
Comparing Black- and
White-box testing
environments using mixed
research methods and AHP
Amiryasin Fallah Daryavarsari
amiryasf@ifi.uio.no
Master Thesis
Network and System Administration- spring 2013

Comparing Black- and White-box testing
environments using mixed research methods

and AHP

Amiryasin Fallah Daryavarsari
amiryasf@ifi.uio.no

Master Thesis

23rd May 2013

"At leve er krig med trolde i hjertets og hjernens hvælv.
At digte, det er at holde dommedag over sig selv."

"To live is to battle the demons in the heart as well as the brain.
To write is to preside at judgement day over one’s self."

Henrik Johan Ibsen

iii

Dedicated to my lovely aunt, Shaghayegh

iv

Abstract

With the intent of cost reduction, flexibility in management, decreasing
complexity, improving efficiency and more, the company for which this
thesis work was performed, decided to investigate on the two radio
unit software testing environments (black- and white-box) which were
presumed to overlap. Since removing one environment or integrating them
into one can lead to saving a lot of resources, a decision was made to assess
their feasibilities. In order to do this study, quantitative and qualitative
research methods are mixed, two questionnaires are done for revealing
the testers opinions and neglected issues. The questionnaires helped the
author of this thesis to find a suitable gateway through a large amount of
internal documents and establish two interviews with key persons inside
the R&D department. Moreover, the Analytical Hierarchy Process (AHP) is
applied to this multi-criteria decision making problem in order to prioritise
these two testing environments.The thesis strives to supply a fair judgment
in comparing these two environments and their integration feasibility. It
also tries to disclose their intangible properties.

v

Acknowledgment

It is an honor for me to express my appreciation to the following people
and recognise their support in many different ways:

• Foremost, I would like to express my sincere gratitude towards
my supervisor Hærek Haugerund for his support , motivation and
encouragement. In addition to his guidance and efforts to overcome
the challenges faced through out the thesis, thanks to him that trust
me to be the teaching assistant at Intrusion detection and firewalls
course as well as being positive and helpful.

• My sincere appreciation to Æleen Frisch. Her unique knowledge in
many fields not only in system administration motivated me in many
ways. Her excellent way of teaching and kindness like a friend are
unforgettable. I feel great that I met such great person with such great
personality.

• Thanks a lot to Ismail Hassan for making us a lot of problems in his
courses to show us: no pain, no gain!

• I would like to take the opportunity to thank University of Oslo and
Oslo University College for offering this Master degree program.

• Thanks to Kyrre Begnum, although I did not have chance to attend to
any of his course, he gave me hope for the throughput of this thesis
in the mid-term presentation.

• I am very grateful that I worked on my thesis beside helpful and
friendly people at the company: Fredrik for his support, positive
energy and attitudes. Team Lava: Hanieh, Sepehr, Anne, Xenia,
Ahmad, Aisheng, Alexander, Per and Eva for their helps and
kindnesses. Team Victorinox: Jurgen and especially Per for their
information and time as well as helps.

• My Immeasurable thanks to Mahsa Samavati not only a classmate but

vii

a great friend. Her cleverness and kindness is unrivaled. Thanks for
her pure collaboration during this program.

• My deep gratitude to Vangelis Tasoulas because of his frankly
friendship and helps. His enormous knowledge in Network and
system administration seems to be unbeatable.

• To all my friends in Stockholm, especially to Pooyeh, she would be
a lifelong friend and I look forward to reciprocate her unforgettable
support. To Pooria, no one can be like him, thanks to make 5 months
in Stockholm like a day for me. And finally to Mina, although she
is a new friend, her kind heart and friendship forced me to state her
name here.

• I am very grateful to be in a good company of fellow classmates. They
have been an excellent companions throughout the program. I would
to like to thank them for their nice collaboration.

• Thanks to all my friend and family around the globe, those who made
and make all impossibles to possibles for me on the earth.

• Thanks to Shahrzad, she always motivates me in many ways. She
assistes me in many issues with her unique sense of humor and
patience.

• Last but not least, I would like to thank my beloved family including
mother, father and brother. I could not be who I am and at the place I
am right now without their total support.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 5
1.3 Thesis Structure . 5

2 Background 7
2.1 Software Development Process 7
2.2 Software Testing Basis . 8

2.2.1 Testing Primary Objectives 9
2.2.2 Testing Basic Principles 10
2.2.3 A Good Test . 10

2.3 Testing Design Techniques . 11
2.3.1 White Box Testing . 12
2.3.2 Black Box Testing . 19

2.4 Testing Strategies . 25
2.4.1 Verification and Validation 26
2.4.2 A Testing Strategy . 27
2.4.3 Completion of Testing 27
2.4.4 Unit Testing . 29
2.4.5 Integration Testing . 29
2.4.6 System Testing . 36
2.4.7 Debugging . 37

3 Approach 39
3.1 Testbed . 39

3.1.1 Testing Strategy . 40
3.1.2 WBTest Environment 44
3.1.3 BBTest Environment 46

3.2 Data Collection Methods . 47
3.3 Data Analysis Method . 52
3.4 Research Plan . 59

ix

3.4.1 Pilot Questionnaire . 60
3.4.2 Comparison Questionnaire 64
3.4.3 Interviews . 66

4 Result and Discussion 69
4.1 Pilot questionnaire results . 69
4.2 Results of the Complement Questionnaire 76

4.2.1 Stability . 77
4.2.2 Usability . 79
4.2.3 Specification Coverage 81
4.2.4 Documentation . 83
4.2.5 Technical support . 85
4.2.6 Training . 87

5 Analysis 91
5.1 Overall evaluation of result 91
5.2 Analytical Hierarchy Process (AHP) 97
5.3 Evaluation of Scenarios . 103

6 Conclusion 109

x

List of Figures

2.1 Flow graph symbols for data structures. 13

2.2 Converting flow chart to flow graph. 14

2.3 Graph matrix and connection matrix 17

2.4 Graph properties . 21

2.5 Top-down integration . 30

2.6 Bottom-up Integration . 32

3.1 Test activities for radio software development printed with
permission from company’s internal document. 42

3.2 Pre-defined test suites schema. 43

3.3 WBTest environment architecture. 45

3.4 WBTest environment architecture. 47

3.5 Structure of analytical hierarchy process. 53

3.6 Thesis plan and structure. 60

4.1 Result of the first question in the first questionnaire. 70

4.2 Result of the second question in the first questionnaire. . . . 71

4.3 Result of the third question in the first questionnaire. 72

4.4 Result of the third question in the first questionnaire for the
prior WBTest experienced users. 73

4.5 Result of the third question in the first questionnaire for the
prior BBTest experienced users. 74

4.6 Result of the third question in the first questionnaire for the
prior both environments experienced users. 75

4.7 Result of the third question in the first questionnaire for the
new tester in sub-system level testing. 76

4.8 Result of the fifth and sixth questions in the first questionnaire. 77

4.9 Result of the first question about stability in the complement
questionnaire. 78

4.10 Average grade of stability for the WBTest and BBTest
environments. 79

xi

4.11 Result of the second question about usability in the comple-
ment questionnaire. 80

4.12 Average grade of usability for the WBTest and BBTest
environments. 81

4.13 Result of the third question about specifications coverage in
the complement questionnaire. 82

4.14 Average grade of specifications coverage for the WBTest and
BBTest environments. 83

4.15 Result of the fourth question about documentation in the
complement questionnaire. 84

4.16 Average grade of documentation for the WBTest and BBTest
environments. 85

4.17 Result of the fourth question about technical support in the
complement questionnaire. 86

4.18 Average grade of technical support for the WBTest and
BBTest environments. 87

4.19 Result of the fourth question about training in the comple-
ment questionnaire. 88

4.20 Average grade of training for the WBTest and BBTest
environments. 89

5.1 Average grade of different criteria for the WBTest and BBTest
environments. 96

5.2 Analytical hierarchy structure in the AHP method for testing
environments. 98

5.3 Radio Unit schema with two simple components in addition
to their registers . 107

xii

List of Tables

2.1 L9 orthogonal array . 25

3.1 Qualitative, Quantitative and mixed methods approaches . . 50
3.2 Saaty’s pairwise comparison table 54
3.3 Saaty’s Random Consistency Index (RCI) table. 56

5.1 How different classes of testers found the proper testing
environment in sub-system level testing. 93

5.2 How these two environments fulfill sub-system level testing
goals. 95

5.3 Standard deviation of grade in different criteria for the
WBTest and BBTest environments. 97

xiii

Chapter 1

Introduction

All activities and tasks that a developer applies to design, develop, deploy
and maintain a software application, can be considered as a part of the
software development process.[1] This process begins by analysing the
requirements and then planning based on defined requirements. The
next activities are implementation and testing to cover the predefined
requirements. Testing is one of the most vital activities in the software
life cycle. Additionally it is considered as an important activity in most
information systems and environments in which network and system
administrators are responsible. It has direct impact on the development,
maintenance cost and quality assurance. In fact, this activity ensures
quality of the product and mitigate costs in maintenance. The main aim in
testing is to find whether predefined requirements are met or not. Almost
50 percent of software cost is dedicated to the testing with intent of a
reliable software.[2] It should be mentioned that uncovering errors in pre-
delivery phases is more economical than being revealed after launching the
product.[3, 4]

1.1 Motivation

This thesis work was performed in a company which provides telecom-
munications networks, television and video systems, IP networking equip-
ments and all other services that are related to ICT. The thesis was offered
by the radio unit (RU) software development section within the R&D de-

1

CHAPTER 1. INTRODUCTION

partment. In order to shorten the trouble report (TR) cycle between the
sections which are involved in radio unit software, it was decided to merge
units into some cross functional teams. In other words, design and formal
verification units are merged into one section to reduce time that could be
wasted in a broad TR cycle. Previously, the design section had its own en-
vironment to test radio unit software. This environment was designed for
software designers by software designers and aimed to test the software
from unit testing level up until a part of sub-system level testing which is
called sub-system integration.[Figure3.1] All these tests were done from a
white-box perspective. On the other hand, the formal verification teams
were responsible for the formal verification. Their tasks were started when
the designers had finished the sub-system integration tests and delivered
the radio unit software to them. The formal verification section also had
its own environment to test the radio unit software with the intent of ex-
ecuting sub-system verification tests and another testing environment for
node level testing before final delivery to the next department. These tests
were done from a black-box point of view. In this testing structure, if the
functional verification would face any trouble which could not be resolved,
a TR was sent to the prior level teams and this procedure was totally time
and resource consuming. Hence it was decided to combine the cross func-
tional teams to be responsible for the whole radio unit software develop-
ment from the early stages in design to last stages in the node level. The
sub-system level testing is the level in which the main conflict between
these two white-box and black-box environments would happen in the new
cross functional teams. In addition, It has been seen that some test cases
seem to be redundant. Since it was not completely visible from which test-
ing approach and by which testing environment for an instance capability
should be checked, it was decided to make investigations about these two
environments to reveal which one can fulfill the sub-system level goals or
if the integration can be a solution for this conflict.

It is good to know that suitable testing reduces further cost, although it is a
costly activity. The key principle that has to be considered in the testing is
"Shift Left". It means that the quality measure should be shifted earlier in
the life cycle or in other words, shifted left along the timeline. The product
failures have to be unveiled in the earlier phase and shifting to left should
be avoided. Actually, most of the efforts have to be put in the early stages
and especially in the analysis stages. It should be noticed that finding error
late in the cycle is going to cost quite a lot more and also it takes longer time
for the feedback loops and the trouble report (TR) cycle. In order to reduce

2

1.1. MOTIVATION

the cost of testing without affecting quality, exhaustive testing should be
prevented. Redundant testing increases resource usage in companies. This
redundancy has higher likelihood to happen in levels where both black box
and white box testing can be applicable. Hence, it make sense to compare
test cases which are presumed to perform exhaustive testing and studying
the integration feasibility of black box and white box testing efforts with
intent of decreasing resource(human resources, time, cost and so forth)
usage.

Moreover, the Analytical Hierarchy Process (AHP)[5] method can be
applied to assist comparing these two environments with respect to
their multiple criteria. The focus can be on the properties of these two
environments which use black- and white-box testing approaches with the
intent of disclosing less-known specifications of testing.

This thesis tries to be a step ahead and explores testing approaches and
their pros and cons in addition to their integration feasibility. It is aimed
at analysing the testing systems and their computing environments in a
comprehensive way in order to allow the company in which this thesis
was carried out, to provide appropriate business decisions in order to
minimize resource usage while maintaining adequate testing accuracy for
their products. Quantitative and qualitative survey methods are mixed
to provide better understanding over two testing environments. Since
the population of this study are real testers which are engaged in testing
in their daily works, their ideas and opinions are distinguished as quite
valuable to assist in the analysis.

Normally, network and system administrators face a pretty vast range
of tasks to do such as security, monitoring, configuration management
and so on. Network and system administrator’s duties are quite human
dependent which can cause errors in any level. Obviously, all of the
assigned tasks need to fulfill service-level agreements (SLA) which is often
a neglected issue by network and system administrators. Moreover, today,
usage of the cloud environments is added to their tasks as well. Cloud
computing and especially cloud testing should be addressed by network
and system administrators. This requires proper understanding of testing
approaches. Unfortunately, most network and system administrators do
not know basic testing concepts and issues. Due to extension of new fields
in their daily work such as cloud computing and also traditional work load
like security, testing should not be an unknown or less-known matter any

3

CHAPTER 1. INTRODUCTION

more.

Additionally, testing in a information system or testing a information
system itself may raise new confusion which can be even more complicated
for those who has limited knowledge of it. A network and system
administrator should learn methods to decompose the system under the
test that can be a security, cloud or other architecture, into its components,
test these components one by one, finally integrate these components and
testing the whole architecture. Two major testing approaches which are
involved in the testing from software to other information systems are
black box and white box testing methods. The black box testing method is
crucial when a network and system administrator has no control over the
cloud and its components or can not see clearly what is happening inside
the system. On the other hand, the white box testing can help network and
system administrators as testers to address issues inside the system when it
is completely visible for instance. These concepts can be also be applicable
in testing an intrusion detection systems for instance, either we need to run
a black box penetration tests on the intrusion detection system as holistic
architecture or it is required to run a white box intrusion tests which follow
the packets inside the system to reveal errors which happens on each
node or component. Merging these two approaches could be addressed.
Although, merging can reduce the costs beside the other benefits, it can
raise some other disadvantages which need to be known.

Furthermore, in the case of cloud computing, as stated in the[6, 7, 8, 9, 10,
11], there are some challenges in the cloud-based testing as follows: Lack
of standards, Security in the public cloud, SLAs, Usage, Planning, Perform-
ance. Since network and system administrators are mainly responsible for
the cloud environments, it seems necessary for them to express their ideas
about these challenges. This cannot be covered if they would not be aware
of testing approaches and challenges. In this thesis, the potential challenges
will be outlined and additionally two testing approaches will be described
and evaluated. Since the topic is roughly new for network and system ad-
ministrators, an outlook for the testing will be provided by comparing the
white- and black-box environments under assessment. The main goal will
be discussing different scenarios that are possible to occur while a network
and system administrator is going to test a system or service.

4

1.2. PROBLEM STATEMENT

1.2 Problem Statement

This study focuses on comparing two radio unit software test environ-
ments (the WBTest and BBTest) that each of them uses different testing
approaches(black- and white-box testing). It tries to apply a proper way
with the intent of comparing and assay their integration feasibility as well.
During this report, it is strived to address the following questions:

• What would be the consequence of relying on only one of the two
systems in an effort to reduce their significant resource consumption?

• What is a proper way to grade these testing environments in order to
make an appropriate business decision?

• What would be the result in the case of merging these two environ-
ment into an integrated environment? Is it feasible?

• What are the redundancies in the current two-part testing efforts?

• To what extent may the lessons learned from radio unit software
testing be applicable in network and system administration?

1.3 Thesis Structure

The layout of the thesis follows the background chapter where the two
testing approaches are described and some examples of these methods are
provided. Then the approach chapter comes to give explanations of the test
strategy, the structure of the two testing environments which will be called
the WBTest and BBTest environments, qualitative, quantitative and mixed
methods, the analytical hierarchy process (AHP) and finally the plan of the
study. The result chapter includes the results of the quantitative part of the
study. The result chapter is followed by the analysis chapter which contains
an overall analysis of the results, qualitative part of the study and applying
the AHP method and document reviews of these two testing environments.

5

Chapter 2

Background

2.1 Software Development Process

A Software development process includes all tasks, activities, procedures
which developers apply to develop and maintain a software and its
related products such as codes, design documents, test cases and user
handbooks.[1] It also known as software development life-cycle (SDLC).
For a couple of years, Some have tried to investigate predictable and
repeatable processes in order to meliorate and formalize productivity and
also quality in software products. In the other hand, others have tried to use
project management methods to prevent late delivery and meet expected
cost and functionality on time in producing softwares.

A Software development process contains following activities: planning,
implementation, testing, documentation, deployment and maintenance.
It is obvious that every activity needs to be planned and a software
developer does the same. In fact, they look for the requirements and
analyse them precisely in order to design desired software based on
requirements.[12] Normally, customers have no idea what software should
do, but they know what they want at the end. In the other hand, a
software developer distinguishes unclear and ambiguous requirements
which should be redefined or even be out of the current project. After the
planning phase, implementation will be carried out by programming the
code of the software. Either parallel or next activity (based on the software
development model) in the software development process is testing which

7

CHAPTER 2. BACKGROUND

is considered as important activity in this process. This activity ensures that
the software defects are detected and fixed as much as possible in order to
have less bug in the final release. More detail information about testing,
its methods and strategies will be provided in the rest of the background
chapter.

Furthermore, maintenance is considered as a part of software development
and it is how to deal with discovered failures or new requirements ,
therefore, documentation is noticeable activity in order to fast discovery
and maintenance. Quantity of the documentation is based on the software
development model (will not be covered in this thesis) which is chosen by
the software team. Less documentation in the agile models and more in
the waterfall models is expected. The remained activity in the software
development life cycle is deployment which happens after testing phase
and contains training, support and installation and custom configurations
in the production environment.

2.2 Software Testing Basis

“A process of analyzing a software item to detect the
differences between existing and required conditions (that
is defects/errors/bugs) and to evaluate the features of the
software item.”[ANSI/IEEE 1059 standard]

Testing is the activity in order to find if the specified requirements are
met or not. Furthermore, one of the most vital activities in the software
development life cycle(SDLC) is the testing which has direct effect on the
development cost and quality assurance.[13] In the early years of system
development, “hardware” had more than 80 percent of overall cost in
a system development and only 20 percent and even less than it, was
belonged to “software”.[14] This trend was inverted in the 1990’s. In this
decade, the software cost by more than 80 percent got the hardware cost
place by less than 20 percent in the total cost.[15] In the other hand, The
testing cost is too much. Nearly 50 percent of a software cost is dedicated
to testing in order to achieve a reliable software.[2] This cost can be even
2 to 3 times more in maintenance phase and normally 70 percent of this
cost is because of the errors in the pre delivery phases.[3, 4] Furthermore,
there are two opinions to guarantee reliability and ensure the quality of

8

2.2. SOFTWARE TESTING BASIS

software. The first and actually traditional aspect indicates that the main
goal in software testing is detecting more defects, not proving software
correctness.[16] This aspect seems to be not reasonable enough. The second
one which is more contemporary, says that software testing is not only
related to the distribution of defects but also related to how we use the
software. [17] In order to decrease cost of the delivered software beside
ensuring its quality, early defects detection is recommended. Although, in
the software development life cycle, testing can be conducted in all phases,
from requirement analysis until software deployment, it depends on the
chosen model for software development. In the waterfall model, it should
be done in the testing phase. In the other hand, in the incremental model, it
can be executed in the end of each increment. Obviously, there is no ending
point for testing and no one can say that the software under the test is
completely tested. But, some aspects such as testing deadline, management
decision, test case execution, code coverage, functional completion up until
pre-defined point as well as reaching to a certain point of error rate, can
finish the testing process.[18]

2.2.1 Testing Primary Objectives

According to [19, 20] , three major testing objectives are:

1. Testing in an activity in which a program will be executed in order to
find errors in the software.

2. A test case that has high likelihood to find defects which is not
discovered yet,is evaluated as proper test case.

3. A test can be considered as successful, when it unfolds still-existing-
errors.

These three mentioned objectives, make it clear that a successful test
is not a test with no error found in a software. In addition to detect
defects in the software, testing shows that whether a software meets
design and behavioral specification and its function is based on the defined
specification or not. The noticeable point is that testing cannot represent the
inexistence of the defects. In the other word, it can only show that errors
are in the software not lack of errors.[20]

9

CHAPTER 2. BACKGROUND

2.2.2 Testing Basic Principles

The suggested principles for testing that guide testers to perform successful
testing are mentioned in the[21] and some of them are highlighted in
the[20] and written in the following lines. As it said in the previous part, the
main objective of testing is disclosing the errors. In addition, from customer
viewpoint those defects which prevent the defined requirements to be met
are most critical. Next principle indicates that the planning and designing
of the tests can be started before code generation and also testing phase. In
addition, “small to large” manner should be implemented in testing, which
means that testing should be started in small components, then step by
step to larger components and integrated components, finally in the whole
system. Hence, testing has been divided into “unit testing”, “integration
testing” and “system testing”. Furthermore, it is completely impossible to
examine all possible path combinations even in the normal size program. It
is totally time consuming and nonsense to test all possible paths. In order
to cover this goal, logic of the conditions and program should be checked
not all path combinations. And finally, based on primary goal of testing to
find errors as many as possible in the program, software developers who
wrote the program, are not best persons to test the created software. In
the other word, testing should possibly be performed by an independent
software tester.

2.2.3 A Good Test

As it suggested in the [22] “a good test” should have following character-
istics:

1. A test can be considered as “a good test” when it had high likelihood
to detect defects in the software. To reach this goal, tester should
think backward and find the way to force the program to fail. Then
find the way to catch the errors.

2. “A good test” is a test that is not redundant. The two or more test
should not test the same things. In the other word, two or more
tests should not detect the same defects. This aspect prevent to use
extra resources and spending extra time and cost. In addition, every
test should have different aims. This attribute becomes much more

10

2.3. TESTING DESIGN TECHNIQUES

important when there are several teams working on a large-sized
software product.

3. The test with its “best of breed”[22] is “a good test”. It means that
with respect to resources and time shortage, only a subset of or only
one group of tests could be sufficient. In the other word, a test
with higher probability to find more errors or more important errors
should be conducted in such occasions.

4. “A good test” is test which is neither too simple nor too complicated.
It is possible to combine several tests into one in order to save testing
time and cost. But, it should be prevented to have too complex and
hard to understand tests. Generally, simpler tests are more efficient
to be executed.

2.3 Testing Design Techniques

As it emphasized in the previous parts, the main intent of testing is design
tests with high probability to find errors with respect to time and resources.
There are several methods for designing tests but most efficient test case
should fulfill the main goal of testing in the system which is disclosing
errors and defects.

Two following basic ways can be used in testing process of a software
product. First one cares about specified functions in the software. In this
way test cases will be designed to test operability of functions based on the
defined specification for the software. Errors in functions can be revealed
at the same time that it tests the operability of them. The second way
concerns about internal parts of the software. Tests are carried out to check
if the internal components work correctly and to find errors in them. It
should verify that the internal parts can satisfy the design specification
or not. These two aspects are called black box and white box testing
respectively.[20]

The black box testing is done at the interfaces of the software under the
test. It tests that the system under the test accepts a valid input and based
on this input, it produces an expected output or not. This process is done
without any knowledge about internal components and interior structure

11

CHAPTER 2. BACKGROUND

of the program. The most important approach in this method is testing
external interfaces in the software.

In the other hand, white box testing is investigating the internal operation
and logic of the software under the test. The internal structure of the
software is also a matter in this aspect. In this type of testing, program
structure such as conditions, loops and the other data structures of the
software will be examined to satisfy design specifications. The tester
should test logical paths through data structures to check if they operate
appropriately. It seems, this type of testing can uncover all possible errors
and result will be completely a correct software. But after taking a deeper
investigation over it, it show that performing such test is a huge task
and takes a lot of time. The calculation in the[20] indicates that it will
be 1014 possible paths for a small program with 100 lines code which
contains two nested loops each from 1 to 20 in addition to four if-then-else
conditions in the internal loop. Now just presume an imaginary (perfect,
high-performance) processor which has been not produced yet, if it only
takes 1 millisecond for executing a test case and preparing the results, it
would take 3170 years to test such program with such redundant testing.
To solve this problem and prevent redundant testing, some important paths
and data structures should be selected and examined.

2.3.1 White Box Testing

The white box testing methods which also called glass box testing, are
used to examine all independent paths in the software at least once as well
as all logical choices(true or false) in addition to perform loops in their
boundaries and finally validity check of data structures. These tasks are
mostly based on the “coverage”. This coverage can be on statements, loops,
paths, conditions and so on.

Tom McCabe[23] proposed “Basis Path Testing” as one of the white box
testing techniques in the 1976. Basis path testing is a simple but not
complete technique in control structure testing which is going to be
explained in following lines.

12

2.3. TESTING DESIGN TECHNIQUES

2.3.1.1 Flow Graph and Cyclomatic Complexity

The flow graph and cyclomatic complexity are two concepts which are used
in explaining basis path testing and will be described in the following lines.
As it is shown in the figure 2.1, each data structure has its own symbol in the
flow graph and these flow graph symbols are used to illustrate the control
flow.

Figure 2.1: Flow graph symbols for data structures.

The following simple pseudo code which calculate average of the ten
numbers, is used as an example to depict flow chart, flow graph and further
explanations about deriving test cases by using graph theory.

Begin
i and sum are equal 0

while i < 10
input x
i f x i s negat ive then

x = −x
sum = sum + x
increment i by one

end of while
i f sum l e s s than 100 then

avg = sum / 1 0 . 0
p r i n t avg

e l s e p r i n t sum i s too l a r g e
End

As it depicted in the figure 2.2, the flowchart is resulted from pseudo code.

13

CHAPTER 2. BACKGROUND

Each circle in the flow graph is called flow graph node and all arrows are
called flow graph edges which represent flow of control. Each edge in the
graph should be ended at a node. As it can be seen in the converting
3,4 and also 9,10 from flow chart to flow graph in the figure 2.2, it is
possible to merge sequence boxes together or with a decision or condition
diamond and conclude a single circle(node). All areas bounded by nodes
and edges construct a region. In addition the external area is also called a
region(region 4 in the figure 2.2). The nodes which have a condition are
called predicate nodes. These nodes normally have two or more outgoing
edges. Moreover, when there are multiple conditions in a decision box(that
is called compound condition), each condition must be represented by a
node.

Figure 2.2: Converting flow chart to flow graph.

After short description about flow graph and its terms, it is time for
cyclomatic complexity. The cyclomatic complexity is a measure for the
logical complexity of a software or program.[23] The computed value by
the cyclomatic complexity represents that how many independent paths
exist in the program. Furthermore, The maximum number of tests in
order to cover that all statements are performed at least once, is equal to
the cyclomatic complexity measure. For making it a bit more clear, an
independent path is a path which passes over a new set of statements or
a new condition. The set of all independent paths build basis set for the
flow graph and program. In the given pseudo code and concluded flow
graph, independent paths are:

14

2.3. TESTING DESIGN TECHNIQUES

• Path1: 1, 2, 7, 8, 11

• Path2: 1, 2, 7, 9, 10, 11

• Path3: 1, 2, 3, 4, 5, 2,. . .

• Path4: 1, 2, 3, 4, 6, 5, 2,. . .

As it can be seen in these four concluded paths, each new path introduce
a new edge. In addition, three points at the end of path 3 and 4 shows
that those are covered by another independent path. In this example,
those three points can be filled either path 1 or path 2. Therefore there
is no need to add both paths and consider them as two independent paths.
Moreover, all combinations of these four path cannot be considered as a
new independent path due to exhaustive nodes in the paths.

By concluded paths, we can see what tests should be designed with the
intent of examining all possible paths and executing all conditions in both
their false or true responses at least once to disclose errors in the procedural
program. These four paths are shaped a basis set for depicted flow graph
and tests should be designed for execution of these paths.

Implementation of the graph theory for computing the cyclomatic com-
plexity will give us exact number of independent paths. The cyclomatic
complexity can be computed by one of the upcoming ways.

1. The number of the regions which bounded by edges and nodes in
the flow graph is equal to cyclomatic complexity. As it can be seen
in the mentioned example, there are four regions and as result, four
independent paths in the flow graph.

2. The cyclomatic complexity for the flow graph can be computed by
following formula:

v(G) = e− n + 2p

Which e refers to number of edges, n refers to the number of nodes
and p is the number of connected components which is one in the
example. There are eleven edges and nine nodes in the flow graph
2.2. The result by applying the formula will be four.

15

CHAPTER 2. BACKGROUND

3. And finally, cyclomatic complexity can be computed by using the
number of predicate nodes plus one. In the mentioned example, three
predicate nodes can be seen. Hence, the cyclomatic complexity is four
again.

As conclusion of applying graph theory and cyclomatic complexity in this
example, there are four independent paths which can ensure execution
of all statement in the program. In addition, based on [23], there are six
properties for the cyclomatic complexity that should be noticed:

1. v(G) ≥ 1

2. v(G) is the upper bound number of independent paths in the graph
G and the value of it is equal to the size of a basis set.

3. Removing or adding the functional statements(nodes) to the flow
graph G, will not change v(G).

4. Flow graph G has just one path if and only if v(G) is equal to one.

5. Adding a new edge to the flow graph G increases v(G) by unity.

6. v(G) is only based on the decision structure of the flow graph.

It is time for deriving test cases from the independent paths. Distinguishing
predicate nodes is the main help to derive test cases. In the other hand, the
path of the program is decided in these nodes. All test cases are performed
and their result will be compared with the expected results. Execution of
all test cases can guarantee testing of all statements at least on time.

There is another data structure that is called graph matrix which can help
testers to find the cyclomatic complexity and also is useful in basis path
testing. The graph matrix is a matrix that its number of columns and
rows is equal to the number of nodes. In this matrix, each row and
column represent a specific node and the matrix entries are the connections
between nodes which are edges. A simple graph flow example and
its matrix are shown in the figure 2.3.[20, 24] The nodes are shown by
numbers and edges by letters. These numbers and letters are mapped
into a corresponding matrix. By adding weight to each entry in the matrix,
control structure testing will be much more powerful. It means that each

16

2.3. TESTING DESIGN TECHNIQUES

weight link can contain further information about the control flow. This
weight can also indicate execution probability of the weighted edge, time
spending for processing between two nodes or also resources such as
memory that are needed during traversal between two nodes.[20]

Simplest demonstration can be based on incident matrix, which no
connection and connection is shown by zero and one respectively. The
corresponding connection matrix is also depicted in the figure 2.3.

Figure 2.3: Graph matrix and connection matrix

All letter in the graph matrix, has been replaced by 1 to show connectivity
and existence of a link and build up connection matrix. In addition, rows
with at least two entries, indicate that there is a predicate node in the graph.
Three rows with such specification can be seen in the connection matrix.
Hence, based on the third method to find cyclomatic complexity, v(G) will
be number of predicate nodes plus one which will be four in the flow graph
depicted in the figure 2.3.

In order to improve white box testing quality, we need to add some other
testing techniques to the basis path testing. In the other word, it is not
enough to test the software with basis path testing. Other technique such as
condition testing and loop testing will be shortly discussed in the following
lines to widen coverage in the white box testing method.

17

CHAPTER 2. BACKGROUND

2.3.1.2 Condition testing[25]

Condition testing is a technique that is used to test logical conditions in
the code. These conditions can be a true/false (boolean) variable or a
relational statement in the program we are testing. This technique has
two major benefits. First, it can simplify testing of conditions. Second,
Condition testing can provide assistance in creating additional test cases
for examining the program. Furthermore, condition testing is not only
for detecting defects in a condition statement, but also for detecting other
possible errors in the code. In the other word, effective condition testing
strategy will also lead to effective testing in the other part of the program.

The simplest condition testing strategy is branch testing. In case of having
a compound condition, both true and false branches are required to be
executed and examined.[26] The other strategy is domain testing which
needs three or four tests for a relational expression.[27] Testing greater than,
equal to and less than possibilities are three tests which is mentioned in the
previous sentence.[28] Obviously, these three tests will uncover errors in
the relational expressions.

Branch and Relational Operator(BRO) testing technique which is suggested
in the [25] as a condition testing strategy, guarantees uncovering a
condition errors in its branch and operator operators, but this should be
noticed that all true/false(boolean) variables and also relational operators
in the condition under test should occur only one time and there should be
no similar variables.

2.3.1.3 Loop testing

Loop testing(a white box testing technique) concentrates on examining
loops in the program and checking their validity. As it stated in the [24],
there are four classes for the loop structure. They are simple loops, nested
loops, concatenated loops as well as unstructured loops. For each class,
there are some tests that can be derived and executed.

Simple loop. Tests that can be used for simple loops are:

1. Skipping the loop.

18

2.3. TESTING DESIGN TECHNIQUES

2. One time pass via the loop.

3. Two times pass via loop.

4. m times pass via the loop (m < n)

5. n− 1, n, n + 1 times pass via the loop

notice that n is the maximum number of valid passes via the loop

Nested loops. extending the simple loop testing to nested loops testing
will lead to increasing the number of tests for nested loops. This
growth would be even geometrically by increasing the level of
nesting in loops. There is an aspect that is suggested in the [24] which
can help us to decrease the number of possible tests in the program.

1. Running mentioned simple loop tests on the innermost loop. All
other loops should be set with minimum values as their loop
counter. Other tests which contain out of range and excluded
values should be added as well.

2. In the next step, after testing innermost loop, rest of the tests
should be executed one level out while outer loops are at their
minimum values.

3. Perform these three steps until testing all loops.

Concatenated loops. There are two types in such loops. First, loops that
are concatenated but independent which can be tested with simple
loop testing method. Second, loops that are concatenated but with
dependency. For example, second loop would need last value of
previous loop as it initial loop counter. In such cases, the method
for nested loops testing is suggested.

Unstructured loops. Obviously, as it can be known by its name, there is
no guarantee for suitable tests in such kind of loops. In order to test
these loops, software designer should change the structure of such
loops and then testing them.

2.3.2 Black Box Testing

Behavioural testing as known as black box testing method, is a testing
technique without having any information about internal structure or
procedure of a software. In addition, it cares about functional requirement.
This method is being used by software testers in order to provide suitable

19

CHAPTER 2. BACKGROUND

inputs for checking if the software satisfies functional requirements or not.
As it stated in the [19], the following criteria will be satisfied by test cases
which use black box testing method. First, those test cases that reduce(more
than one test case) the amount of extra test cases that must be derived for
proper testing. Second, those test cases which reveal not only an error with
a specific designed test, but several classes of errors in the software. The
lines that follow, provides some well-known black box testing methods and
techniques.

2.3.2.1 Graph-based Testing

Discovering program objects which can refer to the data objects and
modules in the program and connections between objects that show their
relationships, is the initial step in the black box testing. After this step, set of
test cases can be derived with intent of verifying predefined relationships
between objects. [29] This goal can be reached easier if we create graph
based on program objects and their relationships and then examining the
graph by series of test cases to detect defects.

The mentioned graph has following specification and notion : nodes
that show program objects, node weights that contain attribute of nodes,
links that show relationships between objects and link weights that keep
properties of links. As it can be seen, stated properties are similar to the
graph properties of basis path testing method in the white box testing. This
graph is an extended model of the flow graph in the white box testing. The
simple demonstration of this graph is in the figure 2.4.

As it can be seen in the figure 2.4, nodes(objects) are illustrated by circles
and links(relationships) are shown by three different shapes. First, directed
link that shows one way relationship. it means that the relationship moves
from one object to another one based on the direction of the arrow. Second,
Bidirectional(Undirected) link which is illustrated by a simple line and
shows both direction relationships. This link known as symmetric link as
well. And finally, parallel links which is shown by two or more parallel
lines and indicates different relationships between two objects.

In the [29], Beizer explained some methods in the black box testing which
use the previously explained graphs to derive test cases:

20

2.3. TESTING DESIGN TECHNIQUES

Figure 2.4: Graph properties

Transaction flow modeling.
In this type, transaction steps are indicated by the nodes. For
example, steps to register in a web site. In addition, links are
representative of logical relationships between nodes. The data flow
diagram can help testers creating this graph.

Finite state modeling.
Various user observable states are shown by nodes and links show
the required transitions in order to move to different states(nodes).
The state transition diagram can be helpful for creating this type of
graphs.

Data flow modeling.
The nodes represent data objects and the links indicate the required
transformation for translating data objects during their traversal.

Time modeling.
The nodes are representative of program objects and the links show
the sequential relationships between the objects(nodes). In this
method, link weights are applied to show the execution time.

In the graph based black box testing, first step is identifying the objects
and their attributes to build up nodes and nodes weights. Next step
is discovering the relationships and their properties to create links and
links weights. In case of any loop in the graph, the loop testing method
mentioned in the white box testing can be applied. For identifying the
effect of the relationships on the graph objects(nodes), transitivity between

21

CHAPTER 2. BACKGROUND

objects should be studied. As an example, if “A is required to compute
B” and “B is required to compute C”. The transitive relationship is “A is
required to compute C”. It means that the test case must contain different
values of B and also A.[20] Furthermore, the symmetric link should be
considered for testing reflexive relationships. It should be noticed, there
are two main aspects in designing test cases which should be addressed,
node coverage and link coverage.

2.3.2.2 Equivalence Partitioning

It (known also as Equivalence Class Partitioning) is a black box software
testing technique that divides the input data of a program to the partitions
of data that are equivalent from which test cases can be derived.[20]
This technique tries to disclose “classes” of errors with intent of reducing
number of test cases and shortens the testing time. In addition, designing
test cases in this method is depends on the assessment of equivalence
classes for the input. It should be noticed that existence of symmetric,
transitive and reflexive relationships between objects shows that there is
an equivalence partition for the input.[29] In addition, a serie of valid and
invalid input states. The upcoming guidelines provided in the [20] , assist
us for distinguishing a equivalence class.

1. A specific numeric value as input: one valid and two invalid
equivalence classes are defined.

2. A range of values as input: one valid and two invalid equivalence
classes are defined.

3. A set of related values as input: one valid and one invalid equivalence
classes are defined.

4. A boolean condition as input: one valid and one invalid equivalence
classes are defined.

By using these guidelines, the equivalence partitions will be derived and
then based on these equivalence classes which are reduced the number of
test cases, suitable test cases will be created.

22

2.3. TESTING DESIGN TECHNIQUES

2.3.2.3 Boundary Value Analysis

For unknown reasons, most of the errors happen at the input boundaries
not in the center. In the other word, testing around the input boundaries
is more valuable for testers to reveal errors. Boundary Value Analysis as
outcome of this trend, helps to create test cases in order to execute black box
testing on software under the test. The boundary value analysis technique
is a complement for the equivalence partitioning. It assists to design test
cases not for any member in a equivalence class but for those inputs which
are at the boundaries or edges of the equivalence class. As it stated in
the[19], in addition to deriving test cases from input domain, boundary
value analysis can derive test case from the output conditions.

The following guidelines are provided to derive boundary value analysis
test cases.[20] As it mentioned in the previous paragraph, the boundary
value analysis technique complements the equivalence partitioning tech-
nique, so the guidelines seem to be optimized for boundary value analysis
technique.

1. A specific numeric value as input: proper test cases should be
designed to examine maximum and minimum values in the class.
Test will be completed after deriving test cases for the values above
and below the maximum and minimum values which are already
tested.

2. A range of values as input: in this situation, the values which bound
the interval, should be considered in test case development and the
values above and below these boundaries.

3. Guidelines 1 and 2 can be applied for output domain as well. It means
that the boundary value analysis technique which is mentioned in the
first two guidelines can reduce the number of test cases for examining
output conditions.

4. In case of having internal data structure with predefined boundaries
like a limited size array, test cases should be designed to examine the
data structure at its boundaries.

By Using these guidelines, probability of detecting defects will increase by
having such boundary testing.

23

CHAPTER 2. BACKGROUND

2.3.2.4 Orthogonal Array Testing

Orthogonal array testing is a black box testing technique which can happen
in case of having number of input parameters but this number is relatively
small but too large for executing redundant testing.[20] There are some
applications which have several input parameters that all the parameters
accept limited number of values. Although it is possible to perform
redundant testing and examining all possible input combinations in case of
limited number of input values, when the number of parameters increase,
the exhaustive testing will be completely impossible. As it mentioned
above, in such cases(small number of input parameters but large to
prevent redundant testing), the orthogonal array testing is applicable. This
technique is so suitable for detecting region faults which represent faulty
logic in the software.[20]

following example helps to describing orthogonal array testing more clear.
Imagine a software with four input parameters: A, B, C, D. Each of these
parameters can take three values 1 , 2, 3. Number of possible test cases
will be 34 = 81. It is large and seems impossible to have this amount of
exhaustive test cases. The following testing would be defined, If testers use
“one input at the time” testing technique:

(A, B, C, D) = (1, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1), (1, 2, 1, 1),

(1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 3, 1), (1, 1, 1, 2), (1, 1, 1, 3)

This technique has limitation in error detection. In fact, it is helpful, if
the input parameters have no interaction with each other. It can detect
single mode faults(when single parameter causes faulty functionality in the
software). In case of faults caused by two or more parameters, it is disable
to disclose logic faults.[30]

The orthogonal array testing assist testers to reduce number of test cases
and perform more proper tests. In the orthogonal array testing, an L9
orthogonal array will be created. The corresponding L9 orthogonal array
of the stated example can be seen in the table 2.1.

Following results in detecting different kind of faults can be obtained by
orthogonal array testing technique. [30]

24

2.4. TESTING STRATEGIES

Test Case
A B C D

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

Table 2.1: L9 orthogonal array

Single mode faults. This technique disclose and isolate all single mode
faults in the software. If value 1 be as source of error, first three test
cases will fail and show the faults. Failure of first three test cases
can assist to analyse the source of error. It can be seen that this error
happens when A gets the value 1. In this step, the logical process
which leads to this failure will be isolated for fixing.

Double mode faults The double mode faults can be detected by this
technique. Occurrence of a problem when two specific items happen
together, is called double mode fault. It shows inappropriate
interaction between those two specific parameters.

Multimode faults Some multimode faults can be detected by orthogonal
array but it cannot guarantee it.

As it mentioned above based on the results in the[30] , Orthogonal array
testing assures detecting single and double mode faults but not multimode
faults.

2.4 Testing Strategies

In order to achieve a well constructed software, it is required to derive
test cases by mentioned method and execute test cases in an organised

25

CHAPTER 2. BACKGROUND

way. Such organised way builds up the testing strategies which indicate
a couple of steps for testing. Testing strategies assist testers to distinguish
that how they execute test cases. For example, if a new component is added
to program, how should it be tested? Should we run the tests on the small
part or on entire software? The responses to such question are provided by
testing strategies.

Testing can be designed and planned in early stages of software devel-
opment. Such planning can conclude a testing template in which testing
methods and design techniques of test cases will be declared. This tem-
plate composes testing strategy in the software process.

2.4.1 Verification and Validation

Verification and validation(V&V) which can also be referred to the software
quality control, are the process of checking if the software satisfies
predefined specifications or not. In addition, Software testing is one of the
activities inside the V&V. Verification and validation are not the same. A
precise definition which shows their difference is stated in the [31]:

• Verification: Are we building the product right?

• Validation: Are we building the right product?

Verification and Validation contain a wide set of tasks in the software
quality control. As it stated in the [32], each of the software process phases
contain several verification and validation task such as requirements
validation in the requirement definition phase, design evaluation in the
design phase and so on. Although testing is the last task which uncover
errors in the V&V process to determine quality of software, other tasks
are also necessary. In addition, it cannot guarantee the quality. In the
other word, testers cannot examine the quality by testing. In fact, there
are several factors that are important in the software quality control. The
connection between quality control and testing is described by Miller: "The
underlying motivation of program testing is to affirm software quality with
methods that can be economically and effectively applied to both large-
scale and small-scale systems." [33]

26

2.4. TESTING STRATEGIES

2.4.2 A Testing Strategy

In order to describe a testing strategy shortly, assume that spiral model is
a chosen software development process model. Software engineers begin
the software development process by defining the software role and system
engineering. Moving one step inside the spiral, requirement analysis will
be the next step which contain function, performance, validation and other
factors and specifications that should be analysed. After requirement
analysis of the software, it will be time for design and then coding at.
A testing strategy is to move outward along the spiral model. It means
that the first step for testing the software is unit testing which execute
tests on each unit in the written program. Next step will be integration
test that concentrates on the design and how the software architecture is
constructed. One more turn outward leads testers to validation tests in
which predefined requirements is validated. Finally, system test will be
executed to test entire software system and all other factors together.Unit
testing mostly uses white box testing techniques. Obviously, the goal of
unit testing is code coverage and detecting maximum code defects in the
program. After unit testing components, it is time for the integration test
which addresses problems with both verification and program structure.
Although integration test widely uses black box testing techniques to
uncover functional and behavioural errors, white box testing techniques
will be used to disclose errors in the major control paths as well. After
successful integration tests which result an integrated software, validation
tests will be performed. Validation test cares about functional, behavioural
as well as performance requirements. Hence, its condition fits to the black
box testing techniques. And finally system tests will be executed to verify
that the software is working properly with its system component such as
database, hardware and so on. [20]

2.4.3 Completion of Testing

here is no clear answer to the questions about completion of testing by the
software testers. If you ask a tester about this issue, you may receive two
responses. First, “There is no final point for testing.” which refers the rest
of testing to the customer. In fact, every execution of software by customers
can be considered as a testing in the real environment. Second, “Testing will
be done when there is not enough resource(time, money and so forth) to

27

CHAPTER 2. BACKGROUND

perform more tests.” which means the completion point of testing depends
on resources.

These responses may give the testers a quick overview about the comple-
tion testing point of the software, but software testers require a scientific
answer to this question. A statistical response to this question can be found
in the [34]. They suggested: "No, we cannot be absolutely certain that the
software will never fail, be relative to a theoretically sound and experiment-
ally validated statistical model, we have done sufficient testing to say with
95 percent confidence that the probability of 1000 CPU hours of failure free
operation in a probabilistically defined environment is at least 0.995." A
function of execution time for software failure models can be conducted by
applying statistical modeling as well as software reliability theory. Logar-
ithmic Poisson execution time model as a function for failure model which
is suggested in the [34] presents as follow:

µ(τ) = (1/θ)ln(λ0θτ + 1)

µ(τ) refers to the cumulative amount of expected failures once the program
has been examined in the execution time of τ.
λ0 characterizes to the initial program failure intensity in the start of the
testing period.
θ refers to the exponential mitigation in the failure intensity as defects are
detected and repairs are made.

Derivative of the function µ(τ) results to the instantaneous failure
intensity.[20]

λ(τ) = λ0/ln(λ0θτ + 1)

This formula assists testers for predicting the reduction of errors while
testing the software. It should be noticed that the logarithmic poisson
execution time model can be applied for predicting required testing
time with suitable failure intensity, if the data gathered during the test
and predicted by logarithmic poisson execution time model are close
enough. By gathering proper factors and using such statistical and

28

2.4. TESTING STRATEGIES

reliability modeling, answer to the "when to stop testing?" can be provided.
Furthermore, in the [35], a Bayesian approach in order to predict the
number of failures in a software, by using the logarithmic-poisson model,
a nonhomogeneous poisson process (NHPP) is applied to describe failures
in the software.

In the following lines, different testing strategies will be described shortly.
The main focus will be on the Integration testing which both white box
and black box testing techniques are responsible and some overlaps may
happen.

2.4.4 Unit Testing

Unit testing as known as component testing focuses on code coverage
and is done by white box testing technique. By applying component
level design description, main control structures and paths will be tested
in their boundary to detect errors in them. All the methods which are
explained in the white box testing techniques such as basis path testing,
loop testing, will be used to test software components and reveals error in
the program structure. In the unit testing, test cases should be derived to
detect defects due to wrong control flow, incorrect comparisons specially
in the conditions and also fault computations.

2.4.5 Integration Testing

Following statement may be expressed by a beginner, “If the software
components work correctly one by one, obviously they will also work
correctly together.” The main issue arises by “working correctly together”.
It should be noticed that there is no guarantee that if a component work
individually, it would work in integration with another component and
reverse. Some components may affect the other ones, global data structure
may lead to a problem and integrated subfunctions may not present
the demanded functionality. Goal of the integration testing strategy is
to construct the software while performing tests to reveal errors. In
fact, by this strategy, individual units will be put together to build the
software based on the design specification. It also can be called component
integration stage.

29

CHAPTER 2. BACKGROUND

There are two type of integration testing. First one follows “Big Bang”
aspect. it means that putting all components together at once and then
trying to test and disclose errors in the software. As it can be imagined, the
result will be a messy software which is so hard to reveal failures in it. In
this approach, debugging an error may arise another error and the testing
process will be trapped in a endless loop. Second aspect is incremental
integration which is opposite to the big bang aspect. In this approach, small
components build the software incrementally. It results to simpler error
detection, error isolation and finally error correction. As it can be seen, this
aspect gives a systematic view in developing and testing the software.[20]

2.4.5.1 Top-down Integration

One of the incremental aspects in the integration testing is the top-down
integration. In this approach, the integration direction is downward and is
started from the highest level via control hierarchy. There are two manners
with intent of subordinating modules to the main control module. Depth
first and breadth first are the stated manners.

Figure 2.5: Top-down integration

In the depth first, developer may merge the components on a major
path control path which can be different based on the specification of
the application. Figure 2.5 can assist to understand these manners better.
For using depth first integration, by choosing the right path in the figure
2.5 , components C1,C5,C9 are merged. Then C11 would be integrated.

30

2.4. TESTING STRATEGIES

In addition, for suitable functioning of the C5, component C10 may also
be integrated. After integration of the the right path, other path will be
integrated one by one in the same way. In the other manner, breadth
first integration, Components which are going to be integrated, will be
chosen in each level horizontally. Referring to the figure 2.5 , components
C2,C3,C4,C5 will be chosen in the first step of integration. Then, the next
level of components (C6,C7,C8,C9,C10) would be integrated. It will be
carried on until complete integration. The integration steps are stated in
the[20] and are as follow:

First The test driver for integration testing is the main control module and
all the stubs subordinate to this driver.

Second Based on the integration manner (depth first or breadth first),
stubs will be substituted with real modules and components.

Third After each integration tests will be executed.

Forth Next stub will be substituted by the actual component when the
previous test is completed.

Fifth And finally, regression tests which will be explained in the next part,
will be executed to reveal any expected errors after integration of a
new component.

This guideline will be done from second step up until completely construc-
ted structure. Due to nature of top down integration, major control prob-
lems which are important to be distinguished early, can be detected at the
higher level. Although, top down strategy seems to be simple, some logical
issues can happen while doing the integration. One of the issues happens
when low level components need to test upper level components. As it ex-
plained in the guideline, actual components have been substituted by stubs
at the start of the top down integration, hence, significant data cannot flow
to higher level. In order to solve such problems, there are three options.
First, testers would postpone so many tests and waiting until stubs being
substituted by real components. Difficulty in finding the reason of errors
and also changing the nature of the top down integration are common side
effects of the first option. Second, testers would develop new stubs that can
perform limited functionalities in order to represent real components. Ob-
viously this option causes high overhead especially when developing stubs

31

CHAPTER 2. BACKGROUND

which are more complicated. Third, testers would use bottom up integra-
tion which merge components from bottom level to higher level.[20]

2.4.5.2 Bottom-up Integration

In the bottom-up integration, construction and testing the software will be
upward. It means that integration begins from low level components. One
of the advantages in the bottom up integration is that stubs are useless and
therefore, no need to have them any more. The upcoming steps show the
guideline for the bottom up integration. [20]

First Components in the lower level which perform a subfunction, com-
pose a cluster.

Second A control program which is called test driver is developed for
coordinating input and output data.

Third The created cluster is tested by the written driver.

Forth And finally, the written driver is removed and new cluster will be
composed upward.

Figure 2.6: Bottom-up Integration

The steps will be executed until the whole structure be integrated.
Referring to the figure 2.6, modules with similar interests form clusters.

32

2.4. TESTING STRATEGIES

Each cluster will be tested by a driver. For example in the figure 2.6,
clusters 1 and 2 are tested by drivers D1 and D2 respectively. Then, drivers
D1 and D2 will be removed and the clusters will be connected to the C2.
The same manner happen for the cluster 3 and cluster 4. And finally C2
and C3 will be merged with C1. Although, each cluster requires it own
driver to be tested, moving upward and integrating forward mitigate need
of new drivers. As it stated in the [20], "if the top two levels of program
structure are integrated top down, the number of drivers can be reduced
substantially and integration of clusters is greatly simplified."

2.4.5.3 Regression Testing

Adding every new component to the software for testing can lead to new
control paths, new control logic or new input/output. Previously tested
functions can be affected by such new changes in the software. Regression
testing ensures that the integration of new module does not cause new
functionality violations. In fact, regression testing assists testers to uncover
new errors. Furthermore, this strategy is really useful and important in
order to reduce side effects that occur by changes. In the other hand,
as it discussed, the main goal of testing is detection of defects in the
software, but these detected bugs have to be fixed. This process can
cause new errors(because of new changes while correction occurs) in the
software. Another benefit of regression testing is to certify that unexpected
error or functionality will not happen after such modification in the the
software. Regression testing can verify whether the new components
affect on the previously integrated components and violate predefined
specifications.[19, 20, 36]

This testing can be performed by running a subset of the previously
executed tests and as it mentioned in the [19], using some capture and
playback tool which captures test cases and their results for comparing
these results with outcome of next playback.

Three different types of test cases are in the regression [20]:

1. A delegate test which can examine all functions in the software.

2. Tests that examine functions which are more probable to be failed by

33

CHAPTER 2. BACKGROUND

recent changes.

3. Tests which examine those components which have been modified.

Following lines contain the regression test process which is stated in the
[37].P refers to a program or component, P′ refers to the modified version
of P and T, T′ refer to test suites for P and P′ respectively. In addition,
T′′ refers to the new test suite that should be derived to test P′ when it is
necessary.

1. Select T′ ⊆ T, T is a subset of test cases for execution on P′.

2. Test P′ with T′ and verifying correctness of the P′ with respect to
testing with T′.

3. Create T′′ which contains new functional or structural test cases in
order to test P′ when it is required.

4. Test P′ with T′′ and verifying correctness of the P′ with respect to
testing with T′′.

5. Create a new test suite,T′′′, for testing P′ from T, T′ and T′′.

It is not proper testing way to re-execute all test cases for all software
functions after every change. The tester should design regression tests in a
way to reveal one or more error classes in every major functions with intent
of reducing number of regression tests. All these attempts for reducing
the number of test are because of high cost of regression tests. These
attempts are resulted to several regression test selection (RTS) techniques.
Five regression test selection techniques for reusing written test case are
experimented and compared in the[37] by focusing in the capability to
reduce regression testing cost and disclose new errors.

2.4.5.4 Smoke Testing

Smoke testing also known as build verification testing, is one of the
integration testing approach and applies to time critical projects. It contains
a non-redundant set of tests in order to test the most important and critical
functionalities in the software frequently. Integrated software components

34

2.4. TESTING STRATEGIES

in addition to required libraries, files and modules encompasses a build.
Then a set of non-exhaustive tests with intent of revealing defects in
functions which are so important more probable to fall the project behind
the schedule, are designed and conducted. And finally a daily smoke test
will be run on the whole product that includes all integrated builds. As it
mention by Jim McCarthy in the[38]: “Treat the daily build as the heartbeat
of the project. If there is no heartbeat, the project is dead.”, daily smoke
test on daily build is so important in all software projects. The outcome of
smoke testing ensures that this build is stable enough to carry on other
tests. In should be noticed that smoke test should cover most critical
function but not in depth. In addition daily smoke test assists developers
to reveal errors and integration problems early in the development and
testing cycles, therefore, it reduce the integration risks which can lead to
delay in the schedule. Furthermore, smoke tests is capable of finding
both functional and component design errors. It is simply because of
its integration oriented structure. Hence, the result will be better quality
product. Because of its daily result, smoke test can help developers and
also managers to keep track of progress.

Both regression and smoke testing should concentrate on the critical
module in the software. A critical module is a module which represent
several program requirements, tends to be failed and has predefined
performance requirements.[20]

2.4.5.5 Top-down vs. Bottom-up

Obviously, both bottom-up and top-down integration testing have their
own advantages and drawbacks. The need of stubs which lead to
difficulties in the testing and integration, is one of the most important
drawbacks in the top-down aspect. But, revealing errors in the major
control function as early as possible(top down integration nature) is one
of its benefits. In the other hand, as it mentioned in the [19], existence
of a program depends on the integration of last module to the program,
therefore, because of the bottom-up integration nature, it is considered
as its disadvantage. But, main benefit of bottom-up integration is that it
does not require stubs, so, designing test cases will be simpler. Generally,
software developer will chose combination of these two approaches which
is called sandwich testing. In the sandwich testing, top-down integration

35

CHAPTER 2. BACKGROUND

testing is applied to the higher level components and bottom-down
integration is applied to the lower level components.[20]

It should be noticed that following tests should be designed and derived in
the integration testing:[20]

Interface integrity test.
After each integration, both interfaces(internal and external) should
be tested.

Functional validity test
Executing of tests with intent of detecting functional defects.

Information content test
Global or local data structure errors should be uncovered.

Performance test
performance bounds should be tested in order to be verified.

Integration test documentation also known as test specification which
includes test plan, test strategy, test procedure, test schedule, previous
test result, testing problems and so on, helps testers to perform proper
maintenance whenever it is needed. In fact, better test specification leads
to better maintenance and better quality product.

2.4.6 System Testing

System testing is another level of software testing and is done after
complete integration of components and their tests. When all components
are examined by unit testing and then integrated and tested, software
should be tested by system testing with intent of examining whole system
with its elements such as hardware, software and so on. The goal is to
verify proper integration and requested functionalities.

Some of the worthwhile testing in the software testing is described in
the[39] and will be explained shortly in the upcoming lines.

Stress testing.
The main aim in the stress testing is to put system in the abnormal

36

2.4. TESTING STRATEGIES

condition to find its failure threshold. It means that the tester tries
to overload system with high quantity, frequency and volume of
resources.

Performance testing.
This testing is being done to test the run time performance of the
system. In fact, it is executed with with participation of stress testing
to calculate utilization of resources. Normally, external instrument
will be used to disclose conditions of system failures.

Recovery testing.
Recover testing is executed to test how system is fault tolerant. It
means, the system will be examined to see if the system can recover
from fault and resume its functionality. In this testing, testers force
the system to fail and verify its recovery performance.

Security testing, installation testing, load testing, sanity testing and so on
are other system testings which will not be discussed in this report.

2.4.7 Debugging

Testing process is always coupled with debugging, As it mentioned, tests
are being done to reveal errors. These errors should be fixed. Repairing the
errors are consider as debugging process. In the debugging process, testers
try to find the source of the error by analysing the results and then fix it.

37

Chapter 3

Approach

This chapter will guide you through the testing systems, data collection
methods and data analysis procedures used in this thesis. The following
lines include an overview of the testing strategy, white box test and black
box test environments which will be called WBTest and BBTest respectively
from now on. The chapter will be followed by the explanation of data
collection methods used in this thesis such as quantitative, qualitative and
their combination. It will be ended by introducing a data analysis method
for multi criteria decision making that is going to be used in the analysis
chapter.

3.1 Testbed

In this section, the testing strategy used in the company will be described
briefly. It contains all testing activities but since possible overlaps may
occur on sub-system level, the focus will be on this level. This section will
be followed by the WBTest and BBTest environments that are used in sub-
system level testing.

39

CHAPTER 3. APPROACH

3.1.1 Testing Strategy

This part contains a hardware generic and standard independent strategy
for radio software development in the company based on internal docu-
ments in the company as well as the international software testing qualific-
ation board (ISTQB). [40, 41] Furthermore, test activities and levels within
the radio organization will be described.

The main aim in software testing as mentioned in the background chapter,
is to find faults as early as possible to ensure efficiency and fair cost
of testing. Testing strategy provides a common view of the quality
assurance and outline the quality assurance requirements set on the radio
base station (RBS) features (feature is smallest saleable unit, i.e. software
and/or hardware that adds customer value.) and radio software. It also
supplies the daily work in the cross functional teams (XFT teams) which
are responsible for radio software development and for testing properly.

General principle that should be noticed in this strategy are:

• The quality level should be as expected by end customers.

• Defects should be found and corrected as early as possible (to shorten
feedback loops).

• Test-driven development recommended on all levels.

• Test automation should be the first choice when writing test cases.

• Requirements should be possible to test

• The test analysis should cover scope, costs, needed resources and
risks.

The test strategy for radio software is specified in terms of goals and
requirements for the software development. It includes all responsibilities
supporting the XFT teams to develop high quality software. The strategy
covers design level test of radio software, radio sub-system level test and
node level test on multi-standard radio base station (RBS). [Figure3.1]

Design level test includes static, component test (CT), component integ-
ration test (CIT).[Figure3.1] In this level, testing activities should be done

40

3.1. TESTBED

from specification perspective which refers to white box testing. It means
that design specification (DS) is the base of software development, there-
fore design test should also be based on DS. The test activities in the "static"
are test review and static analysis. Test review represents reviewing the tar-
gets(design input specification, radio unit (RU) application and test code).
Static analysis refers to compilation of all targets and additional static ana-
lysis by aid of coverity analysis tools. The important point in this level
is that compilation and static analysis must be passed without error and
warnings. After "static" testing activities, component test (CT) also known
as unit test will be applied.

It is a test with the intent of finding bulk of implementation faults. It
focuses on high code coverage: if 100% statement coverage happened,
the test is passed and If less than 100% coverage occurred, the test is
failed. As stated earlier, in the general principle, test driven development
is recommended.The next activity in the design level is component
integration test. In this activity all dependencies and impact of component
should be extracted and tests should be designed to find faults in the
interaction between components.

As can be seen in the figure3.1, design level test will be followed by sub-
system level test which contains sub-system integration (SSI) and sub-
system verification (SSV) testings. Overlaps and conflicts have higher
likelihood to happen in this level, since this level is the junction of white
box and black box testing methods. Based on testing strategy, sub-
system integration and sub-system verification should be done in WBTest
environment and BBTest environment respectively and in some cases these
goals would be mixed because of the existing potential of overlap in the
sub-system level test.

In sub-system integration testing of radio unit software, a simulator which
simulates different radio units with different standards, can be used for pre
delivery debugging and test case implementations before running them
on real radio unit (RU) for execution of tests. Then, tests will be run
in the lab which includes a wide selection of HW to cover all platforms,
families , driver sets, frequency bands and so forth. In addition, test objects
should mainly be mapped on RU functionality according to functional and
nonfunctional (performance, robustness and etc.) aspects.

41

CHAPTER 3. APPROACH

Fi
gu

re
3.

1:
Te

st
ac

ti
vi

ti
es

fo
r

ra
di

o
so

ft
w

ar
e

de
ve

lo
pm

en
tp

ri
nt

ed
w

it
h

pe
rm

is
si

on
fr

om
co

m
pa

ny
’s

in
te

rn
al

do
cu

m
en

t.[
42

]

42

3.1. TESTBED

Integration test cases shall be prioritized between each other. Prio 1:
Test cases that cover functionality that have impact on traffic and/or is a
significant problem for further testing or customers. Prio 2: Test cases that
cover everything but prio 1 above. There shall be flexible automated test
suites along with pre-defined suites "smoke" and "regression" with contents
decided by each test object [Figure3.2] :

• Smoke test: 5% of all test cases, only prio 1, speed is of the essence
here.

• Regression test: 30% of all test cases with the rule of thumb to achieve
90% function coverage.

In the sub-system verification, sub-system functional and nonfunctional
requirements will be verified based on predefined specification. As
mentioned, testing for sub-system verification should be done from a black
box perspective. In addition, the tests are performed on a radio unit using
a simulated digital unit and an antenna near the unit. All radio sub-system
functional and nonfunctional requirements should be covered by test cases
(100% requirements coverage).

Figure 3.2: Pre-defined test suites schema.

The next level of testing activity is called the node level test. Major

43

CHAPTER 3. APPROACH

emphasis is put on finding errors that are difficult to predict in addition
to faults that allow the system to be perceived as unstable, e.g. real-
time effects and interference between different parts of the system which
may cause hanging resources, degradation of services, intermittent alarm,
and system downtime. The work is based on operational procedures,
including:

• Planning, preparation and deployment of the test configuration.

• Execution of test cases and monitoring of the multi standard radio
base stations (RBS) as a black box.

• Using built in observability mechanisms.

The node level test covers the following scopes: delivery check, node in-
tegration, feature verification. Delivery check aims to verify software be-
fore delivery for release verification by executing a small set of automated
single mode and mixed mode tests within the legacy scope on radio base
station node level. Node integration intention is to provide test configur-
ation ready for feature verification and also integration of radio unit and
digital unit softwares before delivery. Feature verification has to be done
in order to secure customer quality expectations for new features including
support for new or modified hardware.

3.1.2 WBTest Environment

The WBTest environment is based on Ruby[43] and a behaviour driven
development (BDD) tool called RSpec[44]. It offers the possibility to do test
driven development (TDD) and specification-based testing for the radio
unit (RU) functional parts. With the WBTest environment, it is encouraged
to perform test-driven development. It means to write the test cases before
the implementation, run them regularly and see them go from fail to pass.
The WBTest environment architecture, how it connects to simulated digital
unit(SDU) through the gateway and then radio unit in order to test radio
unit software, can be seen in the figure 3.3. CPRI[45]refers to common
public radio interface. It is the industry cooperation defining the publicly
available specification for the key internal interface of radio base stations

44

3.1. TESTBED

Figure 3.3: WBTest environment architecture.

between the Radio Equipment Control (REC) and the Radio Equipment
(RE).

Test cases are grouped in so called test objects where each test object
has the scope of covering one area of radio unit functionality, often
specified by a design specification (DS). Test cases and test objects can be
traced back to the design input thus being specification-based. WBTest is
intended for integration testing on target. The combination of unit test
on host, WBTest and functional test on target at the functional integration
departments makes a good solution for RU functional quality assurance.
The test strategy should strive to coordinate "what covered where", to make
efficient testing. Each test case can be tagged for various purposes e.g. test
objectives such as smoke, regression and so on. It is the responsibility of
each test object to select a test objective for each test case.Test execution can
be configured so that the sum of all test cases being executed, i.e. test suite,
is the sum of all test cases matching tag(s). Thus it will be possible to select
test cases to create test suites in a very flexible way. A test object should
cover all requirements from design input specifications that are currently
possible to test in the integration test environment.

WBTest tool has the following specifications:

• Facilitate integration and low level tests for radio software designers.

• High level of productivity for writing test cases.

45

CHAPTER 3. APPROACH

• Quick turnaround time from test code changes testing to test
execution (< 10s) to support agile workflow such as TDD.

• Easy to run in lab and support for running regression test in the lab.

• Easy to build abstractions.

• Easy to do complex tests.

• Access to external and internal interfaces via radio unit operating
system signaling and shell commands.

• Tests are based on DS’s or lower level documents.

Although WBTest tool focuses on white box perspective by existing
supports testing of internal functionality (white box testing), it support
testing external interfaces for black box aspect. The WBTest tool has
methods to send and receive signals, methods for radio unit (RU) console
commands and matching of received and expected signal data including
default values, ranges and wildcards.

3.1.3 BBTest Environment

BBTest core is written completely in Perl[46], has been used since 2007 and
runs on on Solaris and Linux machines. It uses an XML database and has a
GUI to prepare and run test scripts and sequences. The BBTest can be run
automatically (nightly tests, continuous verification). In addition, it runs
test scripts written in the Perl language and one script equals one test case
defined in the verification specification. Moreover, it generates log files for
each test script. The BBTest environment performs functional verification
in sub-system level. It means the BBTest environment verifies the release
software on real hardware in addition to verification of hardware and
software together on black box level. In the other hand, it is an examination
aiming to determine whether the requirements have been fulfilled or not.

Figure 3.4 represents how BBTest core is connected to digital unit (DU)
or Simulated digital unit (SDU) and also to other test equipments which
includes signal generator, spectrum analyser and other measurement
devices. The main focus on this environment is testing with black
box perspective and mainly on radio unit software interfaces. Simply,

46

3.2. DATA COLLECTION METHODS

Figure 3.4: WBTest environment architecture.

from black box point of view the radio is a "black box" and the BBTest
environment is not aware of internal functions and tests radio unit software
on its interfaces. It also uses test equipment to measure input and output
values on the radio unit interfaces.

This environment has been designed to fulfill requirements which are
defined in functional specification (FS). For example, a signal as input
will be generated on an interface and expected output value or range on
the interface have to be obtained. This process is written in functional
specification that the test case is designed based on. The values and
parameters will be compared and checked against the radio unit (RU)
software XML database (it is filled based on functional and verification
specification documents). These comparison results either pass or fail test
objects. Furthermore, in case of needing real measurements, BBTest would
use test equipments.

3.2 Data Collection Methods

This section goes through the research methods used to investigate
and compare the two testing environments (called WBTest and BBTest)
which are explained briefly in the previous section. There are three
different research methods: Quantitative, Qualitative and Mixed methods.

47

CHAPTER 3. APPROACH

Choosing proper research methods and designing the research depends
on the nature of the problem which is going to be investigated (Research
problem), experience level of the researcher (Personal experience) and
finally whom is interested in ongoing study(the audience).[47]

Regarding the research problem, the quantitative is the proper choice,
if the problem needs to address identifying the parameters that affects
the result or for understanding the best result prediction. Quantitative
approach can be used to test a theory or explanation. Conversely, in case
of a problem or research field that little investigation has been done on so
far, qualitative research can be applied. The qualitative method is more
exploratory method to find important variables that affect the topic. This
approach is useful for researchers who face new issues.[47, 48] If either
the quantitative approach or the qualitative approach is insufficient to
understand the research problem, the mixed approach could be a suitable
aid. In such cases, the researcher can first investigate which parameters or
variables should be studied (qualitative) and then expand the research on
larger number of samples (quantitative) or vice versa, the first inquiry on
large number of samples and then continue it with a few participants.

The personal experience is another criteria that can affect choosing
the proper research approach. The experiences regarding these three
approaches may lead to choosing either the quantitative, qualitative or the
mixed approach. Those who are experienced in statistics and computer
statistic programs or scientific writing prefer quantitative method for their
study. On the other hand, those with experiences in interviews and writing
in literary method would select qualitative method. And finally, those who
have enough time and resources in addition to being familiar with both
approaches would choose mixed mode. Obviously, choosing mixed mode
need extra work and effort, since both quantitative and qualitative data
should be collected and analysed. On the other hand, the inquirer can
profit from both quantitative and qualitative specifications, even though
it is harder to be carried out. At last, the audience of the research can shape
which method should be chosen. The researcher should know for whom
the survey is going to be presented then he/she chooses proper approach
upon it. [47]

Distinction between these two can be shaped in terms of applying numbers
(quantitative) rather than words (qualitative) or applying open-ended
questions (qualitative) rather than close-ended questions (quantitative).

48

3.2. DATA COLLECTION METHODS

[47] In addition, quantitative and qualitative aspects are not like polar
opposites. [49]

A researcher may gather data by a set of predefined questions or
interviews. She/He might conduct interviews without a set of predefined
question and may let interviewee talk about the topic freely. Selecting the
method depends on the intent of researchers, whether they would rather
to specify the type of information that is going to be gathered in advance
or they prefer to let participants inject their opinions into the research.
On the other hand, type of data going to be analysed is also effective
in this choice. Either numeric information by conducting quantitative
research or text data by performing qualitative method can be collected.
After collecting data, inquirer may search to find patterns out of emerged
data from participants or carry out statistical analysis over numeric data.
In some cases, both quantitative and qualitative methods are being used
to gather, interpret and analyse. In mixed method, researcher will use
both quantitative and qualitative databases which contain correspondent
data. Table 3.1 represents qualitative, quantitative and mixed methods
approaches and their practices.[47]

As it can be seen, mixed mode which is located between quantitative and
qualitative approaches in the table 3.1, is a mixture of these two approaches
and contain most of their specification and practices. Since the mixed
approach is chosen for data collection in this thesis, it will be explained
more in the upcoming lines before illustrating the overall research plan. In
fact, the nature of the problem that will be faced in this thesis is the main
reason for choosing the mixed approach. The comparison between two
environments (WBTest and BBTest) which are going to be under assessment
for an external researcher needs internal investigation. In fact, those who
are involved in their daily job with these environments know more about
pros and cons. They can provide better information for researcher. The
mixture of quantitative and qualitative has been used in order to use data
from one to complement another one and reach to a fair judgment on these
two environments as well as check their integration feasibility.

49

CHAPTER 3. APPROACH

Q
ua

lit
at

iv
e

M
ix

ed
Q

ua
nt

it
at

iv
e

M
et

ho
ds

O
pe

n-
en

de
d

qu
es

ti
on

s
Bo

th
op

en
-a

nd
cl

os
e-

en
de

d
qu

es
ti

on
s

C
lo

se
-e

nd
ed

qu
es

ti
on

s
Em

er
gi

ng
m

et
ho

ds
Bo

th
pr

ed
et

er
m

in
ed

an
d

em
er

gi
ng

m
et

ho
ds

Pr
ed

et
er

m
in

ed
m

et
ho

ds
In

te
rv

ie
w

da
ta

M
ul

ti
pl

e
fo

rm
of

da
ta

dr
aw

in
g

al
lp

os
si

bi
lit

ie
s

Pe
rf

or
m

an
ce

da
ta

O
bs

er
va

ti
on

da
ta

St
at

is
ti

ca
la

nd
te

xt
an

al
ys

is
N

um
er

ic
da

ta
D

oc
um

en
td

at
a,

A
cr

os
s

da
ta

ba
se

in
te

rp
re

ta
ti

on
C

en
su

s
da

ta
A

ud
io

-v
is

ua
ld

at
a

St
at

is
ti

ca
la

na
ly

si
s

Te
st

an
d

im
ag

e
an

al
ys

is
St

at
is

ti
ca

li
nt

er
pr

et
at

io
n

Pa
tt

er
n

in
te

rp
re

ta
ti

on

Pr
ac

ti
ce

s
C

ol
le

ct
pa

rt
ic

ip
an

tm
ea

ni
ng

s
C

ol
le

ct
bo

th
qu

an
ti

ta
ti

ve
an

d
qu

al
it

at
iv

e
da

ta
Te

st
th

eo
ri

es
or

ex
pl

an
at

io
ns

Fo
cu

se
s

on
a

si
ng

le
co

nc
ep

t
D

ev
el

op
a

ra
ti

on
al

e
fo

r
m

ix
in

g
Id

en
ti

fie
s

va
ri

ab
le

s
to

st
ud

y
Br

in
g

pe
rs

on
al

va
lu

es
in

to
th

e
st

ud
y

In
te

gr
at

e
th

e
da

ta
at

di
ff

er
en

ts
ta

ge
s

of
in

qu
ir

y
R

el
at

es
va

ri
ab

le
s

in
qu

es
ti

on
s

or
hy

po
th

es
es

V
al

id
at

e
th

e
ac

cu
ra

cy
of

fin
di

ng
s

Pr
es

en
tv

is
ua

lp
ic

tu
re

of
th

e
pr

oc
ed

ur
e

in
th

e
st

ud
y

e
U

se
st

an
da

rd
s

of
va

lid
it

y
an

d
re

lia
bi

lit
y

M
ak

es
in

te
rp

re
ta

ti
on

of
th

e
da

ta
Em

pl
oy

pr
ac

ti
ce

s
of

bo
th

qu
al

it
at

iv
e

an
d

qu
an

ti
ta

ti
ve

re
se

ar
ch

O
bs

er
ve

an
d

m
ea

su
re

in
fo

rm
at

io
n

nu
m

er
ic

al
ly

C
re

at
e

ag
en

da
fo

r
ch

an
ge

or
re

fo
rm

U
se

un
bi

as
ed

ap
pr

oa
ch

es
C

ol
la

bo
ra

te
w

it
h

th
e

pa
rt

ic
ip

an
ts

Em
pl

oy
st

at
is

ti
ca

lp
ro

ce
du

re
Fo

cu
se

s
on

a
si

ng
le

co
nc

ep
t

Ta
bl

e
3.

1:
Q

ua
lit

at
iv

e,
Q

ua
nt

it
at

iv
e

an
d

m
ix

ed
m

et
ho

ds
ap

pr
oa

ch
es

.A
da

pt
ed

fr
om

[4
7]

.

50

3.2. DATA COLLECTION METHODS

There are three main strategies called sequential mixed methods, concur-
rent mixed methods and transformative mixed methods. The sequential
mixed methods refer to methods which researcher expand the results of one
method (quantitative or qualitative) with the another one. This strategy
may begin with quantitative survey in which a theory or concept is tested
and is carried on by qualitative interviews which provide more detail in-
formation about the case under study. Alternatively, It can begin with some
qualitative interviews and then ended up with quantitative questionnaire
to generalize the result. The second main strategy is concurrent mixed
methods which indicate collecting, merging and analysing both quantitat-
ive and qualitative data concurrently to achieve a comprehensive analysis.
The both form of data will be collected at the same time and then merged
for interpretation of result. In this from, researcher may embed one form
of the result to another one in order to answer to raised questions. Finally,
third mixed methods are called transformative mixed methods that repres-
ent the procedure which researcher uses an overall perspective to investig-
ate the research problem. In this case, data collection can be either sequen-
tial or concurrent. This perspective can also contain outcomes expected
from the study.[47]

One of the considerable points in the mixed method is "mixing the data".
Mixing the quantitative and qualitative data is tiresome, since type of
collected data is different (numeral for quantitative and text or images for
qualitative). This mixing may happen in the different phases of research
(Data collection, data analysis and data interpretation) or maybe at all
of these three phases. In addition, circumstance of mixing divides it to
the three types: connected, integrated and embedded. Connected type of
mixing means that data gathered in quantitative and qualitative methods
is connected to each other between analysis of the first phase(quantitative
or qualitative) and collection of second phase. In fact the outcome of
first phase is used to distinguish parameters of second phase of research.
Second type of study is called integrated. In this scenario, quantitative
and qualitative data may be collected concurrently and then researcher
integrates them by comparing data.Transforming the data type should
happen before comparing them. It mean, they should be in comparable
format. The embedded mixing happens when researchers have initial
intent to gather either quantitative or qualitative form of data and then
provide another form of data to support first one. [47]

51

CHAPTER 3. APPROACH

3.3 Data Analysis Method

Analytical Hierarchy Process (AHP) which is created by Thomas L.Saaty
in [50] has been chosen to in order to combine data that is gathered with
both quantitative and qualitative in addition to result analysis of selec-
ted research method for this thesis. Analytical Hierarchy Process is a
method for multi criteria decision making (MCDM). It put multiple cri-
teria in hierarchy structure, use pairwise comparison by relative import-
ance of them and rank the alternative based on these comparison in the
hierarchy structure.[51, 52] The Analytical Hierarchy Process has been ap-
plied for supporting the decision that made in the information system man-
agement [53]as well as many other different fields that can be found in
[54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67]. Because of its pleas-
ant mathematical specification, the analytical hierarchy process method
become more popular in many research fields and among engineers and
scientist. The AHP can be great assist in order to capture both objective
and subjective measures. It has a useful mechanism for checking the con-
sistency of measurements over criteria and alternatives that this checking
mitigate the bias in decision making in organizations.[52]

The AHP is based on sets of pairwise comparisons to obtain relative
weights of individual criterion and rating alternatives with respect to
each criterion. Since it may reverse the final ranking in case of similar
alternatives, the AHP model was stated unstable. Bolton and Gear
introduced the Ideal Mode AHP in order to solve this problem.[68] This
new optimized model was accepted by Saaty in the [69] and considered as
most reputable Multi Criteria Decision Making (MCDM) model. It should
be mentioned that the ideal mode AHP will be used at the analysis chapter
of the thesis.

T. L. Saaty divided the Analytical Hierarchy Process in following four steps
in order to apply an organized way for making proper decision:

1. "Define the problem and determine the kind of knowledge sought.

2. Structure the decision hierarchy from the top with the goal of the
decision, then the objectives from a broad perspective, through the
intermediate levels (criteria on which subsequent elements depend)
to the lowest level (which usually is a set of the alternatives).

52

3.3. DATA ANALYSIS METHOD

Figure 3.5: Structure of analytical hierarchy process.

3. Construct a set of pairwise comparison matrices. Each element in an
upper level is used to compare the elements in the level immediately
below with respect to it.

4. Use the priorities obtained from the comparisons to weigh the
priorities in the level immediately below. Do this for every element.
Then for each element in the level below add its weighted values and
obtain its overall or global priority. Continue this process of weighing
and adding until the final priorities of the alternatives in the bottom
most level are obtained."[5]

Figure 3.5 shows the structure of the Analytical Hierarchy Process and
how problem is decomposed in a hierarchy of "criteria" in the middle of
structure and "alternatives" at leafage of the structure. This structure refers
to the second step in Saaty’s four steps.

After creating such hierarchy, pairwise comparisons as mentioned in
Saaty’s third step will be performed. The result of these comparisons with
respect to the main goal in this decision making is based on table 3.2 which
is called Saaty’s pairwise comparison table. Table 3.2 represents which
value should be inserted into the corresponding matrix.

53

CHAPTER 3. APPROACH

Value Definition Meaning

1 Equal Two activities contribute equally to
the objective

2 Weak or slight prefer-
ence

3 Moderate preference Experience and judgement slightly
favour one activity over another

4 Moderate plus prefer-
ence

5 Strong or essential pref-
erence

Experience and judgement strongly
favour one activity over another

6 Strong plus preference
7 Demonstrated prefer-

ence
An activity is favoured very
strongly over another; its domin-
ance demonstrated in practice

8 Very, very strong pref-
erence

9 Absolute and extreme
preference

The evidence favouring one activ-
ity over another is of the highest
possible order of affirmation

1/i Reciprocals of above
values

If criteria i has one of the above non
zero numbers assigned to it when
compared with activity j, then j has
reciprocal value when compared
with i.

1.1-
1.9

If the activities are very
close

It is hard to choose best value. But
in some cases the size of small
values has considerable effect

Table 3.2: Saaty’s pairwise comparison table.[5]

In order to understand Saaty’s third step, assume an example with three
different criteria (C1, C2 and C3) and three alternatives or options (A1, A2
and A3). A matrix for criteria will be created which its elements reflect the
Saaty’s pairwise comparison table (Table 3.2). This matrix which known as
judgment matrix or criterion matrix is defined as follow:

54

3.3. DATA ANALYSIS METHOD

rij =
{

9 ≥ rij ≥ 1/9 | i, j = 1, 2...n
}

that rji = 1/rij when i = j then rij = 1

Pairwise Comparison Matrix of Criteria =

C1 C2 C3

C1

C2

C3



r11 r12 r13

r21 r22 r23

r31 r32 r33



As it can be seen in the criteria matrix which is built for pairwise
comparison of three different criteria in this example, element r12 indicates
the rating of C1 compared to C2 and is the answer to the question: "How
important is the C1 in comparison to the C2?", The response can be
extracted from the Saaty’s pairwise comparison table. [Table 3.2]

Similar matrix should be created for alternative, but with respect to each
criterion. For the mentioned example, Three matrices each contains
pairwise comparison of three alternatives based on specific criterion should
be created. The following matrix is a sample of such matrices:

Alternatives matrix against criterion C1 =

A1 A2 A3

A1

A2

A3



r11 r12 r13

r21 r22 r23

r31 r32 r33



The elements of this matrix should also be extracted from Saaty’s pairwise
comparison. In this matrix, all alternatives(A1,A2 and A3) will be
compared against criterion C1. Similar matrices should be created for
criterion C2 and criterion C3 as well.

55

CHAPTER 3. APPROACH

Before starting the process (Saaty’s fourth step) which lead to decision
matrix by calculating priorities and weights, consistency ratio (CR) can be
assessed for each of mentioned matrices (Four matrices for the mentioned
example, one for the criteria and three for alternatives with respect to
each criterion.) Consistency ratio calculation is one of the advantages in
the AHP. As it stated in the[70] by Saaty, if CR is less than 0.1 or in the
other word less than 10%, it is considered as adequate and the matrix is
acceptable. Otherwise it should be recreate by fixing its rating issues. In
order to calculate Consistency ratio (CR), the Consistency Index (CI) should
be computed by the following formula:

CI = (λmax − n)/(n− 1)

which n refers to number of alternatives or criteria being compared and ap-
proximation of maximum eigenvalue is denoted by λmax. After calculating
Consistency Index (CI), using following formula will end to the Consist-
ency Ratio: CR = CI/RCI where RCI can be obtained from the Random
Consistency Index (RCI) table that is given by Saaty [5] for different values
of n as it can be seen in the table 3.3.

n 1 2 3 4 5 6 7 8 9
RCI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

Table 3.3: Saaty’s Random Consistency Index (RCI) table.[5]

As it declared in the fourth step, the process will be followed by calculating
the relative weighting (priority) as known as weighting or priority vector
of matrices to obtain original AHP decision matrix. For calculating priority
vector, geometric mean of each matrix should be calculated. Following
vector represents geometric mean that can be obtained from each matrix:

M = (m1, m2, ..., mn)
T =

 n

√√√√ n

∏
j=1

r1j , n

√√√√ n

∏
j=1

r2j , ... , n

√√√√ n

∏
j=1

rnj


The relative weighting or priority will be calculated by normalizing

56

3.3. DATA ANALYSIS METHOD

geometric mean vector. Normalization will be achieved with dividing
elements of this vector by sum of the geometric mean represented with
following standardized priority vector: [71]

P = (pm1, pm2, ..., pmn)
T =


n
√

∏n
j=1 r1j

∑n
i=1

n
√

∏n
j=1 rij

,
n
√

∏n
j=1 r2j

∑n
i=1

n
√

∏n
j=1 rij

, ... ,
n
√

∏n
j=1 rnj

∑n
i=1

n
√

∏n
j=1 rij


This priority vector should be calculated for all mentioned matrices. The
next matrices are the summary of the mentioned calculations for the criteria
(C1, C2 and C3) in the example:

C1 C2 C3

C1

C2

C3



r11 r12 r13

r21 r22 r23

r31 r32 r33


⇒

Mcriterion

mc1

mc2

mc3


⇒

Pcriterion

pc1

pc2

pc3



And three other matrices for alternatives follow the upcoming schema
which X refers to the criterion which alternatives comparison carried out
against (In the example: C1, C2 and C3).

A1 A2 A3

A1

A2

A3



r11 r12 r13

r21 r22 r23

r31 r32 r33


⇒

Malternatives

mcX a1

mcX a2

mcX a3


⇒

Palternatives

pcX a1

pcX a2

pcX a3



The calculation of all priority matrices lead to the original analytical process

57

CHAPTER 3. APPROACH

decision matrix that includes all computed priorities for each alternative in
addition to priority vector of criteria.This outcome can be simplified in two
matrices as follow:

MPo f A =

C1 C2 C3

A1

A2

A3



pc1a1 pc2a1 pc3a1

pc1a2 pc2a2 pc3a2

pc1a3 pc2a3 pc3a3


MPo f C =

C1

C2

C3



pc1

pc2

pc3



The ideal mode analytical process (AHP) is concluded from this original
AHP matrix by dividing each element of MPo f A by maximum element of
its column as it shown in the following formula for element Pc1a2 in the
MPo f A for the mentioned example:

Ic1a2 = Pc1a1 /Maximum(Pc1a1 , Pc1a2 , Pc1a3)

And finally ideal mode AHP relative priority will be concluded by
multiplying the idealized matrix of priority for alternatives to the priority
vector of criterion as it shown below for the mentioned example:



Ic1a1 Ic2a1 Ic3a1

Ic1a2 Ic2a2 Ic3a2

Ic1a3 Ic2a3 Ic3a3


×



pc1

pc2

pc3


=



pA1

pA2

pA3



As conclusion of AHP decision making method, the following formula
generalizes the final priority vector which is shown in the previous

58

3.4. RESEARCH PLAN

multiplication of matrices. The element with the highest value is
most prefered and is the best choice among alternatives and the other
alternatives should be sorted descendingly.

PAlternatives = (PA1 , PA2 , ..., PAn)
T = (

n

∑
i=1

(Icia1 × Pci),
n

∑
i=1

(Icia2 × Pci), ...,
n

∑
i=1

(Ician × Pci))

3.4 Research Plan

Since current thesis is going to be done in a company where all proper-
ties related to the study are unknown for external thesis worker, it is de-
composed into three stages. The first stage contains exploring the internal
documents in order to gather basic information, plot questionnaire with
respect to basic information as well as couple of unstructured interviews
and then second complement questionnaire. The second stage includes in-
terviews with those who are expert in the environments under study as
qualitative part of survey in addition to further investigation about these
two testing environments(The WBTest and BBTest environments). Third
stage represents the summarization and analysis of two prior stages and
using analytical hierarchy process (AHP) with intent to provide the best
decision.

As it depicted in the figure 3.6, the procedure in this thesis includes
three different stages with mixture of qualitative and quantitative methods
in order to catch as much information as possible. Shapes are coded
by colours which blue refers to quantitative parts of survey, green to
the qualitative units and pink to the analysis parts. Three first units in
the first stage are aimed to provide best questions for the comparison
questionnaire. The data coming out of this inquiry and the rest of first stage
leads to interviews with proper questions and directed data gathering from
the documents and environments. The third stage uses the information
collected from two prior stages for preparing inputs of analytical hierarchy
process (AHP) and summarization of all gathered information.

The upcoming lines in this chapter contain the questions asked in the first

59

CHAPTER 3. APPROACH

pilot questionnaire and the reason for this questionnaire. The chapter will
be followed by questions of second questionnaire and ended up by overall
questions in the structured interviews.

Figure 3.6: Thesis plan and structure.

3.4.1 Pilot Questionnaire

Since these two environment are being used by more than hundred
developers and testers in their daily work for developing radio unit
(RU) software, they are selected to contribute in the first questionnaire
with the intent of obtain their valuable opinions about the WBTest and
BBTest environments. Furthermore, these developers and testers are
newly reorganized from different departments (design, development and
test) and also from different levels of radio unit software development
into cross functional teams (XFTs). In these new cross functional teams,

60

3.4. RESEARCH PLAN

they are responsible for all radio unit software development process.
Hence, categorizing them based on their prior experiences in radio unit
software testing is another goal which is tried to be covered with the first
questionnaire. It should be added that both questionnaires are anonymous
and are not done electronically in order to gather more responses that could
be not provided with online methods due to their heavy duties and daily
works.

The first questionnaire includes following questions:
"Which testing tool were you using in your previous team in order to
perform radio sub-system level tests before reorganization(establishing
cross functional teams)?"

• BBTest.

• WBTest.

• Both of above options.

• Did not test in radio sub-system level.

The first question is asked in order to categorize the participants by their
prior experience and then extracting their opinions in the next questions
based on this categorization.

Second question in the first questionnaire is:
"Which development concept do you use in your new role in your cross
functional team?"

• Test Driven Development(TDD)

• Behavioral Driven Development(BDD)

• Feature Driven Development(FDD)

• Never heard about them.

• No development has been performed yet.

• No explicit concept.

• More than one of the mentioned concepts.

61

CHAPTER 3. APPROACH

The main reason for asking this question refers to the development
methods which being used by the WBTest and BBTest. The WBTest
environment uses behavioural and test driven method and the BBTest
applies feature driven method. Since the cross functional teams are
composed from different departments, it is decided to know which
development method they know and apply in their daily work in sub-
system level and other levels.

Third question:
"Based of your opinion as a cross functional team member, which of
the following testing tools is more proper in order to perform successful
radio sub-system level tests?"

• WBTest.

• BBTest.

• Both are needed, but integrated into one tool.

• Both are needed, but not integrated into one tool.

• None of them. New tool(tools) is required to be developed.

• Cannot make proper judgement.

As it mentioned previously, the participants of this questionnaire are
engaged with both environments in their daily work therefore, they can
be considered as those who know both environments properly and are
aware of their pros and cons as well as the way these environments perform
testing. This question collects their opinion about the proper testing
environment.

In the following question the respondent are asked to provide their reasons
for their previous response. Although this question will not be used in the
statistic analysis of this questionnaire, it is good aid for the thesis worker
to investigate and compare the results and reasons.

"Please provide short reason for your choice in the previous question."

62

3.4. RESEARCH PLAN

The responses to this question are collected and read carefully in order
to keep track of the participants opinion with respect to responses from
previous question and used in overall analysis.

Fifth and sixth questions:
"Grade WBTest, how does it fulfill testing goals in radio sub-system
level?"

• Very good coverage.

• Good coverage.

• Moderate coverage.

• Weak coverage.

• No or little experience in it.

• Other.

And:
"Grade BBTest, how does it fulfill testing goals in radio sub-system
level?"

• Very good coverage.

• Good coverage.

• Moderate coverage.

• Weak coverage.

• No or little experience in it.

• Other.

The aim for these two questions is to use the participants experience
in these two testing environments and investigate that how different
categories (extracted from first question) grade testing environments that
they are experienced in.

63

CHAPTER 3. APPROACH

3.4.2 Comparison Questionnaire

The second questionnaire is designed based on the result of first question-
naire, document reviews and some unstructured interviews with individu-
als in the company. This questionnaire focuses on grading two testing en-
vironments based on users opinions and experiences in both environments.
This questionnaire in addition to first questionnaire will prepare initial ana-
lysis and guideline for qualitative part of survey which contains interviews
with members of technical team for these environments and later, inputs
and structure of analytical hierarchy process (AHP).The second comple-
ment questionnaire includes following questions in order to grade both en-
vironments in the defined criteria:

First question:
"Stability? Refers to Up-Time in testing environment that includes lab
devices and all attached instruments."

• Grading is from 1 means least as completely unstable and 10 means
most as completely stable.

Stability represents that the software or environment can be up and
running without any breakdown. Since changes, configurations and
maintenance are continuous tasks in every environment, the new changes
may lead to instability in that environment. This newly configured
environment should provide proper response to the daily needs with
keeping system in its high standard and quality.[72] This attribute can be
considered as main attribute among the other attribute, while existence of
other attribute depends on stability of software or environment.[73]

Second question:
"Usability? Indicates how easy to use testing environment. (Language,
User interface, Tracing logs, reading reports and ..."

• Grading is from 1 means least as completely difficult and 10 means
most as completely easy.

Usability indicates easy-to-use concept and is a quality attribute in soft-

64

3.4. RESEARCH PLAN

ware design. In addition, it can be expressed by following quality compon-
ents: Learnability, Efficiency, Memorability, Errors and Satisfaction.[74]

Third question:
"Coverage? Means how do test cases cover predefined specification
(Design specification for WBTest environment and functional specific-
ation for BBTest environment.)"

• Grading is from 1 means least as completely coverage and 10 means
most as completely no-coverage.

Specification coverage refers to that how much it can exercise the software
under the test by a serie of execution. In fact, specification coverage is
considered as an important measurement in the software quality and has a
precious role in the software testing.[75, 76, 77, 78, 79]

Fourth question:
"Grading is from 1 means least as completely dissatisfied and 10 means
most as completely satisfied."

• Grading is from 1 means least as completely coverage and 10 means
most as completely no-coverage.

Documentation refers to all communicable materials which are applied
in order to explain, describe, instruct procedures and systems. It can
contain parts, installation, configuration, maintenance, and use of a specific
system. In fact, documentation can provide shorter time to run, use and
maintenance for a system as well as save time and resources. Proper
documentation can mitigate the cost for further support as well.[80]

Fifth question:
"Technical support? Indicates useful and in time responses via email
or phone and in mailing list and forum by support team in case of
problems."

• Grading is from 1 means least as completely coverage and 10 means
most as completely no-coverage.

65

CHAPTER 3. APPROACH

Technical support indicates a set of assistances that support team provide
to users of these two environments. In general, technical support team
attempts to help the user solving their specific problems with testing
environments, rather than providing training. Technical support can be
delivered over the phone, by e-mail and mailing lists or a specific tool
where users can log the problem.

Sixth question:
"Training? Expresses user conferences, training sessions for groups or
individual in person or remotely."

• Grading is from 1 means least as completely coverage and 10 means
most as completely no-coverage.

Training refers to how the responsible team provide routine training
session in order to keep users updated in their skills and knowledge. This
can increase users efficiency and decrease extra resource usage. Obviously,
user conference can be interactive with intent of sharing users experiences
with each other and learning from experiences of other attendances.

As a consequence, data gathered from these two questionnaire provides
better understanding from these two environments and then more proper
questions in the following interviews and analysis.

3.4.3 Interviews

After conducting two questionnaires and reviewing related documents,
two structured interviews with members of WBTest and BBTest frame-
works team are defined. They are asked to represent their ideas about these
two environments and their specifications, five possible scenarios and feas-
ibility of integration in addition to which one cost less to port to another one
as well as they personal opinion about their most preferred scenario. They
are asked to be fair in their judgments and are asked to respond the second
questionnaire and grade these two environments. The responses as well as
document reviews will be discussed and evaluated in analysis chapter.The
responses as well as document reviews will be at the end of result and dis-
cussion chapter. These interviews as well as analytical hierarchy process

66

3.4. RESEARCH PLAN

and document reviews assist the thesis worker in order to analyse the res-
ults of the questionnaire in the analysis chapter. The five scenarios will
be explained in detail in the analysis chapter with respect to all gathered
information from two first stages of the plan.

67

Chapter 4

Result and Discussion

This chapter contains the outcome of the questionnaires are done during
this thesis. It will be started by results of the pilot questionnaire, followed
by a second complement questionnaire. These results are going to be
evaluated in the analysis chapter in addition to all gathered information
by qualitative part of this research.

4.1 Pilot questionnaire results

The two environments (WBTest and BBTest) are being used by more than
one hundred individuals (member of cross functional teams) in their daily
work for developing the radio unit (RU) software. As mentioned in the
approach chapter, they are selected to cooperate in the first questionnaire
with the intent of obtaining their valuable opinions about the WBTest and
BBTest environments. It should be noted that the number of respondents
in the first questionnaire was 79 that are almost 76% of the population with
104 testers .

Result of the first question: "Which testing tool were you using in your
previous team in order to perform radio sub-system level tests before
reorganization(establishing cross functional teams)?" is depicted in the
figure 4.1.

As can be seen in figure 4.1, 27% of the respondents did not test in the

69

CHAPTER 4. RESULT AND DISCUSSION

Figure 4.1: Result of the first question in the first questionnaire.

radio sub-system level which is the main working level for the WBTest and
BBTest environments, before joining these new cross functional teams. It
shows that 11% of participants are experienced in the BBTest environment
previously and this amount for the WBTest environment is 47%. Those who
are experienced in both WBTest and BBTest compose 15% of responders.

Figure 4.1 shows the result of the second question in which the testers
are asked about their development method applied in their daily work:
"Which development concept do you use in your new role in your cross
functional team?".

As depicted in figure 4.1, Test Driven Development (TDD), Bahavioral
Driven Development (BDD) and Feature Driven Development (FDD) are
used by 24%, 4% and 39% of respondents respectively. Feature Driven
Development (FDD) that is mainly used in the BBTest environment gained
39% which is highest among other options and second place is allocated to
Test Driven Development (TDD) by 24% of responders. As it shown, 8%
of testers responded that they have never heard about these three possible
options and 6% of participants have not performed any development until
this questionnaire has been carried out. Only 3% of responders do not use
any explicit concept in their daily work and finally 16% of them apply more

70

4.1. PILOT QUESTIONNAIRE RESULTS

Figure 4.2: Result of the second question in the first questionnaire.

than one of these three development options (TDD,BDD and FDD).

The third question which can be considered as the most important question
in the pilot questionnaire asks participants aspects about proper testing
environment for performing sub-system level tests. The responses to the
question: "Based of your opinion as a cross functional team member,
which of the following testing tools is more proper in order to perform
successful radio sub-system level tests?" are illustrated in figure 4.1.

Figure 4.3 represents ideas of all participants in the questionnaire about
proper environment for sub-system level testing. It shows, 41% of them
believe that these two environments are needed and should be integrated
into one tool including advantages of both environments. In addition, 34%
of respondents mentioned that both of these environments are needed,
but without any changes such as integration into one environment. The
WBTest and BBTest attracted 6 and 10 percent of participants respectively
and only 4% of them believe that a new environment should be developed
and none of them are suitable for the sub-system level testing goals. Finally,
5% of contributors could not make proper judgment and preferred to

71

CHAPTER 4. RESULT AND DISCUSSION

Figure 4.3: Result of the third question in the first questionnaire.

not choosing any stated options. Obviously, 75% of testers think both
environment should exist but integration achieved more responses by 41%
in comparison to 34% who believe there is no need for integration. Among
BBTest and WBTest alternatives, BBTest received 4% more responses than
WBTest option. Moreover, at the end of this ranking, developing new tool
is located by only 4% that are even less than those who did not make any
judgment between these options.

Four upcoming figures: 4.4, 4.5, 4.6, 4.7, indicate four different categories
based on the participants prior experiences which is asked in the first ques-
tion of pilot questionnaire. These categories assist readers to understand
how different classes of testers stated their opinions about suitable envir-
onment in the sub-system level testing.

Figure 4.4, shows that options "Both are needed, but integrated into one
tool." and "Both are needed, but not integrated into one tool" achieved
equally 38% responses of the prior WBTest experienced users. Additionally,
none of the them thinks a new test environment should be developed in
order to fulfill the goals. The BBTest and WBTest environments are in the
next places by 11 and 8 percent respectively and 5% of respondents could
not make proper judgment on these options. The interesting point in this
result is, the "WBTest" option gained less supporters than "BBTest" option

72

4.1. PILOT QUESTIONNAIRE RESULTS

Figure 4.4: Result of the third question in the first questionnaire for the
prior WBTest experienced users.

from prior experienced testers in the WBTest. Furthermore, although 76%
of testers responded that both environments are needed, they are divided
equally into integration and no integration alternatives.

Figure 4.5 expresses that 45% of the prior BBTest experienced responders
prefer to have an integrated environment of them and none of them
supports the WBTest environment, development of new tool as well
as keeping them both without integration. In addition, 33% of them
stated BBTest environment is suitable for sub-system level testing and
22% of these participants could not judge properly. As it can be seen
in the result, for the prior BBTest experienced user, the WBTest is not
proper test environment for fulfilling all sub-system level testing goals but
33% of them think the BBTest environment can fulfill predefined goals.
Interestingly, option "BBTest" received 12% less respondents than those that
think integration of these two environments is the most proper alternative
which gained 45% of these participants.

As it illustrated in the figure 4.6, All contributors who are experienced
in the both environments previously think that both WBTest and BBTest
environments are needed, but 58% of them supports integration of these
two into one and 42% believe that they should not be merged into

73

CHAPTER 4. RESULT AND DISCUSSION

Figure 4.5: Result of the third question in the first questionnaire for the
prior BBTest experienced users.

one environment. The rest of the options received no support among
participants who worked with both environments. In the other word, those
who were experienced in both environment for performing sub-system
level tests did go for neither WBTest nor BBTest environments. Actually,
all of them think, none of these two environments can fulfill sub-system
level testing goals without having properties of the other one.

The responses of new testers in sub-system level testing are illustrated in
the figure 4.7. Around 38% of the new sub-system level testers stated
that both are needed, but it should not be integrated. In the next place
is integration of these two into one tool with 33%. The development
of a new tool, the WBTest and BBTest are in the next places with 14,
10 and 5 percent of new testers in sub-system level testing respectively.
About 71% sub-system level testers responded that both environments are
needed but keeping them without merging gained 5% more responses than
merging them into one environment. In addition, 14% of them think a new
environment should be developed which is more than responses to BBTest
and WBTest options.

In the fourth question, as it stated in the approach chapter, the contributors
are asked to provide short description about their opinions in the third

74

4.1. PILOT QUESTIONNAIRE RESULTS

Figure 4.6: Result of the third question in the first questionnaire for the
prior both environments experienced users.

question which are used to prepare the questions of structured interviews
which will be explained in the analysis chapter. This response will not be
provided in this chapter and since it was qualitative question, it is used
for digging more into the proper documents and evaluating these two
environments adequately.

In the fifth and sixth questions, the participants are asked to answer the
following raw questions about coverage in the sub-system level for both
environments. These questions are as follow: "Grade WBTest, how does it
fulfill testing goals in radio sub-system level?" and "Grade BBTest, how
does it fulfill testing goals in radio sub-system level?".

Figure 4.8 shows that 44% of participants believe WBTest coverage in radio
sub system level is moderate while 25% of them think the BBTest has
moderate coverage. On the other hand, the responses of "Good coverage"
for the BBTest and WBtest are 42 and 22 percent respectively. A similar
trend can be seen for "Very good coverage" responses which are 10% for
the BBTest and 4% for the WBTest. Around 14% of respondents believe
that the WBTest coverage in sub-system level is weak while only 6% are
with "Weak coverage" for the BBTest. By comparing coverage of two
environments, 10% mentioned that the BBTest has very good coverage

75

CHAPTER 4. RESULT AND DISCUSSION

Figure 4.7: Result of the third question in the first questionnaire for the new
tester in sub-system level testing.

while only 4% of respondents stated it for the WBTest. Additionally, 13%
of respondents have no or little experience in either the WBTest or BBTest.
It also represents, 52% of contributors stated that the BBTest has "Good
coverage" and "Very good coverage", while this amount for the WBTest
is half of it by 26 percent. General overview on this results shows that
responses tend to the BBTest environment, when coverage level gets better.
In other words, the WBTest received more responses in lower coverage and
for higher coverage level the BBTest got more.

4.2 Results of the Complement Questionnaire

As stated in the approach chapter, the second questionnaire is complement
questionnaire that investigates and grades these two testing environments
based on selected criteria such as stability, usability, specification coverage,
documentation, technical support and training which are effective in
comparing software environments and reveal their drawbacks. They
also assist researchers in analytical hierarchy process pairwise comparison
which are going to be performed in the analysis chapter. It should be

76

4.2. RESULTS OF THE COMPLEMENT QUESTIONNAIRE

Figure 4.8: Result of the fifth and sixth questions in the first questionnaire.

noted that sample size is 72 and the population is the same as in the pilot
questionnaire. In addition, the short description of each criterion which are
going to be demonstrated here is provided in the approach chapter.

4.2.1 Stability

In the first question, they are asked to grade stability of the environments
under study: "Stability? Refers to Up-Time in testing environment that
includes lab devices and all attached instruments.". Figure 4.9 represents
the result of this question.

As figure 4.9 shows, 10% of respondents found the WBTest environment(
Located in the left side of the chart) "Absolutely stable" while none of
them thinks so for the BBTest. Around 22% of sub-system level testers
suppose the WBTest is "Moderately stable" and this is only 3% for the
BBTest. About 20% of respondents mentioned that the BBTest is "Weakly
stable" or even more unstable, but only 3% of them stated that WBTest
is "So unstable". Almost 76% and 77% of participants found the WBTest
and BBTest "Stable" and even higher stability respectively which shows
that these two environments are almost similar from stability point of view

77

CHAPTER 4. RESULT AND DISCUSSION

Figure 4.9: Result of the first question about stability in the complement
questionnaire.

for sub-system level testers. The most responses are attracted by option
"Stable" in the BBTest by 38% which is the most chosen option in the WBTest
by 27% as well. Only the WBTest received responses for "Absolutely stable"
which are 10% of respondents. Option "Very strongly stable" is chosen by
21% of respondents for the BBTest comparing to 14% for the WBTest. But
option "Strongly stable" shows a reverse trend, 25% for the WBTest and 18%
for the BBTest. Furthermore, there is huge difference for the "Moderately
stable" between two environments, only 3% of responses for the BBTest
and this amount is 22% for the WBTest. Interestingly, 14% of respondents
did go for "Weakly stable" in BBTest in comparison to no responses for the
WBTest. Moreover, it should be noticed that there are 3% of responses for
"Very strongly unstable" in the BBTest. On the other hand, the lowest grade
for the WBTest is for "So unstable" option with 3%.

Figure 4.10 indicates the average grades for the stability of these two
environments. The WBTest gained 7.54 out of 10 and almost similarly, the
BBTest got 7.07 out of 10 in average. Their standard deviation are 1.38 and
1.62 respectively. Notice that higher standard deviation of WBTest shows
that responses for the BBTest are a bit more polarized than responses for
the WBTest.

78

4.2. RESULTS OF THE COMPLEMENT QUESTIONNAIRE

Figure 4.10: Average grade of stability for the WBTest and BBTest
environments.

4.2.2 Usability

The second question in the complement questionnaire refers to usability of
these two environments. The question is as follow: "Usability? Indicates
how easy to use testing environment. (Language, User interface, Tracing
logs, reading reports and ...". The result of this question is depicted in the
figure 4.11.

Figure 4.11 shows that none of the respondents found both environments
"Absolutely easy" but 14% of them think the WBTest is "Very strongly easy"
to use in comparison to only 3% for the BBTest environment. Although 62%
of participants found the WBTest "Easy" and even more easy, 52% of them
stated similar responses for the BBTest. Percentage of testers who think
these two environment are weakly easy or less easy are almost equal, 26
for the BBTest and 24 for the WBTest. Furthermore, none of the sub-system
level testers found these two environments "Absolutely difficult" or "Very
strongly difficult" to use. In contrast, only 8% of them found the WBTest
"Strongly difficult" comparing to just 4% for the BBTest environment.
About 10% of respondents selected "Strongly easy" for BBTest comparing to
24% in the WBTest but 39% of them chose "Easy" in the BBTest comparing

79

CHAPTER 4. RESULT AND DISCUSSION

Figure 4.11: Result of the second question about usability in the comple-
ment questionnaire.

to 24% for the WBTest environment. Similarly, 21% stated that WBTest
is "Easy" to use which on the other hand, 14% selected this option in the
WBTest. Responses to "Weakly easy" are nearly similar with 11% and 10%
for the BBTest and WBTest respectively. Option "So difficult" is chosen
by 11% for the BBTest which is selected by 6% of them for the WBTest.
Conversely, the "Strongly difficult" is selected by 8% of respondents for the
WBTest in comparison to 4% for the BBTest. Two lowest grades are for
"Very strongly difficult", "Absolutely difficult" as well as "Absolutely easy"
that received no responses in both environments.

Figure 4.12 represents the average grades that usability of these two
environments achieved. The average usability grade of the WBTest is 6.68
out of 10 and on the other hand, the BBTest gained 6.21 out of 10 in average.
The standard deviation of the responses for the WBTest is more than the
BBTest with 1.77 comparing to 1.40. They show more polarized responses
for WBTest with higher standard deviation than the BBTest.

80

4.2. RESULTS OF THE COMPLEMENT QUESTIONNAIRE

Figure 4.12: Average grade of usability for the WBTest and BBTest
environments.

4.2.3 Specification Coverage

Specification coverages of these two testing environments are asked
in the third question of complement questionnaire. The responses to
the question about coverage are illustrated in figure 4.13. The third
question is as follow: "Coverage? Means how do test cases cover
predefined specification (Design specification for WBTest environment
and functional specification for BBTest environment.)".

As it depicted in figure 4.13, "Coverage" with 31% , "Strongly coverage"
with 37%, "Very strongly coverage" with 18% and "Absolutely coverage"
with 7% attracted 93% of responses in the BBTest which show high
specification coverage in it comparing to only 7% "Coverage" for the
WBTest environment. The higher coverage alternatives are not chosen at
all in the WBTest. While option "Coverage" got only 7% of respondents
for the WBTest, it gained 31% of responses in the BBTest environment.
Similarly, 93% of respondents found that the WBTest specification coverage
is moderate and even worst while it is only 7% for the BBTest environment.
Most of the responses in the WBTest received by "Weakly coverage" with
37% and this was "Strongly coverage" in the BBTest environment with

81

CHAPTER 4. RESULT AND DISCUSSION

Figure 4.13: Result of the third question about specifications coverage in
the complement questionnaire.

37% of responses. The second highest rate of responses in the BBTest
is for option "Coverage" with 31% comparing to only 7% in the WBTest
for the same alternative. Moreover, option "Weakly coverage" is selected
by only 4% of contributors in comparison to 37% of respondents in the
WBTest. Additionally, none of the alternatives "So no-coverage", "Strongly
no-coverage", "Very strongly no-coverage" and "Absolutely no-coverage"
are selected by respondents in the BBTest, but these options received 23, 14
and 1% of responses and just "Absolutely no-coverage" got no respondents
in the WBTest.

Figure 4.14 shows the average grades of these two environments in
specification coverage. As it can be noticed in the figure14, the WBTest
got only 4.77 out of 10 and the BBTest got 7.83 out of 10 in average.
Obviously there is big difference between these two environment in
case of specification coverage. Responses show that BBTest has higher
specification coverage comparing to the WBTest environment. Their
standard deviation are 1.16 and 1.12 respectively that are almost equal.
In fact, they do not show high polarization in the responses for both
environments under study.

82

4.2. RESULTS OF THE COMPLEMENT QUESTIONNAIRE

Figure 4.14: Average grade of specifications coverage for the WBTest and
BBTest environments.

4.2.4 Documentation

In the fourth question, they are asked about documentation quality and
availability in these two environments: "Documentation? Represents
clear and useful documents, handbooks and ... in the wiki or web pages
of environment being asked.". Figure 4.15 represents the result of the
fourth question related to the documentation.

As it shown in figure 4.15, rate of satisfaction for the WBTest by 73% of
responses with respect to options "Satisfied", "Strongly satisfied" and "Very
strongly satisfied" (with 27%,31% and 15% respectively) is higher than its
rate by 32% in the BBTest with 20%, 6% and 6% for similar alternatives.
The contributors in the survey found the BBTest "Weakly satisfied" and "So
dissatisfied" with 18% and 11%. On the other hand, "Weakly satisfied" and
"So dissatisfied" options in the WBTest gained only 2% (one percent each)
of responses. In addition, there are 6% (3% for "Strongly dissatisfied" and
3% for "Very strongly dissatisfied") of respondents who found strongly and
very strongly dissatisfaction with WBTest while only 1% of them found
"Very strongly dissatisfied" with the BBTest environment. The highest rate
is for "Moderately satisfied" with 38% in the BBTest and in the other side,

83

CHAPTER 4. RESULT AND DISCUSSION

Figure 4.15: Result of the fourth question about documentation in the
complement questionnaire.

it gained 18% of responses for the WBTest. On the other hand, "Strongly
satisfied" received 31% of responses which is the most among other
alternatives in the WBTest and it should be noticed that it only attracted
6% of responses in the BBTest environment. Similar trend can be seen
for the "Very strongly satisfied" with 15% for the WBTest in comparison
to 6% in the BBTest. Moreover, none of these environments got absolutely
satisfaction and this is the same for the absolutely dissatisfaction.

Figure 4.16 represents the average satisfaction grades that documentation
of these two environments achieved. As it can be seen, the average
satisfaction in documents of the WBTest is 7.11 out of 10 and in the other
hand, the BBTest got 6.01 out of 10 in average. The standard deviation of
the responses for the WBTest is more than its value in the BBTest with 1.57
comparing to 1.35 respectively. This shows more fluctuation of opinions in
the WBTest than the BBTest responses for documentation.

84

4.2. RESULTS OF THE COMPLEMENT QUESTIONNAIRE

Figure 4.16: Average grade of documentation for the WBTest and BBTest
environments.

4.2.5 Technical support

The technical support satisfaction rates of these two testing environments
are asked in the fifth question of complement questionnaire. The responses
to the following question about technical support are illustrated in figure
4.17. The question is as follow: "Technical support? Indicates useful and
in time responses via email or phone and in mailing list and forum by
support team in case of problems.".

Figure 4.17 demonstrates that 95% of respondents are "Satisfied" and even
more satisfied with the technical support in the WBTest environment with
30% for "Satisfied", 41% for "Strongly satisfied", 10% for "Very strongly
satisfied" and 14% for "Absolutely satisfied" in comparison to 53% for the
BBTest environment with 32% for "Satisfied",7% for "Strongly satisfied",
11% for "Very strongly satisfied" and only 3% for "Absolutely satisfied". In
addition, 35% of contributors stated that they are "Weakly satisfied" with
the BBTest comparing to only 4% for the WBTest environment in the sub-
system level testing. The highest rate of responses in both WBTest and
BBTest is for "Strongly satisfied" with 41% for the WBTest environment.
Conversely, "Weakly satisfied" got 35% of responses in the BBTest which

85

CHAPTER 4. RESULT AND DISCUSSION

Figure 4.17: Result of the fourth question about technical support in the
complement questionnaire.

is the highest rate among other grades in the BBTest. There are 3% of
participants who stated they are "Absolutely satisfied" with the BBTest,
this alternative achieved 14% in the WBTest. But option "Very strongly
satisfied" got almost equal respondents in both environments with 11%
for the BBTest and 10% for the WBTest. This trend can also be seen
for "Satisfied" with 32 and 30 for the BBTest and WBTest respectively.
Interestingly, four worst options got no responses in the WBTest, but for
the BBTest this happened in two worst alternatives.

Figure 4.18 represents the average grades that technical support of these
two environments achieved. As it is depicted, the average grade of
technical support in the WBTest environment is 7.93 out of 10 and in the
other hand, the BBTest gained 6.39 out of 10 in average. The standard
deviation of the responses for the WBTest environment with 1.19 is less
than its value in the BBTest environment with 1.66. They show a bit more
polarized responses for BBTest with higher standard deviation but not so
considerable.

86

4.2. RESULTS OF THE COMPLEMENT QUESTIONNAIRE

Figure 4.18: Average grade of technical support for the WBTest and BBTest
environments.

4.2.6 Training

The final question of the complement questionnaire asked respondents
about satisfaction grade of training in these two environments. The
question is as follow: "Training? Expresses user conferences, training
sessions for groups or individual in person or remotely.". The result of
this question is depicted in figure 4.19.

As illustrated in figure 4.19, around 76 percent of respondents are
"Satisfied" and even more with training that provided in the WBTest
environment by 34% for "Satisfied", 34% for "Strongly satisfied", 6%
for "Very strong satisfied" as well as 4% for "Absolutely satisfied". In
contrast, this trend is 3% for only "Satisfied" option and three better
options attracted no respondents in the BBTest poll box. Furthermore,
48% of respondents chose "Weakly satisfied" for the BBTest and options
"So dissatisfied", "Strongly dissatisfied", "Very strongly dissatisfied" and
"Absolutely dissatisfied" gained 20%, 11%, 6% and 3% for the BBTest
environment respectively.

On the other hand, the WBTest responses show only 7% of participants for

87

CHAPTER 4. RESULT AND DISCUSSION

Figure 4.19: Result of the fourth question about training in the complement
questionnaire.

the "Weakly satisfied" option and less satisfaction achieved no respondents
in this environment. The highest rate is for the "Weakly satisfied" with
48% of responses in the BBTest and on the other side 34% and 32%
for the "Strongly satisfied" and "Satisfied" for the WBTest environment.
As mentioned "Weakly satisfied" got 48% in the BBTest, but this option
achieved only 7% in the WBTest environment. Four worst alternatives in
scaling gained no respondents in the WBTest, while 40% of responses in the
BBTest are attracted by these four options and if "Weakly satisfied" would
be added to this responses, this rate will increase to 88% of respondents.

Figure 4.20 expresses average grades for training of these two environ-
ments. The WBTest got 7.27 out of 10 and the BBTest got only 4.45 out of
10. This large difference in averages shows that the WBTest environment
satisfied participants pretty better than the BBTest in case of Training. Their
standard deviation are 1.16 and 1.24 respectively which are not so high and
also almost similar to each other. Therefore, there is no big fluctuation of
responses in both environments.

88

4.2. RESULTS OF THE COMPLEMENT QUESTIONNAIRE

Figure 4.20: Average grade of training for the WBTest and BBTest
environments.

In the next chapter which is analysis chapter, the result presented in this
chapter will be sum up with all other information gathered in interviews
and documents in addition to using Analytical Hierarchy Process (AHP)
for analysis of the WBTest and BBTest environments.

89

Chapter 5

Analysis

In the analysis chapter comprehensive assessment of the results which is
illustrated in a couple of charts in the previous chapter will take place. The
results of two questionnaires as well as interviews and document reviews
will be addressed. In addition, the Analytical Hierarchy Process (AHP) will
be applied in order to compare these two testing environments.

5.1 Overall evaluation of result

The result of the questionnaires can categorize the respondents into
four groups based on their prior experiences in sub-system level testing
environments. Due to recent reorganization in the company, these testers
are mixed up from different teams which may be involved in different
levels of testing in the company. Hence categorizing them is useful with
the intent of classification of their opinions. The following four groups are
categorized in the first questionnaire:

ClassWB : Testers who have previous experience in the WBTest environ-
ment which uses black box testing perspective.(47%)

ClassBB: Testers who have previous experience in the BBTest environment
which uses white box testing perspective.(11%)

ClassBoth : Testers who have previous experience in both WBTest and
BBTest environments.(15%)

91

CHAPTER 5. ANALYSIS

ClassNew: Testers who did not execute any test in the WBTest and BBTest
environments and are new in sub-system level testing.(27%)

Since they were using different development methods in their previous
teams (Before composing new cross functional teams which their members
are responsible for developing and testing radio unit software), it was
decided to ask them about development methods they use in their new
roles in the cross functional teams. The result obtained from testers
shows that Feature Driven Development(FDD) which is used by the BBTest
environment with 39% gained the first place among other options and
Test Driven Development (TDD) achieved second place by 24% which is
the recommended method for testing in sub-system level but only 24% of
participants are using this development method. It should be added that
16% of testers use more than three possible options and Behavioral Driven
Development(BDD) is the least known method for sub-system level testers
by only 4% of respondents.

By referring to the opinion of users about most suitable testing environ-
ment to achieve best outcome in the sub-system level, it is tried to provide
them five possible scenarios, ask them about these scenarios and then cat-
egorize the result based on four defined groups of respondents. These five
scenarios are as follow:

Scenario 1, "KeepWB": Keeping the current WBTest environment and
halting test activities of the BBTest environment. In this scenario, all
the testing responsibilities of sub-system level testing will be on the
shoulder of the current WBTest environment and no more testing will
be executed in the current BBTest environment.

Scenario 2, "KeepBB": Keeping the current BBTest environment and halt-
ing test activities of the WBTest environment. In this scenario which is
opposite of first scenario, all the testing responsibilities of sub-system
level testing will be on the shoulder of the current BBTest environ-
ment and no more testing will be executed in the current WBTest en-
vironment.

Scenario 3, "Merged": Merging and integrating these two environment
into an environment with advantages of both WBTest and BBTest en-
vironments. This scenario covers all benefits in these two environ-
ments. Porting from one to another should happen but the matter is

92

5.1. OVERALL EVALUATION OF RESULT

porting from which environment to another one. Two sub-scenario is
predictable in this case. Scenario 3-1: First one is porting the BBTest
environment properties like test cases into the WBTest environment.
In this case, the WBTest environment is the foundation and the BBTest
will be ported into it. Scenario 3-2: Second scenario is vice versa.
Porting WBTest properties into the BBTest environment occurs. In
this case the BBTest environment is considered as basis of the scen-
ario.

Scenario 4, "NotMerged" Keeping both two testing environment with
their current testing activities. It means that there is no change needed
in the current environment. This scenario tries to keep current testing
environment in the sub-system level testing. Obviously no merging
takes place and these environments will carry on their current testing
activities.

Scenario 5: "NewTool" Developing a new comprehensive tool which cov-
ers activities of both testing environment and removing their disad-
vantages. In this scenario, all efforts will be on creating a new testing
environment including all recognized requirements in the radio unit
software testing.

Table 5.1 represents how four different classes of testers (which are
classified earlier) found the proper scenario in order to perform suitable
testing in the sub-system level in addition to opinions of all respondents
without classification.

ClassWB ClassBB ClassBoth ClassNew All
Scenario1: KeepWB 8% 0% 0% 10% 6%
Scenario2: KeepBB 11% 33% 0% 5% 10%
Scenario3: Merge 38% 45% 58% 33% 41%
Scenario4: KeepBoth 38% 0% 42% 38% 34%
Scenario5: NewTool 0% 0% 0% 14% 4%
No Judgment 5% 22% 0% 0% 5%

Table 5.1: How different classes of testers found the proper testing
environment in sub-system level testing.

As it can be seen in the table1, Scenarios 3 and 4 which are explained
earlier in this chapter have more supporters among other scenarios for

93

CHAPTER 5. ANALYSIS

all contributors with 41% and 34% of respondents. This means that 75%
of all respondents believe that these two environments cannot fulfill sub-
system level testing individually and both are needed, but 41% of them
think that integration of these two can make sub-system level more simpler
and more suitable while 34% of testers are with leaving them same as the
current conditions without integrating them two into one tool. Among
prior WBTest experienced respondents, both scenarios 3 and 4 gained
equally 38% of participants. This means they believe both environments
are needed (76%) but none of the scenarios 3 and 4 has superiority over
another one. The next class contains prior BBTest experienced testers,
intriguingly, none of them supports scenarios 4 and 45% of them chose
scenario 3 which is merging these two environments into one. In addition,
scenario 2 achieved 33% of responses that means 33% of prior BBTest
experienced testers distinguished the BBTest environment as the most
suitable environment to fulfill sub-system level testing goals. Responses
for both environments experienced users are distributed between scenario
3 and scenario 4 with 58% and 42% respectively. It declares that they think
both environments are needed but most of them (58%) believe that these
environments should not be integrated into one and on the other hand, 42%
of them responded to integration of two environment into one. Finally, new
testers who did not test in the sub-system level are mostly with scenarios
3 and 4 with 33% and 38% of responders respectively. In the other word,
71% of contributors think both of these environments are needed but those
who support integration are 5% more than non-integration supporters. The
interesting point that can be found in responses of this class is that only
14% of them think that new environment should be developed and current
environments are not suitable for sub-system level testing. It should be
mentioned that except this class of respondents, none of other participants
supports scenario 5.

In table 5.2, opinions of respondents about fulfilling sub-system level goals
can be seen with respect to their prior experiences before joining cross func-
tional teams.

Table 5.2 represents that only prior WBTest experienced testers (9% of
them) distinguished fulfillment of the sub-system level testing goals in
the WBTest environment is "Very good" which is only one twentieth
of responses of all participants. Interesting point is, about twice of
all contributors think that the BBTest has "Good coverage" than for the

94

5.1. OVERALL EVALUATION OF RESULT

Class1 Class2 Class3 Class4 All
WBTest Very good coverage 9% 0% 0% 0% 4%
BBTest Very good coverage 9% 44% 17% 0% 10%

WBTest Good coverage 21% 11% 33% 19% 22%
BBTest Good coverage 35% 33% 58% 43% 42%

WBTest Moderate coverage 53% 22% 42% 43% 44%
BBTest Moderate coverage 32% 22% 8% 29% 25%

WBTest Weak coverage 15% 11% 17% 14% 14%
BBTest Weak coverage 6% 0% 8% 10% 6%

WBTest Little experience 3% 56% 8% 24% 13%
BBTest Little experience 18% 0% 8% 19% 13%

Table 5.2: How these two environments fulfill sub-system level testing
goals.

WBTest. This trend is reverse for option "Moderate coverage", the BBTest
environment response rate is roughly half for the WBTest among all
participants without classifications. But, this trend can be seen also among
four classes of testers. In the other word, similar trends for options
"Good coverage" and "Moderate coverage" are distinguished. It is also
considerable that almost half of the prior BBTest experienced users are
stated that the BBTest fulfills sub-system level testing goals "Very good"
and for both environments experienced respondents, this value is amost
one fifth of responses. For the "Weak coverage" option, responses tend to
WBTest environment comparing to the BBTest for all participants. Similar
responses can be seen for these four classes of testers.

The complement result of evaluation, based on different effective criteria
from second questionnaire is depicted in figure 5.1 . In addition, table 5.3
indicates standard deviation of the grades for each criteria.

As it depicted in figure 5.1, grades of stability and usability for these
two environments are almost similar, but the WBTest achieved slightly
higher grades with 7.54 for stability and 6.68 for its usability comparing
to the BBTest environment with 7.07 and 6.21 for its stability and usability
respectively. Although the difference is not so much but we can see that
stability and usability in the WBTest environment is slightly better than in

95

CHAPTER 5. ANALYSIS

Figure 5.1: Average grade of different criteria for the WBTest and BBTest
environments.

the BBTest environment. This trend is completely reverse in specification
coverage criterion. In this criterion, the BBTest environment gained almost
twice respondents than the WBTest environment. The BBTest with 7.83
covers more predefined specification in comparison to only 4.77 for the
WBTest environment. Furthermore, the results show that in three other
criteria (Documentation, Technical support and Training), the WBTest
environment is quite better comparing to the BBTest environment. In
documentation, the WBTest gained average grade of 7.11 and the BBTest
got 6.1. In addition, in technical support, the WBTest environment received
7.93 (which is highest grade for the WBTest environment among other
criteria) in comparison to 6.93 for the BBTest environment. The trend is
similar for training but the difference is more than documentation and
technical support (Training average grades: 7.27 for the WBTest and 4.45
for the BBTest). Furthermore, it should be noticed that the least grade for
the BBTest is in training with only 4.45 and the least grade for the WBTest
is in specification coverage with only 4.77. As it explained, the BBTest can
be considered better only in the specification coverage and in the other five
criteria the WBTest seems to be better and the most noticeable difference is
in specification coverage with 7.83 for the BBTest and 4.77 for the WBTest
environment and second most considerable difference is in the training
which the WBTest has larger average grade than the BBTest. The standard

96

5.2. ANALYTICAL HIERARCHY PROCESS (AHP)

deviations of responses which are stated in the table3 indicate that there
is no large polarization in the results and largest standard deviations are
in usability for the WBTest with 1.77 and in technical support with 1.66
for the BBTest. The second largest standard deviation in WBTest is for
documentation with 1.57 and in the BBTest, the second largest one is for
stability with 1.66. These standard deviations with less than 1.5 for most
of the criteria in these two environments show that grades of these criteria
do not have considerable fluctuations. In addition, standard deviations in
four criteria of these two environments is more than 1.5 (and less than 1.8).
This shows that in all evaluated criteria, the polarization of grades are not
so large and most of the respondents have almost similar assessments on
these environments for these six selected criteria.

Stability Usability Coverage Document Tech.Support Training
WBTest 1.38 1.77 1.16 1.57 1.19 1.16
BBTest 1.62 1.40 1.12 1.35 1.66 1.24

Table 5.3: Standard deviation of grade in different criteria for the WBTest
and BBTest environments.

5.2 Analytical Hierarchy Process (AHP)

In order to compare these two environments based on the six mentioned
criteria, it is decided to use the analytical hierarchy process method. This
section includes details calculations and ends up with rankings of these two
environments. As it described in the approach chapter, the AHP contains
four steps as follow:

1. Decomposing.

2. Weighting.

3. Evaluating.

4. Selecting.

At first it is needed to perform decomposition which constructs the hier-
archical structure for this multi criteria decision making problem. Three

97

CHAPTER 5. ANALYSIS

levels of hierarchy is created as depicted in figure 5.2.

Figure 5.2: Analytical hierarchy structure in the AHP method for testing
environments.

In figure 5.2, the first level is the goal of the AHP which is choosing the
most appropriate environment among these two alternatives (the WBTest
and BBTest). The alternatives are located at the third level of hierarchy and
the middle level in the structure contains six effective criteria (Stability,
Usability, Coverage, Documentation, Technical support and Training) for
comparison.

The second phase in the AHP is weighting. Saaty’s table that is introduced
in the approach chapter will be used to create matrices. It means, all values
in these matrices are concluded from Saaty’s table. Seven matrices are
needed for comparing these two environments, one matrix for the criteria,
six matrices for alternatives based on these six criteria. The values of these
matrices are chosen from Saaty’s pairwise comparison table based on the
structured interviews and result of the second questionnaire. The process
will be started by filling the matrices with the scales and followed by the
corresponding calculations which is explained in detail in the approach
chapter of this thesis. The criteria matrix is as follow:

98

5.2. ANALYTICAL HIERARCHY PROCESS (AHP)

C1 C2 C3 C4 C5 C6

C1 = Stability

C2 = Usability

C3 = Coverage

C4 = Documentation

C5 = Technicalsupport

C6 = Training



1 5 2 8 7 7

1/5 1 1/4 4 3 4

1/2 4 1 7 6 7

1/8 1/4 1/7 1 1/4 1/4

1/7 1/3 1/6 4 1 3

1/7 1/4 1/7 4 1/3 1



The geometric mean for the criteria matrix will be calculated:

GMCriteria = (mC1 , mC2 , ..., mC6)
T =

 6

√√√√ 6

∏
j=1

r1j , 6

√√√√ 6

∏
j=1

r2j , ... , 6

√√√√ 6

∏
j=1

r6j



(mC1 , mC2 , ..., mC6)
T = (3.9708, 1.1571, 2.8944, 0.2556, 0.6701, 0.4347)T

After normalization, the priority vector will results. The normalized vector
can be computed by dividing the elements of the geometric mean vector by
the sum of the element in the geometric mean vector:

Pcriteria = (pm1, pm2, ..., pm6)
T =


6
√

∏6
j=1 r1j

∑6
i=1

6
√

∏6
j=1 rij

,
6
√

∏6
j=1 r2j

∑6
i=1

6
√

∏6
j=1 rij

, ... ,
6
√

∏6
j=1 r6j

∑6
i=1

6
√

∏6
j=1 rij



(pm1, pm2, ..., pm6)
T = (0.4232, 0.1233, 0.3084, 0.0272, 0.0714, 0.0463)T

99

CHAPTER 5. ANALYSIS

After the calculation of weightings (priorities) vector for the criteria matrix,
the other six matrices should be built with respect to each of these criteria.
Moreover, their priority values will be calculated in the similar manner as
it was for criteria matrix. These six matrices as well as their calculated
geometric means and normalized priorities vector are as follow:

MStability =

A1 A3

A1 = WBTest

A2 = BBTest


1 2

1/2 1



GMStability
1.4142

0.7071



PStability
0.6666

0.3333



Musability =

A1 A3

A1 = WBTest

A2 = BBTest


1 3

1/3 1



GMusability
1.7320

0.5744



Pusability
0.7509

0.2490



Mcoverage =

A1 A3

A1 = WBTest

A2 = BBTest


1 1/6

6 1



GMcoverage
0.4082

2.4494



Pcoverage
0.1428

0.8571



Mdocument =

A1 A3

A1 = WBTest

A2 = BBTest


1 2

1/2 1



GMdoc.
1.4142

0.7071



Pdoc.
0.6666

0.3333



Mtech.sup. =

A1 A3

A1 = WBTest

A2 = BBTest


1 3

1/3 1



GMtech.sup.
1.7320

0.5744



Ptech.sup.
0.7509

0.2490


100

5.2. ANALYTICAL HIERARCHY PROCESS (AHP)

Mtraining =

A1 A3

A1 = WBTest

A2 = BBTest


1 4

1/4 1



GMtraining
2

0.5



Ptraining
0.8

0.2



As described in the approach chapter, the priority vectors will compose a
matrix which is called the original AHP matrix and should be converted to
the ideal AHP matrix by dividing each element of the original AHP matrix
by the maximum value of the containing column. The two upcoming
matrices are original and ideal AHP matrices:

Original AHP matrix:

C1 C2 C3 C4 C5 C6

A1

A2


0.6666 0.7509 0.1178 0.6666 0.7509 0.8

0.3333 0.2490 0.8821 0.3333 0.2490 0.2



Ideal AHP matrix:

C1 C2 C3 C4 C5 C6

A1

A2


1 1 0.1335 1 1 1

0.5 0.3316 1 0.5 0.3316 0.25



The final decision priorities will be concluded by multiplying the ideal
AHP matrix to the criteria priorities vector which is calculated earlier.

101

CHAPTER 5. ANALYSIS

C1 C2 C3 C4 C5 C6

A1

A2


1 1 0.1335 1 1 1

0.5 0.3316 1 0.5 0.3316 0.25

 ×

Pcriteria

0.4232

0.1233

0.3084

0.0272

0.0714

0.0463



⇒

Relative priorities

The WBTest environment:

The BBTest environment:


0.7325

0.6097



By applying the AHP method with respect to six defined criteria and
scaling them using Saaty’s table with assistance of quantitative and
qualitative results, the WBTest environment is preferred to the BBTest
environment, if there is no other alternative to choose. The relative priority
for the WBTest environment is 0.7325 in comparison to 0.6097 for the
BBTest environment. This result shows that although the coverage of the
WBTest environment is less than the BBTest environment, other factors
such as stability, usability, documentation, technical support and training
could cover this weakness. The scales for the pairwise comparisons were
chosen with the cooperation of the interviewees which were responsible
for framework of these two environments. Obviously, different scaling
can result the different priorities. For instance, if the coverage scale is
extremely higher in comparison to other criteria, it may reverse the final
relative priorities of these two environments.

102

5.3. EVALUATION OF SCENARIOS

5.3 Evaluation of Scenarios

In this section, implementation feasibility of defined scenarios will be
assessed. This evaluation is based on the documents and qualitative
interviews. In addition, this analysis can be considered as the main
assessment about these two testing environments in this thesis. It is tried to
provide a fair overall outcome that shows the feasibility of each scenario.
At first, the third scenario (It is attracted most of respondents in the first
questionnaire. table 5.1) with its two sub-scenarios will be discussed. Then,
the fourth scenario which got second place among other four scenarios will
be evaluated. This part will be followed by describing two first scenarios
in case of requiring to choose either the WBTest or the BBTest. It should be
added that fifth scenario will not be described because of obvious huge cost
of its development and implementation, since all process of development
have to be done from scratch.

From technical point of view, it is possible to implement the scenario 3
which is integration of these two environments into one. In fact, from
framework perspective the cost is not that high. That means, it is possible
to turn the WBTest into the BBTest and vice versa. The noticeable cost is
porting all properties like test cases from one to another one and usage of
them into place. If it is demanded for something like a merged environment
which is an environment that can fulfill both test activities, it should be
started all over to port all test cases because of different languages and
properties in these two environments. Moreover, the coverage in the
new integrated environment should also be increased. Although these
environments can be integrated into one comprehensive environment,
their assigned test activities should be performed and cannot be skipped.
There is a good lesson from history of replacing old WBTest environment
with current WBTest environment. Since the new WBTest environment is
introduced which was two years ago, all test cases have not been ported to
the new WBTest environment from old one yet and there are still some
important tests which being done in the old one. The huge cost in the
integration is porting already written test cases from one environment to
another one by considering different implemented languages as well as
different databases. Furthermore, if we assume the WBTest as foundation
of new environment (Scenario 3-1) and adding all functional verification
using all external instruments which the BBTest already has, it would add
a new abstraction layer for controlling these instruments which would be

103

CHAPTER 5. ANALYSIS

huge job to be defined and proper test cases be written to use these external
measurement instrument. It could have same language and be started in
the same way, but it would still have to have separate test objects because
they designed for aiming very different purposes. Let say it is rather to
use new merged environment for sub-system level integration which is
testing against design specification, then it will be same way as the current
WBTest environment fashion testing and also if tester want to use new tool
for sub-system level verification, then it will be the same method of the
BBTest testing which has heavy abstraction layer with all instruments and
equipment in the BBTest environment. In the simple word, for opening
a door to a car, maybe as integration test activity, you would like to find
out whether not only the lamp inside is lighted up but also something
that happened inside the software, while as you do it for verification, you
open the door and light goes on and that is it and you do not care about
what is going on inside the software. As it can be seen, they are in two
different scopes. But from technical aspect, it is possible to develop and
implement drivers and other properties for instrument and measurement
layers. This can be explained more with a complement example as follow:
Just imagine to use a big electric screwdriver to unscrew a little screw
on your watch. Obviously, you should use proper tool when needed.
Is an electric screwdriver needed as the same time as small hand driven
screwdriver? The answer is yes. Because they have completely different
scopes. The electric screwdriver is also needed whenever it is applicable.

On the other hand, for integrating the WBTest environment into the BBTest
which is stated as scenario 3-2, the similar process should be followed, the
test cases should be rewritten in the BBTest environment with respect to
different implementation languages and different level of abstraction. In
fact, there is another matter which is how high is the abstraction level. In
the WBTest the level of abstraction is so higher than it is in the BBTest. In
the BBTest, most of the test cases are following the action-result format, but
in the WBTest it is higher level API. On the same hand, the WBTest has
lower level concept, because it has interfaces to all boards to read registers
and sensors which is only can be tested by the WBTest at the moment.

It should be emphasized, that the cost is much more higher to port test
cases in the BBTest environment into the WBTest than opposite. There
are five to six hundred test cases with respect to design specifications by
now and on the other hand, around 13000 test case scripts are already
existed in the BBTest environment with respect to functional specifications

104

5.3. EVALUATION OF SCENARIOS

document. Since the BBTest environment is running for couple of years, so
more test cases with respect to requirements have been developed during
these years.

The scenario that indicates to keep these two environments without
integration is called scenario 3. It indicates to keep both environments
but make them look and feel the same and adding benefits of one to
another one. As an example, the BBTest can be run into the well designed
WBTest lab, a test device can be booked and results can be presented in
the same way as the WBTest in which it is so comfortable to follow results,
reports and logs. But when it comes to write test case, different purposes
of both integration and verification testings should be noticed. It seems
that huge missed point is a proper test plan for test activities in these two
environments. The testers should know what should be tested in which
environment. They should consider which environment is suitable for
testing against which specification. This scenario can be considered as
least costly scenario but needed proper efforts. It is needed to have an
adequate test plan to inform testers that which testing environment should
be selected to perform a specific test. As it seen in the documents, there is a
test strategy which is in high level and shows a bigger picture of testing.
A test plan for specific part of testing (i.e. sub-system level) has to be
implemented and deployed. There is a step which is called continuous
analysis which contains some sort of test plan but it is not so visible. In the
whole concept, there are some reports called overall test analysis report
(OTAR) and detail test analysis report (DTAR). Up until lately, in these
reports, the node level testing is considered. Obviously, all test activities
should be inserted into OTAR and DTAR. It should be noticed that this
kind of plan can be broken down in the agile way of development which is
used in the radio software development section. Despite all difficulties, a
proper analysis have to be performed before each step in the radio software
development department and specially before sub-system level testing. In
fact, cross functional teams are very confused. They cannot see relations
between steps and way forward as well as how to avoid duplicated tests
and overlaps. This should be done in the early analysis. It means when
testers start execution over certain feature or specification, they should
know where to put their efforts in different phases, environments and tools.

Keeping one environment for sub-system level testing, either the WBTest
environment or the BBTest environment are stated as scenarios 1 and 2. If
only one test environment is going to be kept, the framework of the BBTest

105

CHAPTER 5. ANALYSIS

known as the BBTest core is more capable of doing most of the sub-system
level testing activities, since the WBTest environment is mainly suited
for with heavy adaptation toward measurement equipments, instruments
and drivers. The BBTest has more built in keys to answer sub-system
level testing. The BBTest core knows what the radio unit should reply
when it is asked about capabilities by checking the XML database which
is only available in the BBTest environment and it is needed to do formal
verification. On the other hand, the WBTest is more lightweight and easier
to use for integration testing which does not care about thing that has to
be so formal. If there was only one choice at the moment without any
technical modification in the platforms, the choice has to be the BBTest
environment because the WBTest environment does not support formal
verification which is absolutely important in the sub-system level testing.
Moreover, the WBTest environment is not that much mature as the BBTest
is and there is still room for progress in the WBTest environment since it is
newer than the BBTest environment in the sub-system level. Finally, there
is a big risk in removing test activities and further problem will be raised
which will cost more to solve later.

At the first glance, there are some test cases which are overlapped in these
two testing environments, but further investigations show that although
they may be seen overlapped and duplicated, they are designed for two
different aims. Figure 5.3 represents a simple example for such occasions.
The radio unit is imagined as it depicted in figure 5.3. It has two
components including their registers as well as two interfaces, one for
input and another one for output. As it can be seen, from a black box
point of view which sees the radio unit as black box and does not care
about inside components and processes, there is an input signal which is
inserted by a test case (in the BBTest environment) in order to test if the
radio unit software produces expected output signal or not. This can be
checked by the predefined functional specification and its database. If
the output signal is as expected, this black box test is passed otherwise
it will fail. This process can be performed for all different test cases in
the BBTest environment for different requirements. In this case, we can
assume that if all tests would be passed, the radio unit software contains
no errors and completely passes predefined requirements of radio unit
software. In addition, we can suppose there is no need for extra white box
tests, since the radio unit behaves as expected based on the requirements
and functional specifications. On the other hand, from white box point of
view, if the input signal would need to set a register or flag when it passes

106

5.3. EVALUATION OF SCENARIOS

Figure 5.3: Radio Unit schema with two simple components in addition to
their registers

component 1, how it can be checked? Obviously, all black box tests are
passed, even though this register is not set, but this specific register did not
make any problem for passing signal and the output is as expected. The
problem may occur later on. An hour or a day later it may cause some
crucial problems for this radio unit. It may lead to signal failure, fire and
other problems. This issue can be solved with white box testing aspect. The
WBTest environment has facilities to test these internal interfaces. Actually,
a test case will be executed to test if such register is set or not. The white
box aspect complement the radio unit software testing. It will assure that
the internal properties are also working as they expected. As consequence,
both aspects are needed for testing radio unit software properly.

107

Chapter 6

Conclusion

The problem statement for this thesis was to compare two radio unit
software testing environments which use black- and white-box testing
approaches. During this thesis, it is tried to answer the questions which
are stated in the problem statements. Since these two testing environments,
the WBTest and BBTest environments were unknown to the author of this,
it was decided to perform quantitative survey based on responses from
the testers that were dealing with these two environment and were aware
of pros and cons in the company in addition to the qualitative part which
included interviews and internal documents. In the upcoming list, answers
to the corresponding questions made in problem statement section 1.2 are
supplied.

• As explained in the analysis chapter, if only one test environment is
going to be kept, the framework of the BBTest, the BBTest core, is
more capable of doing most of the sub-system level testing activities,
since the WBTest environment is mainly suited for heavy adaptation
toward measurement equipments, instruments and drivers. The
BBTest has more built in keys to answer sub-system level testing.
The BBTest core knows what the radio unit should reply when it is
asked about capabilities by checking the XML database which is only
available in the BBTest environment and it is needed to do formal
verification. On the other hand, the WBTest is more lightweight and
easier to use for integration testing, for which the environment does
not need to de as formal. If there was only one choice at the moment
without any technical modification in the platforms, the choice has to

109

CHAPTER 6. CONCLUSION

be the BBTest environment because the WBTest environment does not
support formal verification which is crucial in the sub-system level
testing. It should be noticed that relying on one of these environment
can lead to missing some important test activities and by relying on
the WBTest environment this loss can be huge in comparison to the
BBTest environment.

• By applying the analytical hierarchy process (AHP) method with
respect to six defined criteria and scaling them using Saaty’s table
with assistance of quantitative and qualitative results, it was possible
to grade these two environments. The AHP is based on sets
of pairwise comparisons to obtain relative weights of individual
criterion and rating alternatives with respect to each criterion.
Additionally, it has a great advantage, the consistency ratio (CR), with
the intent of evaluating the adequacy of the initial input and as the
consequence the final priorities. After the corresponding calculations,
the WBTest achieved higher priority than the BBTest, mainly because
of the higher scales in the pairwise comparisons which the WBTest
obtained in five criteria except in the coverage.

• This question about the merging the of the BBTest and WBTest, was
defined as one of the scenarios. From a technical point of view, it
seems to be possible to implement an integrated test environment.
In fact, from a framework perspective the cost is not that high.
That means, it is possible to turn the WBTest into the BBTest and
vice versa. The noticeable cost is porting all properties like test
cases from one to another one. If it is demanded for something
like a merged environment which is an environment that can fulfill
both test activities, that it should be started all over to port all test
cases because of different languages and properties in these two
environments. In the case of integration, two possible scenarios
would happen, that either the WBTest or the BBTest environment
could be the basis of integration. Since porting test cases was
assumed main cost of integration and the BBTest environment has
already almost twenty times more written test cases than the WBTest
environment, obviously considering the BBTest as basis is cheaper
and needs less resources. It should also be noted, that the other
technical properties of each of them that is chosen, should be moved
to another one as well.

• At the first sight, there are some redundancies in these two testing

110

environments, but the investigations up until finishing this report
shows that although they may be seen to overlap, they are designed
for two different aspects. In other words, they may test the same thing
at the first glance, but their scopes are different and if testers remove
one of the redundant test cases, it may cause further issues, although
it could pass the other test case which is in another approach (either
black- or white box approaches).

• Scientific and systematic testing methodology used in this part of
the IT industry could obviously readily be translated and applied to
systems normally controlled by network and system administration.
It is needed to spend more time and also extend the ideas and
experiences which are gathered during this thesis into the network
and system administration which requires further attention to testing
in order to improve the quality of services and products.

For the future work, it is recommended to apply what are learned from
this thesis to the systems such as cloud computing, intrusion detection
systems and more, in order to fulfill SLAs which are often neglected by the
network and system administrators. Additionally, further investigations
might be needed for the company running these two testing systems to
uncover more detailed overlaps in the test activities of these two testing
environments.

111

Bibliography

[1] R. Agarwal and D. A. Umphress, “A flexible model for simulation of
software development process,” in ACM Southeast Regional Conference,
p. 40, 2010.

[2] D. Bell, I. Money, and J. Pugh, Software Engineering: A Programming
Approach. Prentice-Hall, 1987.

[3] C. V. Ramamoorthy, A. Prakash, W. Tsai, and Y. Usuda, “Software
engineering:problems and perspectives,” Computer, vol. 17, no. 10,
pp. 191–209, 1984.

[4] W. Chantatub, The Integration of Software Specification,Verification, and
Testing Techniques with Software Requirements and Design Processes. PhD
thesis, University of Sheffield, March 1995.

[5] T. Saaty, “Decision making with the analytic hierarchy process,” Int. J.
Services Sciences, vol. 1, no. 1, pp. 83–98, 2008.

[6] T. Parveen and S. Tilley, “When to migrate software testing to the
cloud?,” in Proceedings of the 2010 Third International Conference on
Software Testing, Verification, and Validation Workshops, ICSTW ’10,
(Washington, DC, USA), vol. IEEE Computer Society, pp. 424–427, 2010.

[7] J. Gao, X. Bai, and W. Tsai, “Cloud testing- issues, challenges, needs
and practices,” Software Engineering: An International Journal, vol. 1,
pp. 9–23, 2011.

[8] L. M. Riungu, O. Taipale, and K. Smolander, “Research issues for
software testing in the cloud,” in Proceedings of the 2010 IEEE Second
International Conference on Cloud Computing Technology and Science,
CLOUDCOM ’10, (Washington, DC, USA), vol. IEEE Computer Society,
pp. 557–564, 2010.

113

BIBLIOGRAPHY

[9] L. van der Aalst, “Software testing as a service (staas),” Sogeti
Whitepaper.

[10] W. Chan, S. Cheung, and K. Leung, “A metamorphic testing approach
for online testing of service-oriented software applications,” Int. J. Web
Service Res., vol. 4, no. 2, pp. 61–81, 2007.

[11] Priyanka, I. Chana, and A. Rana, “Empirical evaluation of cloud-based
testing techniques: A systematic review,” ACM SIGSOFT Software
Engineering Notes, vol. 37, no. 3, 2012.

[12] P. Ralph and Y. Wand, “A proposal for a formal definition of the design
concept,” Design Requirements Engineering: A Ten-Year Perspective:
Springer-Verlag, pp. 103–136, 2009.

[13] A. Sharma and D. S. Kushwaha, “A metric suite for early estimation of
software testing effort using requirement engineering document and
its validation,” International Conference on Computer and Communication
Technology (ICCCT), 2011.

[14] B. W. Boehm, “Software engineering,” IEEE Transactions on Computers,
vol. C-25, pp. 35–50, December 1976.

[15] I. Shemer, “Systems analysis: A systemic analysis of a conceptual
model,” Computing Practices, vol. 30, pp. 506–512, June 1987.

[16] R. Hamlet, “Randomtesting,” Encyclopedia of Software Engineering New
York:Wiley, pp. 970–978, 1994.

[17] B. Cheng-Gang, J. Chang-Hai, and C. Kai-Yuan, “A reliability im-
provement predictive approach to software testing with bayesian
method,” Proceedings of the 29th Chinese Control Conference, July 2010.

[18] Software Testing Overview - Tutorials Point.

[19] G. Myers, The Art of Software Testing. Wiley, 1979.

[20] R. S. Pressman, Software Engineering, A Practitioner’s approach.
McGraw-Hill, 5th ed.

[21] A. Davis, 201 Principles of Software Development. McGraw-Hill, 1995.

[22] C. Kaner, J. Falk, and H. Nguyen, Testing Computer Software. Van
Nostrand-Reinhold, 1993.

[23] T. McCabe, “A complexity measure,” IEEE transaction on software
engineering, vol. se-2, December 1976.

114

BIBLIOGRAPHY

[24] B. Beizer, Software Testing Techniques. Van Nostrand-Reinhold, 2nd ed.,
1990.

[25] K. Tai, “What to do beyond branch testing,” ACM Software Engineering
Notes, vol. 14, pp. 58–61, April 1989.

[26] M. Deutsch, Verification and Validation in Software Engineering. Prentice-
Hall, 1979.

[27] L. White and E. Cohen, “A domain strategy for program testing,”
IEEETrans. Software Engineering, vol. SE-6, no. 5, pp. 247–257, 1980.

[28] W. Howden, “Weak mutation testing and the completeness of test
cases,” IEEE Trans. Software Engineering, vol. SE-8, pp. 371–379, July
1982.

[29] B. Beizer, Black-Box Testing. Wiley, 1995.

[30] M. Phadke, “Planning efficient software tests,” Crosstalk, vol. 10,
no. 10, pp. 11–15, 1997.

[31] B. Boehm, Software Engineering Economics. Prentice-Hall, 1981.

[32] D. Wallace and R. Fujii, “Software verification and validation: An
overview,” IEEE Software, pp. 10–17, 1989.

[33] E. Miller, “The philosophy of testing in program testing techniques,”
IEEE Computer Society Press, pp. 1–3, 1977.

[34] J. Musa and A. Ackerman, “Quantifying software validation: When to
stop testing?,” IEEE Software, pp. 19–27, 1989.

[35] S. Campodonico, “A bayesian analysis of the logarithmic-poisson
execution time model based on expert opinion and failure data,” IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, vol. 20, September
1994.

[36] R. Savenkov, “How to become a software tester,” Roman Savenkov
Consulting, p. 386, 2008.

[37] T. L. Graves, M. J. Harrold, J. min Kim, A. Porter, and G. Rothermel,
“An empirical study of regression test selection techniques,” ACM
Transactions on Software Engineering and Methodology, vol. 10, no. 2,
pp. 184–208, 2001.

[38] J. McCarthy, Dynamics of Software Development. Microsoft Press, 1995.

115

BIBLIOGRAPHY

[39] B. Beizer, Software System Testing and Quality Assurance. Van Nostrand-
Reinhold, 1984.

[40] ISTQB, Standard glossary of terms used in software testing. ISTQB,
http://www.istqb.org/downloads/finish/20/14.html, version
2.1 ed., 2010.

[41] ISTQB, Certified Tester, Advanced level Syllabus. ISTQB,
http://www.istqb.org/downloads/finish/3/2.html, 2007 ed., 2007.

[42] CDM, “Company’s internal document web page.,”

[43] http://www.ruby lang.org/en/.

[44] http://www.rspec.info/.

[45] http://www.cpri.info/.

[46] http://www.perl.org/.

[47] J. W. Creswell, Research Design: Quantitative, Qualitative, Mixed Methods
Approaches. Thousand Oaks, CA: Sage Publication, 3rd ed., 2008.

[48] J. Morse, “Approaches to qualitative and quantitative methodological:
Triangulation. qualitative research,” no. 40, pp. 120–123, 1991.

[49] I. Newman and C. R. Benz, “Qualitative-quantitative research meth-
odology: exploring the interactive continuum,” Carbondale and Ed-
wardsville: Southern Illinois University press, 1998.

[50] T. L. Saaty, “A scaling method for priorities in hierarchical structures,”
Journal of Mathematical Psychology, no. 15, pp. 57 – 68, 1977.

[51] D. Power, “Decision support systems glossary,”
http://www.dssresources.com/glossary/dssglossary1999.html.

[52] R. AL-QUTAISH, M. MUHAIRAT, and B.M.AL-KASASBEH, “The
analytical hierarchy process as a tool to select open source software,”
Proceedings of the 8th WSEAS Int. Conference on SOFTWARE ENGIN-
EERING, PARALLEL and DISTRIBUTED SYSTEMS.

[53] E. Huizingh and H. Vrolijk, “Decision support for information systems
management: Applying analytic hierarchy process,” Universiteitsbib-
liotheek Groningen, vol. Research Report 95B26, 1995.

[54] L. Santillo, “Early fp estimation and the analytic hierarchy process,”
in Proceedings of the ESCOMSCOPE Conference, Munich, Germany,
pp. 249–257, 2000.

116

BIBLIOGRAPHY

[55] J. Soininen, S. Boumard, T. Salminen, and H. Heusala, “Application of
decision-making method for architecture selection of adsl modem,”
in Proceedings of the Euromicro Symposium onDigital Systems Design,
Warsaw, Poland, pp. 21–28, 2001.

[56] C. S. Grewal, “A multi criteria logistics- outsourcing decision making
using the analytic hierarchy process,” International Journal of Services
Technology and Management, vol. 9, no. 1, pp. 1–13, 2008.

[57] J. Lewe, B. Ahn, D. A. Delaurentis, D. N.Mavris, and D. P. Schrage,
“An integrated decision-making method to identify design require-
ments through agent-based simulation for personal air vehicle sys-
tem,” in the AIAA Aircraft Technology ,Integration, and Operation (ATIO)
Technical Forum, Los Angeles, CA, 2002.

[58] L. Mikhailov and P. Tsvetinov, “Evaluation of services using a fuzzy
analytic hierarchy process,” Applied Soft Computing, vol. 5, no. 1,
pp. 23–33, 2004.

[59] R. Febriamansyah, “the use of ahp (the analytic hierarchy process)
method for irrigation water allocation in a small river basin (case
study in tampo river basin in west sumatra, indonesia),” 11th
Conference of the International Association for the Study of Common
Property, Bali, Indonesia, 2006.

[60] J. Noh and K. M. Lee, “Application of multiattribute decision-making
methods for the determination of relative significance factor of impact
categories,” Environmental Management, vol. 31, no. 5, pp. 633–641,
2003.

[61] C. Alves and A. Finkelstein, “Challenges in cots decision-making: A
goal-driven requirements engineering perspective,” n Proceedings of
the 14th International Conference on Software Engineering and Knowledge
Engineering, Ischia, Italy, pp. 789–794, 2002.

[62] J. D. Kendrick and D. Saaty, “Use analytic hierarchy process for project
selection,” Six Sigma Forum Magazine, vol. 6, no. 8, pp. 22–29, 2007.

[63] K. Eldrandaly, “Gis software selection: A multicriteria decision
making approach,” Applied GIS, vol. 3, no. 5, pp. 1–17, 2007.

[64] A. Koscianski and J. C. B. Costa, “Combining analytical hierarchical
analysis with iso/iec 9126 for a complete quality evaluation frame-
work,” in Proceedings of the 4th IEEE International Symposium and Forum
on Software Engineering Standards, Curitiba, Brazil, pp. 218–226, 1999.

117

BIBLIOGRAPHY

[65] I. Dikmen and M. T. Birgonul, “An analytic hierarchy process
based model for risk and opportunity assessment of international
construction projects,” Canadian Journal of Civil Engineering, vol. 33,
no. 1, pp. 58–68, 2006.

[66] G. E. Pavlikakis and V. A. Tsihrintzis, “Evaluation of three multi-
criteria decision-making methods in ecosystem management,” in
Proceedings of the 8th International Conference on Environmental Science
and Technology, Lemnos Island, Greece, pp. 667–674, 2003.

[67] S. Nataraj, “Analytic hierarchy process as a decision-support system in
the petroleum pipeline industry,” Issues in Information Systems, vol. 4,
no. 2, pp. 16–21, 2005.

[68] V. Belton and T. Gear, “On a short-coming of saaty’s method of
analytic hierarchies,” Omega, pp. 228 – 230, 1983.

[69] T. L. Saaty, “Fundamentals of decision-making and priority theory
with the ahp,” WS Publications, Pittsburgh, PA, USA., 1994.

[70] T. Saaty, “The analytic hierarchy process,” McGraw-Hill International ,
New York, NY, USA, 1980.

[71] J. M. X. Biyang, “A qualitative and quantitative assessment method
for software process model,” IEEE, 2010.

[72] C. Chiang, “Software stability in software reengineering in informa-
tion reuse and integration,” IEEE International Conference, IEEE Xplore:
Arkansas University., 2007.

[73] S. Yau and J. Collofello, “Some stability measures for software
maintenance,” IEEE Transactions On Software Engineering, pp. 545–552,
1980.

[74] J. Nielsen, “Usability 101: Introduction to usability,”
http://www.nngroup.com/articles/usability-101-introduction-to-usability/,
2012.

[75] M. Harder, B. Morse, and M. Ernst, “Specification coverage as a
measure of test suite quality,” MIT lab for computer science, 2001.

[76] J. Goodenough and S. L. Gerhart, “Correction to “toward a theory of
test data selection”,” IEEE Transactions on Software Engineering, vol. 1,
no. 4, 1975.

118

BIBLIOGRAPHY

[77] D. Richardson, O. O’Malley, and C. Tittle, “Approaches to
specification-based testing,” Proceedings of the ACM SIGSOFT ’89 Third
Symposium on Testing, Analysis, and Verification (TAV3), pp. 86–96, 1989.

[78] J. Chang, D. Richardson, and S. Sankar, “Structural specification-based
testing with adl,” ISSTA, pp. 62–70, 1996.

[79] A. Offutt and S. Liu, “Generating test data from sofl specifications,”
The Journal of Systems and Software, vol. 49, no. 1, pp. 49–62, 1999.

[80] LINFO, “Linux information project,”
http://www.linfo.org/documentation.html.

119

	Introduction
	Motivation
	Problem Statement
	Thesis Structure

	Background
	Software Development Process
	Software Testing Basis
	Testing Primary Objectives
	Testing Basic Principles
	A Good Test

	Testing Design Techniques
	White Box Testing
	Black Box Testing

	Testing Strategies
	Verification and Validation
	A Testing Strategy
	Completion of Testing
	Unit Testing
	Integration Testing
	System Testing
	Debugging

	Approach
	Testbed
	Testing Strategy
	WBTest Environment
	BBTest Environment

	Data Collection Methods
	Data Analysis Method
	Research Plan
	Pilot Questionnaire
	Comparison Questionnaire
	Interviews

	Result and Discussion
	Pilot questionnaire results
	Results of the Complement Questionnaire
	Stability
	Usability
	Specification Coverage
	Documentation
	Technical support
	Training

	Analysis
	Overall evaluation of result
	Analytical Hierarchy Process (AHP)
	Evaluation of Scenarios

	Conclusion

