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Abstract

In Java, the package concept is a means for modularization of the code, in
the same way as e.g namespaces are for some other languages. However,
the flexibility of packages for reuse of code is not very good. Introducing
Package Templates is a proposal to improve this situation, by moving the
package one step towards a generic concept.

The JPT language extends Java with the Package Template concept,
and the JPT compiler has been developed alongside the development
of the PT concept and the JPT language. This compiler is a necessary
tool when evaluating the usefullness of Package Templates for large scale
programming.

This thesis describes the JPT language through explanations of the
concepts and through code samples showing how these concepts are
applied. It also discusses the design and implementation of the JPT
compiler and some of the technologies that are used for building this
compiler, and finally, it documents some of the recent changes that have
been made to the JPT compiler.
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Chapter 1

Introduction

This thesis is the result of my work on a compiler for a language called JPT,
which is short for “Java with Package Templates”. Package Templates, or
PT for short, is a mechanism for writing and combining separate modules
in object oriented languages. It is not a language in itself, but rather
a set of concepts and ideas that must be fitted to each object oriented
language, usually by extending the language with new syntax to describe
these concepts.

The main features of PT are:

• That modules can contain several classes.

• That modules can be fully type checked as separate entities.

• That modules (or rather, all their classes) are combined with the rest
of the program at compile time.

• That the classes of a module can be adapted (e.g by renaming and
by making additions) during the combination with the rest of the
program.

The modules of PT are called “package templates”, or often simply
“templates”.

The ideas of PT, in something like the current form, first appeared
in the article “Exploring the use of Package Templates for flexible re-use
of Collections of related Classes” [11] by Stein Krogdahl, Birger Møller-
Pedersen and Fredrik Sørensen. Since then, several articles on PT have been
published (many of them also including Eyvind W. Axelsen as an author),
and the details have gradually been shaped, mainly in a setting where PT
is applied to Java.

The JPT compiler has been developed alongside the development of the
PT concept and the JPT language. My work on the compiler started when
its development was well underway. The compiler already had most of the
PT functionality, but there were unimplemented parts and a lot of bugs,
and thus it was not suited for testing the usefulness of PT.

PT has also been applied to the languages Boo and Groovy. The work
on Boo with PT was done as part of an earlier master thesis, which resulted
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in a compiler with basic PT functionality [12]. Research into applying PT
to dynamically typed languages was done by applying it to the Groovy
language [3]. Both these were implemented, but the implementations were
not nearly as complete as the JPT compiler.

To make it possible to evaluate the PT mechanism for larger programs,
an implementation of a compiler, like JPT, is a necessary tool. It is therefore
important that the compiler is as complete as possible and ready for use,
so this is what my work has been geared towards. I have been able to take
the compiler some steps closer to the goal of completion, and the compiler
now works reasonably well and for most of the main mechanisms of PT.
It is now regularly used for testing the ability of PT to support large scale
programming.

There are, however, obviously still bugs in the compiler, and some as-
pects of JPT are not implemented. The two most important unimplemented
features are templates as parameters to templates, and the access control
mechanism connected to the package templates. The former is quite clearly
defined, but some of the details on how the mechanism should work came
so late in the process, that there was no time to implement it in the compiler
as part of my work with this thesis. The latter is not implemented because
it is still not clear how this should work, seen from the programmer.

At first, my thesis work started out in a different direction. The plan was
to try to rewrite a quite extensive Java library to use JPT, and to see whether
its structure and fexibility could be improved by using the PT concepts.
However, after doing some preliminary work on this, it became clear that
the compiler had limitations that blocked any further progress. Since there
were no developers at work on the compiler, it was decided (by me and
my supervisor) that I should shift my focus towards the completion of the
compiler.

Even though a lot of work had gone into building a compiler for JPT,
there did not exist any documentation describing this compiler and the JPT
language as a whole. Most of the published articles on PT used Java syntax
in the examples, but the information was fragmented across many articles,
and some parts of JPT had not been described in any of these articles.
Therefore, a significant part of my thesis work consisted of collecting this
information and presenting it. The result of this work is presented in
chapter 2 of this thesis.

Starting work on the compiler proved to be a challenge. Given the
complexity of the code base and the lack of documentation, it was hard
and time-consuming to understand how the compiler worked. Since there
were no developers working on the compiler at the time, I was mostly on
my own in getting to know the code base, without access to those who had
best knowledge of it.

The work of understanding the JPT compiler’s code base was further
complicated by the fact that it is an extension of the JastAddJ compiler,
which is a Java compiler built using JastAdd. JastAdd is a tool for building
extensible compilers. It contains mechanisms tailored for this purpose,
and uses special syntax for these mechanisms. Because of this, I had to
learn how JastAdd works before I could go into the details of the JPT
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compiler. The JPT compiler also uses some of the JastAdd mechanisms
in a slightly different way than they were intended, which also made the
learning process more complicated.

In the current compiler, the JPT part consists of around 12000 lines of
code for the compiler, and around 7000 lines of test programs. JastAddJ has
around 30000 lines of code in the parts that are relevant to the JPT compiler.
While it was not necessary to know the entire JastAddJ compiler to start
doing work on the JPT compiler, I had to understand some of it to make
any sense of how the JPT part of the compiler extends it.

Although the JastAddJ compiler is a complete Java compiler, generating
Java bytecode as its output, it was decided (before I started work on the
compiler) to have the JPT compiler output standard Java source code,
rather than bytecode. The code generated by the JPT compiler could then
be compiled to bytecode using a standard Java compiler.

The rest of this thesis is organized in the following way: In part 1
we will look at some necessary background information, with an in-depth
presentation of PT, as well as an introduction to JastAdd and the JastAddJ
compiler. Part 2 is where we explore the JPT compiler, its design and
implementation, and provide a presentation and some discussion of the
work I have done since taking over the task of developing it. There will
also be discussions on the decisions that were taken before my work started
on the compiler, and some ideas for future work.
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Background

5





Chapter 2

Package Templates

In standard Java, the package concept is a means for modularization of the
code, in the same way as e.g namespaces are for some other languages.
However, the flexibility of packages for reuse of code is not very good.
Introducing Package Templates is a proposal to improve this situation, by
moving the package one step towards a generic concept. Package templates
(or just “templates” for short) also allow adjustments of the generic code
each time it is used, so that even the same template can be used several
times with different adjustments in the same program. Each time we use a
template, we say that we instantiate the template.

PT is mainly targeted towards statically typed object oriented lan-
guages. It is meant to have good support both for writing flexible separate
modules, and for combining these. The composition of separate templates
and the program is done at compile-time. There has been some research
into using PT in a dynamically typed language called Groovy [3], but this
thesis will only focus on statically typed languages, and the PT implement-
ation described here is based on Java, and is called JPT.

Java packages that instantiate templates are called JPT packages, and
are written with a slightly different syntax than normal Java packages, see
Figure 2.1. Templates use the same syntax as JPT packages, only replacing
the package keyword with the template keyword.

In this chapter, we will see how JPT works, in mainly technical terms,
without much discussion of why the particular solutions were chosen.
While we will not go into any details of how the JPT compiler works until
chapter 4, some of the discussions in this chapter will make assumptions
that may be specific to how JPT is handled by the JPT compiler.

Java syntax JPT syntax

package P;

class A { ... }

class B { ... }

package P {

class A { ... }

class B { ... }

}

Figure 2.1: The difference between Java packages and JPT packages
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As mentioned in the introduction, the JPT compiler turns JPT programs
into standard Java. Some examples in this chapter will show how source
code in JPT will be transformed into standard Java. One can then use any
Java compiler to compile the transformed code into bytecode.

2.1 Templates

A template, in its simplest form, is created with the template keyword
followed by the name of the template and braces which enclose the
template’s body. A template T can be written and instantiated inside a JPT
package P as follows:

template T {

class A { ... }

class B { ... }

}

package P {

inst T;

class K { ... }

}

When a template is instantiated inside a package, copies are made of the
classes, interfaces, and enums in the template, and the copies are inserted
into the package, usually after some adjustments. The package may also
have its own classes, as shown by the class K in the above example.

When compiled with the JPT compiler, the resulting package P will
contain the classes A and B from the template T, as well as the class K. In
the resulting Java package, which is generated by the JPT compiler, it is,
in almost every respect, not possible to distinguish between classes from
the template and the classes defined in P. One can have more than one
instantiation in a JPT package (even of the same template, when using
renaming, as explained later).

A way of viewing the instatiation of templates, is to compare it to the
instantiation of classes. A class is like a template for objects. The analog
to instantiation of a class, is the generation of an object from the class.
A package template, on the other hand, can contain several classes, as
well as interfaces and enums. When it is instantiated, a copy of all these
classes, interfaces and enums are made available inside the package in
which the template is instantiated. As opposed to object generation from
classes, which is executed at run-time, template instantiations are executed
at compile-time.

Templates may also be instantiated inside other templates:

template T {

class A { ... }

class B { ... }

}

template U {

inst T;
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class K { ... }

}

package Q {

inst U;

}

The result here is first a template U that contains the classes A and B, as
defined in the template T, and in addition to these, the class K. When this
template is afterwards instantiated in the package Q, the package will be
identical to the package P from the previous example. So although the two
packages are created in different ways, the only difference between the two
resulting packages is their names.

Several adaptations of the template classes are possible when instantiat-
ing a template. The adaptations are applied to the copies of the classes and
interfaces made by the instantiation, not the original classes and interfaces
in the template. So if the template is instantiated in a package or another
template, previous adaptations will not disturb the new instantiations. The
following sections will describe each of the possible types of adaptations.

2.2 Addition classes

When a template is instantiated it is possible to make additions to its
classes, and these additions are described in the package or template it is
instantiated in. This is done by writing an addition class, with the same
name as the original class, which lists the additions (methods and fields)
that should be added. The resulting class is a combination of the original
class, as defined in the template, and the declarations in the addition class.
Note that in addition classes one can refer to all declarations within the
instantiating package/template, also those from other instantiations and
addition classes. Below is an example of an addition class.

template T {

class A {

void f() { ... }

}

}

package P {

inst T;

class A adds {

void g() { ... }

}

}

When the above JPT program is turned into standard Java, it would look
somewhat like the code in the following example:

package P;

class A {

void f() { ... }

void g() { ... }
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}

The result is similar to additions made in subclasses in a class hierarchy,
but the difference is that class A from the template is combined with the
(addition) class A from the package and there is no way to generate objects
of the old version of A. The methods and fields in the resulting class is
the union of the methods and fields from the class in the template and the
addition class.

Templates may contain entire subclass hierarchies, and all classes in
these hierarchies, not only the leaf classes, may get additions through their
own addition classes during an instantiation.

2.2.1 Addition interfaces

It is also possible to make additions to interfaces that are defined in a
template:

template T {

interface I {

void f();

}

class C implements I {

public void f() { ... }

}

}

package P {

inst T;

interface I adds {

void g();

}

class C adds {

public void g() { ... }

}

}

In the example above, the method g() is added to the interface I in package
P. As a result of this the class C in P also needs to add the method g() since
this method now occurs in the interface it implements.

2.2.2 Overrides in addition classes

Even if additions do not create a subclass hierarchy, a method in the
addition class may override methods in the template class. The overridden
method will only be available by using the special tsuper keyword, which
will be described in section 2.2.5. The example below shows an override in
the addition class.

template T {

class A {

void f() {
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System.out.println("In template");

}

void g() {

f();

}

}

}

package P {

inst T;

class A adds {

void f() {

System.out.println("In package");

}

void h() {

f();

}

}

}

In the example above, the f() method from the template is overridden by
the f() method in the addition class. As a result both g() and h() will call
the f() method in the addition class.

2.2.3 Subclass hierarchies and overrides

With class hierarchies, methods may be overridden both in subclasses and
in addition classes. For these situations, well defined rules are needed to
describe how these overrides work. If a method f() is called inside an
addition class, and there exists a definition of f() both in a superclass and
in the class that is being added to (called the tsuper class), the method in
the class that is being added to is the one that is called.

The following example, combining overrides in subclass hierarchies
with overrides in addition classes, shows how this works.

template T {

class A {

void f() {

System.out.println("in T.A.f()");

}

}

class B extends A {

void f() {

System.out.println("in T.B.f()");

}

}

}

package P {

inst T;

class A adds {
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void f() {

System.out.println("in P.A.f()");

}

}

class Main {

public static void main(String[] args) {

new A().f();

new B().f();

((A) new B()).f();

}

}

}

When running the above example, the call new A().f() will print “in
P.A.f()”, as the f() method in the original A class has been overridden in
the addition class in P. The call new B().f() will print “in.T.B.f()”. The
override in the addition class A does not override the f() method in class B.
The call ((A) new B()).f() will also call the f() method in class B, showing
that polymorphism works for the class hierarchy.

2.2.4 Template abstract (tabstract) methods

Classes in Java may have abstract methods, which are expected to be
implemented in subclasses. In addition, a similar concept is available
in JPT. A method may be declared template abstract with the keyword
tabstract. This means that it has to be implemented in an addition class
upon instantiation of the template in a package. It may also be implemented
in an addition class in a template, but as long as it is implemented at the
latest in the package(s) that instantiates the template, it is not required.

template T1 {

class C {

tabstract void i();

tabstract void j();

}

}

template T2 {

inst T1;

class C adds {

void j() { ... }

tabstract void k();

}

}

package P {

inst T1;

inst T2 with C => C2;

class C adds {

void i() { ... }

void j() { ... }
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}

class C2 adds {

void i() { ... }

void k() { ... }

}

}

The example above shows how to use the tabstract keyword, and both
templates contain classes with template abstract methods. Template
abstract methods may be implemented in addition classes in other
templates, but templates are not required to implement them. In the
example, template T2 implements the j() method, but leaves the i()

method as template abstract. It also adds another template abstract
method, k(). The package P is required to implement all template abstract
methods.

This is similar to abstract methods in a class. If a class contains
abstract methods it is an abstract class, and a subclass must provide
an implementation of this method if you want to generate objects of it.
However, a tabstract method does not prohibit generation of objects, as we
can be sure that it is implemented at the latest when a package is formed.

2.2.5 Calls to the original method

In some cases of overriding in addition classes we may want to call a
method in the original class from its addition class. This is similar to
calling a method in a traditional superclass from its subclass using the
super keyword, but in our case we must use the tsuper keyword. Instead
of calling a method in a superclass, tsuper calls a method in a class in its
“super-template”.

In the following example, the method f() in class A gets overridden in
the instantiating package. The overriding method then calls the original
method, the one defined in the template T, by using the tsuper keyword.

template T {

class A {

void f() { ... }

}

}

package P {

inst T;

class A adds {

void f() {

tsuper.f();

...

}

}

}

13



2.3 Renaming

When instantiating a template, the original naming of its classes, fields, and
methods may not reflect their specific usage where it is instantiated. Thus
it is an advantage to be able to rename them. JPT allows for this kind of
renaming in the instantiation clause.

A renaming is done in a “semantic way”, which is to first find the
declaration that should be renamed, then find all accesses bound to this
declaration, and then rename all of these.

One example of where renaming is useful, as described in [11], is when
using a template to write a general implementation of a graph. This graph
contains a class for nodes and a class for edges. When using these classes
for something specific, like a map containing cities and roads, the code
becomes more readable if we are able to rename these classes. The Node

class could be renamed to City, and the Edge class could be renamed to
Road.

2.3.1 Renaming classes

All renaming follows the keyword with in an instantiation statement.
Several classes may be renamed by separating the rename clauses with a
comma. The following example renames two classes from a template and
leaves a third one as it was defined in the template.

template T {

class A { ... }

class B { ... }

class C { ... }

}

package P {

inst T with A => D, C => E;

class D adds { ... }

class B adds { ... }

}

This leaves the package P with the three classes D, E and B. The names A

and C are not valid names in P. Also note that the addition classes must use
the new names. Trying to add methods and fields to A using the statement
class A adds { ... } would result in a compile time error, since A is not a
valid class name in P.

Note that the constructors of a class are renamed along with the class
itself, and so are all occurences in new-statements, in extends clauses, and in
type-casts in the instantiated template.

template T {

class A {

void f() { ... }

}

class B extends A {

void f() {
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super.f();

}

A getA() {

return new A();

}

A getB() {

return (A) new B();

}

}

}

package P {

inst T with A => NewA(f() -> g);

class NewA adds {

void f() { ... }

}

}

In this example, B becomes a subclass of NewA in P, and the name A will no
longer be valid. In the method getA(), the new A() statement will in P be
changed to new NewA(), and in getB(), the cast to A will be changed to a cast
to NewA. The f() method in B is an override of the f() method in A. In NewA,
this method has been renamed to g(), and, as such, the f() method in B will
also be renamed to g(). The new f() method declared in the addition class,
is independent of the methods in A and B, and will keep its name. Note that
the above code would cause the JPT compiler to give error messages about
the new statements, as a certain detail is missing. There will be more about
that in section 2.8.

2.3.2 Renaming methods and fields

Methods and fields may also be renamed. The renames are done in a
parentesis after the class rename in the instantiation clause. If you do not
want to rename the class, but want to rename some of its fields or methods,
it is possible to “rename” a class to its old name. An example is provided
below.

template T {

class A {

int i;

void f() { ... }

void g() { ... }

}

class B {

int j;

void u() { ... }

void v() { ... }

}

}

package P {
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inst T with A => A(i -> k, f() -> ff),

B => C(v() -> vv);

}

In the example above, package P will contain two classes; A and C. Class
A will contain the field k and the methods ff() and g(), and class C will
contain the field j and the methods u() and vv().

As seen in the previous example, method renames require the original
method name to be followed by parentheses containing the parameter
types. This is to allow for renames of specific methods when there are
overloaded methods. However, instead of writing a rename clause for
each of a number of methods with the same name, it is possible to use the
wildcard character (*) inside the parenthesis, to indicate that all methods
with this name should be renamed regardless of parameters. An example
of this kind of method renaming is shown below.

template T {

class A {

void f() { ... }

void f(int i) { ... }

void f(double d) { ... }

void h() { ... }

}

}

package P1 {

inst A with A => A(f() -> g, f(int) -> g);

}

package P2 {

inst A with A => A(f(*) -> g);

}

Now class A in package P1 has got the methods g(), g(int i), f(double d)

and h(). In package P2, all methods originally named f are renamed to g,
while h remains the same. So the resulting class A in package P2 contains
the methods g(), g(int i), g(double d) and h().

There are two additional rules concerning which renamings are legal.
One says that renaming a field or method must not result in a name
collision. The other says that fields and methods must be renamed at the
subclass level where they are defined. For (virtual) methods this means
that they must be renamed at the subclass level with the first occurrence of
the method, i.e the one highest up in the hierarchy. The corresponding
overrides will then also be renamed by the compiler. The following
example shows violations of these rules:

template T {

class A {

void f() { ... }

}

class B extends A {

void f() { ... }
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void g() { ... }

void h() { ... }

}

}

package P {

inst T with B => B (f() -> ff, g() -> h);

}

The instantiation clause tries to rename the f() method in class B to ff().
However, as it is not done in A, where it first appeared, it is not allowed.
Continuing to the next renaming, the method g() is renamed to h(). Since
there already exists a method named h in class B, the renaming leads to a
name collision, and thus, is not allowed. The next example shows how one
can resolve the errors in the instantiation clause.

package P {

inst T with A => A (f() -> ff),

B => B (g() -> h, h() -> hh);

}

Here, the f() method is renamed in class A. The compiler will recognize
that the method f() in class B is an override, and thus rename it so it has
the same name as the method it is overriding. In class B, the method g() is
still renamed to h(), but in this instantiation clause, the method h() is also
renamed, so there is no name collision.

2.4 Class hierarchies, super, and tsuper

To understand the concepts of super and tsuper better, one may visualize
a number of templates and a package instantiating them (directly or
indirectly) as a graph lining up the classes from the packages and templates
in two dimensions, where calls to super goes upwards and calls to tsuper

goes to the left. Take the following example:

template T {

class TA { ... }

class TB extends TA { ... }

class TC extends TB { ... }

}

template U {

inst T with TA => UA, TB => UB, TC => UC;

class UA adds { ... }

class UB adds { ... }

class UC adds { ... }

}

package P {

inst U with UA => A, UB => B, UC => C;

class A adds { ... }

class B adds { ... }

class C adds { ... }
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}

Figure 2.2 shows the relationships between these classes and addition
classes. Note that in this figure, all the classes and their addition classes
are drawn separately. Figure 2.3 sketches how this system of templates
and instantiations will finally appear in P. Here, all that remains of the
two dimensional hierarchy has become a simple class hierarchy, like the
following:

package P;

class A { ... }

class B extends A { ... }

class C extends B { ... }

Note that everything from T is renamed twice (TA=>UA=>A, TB=>UB=>B, and
TC=>UC=>C), and everything from U is renamed once (UA=>A, UB=>B, and
UC=>C).

Figure 2.2: A two dimensional class hierarchy. Each class and addition
class is drawn inside its template or package, with a vertical arrow
pointing to its superclass, and a horizontal arrow pointing to its
tsuperclass.

2.4.1 Constructors using tsuper

In some well defined cases (see below) the JPT language requires that you
call a constructor in a template class from a constructor in a corresponding
addition class. JPT provides special syntax for this, as shown below.

template T {

class C() {

C() {

System.out.println("Constructor in template T.");

}
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Figure 2.3: A more compact view of the class hierarchy from Figure 2.2.

}

}

package P {

inst T;

class C adds {

C() {

tsuper();

System.out.println("Constructor in package P.");

}

public static void main(String[] args) {

new C();

}

}

}

Compiling and running the above example would first print the line
“Constructor in template T.”, then print the line “Constructor in package
P.”.

In Java, calls to the superclass’s constructor must be done using the
super() statement in the first line of a class’s constructor. However to avoid
multiple calls to constructors in the same addition class, the following rules
apply:

• In an addition class in a template you should not call super(), but
instead call tsuper() for the tsuper class.

• In an addition class in a package, you should first call super(...), and
then call tsuper(...) for the tsuper class.

Thus, calls to constructors using tsuper() will happen after calls to
super(). In a class hierarchy like the one in Figure 2.2 calls to the
constructors in each class and addition class using super() and tsuper()

would take the form of a backwards “E”(∃).
Figure 2.4 shows an overlay over the class hierarchy in Figure 2.2. The

constructors are represented as numbered circles. When the constructor in
C is called, the following happens:
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• The super() call in C’s constructor calls the constructor in B.

• The super() call in B’s constructor calls the constructor in A.

• There is no super() call in A’s constructor, so UA’s constructor is called
with tsuper().

• UA’s constructor calls TA’s constructor using tsuper().

• In TA’s constructor there are no calls to tsuper() or super(), so the rest
of the statements in the constructor are executed.

• When TA’s constructor has finished, the rest of UA’s constructor runs.

• When TA’s constructor has finished, the rest of A’s constructor runs.

• When A’s constructor has finished, the super() call in B’s constructor
returns. Then B’s constructor will continue with the tsuper() call to
UB’s constructor, and the calls continue for B’s tsuper classes in the
same way as with the tsuper() call from A’s constructor.

• When B’s constructor has finished, C’s constructor will do the same
by calling tsuper() before, finally, finishing with its remaining
statements.

Figure 2.4: Each circle represents a constructor call, with the number
denoting which order the constructors are finishing their execution.

2.5 Multiple instantiations

It is possible to instatiate a given template several times in another template
or in a package. Some of the names of the classes in each instantiation then
need to be changed, so that name collisions between the instantiations are
avoided. The instantiations are independent of each other, so a class from
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one instantiation looks like any other class to the corresponding class in the
other instantiation.

The following example defines a package with two instantiations of the
template T:

template T {

class A { static int i; ... }

}

package P {

inst T;

inst T with A => B;

class A adds { ... }

}

In the package P, the template is instantiated twice, with one of the
instantiatons renaming the class A. The resulting package contains the
classes A and B which, although they are instantiated from the same class
in the same template, are independent of each other, just as if they were
written separately. Note that the static member of A is repeated for each
instantiation; setting A.i does not affect the value of B.i.

2.6 Merging

We have stated above that we must avoid name collisions during renaming
and multiple instantiations. However, there is one exception to this rule,
which is that classes are allowed to have the same name. Then these classes
are merged to one class (as explained below) with the actual name. Mostly,
merging is done with classes from different templates, but it is possible to
merge classes from the same template also.

It is not possible to merge fields and methods, so name collisions
between fields and methods inside the merged classes must be avoided
by renaming. This is done as described in section 2.3. Figure 2.5 shows an
example of a hierarchy containing merged classes.

template Merge1 {

class M1 {

int i;

void f() { ... }

void g() { ... }

int h() { ... }

}

}

template Merge2 {

class M2 {

int i;

void f(int i) { ... }

void g() { ... }

double h() { ... }

}
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Figure 2.5: A two dimensional class hierarchy containing merged
classes. Template V instantiates the templates T and U drawn in the
same style as Figure 2.2. The class TB from template T and the class UA

from the template U are merged to form the new class VB.

}

package P {

inst Merge1 with M1 => M(g() -> gg);

inst Merge2 with M2 => M(i -> j, h() -> hh);

}

In the example above the classes M1 and M2 are merged into the single class
M. There are potential name collisions that must be resolved during the
instantiations:

• The collision between M1.i and M2.i is resolved by renaming M2.i to
M2.j.

• The collision between M1.g() and M2.g() is resolved by renaming
M1.g() to M1.gg().

• The collision between M1.h() and M2.h() is resolved by renaming
M2.h() to M2.hh().

Note that the methods named f do not cause collisions because the int

parameter in M2.f(int i) makes it different from M1.f().
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2.6.1 Constructors in merged classes

With merging, the scheme for calling constructors becomes slightly more
complicated. Then the regular syntax using a call to tsuper() will not work
because it is ambiguous. To solve this, there is a special syntax for this case:

template T1 {

class A1 {

A1() { ... }

}

}

template T2 {

class A2 {

A2() { ... }

}

}

package P {

inst T1 with A1 => A;

inst T2 with A2 => A;

class A adds {

A() {

tsuper[T1]();

tsuper[T2]();

}

}

}

This works in most cases, but in one case it doesn’t work, and that is when
we merge two classes from the same template. In this case we need to use
named instantiations. The following example shows how this works.

template T {

class C { ... }

}

package P {

T1: inst T;

T2: inst T;

class C adds {

C() {

tsuper[T1]();

tsuper[T2]();

}

}

}

2.7 Hierarchy preservation

PT was explicitly designed so that the underlying object oriented language
should not need multiple inheritance. Thus, class merging introduces a
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problem as we could merge classes that have different superclasses and
thus get a class with multiple superclasses. To avoid this, a rule in PT says
that if classes to be merged have different superclasses (the Object class is
not taken into consideration in this case; it is defined as being equal to all
other classes), then their superclasses must also be merged during the same
instantiations. The following example shows this.

template T1 {

class A { ... }

class AA extends A { ... }

class C { ... }

}

template T2 {

class B { ... }

class BB extends B { ... }

class D { ... }

class E extends D { ... }

}

package P {

inst T1 with A => AB, AA => AABB, C => CE;

inst T2 with B => AB, BB => AABB, E => CE;

}

As seen above, the classes AA in T1 and BB in T2 both have explicit
superclasses, so when they are merged, their superclasses must also be
merged by giving them the same name. The class C in T1 does not have
an explicit superclass, so it will have the Object class as its superclass. As
shown in the example, this does not need an explicit merge of superclasses
when it is merged with the E class. However, the resulting class CE will
have D as its direct superclass, not Object.

2.7.1 External superclasses

The rule that superclasses of merged classes should also be merged is
obviously not enforceable for superclasses external to the template itself
(that is, in other packages), as these classes might also be used in other
parts of the program. As a consequence of this, some additional rules are
needed for external superclasses:

1. A class which extends an external class must say extends external,
not only extends.

2. Names from the external superclass may not be changed.

3. Two classes with different external superclasses may not be merged.

4. Two classes where one has an internal superclass and the other has
an external superclass may not be merged.
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2.8 Assumed constructors

To create new objects of a template class inside a template, we need to be
certain that a constructor matching the new statement will exist in that class
when it finally is instantiated in a package. In JPT this problem is solved
with the assumed keyword. Consider the following example:

template T {

class C {

assumed C();

assumed C(int i);

void f() {

C c = new C();

...

}

void f(int i) {

C c = new C(i)

...

}

}

}

package P {

inst T;

class C adds {

C() { ... }

C(int i) { ... }

}

}

Here, the methods named f() each generates a new object of type C. The
assumed keyword makes sure that the needed constructors exist, otherwise
one will get a compile-time error. In package P, the addition class is
required, since it must provide the constructors.

2.9 Required types

There are two kinds of generic parameters to packages in JPT: type
parameters and template parameters. Type parameters allows for formal types
to be given actual types during instantiation inside a template. Template
parameters make it possible to pass a template as a parameter to another
template. Template parameters will be explained in section 2.10.

In earlier versions of JPT, type parameters were passed into a template
in a way similar to generics in Java. This was later replaced by the required
types mechanism, due to certain limitations with the original approach [4].

2.9.1 Concretization of required types

When instantiating a template with required types, the required type
may be concretized in the inst statement by using the left pointing arrow
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operator, <=. Upon instantiation in another template, it is not necessary to
concretize a required type, but required types must be concretized at the
latest when their template is instantiated in a package. Below follows an
example which shows how to declare required types in a template and how
to concretize them in an instantiation.

template T {

required type R {

int f();

}

class C {

int g(R r) { ... }

}

}

template T2 {

inst T;

}

package P {

inst T2 with R <= A;

class A {

int f() { ... }

}

class Main {

public static void main(String[] args) {

A a = new A();

C c = new C();

int i = c.g(a);

...

}

}

}

In the above example the required type R is concretized by the class A. So
when the g() method in class C is called from the main method, the actual
parameter has type A, and will therefore use the method f() from the class
A. Note also that the required type is not concretized in template T2, and
because of that it will still be a required type in T2. However, when T2 is
instantiated in a package (here P), it must be concretized. The class A could
also have concretized R if it had been defined in an external package, or in
T or T2.

The required type in template T or T2 could just as well be concretized
by an interface. Below is another example which, among other things,
shows this.

template T {

required type R {

int f();

}

class C {

int g(R r) {
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return r.f() + 1;

}

}

}

package P {

inst T with R <= I;

interface I {

int f();

}

class A implements I {

int f() { ... }

}

class B implements I {

int f() { ... }

}

class Main {

public static void main(String[] args) {

A a = new A();

B b = new B();

C c = new C();

int i = c.g(a);

int j = c.g(b);

...

}

}

}

Here, the interface I concretizes the required type R, and because both class
A and class B implement I, both are valid parameters to the g() method.

2.9.2 Required type constraints

Required types may be constrained by naming a type, by giving structural
constraints, or both.

template T {

interface I {

void f();

}

required type R1 {

void f();

}

required type R2 implements I {}

required type R3 implements I {

void g();

}

}

package P {

inst T with R1 <= C, R2 <= C, R3 <= C;
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class C implements I {

public void f() { ... }

void g() { ... }

}

}

In the example above, the class C satisfies all constraints set by the required
types in T, and because of that it may concretize all of them. To satisfy
R1 it would be enough for C to contain an implementation of a method
named f() with no return type. R2 must be concretized by a type which
implements the interface I. It is not enough to provide the f() method,
it must also explicitly implement I. For R3 the concretizing type must
explicitly implement I and provide the method g().

2.9.3 Required classes and required interfaces

As shown earlier, using the required type statement puts no restriction
on whether the concretizing type is a class or an interface. Sometimes,
however, it may be necessary to impose such a restriction. An example of
when a required type needs to be a class, is when objects are created from
the required type. If a class implements the required type, the required type
must be an interface.

To enforce these restrictions JPT contains the declarations required class

and required interface. An example of their usage is provided below.

template T {

required interface I {

int i();

}

required class C {

int j();

}

class A {

int add(I i) {

return i.i() + (new C).j();

}

}

}

package P {

inst T with I <= II, C <= CC;

interface II {

int i();

}

class CC {

int j() { ... }

}

class B implements II {

public int i() { ... }

}
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class Main {

public static void main(String[] args) {

B b = new B();

A a = new A();

int i = a.add(b);

}

}

}

Here, the interface II concretizes the required interface I and the class
CC concretizes the required class C. Trying to concretize I with a class, or
concretize C with an interface, would result in a compile time error.

2.9.4 Default concretization

In some well defined cases, it is allowed to not concretize a required type
upon instantiation in a package. If the required type not being concretized
is a required interface, it is then automatically concretized to an interface
without any changes. For classes, this would not be as straightforward.
Only if a required class is constrained nominally by another class, without
adding any new methods, will it get such a default concretization. In that
case this default concretization would be the class which constrains the
required class.

In the example in section 2.9.3, the II interface does not add anything
new to the required interface it concretizes. The required type could just as
well be used directly as a default concretization.

2.9.5 Required type constructors

In Java it is not possible to generate objects of a generic type in a simple
way. If a required type is resolved in the currently compiled template or
package, the compiler knows which type concretizes that required type.
As a result of this it is possible to generate objects of a required class, but
the class must then specify a constructor.

template T {

required class R {

R(int i);

}

class A {

public static void main(String[] args) {

R r = new R(42);

}

}

}

package P {

inst T with R <= C;

class C {

C(int i) {
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System.out.println(i);

}

}

}

As shown in the example above it is possible to instantiate objects of the
required class R, as its constructor is explicitly required to be implemented
in the concretizing class. During concretization all mentions of R are
replaced by C. This means that the statement new R(42) is transformed into
new C(42) inside the package P. Note that, as opposed to constructors in
regular template classes, no assumed keyword is necessary in a required
class.

2.9.6 Additions to required types

A template which instantiates a template containing a required type
without concretizing it, may make additions to the required type. This is
done in a way very similar to addition classes. An example is shown below.

template T1 {

required type R {

void f();

}

}

template T2 {

inst T1;

required type R adds {

void g();

}

}

Any type that concretizes R from template T2 must now provide both an
f() and a g() method.

2.9.7 Merging of required types

Required types may also be renamed, and as such, they may also be merged
by giving two or more required types the same name during a set of
instantiations. As opposed to renaming in ordinary merging, there is no
need to resolve name collisions when merging required types.

template T1 {

required type R1 {

void f();

void g();

}

template T2 {

required type R2 {

void g();

void h();
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}

}

template T {

inst T1 with R1 => R

inst T2 with R2 => R;

}

package P {

inst T with R <= C;

class C {

void f() { ... }

void g() { ... }

void h() { ... }

}

}

As shown in the example above, the required type R contains all the
methods from R1 and R2. The signatures of the g() methods are identical,
and because of that, R contains only one method named g(). There is no
need to resolve the names when merging, since there is no implementation
in either of the merged required types, so this will work much like multiple
inheritance for interfaces.

2.10 Template parameters to templates

In addition to required types, templates may also have template parameters.
Template parameters allow us to write generic code which will work for
several templates.

Templates may declare formal template parameters inside angular
brackets in the template declaration. The actual template parameters may
then be given during an instantiation. A simple example follows.

template T {

class C {

int i() { ... }

}

}

template V <template TT subof T> {

inst TT;

inst TT with C => CC;

class C adds {

int k() { ... }

}

}

Here, TT is a formal template parameter, and the actual parameter for TT

must be a “sub-template” of T, i.e a template given as an actual parameter
for TT must instantiate T in a special way.

To satisfy the subof requirement on a template parameter, we use the
subof keyword in the template declaration. An example follows below.
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template T {

class C {

int i() { ... }

}

}

template U subof T {

class C adds {

int j() { ... }

}

}

With this construct the template U has an implicit instantiation of the
template T. U may also expand the class C with an addition class, just as it
could have done if it had a normal instantiation of T. However, as opposed
to normal instantiations, when a template is implicitly instantiated, there is
no way to rename anything inside it. If this was possible, it would defeat
the purpose of the subof concept, because we want this declaration to be a
guarantee that the template U contains, at least, the exact contents of T.

More than one template may occur after the keyword subof in a
template heading. Since we cannot change names in these templates
it follows that any name collisions between the classes in the templates
named as bounds are forbidden. The following example shows the syntax
used for more than one implicit instantiation.

template T1 {

class C {

int i() { ... }

}

}

template T2 {

class D {

int j() { ... }

}

}

template U subof T1, T2 {}

The template U can now be used as an actual template parameter to both

template V <template G subof T> { ... }

and

template W <template H subof U> { ... }

This concludes the presentation of the JPT language in this thesis,
but there are still rules and corner cases in the language that we have
not touched upon. However, what is presented here should be quite
comprehensive, and should indeed be enough for understanding the rest
of the thesis.
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Chapter 3

JastAdd and JastAddJ

The JastAdd system is developed at Lund University in Sweden by Görel
Hedin and her research group. Several articles (among them [7], [8], and
[10]) have been published about JastAdd and about other systems built
using JastAdd.

JastAdd is a compiler building system where you describe nodes of
abstract syntax trees (AST’s) and extend them with attributes for forming
an attribute grammar. One of the benefits of JastAdd is that when you
use it to build a compiler, this compiler may later be extended without
making changes to the old code. The new code which extends the old is
kept separate.

When describing the nodes of an AST with their attributes, one uses a
special declarative language defined for JastAdd. The AST nodes become
classes, and their attributes may be accessed through “get” and “set”
methods. The AST node classes form a class hierarchy with the system
defined ASTNode class as the top-level superclass.

JastAdd supports the use of third-party scanner generators and parser
generators. These will build AST’s by generating objects of the AST node
classes generated by JastAdd.

JastAdd supports inherited and synthesized attributes, as well as reference
attributes. The calculations which determines the value of each attribute are
given in attribute declarations.

The attribute declarations and the evaluation of their values are given
to JastAdd through aspects. Aspects provide a way of gathering all code
related to one given concept in one place, regardless of which class it will
eventually end up in. So code from an aspect may span several classes,
and classes may contain code from several aspects. An example showing
aspects in use is given in section 3.1.

When JastAdd generates the node class hierarchy it will weave all the
aspects together. This means that it will take code from the aspects and
place it in the node classes. In the end, all the generated code will be
standard Java code.

Compilers built using JastAdd may easily be extended. Scanner tokens
may be added by writing additional description files for the scanner,
and the parser may be extended by writing additional grammar rule
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descriptions. Extending the AST is done in the same way, by adding
additional AST descriptions. And, finally, the attribute grammar may be
extended by writing additional aspects, or by writing extensions to the
aspects that already exist.

JastAddJ is a Java compiler built using JastAdd. Its base is a Java 1.4
compiler. Support for Java 1.5 is built upon the Java 1.4 compiler, only
adding what is different from Java 1.4 to Java 1.5. Java 7 is then supported
by extending the Java 1.5 compiler.

In this chapter, two kinds of hierarchies are described, the AST, built for
each compiled program by the compiler, and the class hierarchy describing
the nodes of the AST. Therefore it is important to differentiate beetween
child nodes in the AST and subclasses. Nodes in the AST may have child
nodes, but these child nodes are usually not objects of subclasses of their
parent AST node.

Some parts of JastAdd will not be discussed here. We will stick to what
is relevant for the rest of this thesis. Also, some examples given in this
chapter may not be directly relevant to the JPT compiler.

3.1 Aspects

Aspects provide a way of grouping code together by functionality rather
than grouping it together by which class the code belongs to. This means
that code implementing functionality that is provided by several classes
can be written in one aspect instead of spreading it across many different
files.

To demonstrate how this works in JastAdd, we will define an AST node
class hierarchy of numbers, where the root node is a class called Number

which has two subclasses, named Integer and Float. The hierarchy is
shown in Figure 3.1. The classes in the hierarchy are described outside
of the aspects, so the aspects only expand existing classes. In JastAdd the
classes are described using a special language described in section 3.3.

Figure 3.1: A simple AST node class hierarchy.

If we wanted to create a simple calculator which could do additions
using the Number classes, we would need to add methods to the classes.
A way of doing this using standard Java would be to write methods that
would do additions in the code of each of the classes. When using aspects,
all those methods can be grouped into one file, even if they eventually end
up inside the different classes. The code example below shows how this
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could be done. Note that the code in this example is a simplified version of
a JastAdd aspect.

aspect Add {

abstract Number Number.add(Number x, Number y);

Number Integer.add(Number x, Number y) {

return x.intValue() + y.intValue();

}

Number Float.add(Number x, Number y) {

return x.floatValue() + y.floatValue();

}

}

In this example each of the method names (here, all are named “add”) are
qualified by the name of the class it is supposed to end up inside (Number,
Integer, and Float). When the aspect is weaved, the resulting Java code for
the AST nodes for the Number class and its subclasses will look something
like this:

abstract class Number {

...

abstract Number add(Number x, Number y);

}

class Integer extends Number{

...

Number add(Number x, Number y) {

return x.intValue() + y.intValue();

}

}

class Float extends Number {

...

Number add(Number x, Number y) {

return x.floatValue() + y.floatValue();

}

}

The aspects are placed in .jadd and .jrag files. Although the JastAdd
system treats these two kinds of files the same way, it is recommended to
use these different file types in special ways to make it clearer what the
content of a file contributes to the system. The JastAdd reference manual
[2] describes their difference in the following way:

• Use .jrag files for declarative aspects, i.e., where you add attributes,
equations, and rewrites to the AST classes

• Use .jadd files for imperative aspects, i.e., where you add ordinary
fields and methods to the AST classes
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abstract Expr;

abstract AssignExpr : Expr ::= Dest:Expr Source:Expr;

abstract AssignAdditiveExpr : AssignExpr;

AssignPlusExpr : AssignAdditiveExpr;

AssignMinusExpr : AssignAdditiveExpr;

Figure 3.2: Part of the AST description file in JastAddJ

3.2 Attributes

Attributes in JastAdd can be declared as inherited or synthesized using the
inh and syn keywords, respectively. When an attribute is declared as
inherited in an AST node class A, each AST node class which may have
a child node of type A must also define this attribute. When an attribute is
declared as synthesized in an AST node class A, each concrete subclass of A
must provide a definition for the attribute.

Also, the value of a synthesized attribute may depend only on the
value of the corresponding attribute in the child nodes. Likewise, inherited
attributes can only depend on the value of this attribute in the parent
nodes (with a few exceptions). In JastAdd, it may be easier to think of
the difference in terms of where the attribute calculations are described.
So when a node has an inherited attribute, this attribute is calculated and
set by a node further up in the AST, and when a node has a synthesized
attribute, this attribute is calculated and set by a node further down in the
AST node class hierarchy.

Attribute calculations may not have side-effects. The reason for
this is that JastAdd needs a guarantee that the order of the attribute
calculations should not matter. JastAdd also uses caching of calculated
values extensively, so having side-effects would make the compilers which
are built by JastAdd less efficient, as possible caching would be limited by
this.

3.3 Creating and extending the AST description

As described earlier, the AST which is built by JastAdd has an object
oriented structure. All nodes in the AST are objects of classes in a subclass
hierarchy with the class ASTNode as root. The node classes are defined in one
or more files using a special syntax to describe the tree. Figure 3.2 shows
an example taken from the Java 1.4 frontend of JastAddJ. JastAdd translates
this into a simple class hierarchy where inheritance is denoted by a colon
followed by the name of the superclass. The ::= operator allows us to
specify attributes of the node class. Set and get methods will be generated
for all these attributes. Figure 3.3 shows the resulting class hierarchy as
a UML diagram. Extending the AST can easily be done by adding a file
containing more AST descriptions, like those shown above. AST nodes
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Expr

AssignExpr
getDest():Expr
setDest(node:Expr):void
getSource():Expr
setSource(node:Expr):void

AssignAdditiveExpr

AssignPlusExpr AssignMinusExpr

Figure 3.3: Class hierarchy of the additive expressions in JastAddJ’s
AST

from other files are available in the new file, so only the new AST nodes
must be described.

3.4 Extending functionality with jadd and jrag files

If we want to add a method called toString() to the classes generated
by the AST description shown in Figure 3.2, this should be done inside
a jadd file, since it would be an imperative addition to the class. The
following example shows how this could be done inside an aspect called
StringAddition.

aspect StringAddition {

public String Expr.toString() { return ""; }

public String AssignPlusExpr.toString() {

return getDest().toString() + "+=" + getSource().toString();

}

public String AssignMinusExpr.toString() {

return getDest().toString() + "-=" + getSource().toString();

}

}

As mentioned earlier, the method names in these files are preceeded
by the name of the class they belong to. JastAdd will then add the
method to its class when weaving the aspects. The classes AssignExpr and
AssignAdditiveExpr inherit the method from Expr while AssignPlusExpr

and AssignMinusExpr override it with their own definitions.
To avoid code duplication, we could add a method returning just the

operator string. This would be an attribute, and should thus be placed in a
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jrag file.

aspect OperatorString {

syn String AssignExpr.operatorString() = "";

eq AssignPlusExpr.operatorString() = "+=";

eq AssignMinusExpr.operatorString() { return "-="; }

}

Here we are adding a new synthesized attribute called operatorString to
AssignExpr. The subclasses of AssignExpr may override this attribute with
their own value. Attribute calculations may be given using a special short
form, as in AssignExpr and AssignPlusExpr, or like an ordinary method, as
is the case for AssignMinusExpr.

Using this new attribute, we may now modify the StringAddition

aspect.

aspect StringAddition {

public String Expr.toString() { return ""; }

public String AssignExpr.toString() {

return getDest().toString()

+ operatorString()

+ getSource().toString();

}

}

Here we avoid duplicating the code in AssignPlusExpr and AssignMinusExpr

by moving the implementation into their superclass.

3.4.1 Collections

JastAdd includes a mechanism for defining named collections of nodes. A
collection is declared as an attribute of a node class (using the keyword
coll), and the collection gets its contents by nodes contributing to it.
Continuing the example from above, if we wanted the AssignExpr node
to contain a collection of its AssignPlusExpr child nodes, we could use the
following collection attribute.

aspect AssignPlusCollection {

coll LinkedList<AssignPlusExpr> AssignExpr.getAssignPlusExprs()

[new LinkedList<AssignPlusExpr>()]

with add root AssignExpr;

AssignPlusExpr contributes this

when getParentClass(AssignExpr.class) != null

to AssignExpr.getAssignPlusExprs()

for getParentClass(AssignExpr.class);

}

The first line in the aspect declares the attribute using the coll keyword.
The statement inside brackets in the second line is the initialization of the
collection. The first call to getAssignPlusExprs will run this statement to
initialize the collection. The third line tells JastAdd to use the add() method
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when adding elements to the collection, and sets the root of the subtree
which is searched to find the elements to put into the collection. When
JastAdd computes the collection, it will first search upwards in the AST,
starting at the current AssignExpr node, and stopping at the first appearance
of a node of the root type. In this case the root is also AssignExpr, so the
search for the root will stop immediately. When the root has been found,
the search continues downwards the AST, looking for contributors.

The contribution statement tells JastAdd that all nodes of type
AssignPlusExpr in the subtree should be added to the collection. The when

statement is used to set conditions for when a node should be added to
the collection. In this case we only verify that there is an AssignExpr node
above the AssignPlusExpr node in the AST. The to keyword tells JastAdd
which collection to add the node to, and the for keyword tells JastAdd
which class holds the collection to add to. The getParentClass is a method
in every AST node which can be used to find a class above the current class
in the class hierarchy.

3.4.2 Rewrites

Sometimes it is useful to be able to rewrite, i.e transform, an AST, and a
mechanism that does this exists in JastAdd. As an example we introduce
another AST definition, which describes a simple AST:

abstract Expr;

abstract Binary : Expr ::= Left:Expr Right:Expr;

AddExpr : Binary;

IntegerLiteral : Expr ::= Value:Integer;

When the compiler finds an instance of an AddExpr where both the left and
right operand are integer literals, it is possible to optimize the generated
code by calculating the value at compile time. This can be done by using
JastAdd’s rewrite mechanism. The following example shows how this is
done.

rewrite AddExpr {

when (getLeft() instanceof IntegerLiteral &&

getRight() instanceof IntegerLiteral)

to IntegerLiteral {

int newValue = getLeft().getValue() + getRight().getValue();

return new IntegerLiteral(newValue);

}

}

The AddExpr node will now be replaced by the new IntegerLiteral node in
the AST.

Rewrites are initiated when a node is accessed in the following way:
In the root class of the AST, ASTNode, there is a method, called getChild,
which will get a child of the node it is called from. When it is called, the
getChild method first checks if the child node has any rewrites defined.
Each of the rewrites will have certain prerequisites (defined using the when
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keyword) that must be satisfied before they can be done. If there are
any rewrites where these prerequisites are satisfied, they are run before
returning a reference to the child node. If a rewrite takes place, the node
which is returned may be a different node than the original child node.
In the example above, when getting a reference to a child node of type
AddExpr, the getChild method will return a reference to a node of type
IntegerLiteral if both operands are IntegerLiteral objects.

3.4.3 Refines

When extending a compiler built by JastAdd, it may be useful to be able
to make changes to attribute calculations. The refine mechanism in JastAdd
makes this possible while also making it possible to reuse the old attribute
calculations in the new ones.

Refining an attribute calculation is done by prefixing it with the refine

keyword, followed by the name of the aspect that is being refined. The
calculation done in the refine is no different than a regular attribute
calculation, but it has access to the attribute calculation it is refining
through the special refined() method call.

3.5 Further information

The description of JastAdd in this chapter is brief and does not provide a
complete introduction to JastAdd. For further information on JastAdd, the
JastAdd reference manual [2] is a good start. Some of the functionality is
also described in tutorial form in [10].
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Part II

The JPT implementation
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Chapter 4

Main design

The JPT compiler is a source-to source compiler that translates a set of
templates and packages to a program in standard Java. It is written as
an extension of the JastAddJ compiler for Java, by using the mechanisms in
the JastAdd tool. JastAddJ is a complete Java compiler, so the JPT compiler
only provides the parts that are specific to JPT.

When I started working on the JPT compiler most major design
decisions were already taken, and I would have to live with those decisions,
good or bad. It was also decided early on to base the compiler on JastAddJ,
rather than choose an open source Java compiler to extend. Also, most of
the features of JPT were implemented, but the compiler was not tested to
a degree that made it viable as a tool for testing the usefulness of the PT
mechanisms.

The paper “Package Templates: A Definition by Semantics-Preserving
Source-to-Source Transformations to Efficient Java Code” [5] describes a
process of transforming a subset of the language accepted by the JPT
compiler into standard Java code. Throughout this chapter and the next,
we will use concepts described in that paper. We will also describe how the
JPT compiler does the transformations compared to the transformations
described in that paper.

This chapter will start off with a general overview of the design of the
compiler. In the next chapter, there is a more detailed description of the
part of the compiler which rewrites the AST, and also some discussions on
what is missing in this part of the compiler and also some discussion on
the choices that were made during its implementation. The changes I have
made to the compiler will be discussed in chapter 6, and towards the end
of that chapter we will look at some ideas for future work on the compiler.

The JPT compiler extends the JastAddJ compiler by making additions
in the form of AST nodes with attributes, lexemes, non-AST classes, and
methods added to existing AST nodes. Some parts of JastAddJ are also
replaced, mostly through JastAdd’s refine mechanism.

When the JPT compiler is started, it will generate an object of class
Program. This object is the root node in the AST that will be built from
the JPT code. This code to be compiled is located in files, and the name of
these files are given to the compiler as command line parameters. Each of
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these filenames are given to the Program node in turn, and the Program node
will read the files and pass their content through the scanner and parser.
The output from the parser for each template and package is an AST which
will be added as a subtree to the Program node. After all files are parsed, all
these subtrees will be part of an AST with the Program node as its root.

Thus, all packages and templates in the program will have their own
subtree below the Program node, and the root of each subtree is either of
class CompilationUnit or class PTCompilationUnit. The former is generated
for files which contain standard Java code, and the latter is generated for
files containing JPT code. Each of these compilation units then go through
a rewrite phase. During this phase the compiler traverses the entire AST
and transforms some of the nodes. These transformations are done using
JastAdd’s rewrite mechanism.

The largest of the JPT rewrites is the one where a node representing an
inst statement is transformed into a (sub)tree that describes the content of
the instantiated template with the adaptations given in the with clause and
the addition classes. Thus, most of the JPT parts of the compiler revolve
around this.

Inside the templates and packages, large parts of the code tends to be
standard Java code, and these parts can be handled by JastAddJ, so what
remains to do for the JPT compiler is the JPT specific parts of the code.

The result of the full rewrite phase (treating all inst statements) is an
AST describing standard Java code (with a few small exceptions, which
will be covered later).

The compiler finishes by creating output files that are placed in a
directory structure defined by the package names. A simple build system
using the Apache Ant tool [1] is also written to the output directory. The
resulting files may then be compiled using Apache Ant and a standard Java
compiler.

4.1 Open and closed templates and packages

An important part of template instantiations is the concept of open templates
and closed templates, as well as open packages and closed packages. These are
described for a subset of JPT in [5], but we will also give an overview of
these concepts here.

4.1.1 Closed templates

A closed template is a template which does not instantiate any other
templates. As such, it does not depend on any other templates, and may
be type checked separately from the rest of the program, except for classes
from imported packages. In [5] the content of a closed template is described
as “a true subset of plain Java.” This is true for the subset of JPT that is
described in the paper, but it is not true for the complete language accepted
by the JPT compiler. An example is required types, which may occur inside
a closed template.
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4.1.2 Open templates

An open template contains instantiations of other templates. Before any
transformations can be done on an open template, all the templates it
instantiates must be treated by the compiler and stored as a subtree for later
use in instantiations of this template. To transform an open template into
a closed template, the subtree of each instantiated template must be found
and a copy must be made of it. Then this copy is inserted into the AST
of the instantiating template, and renames, additions and merges are done
according to declarations in the inst statement and the addition classes. As
described above, all this is part of the transformation of the AST.

4.1.3 Open and closed packages

Open and closed packages are like open and closed templates in that open
packages contain template instantiations and closed packages does not. In
fact, closed packages are standard Java packages except for the special JPT
package declaration syntax (package {...}). As with open templates, open
packages cannot be transformed into closed packages until all templates
they instantiate have been transformed into closed templates.

4.1.4 Transformation of a template hierarchy

Figure 4.1 shows how a template hierarchy is transformed into a single
closed Java package. The arrows show instantiations. In (a) template T1

and template T2 are closed, since they are “leaf” templates, i.e they do
not instantiate any other templates. Template T3 instantiates both T1 and
T2, so it is open. Package P is also open, since it instantiates template T3.
Since both templates instantiated by T3 are closed, it is possible to start by
transforming T3 into a closed template.

In (b), this transformation on T3 has been done. All interfaces, classes,
and enums have been copied from T1, and all renames declared in the
instantiation clause for T1 have also been done and the contents of the
addition classes are inserted. T3 is still open, since it still instantiates T2.

In (c), the contents of T2 have been copied into T3 in the same way. Now
both instantiation clauses are gone from T3, and it has become a closed
template. P is still an open package, but as the template it instantiates, T3, is
now closed, and it can therefore be transformed in the same way as above.

In (d), the transformations are finished. P is now a closed package, and
its content is standard Java code.

4.2 Directory structure for the JPT compiler

Figure 4.2 shows the main structure of the input to JastAdd for generating
the JPT compiler. In the top-level directory of the directory tree shown in
the figure, the JPT part is found inside the “PTFrontend” directory, while
the JastAddJ part is found inside the appropriately named “JastAddJ”
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(a) Initial hierarchy (b) First transformation

(c) Second transformation (d) Finished

Figure 4.1: Transformation of a template hierarchy. Rewriting the
instantiations is the main part of the work the JPT compiler does.
This is done for arrows in this figure, from the outermost point to the
innermost.

directory. The Java 7 parts of the JastAddJ have not been included in the
JPT compiler yet.

Figure 4.3 shows how the JPT compiler is generated. The first part of
the figure (marked with the number 1) is the input (as shown in Figure
4.2). In part 2 the input is given to the build system, which uses JastAdd
together with the Beaver scanner generator and the JFlex scanner generator
to generate the JPT compiler. Part 3 is the generated code for the JPT
compiler. The generated code can then be compiled into bytecode by using
a Java compiler.

When work started on the compiler, the then current JastAddJ release
was downloaded and placed in the “JastAddJ” directory, and at that
time all the changes that were needed inside JastAddJ, could be given as
standard JastAdd extensions. Over time, a few issues occured where there
was no (reasonable) way to change parts of the JastAddJ code without
operating directly on it. These changes needed to be preserved so it would
be possible to replace JastAddJ with a newer version at a later stage. To
preserve these changes, patch files, which could be applied to the JastAddJ
code to redo the changes, were placed in the “JastAddJChangesLog”
directory inside “PTFrontend”.

4.3 Overview of a JPT compiler run

When running the JPT compiler, it goes through a number of steps, as
illustrated in Figure 4.4.

1. JPT source code is given as input to the compiler in a number of
files. This source code may contain packages using the standard Java
package declaration syntax, and templates and packages using JPT
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Figure 4.2: The directory structure of the input to JastAdd, when it
generates the JPT compiler.

syntax.

2. All this JPT source code goes through the scanner and parser one file
at a time. Source code from each file is turned into an AST which is
then added as a subtree to the main AST (the AST representing the
entire program).

3. When all files have been parsed the result is an AST containing nodes
from standard Java (i.e nodes defined by JastAddJ), and nodes which
are JPT specific. In this AST, instantiations of templates have not
yet been performed, so the PT transformations, like renaming or
merging, have not been done yet.

4. The AST goes through the rewriting process. This is done by
traversing the tree. During this traversal, a node will be rewritten
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Figure 4.3: JastAdd with JFlex and Beaver is used to generate the JPT
compiler.

when it is accessed through its parent, but only if all the prerequisites
for rewriting are satisfied. Each time a package or template has been
turned from open to closed, a semantic check is performed by the
semantic checker of the JastAddJ compiler, which is extended so that
it can also treat the JPT constructs that may occur in a closed package
or template

5. The result of the full rewriting process is a tree which to a larger extent
only contains standard Java nodes. As the output of the compiler
is standard Java packages, the AST has been transformed so that it
mostly does not contain JPT specific nodes. Some JPT specific nodes
remain, but these will be handled by the compiler when it outputs
the Java code.

6. The final step turns the transformed tree into textual Java packages,
which is the output from the JPT compiler. To generate these
Java packages, the AST is again traversed by using “pretty printer”
methods on the AST nodes. These methods stem from the JastAddJ
compiler, but they are slightly modified to also work for the
remaining JPT specific nodes in the AST.

4.4 JPT additions to JastAddJ

4.4.1 Scanner and parser additions

Since JPT uses some keywords and operators that are not used in standard
Java, the JastAddJ scanner is extended with additional lexemes. Figure 4.5
lists these additions.

As mentioned briefly above, the JastAddJ compiler (and thereby the JPT
compiler) uses the JFlex scanner generator, which is easily extended with
new lexemes. Additions to the scanner are simply added to a file which
JastAdd puts together with the original input files to the scanner when the
compiler is built.
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Figure 4.4: The process of compiling JPT source code to Java code.

In much the same way as the scanner, the parser generator also needs
additions to its grammar for the JPT specific parts of the compiler. As with
the scanner, these additions come in the form of a file which is appended
to the original grammar files when the compiler is built. JastAddJ (and the
JPT compiler) uses the Beaver parser generator, which is of the LALR type.

The addition file to the scanner generator is placed in the “scanner”
directory in the source code directory hierarchy. Likewise, the addition file
to the parser generator is placed in the “parser” directory.

4.4.2 AST additions

As explained in section 3.3 AST additions are descriptions of AST nodes
used by JastAdd to expand the AST class hierarchy. The JPT compiler re-
uses some of the AST nodes from the JastAddJ compiler, and also adds
many AST nodes of its own. Some of these are used directly during the
building of the AST, while some are used during the transformation of the
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Figure 4.5: Lexemes added to the scanner by the JPT compiler

AST after the parsing has finished.
Like with the scanner and parser additions, additions to the AST are

placed in a file which is then appended to the other AST descriptions by
JastAdd when the compiler is built. These additions are placed in the “ast”
directory in the JPT compiler’s source code directory hierarchy.

A description of all the JPT additions to JastAddJ’s AST is found in
appendix A.

4.4.3 Aspects

A lot of the functionality of the JPT compiler is added through aspects
defined in “jrag” and “jadd” files (These file types are described in section
3.4). All the jadd and jrag files for the JPT compiler are placed inside the
“jadd” and “jrag” directories. The different aspects will not be described in
detail here, because it would mostly just be a listing of method names, with
a few comments.

4.4.4 Putting it all together

JastAdd takes the additions described in the previous sections, and weaves
everything together into a compiler taking JPT code as input. The
“testutils” directory contains the actual runnable part of the JPT compiler.
The name “testutils” was given to that directory early in the development
process, and it is not an appropriate name anymore, since it now contains
much more than some utilities used for testing the implementation.

Inside “testutils” there is a class named PTToJavaPackage which contains
the main method for the JPT compiler. This method will invoke the
generated JPT complier, and compile JPT source code into standard Java
source code, as described above.

4.4.5 Transforming the AST

The AST transformation step is JPT’s largest addition to JastAddJ. All of
the transformations that are made are triggered by JastAdd’s rewriting
mechanism. Since these rewrites are so extensive, they require a lot of
code. Leaving all this code inside JastAdd rewrite clauses would make the
rewrite methods very large, and thus hard to work with, so this rewriting
code has been moved from these rewrite methods and into separate classes
called rewriter classes. The rewrite methods then generate objects of these
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classes and run a special mutate() or run() method on these, which will do
the rewrite.

The source code for the rewriter classes are stored inside the “java-
world” directory, alongside many other classes which are used by the re-
writer classes during the transformations.

4.5 A note on access objects

The concept of access objects is used by the JastAddJ compiler and therefore
also by the JPT compiler. An access object is created when one needs access
to something that is declared elsewhere in the JPT/JastAddJ program. For
instance, when the compiler reads the name of a method in the program,
it will create a MethodAccess object which points to the declaration object
(MethodDecl) of the corresponding method.

Every concept in the language which has this kind of interaction
(where there is a declaration which is accessed through other statements) is
represented by a Decl node type and an Access node type in the compiler.
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Chapter 5

The rewrite phase

In this chapter we will discuss some details of the rewrite phase in the JPT
compiler. As mentioned earlier, the rewrite phase is initiated after the AST
for all packages and templates has been built by the parser. In Figure 4.4
the rewrite phase is numbered as step 4. After the full rewrite phase, the
AST will contain mostly nodes which are also found in an AST built by
JastAddJ for standard Java code, as most of the JPT specific nodes have
been rewritten and transformed into standard Java language constructs.

The rewrite phase in the JPT compiler is initiated by a full recursive
traversal of the AST. For this the getChild method is called at every level.
As described in section 3.4.2, this method will trigger a rewrite if the
preconditions for that rewrite are satisfied.

5.1 A note on PT declarations

In this chapter some of the description of what the JPT compiler does
will apply equally to packages and templates. When referring to both
packages and template we will use the term PT declarations. This term is
interchangeable with the term “templates and packages”.

5.2 The rewrite of one instantiation

The largest part of the rewrite phase is the rewrite of all the inst statements
in the code. The basic step here is to treat one inst statement node in the
AST by replacing it with a subtree representing the actual template that
is instantiated, including the given adjustments. Each basic step must be
repeated for all inst statements in the code. Since this basic step is so
large, it is itself divided into four sub phases, which will be discussed in
the following sections.

5.2.1 Adding “missing” rename clauses

The first sub phase of the basic step operates on the inst statement nodes,
and can only be initiated after the template that is being instantiated has
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been rewritten to a closed template. Its function is to add “missing” rename
clauses to the inst statement. The “missing” rename clauses are the ones
where classes are not renamed, so the rewrite consists of “renaming” these
classes to the same name they had. After this sub phase, the inst statement
node will contain rename clauses for every class, interface, and required
type in the template it instantiates.

5.2.2 Rewriting the PT declarations

The precondition to this sub phase is that “missing” rename clauses have
been added to all the inst statement nodes in the PT declaration that is
to be rewritten, i.e the previous sub phase has been done for all the inst

statement nodes. At this stage all the templates that are being instantiated
in this PT declaration have been closed. When this sub phase has finished
the PT declaration that is being rewritten will also be closed.

This sub phase is, by far, the largest of the sub phases, so the discussions
of it will be divided into discussions of each step that is performed during
the rewrite.

Find virtual methods

The first operation done in this sub phase involves determining which
methods are virtual and which are overrides. Virtual methods are methods
that appear for the first time in a class hierarchy, i.e that the method’s
signature does not appear in any superclasses. Overriding methods are
methods which, as the name says, overrides methods declared in a
superclass. The overridden method may itself be an override, or it may
be a virtual method.

To find the virtual methods the compiler loops through each class in the
PT declaration, and for each method in the class, looks upwards in the class
hierarchy for methods matching the method’s signature. If no methods
matching the signature is found, the method is marked virtual.

The reason for marking the methods as virtual is to prevent virtual
methods from becoming overrides when classes are merged. An example
of this is given below.

template T1 {

class A {

void f() { ... }

}

class B extends A {}

}

template T2 {

class C {

void f() { ... }

}

}

package P {

inst T1;
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inst T2 with C => B;

}

This could translate into the following Java code, but note that an error
message is issued before that code is generated.

package P;

class A {

void f() { ... }

}

class B extends A {

void f() { ... }

}

The problem in the above example, is that the method f() in C is a virtual
method. When T2 is instantiated in P, C is renamed to B, and thereby merged
with class B from T1. B in T1 is a subclass of A which also has a virtual
method f(). The result of merging C and B is a subclass of A. This makes
the method f() that came from C an override of method f() in A. Since the
method was virtual in C before the merge this is an error.

Create a new PTDeclRew object

The PTDeclRew class is a helper class for rewriting a PT declaration. An
object of type PTDeclRew contains a reference to the AST node of the
PT declaration that is being rewritten. The following steps in the PT
declaration’s rewriting process are done by calling methods on this object.

Check the type parameters

This step involves the “old style” type parameters, which have been
replaced by required types. However, these parameter, though deprecated,
are still handled by the JPT compiler, so we will also describe this step.

The checks done in this step are:

• Check that the number of actual parameters matches the number of
formal parameters.

• Check that each actual parameter is a class.

• Check that each actual parameter satisfies the constraints set by the
corresponding formal parameter.

Each of the type parameters are added to an object which contains
mappings from formal parameters to actual parameters. This object will
later be used to replace all accesses to the formal parameters with accesses
to the actual parameters. After all type parameters are added to this object,
a reference to it is kept internally in the PTDeclRew object.
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Add enums to the PT declaration

The next step is to find all enums in the instantiated templates in the PT
declaration, and add them as enums to the PT declaration. In the compiler,
enums may be renamed, but not merged. Therefore the compiler can just
copy the enums directly from the originating template, and rename the
copied enums according to the rename clauses in the inst statement.

Create “missing” addition classes

The compiler creates empty addition classes for all classes in the PT
declaration that do not have an explicit addition class. An explicit addition
class is one that was defined in the input to the compiler using the adds

keyword. Addition classes form the base for what will be the finished
classes in the PT declaration when it has been closed, so all classes need
to have a corresponding addition class.

If the class is being renamed, the addition class will get the new name,
so this step introduces the first part of class renaming. The addition classes
that are created will contain empty constructors.

Merging of interfaces and of required types

The compiler treats the merging of interfaces and the merging of required
types as two steps. However, the only difference between the two steps is
that one is for interfaces and one is for required types, so we will describe
both steps in this subsection. We will mainly describe how the merging
is done for interfaces, but this description can also be directly applied to
required types.

This step starts with something similar to what the previous step does;
it creates addition interfaces for the interfaces that do not have explicit
addition interfaces. The addition interfaces are used as base interfaces for
the merging. When looping through the instantiations, fields and methods
from each interface in an instantiation is added to the corresponding
addition interface.

Before adding the fields and methods from an interface to its addition
interface, the interface is copied and all renaming is done on the copy. In
this way, we ensure that everything that is added to the addition interface
is renamed. The renaming is done by first finding the declaration to
be renamed, and then finding all the places where a name refers to this
declaration, and finally rename all these.

Merging of classes

Merging of classes is a more complex process than the merging of interfaces
and required types, so this step is larger than those steps. Similar to
interfaces and required types, this step operates on addition classes. The
“missing” addition classes were added in an earlier step, so in this step all
the classes already have corresponding addition classes.
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Also, here we must follow the rule that a class cannot be handled
before its superclass has been handled. This is solved by marking classes
as “visited” when they have been handled. Before a class is handled, a
check is done for whether its superclass has been “visited”. If it has not,
the handling of the class is deferred and it will try again later.

The first part of this step is the renaming of the original classes and
their methods and fields. This is done in the same way as for interfaces and
required types; a copy of the class is made and the renaming is done on the
copy.

After the renaming has been done, the compiler will loop through all
the methods in each class and check if there are any naming conflicts. If
there is a conflict, the compiler will report it as an error.

The next action is to set the correct superclass for the addition class.
The compiler here also checks for multiple superclasses. Since each class’s
superclass has been fully handled before the class itself is handled, there
should only be one superclass left, because if there were more they should
be merged by now. If there are more superclasses, the compiler will report
it as an error.

The implemented interfaces must also be set for the addition class.
This is less complicated for superclasses, as classes may implement several
interfaces. However, there is a possibility that two merged classes
implement the same interface. In that case the interface could be listed
twice, which would give an error in the generated Java code, so this is
handled by setting the addition class to implement a union of all the
interfaces implemented by the merged classes.

The compiler will then loop through each original class and check if it
is abstract. If any of them are abstract, the corresponding addition class is
also set as abstract.

Next, if there are any formal type parameters with corresponding actual
type parameters, all accesses to the formal type parameters are replaced
with accesses to the actual types.

The final part of this step is to add all methods and fields from the
original classes to the addition class. All renames was done earlier in this
step, so there are no name collisions at this time. Any constructors in the
original class are also copied to the addition class. These constructors are
transformed into regular methods and are given unique new names before
being copied.

Name resolution

As the renamings have now been done, the JastAddJ part of the compiler
can now resolve a special type of ambiguous accesses that may occur. These
are accesses where it is unclear whether they access a package or a type.

An example of where an access becomes ambiguous is when a static
method in a class from an instantiated template is accessed. The method is
accessed using the <classname>.<methodname> syntax. Before the addition
classes are present there is no declaration of the class, so the compiler
doesn’t know if the name belongs to a package or a type.
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When the addition classes have been created and all methods and fields
have been copied, these ambiguous accesses may be resolved. This is done
by JastAddJ in a traversal of the subtree of the PT declaration node.

Copy import statements

As each of the instantiated templates may have had import statements,
these must be copied to the PT declaration that is being rewritten in order
for all parts of the instantiated templates to work.

Add tsuper calls in the generated constructor

If the constructor was generated for the addition class, a call to the method
that was created from the original class’s constructor is added.

Concretize required types

Now that all types are present in the PT declaration, it is possible to
concretize the required types. The names of the required types that have
concretizations are replaced with the names of their concretizations. All the
accesses are then updated to reflect the name change. If the PT declaration
is a package, and there are required types without concretizations, the
compiler will try to create default concretizations.

5.2.3 Rewriting the addition classes

After a PT declaration has been rewritten, all its addition classes will be
rewritten into AST nodes of type PTClassDecl. The nodes are not turned
into standard Java class nodes yet, as they may still contain tabstract

methods.

5.2.4 Rewriting accesses to tsuper methods

In the addition classes there may be accesses to tsuper methods. When
the addition class nodes have been rewritten into PTClassDecl nodes, the
tsuper methods are copied into the PTClassDecl nodes they are accessed
from, and then given a unique name. The name is generated using the
name of the originating template, the name of the originating class (before
renaming), and the method name itself. In this rewriting the name gets the
form tsuper[<TemplateID>.<ClassID>].<MethodName>. This name will again
be changed before generating the output from the compiler, since a simple
method name cannot contain brackets or dots. How this renaming is done
is discussed in section 6.4.1.

5.2.5 Discussion of the rewrites

The rewrites that have been discussed in this section, are similar to the
transformations described in [5]. These transformations are:
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1. The fortifying transformation

2. The renaming transformation

3. The addition-handling transformation

4. The composing transformation

The JPT compiler does not implement all the transformations described in
the article, and some of the transformations are done slightly different.

The fortifying transformation

Only a few of the steps in the fortifying transformation are implemented
in the JPT compiler. Some of the known bugs in the compiler are results of
these missing steps of the transformation.

The first step in the fortifying transformation is to give variable
declarations within a method, and the method’s formal parameters, unique
names. This step is not done in the JPT compiler. The following program is
an example of a bug that is the result of this missing step.

template T {

class C {

int j = 0;

void f(int i) {

j = i;

}

}

}

package P {

inst T with C => C (j -> i);

}

Not renaming the formal parameter i in the method f() will cause the
assignment in the method to become i = i. Obviously this is not what
was expected, so this is a bug in the compiler.

The second step in the fortifying transformation involves adding the
@override annotation to all methods that are overrides of other methods
and giving virtual methods in anonymous classes unique names. The first
part is very similar to the marking of virtual methods that is done by the
compiler. However, the compiler only does the marking of the methods
and does not give unique names to any methods. The lack of renaming
leads to similar problems as described in the example for the first step.

Marking the virtual methods rather than the overridden methods
introduces a superfluous concept to the compiler. It would probably be
better to do as described in [5]. This would re-use an existing concept
(@override annotations) rather than adding a new one. If this change is
done, it is possible to decide that a method is virtual by verifying that it is
not an override.

The third step in the fortifying transformation is to introduce explicit
casts to the formal parameters of methods. This is done to avoid
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unintentional overloads. In the JPT compiler this is done as part of the
merging of classes.

The fourth step in the fortifying transformation changes some unqual-
ified accesses to qualified accesses, so renamings will not change the se-
mantics of these accesses. This step is not implemented in the JPT compiler.
The reason why I have not corrected these errors is simply lack of time (but
see 6.6.1).

The renaming transformation

The renaming transformation provides preconditions that must be satisfied
before a renaming is done. All but one of these preconditions are checked
by the JPT compiler.

The precondition that is not tested for is the following: A precondition
for renaming a class is that, if a template T is instantiated, a class C in T

cannot be given the same name as another class in T in an instantiation
clause. Since the JPT compiler allows merging of classes from the same
template, this precondition is not possible to satisfy without removing that
functionality.

The addition-handling transformation

The addition-handling transformation involves two steps. One is to give
unique names to any variables in a class that have the same name as
a variable declared in the corresponding addition class. The other is
to mark methods which become overridden in addition classes with the
@TOverridden annotation.

None of these are done in the JPT compiler. However, the second one
is handled in another way. The compiler keeps track of which methods
have been overridden in an addition class by keeping references to them in
a set. I consider the compiler’s way of doing it as (technically) better than
using the annotation, since it provides quicker access to the methods than
one would have if it was necessary to look through all methods and sort
out those with the @TOverridden annotation. However, for the purposes
of describing this transformation step in a clear way, the @TOverridden

approach may be better.

The composing transformation

The preconditions in the composing transformation are all checked by the
JPT compiler. In the steps of the transformation described in [5], however,
there are some differences.

The first step in this tranformation says that all the methods that are
overridden in an addition class should be deleted. This was OK in the
simplified version of JPT treated in [5], but because it is possible that the
overridden methods are called using the tsuper keyword, they are given
a unique name rather than being deleted. However, it should not be a
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problem to look through each of the tsuper method calls and find out which
methods are actually called.

The next step is to create “missing” addition classes, but the JPT
compiler does this early in the PT declaration rewriting. The compiler also
performs the two last steps as described in [5].
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Chapter 6

My work on the JPT compiler

Because of the complexity of the JPT compiler, a lot of my time has been
spent studying its code to get an understanding of how it works. So, even
though some of the work that we will look at in this section may look like
small changes, they did consume a lot of time since I was mostly on my
own in figuring out where in the code the changes would go, and how the
different parts of the compiler would be affected by the change.

Before going into the details of the work I have done on the compiler,
there are some terms that should be clarified to avoid confusion. The
compiler as it was when I started working on it will be referred to as the
original implementation. When describing that compiler, we will use the
phrases originally and used to. As an example, the sentence “originally, the
compiler used to work with this particular kind of statement”, describes
a feature of the compiler before I got involved in its development. The
compiler in its current form will be referred to as “the JPT compiler” or just
“the compiler”.

6.1 Testing the implementation

The test system for the JPT compiler consists of two sets of test programs
(compiler semantic tests and runtime tests), a Java program that runs the tests
from one of the sets, and a Python script that runs the tests from the other
set. These sets are placed in the “test” directory in the compiler’s directory
tree.

Compiler semantic tests

The “compiler semantic tests” check that the compiler performs as
expected internally. If the compiler reports errors when trying to compile
a test, or if an exception occurs during the compilation, the test has failed.
Some tests are supposed to fail, e.g tests that check if the compiler detects
semantic errors in the code. These tests have filenames that end with
“_fail”, and the test will be considered to have failed if it is compiled
without errors. Figure 6.1 shows an example of a test program from the
“compiler semantic tests” directory.
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template SimpleTemplate {

class A {

int k;

assumed A();

A getA() {

return new A();

}

}

Figure 6.1: An example of a simple test program from the “compiler
semantic tests” directory.

These tests are run by issuing the command “ant testall” from
the “PTFrontend” directory. This command starts a Java program
called “TestScenario”, which is part of the “testutils” package. This
program will run the compiler on each of the test programs in the
“compiler_semantic_tests” directory. It does not inspect the output of the
compiler, it only checks if the compiler completed successfully or failed
with an error message or an exception.

One weakness with the “TestScenario” program, is that it is not possible
to specify how a program that is supposed to fail should fail. So if a
program is supposed to trigger a specific error, but triggers another one,
the program will report the test as passed, even though the error was not
the one that was expected.

Runtime tests

The “runtime tests” will check the result of compiling and running the test
programs. A typical runtime test will be a program that outputs some
characters when run. The output of the test program is then compared
to the contents of a file with the expected output of the test program. If the
comparison does not result in an exact match, the test has failed. Figure 6.2
shows the source code of a simple runtime test.

These tests are performed by running the python script named
“runtime_tests.py”, which resides in the “PTFrontend” directory. The
script will run the test programs in the “runtime_tests” directory. For each
test program the script performs four steps:

1. Run the JPT compiler with the test program as input.

2. Run a Java compiler on the generated code.

3. Run the program generated by the Java compiler.

4. Compare the output of the program to the expected output.
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package hello_world {

class Main {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

}

Figure 6.2: An example of a simple runtime test. A text file containing
the text “Hello, World!” accompanies this program, which is compared
to the actual output of the program when it’s run.

6.1.1 Tests added during my study of the compiler

While I was studying the compiler I discovered a number of bugs in the
implementation. For each of these bugs I wrote a small JPT program which
would either fail to compile, or would produce erroneous output when
compiled, because of the bug. These programs were added to the test
system for the compiler. We will not look at every test program I added,
but to get a sense of them, we will look at two examples.

One of the missing features of the JPT compiler is template parameters
(see section 6.6.2). As soon as the details of how the template parameters
should work was beginning to take shape I wrote a number of test
programs in which template parameters are used. As an example we will
discuss one of them. The test program is shortened below, as not all parts
are relevant to the discussion. This test program is expected to fail.

template T {

class A {

void m() { System.out.println(‘‘m()’’); }

}

}

template T2 subof T {

class A adds {

void n() { System.out.println(‘‘n() in T2’’); }

}

}

template U<template V subof T> {

inst V;

class A adds {

void n() { System.out.println(‘‘n() in U’’); }

}

}

package P {

inst U<T2>;

}
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What happens here is that when the n() method is added to A in T2 it causes
a name collision when T2 is used as a template parameter for U, since U also
adds a method named n(). When running the test it is currently always
reported as passed, as the compilation fails. However, the reason for the
failure is because template parameters are not implemented, not because
there is an error in the program.

The second test program shown here is one I wrote to trigger a bug in
the merging algorithm.

template T {

interface FooRunnable {

void fooRun();

}

class A implements FooRunnable {

public void fooRun() { }

}

}

template U {

interface BarRunnable {

void barRun();

}

class B implements BarRunnable {

public void barRun() { }

}

}

package P {

inst T with FooRunnable => MyRunnable, A => AB;

inst U with BarRunnable => MyRunnable, B => AB;

}

In this program the interfaces FooRunnable and BarRunnable are merged,
and the classes A and B are merged. This used to fail because the compiler
did not correctly check for duplicates in the implements clause, so the
MyRunnable interface was listed twice in the resulting class AB. How this
was fixed is described in section 6.5.

6.2 Upgrading to a newer version of JastAdd and
JastAddJ

Both JastAdd and JastAddJ has had several releases since work began on
the JPT compiler, and the JPT compiler had not been upgraded with any
of these new versions. For reasons that will be explained below, I decided
to upgrade the JPT compiler with what was then the newest version of
JastAddJ. This new version of JastAddJ also included a newer version of
JastAdd.

This upgrade was the most time consuming part of my work with the
JPT compiler. Since no such upgrade had been done on the JPT compiler
before, it was a large change to the code base. Thus several parts of the
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compiler were affected, and I had to use a lot of time to understand each
of these parts, and how to change them so that they worked as they did
before the upgrade.

Throughout this process I have become unsure if using JastAddJ as a
base for the JPT compiler was the right decision. JastAdd is a complicated
system in itself, so before one can begin to understand the code of the
JastAddJ and write JPT additions to it, one must spend a lot of time learning
JastAdd. If the JPT compiler had been made as an extension of an open
source compiler, without the use of a system like JastAdd, the process of
understanding how the system is built would probably have been much
quicker.

However, the JastAddJ compiler is well designed. The implementation
closely follows the Java language specification [9], so when one has an
understanding of the JastAdd concepts, it is easy to read and understand
the JastAddJ code. With such an understanding from the start of the project,
the choice to use JastAdd would probably be the right one.

Another problem with JastAdd and JastAddJ is that it was not as
finalized as we assumed. As mentioned above, when I upgraded the
JastAddJ version used by the JPT compiler, I discovered that many of the
JPT additions to JastAddJ would not work anymore because of changes
to basic functionality both in JastAdd and JastAddJ. These were well-
reasoned changes seen from JastAdd and JastAddJ, but still this kind of
instability somehow defeats the purpose of having an extensible compiler
as a base. If JastAdd and JastAddJ had been more mature, the chances of
such large changes being made would be smaller, and would not have been
such a problem. The effects of this upgrade are still causing problems in the
JPT compiler, and this will also be discussed further later in this chapter.

The upgrade process would probably have been easier if it had been
done more often, as there would then be a smaller number of changes in
each upgrade. With less changes it would be easier to find out exactly
what had changed since the last upgrade, and thus made it easier to make
the necessary changes to the JPT part of the compiler. When I started
the upgrade, several thousand lines of code were changed in JastAdd and
JastAddJ, so it was not possible to get a complete understanding of all these
changes in a reasonable amount of time.

6.2.1 The reason for the upgrade

JastAddJ comes complete with a pre-compiled version of JastAdd. The
JastAdd package that came with the version of JastAddJ used in the original
JPT compiler turned out to have a bug which led to an error in the code
generated from JastAdd for the JPT compiler. The following shows the
problematic part of the generated code.

public class ASTNode<T extends ASTNode> extends beaver.Symbol

implements Cloneable, Iterable<T> {

...

private int childIndex;
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...

public void setChild(T node, int i) {

...

node.childIndex = i;

}

...

}

When compiling this code, newer versions of the OpenJDK Java compiler,
failed with the error message “childIndex has private access in ASTNode”,
while older versions allowed this method to compile.

I suspected that this was a bug in JastAdd and not in the JastAddJ part
of the compiler. To verify this I first tried to replace the JastAdd version
that came with the original JastAddJ with a new version. This did fix the
problem, but I did not consider it a satisfactory solution because JastAddJ
is distributed with a specific version of JastAdd, and it is probably better
that these two together work correctly as a basis for the JPT compiler. The
solution was then to upgrade the JPT compiler to use a newer version of
JastAddJ, which also included a newer version of JastAdd.

However, when upgrading the JPT compiler to the new version of
JastAddJ, there were some problems due to the aforementioned changes
in both JastAdd and JastAddJ. Almost all the test programs failed after the
upgrade, so I had to make changes to the JPT part of the compiler to make
it work as it did before. These changes will be discussed in the next few
subsections.

6.2.2 Omitted return statements

In the old version of JastAddJ, when omitting the return statement from an
inherited attribute calculation, the generated code would keep traversing
the AST upwards, and doing the attribute calculation until it found a return
statement. This was a bug in JastAddJ, and was consequently removed
from the new version.

However, the JPT compiler had exploited this bug, as the previous
developers had believed this to be expected behaviour from JastAddJ.
Thus, the inherited attributes that exploited this had to be changed before
the new version of JastAddJ would work. I fixed this by writing the AST
traversal code in the affected calculation manually.

6.2.3 Handling of primitive types

The next problem that arose was that the handling of primitive types
had changed in the new version of JastAddJ. Previously, primitive
types were added to each compilation unit by calling a method called
addPrimitiveTypes(). The new version had removed this method, and re-
placed it with a method to lookup primitive types, called lookupLibType().
This method is then called from the lookupType() method when it fails
to find the type it’s looking for in its local scope. Fixing the JPT com-
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piler to work with this was a simple matter of removing the call to the
addPrimitiveTypes() method and add the lookupLibType() method.

There are still some remnants of the old lookupType() implementation
left in the JPT compiler. When I tried to remove these, a few of the tests
that used to pass started failing, so I reverted the change. More work is
needed to fix this this part of the JPT compiler, but for this thesis I chose
not to prioritize this work since the tests pass with the old code still there.

6.2.4 Changes to the fullCopy() method

In JastAdd each AST node is given methods to allow the node to be copied.
One of these methods, called fullCopy(), copies the entire tree below the
node it is called from. This method is used several places in the JPT
compiler. In the new JastAddJ version, a subtle change was made to this
method: the (new) root node of the copy, had its parent node reference set
to null to sever its ties to the tree it was copied from. In the old version it
pointed to the parent of the old root node. For some of the usages in the
JPT compiler, this link to the old parent was used after the copy was made.
This was resolved by creating a new method, called fullCopyWithParent()

which would save the parent of the AST node before calling the fullCopy()

method, then setting the parent of the copy to the saved parent before
returning the copy.

This change affected every use of the fullCopy() method, but the link to
the old parent was not used at every point where a copy was made using
this method. Before replacing each call to the fullCopy() method, I first
verified that the link was actually needed. For those calls where it was not
needed, I did not change the method call.

The problem with keeping a reference to the parent is that the AST’s
generated by JastAdd keeps references both ways, i.e the parent keeps
references to its children, and a child node keeps a reference to its parent.
When the reference to the parent node is set after the fullCopy() method,
the copied child node will have a reference to the parent node, but the
parent node will still only reference the original node. This inconsistency
could typically lead to errors in future changes.

6.2.5 Performance issues after the upgrade

When upgrading the JPT compiler to the newer version of JastAddJ, some
major performance issues surfaced. It is not yet known from which part of
the JPT code these issues stem from. Performance profiling did not show
that any part of the compiler used more time than other parts, but it did
show that some methods were called many times. Two of the methods that
are called many times are the lookupType method and the getChild method.

The performance problem does not occur on the test programs which
are part of the current test suite for the compiler. It seems to only happen
on larger programs, so trying to figure out the source of the problem is
made harder because the program where it occurs is too large for it to be
feasible to run through the compilation process with stepwise debugging.
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The size of the program which triggers the performance issue also makes it
hard to know if the methods that are called many times are called too many
times, or if all these method calls are parts of expected behaviour.

6.3 Method naming conflicts resolved by overriding

The JPT compiler used to allow method name conflicts in merged classes to
be resolved by overriding the method in an addition class. So the following
would be legal:

template T {

class A {

void f() { ... }

}

}

template U {

class B {

void f() { ... }

}

}

package P {

inst T with A => AB;

inst U with B => AB;

class AB adds {

void f() { ... }

}

}

Here we see that the addition class in the package P overrides the f()

method. This overriding method would then replace both the f() method
from class A and the f() method from class B. This, however would
cause problems with ambiguous tsuper statements, as discussed in [6].
Because of these problems(and some others), resolving naming conflicts
by overloading in an adds class was disallowed, so this had to be removed
from the compiler. To do this I added a new method to check for these
naming collisions and produce an error message when they occured. This
was rather straight-forward to do, when I understood what was going on.

6.4 Qualified names for Packages and Templates

When I started working on the compiler, it would only accept names for
templates and packages that consisted of alphanumeric characters and
underscores. Because of this it was not possible to have the hierarchical
structure that is normally used for organising source code in a Java
project, due to the fact that names could not contain dots. Adding
the possibility for package hierarchies was less complicated than adding
template hierarchies, so that was done first.
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In the parser, the terminal used for the name was “IDENTIFIER”. This
terminal can only consist of alphanumeric characters and underscores, so
a package or template name containing dots would result in a compilation
error. As JastAddJ already contained the non-terminal “name_decl”, which
allowed for names with dots (called qualified names), changing the parser to
allow qualified names, was simple.

It was also necessary to change the way the final output from the
compiler was written. The standard way of organizing the source code
in Java is to have the directory structure reflect the package name. So if
a package is called “a.b.c”, it should be stored in the directory “a/b/c”.
There was already a method for determining the path of an output file
to be written, and it was being used by the Java code generator in the
compiler. This method would not replace dots with path separators, so
it would create a single directory for the package which would be named
with the package’s qualified name. The solution to this was simply to write
a specialized method for generating package paths that replaced all dots
with path separators, and change the Java code generator to use this new
method.

6.4.1 Qualified template names

The template names also used the aforementioned “IDENTIFIER” ter-
minal. However, unlike package names which only appears in package
declarations, template names also occur in the instantiation statements.
Therefore the parser needed more changes to make qualified template
names work than it needed to make qualified package names work.

In addition to the parser changes, allowing qualified template names
caused an error with the tsuper statements. The tsuper statements are not
translated to standard Java code until right before the code is written to file.

The compiler handles the tsuper methods by creating a unique name
for them. This name is constructed using the word “tsuper”, the original
name of the class qualified by the the original template name, and the
method name itself. In these generated names, there are some characters,
like brackets and dots, which are not legal characters for method names
in Java. These characters are substituted textually from the code just
before it is written to the output file. This string substitution did not
allow dots in template names, and the way the string substitution was
implemented made it hard to add support for them without changing the
whole approach.

At first I tried to fix this with a string search operation that recognized
the string “tsuper”, and then did the substitutions on the string that
followed it, until it reached the method name. However, there were some
special cases where this approach would do string substitutions where they
were not needed, so I had to develop another approach.

The new approach does the string substitutions in the same way as the
previous approach, but instead of running on the entire output string of the
compiler, it only operates on AST nodes which may contain tsuper method
names.
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6.5 Duplications of implemented interfaces in merged
classes

In this section we will look at how the problem described in the
presentation of the second test in section 6.1.1 was fixed.

The JPT compiler uses type descriptors to store information about types
(i.e classes and interfaces). These type descriptors contain, among other
things, all the information needed to compare two types to each other.

When classes are merged the compiler needs to make sure that the
list of implemented interfaces for the new (merged) class contains all the
implemented interfaces of the original classes, and that there is only one
mention of each interface. This is done by creating type descriptors for all
the implemented interfaces of each class, and add these type descriptor to a
set. Since a set can only contain unique values, there will not be one element
in the set that is equal to another element in the set of type descriptors.

However, the compiler would still add the same interface several times
to the implements list of a merged class if it was implemented by more
than one of the original classes. This was caused by a subtle bug in the type
descriptor class; it did not overload the equals method correctly. The equals

method in the type descriptor class took a reference to a type descriptor as
its formal parameter. However, to overload the equals method from the
Object class correctly, the formal parameter must be of type Object.

Because of this wrong overload, the set used the equals method from
the Object class when comparing two type descriptors. Thus they were not
compared correctly, and type descriptors that described the same interfaces
were not considered equal to each other.

I fixed this bug by writing a correctly overloaded equals method. This
equals method checks if the actual parameter is a type descriptor, and if it
is, it calls the incorrectly overloaded equals method.

6.6 Future work

In this last section, we will go through some topics that are not directly
related to those discussed above, but that could be of interest for the further
development of the compiler.

6.6.1 Refactor the rewrite phase

The different transformations in [5] provide a good base for how the JPT
compiler could work. As discussed in section 5.2.5 the compiler does not
perform all the steps in these transformations, and that is the cause of some
bugs. These bugs have been known for a while, but I was not able to give
them priority, as I had to spend much time on other issues, like the JastAddJ
upgrade and the performance issues.

These bugs should be quite easy to fix, but I think that fixing them
should be part of a larger refactoring of the rewrite phase, to make the
compiler follow the transformations in [5] more closely. This would be
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a larger amount of work, but the result would be that the rewrite phase
would have a cleaner structure than it currently has. This would make the
compiler’s code more comprehensible and easier to work with.

6.6.2 Template parameters

Template parameters are currently not fully implemented the JPT compiler;
the parser accepts the code, but the compiler will throw an exception and
stop at a later stage. The details of how template parameters should be
implemented were not finished in time for me to be able to implement them
fully in the compiler, so currently there is only this partial implementation.

6.6.3 Improved error messages

The JPT compiler should always produce a correct Java program or it
should issue an error message. Thus the final pass of the JPT compiler
(to translate the Java version to bytecode) should not cause any problems
during normal compilations. However, we may indeed get runtime errors
when the resulting program is executed, and in order to make it easier to
use JPT, it would be desirable to have these error messages refer to which
template, and which line in the template, the error originated from.

There are some ways this could be done. One of them is to make the
JPT compiler output bytecode rather than Java code (see below).

Another way to do it would be to have the JPT compiler generate a file
which contains some kind of mapping from the generated Java code to the
corresponding part of the JPT code. It would then be possible to create a
wrapper program for the Java Virtual Machine (JVM) which would inspect
the messages from it and replace the error messages. It could also keep the
original error messages and add new messages explaining where the Java
code originated from.

Such a wrapper program would have to “understand” the error
messages from the JVM, so if the messages are changed from one version
of the JVM to the next, the wrapper program would have to be updated.
Thus, a problem with such a wrapper program is that it would probably
need a lot of maintenance.

6.6.4 Compile directly to bytecode

We would get several benefits if we could generate Java bytecode directly
from the JPT compiler. One of them would be that the JPT compiler would
have more control over error messages generated by the compiler, which
would make it easier to give improved error messages at runtime, as the
correct line references etc. could be inserted into the bytecode.

Another benefit would be the reduced overhead during compilation.
As it is now, the JPT compiler writes the files containing Java code, and this
code then has to be compiled by running a Java compilation.

The fact that every JPT specific part of the code must be changed into
regular Java code also introduces overhead. If the AST nodes which are
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JPT specific could be translated directly to bytecode, this overhead would
be reduced quite a bit, because less AST transformations would have to
take place.

JastAddJ is a complete Java compiler, so it already has support for
generating bytecode. The JPT compiler only needs to extend these parts
of the JastAddJ compiler to support the JPT specific parts of the AST. As I
have not been studying the code generation part of JastAddJ, I am not able
to estimate how big a job it would be to do this.
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Appendix A

JPT AST additions

PTCompilationUnit : CompilationUnit A compilation unit that contains
PT declarations, i.e template declarations or package declarations
using the PT package declaration syntax.

abstract PTDecl A PT declaration, i.e the base node for templates and
packages.

PTTemplate : PTDecl A template declaration and its body.

PTPackage : PTDecl A package declaration and its body.

PTDeclContext Context information for PT declaration. Currently this
node is not used for anything, although every PT declaration gets
its own PTDeclContext object.

abstract SimpleClass : ClassDecl Superclass for class declarations inside
a PT declaration and addition classes.

PTClassDecl : SimpleClass A class declaration inside a PT declaration.

PTClassAddsDecl : SimpleClass An addition class declaration.

PTInterfaceDecl : InterfaceDecl An interface declaration inside a PT de-
claration.

PTGenericInterfaceDecl : GenericInterfaceDecl A generic interface de-
claration inside a PT declaration.

PTInterfaceAddsDecl : PTInterfaceDecl An addition interface declara-
tion.

PTGenericInterfaceAddsDecl : PTGenericInterfaceDecl A generic addi-
tion interface declaration.

PTEnumDecl : EnumDecl An enum declaration inside a PT declaration.

TemplateClassIdentifier An identifier for templates used in e.g tsuper

calls. The TemplateClassIdentifier node is the what is put in brackets
when qualifying a tsuper call, e.g tsuper[T.A]().
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PTInstDecl A template instantiation clause.

RequiredTypeInstantiation A concretization of a required type.

PTInstTuple A rename clause.

PTTSuperConstructorCall Call to a tsuper constructor.

PTConstructorDecl : ConstructorDecl A constructor declaration inside
the body of a PT class declaration.

PTConstructorPromise : BodyDecl An assumed constructor declaration.

abstract PTDummyRename Base node for the method and field rename
clauses.

PTMethodRename : PTDummyRename A rename clause for a method.

PTMethodRenameAll : PTDummyRename A rename clause for several
methods using the wildcard parenthesis mechanism.

PTFieldRename : PTDummyRename A rename clause for a field.

abstract PTMethodAccess : MethodAccess Base node type for accesses to
methods in an instantiated template.

TemplateMethodAccess : PTMethodAccess Access to a method using the
tsuper[<templateName>.<className>].<methodName>() form.

TemplateMethodAccessShort : TemplateMethodAccess Short form of TemplateMethodAccess,
i.e without the template name inside the brackets.

TemplateConstructorAccess : PTMethodAccess Access to a constructor
in an instantiated template.

TemplateConstructor : MethodDecl A constructor declaration inside a
template class.

PackageConstructor : MethodDecl A constructor declaration inside a
class in a PT package.

TabstractMethodDecl : MethodDecl A method declaration with the tabstract

keyword.

RequiredType : ReferenceType A required type declaration.

RequiredClass : RequiredType A required class declaration.

RequiredInterface : RequiredType A required interface declaration.

RequiredTypeAdds : RequiredType Addition to a required type.

RequiredClassAdds : RequiredClass Addition to a required class.

RequiredInterfaceAdds : RequiredInterface Addition to a required inter-
face.
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PTAbstractConstructor : MethodDecl In Java there is no such thing as
abstract constructors, but with required types, there is. Therefore this
is needed.
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