heavy memory-
use with the multiprocessing7 library. Each thread returns or «emits» its
predictions back to the prediction matrix of the main process (the reducer). The
performance improvement of doing this in parallel increases by the amount of
time each prediction takes. This, because the bottleneck is «emitting» the results
back to the reducer.

User defined measurements

The machine learning language was created to enable users with little or no
programming experience to be able to create measurements on based on their
requests. While it is an high level (interpreted) language, the flexibility has
risen some concerns in regards to efficiency. To meet this challenge, every MLL
measurment is therefore «compiled» before it is used in the translation process.
This is done by replacing the macros with implementation specific arguments,
and using the compile function of Python. Then, the track state information is
executed (in-memory) using the exec method. In addition, the math package is
only loaded once by the measure object.

Enabling the user to define specific measurements on a case-to-case basis
makes the application flexible. Even though some basic feature- and response-
measures are provided, the quality of any execution results relies completely
on the users understanding of both the application and machine learning in
general. The default parameters provided by the application is no guarantee
for any meaningful result whatsoever. The applications main goal is to enable a
user to explore and experiment with machine learning in a generic way. Thus,
a flexible application is naturally not a specificly created application, and does
therefore not guaratee any results whatsoever.

The interpretation of user-created code is a potential security risk. The user
could add «feature code» that could harm the server installation, delete files,
and more. Therefore, the import statement is not allowed as MLL code and is
removed whenever detected to prevent the import of system libraries.

While it is possible that collecting as many features as possible would result
in better models, the memory required for each feature may sets a practical
upper limit of how many that can be used. A practical way of detecting what
feature that may be more important than others may be detected by analyzing
the feature importance as described in 3.2.3 on page 50. However, improving
features in this manner may interfear with the error analysis.

7The documentation of the multiprocessing package of Python: http://docs.python.
org/2/library/multiprocessing.html (2013-04-29)
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5.3.2 The struggle of legacy code

The implementation of the application and other various scripts have througout
the whole thesis consumed much time and effort. The existing framework of the
HyperBrowser is relatively large (thousands of lines of code) and consists of a lot
of multi-purpouse functionallity.

One of the greatest implementation challenges has been to understand how
the framework operates. The understanding of how it works is crucial for
understanding how the application could be integrated. Even though it is
a massive piece of software, it is poorly documented. Interpreting the code
itself, has taken much time and effort because of the lack of documentation.
Even though the HyperBrowser development team has been supportive, time-
consuming email correspondances have been nessecary to make sense of the
framework.

Another great challenge is that the software installation is configured
customly so that installation on any other computer is difficult. The production
code repository was therefore duplicated8 in order to separate it from the
production code. Access to the user interface was given through url9. This
resulted a number of challenges, in addition to the time-consuming repository
commit’s for every code change.

A third challenge was the ability to test the created code. For every change,
a commit (and a mouse-click action) was required. Thus, the lack of automated
tests was a great drawback. In addition, on-server unit-testing was not possible
to execute from the local repository when using framework components, since
they was configured on the production server specifically.

Application integration

The framework has offered two main generic interfaces which have been used for
integrating the machine learning application.

The first interface is GeneralTool for creating tools which interacts with
the user through a GUI web-interface. It is built to provide options boxes for
retrieveing strings, integers, tracks, history elements and more. It has focused
on being so generic that some special features does not function in a way that
was expected. For instance, it is not possible to set a default value to a track
selection option. Also, simple things like changing a single option may influence
and reset subsequent selections. Much of the code for creating a tool is focused on
handeling events and do type and option checking, which is both time-consuming
and feels like a waste of time when more exciting code awaits implementation.

The second interface is Statistic for creating larger executables that
integrates and offers available framework resources. It is implemented for use
with a «magic» Factory which instantiates it using a specifically created (and
interpreted), string, syntax. To run a statisctic, a subclass of GeneralTool
may generate such a string containing all parameters needed for the specific
execution. It is therefore not possible to instantiate a subclass of Statistic if
direcly, if one wants to have access to the framework resources. In addition, since

8The SubVersion (SVN) repository was branched into a separate folder.
9Development area: http://hyperbrowser.uio.no/ml/ (2013-04-29)
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the Statistic is a system component, it is not possible to instantiate it locally
because of main repository configuration dependencies.

5.3.3 Testing

Unittesting key components (matrix generation, grouping) worked as aspected.
Using functionallity on from the SciKit library has helped keeping the amount
of application components to test to a minimum, since the library provides their
own tests. However, there has been no focus on interaction testing (user testing)
and integration- and system-testing (combination testing).

Interface testing could have been a great way of verifying that the aplication
is equipped with the nessecary functionallity requested by the actual users.
However, the design goal of affording as many (optional) parameters "as possible"
is intended to help lowering the bar for the user to start using the application.

Integration- and system-testing of the application as a whole has not been
any focus, to favour of unittesting. Integration testing is a trivial, but time-
consuming. For instance, the combinations of testing the «Measurement Creator
Tool» (including boundary-testing) is shown in figure 5.2. The combination count
is:

1× ( 1 )×1× ( 2×5×
(

n

k

)
×3 )

where there are 3 boundary cases for the undefined value (zero,positive,negative)
and k selected transformations out of n available.

Figure 5.2: The test combinations of the «Measurement Creator Tool».
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Chapter 6

Conclusion

A way of translating biological information into a format which is readable for
generic machine learning algorithms has been shown. Generic measures and
transformations for enhancing the translation process has been suggested.

A machine learning (programming) language (MLL) has been built to provide
a flexible way to create and edit measures. Individual information gain and
impurity for all measures are computed whenever a model is learned from a
dataset. Thus, the measures could be managed in a way that could optimize the
performance of the learned model on a case-to-case basis.

An application that incorporates the presented work has been implemented.
The proposed strategy for translating and representing biological information
is used to learn relationships between 5 selected GTrack formats. A total of
7 supervised machine learning algorithm variants are adopted. In addtion, a
framework has been created so that the machine learning algorithms may be
generically used for both learning and prediction.

The application is integrated within The Genomic Hyperbrowser, as four
separate tools, and is publicly available. The tools aims to enhance the creation of
measures, learning models, making model predictions and exporting prediction
data. Each tool has a number of mandatory and optional parameter selections.
The amount of mandatory parameters are kept to a minimum in order to
accommodate users of little or no prior knowledge of machine learning. One of
the application design goals has been to provide as many optional configurations
options as possible, to make the tool flexible.

An use case, inspired by a biological challenge, is described and used to
explore the application. It demonstrates how the basic use of the application
may learn a model and then use it for making predictions. Some of the model
results are discussed as well as possible further actions to make in order to
improve the model. However, the full potensial of the application is yet to be
proven by researches that seek to analyze their biological challenges using the
computational power of machine learning.
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Chapter 7

Future work

The current state of the implemented application has focused its effort on
designing and implementing basic structures for making sense of the human
genome by using genomic data. The design is one of many and does not claim to
be the final work in any ways. The structures as well as the design goals could
be changed and probably improved in future work.

The application has now reached a stage where user-testing might provide
neccessary feedback to figure out what directions to follow when improving the
application. First off, any feedback from concrete use-cases may detect the void
of «missing» functionallity. Secondly, an interaction analysis would reveal how
the user interface could be configured to improve the user experience.

If there were to be great interest in use of the application, a user-guide could
be created to explain the application usage in a user-friendly way. Such a user-
guide is a trivial, yet time-consuming, task and is has not been a part of the
thesis focus. However, it might become useful in the future.

It could also be intresting to do some structured evaluations of the adapted
machine learning algorithms on known generic challenges. Thus, it could
be easier for an application user to get started by giving direction towards
what algorithms which tend to perform «better» in common situations. This
is also applicable to parameter selection. The application is already a flexible
applications with many optional (pipeline) steps. An investigation into what
parameters which tend to provide «better» results in generic situations may be
helpful.

The thesis has focused on adapting supervised machine learning algorithms
to learn relationships between genomic data. However, unsupervised learning,
data mining and artificial intelligence are branches that are capable of providing
new solutions that could be worth exploring.
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Appendix A

Application implementation

This chapter includes references to some of the interfaces. The full source code
is available at http://hyperbrowser.uio.no/dev2/static/downloads/mlcode.zip.

A.1 API

A.1.1 MLTrackState

MLTrackState.py

class MLTrackState(object):
’’’

A state is a container of position data.

Author: <fredrhaa> Fredrik Haaland
’’’
def __init__(self, undefined=9999999):

’’’
Initialize inner values.

’’’
self.last = None # The last seen point
self.data = None # The read from file
self.xpos = None # The current position along the x’axis
self.futr = None # The future point
self.setUndefined( undefined )

# Speedup for returning size
# Size is 0, whenever not computed,
# but contains the correct number otherwise
self.size_ = 0

# Speedup for positioning
self.startPosition_ = None
self.endPosition_ = None

def setState(self, data, setPosition=True):
’’’

Shuffles all positions by one, adding the
new *point*, while dropping the previous.
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The future point must be set explicitly,
since it does not always need to be change

’’’
# Only set last element if a current exists
if self.size_ > 0:

self.setLastPoint( self.getCurrentEndPoint() )
assert len(data) > 2, ’State data input is corrupt: ’ % (data)
self.data = data
if setPosition:

# Start from beginning of this state element
self.setPosition( int(data[1]) )

# Speed’up ’’static’’ variables,
# which needs only to be calculated once.
self.size_ = self.size()
self._calculateStartAndEndPositions()

def equals(self, otherTrackState):
’’’

Compares current element with the <otherTrackState>.

Returns True if both tracks have both same position and
value,

or False otherwise.

Notice that True will be returned also when both values are
undefined.

’’’
return self.getCurrentPoint() == otherTrackState.

getCurrentPoint()

def setValue(self, value):
’’’

Assign a value to the current state element.
Returns True on success, or otherwise False.

’’’
if len(self) == 0:

return False
if len(self.data) >= 4:

self.data[3] = value
else:

newdata = range(0,4)
for idx,e in enumerate(self.data):

newdata[idx] = e
newdata[3] = value
self.data = newdata

return True

def setFuturePoint(self, point):
’’’

Assign, and override, future point.
The <em>point</em> must be a 2-tuple.

’’’
assert point.__class__.__name__ in [’tuple’,’NoneType’], \

’The future point must be a 2-tuple (or None)’
self.futr = point

def setLastPoint(self, point):
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’’’
Assign, and override, last point.
The <em>point</em> must be a 2-tuple.

’’’
assert point.__class__.__name__ in [’tuple’,’NoneType’], \

’The last point must be a 2-tuple (or None)’
self.last = point

def getLastPoint(self):
’’’

Get the last point, meaning the previous point
closest to the current.

Returns the point as a 2-tuple, or None if not set.
’’’
return self.last

def getFuturePoint(self):
’’’

Get the future point, meaning the next point
closest to the current.

Returns the point as a 2-tuple,
or None if not set or not available.

’’’
return self.futr

def getCurrentStartPosition(self):
’’’

The current (or last known) starting position.

Returns None, if not set.
’’’
return self.startPosition_

def getCurrentEndPosition(self):
’’’

Returns the position where the current state
element ends. The position is not a part of the
element size itself, it is where it ends.

So, if an element is:

chr1 10 15

Then, the length is 5, and the 15th position is not used,
meaning the end position will be 14, not 15.

Returns None, if not set.

’’’
return self.endPosition_

def setPosition(self, xpos):
’’’

Set the current position, which may or may not be
inside the current loaded element.

A call to this function is performed in setState(),
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to ensure all new states starts reading at the
correct, starting, position of the element.

’’’
if self.hasData() and xpos >= 0:

self.xpos = xpos

def getCurrentPosition(self):
’’’

Returns the current position, which may
or may not be inside the current state element.
If inside the state element, the offset is used
to determine the current position.

Notice: Position is None by default.
’’’
return self.xpos

def getOffset(self):
’’’

Returns the current offset, if a position is set,
or None otherwise.

’’’
if self.xpos is None:

return None
else:

return self.getCurrentPosition() - self.
getCurrentStartPosition()

def increment(self):
’’’

Increment internal variables, so more points
within this element get’s read.

’’’
self.xpos = self.xpos + 1

def getCurrentEndPoint(self):
’’’

Returns the end point of the current state element.
’’’
# Remember old position values
oldPosition = self.getCurrentPosition()
# Calculate end-point based on simulated position
self.setPosition( self.getCurrentEndPosition() )
endPoint = (self.getCurrentEndPosition(), self.getCurrentValue

())
# Restore old position values
self.setPosition( oldPosition )
return endPoint

def getCurrentPoint(self,offset=0):
’’’

Returns the current point [2-tuple] (x,y),
where <em>x</em> is the current position
and <em>y</em> is the current value.

If the element is unvalued, it is undefined, and
the corresponding value set by setUndefined() is used.

’’’
if self.isSegment() and self.hasValue(): # Valued segment
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value = self.getCurrentValue()
elif self.isPoint() and self.hasValue(): # Valued point /

Function
value = self.getCurrentValue()

else: # Unvalued segment
/ point
value = self.UNDEFINED

# Return the adjusted index and its calculated value
return (self.getCurrentPosition(), value)

def getCurrentValue(self):
’’’

Returns the current value if the element is valued,
or otherwise the <em>undefined</em> value is used,
as set by setUndefined().

TODO-IMPROVEMENT:
- Implement label recognition for ’value’

’’’
if (self.isPoint() or self.isInsideSegment()) and self.hasValue

():
return float(self.data[3])

else:
return self.UNDEFINED

def hasValue(self):
’’’

Returns True if the current element is valued
and the current position is inside the element,
otherwise False.

TODO-IMPROVEMENT:
- Implement label recognition for ’value’

’’’
return (self.isPoint() or self.isInsideSegment()) and \

self.hasData() and len(self.data) > 3

def hasNext(self):
’’’

Returns True if the current loaded element has not
yet output’ed _all_ of it’s content, meaning there awaits
another inner point inside the current state element.

’’’
if self.isInsideSegment():

return True
else:

return self.hasData() and len(self.data) > 0 \
and self.getCurrentPosition() < self.

getCurrentEndPosition()

def hasData(self):
’’’

Simple check to verify that data has been set.
Returns True on success and False otherwise.

’’’
return self.data is not None

def hasUndefinedValue(self):
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’’’
Returns True if the current value is undefined,
else False.

’’’
return self.getCurrentValue() == self.UNDEFINED

#=================================================#
# Helper functions #
#=================================================#

def __len__(self):
’’’

Returns the number computed by size()
as a short speed-up notation.

NOTICE: Should only be used when knowing
size() is computed.

’’’
return self.size_

def size(self):
’’’

The size of the interval.
Points will have length of 1,
while segments will have values larger then 1.

’’’
if not self.hasData() or len(self.data) < 3:

return 0
else:

return int(self.data[2]) - int(self.data[1])

def isOutsideSegment(self):
’’’

Simply returns if the current position is outside a
segment represented in the source.

’’’
return self.getLastPoint() is not None \

and self.getFuturePoint() is not None \
and not self.isSegment() \
and self.getLastPoint()[0] < self.getCurrentPoint()[0] \
and self.getFuturePoint()[0] > self.getCurrentPoint()[0]

def isInsideSegment(self):
’’’

Returns True is the current index is
inside the boundaries of the current element state.

’’’
if not self.hasData():

return False
else:

return self.isSegment() \
and self.getCurrentPosition() >= self.

getCurrentStartPosition() \
and self.getCurrentPosition() <= self.

getCurrentEndPosition()

def isAtStartPosition(self):
’’’

Returns True if state is a segment and the

112



current position is at the very beginning of it,
otherwise False.

’’’
return self.isSegment() and \

self.getCurrentPosition() == self.getCurrentStartPosition()

def isAtEndPosition(self):
’’’

Returns True if state is a segment and the
current position is at the very end of it,
otherwise False.

’’’
return self.isSegment() and \

self.getCurrentPosition() == self.getCurrentEndPosition()

def isSegment(self):
’’’

Returns True if the current position is part of multiple
points, meaning it is interpreted as a file in the source.

’’’
return self.size_ > 1

def isPoint(self):
’’’

Returns True if the current position is a point,
meaning it is interpreted as a file in the source.

’’’
return self.size_ == 1 \

and self.getCurrentPosition() == self.
getCurrentStartPosition()

def setUndefined(self, value):
’’’

Set the undefined value,
used when a point has a undefined value.

’’’
self.UNDEFINED = value

def _calculateStartAndEndPositions(self):
#==================#
# Start position #
#==================#
if self.size_ == 0:

self.startPosition_ = None
# If no last point has been set,
# use the current start position
if self.getLastPoint() is None:

self.startPosition_ = int(self.data[1])
elif self.getFuturePoint() is None:

self.startPosition_ = int(self.data[1])
else:

’’’ The last known value ’’’
self.startPosition_ = int(self.data[1])

#==================#
# End position #
#==================#
if self.size_ == 0:

self.endPosition_ = None
elif len(self.data) > 2:
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self.endPosition_ = int(self.data[2]) - 1

#=================================================#
# Other helpful functions, for debugging reasons #
#=================================================#

def __str__(self, *args, **kwargs):
return "\tlast: %s \t cr: %s \tn: %s " % ((None,None) if self

.getLastPoint() is None else self.getLastPoint(),self.
getCurrentPoint(),self.getFuturePoint())

A.1.2 MLMeasure

MLMeasure.py

import new
import inspect

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

from StringIO import StringIO

class MLMeasure(object):
’’’

A machine learning measure interface
facilitated extracting information
from a given track state (MLTrackState),
possibly adding one ore more transformations
(MLTransformation), when called.

Author: <fredrhaa> Fredrik Haaland
’’’
def __init__(self, undefined):

’’’
Initialize undefined value,
transformation and
meta data structure.

’’’
self.transformations = []
self.transf_metadata = {}
self.setUndefined( undefined )

def __call__(self,trackState,n):
’’’

Enable calling the feature directly,
applying both feature computation
and transformation.

Returns the undefined value if trackState is None
or n < 1, where MLTrack is not defined.

’’’
if trackState is None or n < 1:

return self.getUndefined()
else:

self.setMetaData(’len’, trackState.size())
self.setMetaData(’pos’, trackState.getCurrentPosition())
self.setMetaData(’end’, trackState.getCurrentEndPosition())
self.setMetaData(’start’, trackState.

getCurrentStartPosition())
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if trackState.isInsideElement():
self.setMetaData(’sit’, ’inner’)

else:
self.setMetaData(’sit’, ’outer’)

return self.transform( self.getValue( trackState, n ) )

def getValue(self,trackState,n):
’’’

Computes the feature value,
but does not transform the value.

May optionally set meta-data to be used to
transform the value on return using
setMetaData(key,value), where ’key’ is the
corresponding key as specified by
the MLTransformation API.

** To be overridden **
’’’
raise NotImplementedError()

def prepare(self):
’’’

Determine if any transformations are set,
if not, the optimize the measure for speed.

Subsequent calls would not do any harm.
’’’
if len(self.getTransformations()) == 0:

# The optimized transformation function
def transform(self,value):

return value

# Replace the old, with the optimized
self.transform = new.instancemethod(

transform, self, self.__class__ )

def transform(self, value):
’’’

The given <em>value</em> is ran
through a transformation pipeline
consisting of all the added transformations.

Returns the ’val’ key from <em>value</em>.
If any transformation layers are added,
these are used to transform the value,
otherwise the value is returned as-is.

[ CONTRACT ]

The value must be a dictionary valid
in regards to the MLTransformation API.

’’’
featureData = self.getMetaData()
featureData[’val’] = value
for transform in self.getTransformations():

# Only perform transformation if a
# *valid* situation is set
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if featureData.has_key(’sit’) and \
transform.isValidSituation( featureData.get(’sit’) ):
featureData = transform( featureData )

return featureData[’val’]

def setMetaData(self, key, value):
’’’

Adds meta data, to be used by transformations.
’’’
self.transf_metadata[ key ] = value

def getMetaData(self):
’’’

Returns the meta-data supposedly used
with transformations.

’’’
return self.transf_metadata

def addTransformation(self, transformation):
’’’

Add a <em>transformation</em> layer,
to transform the computed feature value.

The <em>transformation</em> must be an
instantiated sub-class of MLTransformation.

The layers are stacked in a
first-come-first-served manner.

’’’
assert isinstance( transformation, MLTransformation ), \

’The added transformation is not instantiated’
self.transformations.append( transformation )

def getTransformations(self):
’’’

Returns the list of added transformations.
’’’
return self.transformations

def getClassName(self):
’’’

Returns the class name.
’’’
return self.__class__.__name__

def getUndefined(self):
’’’

Returns the undefined value.
’’’
return self.undefined

def setUndefined(self, value):
’’’

Set the undefined value, used when a point
has a undefined value.

Also, make it available for the transformations.
’’’
self.undefined = value
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self.setMetaData(’undefined’, value)

def __repr__(self):
’’’

Returns the MLL representation of the feature.
’’’
handle = StringIO()
handle.write("\nFEATURE BEGIN # {} #\n".format(self.__class__.

__name__))
# Detect configurations
if len( self.getMetaData() ) > 0:

handle.write(" CONFIG BEGIN\n")
for key, value in self.getMetaData().items():

key = key.upper()
value = value
handle.write(" {} = {}\n".format(key,value))

# Possibly add transformations
if len( self.getTransformations() ) > 0:

handle.write(" TRANSFORMATIONS BEGIN")
for transformation in self.getTransformations():

for line in repr(transformation).split(’\n’):
handle.write(" {}\n".format(line))

handle.write(" TRANSFORMATIONS END\n")
# Add attributes as configuration parameters
if len( self.getMetaData() ) > 0:

handle.write(" CONFIG END\n")
# Add measurement code as MLL code
handle.write(" BODY BEGIN\n")
sourceCodeLines = inspect.getsourcelines( self.getValue )

[0][1:]
for line in sourceCodeLines:

if line.strip().startswith(’#’):
continue

# Swap macros and more
line = line.replace(’return’, ’OUTPUT’)
line = line.replace(’elif’, ’else if’)
line = line.replace(’self.getUndefined()’, ’UNDEFINED’)
line = line.replace(’trackState.getCurrentPosition()’, ’

POSITION’)
line = line.replace(’trackState.getCurrentValue()’, ’VALUE’

)
line = line.replace(’trackState’, ’STATE’)
line = line.replace(’.isAtStartPosition()’, ’.

IS_AT_START_POSITION’)
line = line.replace(’.isAtEndPosition()’, ’.

IS_AT_END_POSITION’)
line = line.replace(’.getCurrentStartPosition()’, ’.

START_POSITION’)
line = line.replace(’.getCurrentEndPosition()’, ’.

END_POSITION’)
line = line.replace(’.getFuturePoint()[0]’, ’.

FUTURE_POSITION’)
line = line.replace(’.getFuturePoint()[1]’, ’.FUTURE_VALUE’

)
line = line.replace(’.getFuturePoint()’, ’.FUTURE_POINT’)
line = line.replace(’.getLastPoint()[0]’, ’.LAST_POSITION’)
line = line.replace(’.getLastPoint()[1]’, ’.LAST_VALUE’)
line = line.replace(’.getLastPoint()’, ’.LAST_POINT’)
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line = line.replace(’.isInsideSegment()’, ’.
IS_INSIDE_SEGMENT’)

line = line.replace(’.isOutsideSegment()’, ’.
IS_OUTSIDE_SEGMENT’)

line = line.replace(’.isSegment()’, ’.IS_SEGMENT’)
line = line.replace(’.isPoint()’, ’.IS_POINT’)
line = line.replace(’.getOffset()’, ’.OFFSET’)
line = line.replace(’.size()’, ’.SIZE’)
line = line.replace(’float(n)’, ’SIZE’)
line = line.upper()
# Trim off possible post line comments
indexOfComment = -1
lineParts = line.split(’ ’)
for i, part in enumerate(lineParts):

if part.lstrip().startswith(’#’):
indexOfComment = i

if indexOfComment >= 0:
line = "{}\n".format(’ ’.join( lineParts[0:

indexOfComment] ))
# Write MLL code line
handle.write("{}".format( line ))

handle.write(" BODY END\n")
handle.write("FEATURE END")
handle.seek(0)
content = handle.read()
handle.close()
return content

A.1.3 MLFeature

MLFeature.py

from sys import maxint
from quick.ml.api.feature.MLMeasure import MLMeasure

class MLFeature(MLMeasure):
’’’

A machine learning feature
extracts information from given track states.

Is also capable of transforming the computed
feature value using transformation layers
implementing the MLTransformation API.

Author: <fredrhaa> Fredrik Haaland
’’’
def __init__(self, undefined=maxint):

’’’
Initializes parent with maximum integer
as the undefined value as default,
but may be overridden.

’’’
MLMeasure.__init__(self, undefined)

A.1.4 MLResponse

MLResponse.py
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from sys import maxint
from quick.ml.api.feature.MLMeasure import MLMeasure

class MLResponse(MLMeasure):
’’’

A machine learning response defines labels (classes)
based on the information from given track states.

Is also capable of transforming the labels
using transformation layers implementing
the MLTransformation API.

Author: <fredrhaa> Fredrik Haaland
’’’
def __init__(self, undefined=maxint):

’’’
Initializes parent with maximum integer
as the undefined value as default,
but may be overridden.

’’’
MLMeasure.__init__(self, undefined)

A.1.5 MLTransformation

MLTransformation.py

import inspect

from sys import maxint
from StringIO import StringIO

class MLTransformation(object):
’’’

A machine learning feature transformation interface.

Author: <fredrhaa> Fredrik Haaland
’’’
def __init__(self, situation=’all’, undefined=maxint):

’’’
Initialize the <em>situation</em>
the transformation do apply.

Allowed situations are:

- all (Default, meaning rest of the list)
- inner
- outer

These reflect the ones returned in getSituations().
’’’
self.setSituation( situation )
self.setUndefined( undefined )

def __call__(self, featureData):
’’’

Enable calling the filter directly,
as a synonym for getTransformedValue(),
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for readability.
’’’
return self.getTransformedValue( featureData )

def getTransformedValue(self, featureData):
’’’

To be overridden by the inherited class.

featureData is a dictionary, and has some reserved keys:

- featureData[’val’] : Contains the feature value
- featureData[’pos’] : Contains the current position
- featureData[’len’] : Contains the element’s length (

size)
- featureData[’start’] : Contains the element’s start

position
- featureData[’end’] : Contains the element’s end

position
- featureData[’sit’] : Contains the element’s situation

Other keys may be used freely, if building own
MLTransformation’s.

** To be overridden **
’’’
return featureData

def isValidSituation(self,situation):
’’’

Returns true if the situation is valid
according to this configuration,
otherwise False.

’’’
return self.getSituation() in [ ’all’, situation ]

def getSituations(self):
’’’

Returns the list of allowed situations.
’’’
return [’all’,’inner’,’outer’]

def getSituation(self):
’’’

Returns the currently set situation.
’’’
return self.situation

def setSituation(self, situation):
’’’

Set the <em>situation</em> where

*this* (self) transformation is applied.
’’’
self.situation = situation

def setUndefined(self, undefined):
self.undefined = undefined

def getUndefined(self):
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return self.undefined

def __repr__(self):
’’’

Returns the MLL representation of the feature.
’’’
handle = StringIO()
handle.write("\nTRANSFORMATION BEGIN\n")

# Detect configurations
if len( self.__dict__ ) > 0:

handle.write(" CONFIG BEGIN\n")
for key, value in self.__dict__.items():

key = key.upper()
value = value
if type( value ).__name__ == ’str’:

handle.write(" {} = ’{}’\n".format(key,value
.upper()))

else:
handle.write(" {} = {}\n".format(key,value))

# Detect configurations
if len( self.__dict__ ) > 0:

handle.write(" CONFIG END\n")

handle.write(" BODY BEGIN\n")
sourceCodeLines = inspect.getsourcelines( self.

getTransformedValue )[0][1:]
for line in sourceCodeLines:

if line.strip().startswith(’#’):
continue

# Swap macros and more
line = line.replace(’return featureData’, ’OUTPUT VALUE’)
line = line.replace(’elif’, ’else if’)
line = line.replace(’self.getUndefined()’, ’UNDEFINED’)
line = line.replace("featureData[’val’]", ’VALUE’)
line = line.replace("featureData[’pos’]", ’POSITION’)
line = line.replace("featureData[’len’]", ’LENGTH’)
line = line.replace("featureData[’sit’]", ’SITUATION’)
line = line.replace("featureData[’start’]", ’START’)
line = line.replace("featureData[’end’]", ’END’)
line = line.replace(’featureData.has_key’, ’HAS_CONFIG’)
line = line.replace(’featureData.get’, ’GET_CONFIG’)
line = line.upper()
# Trim off possible post line comments
indexOfComment = -1
lineParts = line.split(’ ’)
for i, part in enumerate(lineParts):

if part.lstrip().startswith(’#’):
indexOfComment = i

if indexOfComment >= 0:
line = "{}\n".format(’ ’.join( lineParts[0:

indexOfComment] ))
# Write MLL code line
handle.write("{}".format( line ))

handle.write(" BODY END\n")
handle.write("TRANSFORMATION END")
handle.seek(0)
content = handle.read()
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handle.close()
return content

A.1.6 MLAlgorithm
Available at http://TODO.soon

A.2 Implementations
A.2.1 Algorithms
MLAnomalyDetection

MLAnomalyDetection.py

import numpy
from math import pi,sqrt

from getpass import getuser
if getuser() not in [’haaland’,’fredrik’]:

from quick.util.StaticFile import StaticFile
else:

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab

from quick.ml.implementation.factory.MachineLearningFactory import
MachineLearningFactory

from quick.ml.api.algorithm.MLAlgorithm import MLAlgorithm

class MLAnomalyDetection(MLAlgorithm):
’’’

Binary Semi-supervised Learning Algorithm.
’’’
def __init__(self):

MLAlgorithm.__init__(self)

# Override
def arangeTest(self, Xtest, hasLabels=True):

’’’
Using default built-in method.
@see: arangeTestDefault()

’’’
return self.arangeTestDefault( Xtest, hasLabels )

# Override
def arangeAll(self, Xtrain, cvfactor=0.0):

’’’
Copying all class=1 into <em>Xcv</em>,
leaving all class=0 in <em>Xtrain</em>.

The cross validation factor (cvfactor) is not used.
’’’
Xtrain_ = MachineLearningFactory.getSamples( Xtrain,

lastColumnClass = 0 )
Xcv_ = MachineLearningFactory.removeSamples( Xtrain,

lastColumnClass = 0 )
Xtrain, Ytrain = MachineLearningFactory.splitXandY( Xtrain_ )
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Xcv, Ycv = MachineLearningFactory.splitXandY( Xcv_ )
self.saveSamplesToDiskAndAppendToResults( Xtrain, Xcv )
return Xtrain, Ytrain, Xcv, Ycv

def normalize(self, X):
’’’

Performs feature scaling to make the
minimization algorithm converge
more easily.

Normalizes only contents, and not classes.
@see: MachineLearningAlgorithmFactory

’’’
return MachineLearningFactory.normalize( X )

# Override
def learn(self, Xtrain, Ytrain, Xcv, Ycv, minimum=1e-05, lmbda=0,

learningCurveIntervals=None, thresholdLevel=1000.0, **
kwArgs):

’’’
Not using <em>Ytrain</em> for learning,
only for cross validating in order
to find the threshold (Epsilon) .

Not taking <em>minimum</em> nor
<em>lambda</em> into account.

’’’
# Compute mean
mu = numpy.mean( Xtrain, 0 )

# Compute variance, ( 0 degrees of freedom )
# and replace zero with close to zero value
# to work-around divide by zero
sigma2 = numpy.var( Xtrain, 0, ddof=0 )
sigma2 = numpy.add( sigma2, (sigma2 == 0) * 1e-10 )

# Compute values for cross-validation set to detect epsilon
vProducts = self.getProducts( Xcv, mu, sigma2 )

# Find a proper threshold ( detail level of 1/1000 )
stepSize = (numpy.max(vProducts) - numpy.min(vProducts)) /

thresholdLevel
best_epsilon = 0
best_fscore = 0

# Iterate over epsilons
epsilon = stepSize
while epsilon < numpy.max( vProducts ):

# Make prediction
prediction = numpy.matrix( (vProducts < epsilon) * 1.0 ).T

# Compute precision and recall
P, R, A, S = MachineLearningFactory.computeMetrics( Ycv,

prediction, None )

# Compute F-score
fscore = MachineLearningFactory.getFscore( P, R )
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# Store if better
if fscore > best_fscore:

best_fscore = fscore
best_epsilon = epsilon

# Increment epsilon to
epsilon = epsilon + stepSize

# Mandatory labels
classes = [’0’,’1’]
self.addLearningResult( ’Classes’, classes )
self.addLearningResult( ’Classifier’, self.saveToDisk( numpy.

vstack((mu,sigma2)) ) )
self.addLearningResult( ’Extra parameters’, {

’Epsilon’ : best_epsilon,
’Def. Class 0’ : ’Not anomaly’,
’Def. Class 1’ : ’Anomaly’

})

# Possibly generate learning curve ( but has no test-score, so
only one graph )

if learningCurveIntervals is not None and Ytrain is not None
and Xcv is not None and Ycv is not None:
intervals = min( learningCurveIntervals,

MachineLearningFactory.getSampleSize( Xtrain ) )
# Adjusted, manual KFold ( taken from scikit-learn.org )
X_folds = numpy.array_split( Xtrain, intervals )
Y_folds = numpy.array_split( Ytrain, intervals )
X_train = None
Y_train = None
for k in range( intervals ):

# Augment (Concatenate) data-set along the way
if X_train is None:

X_train = X_folds[ k ]
Y_train = Y_folds[ k ]

else:
X_train = numpy.vstack( ( X_train, X_folds[ k ] ) )
Y_train = numpy.vstack( ( Y_train, Y_folds[ k ] ) )

# Call upon self ( but not recursively ) to apply
# both learning and testing in order to find accuracy
trainingRes = self.learn( X_train, Y_train, Xcv, Ycv,

minimum, lmbda,
learningCurveIntervals=None,

thresholdLevel=100.0 )
extra = trainingRes.get(’Extra parameters’).copy()
extra[’Skip graph generation’] = True
classifier = MachineLearningFactory.loadFromDisk(

trainingRes.get(’Classifier’) )
trainingRes = self.test( X_train, Y_train, classifier,

classes, extra )
crossValRes = self.test( Xcv, Ycv, classifier, classes,

extra )
self.addLearningCurveIntervalStep(

(
( 1.0 - float( trainingRes.get(’Accuracy’) ) ),
( 1.0 - float( crossValRes.get(’Accuracy’) ) )

)
)
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return self.getLearningResults()

# Override
def test(self, Xtest, Ytest, classifier, classes, extra={}, graphs=

False, **kwArgs):
’’’

Predict the <em>classes</em> of <em>Xtest</em>
measuring performance with <em>Ytest</em>
using the <em>classifier</em>, and possibly some
<em>extra</em> dictionary parameters.

If threshold is 0, all possibilities are 100%.
’’’
# Re-construct classifier
# Hypothesis is a single matrix row (vector)
# where first half is mu and second half is sigma2.
classifier = self.loadClassifier( classifier )
mu = classifier[0]
sigma2 = classifier[1]

# Make predictions
threshold = float( extra.get(’Epsilon’) )
Xpredict = self.getProducts( Xtest, mu, sigma2 )
Ypredict = numpy.matrix( numpy.asarray( ( Xpredict < threshold

) * 1.0 ) ).T

# Make probability container by ’clamping’ the values
# at threshold or higher as max values ( 100% probability )
Yprobabilities = numpy.add(

numpy.asarray( Xpredict >= threshold ) * threshold,
numpy.multiply( Ypredict, Xpredict )

)

# Then resize the area from reaching from smallest value to
threshold [0,1]

# But if threshold is 0, all values are regarded as 100% likely
to be anomalies

if threshold == 0:
Yprobabilities = numpy.ones( numpy.shape( Yprobabilities )

)
else:

Yprobabilities = numpy.divide( Yprobabilities, threshold )

# Create inverted probabilities for second anomaly class
Yprobabilities = numpy.hstack( (Yprobabilities, 1-

Yprobabilities ) )

# Add metrics and prediction tracks
self.addBasicTestMetricResults( Ytest, Ypredict, Yprobabilities

, classes, threshold )

# With regards to this being used for generating learning curve
,

# the other graphs are not needed to be generated
if extra.get(’Skip graph generation’) is None:

# Calculate only the values of the classes with a predicted
hit

125



onlyHits = numpy.multiply( Xpredict, (( Ypredict * 1 ) ==
Ytest ) )

onlyHits = MachineLearningFactory.removeZeroSamples(
onlyHits )

onlyHits = numpy.prod( onlyHits, axis=1 ) # Verify
onlyHits = [ float(onlyHits[i]) for i in xrange( numpy.size

( onlyHits, 0 ) ) ]
allValues = [ float(Xpredict[i]) for i in xrange( numpy.

size( Xpredict, 0 ) ) ]
thresholdLine = [ threshold for i in range( len(allValues)

) ]
predictedClasses = [ int(Ypredict[i]) for i in xrange( len(

allValues) ) ]
if Ytest is not None:

originalClasses = [ int(Ytest[i]) for i in xrange( len(
allValues) ) ]

self.addPredictionTracks( allValues, numpy.matrix(
predictedClasses), Yprobabilities, classes, extra )

if graphs and Ytest is not None:
# Visualize
self.addHistogramGeneralValuesRPlot( allValues )
self.addHistogramHitsOnlyValuesRPLot( onlyHits )
self.addSpanGraphRPlot( thresholdLine, allValues )
self.addInspectionGraphRPLot( thresholdLine, allValues,

predictedClasses, originalClasses )
self.addProbabilityGraphForClasses(

classes,
numpy.hstack( ( Yprobabilities, Yprobabilities ) ),
threshold = 1.0

)

# Count outlier’s
self.addTestResult( ’Anomalies detected’, numpy.sum( Ypredict )

)

return self.getTestResults()

#==========================================#
# HELPER METHODS #
#==========================================#

def getProducts(self, X, mu, sigma2 ):
’’’

Returns computes product of Gaussian curve
predictions applied along feature axis.

’’’
# Compute once for speed-up
sigma = numpy.sqrt( sigma2 )
# Vector-iced version
a = numpy.divide( numpy.exp( -0.5 * numpy.power( numpy.divide(

numpy.subtract(X, mu), sigma ), 2 ) ), sigma * sqrt( 2

* pi ) )
# In case any of the predictions are zero
# they will be replaced with 1.0 which
# will not affect the predictions (ignore it)
# If not, all predictions would be 0, which gives no meaning.
a = a + ( a == 0 )
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return numpy.prod( a, 1 )

#==========================================#
# VISUALIZATION #
#==========================================#

def vizualize(self,*args):
’’’

Visualize the model.
’’’
if getuser() in [’haaland’,’fredrik’]:

# Fetch arguments
mu = args[0]
sigma2 = args[1]
XYtest = args[2]
epsilon = args[3]

# Fetch other useful variables
yvalue = 0.5
normalIcon = ’o’
anomalIcon = ’x’
graphCount = MachineLearningFactory.getFeatureSize( XYtest

) - 1
Xnormal = MachineLearningFactory.getSamples( XYtest,

lastColumnClass = 0 )
Xanomal = MachineLearningFactory.getSamples( XYtest,

lastColumnClass = 1 )
sampleCountNormal = MachineLearningFactory.getSampleSize(

Xnormal )
sampleCountAnomal = MachineLearningFactory.getSampleSize(

Xanomal )

# Create accessible figure
fig = plt.figure()

a = [0,5,7]

if graphCount == -1: # Special case, TODO : Build
Multivariate graph
pass

else: # Multi dimensional

normalProducts = [ 1.0 for i in range(sampleCountNormal
) ]

anomalProducts = [ 1.0 for i in range(sampleCountAnomal
) ]

for indx in xrange( graphCount ):
# Normal curve plot
ax = fig.add_subplot( graphCount, 2, 2+(2*indx)-1 )
mean = mu[ 0, indx ]
sigma = sqrt( sigma2[ 0, indx ] )
x = numpy.linspace(mean-(sigma*3.5),mean+(sigma

*3.5),150)
ax.plot( x, mlab.normpdf(x,mean,sigma), linewidth=1

)
ax.set_ylabel( "[%d]" % (a[indx]), fontsize=10 )
yMax = 0
yMin = 0
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for i in xrange( sampleCountNormal ):
xval = float(Xnormal[i,indx])
yval = mlab.normpdf(xval,mean,sigma)
if yval > 0:

normalProducts[i] = normalProducts[i] *
yval

if yval < yMin:
yMin = yval

if yval > yMax:
yMax = yval

ax.plot( xval, yval, color=’white’, marker=
normalIcon )

for i in xrange( sampleCountAnomal ):
xval = float(Xanomal[i,indx])
yval = mlab.normpdf(xval,mean,sigma)
if yval > 0:

anomalProducts[i] = anomalProducts[i] *
yval

if yval < yMin:
yMin = yval

if yval > yMax:
yMax = yval

ax.plot( xval, yval, color=’black’, marker=
anomalIcon )

ax.set_xlim([mean-(sigma*3.5),mean+(sigma*3.5)])
ax.set_ylim([yMin,max(yMax*1.1, mlab.normpdf(mean,

mean,sigma))])
ax.set_yticks([])
ax.set_xticks([])
# Anomaly plot
ax = fig.add_subplot( graphCount, 2, 2+(2*indx) )
for i in xrange(len(normalProducts)):

ax.plot( normalProducts[i], yvalue, color=’
white’, marker=normalIcon )

for i in xrange(len(anomalProducts)):
ax.plot( anomalProducts[i], yvalue, color=’

black’, marker=anomalIcon )
# Anomaly boundary
ax.plot( epsilon, yvalue, color=’black’, marker=’|’

)
#ax.set_ylabel( "[%d]" % (indx), fontsize=10 )
ax.set_ylabel( "[%d]" % (a[indx]), fontsize=10 )
#ax.set_xlim([ 1, (epsilon*(1+graphCount-indx)) ])
ax.set_ylim([0,1])
ax.set_yticks([])
ax.set_xticks([])

plt.show()
else:

# TODO : Make rpy plot
pass

MLArtificialNeuralNetwork

MLArtificialNeuralNetwork.py

import numpy

from random import randint
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from getpass import getuser
if getuser() not in [’haaland’,’fredrik’]:

from quick.util.StaticFile import StaticFile
else:

import matplotlib.pyplot as plt
from matplotlib.pyplot import cm

from scipy.optimize import fmin_cg
from quick.ml.implementation.factory.MachineLearningFactory import

MachineLearningFactory
from quick.ml.api.algorithm.MLAlgorithm import MLAlgorithm

class MLArtificialNeuralNetwork(MLAlgorithm):
’’’

Supervised (multi-class) learning algorithm.

It is used 1 hidden layer, having twice the size
as the feature size by default.

’’’
def __init__(self):

MLAlgorithm.__init__(self)
# Arguments used in inner-loop
# for generating learning curve
self.setLearningCurveArguments( None )
self.setDoublePrecision( 3 )

# Override
def arangeTest(self, Xtest, hasLabels=True):

’’’
Returns the <em>Xtest</em> and its labels <em>Ytest</em>.

’’’
return self.arangeTestDefault( Xtest, hasLabels )

# Override
def arangeAll(self, Xtrain, cvfactor=0.2):

’’’
Using default built-in method for
supervised learning algorithms.
@see: arangeAllMultiClassSupervised()

’’’
return self.arangeAllMultiClassSupervised( Xtrain, cvfactor )

# Override
def learn(self, Xtrain, Ytrain, Xcv, Ycv, minimum=1e-05, lmbda=0,

learningCurveIntervals=None, layerFactor=2.0, **kwArgs ):
’’’

Will in later implementation make use of
<em>learningCurveIntervals</em>.

’’’
# Parse optional argument(s)
if kwArgs.has_key(’maxiter’):

maxiter = kwArgs.get(’maxiter’)
else:

maxiter = 200

labels = MachineLearningFactory.countDistinctClasses( Ytrain,
True ).keys()

num_labels = len( labels )
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input_layer_size = MachineLearningFactory.getFeatureSize(
Xtrain )

hidden_layer_size = int( MachineLearningFactory.getFeatureSize(
Xtrain ) * layerFactor )

# Replace classes with numerical identifiers
for i in range( MachineLearningFactory.getSampleSize( Ytrain )

):
Ytrain[i] = labels.index( Ytrain[i] )

initial_Theta1 = MachineLearningFactory.randInitializeWeights(
hidden_layer_size,
input_layer_size,
includeThetaZero=True

)

initial_Theta2 = MachineLearningFactory.randInitializeWeights(
num_labels,
hidden_layer_size,
includeThetaZero=True

)

# Unroll parameters
initial_theta = numpy.hstack(

( numpy.ravel( initial_Theta1 ), numpy.ravel(
initial_Theta2 ) )

)

# Possibly generate learning curve
if learningCurveIntervals is not None and Xcv is not None and

Ycv is not None:
self.setLearningCurveArguments(

[ Xtrain, Ytrain, Xcv, Ycv, input_layer_size,
hidden_layer_size,

num_labels, labels, learningCurveIntervals ]
)

# Initialize minimization
xopt, fopt, func_calls, grad_calls, warnflag, allvec = fmin_cg(

f = self._cost,
x0 = initial_theta,
fprime = self._grad,
args = ( Xtrain, Ytrain, lmbda, input_layer_size,

hidden_layer_size,
num_labels, learningCurveIntervals, Xcv, Ycv ),

callback = self._curve,
maxiter = maxiter,
full_output = True,
disp = False,
retall = True

)

# Mandatory labels
self.addLearningResult( ’Classes’, labels )
self.addLearningResult( ’Classifier’, self.saveToDisk( xopt ) )

# Store extra parameters for making predictions in test()
self.addLearningResult( ’Extra parameters’, {

’Input layer size’: input_layer_size,
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’Hidden layer size’: hidden_layer_size,
’Label count’: num_labels

})

# Store learning results
self.addLearningResult( ’Minimization function calls’,

func_calls )
self.addLearningResult( ’Minimization gradient calls’,

grad_calls )
self.addLearningResult( ’Minimization calls’, func_calls )
self.addLearningResult( ’Minimized cost’, fopt )
if warnflag == 0:

self.addLearningResult( ’Learning status’, ’Successfully
converged’ )

elif warnflag == 1:
self.addLearningResult( ’Learning status’, ’Too many

function evaluations or too many iterations’ )
else:

self.addLearningResult( ’Learning status’, ’Stopped
unexpectedly’ )

return self.getLearningResults()

# Override
def test(self, Xtest, Ytest, classifier, classes, extra={}, graphs=

False, **kwArgs):
’’’

Predict the <em>classes</em> of <em>Xtest</em>
measuring performance with <em>Ytest</em>
using the <em>classifier</em>, and possibly some
<em>extra</em> dictionary parameters.

’’’
# Re-construct classifier
hypothesis = self.loadClassifier( classifier )
input_layer_size = extra.get(’Input layer size’)
hidden_layer_size = extra.get(’Hidden layer size’)
num_labels = extra.get(’Label count’)

# Make sure classes are of correct type (floats)
for i in range( len( classes ) ):

classes[ i ] = float( classes[ i ] )

# Unroll parameters
Theta1 = numpy.reshape(

hypothesis[0:((input_layer_size+1) * (hidden_layer_size))],
((input_layer_size+1),(hidden_layer_size))

).T

Theta2 = numpy.reshape(
hypothesis[((input_layer_size+1) * (hidden_layer_size)):],
( (num_labels), (hidden_layer_size+1) )

)

# Activation function
sigmoid = MachineLearningFactory.sigmoid

# Useful value
m = numpy.size( Xtest, 0)
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h1 = sigmoid( numpy.matrix( numpy.hstack( (numpy.ones( (m, 1) )
, Xtest) ), copy=False ) * Theta1.T )

h2 = sigmoid( numpy.matrix( numpy.hstack( (numpy.ones( (m, 1) )
, h1) ), copy=False ) * Theta2.T )

# Adjust prediction values to probabilities
Yprobabilities = numpy.copy( h2 )
for i in range( MachineLearningFactory.getSampleSize( h2 ) ):

Yprobabilities[i,:] = numpy.divide( h2[i,:], numpy.sum( h2[
i,:] ) )

# Make predictions
Ypredict = numpy.matrix( numpy.argmax( Yprobabilities, axis=1 )

).T

# .. and map position back to its *class* value identifier
Yprobability_best = list()
for i in range( MachineLearningFactory.getSampleSize( Ypredict

) ):
Ypredict[i] = classes[ Ypredict[i] ]
Yprobability_best.append(

# Fetch the element in the array of highest value and
divide it by total sum

float( Yprobabilities[ i, int( numpy.argmax(
Yprobabilities[i] ) ) ] )

)

# Add metrics and prediction tracks
if Ytest is not None:

# Calculate only the values of the classes with a predicted
hit

onlyHits = numpy.argmax( numpy.multiply( Yprobabilities, (
Ypredict.T == Ytest )[:,0] ), axis=1 )

onlyHits = MachineLearningFactory.removeZeroSamples(
onlyHits )

onlyHits = [ float(onlyHits[i]) for i in range( numpy.size(
onlyHits, 0 ) ) ]

YroundedOriginal = numpy.around( Ytest*100, self.
getDoublePrecision() )

YroundedPredicted = numpy.around( numpy.matrix( numpy.
asarray( Ypredict ) *100 ), self.getDoublePrecision() )

self.addBasicTestMetricResults(
YroundedOriginal,
YroundedPredicted,
Yprobabilities,
classes,
threshold = None

)

# Add metrics and prediction tracks
self.addPredictionTracks(

Yprobability_best,
Ypredict.ravel().tolist()[0],
Yprobabilities,
classes,
extra

)
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# With regards to this being used for generating learning curve
,

# the other graphs are not needed to be generated
if extra.get(’Skip graph generation’) is None and graphs:

# self.addProbabilityGraphForClasses( [ int(label) for label
in classes ], Yprobabilities )

# self.addHistogramHitsOnlyValuesRPLot( onlyHits )
# self.addHistogramGeneralValuesRPlot(
# [ float(Ypredict[i]) for i in range( numpy.size(

Ypredict, 0 ) ) ]
# )

# Visualize
self.vizualize( Xtest, len(classes), h1, h2 )

return self.getTestResults()

#==========================================#
# HELPER METHODS #
#==========================================#

def getLearningCurveArguments(self):
return self.learningCurveArguments

def setLearningCurveArguments(self, args):
self.learningCurveArguments = args

def _cost(self, theta, *args):
self._compute( theta, *args )
return self.cost

def _grad(self, theta, *args):
# Normal grad
self._compute( theta, *args )
# Gradient check
#epsilon = 0.001
#self._compute( numpy.subtract(theta, epsilon), *args )
#grad_s = self.grad
#self._compute( numpy.add(theta, epsilon), *args )
#grad_a = self.grad
#print "f() = ", numpy.sum( numpy.subtract( grad_a, grad_s ).

ravel() ) / 2*epsilon
return self.grad

def _curve(self, theta):
’’’

A callback for computing learning curve,
inside minimization algorithm.

’’’
args = self.getLearningCurveArguments()
if args is not None:

# While not knowing total amount of calls
# the points are added by chance, which by the
# law of large numbers should be OK
intervals = args[8]
if randint(0,intervals) == 0:

Xtrain = args[0]
Ytrain = args[1]
Xcv = args[2]
Ycv = args[3]
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extra = {
’Input layer size’: args[4],
’Hidden layer size’: args[5],
’Label count’: args[6],
’Labels’: args[7],
’Skip graph generation’: True,
# Has to be randomly changed in order for metrics

to be re-calculated
’Epsilon’ : 1.0 / float( randint(0,1000000) ),
’Hypothesis’ : theta

}
trainingRes = self.test( Xtrain, Ytrain, theta, args

[7], extra=extra )
validationRes = self.test( Xcv, Ycv, theta, args[7],

extra=extra )
self.addLearningCurveIntervalStep(\

(
( 1.0 - float( trainingRes[’Accuracy’] )),
( 1.0 - float( validationRes[’Accuracy’] ))

)
)

def _compute(self, theta, *args):

Xtrain = args[0]
Ytrain = args[1]
lmbda = args[2]
input_layer_size = args[3]
hidden_layer_size = args[4]
num_labels = args[5]

# Unroll parameters
Theta1 = numpy.reshape(

theta[0:((input_layer_size+1) * (hidden_layer_size))],
((input_layer_size+1),(hidden_layer_size))

).T

Theta2 = numpy.reshape(
theta[((input_layer_size+1) * (hidden_layer_size)):],
( (num_labels), (hidden_layer_size+1) )

)

# Setup some useful variables
m = MachineLearningFactory.getSampleSize( Xtrain )

#% You need to return the following variables correctly
Theta1_grad = numpy.zeros( ( numpy.shape( Theta1 ) ) )
Theta2_grad = numpy.zeros( ( numpy.shape( Theta2 ) ) )

# Activation function
sigmoid = MachineLearningFactory.sigmoid
sigmoidGradient = MachineLearningFactory.sigmoidGradient

# Cost calculation
J = 0
m1 = numpy.matrix(’1’)

for i in range( m ):
# ==== Feed-forward ==== #
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A1 = numpy.matrix( numpy.hstack( ( m1, Xtrain[i,:]) ), copy
=False )

Z2 = Theta1 * A1.T
A2 = sigmoid( Z2 ).T
Z3 = Theta2 * numpy.matrix( numpy.hstack( ( numpy.ones( (

MachineLearningFactory.getSampleSize( A2 ), 1 ) ), A2 )
), copy=False ).T

A3 = sigmoid( Z3 )
# K class adjustments
z = numpy.zeros( ( 1, num_labels ) )
z[ 0, Ytrain[i,0] ] = 1
# Cost calculation
try:

# Divide by zero exception has occurred in numpy.log or
numpy.subtract

J = J + numpy.sum( numpy.subtract( ((-z*numpy.log(A3)))
, ((1-z)*numpy.log(1-A3))))

except FloatingPointError, e:
self.addTestResult("Error while calculating cost", e )

# ==== Backpropagation ==== # (gradient finding / error
detection)

D3 = A3 - numpy.matrix( z ).T
D2 = numpy.multiply( Theta2.transpose()[1:,:] * D3,

sigmoidGradient( Z2 ) )
Theta2_grad = Theta2_grad + ( D3 * numpy.matrix( numpy.

hstack( ( m1, A2 ) ), copy=False ) )
Theta1_grad = Theta1_grad + ( D2 * A1 )

# Last cost step, divide by sample size
Theta1_grad = numpy.divide( Theta1_grad, float(m) )
Theta2_grad = numpy.divide( Theta2_grad, float(m) )
J = J / float(m)

if lmbda <= 0:
self.cost = J

else:
Theta1_grad[:,1:] = Theta1_grad[:,1:] + numpy.multiply(

Theta1[:,1:] , lmbda/float(m) )
Theta2_grad[:,1:] = Theta2_grad[:,1:] + numpy.multiply(

Theta2[:,1:] , lmbda/float(m) )
R = numpy.sum( numpy.power( Theta1[1:,:], 2 ) )
R = R + numpy.sum( numpy.power( Theta2[1:,:], 2 ) )
self.cost = J + lmbda/(2*m) * R

# Unroll parameters
self.grad = numpy.hstack(

( numpy.ravel( Theta1_grad ), numpy.ravel( Theta2_grad ) )
)

#==========================================#
# VISUALIZATION #
#==========================================#

def vizualize(self,*args):
’’’

Visualize the model.
’’’
if getuser() in [’haaland’,’fredrik’]:
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# Fetch arguments
Xtest = args[0]
classCount = args[1]
hiddenLayer = args[2]
predictions = args[3]

# Other useful variables
colormap = cm.get_cmap(’Greys’)
intpol = [None,’nearest’][0]
featureCount = MachineLearningFactory.getFeatureSize( Xtest

)
sampleCount = MachineLearningFactory.getSampleSize( Xtest

)
totalSize = sampleCount + featureCount + classCount + 3
maxInputFeatureValue = float( numpy.max( Xtest.ravel() ) )
minInputFeatureValue = float( numpy.min( Xtest.ravel() ) )

# Input layer visualization
for indx in range( sampleCount ):

ax = plt.subplot2grid((1,totalSize), (0, indx))
ax.imshow(

Xtest[indx,:].T,
vmin=minInputFeatureValue,
vmax=maxInputFeatureValue,
cmap=colormap,
interpolation=intpol

)
ax.set_title( indx, fontsize=10 )
ax.set_xticks([])
if indx == 0:

ax.set_yticks( [ i for i in range(featureCount) ] )
else:

ax.set_yticks([])

# Hidden layer visualization
layerAx = plt.subplot2grid((1,totalSize),(0,sampleCount+1),

colspan=featureCount)
layerAx.imshow( hiddenLayer.T, cmap=colormap, interpolation

=intpol )
layerAx.set_yticks([])
layerAx.set_xticks([])
layerAx.set_title("Hidden Layer", fontsize=10 )

# Result layer visualization
for indx in range(classCount):

resultAx = plt.subplot2grid((1,totalSize), (0,
sampleCount+featureCount+indx+2) )

resultAx.imshow( predictions[:,indx], vmin=0.0, vmax
=1.0, cmap=colormap, interpolation=intpol )

resultAx.set_xticks([])
resultAx.set_title("C%d" % indx, fontsize=10)
if indx == 0:

resultAx.set_yticks([ i for i in range(sampleCount)
])

else:
resultAx.set_yticks([])

# Display!
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plt.show()

MLDecisionTree

MLDecisionTree.py

import time
import numpy

from getpass import getuser

from sklearn.tree import export_graphviz
from sklearn.tree import ExtraTreeClassifier
from quick.ml.api.algorithm.MLAlgorithm import MLAlgorithm
from quick.ml.implementation.factory.MachineLearningFactory import

MachineLearningFactory
from quick.ml.implementation.structure.MLPredicter import MLPredicter

class MLDecisionTree(MLAlgorithm):
’’’

Supervised Multiple Class Learning Algorithm.
’’’

def __init__(self):
MLAlgorithm.__init__(self)
self.setDoublePrecision( 3 )

# Override
def arangeTest(self, Xtest, hasLabels=True):

’’’
Using default built-in method.
@see: arangeTestDefault()

’’’
return self.arangeTestDefault( Xtest, hasLabels )

# Override
def arangeAll(self, Xtrain, cvfactor=0.2):

’’’
If possible, all sets are returned according to the
built-in method for supervised learning algorithms.
@see: arangeAllMultiClassSupervised()

If not enough labels in Xcv, then it will be merged
with Xtrain and returned as None ( both Xcv and Ycv ).

’’’
Xtrain, Ytrain, Xcv, Ycv = self.arangeAllMultiClassSupervised(

Xtrain, cvfactor )
num_labels_train = len( MachineLearningFactory.

countDistinctClasses( Ytrain, True ).keys() )
num_labels_cv = len( MachineLearningFactory.

countDistinctClasses( Ycv, True ).keys() )
if num_labels_train == num_labels_cv:

return Xtrain, Ytrain, Xcv, Ycv
else:

# Concatenate Xcv with Xtrain, return None as cross-
validation

Xtrain = numpy.vstack( (Xtrain,Xcv) )
Ytrain = numpy.vstack( (Ytrain,Ycv) )
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return Xtrain, Ytrain, None, None

# Override
def learn(self, Xtrain, Ytrain, Xcv, Ycv,

minimum=1e-05, lmbda=0, learningCurveIntervals=None, **kwArgs):
’’’

Supervised Learning Algorithm.

Not using <em>Ytrain</em> for learning,
only for cross validating in order
to find the threshold (Epsilon) .

Not taking <em>minimum</em>, <em>lambda</em>
nor <em>maxiter</em> into account.

Will in later implementation make use of
<em>learningCurveIntervals</em>.

’’’
# Parse optional argument(s)
if kwArgs.has_key(’outputDotGraph’):

outputDotGraph = kwArgs.get(’outputDotGraph’)
else:

outputDotGraph = False
outputDotGraph = True

# Detect classes
classValues = MachineLearningFactory.countDistinctClasses(

Ytrain, returnAggregation=True ).keys()

# Map matrices into lists in order to
# work together with the sklearn API.
Xlist = Xtrain.tolist()
Ytrain, encoder = MachineLearningFactory.

getLabelsAsIntegerRepresentation( Ytrain )
Ylist = Ytrain.ravel().tolist()

# Learning step
clf = ExtraTreeClassifier(

criterion=’entropy’,
compute_importances = True

)
clf.fit( Xlist, Ylist )

# Mandatory labels
self.addLearningResult( ’Classes’, classValues )
self.addLearningResult( ’n-Class’, len(classValues) )
self.addLearningResult( ’Classifier’, self.saveToDisk( clf ) )

self.addLearningResult( ’Extra parameters’, {
’Label encoder’ : encoder,
’criterion’ : ’entropy’

})

# Possibly generate learning curve
if learningCurveIntervals is not None and Xcv is not None and

Ycv is not None:
self.createLearningGraph( clf, Xtrain, Ytrain, Xcv, Ycv,

learningCurveIntervals )
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# Export DOT graph, if set
if outputDotGraph:

dotGraph = export_graphviz( clf )
dotGraph.close()
dotGraph = open( dotGraph.name, ’r’ )
dotContent = ""
for line in dotGraph:

dotContent = dotContent + line
dotSource = self.saveToDisk( dotContent, serialize=False )
self.addLearningResult( ’DOT graph’, str( dotSource ) )
if getuser() in [’haaland’,’fredrik’]:

import os
source = open(’/tmp/dot_display.txt’,’w’)
source.write( dotContent )
source.close()
os.system("dot /tmp/dot_display.txt -Tpng -o /tmp/

dotgraph.png")
#os.system(’display /tmp/dotgraph.png’)

return self.getLearningResults()

# Override
def test(self, Xtest, Ytest, classifier, classes, extra={}, graphs=

False, **kwArgs):
’’’

Predict the <em>classes</em> of <em>Xtest</em>
measuring performance with <em>Ytest</em>
using the <em>classifier</em>, and possibly some
<em>extra</em> dictionary parameters.

’’’
# Re-construct classifier
clf = self.loadClassifier( classifier )

# Make sure classes are of correct type (int)
for i in range( len( classes ) ):

classes[ i ] = int( float( classes[ i ] ) )

# Time predictions
startTime = time.time()

# Generate class representations
classRepresentation = range( len( classes ) )

# Containers to fill
predicter = MLPredicter( clf, classRepresentation, Xtest, Ytest

, self.getDoublePrecision() )
Yprobabilities = predicter.getProbabilitiesForAllLabels()
Yprobabilities_all = predicter.getProbabilitiesForPredictions()
Yprobabilities_hits = predicter.

getProbabilitiesForPositiveSamples()
Ypredicted = numpy.matrix(

MachineLearningFactory.
getLabelsFromIntegerRepresentation(
predicter.getPredictions(),
extra.get(’Label encoder’) ), copy=False )

# Assign time results
self.addTestResult(’Prediction runtime’, ’{} seconds’.format(

time.time()-startTime))
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# Add graphs
if graphs:

self.addProbabilityGraphForClasses( classes, Yprobabilities
)

self.addHistogramGeneralValuesRPlot( Yprobabilities_all )
self.addHistogramHitsOnlyValuesRPLot( Yprobabilities_hits )

# Add metrics and prediction tracks
self.addPredictionTracks(

Yprobabilities_all,
Ypredicted,
Yprobabilities,
classes,
extra

)
self.addEstimatesTracks(

classes,
Yprobabilities,
extra

)

if Ytest is not None:
self.addBasicTestMetricResults(

Ytest,
Ypredicted,
Yprobabilities,
classes,
threshold = None

)

return self.getTestResults()

MLKNearestNeighbor

MLKNearestNeighbor.py

import time
import numpy
from sklearn.neighbors import KNeighborsClassifier
from quick.ml.api.algorithm.MLAlgorithm import MLAlgorithm
from quick.ml.implementation.factory.MachineLearningFactory import

MachineLearningFactory

from getpass import getuser
from quick.ml.implementation.structure.MLPredicter import MLPredicter
if getuser() not in [’haaland’,’fredrik’]:

from quick.util.StaticFile import StaticFile
else:

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab

class MLKNearestNeighbor(MLAlgorithm):
’’’

Supervised Multiple Class Learning Algorithm.

Ylist elements are integers due to an implementation detail
inside the sklearn API method predict_proba().
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’’’
def __init__(self):

MLAlgorithm.__init__(self)
self.setDoublePrecision( 3 )

# Override
def arangeTest(self, Xtest, hasLabels=True):

’’’
Using default built-in method.
@see: arangeTestDefault()

’’’
return self.arangeTestDefault( Xtest, hasLabels )

# Override
def arangeAll(self, Xtrain, cvfactor=0.2):

’’’
Use built-in method for supervised learning algorithms.
@see: arangeAllMultiClassSupervised()

’’’
return self.arangeAllMultiClassSupervised( Xtrain, cvfactor )

def normalize(self, X):
’’’

Performs feature scaling to make the
minimization algorithm converge
more easily.

Normalizes only contents, and not classes.
@see: MachineLearningAlgorithmFactory

’’’
return MachineLearningFactory.normalize( X )

# Override
def learn(self, Xtrain, Ytrain, Xcv, Ycv,

minimum=1e-05, lmbda=1.0, learningCurveIntervals=None, **kwArgs
):

’’’
Supervised Learning Algorithm.

’’’
# Detect classes
classValues = MachineLearningFactory.countDistinctClasses(

Ytrain, returnAggregation=True ).keys()

# Map matrices into lists in order to
# work together with the sklearn API.
Xlist = Xtrain.tolist()
Ytrain, encoder = MachineLearningFactory.

getLabelsAsIntegerRepresentation( Ytrain )
Ylist = Ytrain.ravel().tolist()

# Learning step (using default parameters as default )
clf = KNeighborsClassifier(

n_neighbors = 5,
weights = ’distance’,
algorithm = ’auto’,
leaf_size = 30,
warn_on_equidistant = False

)
clf.fit( Xlist, Ylist )
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# Mandatory labels
self.addLearningResult( ’Classes’, classValues )
self.addLearningResult( ’n-Class’, len(classValues) )
self.addLearningResult( ’Classifier’, self.saveToDisk( clf ) )

# Add results and other parameters
self.addLearningResult( ’Extra parameters’, {

’Label encoder’ : encoder,
’n_neighbors’ : clf.n_neighbors,
’weights’: ’distance’,
’algorithm’ : clf.algorithm,
’leaf_size’ : clf.leaf_size,
’warn_on_equidistant’ : clf.warn_on_equidistant

})

# Possibly generate learning curve
if learningCurveIntervals is not None and Xcv is not None and

Ycv is not None:
self.createLearningGraph( clf, Xtrain, Ytrain, Xcv, Ycv,

learningCurveIntervals )

return self.getLearningResults()

# Override
def test(self, Xtest, Ytest, classifier, classes, extra={}, graphs=

False, **kwArgs):
’’’

Predict the <em>classes</em> of <em>Xtest</em>
measuring performance with <em>Ytest</em>
using the <em>classifier</em>, and possibly some
<em>extra</em> dictionary parameters.

’’’
# Re-construct classifier
clf = self.loadClassifier( classifier )

# Time predictions
startTime = time.time()

# Generate class representations
classRepresentation = range( len( classes ) )

# Containers to fill
predicter = MLPredicter( clf, classRepresentation, Xtest, Ytest

, self.getDoublePrecision() )
Yprobabilities = predicter.getProbabilitiesForAllLabels()
Yprobabilities_all = predicter.getProbabilitiesForPredictions()
Yprobabilities_hits = predicter.

getProbabilitiesForPositiveSamples()
Ypredicted = numpy.matrix(

MachineLearningFactory.
getLabelsFromIntegerRepresentation(
predicter.getPredictions(),
extra.get(’Label encoder’) ), copy=False )

# Assign time results
self.addTestResult(’Prediction runtime’, ’{} seconds’.format(

time.time()-startTime))

# Add graphs
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if graphs and Ytest is not None:
self.addProbabilityGraphForClasses( classes, Yprobabilities

)
self.addHistogramGeneralValuesRPlot( Yprobabilities_all )
self.addHistogramHitsOnlyValuesRPLot( Yprobabilities_hits )
self.vizualize( Xtest, Ytest, classes, Ypredicted, clf )

# Add metrics and prediction tracks
self.addPredictionTracks(

Yprobabilities_all,
Ypredicted,
Yprobabilities,
classes,
extra

)
self.addEstimatesTracks(

classes,
Yprobabilities,
extra

)

if Ytest is not None:
self.addBasicTestMetricResults(

Ytest,
Ypredicted,
Yprobabilities,
classes,
threshold = None

)

return self.getTestResults()

#==========================================#
# VISUALIZATION #
#==========================================#

def vizualize(self,*args):
’’’

Visualize the model.
’’’
if getuser() in [’haaland’,’fredrik’]:

# Fetch arguments
Xtest = args[0]
Ytest = args[1]
classes = args[2]
predictions = args[3]
clf = args[4]

# X = clf.kneighbors_graph(
# Xtest,
# n_neighbors=None,
# mode=’distance’
# ).todense()
# folder = ’/home/%s/HB/ml/test/quick/ml/implementation/

factory/files/’ % getuser()
# # Write Prediction data
# fileName = "{}{}".format( folder, ’

kneighbors_graph_predict.npy’ )
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# numpy.savetxt( fileName, X, fmt=’%.2f’, delimiter=’\t’,
newline=’\n’ )

# #print MachineLearningFactory.getSampleSize( X ), ’x’,
MachineLearningFactory.getFeatureSize( X )

# Create dotgraph
import os
import pydot
from pydot import Node, Edge, Subgraph

# Add a graph with subgraph of class nodes
graph = pydot.Graph("knn", graph_type=’digraph’, strict=

False, simplify=False)
subGraph = Subgraph("knnclasses", rank=’same’)

# Create class nodes (centroids)
# And create per class relations as subgraphs
classNodes = list()
samplesGraphs = list()
for i, cls in enumerate(classes):

classNode = Node(
"Class {}".format(cls),
color=’black’,
style=’filled’,
fontcolor=’white’,
fontsize=’12’

)
subGraph.add_node( classNode )
classNodes.append( classNode )
sampleGraph = Subgraph("Samplesclass{}".format(i))
samplesGraphs.append( sampleGraph )
graph.add_subgraph( sampleGraph )

graph.add_subgraph( subGraph )

# Connect sample nodes to class nodes
for i in range( MachineLearningFactory.getSampleSize(Xtest)

):
prediction = int( predictions[i] )
classNode = classNodes[ prediction ]
sampleNode = Node(

"S{} [{}]".format(i,int(Ytest[i])),
fontsize = ’10’,
style = ’dotted’ if Ytest[i] != predictions[i] else

’solid’,
fontcolor = ’red’ if Ytest[i] != predictions[i]

else ’black’
)
graph.add_edge( Edge( sampleNode, classNode ) )
sampleGraph = samplesGraphs[ prediction ]
sampleGraph.add_node( sampleNode )

# Display graph
source = open(’/tmp/dot_display.txt’,’w’)
source.write( graph.to_string() )
source.close()
#os.system("twopi /tmp/dot_display.txt -Tpng -o /home/

haaland/HB/dotgraph{}.png".format(time.time()

*10000000000000))
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os.system("twopi /tmp/dot_display.txt -Tpng -o /tmp/
dotgraph.png")

os.system(’display /tmp/dotgraph.png’)

else:
# TODO : Make rpy plot
pass

def vizualizeLearn(self, X):
import os
import pydot
from pydot import Node, Edge
from math import ceil

graph = pydot.Graph("knndistance", graph_type=’digraph’, strict
=True, simplify=False)

nodes = dict()

for i in range( MachineLearningFactory.getSampleSize(X) ):
for j in range( i, MachineLearningFactory.getFeatureSize(X)

):
distance = int( ceil(X[i,j]) )
if distance > 0:

srcKey = "S{}".format(i)
dstKey = "S{}".format(j)
# Source node
if nodes.has_key( srcKey ):

srcNode = nodes.get( srcKey )
else:

srcNode = Node( srcKey )
graph.add_node( srcNode )
nodes[ srcKey ] = srcNode

# Destination node
if nodes.has_key( dstKey ):

dstNode = nodes.get( dstKey )
else:

dstNode = Node( dstKey )
graph.add_node( dstNode )
nodes[ dstKey ] = dstNode

# Add edge between them
distance = distance + 1
graph.add_edge( Edge( srcNode, dstNode, len=str(

distance), minlen=’1’, dir=’both’ ) )

# Display graph
source = open(’/tmp/knn_dot_display.txt’,’w’)
source.write( graph.to_string() )
source.close()
os.system("fdp /tmp/knn_dot_display.txt -Tpng -o /tmp/

knn_dotgraph.png")
os.system(’display /tmp/knn_dotgraph.png’)

MLLogisticRegressionRegularized

MLLogisticRegressionRegularized.py
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import numpy
import time

from sklearn.linear_model import LogisticRegression

from quick.ml.api.algorithm.MLAlgorithm import MLAlgorithm
from quick.ml.implementation.factory.MachineLearningFactory import

MachineLearningFactory

from getpass import getuser
from quick.ml.implementation.structure.MLPredicter import MLPredicter
if getuser() not in [’haaland’,’fredrik’]:

from quick.util.StaticFile import StaticFile
else:

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab

class MLLogisticRegressionRegularized(MLAlgorithm):
’’’

Supervised (Multi-class) Learning Algorithm.

Author: <fredrhaa> Fredrik Haaland
’’’
def __init__(self):

MLAlgorithm.__init__(self)

# Override
def arangeTest(self, Xtest, hasLabels=True):

’’’
Using default built-in method.
@see: arangeTestDefault()

’’’
return self.arangeTestDefault( Xtest, hasLabels )

# Override
def arangeAll(self, Xtrain, cvfactor=0.2):

’’’
Using default built-in method for
supervised learning algorithms.
@see: arangeAllBinaryClassSupervised()

’’’
return self.arangeAllMultiClassSupervised( Xtrain, cvfactor )

def normalize(self, X):
’’’

Performs feature scaling to make the
minimization algorithm converge
more easily.

Normalizes only contents, and not classes.
@see: MachineLearningAlgorithmFactory

’’’
return MachineLearningFactory.normalize( X )

# Override
def learn(self, Xtrain, Ytrain, Xcv, Ycv, minimum=1e-05, lmbda=0,

learningCurveIntervals=None, **kwArgs):
’’’

Returns dictionary with hypothesis and threshold entry.
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Class weight may be a dictionary of class weights.
Default is string ’auto’.

’’’
# Parse optional argument(s)
if kwArgs.has_key(’class_weight’):

class_weight = kwArgs.get(’class_weight’)
else:

class_weight = ’auto’

# Detect classes
classValues = MachineLearningFactory.countDistinctClasses(

Ytrain, returnAggregation=True ).keys()

# Map matrices into lists in order to
# work together with the sklearn API.
Xlist = Xtrain.tolist()
Ytrain, encoder = MachineLearningFactory.

getLabelsAsIntegerRepresentation( Ytrain )
Ylist = Ytrain.ravel().tolist()

# Adjust regularization parameter to it’s opposite,
# the smaller C the bigger regularization
C = 1e-20 if lmbda == 0 else 1.0 / float( lmbda )

# Learning step
clf = LogisticRegression(

penalty = ’l2’,
dual = False,
tol = minimum,
C = C,
fit_intercept = True,
class_weight = class_weight,
intercept_scaling = 1

)
clf.fit( Xlist, Ylist )

# Mandatory labels
self.addLearningResult( ’Classes’, classValues )
self.addLearningResult( ’n-Class’, len(classValues) )
self.addLearningResult( ’Classifier’, self.saveToDisk( clf ) )

# Add results and other parameters
self.addLearningResult( ’Extra parameters’, {

’Label encoder’ : encoder,
’penalty’ : clf.penalty,
’dual’ : clf.dual,
’tol’ : clf.tol,
’C’ : clf.C,
’fit_intercept’ : clf.fit_intercept

})

# Possibly generate learning curve
if learningCurveIntervals is not None and Xcv is not None and

Ycv is not None:
self.createLearningGraph( clf, Xtrain, Ytrain, Xcv, Ycv,

learningCurveIntervals )

return self.getLearningResults()
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# Override
def test(self, Xtest, Ytest, classifier, classes, extra={}, graphs=

False, **kwArgs):
’’’

Predict the <em>classes</em> of <em>Xtest</em>
measuring performance with <em>Ytest</em>
using the <em>classifier</em>, and possibly some
<em>extra</em> dictionary parameters.

’’’
# Re-construct classifier
clf = self.loadClassifier( classifier )

# Time predictions
startTime = time.time()

# Generate class representations
classRepresentation = range( len( classes ) )

# Containers to fill
predicter = MLPredicter( clf, classRepresentation, Xtest, Ytest

)
Yprobabilities = predicter.getProbabilitiesForAllLabels()
Yprobabilities_all = predicter.getProbabilitiesForPredictions()
Yprobabilities_hits = predicter.

getProbabilitiesForPositiveSamples()
Ypredicted = numpy.matrix(

MachineLearningFactory.
getLabelsFromIntegerRepresentation(
predicter.getPredictions(),
extra.get(’Label encoder’) ), copy=False )

# Assign time results
self.addTestResult(’Prediction runtime’, ’{} seconds’.format(

time.time()-startTime))

# Add graphs
if graphs:

self.addProbabilityGraphForClasses( classes, Yprobabilities
)

self.addHistogramGeneralValuesRPlot( Yprobabilities_all )
self.addHistogramHitsOnlyValuesRPLot( Yprobabilities_hits )

# Add metrics and prediction tracks
self.addPredictionTracks(

Yprobabilities_all,
Ypredicted,
Yprobabilities,
classes,
extra

)
self.addEstimatesTracks(

classes,
Yprobabilities,
extra

)

if Ytest is not None:
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self.addBasicTestMetricResults(
Ytest,
Ypredicted,
Yprobabilities,
classes,
threshold = None

)

return self.getTestResults()

MLMultipleLinearRegression

MLMultipleLinearRegression.py

import numpy
import time

from sklearn.linear_model import LinearRegression
from sklearn.metrics import zero_one_score

from quick.ml.api.algorithm.MLAlgorithm import MLAlgorithm
from quick.ml.implementation.factory.MachineLearningFactory import

MachineLearningFactory

from getpass import getuser
from quick.ml.implementation.structure.MLPredicter import MLPredicter
if getuser() not in [’haaland’,’fredrik’]:

from quick.util.StaticFile import StaticFile
else:

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab

class MLMultipleLinearRegression(MLAlgorithm):
’’’

Supervised (Multi-class) Learning Algorithm.

Author: <fredrhaa> Fredrik Haaland
’’’
def __init__(self):

MLAlgorithm.__init__(self)

# Override
def arangeTest(self, Xtest, hasLabels=True):

’’’
Using default built-in method.
@see: arangeTestDefault()

’’’
return self.arangeTestDefault( Xtest, hasLabels )

# Override
def arangeAll(self, Xtrain, cvfactor=0.2):

’’’
PLits the data based on the cross validation factor.

’’’
numpy.random.shuffle( Xtrain )
Xtrain, Xcv = MachineLearningFactory.splitSamples( Xtrain,

cvfactor )
Xtrain, Ytrain = MachineLearningFactory.splitXandY( Xtrain )
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Xcv, Ycv = MachineLearningFactory.splitXandY( Xcv )
return Xtrain, Ytrain, Xcv, Ycv

# Override
def learn(self, Xtrain, Ytrain, Xcv, Ycv, minimum=1e-05, lmbda=0,

learningCurveIntervals=None, **kwArgs):
’’’

Returns dictionary with hypothesis and threshold entry.

Class weight may be a dictionary of class weights.
Default is string ’auto’.

’’’
# Detect classes
classValues = MachineLearningFactory.countDistinctClasses(

Ytrain, returnAggregation=True ).keys()

# Map matrices into lists in order to
# work together with the sklearn API.
Xlist = Xtrain.tolist()
Ylist = Ytrain.tolist()

# Learning step
clf = LinearRegression(

fit_intercept = True,
normalize = False,
copy_X = False

)
clf.fit( Xlist, Ylist, n_jobs=10 )

# Mandatory labels
self.addLearningResult( ’Classes’, classValues )
self.addLearningResult( ’n-Class’, len(classValues) )
self.addLearningResult( ’Classifier’, self.saveToDisk( clf ) )

# Add results and other parameters
self.addLearningResult( ’Extra parameters’, {

’Label encoder’ : ’None’,
’fit_intercept’ : clf.fit_intercept,
’normalize’ : False,
’copy_X’ : False

})

# Possibly generate learning curve
if learningCurveIntervals is not None and Xcv is not None and

Ycv is not None:
self.createLearningGraph( clf, Xtrain, Ytrain, Xcv, Ycv,

learningCurveIntervals )

return self.getLearningResults()

# Override
def test(self, Xtest, Ytest, classifier, classes, extra={}, graphs=

False, **kwArgs):
’’’

Predict the <em>classes</em> of <em>Xtest</em>
measuring performance with <em>Ytest</em>
using the <em>classifier</em>, and possibly some
<em>extra</em> dictionary parameters.

’’’
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# Re-construct classifier
clf = self.loadClassifier( classifier )

# Time predictions
startTime = time.time()

# Predictions
predicter = MLPredicter( clf, classes, Xtest, Ytest,

computeProbabilities=False )

# Make predictions
Ypredicted = predicter.getPredictions()

# Assign time results
self.addTestResult(’Prediction runtime’, ’{} seconds’.format(

time.time()-startTime))

chromosome = extra.get(’Chromosome’) if extra.get(’Chromosome’)
is not None else ’N/A’

genome = extra.get(’Genome’) if extra.get(’Genome’) is not None
else ’N/A’

start = extra.get(’Start position’) if extra.get(’Start
position’) is not None else 0

end = extra.get(’End position’) if extra.get(’End position’) is
not None else numpy.size(Ypredicted,0)

# Add class prediction track
source = self.getPointTrack( genome, { chromosome: Ypredicted.

ravel().tolist()[0] },
’function’, start=start, end=end )

content = "# Class Prediction Track\n{}".format(source.read())
self.addTestResult(

’Class Prediction Track’, self.saveToDisk( content,
serialize=False )

)
source.close()
# Add region track
source = self.getPointTrack( genome, { chromosome: [(start,end)

] }, ’segments’ )
content = "# Region Track\n{}".format(source.read())
self.addTestResult(

’Region Track’, self.saveToDisk( content, serialize=False )
)

if Ytest is not None:
self.addTestResult(’Accuracy’, zero_one_score( Ytest,

Ypredicted ) )

return self.getTestResults()

MLSupportVectorMachine

MLSupportVectorMachine.py

import time
import numpy
from sklearn import svm
from sklearn.grid_search import GridSearchCV
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from copy import copy

from quick.ml.api.algorithm.MLAlgorithm import MLAlgorithm
from quick.ml.implementation.factory.MachineLearningFactory import

MachineLearningFactory
from quick.ml.implementation.structure.MLPredicter import MLPredicter

class MLSupportVectorMachine(MLAlgorithm):
’’’

Supervised Learning Algorithm.
’’’
def __init__(self, kernel=’rbf’):

MLAlgorithm.__init__(self)
self.setKernel( kernel )

# Override
def arangeTest(self, Xtest, hasLabels=True):

’’’
Using default built-in method.
@see: arangeTestDefault()

’’’
return self.arangeTestDefault( Xtest, hasLabels )

def normalize(self, X):
’’’

Performs feature scaling to make the
minimization algorithm converge
more easily.

Normalizes only contents, and not classes.
@see: MachineLearningAlgorithmFactory

’’’
return MachineLearningFactory.normalize( X )

# Override
def arangeAll(self, Xtrain, cvfactor=0.2):

’’’
Use built-in method for supervised learning algorithms.
@see: arangeAllMultiClassSupervised()

’’’
return self.arangeAllMultiClassSupervised( Xtrain, cvfactor )

# Override
def learn(self, Xtrain, Ytrain, Xcv, Ycv,

minimum=1e-05, lmbda=0, learningCurveIntervals=None, **kwArgs):
’’’

Un-supervised Learning Algorithm.

Not using <em>Ytrain</em> for learning,
only for cross validating in order
to find the threshold (Epsilon) .

Not taking <em>minimum</em>, <em>lambda</em>
nor <em>maxiter</em> into account.

Will in later implementation make use of
<em>learningCurveIntervals</em>.

’’’
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# Map matrices into lists in order to
# work together with the sklearn API.
Xlist = Xtrain.tolist()
Ytrain, encoder = MachineLearningFactory.

getLabelsAsIntegerRepresentation( Ytrain )
Ylist = Ytrain.ravel().tolist()

# Detect classes
classValues = MachineLearningFactory.countDistinctClasses(

Ytrain, returnAggregation=True ).keys()

# Detect parameters using a grid-search
parameters = {

’C’: MachineLearningFactory.getRegularizationValues().
remove( 0.0 ), # May not be zero

’gamma’: MachineLearningFactory.getThresholdValues()
}

# Select C if lambda is chosen set
if lmbda >= 0:

parameters[’C’] = [ 1 ] if lmbda == 0 else [ 1.0 / float(
lmbda ) ]

try:
svc = svm.SVC(

kernel=self.getKernel(),
tol=self.getTolerance(),
probability = True,
shrinking = False

)
clf = GridSearchCV( svc, parameters, n_jobs=10, verbose=0 )
clf = clf.fit( Xlist, Ylist )
clf = clf.best_estimator_

except:
# Parameter search is not supported directly,
# so try doing it the *manual* way..
best_score = 0
best_clf = None
for i in range(len(parameters[’C’])):

C = parameters[’C’][i]
for j in range(len(parameters[’gamma’])):

gamma = parameters[’gamma’][j]
clf = svm.SVC(

C = C,
gamma = gamma,
probability = True,
shrinking = False,
kernel = self.getKernel(),
tol = minimum

)
clf.fit( Xlist, Ylist )
score = clf.score( Xlist, Ylist )
if score > best_score or best_clf is None:

best_clf = copy( clf )
best_score = score

clf = best_clf

# Mandatory labels
self.addLearningResult( ’Classes’, classValues )
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self.addLearningResult( ’n-Class’, len( classValues ) )
self.addLearningResult( ’Classifier’, self.saveToDisk( clf ) )

# Add results and other parameters
self.addLearningResult( ’Extra parameters’, {

’Label encoder’ : encoder,
’C’: clf.C,
’Gamma’: clf._gamma,
’probability’ : clf.probability,
’shrinking’ : clf.shrinking,
’kernel’ : self.getKernel(),
’tol’ : minimum

})

# Possibly generate learning curve
if learningCurveIntervals is not None and Xcv is not None and

Ycv is not None:
self.createLearningGraph( clf, Xtrain, Ytrain, Xcv, Ycv,

learningCurveIntervals )

return self.getLearningResults()

# Override
def test(self, Xtest, Ytest, classifier, classes, extra={}, graphs=

False, **kwArgs):
’’’

Predict the <em>classes</em> of <em>Xtest</em>
measuring performance with <em>Ytest</em>
using the <em>classifier</em>, and possibly some
<em>extra</em> dictionary parameters.

’’’
# Re-construct classifier
clf = self.loadClassifier( classifier )

# Time predictions
startTime = time.time()

# Generate class representations
classRepresentation = range( len( classes ) )

# Containers to fill
predicter = MLPredicter( clf, classRepresentation, Xtest, Ytest

, self.getDoublePrecision() )
Yprobabilities = predicter.getProbabilitiesForAllLabels()
Yprobabilities_all = predicter.getProbabilitiesForPredictions()
Yprobabilities_hits = predicter.

getProbabilitiesForPositiveSamples()
Ypredicted = numpy.matrix(

MachineLearningFactory.
getLabelsFromIntegerRepresentation(
predicter.getPredictions(),
extra.get(’Label encoder’) ), copy=False )

# Assign time results
self.addTestResult(’Prediction runtime’, ’{} seconds’.format(

time.time()-startTime))

# Add graphs
if graphs:
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self.addProbabilityGraphForClasses( classes, Yprobabilities
)

self.addHistogramGeneralValuesRPlot( Yprobabilities_all )
self.addHistogramHitsOnlyValuesRPLot( Yprobabilities_hits )

# Add metrics and prediction tracks
self.addPredictionTracks(

Yprobabilities_all,
Ypredicted,
Yprobabilities,
classes,
extra

)
if Ytest is not None:

self.addBasicTestMetricResults(
Ytest,
Ypredicted,
Yprobabilities,
classes,
threshold = None

)

return self.getTestResults()

#==========================================#
# HELPER METHODS #
#==========================================#

def setKernel(self, kernel):
’’’

Sets the kernel to be used.
@see: sklearn library for allowed kernels

’’’
self.kernel = kernel

def getKernel(self):
’’’

Returns the name of the kernel to be used.
’’’
return self.kernel

A.2.2 Measures
Response measures

MLResponsePointExists.py

from quick.ml.api.feature.MLResponse import MLResponse

class MLResponsePointExists(MLResponse):
’’’

Checks if a point is present or not.

Return
----------------------------------------
Returns 1 if a point is present,
or 0 otherwise.
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Notice
----------------------------------------
Does not check point value, only existence.

’’’
def __init__(self):

MLResponse.__init__(self)

def getValue(self,trackState,n):
if trackState.isPoint() or trackState.isInsideSegment():

return 1
else:

return 0

MLResponsePointValue.py

from quick.ml.api.feature.MLResponse import MLResponse

class MLResponsePointValue(MLResponse):
’’’

Checks if a point is within another point,
which implies that any point inside segments will return 1 also

.
’’’
def __init__(self):

MLResponse.__init__(self)

def getValue(self,trackState,n):
if trackState.isPoint() or trackState.isInsideSegment():

return trackState.getCurrentValue()
else:

return self.getUndefined()

MLResponseSegmentExists.py

from quick.ml.api.feature.MLResponse import MLResponse

class MLResponseSegmentExists(MLResponse):
’’’

Checks if a segment is present.

Return
--------------------------------------
Return 1 if the segment is present,
otherwise 0.

’’’
def __init__(self):

MLResponse.__init__(self)

def getValue(self,trackState,n):
if trackState.isInsideSegment():

return 1
else:

return 0
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MLResponseSegmentValue.py

from quick.ml.api.feature.MLResponse import MLResponse

class MLResponseSegmentValue(MLResponse):
’’’

Checks if a valued segment is present.

Return
--------------------------------------
Return the value of the segment is present,
otherwise 0.

’’’
def __init__(self):

MLResponse.__init__(self)

def getValue(self,trackState,n):
if trackState.isInsideSegment():

return trackState.getCurrentValue()
else:

return self.getUndefined()

MLResponseFunctionValue.py

from quick.ml.api.feature.MLResponse import MLResponse
from quick.ml.implementation.feature.transformation.

MLTransformationRoundOff import MLTransformationRoundOff

class MLResponseFunctionValue(MLResponse):
’’’

Returns the current track state’s value.
’’’
def __init__(self, roundOff=3):

’’’
Appends the roundoff transformation in order to
keep a relative small number of classes.

’’’
MLResponse.__init__(self)
self.addTransformation( MLTransformationRoundOff() )
self.setMetaData( ’roundoff’, roundOff )

def getValue(self,trackState,n):
return trackState.getCurrentValue()

Feature measures

MLFeaturePositionRelative.py

from quick.ml.api.feature.MLFeature import MLFeature

class MLFeaturePositionRelative(MLFeature):
’’’

Returns the relative position from
the tracks start point to the current point.

’’’
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def __init__(self):
MLFeature.__init__(self)

# Override
def getValue(self,trackState,n):

return trackState.getCurrentPosition() / float( n - 1 )

MLFeaturePositionRelativeInverted.py

from quick.ml.api.feature.MLFeature import MLFeature

class MLFeaturePositionRelativeInverted(MLFeature):
’’’

Returns the inverted relative position
Relative position regarding the track view end point.

’’’
def __init__(self):

MLFeature.__init__(self)

# Override
def getValue(self,trackState,n):

return 1.0 - trackState.getCurrentPosition() / float( n - 1 )

MLFeaturePositionRelativeCenter.py

from quick.ml.api.feature.MLFeature import MLFeature

from math import floor

class MLFeaturePositionRelativeCenter(MLFeature):
’’’

Returns the relative position
to the tracks midpoint.

’’’
def __init__(self):

MLFeature.__init__(self)

# Override
def getValue(self,trackState,n):

k = trackState.getCurrentPosition()
midpoint = floor( n / 2 )
if k == midpoint:

return 0.0
elif k < midpoint:

return 1.0 - ( float(k) / midpoint )
else:

return - 1.0 + ( float(k) / midpoint )

MLFeaturePositionRelativeSides.py

from quick.ml.api.feature.MLFeature import MLFeature

class MLFeaturePositionRelativeSides(MLFeature):
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’’’
Relative position regarding the track view center point.

’’’
def __init__(self):

MLFeature.__init__(self)

# Override
def getValue(self,trackState,n):

k = trackState.getCurrentPosition()
midpoint = ( n / 2 )
if k == midpoint:

return 1.0
elif k < midpoint:

return (1.0 * k) / midpoint
else:

return 2.0 - ((1.0 * k) / midpoint)

MLFeaturePointDistanceLast.py

from quick.ml.api.feature.MLFeature import MLFeature

class MLFeaturePointDistanceLast(MLFeature):
’’’

Returns the number of positions from the current
position or the start of the current element
to the end of the last seen element.

If no such element, then the undefined value is returned.
’’’
def __init__(self):

MLFeature.__init__(self)

# Override
def getValue(self,trackState,n):

if trackState.getLastPoint() is None:
# If ran past current segment,
# but not yet entered the next
if trackState.getCurrentPosition() > trackState.

getCurrentEndPosition():
return trackState.getCurrentPosition() - trackState.

getCurrentEndPosition() - 1
else:

return self.getUndefined()
# Else a last point exists
elif trackState.isPoint() or trackState.isInsideSegment():

# Inside an element
return trackState.getCurrentStartPosition() - trackState.

getLastPoint()[0] - 1
elif trackState.getCurrentPosition() == trackState.

getCurrentEndPosition() + 1:
# If at the edge of the current element
return 0

else:
# Outside an element
return trackState.getCurrentPosition() - trackState.

getCurrentEndPosition() - 1
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MLFeaturePointDistanceFuture.py

from quick.ml.api.feature.MLFeature import MLFeature

class MLFeaturePointDistanceFuture(MLFeature):
’’’

Returns the number of positions from the current
position or the end of the current element
and to the start of the future element.

If no such element, then the undefined value is returned.
’’’
def __init__(self):

MLFeature.__init__(self)

# Override
def getValue(self,trackState,n):

if trackState.getCurrentPosition() < trackState.
getCurrentStartPosition():
# Border case, have not entered the current element yet
return trackState.getCurrentStartPosition() - trackState.

getCurrentPosition()
else:

if trackState.getFuturePoint() is None:
# Border case, have no more points to discover
return self.getUndefined()

# Future point exists
else:

if trackState.isPoint() or trackState.isInsideSegment()
:
# Inside an element
return trackState.getFuturePoint()[0] - trackState.

getCurrentEndPosition() - 1
else:

# Outside an element
return trackState.getFuturePoint()[0] - trackState.

getCurrentPosition() - 1

MLFeaturePointDistanceOuter.py

from quick.ml.api.feature.MLFeature import MLFeature

class MLFeaturePointDistanceOuter(MLFeature):
’’’

The distance to the closest point (or segment)
outside the current element.

If point or inside segment,
the outer sides determines the outer distance.

’’’
def __init__(self):

MLFeature.__init__(self)

# Override
def getValue(self,trackState,n):

# Fetch last point
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if trackState.getLastPoint() is None:
# If ran past current segment,
# but not yet entered the next
if trackState.getCurrentPosition() > trackState.

getCurrentEndPosition():
lastval = trackState.getCurrentPosition() - trackState.

getCurrentEndPosition() - 1
else:

lastval = self.getUndefined()
# Else a last point exists
elif trackState.isPoint() or trackState.isInsideSegment():

# Inside an element
lastval = trackState.getCurrentStartPosition() - trackState

.getLastPoint()[0] - 1
elif trackState.getCurrentPosition() == trackState.

getCurrentEndPosition() + 1:
# If at the edge of the current element
lastval = 0

else:
# Outside an element
lastval = trackState.getCurrentPosition() - trackState.

getCurrentEndPosition() - 1
# Fetch future point
if trackState.getCurrentPosition() < trackState.

getCurrentStartPosition():
# Border case, have not entered the current element yet
futureval = trackState.getCurrentStartPosition() -

trackState.getCurrentPosition()
else:

if trackState.getFuturePoint() is None:
# Border case, have no more points to discover
futureval = self.getUndefined()

else:
# Future point exists
futurePointPosition = trackState.getFuturePoint()[0]
currentEndPosition = trackState.getCurrentEndPosition()
fullDistance = futurePointPosition - currentEndPosition

- 1
if trackState.isPoint() or trackState.isInsideSegment()

:
# Inside an element
futureval = float( fullDistance )

else:
# Outside an element
currentPosition = trackState.getCurrentPosition()
futureval = float( futurePointPosition -

currentPosition - 1 )
# Decide smallest
if lastval == self.getUndefined():

return futureval
elif futureval == self.getUndefined():

return lastval
else:

return min( lastval, futureval )

MLFeaturePointDistanceInner.py
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from quick.ml.api.feature.MLFeature import MLFeature

from math import floor

class MLFeaturePointDistanceInner(MLFeature):
’’’

The distance to center (midpoint)
of the current point or segment.

’’’
def __init__(self):

MLFeature.__init__(self)

# Override
def getValue(self,trackState,n):

’’’
Calculates the distances from the
<em>trackState</em>’s current position
to it’s sides, giving the center position
the highest value of all inner values.

Returns undefined if not inside a point or a segment.

Outputs a relative distance divided by <em>n</em>,
but is 1 by default, resulting in no default action.

’’’
if not trackState.isInsideSegment():

return self.getUndefined()
elif trackState.isPoint() or trackState.size() == 2:

return 0
else: # Inside segment, size > 2

center = floor( trackState.size() / 2 )
offset = int( trackState.getOffset() )
if trackState.size() % 2 == 0 :

# Double center
if offset == center or offset == center - 1:

return 1
elif offset < center:

return offset / (center - 1)
else:

return (trackState.size() - offset - 1) / ( center
- 1 )

else:
# Single center
if offset == center:

return 1
elif offset < center:

return offset / center
else:

return (trackState.size() - offset - 1) / center

MLFeatureFunctionSlope.py

from quick.ml.api.feature.MLFeature import MLFeature

class MLFeatureFunctionSlope(MLFeature):
’’’

Returns the average slope of the points on both sides
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of the training track state value, or undefined
if track state is None (not provided).

’’’
def __init__(self):

MLFeature.__init__(self)

def getValue(self,trackState,n):
if trackState is None:

return self.getUndefined()
else:

if trackState.getFuturePoint() is not None and trackState.
getLastPoint() is not None:
# Both point are present, return the average slope
return ( trackState.getFuturePoint()[1] - trackState.

getLastPoint()[1] ) / 3
elif trackState.getFuturePoint() is None and trackState.

getLastPoint() is None:
return self.getUndefined()

elif trackState.getFuturePoint() is None and trackState.
getLastPoint() is not None:
return ( trackState.getCurrentValue() - trackState.

getLastPoint()[1] ) / 2
else:

return ( trackState.getFuturePoint()[1] - trackState.
getCurrentValue() ) / 2

MLFeatureFunctionStrand.py

from quick.ml.api.feature.MLFeature import MLFeature

class MLFeatureFunctionStrand(MLFeature):
’’’

Returns 1 if the training track state value
is greater than or equal to zero, 0 if below zero,
or undefined if track state is None (not provided).

’’’
def __init__(self):

MLFeature.__init__(self)

def getValue(self,trackState,n):
if trackState.getCurrentValue() != trackState.getUndefined():

return trackState.getCurrentValue()
else:

if trackState.getCurrentValue() < 0:
return 0

else:
return 1

MLFeatureSegmentStartPosition.py

from quick.ml.api.feature.MLFeature import MLFeature

class MLFeatureSegmentStartPosition(MLFeature):
’’’

Returns 1 if State is a segment, and
if the current position equals the start position,
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otherwise 0.
’’’
def __init__(self):

MLFeature.__init__(self)

# Override
def getValue(self,trackState,n):

if trackState.isAtStartPosition():
return 1

else:
return 0

MLFeatureSegmentEndPosition.py

from quick.ml.api.feature.MLFeature import MLFeature

class MLFeatureSegmentEndPosition(MLFeature):
’’’

Returns 1 if State is a segment, and
if the current position equals the end position,
otherwise 0.

’’’
def __init__(self):

MLFeature.__init__(self)

# Override
def getValue(self,trackState,n):

if trackState.isAtEndPosition():
return 1

else:
return 0

A.2.3 Transformations

MLTransformationFavourLeft.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

class MLTransformationFavourLeft(MLTransformation):
’’’

Returns the relative position within the
element, concretely, a floating point from 0 to 1,
where 0 is at the start of the element and 1 is
the end of the element.

In, the special case of a point, the relative
length will be reported as 1.

’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
if featureData[’len’] == 1:

featureData[’val’] = 1
else:
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relativePosition = 1 - (featureData[’pos’] / float(
featureData[’len’]-1))

addition = featureData[’val’] * relativePosition
featureData[’val’] = featureData[’val’] + addition

return featureData

MLTransformationFavourRight.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

class MLTransformationFavourRight(MLTransformation):
’’’

Returns the relative position within the
element, concretely, a floating point from 0 to 1,
where 0 is at the start of the element and 1 is
the end of the element.

In, the special case of a point, the relative
length will be reported as 1.

’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
if featureData[’len’] == 1:

featureData[’val’] = 1
else:

relativePosition = featureData[’pos’] / float(featureData[’
len’]-1)

if relativePosition > 0:
addition = (featureData[’val’] * relativePosition)
featureData[’val’] = featureData[’val’] + addition

return featureData

MLTransformationFavourCenter.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

class MLTransformationFavourCenter(MLTransformation):
’’’

Favors the data at the center of the element range,
gradually decreasing towards the sides.

’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
addition = 0
if featureData[’len’] == 3:

if featureData[’pos’] == 1:
addition = featureData[’val’]

elif featureData[’len’] > 3:

165



size = float(featureData[’len’])
half = max(1,(size / 2.0) )
center = featureData[’start’] + half - 1
if featureData[’pos’] < center:

offset = featureData[’pos’] - featureData[’start’] + 1
addition = featureData[’val’] * (offset / (half-1))

elif featureData[’pos’] == center:
offset = featureData[’pos’] - featureData[’start’]
addition = featureData[’val’]

else:
offset = featureData[’end’] - featureData[’pos’] - 1
addition = featureData[’val’] * (offset / (half-1))

featureData[’val’] = featureData[’val’] + addition
return featureData

MLTransformationFavourSides.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

class MLTransformationFavourSides(MLTransformation):
’’’

Favors the data at the sides of the element range,
gradually decreasing towards the center.

’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
addition = 0
if featureData[’len’] == 3:

if featureData[’pos’] == 0 or featureData[’pos’] == 2:
addition = featureData[’val’]

elif featureData[’len’] > 3:
size = float(featureData[’len’])
half = max(2,(size / 2.0) )
center = featureData[’start’] + half - 1
if featureData[’pos’] < center:

offset = featureData[’start’] + featureData[’pos’] - 1
addition = featureData[’val’] * (1-(offset / (half-1)))

elif featureData[’pos’] > center:
offset = featureData[’pos’] - center
addition = featureData[’val’] * (offset / (half-1))

featureData[’val’] = featureData[’val’] + addition
return featureData

MLTransformationRelative.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

class MLTransformationRelative(MLTransformation):
’’’

Returns the value divided by the ’length’
key, defaulted to track length.

’’’
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def __init__(self, situation=’all’):
MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
featureData[’val’] = float( featureData[’val’] ) / featureData[

’len’]
return featureData

MLTransformationLogarithmic.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

from math import log10

class MLTransformationLogarithmic(MLTransformation):
’’’

Returns the base 10 logarithmic value of
the value inside <em>featureData</em>.

Returns an ’undefined’ value, for value 0
and negative numbers.

The ’undefined’ value is the key
from <em>featureData</em> if set,
or else the lowest possible integer.

’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
if featureData[’val’] < 0:

featureData[’val’] = self.getUndefined()
else:

featureData[’val’] = log10( 1 + featureData[’val’] )
return featureData

MLTransformationConditionEqualsValue.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

class MLTransformationConditionEqualsValue(MLTransformation):
’’’

Returns 1 if value equals the given
value of the ’comparison’ key,
or otherwise 0.

’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
comparison = featureData.get(’comparison’,None)
if comparison is not None:

if featureData[’val’] == comparison:
featureData[’val’] = 1
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else:
featureData[’val’] = 0

return featureData

MLTransformationConditionLessThanValue.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

class MLTransformationConditionLessThanValue(MLTransformation):
’’’

Returns 1 if value is less than
the given value of the ’comparison’ key,
or otherwise 0.

’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):

comparison = featureData.get(’comparison’,None)
if comparison is not None:

if featureData[’val’] < comparison:
featureData[’val’] = 1

else:
featureData[’val’] = 0

return featureData

MLTransformationConditionGreaterThanValue.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

class MLTransformationConditionGreaterThanValue(MLTransformation):
’’’

Returns 1 if value is greater than
the given value of the ’comparison’ key,
or otherwise 0.

’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
comparison = featureData.get(’comparison’,None)
if comparison is not None:

if featureData[’val’] > comparison:
featureData[’val’] = 1

else:
featureData[’val’] = 0

return featureData

MLTransformationRoundOff.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation
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class MLTransformationRoundOff(MLTransformation):
’’’

Returns the rounded value of
the value inside <em>featureData</em>.

The number of decimals defaults to 5,
but may be overridden by setting
the mete-data key ’round’ to the number
of decimals.

Does not support negative numbers.
’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
if featureData.has_key(’roundoff’):

featureData[’val’] = round( featureData[’val’], featureData
.get(’roundoff’) )

else:
featureData[’val’] = round( featureData[’val’], 5 )

return featureData

MLTransformationPolynomial.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

class MLTransformationPolynomial(MLTransformation):
’’’

Returns the value raised top the power
of the ’polynomial’ key, defaults to 1.

’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
if featureData.has_key(’polynomial’):

featureData[’val’] = featureData[’val’] ** featureData[’
polynomial’]

return featureData

MLTransformationAngle.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

from math import atan

class MLTransformationAngle(MLTransformation):
’’’

Returns the inverse tangent (arc tan) of the value.
’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)
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def getTransformedValue(self, featureData):
featureData[’val’] = atan( featureData[’val’] )
return featureData

MLTransformationProduct.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

class MLTransformationProduct(MLTransformation):
’’’

Returns the product of the ’factor’ key
and the value inside <em>featureData</em>.

’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
if featureData.has_key(’factor’):

featureData[’val’] = float( featureData[’val’] ) *
featureData[’factor’]

return featureData

MLTransformationExponential.py

from quick.ml.api.feature.transformation.MLTransformation import
MLTransformation

from math import expm1

class MLTransformationExponential(MLTransformation):
’’’

Returns the exponential value of
the value inside <em>featureData</em>.

Returns the ’undefined’ value, for 0
and negative numbers.

’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
if featureData[’val’] < 0:

featureData[’val’] = self.getUndefined()
else:

featureData[’val’] = expm1( featureData[’val’] )
return featureData

MLTransformationSquareRoot.py

from math import sqrt
from quick.ml.api.feature.transformation.MLTransformation import

MLTransformation
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class MLTransformationSquareRoot(MLTransformation):
’’’

Returns the square root of the value.
’’’
def __init__(self, situation=’all’):

MLTransformation.__init__(self, situation)

def getTransformedValue(self, featureData):
featureData[’val’] = sqrt( featureData[’val’] )
return featureData
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