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Abstract

Common Variability Language (CVL) is a generic variability modeling
language. Fragment substitution is a fundamental CVL operation. The
operation removes a set of model elements (placement fragment) and
substitutes them with another set of elements (replacement fragment).
Overlapping fragments represent a potential consistency challenge as the
CVL execution may give unintended results for models where fragments
intersect. Thus, we argue that there is a pragmatic need to handle
overlapping placements. The need emerges, when several diagrams
reference the same model. Hence, we can define a placement in one
diagram while another placement in a different diagram references the
same set of elements. It may indicate an error in the variability definition,
but there are cases where we specify overlapping placements intentionally.
In the thesis we carefully discuss such cases, 1) classify overlapping
fragments, 2) find criteria to detect the different overlaps, and 3) suggest
appropriate solutions via transformations.
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Chapter 1

Introduction

1.1 Motivation

The adoption of an assembly line was a breakthrough in the industrial
engineering at the end of the 19th century and beginning of the 20th
century. Assembly lines have gained the most importance and played the
major role in production of cheap and reliable products. A manufacture
was able shortly to produce a wide variety of products building them
on assembly lines. The term product line appeared later describing this
product variety. A product is built stepwise on an assembly line. A new
functionality is added as a conveyor moves the product from one stage
to another. In the end of the 20th century, one may find first attempts to
use the product line principles in the software domain. In other words,
we can assemble numerous software products from different components
specifying a product line. The variability modeling term has been coined
to describe the product line definition in the software realm. Common
Variability Language (CVL) is a mean to variability modeling.

A placement and replacement are artifacts to define variability on a
base model in CVL. Defining variability on different levels or in different
views of the base model can lead to possible overlaps between variability
artifacts. Some of these overlaps are desirable and done on purpose,
others may indicate that a variability model is not consistent and requires
additional modifications. Thus, management of overlapping fragments
is an important part of the CVL execution semantics. The management
includes detection of overlapping fragments, their classification and
mitigation.

Modern modeling languages may have quite large metamodels, e.g.
UML [41]. An instance of the metamodel represents a model created for
a particular task. A model in UML can have a complex structure even
for relatively small tasks; therefore, such models are difficult to analyze
and develop. Contemporary modeling tools address this challenge using
different diagrams to represent a model and reflect various aspects of a
system. Such diagrams may reference the same model and even some
entities in different diagrams can reference the same model elements.

In Figure 1.1, we can find two simplified class diagrams ((a) and (b))
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with the generalized car components and a variant of their relations. In
the instance diagram (Figure 1.1 (c)) of the UML metamodel [41], we
introduce all components presented in the diagrams (Figure 1.1 (a) and
(b)) of the car model together with their associations. We use arrows to
show associations between classes in the instance diagram (c) just for the
sake of simplicity, but the UML metamodel is somewhat more complicated
than that. There are two core general elements in a car, i.e. a Motor,
Gearbox (Transmission). The controls class diagram (on the right (b))
shows HandControls, FootControls components w.r.t. a Gearbox. One

MotorGearbox

HandControls

Gearbox FootControls

Motor:Class

Gearbox:Class FootControls:Class

HandControls:Class

(c) instance diagram

placement 1

placement 2

Legend

(a) class diagram (b) class diagram

Figure 1.1: Different views of the car component model

may want to assemble a car with a certain functionality; thus, we replace
the generalized gearbox and motor with something more concrete, for
example, an automatic transmission and compatible motor. Hence, we
define a placement in (a). Meanwhile, in the class diagram (b) we have to
take care of the FootControls block, which depends on a particular gearbox
kind. Thus, we select both and want to replace them with the automatic
gearbox and two pedal foot control block. Since we have made the
selections independently, the model (c) depicts an overlap on the gearbox
component. The result of the substitution is well understood, i.e. we want
the automatic gearbox with the corresponding motor and compatible two
pedals control block. However, the current CVL implementation from
SINTEF [22] fails to accomplish the task correctly due to the overlapping
fragments in the model. The example shows a pragmatic need of detecting
and tackling such situations.
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1.2 Contribution and artifacts

The major artifacts and contribution of the thesis are:

• deduction and classification of the cases where the current CVL
implementation does not succeed to derive a correct product;

• criteria to detect different kinds of overlapping fragments;

• mitigations for each of the classified cases;

• implementation of the substitution engine with the adjacent resolu-
tion functionality;

• validation of the implemented solution using an UML example
together with other artificially created samples and its evaluation.

1.3 Thesis structure and Methods

The rest of the thesis is organized as follows. Chapters 2 and 3 give
some background information. Chapter 2 covers the variability modeling
realm describing basic techniques and principals. We pay special attention
to Common Variability Language (CVL) highlighting its basic features
and previous achievements. In Chapter 3, we introduce the graph
transformation theory, graph based tools and put the graph rewriting
theory into the context of our research. We discuss elaborately the problem
from Section 1.1 (Motivation) and define solutions in Chapter 4. Further,
we introduce an approach to the problem and describe whether the issue
is solvable directly applying the graph transformation theory. Chapter
5 presents design decisions on the implementation of the substitution
engine. We validate and evaluate the implemented engine in Chapter 6.
Subsequently, Chapter 7 discusses some works related to our contributions.
Finally, we conclude and explain future works in Chapter 8. Appendix A
contains measurements made for the evaluation section.
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Background
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Chapter 2

Variability modeling realm

2.1 Software Product Lines

Software Product Lines (SPL) encompass a systematic combination of mass
customization and the use of a common platform for the development of software-
intensive systems and software products [45]. Where the term common
platform is largely associated with a software platform. Pohl, Böckle and
van der Linden in [45] give the precise definitions of the software platform
and mass customization terms.

Definition 2.1 (Software platform) Software platform is a set of software
subsystems and interfaces that form a common structure from which a set of
derivative products can be efficiently developed and produced [45].

Definition 2.2 (Mass customization) Mass customization is the large-scale
production of goods tailored to individual customers’ needs [45].

Software becomes a major component of any computer based system. The
amount of software for systems is growing and the amount of various
software components for a particular system is growing even faster. The
range of different possibilities for a particular system can be expressed
through variability modeling. The variability term is not new by itself
and basically means the quality, state, or degree of being variable or changeable
[58] without any application to computer science. Variability defines mass
customization with respect to SPL.

Definition 2.3 (Variability) Variability is a flexibility that is a precondition for
mass customization [45].

We should outline that variability modeling in computer science closely
associates itself with SPL, where

Definition 2.4 (Variability modeling) Variability modeling attempts to de-
scribe more than one variant of a system for a (software) product line.

The SPL term can refer to methods, tools and techniques at the same time.
In other words, we can define SPL as a set of references to methods, tools
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and techniques for creating and maintaining a collection of similar software
systems from a shared set of software assets [23].

SPL has been actively developing for the recent years. Generally, soft-
ware is more flexible than hardware, meaning software allows introdu-
cing a new functionality that could not be easily achieved without software
components. Hence, variability can be implemented in software more effi-
ciently than in pure hardware. Thus, presently a strong need for adopting
product line engineering can be observed in the software domain, espe-
cially, when size and complexity of systems exceed limits of what is feasible
with traditional approaches [30].

A goal of any product line is a derivation of a product based on a wide
range of components. This range implicitly shows a potential variety of the
product line. The potential variety can be expressed over commonalities
and variabilities of the product line. Therefore, lot’s of research papers are
dedicated to techniques, methods, tools which allow enabling of variability
modeling in the most efficient manner. There is a set of techniques that can
be exploited to define a variability in SPL [7].

2.2 General-Purpose Languages

Definition 2.5 (General-Purpose Language (GPL)) General-Purpose Lan-
guage (GPL) is a programing or modeling language designed for usage in a wide
range of application domains.

General-Purpose Languages (GPLs) provide means for variability model-
ing directly. We can highlight three main approaches to deal with vari-
ability in GPLs. However, the devision is quite synthetic because each of
these approaches exploits core principles of GPLs, e.g. templates, virtual
functions etc, but in different proportions. Nevertheless, each has its own
methodology to apply the means of GPLs to achieve goals of variability
modeling. Hence, the separation justifies itself:

• standard mechanism of GPL,

• annotation of GPLs,

• generative programming.

Standard mechanisms of GPL support variability via the principles of
specialization, overriding and redefinition which can be expressed by
virtual types/functions/classes, templates, inheritance, stereotypes. Bayer
et al. [7] show how variability can be supported over the UML 2.0 means.

Annotation of GPLs is logically a step further towards improvement of
expressing variability in GPLs. Generally, GPLs have not been developed
to support and capture all aspects of variability, and the annotation
approach is a way to incorporate variability having a certain separation
of concerns through aspects.

Generative Programming (GP) is a more advanced paradigm that
allows exploiting built-in GPLs means together with a new concept called

8



Active Libraries to enable efficient describing of variability [14]. Active
Libraries are programming libraries, which take part in code generation
actively. They provide abstractions, components, algorithms etc and can
change, optimize them depending on a task.

Even though using of GPL is generally a pretty straightforward way
to deal with variability, since we do not need to use other means or any
external tools. It makes definition of variability available only to experts
whom together with knowledge of the variability domain have technical
understanding and skills to implement variability in a particular GPL.
Using GPLs can improve the definition of variability for feature models,
but we regress to low-level programming [60]. GPLs can incorporate
variability mechanism into DSLs as well, but it causes the amalgamation
of DSLs that leads to cluttering of a model in DSLs with variability
specifications [21].

2.3 Feature models

A main concept of any software product line is a feature artifact. One may
find a first usage of the feature term in the work of Kang et al. [31] as a
mean to describe commonalities, and variabilities of software systems. We
can define feature models as follows.

Definition 2.6 (Feature model (FM)) Feature model (FM) represents the in-
formation of all possible products of a software product line in terms of features
and relationships among them [8].

Figure 2.1 shows the feature model that configures some car components.
Feature modeling is an attempt to make the variability definition process

Figure 2.1: Feature model of the car components

available to stakeholders, i.e. experts in the variability domain. This ap-
proach provides abstractions of product components over their implement-
ations. These abstractions form sets of configurations which encompasses
variability of a product line. Feature models realize these configurations. A
product derivation is achieved through the resolution of a feature model.
A feature model looks as a tree, where nodes and leafs represent features,
i.e. abstractions over product components. A major property of a fea-
ture model is finiteness. It means that possible derivations of a product
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is bounded by a corresponding feature model. In other words, all com-
ponents/abstractions and derivation paths should be defined explicitly in
a feature model. It significantly simplifies a validation process and test-
ing of possible configurations. For example, Czarnecki and Wasowski [16]
show how feature models can exploit existing logic-based tools, such as
SAT solvers and Binary-Decision Diagram (BDD) libraries to validate their
configurations.

There are several variability modeling approaches, which exploit
the feature concept and recognize themselves as feature modeling, for
example, the cardinality-based feature modeling approach by Czarnecki et
al. [16]. Pohl et al. [45] describe the Orthogonal Variability Model (OVM)
methodology, that prevents amalgamation of domain (product) artifacts
with variability concepts. Common Variability Language (CVL) by Haugen
et al. [12, 21, 25] makes use of FM having similar concepts and OVM
defining variability orthogonally.

2.4 Decision models

Definition 2.7 (Decision model (DM)) Decision model (DM) is a set of
decisions that are adequate to distinguish among the members of an application
engineering product family and to guide adaptation of application engineering
work products [57].

Decision models together with feature models have gained the most
importance among existing approaches. But this approach to variability
represents rather large class of developed approaches and exists nearly
as long as feature-oriented modeling [48]. Table 2.1 shows a car decision
model in the tabular notation. Czarnecki et al. [15] claim that the main

Table 2.1: Decision model in the tabular notation
decision
name

description type range cardinality/
constraint

visible/
re-
leavent
if

eng_-
type

Which
engine do
you prefer?

Enum Diesel | Pet-
rol |Hybrid

1:1

prk Do you
need park-
tronic?

Boolean true | false

prk_-
type

Where do
you need
parktronic?

Enum Back | Rear 1:2 prk=
true

difference among DM and FM techniques is that DM approach exclusively
focuses on variability modeling, while FM emphasizes both commonality
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and variability modeling. Existing DM techniques are mainly influenced
by the Synthesis method [15, 57]. In decision modeling questions represent
decisions. We need to answer all questions to derive a new product. In
other words the derivation of a product is performed by making decisions
at certain points. There are several main approaches in the realm of
decision modeling [48]:

• Synthesis,

• Schmid and John,

• KobrA,

• DOPLER,

• PLUM,

• VManage.

The approaches differ from each other by the structure of a decision model;
a set of choices possible for a decision, namely data type; dependency
management among different decisions; relationships to artifacts; product
derivation possibilities [48]. Each method defines a basic model and all
these approaches share some commonalities with respect to the basic model
structure.

2.5 Domain-Specific Languages

Definition 2.8 (Domain-specific language (DSL)) Domain-specific language
(DSL) is a programming language or executable specification language that offers,
through appropriate notations and abstractions, expressive power focused on, and
usually restricted to, a particular problem domain. [59]

A domain-specific language operates with concepts from a domain.
Experienced developers usually implement these concepts. Experts use
these concepts to solve a problem acting as software developers during
this process. Hence, DSL is a mean that intends to reduce conceptual
gap between software developers and domain experts. It allows involving
domain experts in the software development process that generally leads to
significant improvements of the development process itself. DSL is a part
of the infrastructure that together with other parts, i.e a domain framework,
a domain-specific code generator allow creating models. Applications
in DSL are automatically generated running on the top of the domain
framework. The generated code needs not be edited or even looked at [32].
In short, the main benefit of applying the DSL approach is that DSLs can
define the path all the way to realization. It means that we can use DSLs
not only for the process of sketching, but as normal GPLs [7].

Using DSLs to describe the variability of a system can benefit the
process of the SPL engineering [24]. A DSL is still a programming language
regardless of abstractions it provides. It may incorporate the core GPL

11



mechanisms, i.e. attributing, referencing, recursion, loops - which allow
describing unbounded nature of variability. It should be admitted that this
flexibility of DSLs opens the possibility to implement variability in many
different ways. It leads to the complexity of supporting different tools and
incorporating variability mechanisms in SPL. For example, Haugen et al.
[21] outline two different ways of describing variability in systems, i.e. the
first is a pure feature model, that does not depend on the implementation or
design of systems, and the second one is to describe the variability model
that relates to a base model. Haugen et al. [21] defines two different
mechanisms with respect to the second possibility.

• Annotation of a base model by adding specific constructions to
support variability. It causes an amalgamation of DSLs that leads to
cluttering of the base model with variability specifications.

• Making separate, orthogonal models which are applied to the base
model. It can be achieved by the definition of a separate language.
However, variability is not clearly marked at this point.

Any DSLs can also been seen in general as a language for variability
modeling, because it provides functionality to describe every system in a
corresponding domain. Hence, we can include this option to the list above.
Haugen et al. [21] draw our attention to the fact that the separate-language
approach is preferable, since we do not overweight DSLs with concepts,
which originate in another domain. DSLs are supposed to be lite, and
operate with domain concepts only, otherwise they become overwhelmed
with unnecessary details. However, there are some studies, which
consciously choose the amalgamation approach to deal with variability,
for example, the paper describes how variability can be woven into a
metamodel [37].

2.6 Common Variability Language

2.6.1 Evolution

Common-Variability Language (CVL) is a domain-specific language for
variability modeling. We can find basic principles, which laid the
foundation for CVL in [7] by Bayer et al. in 2006, even though the term
itself would be coined in later works. Further, Oldevik and Haugen
[38] developed the variability approach to SPLs via transformations in
MOFScript [40]. Finally, one may find the term CVL in the paper [21] of
Haugen et al. together with the elaborated example of applying CVL to
UML and Train Control Language (TCL) by Svendsen et al. [54].

SINTEF [22] has developed the first version of CVL within the MoSiS
project ITEA 2 - ip06035 part of the Eureka framework [55]. The tool
got its name after the MoSiS project - MoSiS CVL. MoSiS CVL has been
successfully applied within several European projects, such as MoSiS and
CESAR. Currently, a new CVL tool - OMG CVL is being developed within
the VARIES project and the specification under a standardization process

12



MoSiS CVL (a) OMG CVL (b)

Figure 2.2: Variability model in the MoSiS and OMG CVL tools - tree
representation

[12]. The metamotel of OMG CVL has some changes with respect to MoSiS
CVL. For example, one may find the Configuration Unit [12] concept
reflecting possible modularity, which may occur during a variability
modeling. The OMG CVL metamodel enhances also means to references
elements of a model on which variability is defined (a base model)
etc. However, main concepts and principals remain unchanged, e.g.
representing the variability model as a tree structure, see Figure 2.2.

2.6.2 Overview

CVL is specifically devoted to the variability domain, the language is
formal and executable. There are several studies, which show how
variability can be expressed in CVL. For instance, the authors in [2,
56] describe an example, where TCL is used to exemplify methodology
of variability incorporation through CVL. CVL implements consolidated
metamodel [12], and exploits three types of models: a base model, a
variability model (VAR-model) and resolution model (RES-model). The
CVL specification [12] gives the following definitions for the mentioned
models.

Definition 2.9 (Base model) Base model is a model on which variability is
defined using CVL. The base model is not part of CVL and can be an instance
of any metamodel defined via MOF [12].

Definition 2.10 (Variability model) Variability model is a collection of vari-
ation points, VSpecs, and constraints used to specify variability over a base model
[12].

Definition 2.11 (Resolution model) Resolution model is a collection of
VSpec resolutions resolving the VSpecs of a variability model [12].

A CVL execution consumes these three models and results in a set of
resolved models. The process is shown schematically in Figure 2.3 on the
next page [12]. It should be admitted that this schema of the resolution
process is DSL independent [56]. CVL applies one-way associations to a
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Figure 2.3: The Common Variability Language architecture

base model. And since CVL is separate and independent, no annotations
or variability concepts are added into the base model or base language [2].

2.6.3 Basic concepts

The CVL specification [12] gives explicit definitions of all concepts
involved in CVL, while we will try to focus on the basic principals
and definitions. The fundamental concepts of CVL are placement and
replacement fragments.

2
r12r11

4

1

5

3

r23

pa

rarb

r12r11

Placement fragment Replacement fragment Resolved product

-placement
-replacement
-boundary element
-o/i boundary reference

Legend

pb

4
5

Figure 2.4: Basic CVL concepts

Definition 2.12 (Placement/Replacement fragment) Placement fragment
is a set of elements forming a conceptual ’hole’ in a base model, which should be
replaced by another fragment, namely replacement fragment.

Figure 2.4 exemplifies a pair of the placement and replacement fragments.
The placement in the figure is shown by the solid oval, while the dashed
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oval outlines the replacement. The elements inside ovals belong to
the placement and replacement respectively. We should point out that
placement and replacement fragments in CVL are defined via so called
boundary elements.

Definition 2.13 (Boundaries) Boundaries are elements, which fully define all
references going in and out of a placement/replacement fragment [12].

A variability expert may define a placement/replacement through a simple
selection procedure on a model creating a set of modified elements. These
elements inside placement/replacement may point to entities outside the
given selection, these references are cut off creating boundaries. Figure 2.4
on the preceding page shows four boundary elements, i.e. two for the
placement fragment (pa, pb) and two for the replacement fragment (ra, rb).
The metamodel in Figure 2.5 depicts two kinds of placement boundaries,
i.e. ToPlacement, FromPlacement and two kinds of replacement boundaries,
i.e. ToReplacement, FromReplacement. An instance of ObjectHandle is a proxy
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Figure 2.5: Boundary elements - metamodel

object that just references an object in a model. Each boundary element
has two kinds of associations, which denotes references pointing inside
and outside a placement/replacement, see Figure 2.5. We may find in
Figure 2.4 on the facing page that pa is of the kind ToPlacement references the
element 3 (inner neighboring element) and element 5 (outer neighboring
element), pb is of the kind FromPlacement with references to 3 and 4. The
replacement fragment has ra of the kind ToReplacement and rb of the kind
FromReplacement.

A product derivation in CVL is achieved by means of fragment
substitution operations. Where the fragment substitution operation, we
can define as follows.

15



Definition 2.14 (Fragment substitution) Fragment substitution is an oper-
ation that substitutes a single object or model fragment (placement fragment) for
another (replacement fragment).

On the most right of Figure 2.4 on page 14 we can find the result of
the placement substitution onto the replacement. As we can observe the
operation removes the contents of the placement and copy the contents
of the replacement onto the hole made by the removal of the placement
elements.

The binding process is another key operation of the variability model-
ing in CVL.

Definition 2.15 (Binding) Binding is a link that defines how a placement
boundary element relates to another replacement boundary element.

Definition 2.16 (Binding process) Binding process is a process that specifies
all bindings between a placement and corresponding replacement; thereby, it
defines a substitution process.

For our particular example in Figure 2.4 on page 14 by the binding of pa to
ra and pb to rb, we specify that the element 5 should reference element r12
and r11 should point to 4 respectively in the derived product on the most
right.

2.6.4 MoSiS CVL tool

The MoSiS CVL tool implements the first version of the CVL language
and contains all basic concepts from the OMG CVL specification. An
engineer defines a variability model in MoSiS CVL as a tree structure.
Figure 2.6 depicts a variability model based on the example from Figure 2.4
on page 14. The figure shows a simple tree structure which may be seen

Figure 2.6: Variability model - tree representation

as a feature model, each composite variability element is a feature. A
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composite variability may define placement/replacement fragments and
specify the substitution operation via the substitution fragment element.
In the example from Figure 2.6 on the preceding page, the composite
variability feature B defines the placement placementB, the replacement
replacementB and the substitution fragment placB->replacB. In Figure 2.6 on
the facing page, the substitution fragment specifies the substitution of the
elements 1, 2, 3 (placementB) onto r11, r21 (replacementB). We schematically
show this process in Figure 2.4 on page 14. A variability engineer sets
placement and replacement fragments via a simple selection procedure
in a model. Figure 2.7 exemplifies the specification of the placement

Figure 2.7: Specifying of the placement fragment - selection

fragment through the selection procedure in the MoSiS CVL tool. We may
see in Figure 2.7 (a) that one selects the elements (1, 2, 3) to substitute.
These elements constitute the placement fragment which we create via
a corresponding menu item, see Figure 2.7 (b). The MoSiS CVL tool
automatically calculates all affected elements and creates boundaries on the
links which reference elements outside/inside a placement/replacement.
Further, we can observe the result of such calculation via highlighting of
the icons which denote placement/replacement/substitution fragments.
In Figure 2.8, one selects the icon placementB in the variability model
and the tool shows the elements which comprise the placement fragment
in the base model together with the affected elements (elements which
do not belong to a placement, but have references pointing to elements
inside/outside the placement). The final step is to specify how elements of

Figure 2.8: Placement and replacement fragments

the replacement fragment should substitute the elements of the placement
yielding the resolved product in Figure 2.4 on page 14. The MoSiS CVL
tool introduces the binding editor, which lists all calculated boundaries and
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provides means to define how a replacement fragment should be woven
into a base model. Figure 2.9 shows the binding editor of the MoSiS CVL

Figure 2.9: Binding boundary elements - binding editor

tool. The boundaries of the placement (pb, pa) and replacement (rb, ra)
reference the placement (3, 4, 5) and replacement (r11, r12, r23) elements
respectively. One defines how these elements should reference each other
in a final product. The binding process encompasses a specification of such
references between elements of a placement and replacement. In Figure 2.9,
we instruct the tool that 5 should reference r12 and r11 should point to 4
in the final model. Thus, a resolution process, which is driven by the given
bindings, yields the resolved product in Figure 2.4 on page 14.
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Chapter 3

Graph rewriting techniques

3.1 Motivation and overview

Variability modeling defines a product derivation from some basic struc-
ture. A product evolves through a process of modifications added to the
basic structure, where a structure is a set of linked elements. Graphs have
very basic and general definition; thus, we may always interpret any struc-
ture, e.g. a model or diagram as a graph.

Definition 3.1 (Graph) Graph is a set of vertices and links between them which
represent edges.

Definition 3.2 (Directed graph) Directed graph is a graph, where edges have
direction.

Different engineering fields use the graph representation as a powerful
and convenient notation of formalization, studying and implementation
of their task. Particularly, in object-orientation a runtime environment
of an executed program is a set of communicating objects; therefore, an
environment may be represented as a graph. In fact, any data structure
is a graph. Changes of a model, data structure or runtime environment
conforms to the corresponding changes in graphs. Graph transformation
techniques may catch formally these changes which one may evaluate
applying different mathematical instruments. Therefore, studying of the
graph transformation theory, graphs and their applications have gained
importance in different scientific and engineering realms.

The graph transformation approaches have emerged to overcome
lack of expressiveness in traditional rewriting techniques, for example,
Chomsky grammars [11], to transform non-linear structures like graphs.
Heckel [26] claims that the first proposals, appearing in the late sixties and
early seventies [43, 46], are concerned with rule based image recognition,
translation of diagram languages, etc.

The graph theory distinguishes two kinds of graphs [11]:

• type graph,

• instance graph.
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Definition 3.3 (Type graph) Type graph represents concepts (classes) and their
relations.

Definition 3.4 (Instance graph) Instance graph is an instance of a type graph.

In other words, an entity in the given type graph is a class, while an
entity in the corresponding instance graph is an object of the given class.
We can consider a type graph as a model (for example, class diagram),
while the corresponding instance graph is an instance of the model. A
set of snapshots comprises an execution, where each snapshot represents
an instance of the model at a particular moment in time. A snapshot is a
set of objects; therefore, it may be seen as a graph. In the graph theory a
structural changes of a graph one may describe via a rule. A rule is another
fundamental concept of the graph transformation realm. It explicitly
defines how a graph evolves. A transformation of a type graph to another
type graph denotes a model-to-model/out-place transformation, while an in-
place transformation represents the transformation of an instance graph [3].
Figure 3.1 shows the basic concepts of the graph theory. We introduce two

n0:N

n1:N

N

n3:N n4:N

n0:N

n1:N n3:N n4:N

n0:N

:N :N

n0:N

:N :N

G H

L R

p

m m

(a) type graph (b) instance graphs

Figure 3.1: Graph transformation theory concepts

diagrams, i.e. (a) contains the type graph, while (b) contains four instance
graphs of the type graph in (a). Our type graph contains one vertex N
and the edge which starts and ends on the same vertex N. In our case, the
diagram (a) can be seen as a class diagram, where the vertex N is a class of
the kind N and the edge is an association. Two graph (G, H) in the diagram
(b) are instances of the type graph. Graphs G, H contain four elements of
the type N, two graphs are almost identical, but the vertex n0 points to n3
in G and references the vertex n4 in H. Thus, we may say that the graphs
G and H are the snapshots of the transformation process. Where we can
use a rule to define this transformation. The graph L matches a subgraph
in the graph G if we map n0 in L to n0 in G and two other vertices in L to
n3 and n4 respectively. Thus, the graph L corresponds to a pre-condition
triggering the changes of the subgraph in the graph G. The graph R matches
a subgraph in the graph H applying the same mapping strategy. We may
say that the graph R is a post-condition for the subgraph in the graph H. A
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pair of a pre-condition (graph L) and post-condition (graph R) comprises
the rule p, see Figure 3.1 on the preceding page (b).

Definition 3.5 (Rule) Rule defines a pre-condition and post-condition for the
transformation.

In Figure 3.1 on the facing page, the arrow with p inside schematically
denotes the rule, while the arrows with m inside reflect the matches in the
corresponding graphs.

Definition 3.6 (Pre-condition) Pre-condition for transformation specifies a
left-hand side (LHS) of the rule.

Definition 3.7 (Post-condition) Post-condition for transformation specifies a
right-hand side (RHS) of the rule.

Heckel [26] shows informally that a graph transformation from a pre-state
G to a post-state H executes in three steps:

• search for a match of the left-hand side L in G,

• remove all nodes and edges in G from L \ R,

• paste a copy of R \ L, yielding the graph H.

In Figure 3.1 on the preceding page the match of LHS in G is a set of
elements {n0, n3, n4} and corresponding edges. L \ R equals to the vertex
n0 and edge which starts on the vertex n0 and ends on n3. Therefore, the
vertex and edge are removed from G. R \ L comprises the vertex n0 and
edge which starts on n0 and ends on n4. Further, we glue the corresponding
vertex and edge on recently modified G yielding the graph H.

3.2 Algebraic approaches

Algebraic approaches seem to be the most popular techniques to graph
transformations, but there are also others like Triple Graph Grammars
(TGG) [52]. Schürr [51] introduces TGG as a new formalism to support
an advanced declarative approach to graph transformations, which even
allows defining context-sensitive transformations. The author uses the
algebraic graph grammar to prove and explain the basic TGG concepts.
However, the formalism can exploit any graph grammar approach as
the base for TGG [51]. In the thesis, we present the following algebraic
approaches:

• double-pushout (DPO) approach [18],

• single-pushout (SPO) approach [36].

and investigate the fragment substitution operation using such techniques
to graph transformations.
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Definition 3.8 (Algebraic approach) Algebraic approach is an approach to
graph transformations which defines how the graph B derives from the graph A
using morphisms and pushouts.

Where the term morphism we specify as follows.

Definition 3.9 (Morphism) Morphism is a construction of the following
structure: A r→ B, where A is a source, B is a target and r is a function that
defines the derivation from A to B.

and the term pushout [1] is

Definition 3.10 (Pushout) The pair ((k, g), D), where D is an object and k, g are
two morphisms k : C→ D, g : B→ C, is a pushout of two morphisms f : A→ C
and h : A→ B given that the diagram in Figure 3.2 (a) commutes.

C

A

D

B

f

h

g

k
C

A

D

B

f

h

g

k

l

(a) (b)

Figure 3.2: Pushout squares

Definition 3.11 (Commutative diagram) A diagram is said to commute if
any two paths between the same nodes compose to give the same morphism [4].

In other words, if any two paths between the same vertices of a diagram
yield the same result, then the diagram is commutative, i.e. commutes.
Figure 3.2 (b) shows that the diagram in the same figure (a) is commutative.
There are five morphisms in the figure (b), i.e. f : A → C, k : C → D, h :
A → B, g : B → D, l : A → B, where f ◦ k results in l and h ◦ g yields l;
thus, the diagram of the corresponding morphisms commutes (◦ denotes a
composition of morphisms).

Formally, we can define the graph derivation in Figure 3.1 on page 20
(b) as d = (G

p,m
=⇒ H) [13]. One may read this as a transformation from

G to H applying the rule p at the match m. In DPO, a derivation
of the graph H consists of two pushouts/gluing diagrams, which are
schematically represented in Figure 3.3 on the next page. Four graphs
define a transformation in DPO:

• L - left-hand side (LHS),

• R - right-hand side (RHS),
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Figure 3.3: The double-pushout approach (DPO)

• K - interface graph (part of the graph which should exist to apply the
rule) [13],

• D - context graph (D = (G \ L) ∪ K) [13].

The first pushout in Figure 3.3 (1) represents a deletion of an occurrence
of the graph L in G. Where the result of the deletion is the graph D.
We represent this procedure as an inverse gluing operation. Meaning,
that one should be able to yield the graph G by gluing L and D on the
graph K having the graphs K, L and D. While we go other way around in
practice, i.e. we yield the graph D having L, G and K. The second pushout
in Figure 3.3 (2) inserts all elements of R in D which do not match any
elements in K yielding the graph H [13, 18]. In other words, we perform
additive operation of the graphs R and D, while graph K defines how we
glue the graph R on the graph D resulting the graph H. Figure 3.4 shows
how the diamond transforms into triangle using the DPO approach. The
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Figure 3.4: The DPO example

graph K contains two vertices 1, 4 defining the gluing points of the further
transformation. The RHS R is glued on the graph D which is the graph
G without the LHS L of the rule. It results in the triangle H. The DPO
approach does not allow dangling edges. In order to preserve this invariant
the approach has two gluing conditions which must hold [13]:

• dangling condition,
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• identification condition.

The dangling condition claims if a rule defines deletion of vertices in G,
then the rule should also specify a removal of all corresponding inwards
and outwards edges. The identification condition requires that every
vertex/edge of G that should be removed by application of a rule, matches
a LHS only once. If these two conditions do not hold, a rule is not applied.

The SPO approach executes a derivation of a graph as a single
pushout. Löe [36] describes the technique as follows: "... The single-
pushout approach to graph transformation interprets a double-pushout
transformation rule of the classical algebraic approach which consists of
two total graph morphisms as a single partial morphism form the left- to
the righ-hand side. ..." [36]. The SPO approach to graph transformations
is different with respect to DPO, but Löe [36] stresses that SPO is a
generalization of the DPO approach. Therefore, a DPO transformation
can be obtained from a SPO by introducing an interface graph K. The

L R

HG

p

p*

m m*(1)

Figure 3.5: The single-pushout approach (SPO)

process of obtaining of the graph H from G schematically is shown in
Figure 3.5. The diagram in Figure 3.5 has only one pushout. In SPO a
transformation does not require two auxiliary graphs K and D which define
transformation condition, context respectively and the transformation
executes as a single transformation step. The SPO does not also impose any
dangling conditions to hold. Therefore, the graph L in Figure 3.6 is a valid

1 4
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2

1 4

3

L R

G H

(1)

Figure 3.6: The SPO example

specification of LHS which matches the object 2 in G and the rule yields
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the correct transformation H. In other words, the SPO approach does not
require a rule to specify all edges which start and end on a deleting vertex.

The basic difference between the DPO and SPO approaches is a way
they handle dangling edges as it is shown in Figure 3.4 on page 23
and Figure 3.6 on the preceding page. The DPO approach does require
to specify in a rule all inwards and outwards edges if a corresponding
vertex has to be removed. While the SPO approach does not need
to specify all deleting edges in a rule. The approach removes all
dangling edges, i.e. in the single-pushout technique deletion has priority
over preservation. On the contrary, preservation has priority over
deletion in DPO [13]. The algebraic approaches have the well established
theoretical bases. The pushout diagrams have formal mathematical
representations and corresponding theorems with their proofs which
ensure valid transformations if one follows the technique.

3.3 Tooling

The first attempts to use the graph rewriting techniques in the software
engineering domain is the Progress [49, 50] approach [26]. Table 3.1 [61]
gives a list of the available tools and their application areas.

Table 3.1: Available graph-based tools

Name Description
Tools that are application domain neutral

GrGen.NET
the graph rewrite generator, a graph transformation tool
emitting C#-code or .NET-assemblies.

AGG the attributed graph grammar system (Java).
GP (Graph
Programs)

a programming language for computing on graphs by
the directed application of graph transformation rules.

GMTE
the Graph Matching and Transformation Engine for
graph matching and transformation. It is an implement-
ation of an extension of Messmer’s algorithm using C++.

Tools that solve software engineering tasks (mainly MDA) with
graph rewriting

GReAT
a model transformation language for model integrated
modeling in the GME environment.

VIATRA
a transformation-based framework for validation and
verification models in UML.

Gremlin a graph-based programming language.

PROGRES
an integrated environment and very high level language
for PROgrammed Graph REwriting Systems.

Fujaba
uses Story driven modelling, a graph rewrite language
based on PROGRES.

Continued on the next page
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Table 3.1 – Continued from the previous page
Name Description

EMorF
graph rewriting systems based on EMF, supporting
in-place model transformation and model to model
transformation.

Henshin
graph rewriting systems based on EMF, supporting
in-place model transformation and model to model
transformation.

Mechanical engineering

GraphSynth
an interpreter and UI environment for creating unrestric-
ted graph grammars as well as testing and searching the
resultant language variant.

booggie
integrates GrGen.NET with a port-based metamodel
definition and an OpenGL graph visualization based on
Tulip.

Artificial Intelligence/Natural Language Processing

OpenCog
provides a basic pattern matcher (on hypergraphs) which
is used to implement various AI algorithms.

RelEx
an English-language parser that employs graph re-
writing to convert a link parse into a dependency parse.

As Table 3.1 on the previous page shows many domains employ the graph
rewriting techniques and the tools use different platforms. We will give a
short overview of Henshin [3] and EMorF [33], since EMF based tools are
of our interest in the thesis.

Figure 3.7: Transformation rules in Henshin

Hanshin is a declarative graph transformation language, which imple-
ments the DPO approach, with wide tool support. The language operates
on EMF-based models and allows both out-place and in-place modifica-
tions. The language offers means for reasoning. Its basic concepts like
rules are enhanced by powerful application conditions and attribute eval-
uation is flexible and implemented with Java and JavaScript [3]. The lan-
guage is also enriched by control structures which allow defining the order
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of rule application in a modular manner [3]. The Henshin tool comprises
an engine, several editors and means for reasoning by model checking [3].
Figure 3.7 on the facing page shows how Henshin defines transformation
rules. The tool uses the unified editor, where one declaratively defines a
transformation. The rules specify removal of the element of the type Node
if id equals to nodeId, where nodeId is a parameter. Note, that a removed
element should have one inward and one outward reference and should
be contained. The elements in red and titled as ’delete’ are elements to re-
move. We also substitute the removed element with another element of the
same type, marked in green and with the caption ’create’. Note, that we
simply specify the replacement operation. The operationes which we have
specified is automatically translated into LHS and RHS, which we can ob-
serve and modify in another editor. In Figure 3.8, we introduce another

Figure 3.8: Henshin Sequential Unit

powerful concept of Henshin, i.e. sequential unit. It allows defining the
rule execution order. In given example, we apply two rules which are ex-
ecuted sequentially. If one of these rules fails, then the whole operation
is rolled back. The Henshin language provides six kinds of units, each of
them has its own properties and features, Arendt et al. [3] discuss them in
details.

EMorF is an open source graph transformation tool based on the EMF
framework. It enables both in-place and out-place model transformations.
The EMorF tool exploits the same approach as Henshin to define rules
graphically in the declarative manner. In addition, it pays special attention
to out-place/model-to-model transformations. Rules for model-to-model
transformations are defined by triple graph grammars [33]. To increase
expressiveness, EMorF incorporates also the OCL language to specify
constraints and application conditions [33].

3.4 Graph transformations in the thesis

We will investigate whether the graph transformation techniques and tools
based on the graph theory solve our problem, which we state later in the
thesis, directly. Thus, we try to specify required operations in the Henshin
graph transformation tool. It appears that the problem is general and not
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solvable straightforward using the graph rewriting approach. We will also
show that a rewriting of rules, which may do the work in certain cases,
contradicts to the philosophy of CVL. Therefore, it is not applicable and
acceptable in the given context. We give also an overview of other graph
based approaches to variability modeling in the concluding sections and
show how they are different with respect to CVL.
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Chapter 4

Problem statement and
proposed solutions

4.1 Substitution fragments in UML

4.1.1 Context

SINTEF and ABB have developed a software product line within the
CESAR project [9]. The product line models and describes a variety of
configurations for the SafetyDrive module. A safety drive is a part of
machinery to control the speed of a motor in conveyor belts, hoisting
machines and other means to move different goods, components, people
in elevators etc. Figure 4.1 shows the composite structure of the safety
drive module. We may see that the safety drive includes three components,

Figure 4.1: The SafetyDrive composite structure

i.e. SafetyModule, Motor, and MotorController. We may find that the
safety module has links to the motor and motor controller. It denotes
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communication paths between all three components. The safety module,
motor, and motor controller are properties of the safety drive class in UML
terminology.

One of the project goals was to incorporate quality assurance mech-
anisms, like testing, into the model. Thus, the given composite structure
describes a test context of the safety drive. The elements of the composite
structure are stereotyped with the UML Testing Profile. One may notice

Figure 4.2: The SafetyDrive test case definition

that the safety module has the ’sUT’ stereotype (system Under Test). It
denotes that a focus of a test case is the safety module. We consider the
safety module to be a black box. Figure 4.2 specifies a possible test scenario
which is consistent with the given composite structure. The test case simply
checks whether the safety module reaches the Operational state when we
turn on the power.

4.1.2 Neighboring placements problem

Overview

We define variability on the base model where both the composite
structure (see Figure 4.1 on the preceding page) and sequence diagram
(see Figure 4.2) reference the same base model. One may want to test a
safety module of another type, or simply another safety module which
supports the same interface and communication protocol with the motor
and motor controller. In order to achieve the goal, we need to perform
several substitutions. Firstly, we need to substitute the SafetyModule
property in the composite structure diagram in Figure 4.1 on the preceding
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sm:SafetyModule

testBasic

sm:SafetyModule

SafetyDrive

SafetyModule

Motor

The composite structure diagram The sequence diagramThe class diagram

Represents

Type

Figure 4.3: The simplified class, composite structure and sequence
diagrams

page with a desired element. Secondly, we have to adjust the sequence
diagram in Figure 4.2 on the preceding page, i.e. the lifeline currently
typed as SafetyModule should reference to the correct element, in order
to keep the model consistent. Finally, we need to replace a corresponding
TypedElement. TypedElement is a generalization of the Property element
in UML, i.e. a Property element in a composite structure may reference
a Class, StateMachine etc. Figure 4.3 shows three sketches of the UML
diagrams for the SafetyDrive example, where we have shaded elements to
substitute. In Figure 4.4, we observe the simplified UML metamodel and

ConnectableElement

-Represents

0..1

1

sm:Lifelinesm:Property

StructuralFeature

TypedElement

-Type 0..1

1

SafetyModule:Class

Class

Property
Lifeline

type represents

<<instance of>> <<instance of>>

<<instance of>>

<<instance of>>

<<instance of>>

M1

M2

Figure 4.4: The instance diagram and simplified UML metamodel

model instances of the diagram elements from Figure 4.3. One should note
that elements in different diagrams may reference each other via a model
even though it may not be visible at first sight. The diagram in Figure 4.4
shows that the objects of the types Lifeline, Property and Class have links
according to the UML metamodel.
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Problem

We have shaded the elements in Figure 4.4 on the preceding page, which
we have to substitute for the required effect. All three elements have
different borders indicating different substitutions. The MoSiS CVL tool
performs these three substitutions (where the substituted elements are
adjacent and have reference between each other) yielding a final product
which does not conform to the expectation. In particular, an execution
breaks the relations between the lifeline, property and class.

An element in the UML diagram is a representation of the correspond-
ing element in the model. Moreover, different diagrams may have repres-
entations of the same model elements. At the same time, diagrams (rep-
resenting the same model elements) may not be tightly coupled between
each over. Thus, changes made in one diagram may not be reflected in
another diagram or may not be visible due to specifics of the diagram. In
other words, in UML, different diagrams are views reflecting a different
nature (behavioral, static etc) of the same model, where elements can cross-
reference each other in the model. During modeling, we focus on a specific
aspect of a system using different diagrams. It helps to keep the definition
of a system clear, concise and feasible. In addition, it is a de facto standard
in modeling. Thus, we can define substitution fragments (tailored to a spe-
cific functionality) in different diagrams (see for example Figure 4.3 on the
previous page). It may appear that the model elements in the defined frag-
ments are coupled with each other through links while the coupling is not
visible on the diagram level (e.g. type, references in Figure 4.4 on the pre-
ceding page). Separate independent substitutions of such tightly coupled
elements do not yield a correct model using the MoSiS CVL tool, i.e. the
operations do not restore the links between the elements. Subsequently, it
appears that graph transformation tools do not solve the problem either.
Therefore, we argue that the problem is more general and of the high rel-
evance and importance. We show this later in the thesis, discuss a reason
of such behavior and propose a solution for the problem.

4.2 Approach

4.2.1 Challenges

Different metamodels

The OMG CVL metamodel has alterations with respect to MoSiS CVL.
For example, the OMG CVL specification enhances means to describe
placement and replacement fragments. Particularly, the mechanism that
references elements of a base model has changed, see Figure 2.5 on page 15.
OMG CVL has extra references for boundaries of the kind FromPlacement.
In Figure 2.5 on page 15 the insideBoundaryElement association represents
the reference pointing to an element inside a substitution fragment. It
facilitates identifying elements of a placement fragment. Figure 2.5 on
page 15 shows also the outsideBoundaryElement association for a boundary
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of the kind ToReplacement. The other associations one may find in the
MoSiS CVL metamodel as well. Thus, models build in MoSiS CVL are not
compatible with models in OMG CVL.

The OMG CVL tool is not available

We are currently developing the OMG CVL tool and various parts of the
tool are on different stages of the development. Thus, we do not have a
consistent framework to build models which are compatible with the OMG
CVL metamodel. It complicates the work which the thesis outlines. On the
one hand, a direct conversion from models built in MoSiS CVL to OMG
CVL is not possible due to the differences in the metamodels. On the other
hand, the MoSiS CVL tool is fully functional and can accomplish tasks
automatically which are tedious and time consuming. For example, we

AkMoSiSkCVL
variability

model

Ankalmost
validkOMGkCVL

variability
model

AkvalidkOMG
CVLkvariability

model

Fullykautomatedkstep
viakthekMoSiS->OMG

CVLkconverter

Manualktweakingkof
ankalmostkvalidkOMG

CVLkmodel

Figure 4.5: Flow to obtain a valid OMG CVL model

can define substitution fragments and build variability models in MoSiS
CVL in general. Thus, it is an advantage to utilize the MoSiS CVL tool
comparing to if one does the same work manually. Even though the
metamodels of MoSiS CVL and OMG CVL are different, we should admit
that the partial conversion is feasible and the technique helps to come up
with almost valid substitution fragments. Further, we may manually adjust
the almost valid variability models to agree to the OMG CVL metamodel.
Figure 4.5 depicts the elaborated process of obtaining a valid OMG CVL
model.

Lack of samples

The MoSiS CVL tool has been actively used within several European
projects; therefore, we have some product line definitions. However, the
models were built to avoid cases where the MoSiS CVL is weak. Thus,
we do not have a lot of practical examples with neighboring substitution
fragments, but we could modify them to come across the problem of
the interest. It complicates the process of validation and verification of
proposed approaches to tackle the problem.
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The large UML metamodel

Even relatively small product lines may look complicated. Model elements
of a single substitution fragment may have intricate relations to other
model elements. It depends on a language and complexity of its
metamodel. We have used UML as a base language for several product
lines including the SafetyDrive case. The UML metamodel is rather large
(the UML metamodel has 255 metaclassses and each of them can have
several associations to other classes); therefore, elements of substitution
fragments defined on a UML-based base model have a lot of references
to the rest model elements. Even though the MoSiS CVL tool takes care
of the most complications, the elaborated process of obtaining a valid
OMG CVL model involves a manual adjustment. Thus, a UML based
example may complicate a process of attaining a valid instance of the OMG
CVL metamodel. One may suggest to use a language with the effortless
metamodel.

4.2.2 Node DSL and problem generalization

We introduce the Node DSL, in order to tackle challenges from Section
4.2.1. In Figure 4.6 one may see the metamodel of the Node language. We

Figure 4.6: Node DSL - metamodel

may note that the metamodel of the language is extremely uncomplicated.
It contains a single element of the kind Node and two references, i.e. the
containment ’contains’ and the association ’links’. Both references start and
end on the element Node, meaning that every Node element may contain
and/or link another Node. On the one hand, the suggested metamodel
allows simulating all possible relations between elements. On the other
hand, it simplifies and facilitates the elaborated process in Figure 4.5 on the
preceding page of obtaining valid OMG CVL models.

Figure 4.7 on the next page shows the binding editor, where one may
observe all outwards/inwards references (represented as the rows of the
table) of the placement fragment for sm:Lifeline. Where we are interested
in a single row in the black rectangle, the row denotes the ’represents’
reference between sm:Lifeline and sm:Property in Figure 4.4 on page 33.
While other rows just represent other links of sm:Lifeline reflecting the
UML metamodel. Since the metamodels of MoSiS CVL and OMG CVL are
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Figure 4.7: The inwards/outwards references of the substitution fragment
in UML

different, these references unnecessary complicate the process of derivation
a valid OMG CVL model. We may remove this complication applying the
Node language to imitate relations between elements. Figure 4.8 shows

sm:Lifeline :Nodesm:Property:NodeSafetyModule:Class:Node

links linkstype ≅≅ represents

Figure 4.8: Simulation in the Node language

an instance of the Node metamodel that simulates the configuration from
Figure 4.4 on page 33. Three nodes in Figure 4.8 represent sm:Lifeline,
sm:Property and SafetyModule:Class. Two ’links’ references simulate the
’represents’ and ’type’ associations between sm:Lifeline, sm:Property and
SafetyModule:Class respectively. In other words, all nodes in Figure 4.8
simulate the neighboring relations between the elements of the placements
from Figure 4.4 on page 33. Figure 4.9 shows the binding editor showing

Figure 4.9: The inwards/outwards references of the simplified model

all inwards/outwards references of the same kind substitution fragment,
i.e. the substitution of sm:Lifeline (we replace sm:Lifeline with sm1:Lifeline),
but we use the simplified model in the Node language (see Figure 4.8).
One may notice that we reduce the amount of all links leading to/from
the substitution fragment. At the same time, we preserve the reference
of the interest (highlighted by the black rectangle). Thus, we reproduce
and generalize the neighboring placement problem in the Node-based
model which has more comprehensible metamodel. It simplifies the
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variability model and allows focusing on the problem area which is a link
between neighboring elements. We put this problem on the front line with
help of the Node language while it is hidden and not obvious in UML-
based models due to complexity of the metamodel. In return, the Node
DSL speeds up creation of simple highly tailored to a specific problem
variability models. In addition, it enables more efficient verification and
validation of the implemented engine since we can create a wide range
of verification samples. Further, we will speak of models in the Node
language if we do not mention opposite.

4.2.3 Graph rewriting to the neighboring placements problem

Applying the DPO approach to substitutions in CVL

CVL has means to define substitution fragments directly in a model. The
MoSiS CVL tool utilizes such means via the simple selection procedure
specifying placement and replacement fragments directly in a base model.
Subsequently, an engineer defines how a replacement fragment is instru-
mented into the base model via the binding process. In Figure 4.10 one
may see two placement fragments. There are two ovals, which schematic-

sm:Lifeline:Nodesm:Property:NodeSafetyModule:Class:Node

Figure 4.10: Two placement fragments

ally outline two placement fragments. The oval with the thin line denotes
the placement fragment for the sm:Lifeline element, i.e. sm:Lifeline should
be replaced with another element. The second oval with the thick line spe-
cifies the placement fragment for sm:Property.

sm1:Lifeline:Nodesm1:Property:NodeSafetyModule1:Class:Node

(a)xmodelxwithxreplacementxfragment

sm:Lifeline:Nodesm:Property:NodeSafetyModule:Class:Node

(b)xbasexmodel

sm1:Lifeline:Nodesm:Property:NodeSafetyModule:Class:Node

(c)xexpectedxsubstitutionxresult

Figure 4.11: Substitution fragments, bindings and the substitution result

Two parallelograms with the thick line are the neighboring elements
for the placement fragment sm:Property while the parallelogram with the
thin line is the neighboring element for the placement sm:Lifeline. The
MoSiS CVL tool calculates neighboring elements automatically. In order to
specify a substitution, a variability engineer has to define how elements of
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a replacement fragment should reference placement neighboring elements
in a base model. In the example from Figure 4.11 on the preceding page (a,
b), one defines that the links from sm1:Lifeline to sm1:Property and sm:Lifeline
to sm:Property should be cut off and the node sm1:Lifeline should reference
the neighboring element sm:Property in the base model. We schematically
show this process in Figure 4.11 on the facing page (a, b). The dashed
arrow with the filled head represents the binding instructing to create a
reference between sm1:Lifeline and sm:Property in the resolved product in
Figure 4.11 on the preceding page (c). A variability engineer uses the
binding editor in the MoSiS CVL tool to specify such references. The
black rectangle in Figure 4.9 on page 37 highlights the row in the binding
editor that specifies the binding between sm1:Lifeline and sm:Property. The
substitution operation yields the product in Figure 4.11 on the preceding
page (c) removing the placement fragment sm:Lifeline. The same procedure
we should apply to the second placement fragment (sm:Property), i.e. we
should bind the neighboring element sm:Lifeline in the base model to
sm1:Property and sm1:Property should be bound to SafetyModule:Class.

- SafetyModule:Class
- sm:Property
- sm:Lifeline
- sm1:Lifeline
- Node

Legend
SafetyModule

smP
sm
sm1
N

sm:NsmP:NSafetyModule:N

sm:NsmP:N smP:N

smP:NSafetyModule:N sm1:NsmP:NSafetyModule:N

sm1:NsmP:N

L RK

DG H

Figure 4.12: The CVL substitution in terms of DPO

To sum up neighboring elements of a placement define precisely a part
of a model to be modified. In the example, sm:Property is a neighboring
element for the placement sm:Lifeline. We should keep this element in the
model and a new element (sm1:Lifeline) should be attached to the element,
while the current one (sm:Lifeline) should be removed. Thus, one may see
neighboring elements as gluing points (in terms of the graph transformation
theory) which constitute the graph K in the DPO approach, see Figure 4.12.
Placement neighboring elements of a base model together with elements of
a placement constitute LHS (the graph L in Figure 4.12). While, placement
neighboring elements with elements of a corresponding replacement form
RHS, for example, the graph R in Figure 4.12. A derived product represents
a target graph in DPO, e.g. the graph H in the figure. A source graph
is a base model right before a substitution (the graph G in Figure 4.12).
Therefore, one may express a substitution operation in CVL in terms of the
graph rewriting theory.
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Simulation approach

We may specify the substitutions in Figure 4.10 on page 38 using graph
transformation techniques using the EMF based graph transformation tool
Henshin. Figure 4.13 shows two rules and a sequence unit that defines the

{Node sm:Property}

[Node].contains

Figure 4.13: Two substitutions in Henshin

rule execution order. The first rule specifies the substitution of sm:Property
while the second one defines the substitution of sm:Lifeline. One may
notice that we use the same style as CVL to define the neighborings
or gluing points in terms of the graph transformation theory. The rule
substituteLifeline defines the substitution of the node sm:Lifeline, where we
specify that the link from sm:Lifeline to sm:Property should be removed
and the replacement sm1:Lifeline should reference the neighboring element
sm:Property. In addition, one may notice the ’contains’ relation which we
remove for the placement element and create for the replacement element.
It exactly matches the table in the binding editor in Figure 4.9 on page 37
where the first row instructs to create the ’contains’ relation and the second
row specifies that the replacement element sm1:Lifeline should reference
sm:Property. Thus, two objects in the table with names {Node sm:Propery}
and [Node].contains stand for the corresponding gluing points highlighted
with the black ovals in Figure 4.13. An execution of the rules does not result
in two substitutions in Figure 4.13. The rule substituteProperty disables the
second substitution. The specified rules are not parallel independent; thus,
we do not get the desired result, where both SafetyModule:Property and
SafetyModule:Lifeline are replaced. Roughly speaking two transformations
are independent if left-hand sides of both rules do not intersect [44]. In
other words, if one transformation removes elements, which are used by
another transformation, then the execution of both rules is not possible.
Thus, the graph approach does not solve the issue of not establishing links
between elements of the neighboring placements.

Wild card approach

There is another approach to define the transformations which we show in
Figure 4.10 on page 38. Figure 4.14 on the facing page recaps the rules
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in Figure 4.13 on the preceding page with small modifications. In this

Figure 4.14: Two substitutions in Henshin - the wildcard approach

version of the rules in Henshin, we have removed the attribute ’name’
for the gluing points. It indicates that the elements match any element
of the type Node. Potentially, these elements can match any element in a
model written in the Node language. We call such elements as wildcards. A
wildcard element match any element. Thus, we do not impose any specific
criteria on the gluing points except being of the type Node. In contrast to
the simulation approach, the subsequent execution of the rules results in
two transformations reaching the desired result, see Figure 4.15.

sm1:Lifeline:Nodesm1:Property:NodeSafetyModule:Class:Node

Figure 4.15: Expected result of two substitutions

However, the rules in this formulation do not simulate substitutions of
the placement fragments in CVL. When we specify a substitution fragment
in CVL we are exact and precise. Meaning, that we ask two kind of
questions.

1. What do we want to substitute?

2. Where and how do we want to perform substitution?

An answer to the fist question is the selection procedure (in the MoSiS CVL
tool) which defines definitive and precisely objects to substitute. While the
binding process answers the second question, i.e. we specify where and
how elements of a replacement should be injected in a model. It ensures
that we perform the substitution operation for a given fragment only once.
Each neighboring element matches exactly one element in a model, strictly
speaking, the neighboring element is an element of the model itself. While
the wild card approach specifies a meta-element which potentially may
match many elements. It is somewhat different comparing to how CVL
specification defines means to reference element of a model. Moreover, the
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wild card approach does not guaranty that a substitution performs only
once. We can say even opposite that a transformation triggers every time
the defined pattern matches. In addition, this approach does not allow
imposing any restrictions on elements which could be a way around to
strengthen a pattern and reduce matches. Thus, we do not consider the
wild card approach as a solution for the neighboring placements problem.

4.3 Overlapping placements

4.3.1 Definitions and concepts

As we have already shown in the motivation example from Figure 1.1 on
page 2 that we may define placement fragments such as they overlap. On
the one hand, there are some cases, where a resolution result seems to be
well understood despite overlaps between fragments. In other words, we
do not see any pragmatic difficulties rather technical. On the other hand,
there are situations, where a result is difficult to realize, and we observe
some logical, structural conflicts. Thus, let us first classify possible relations
between different placements. Therefore, we would like to introduce an
alternative definition of a placement (replacement) fragment, which should
help to exemplify all cases. We use models in the Node language in further
discussions where a circle represents an instance of the Node class.

A placement fragment forms a conceptual ’hole’ in a base model
according to Definition 2.12 on page 14. Rephrasing, we may consider
a placement as a set of chosen elements through an effortless selection
procedure in a base model. The fragment substitution operation removes
all elements of the placement during a resolution process. A replacement
fragment later fills out the conceptual ’hole’ caused by the deletion of the
placement fragment. Any placement fragment is defined by means of
boundary elements in CVL. Boundary elements reference selected elements
together with elements which we do not explicitly select (see Figure 2.4
on page 14). Boundary references of the kind outsideBoundaryElement (see
Figure 2.5 on page 15) point to elements outside a placement fragment.
Boundary references outline also a set of affected elements (neighboring
elements or gluing points), which we do not remove during a resolution
process. In addition, we do not explicitly select these elements. Hence, we
can conclude that a placement is a set of objects which is wider than the set
of the explicitly selected objects.

Definition 4.1 (Placement Element internal (PEint)) Placement Element in-
ternal (PEint) is the set of all elements referred by insideBoundaryElement refer-
ences (IBEs) and all elements in the transitive closure of all references from IBEs,
but cut off references at elements found through outsideBoundaryElement refer-
ences.

Definition 4.2 (Placement Element external (PEext)) Placement Element ex-
ternal (PEext) is a set of all elements referred by outsideBoundaryElement refer-
ences.
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Figure 4.16: Inner Placement (IP) and Outer Placement (OP)

In Figure 4.16 PEint = {4, 5, 6} and PEext = {3}. Thus, we define two
sets of elements (PEint, PEext), which are affected by a selection. The
dashed arrows pointing to 3 are outsideBoundaryElement references, while
the dashed arrows pointing to 4 and 5 are insideBoundaryElement references.

Definition 4.3 (Inner Placement (IP)) Inner Placement (IP) is a set of all
elements in PEint, i.e. IP ≡ PEint.

Definition 4.4 (Outer Placement (OP)) Outer Placement (OP) is a set of all
elements in PEext and Inner Placement (IP), i.e. PEext

⋃
PEint.

The oval in Figure 4.16 with the solid border outlines IP while the dashed
bold line outlines OP.

4.3.2 Kinds of overlaps

A variability engineer defines a set of elements to substitute via an effortless
selection in a base model. This selection constitutes PEint (≡IP) and
a placement fragment in the CVL terminology. In other words, each
placement represents a set of elements. Hence, the talk about relations
between two placements can be discussed in terms of sets relations. There
are two possible cases with respect to two different sets, i.e. two sets
intersect or do not intersect. Formally, we may write the following.

1. OP1
⋂

OP2 = ∅;

2. OP1
⋂

OP2 6= ∅.

If OPs of two placements do not intersect then the placements are
independent.

Definition 4.5 (Independent placements) Independent placements are place-
ments, which do not share any common elements, i.e. their outer placements do not
overlap.
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If two placements are independent then we may perform their resolutions
in any order yielding the same result. In other words, the placements are
confluent. Since independent placements do not bring any problems to the
resolution process; therefore, the case where OPs do not intersect is not of
our interest. Further, we speak of the case where two OPs intersect.

Let us have two placement where we define their OPs as follows:

• OP1 = PEint1
⋃

PEext1;

• OP2 = PEint2
⋃

PEext2.

Given that OP1
⋂

OP2 6= ∅, there are four possible intersection pairs
between PEint1, PEext1 of OP1 and PEint2, PEext2 of OP2 according to
a straightforward 2x2 table. Table 4.1 shows all possible combinations,

Table 4.1: The simple 2x2 table
PEint2 PEext2

PEint1 1 2
PEext1 2 3

i.e. (PEint1; PEint2), (PEint1; PEext2), (PEext1; PEint2) and (PEext1;
PEext2). Where two pairs (PEint1; PEext2) and (PEext1; PEint2) are
symmetrical and of the same kind; therefore, we do not distinguish them.
Other two pairs (PEint1; PEint2) and (PEext1; PEext2) are unique. We
discard also the case (PEext1; PEext2), since CVL does not experience any
problems tackling such configuration. We call such placements as parallel
independent placements.

Definition 4.6 (Parallel independent placements) Parallel independent place-
ments are placements which just share their PEext.

Parallel independent placements are confluent. Therefore, we just need to
discuss the following two basic intersection kinds:

• PEint1/2
⋂

PEint2/1 6= ∅;

• PEint1/2
⋂

PEext2/1 6= ∅;

A non-empty intersection of these pairs indicates an overlap between OPs,
where in some cases we may strengthen the statement by claiming overlap
between corresponding IPs. We should also point out that an intersection
between two different PEint implies an intersection of the corresponding
PEint and PEext. While a pure intersection between PEint and PEext does
not guarantee an intersection between the corresponding PEint-s. Thus,
two basic intersection kinds emerge and look as follows:

• PEint1/2
⋂

PEext2/1 6= ∅ ∧ PEint1/2
⋂

PEint2/1 = ∅⇒ IP1/2
⋂

OP2/1
6= ∅ ∧ IP1/2

⋂
IP2/1 = ∅;

• PEint1/2
⋂

PEext2/1 6= ∅ ∧ PEint1/2
⋂

PEint2/1 6= ∅⇒ IP1/2
⋂

IP2/1
6= ∅ ∧ IP1/2

⋂
OP2/1 6= ∅;
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These two cases lead to an incorrectly resolved model (MoSiS CVL [22]).
There is also a special case of PEint1/2

⋂
PEint2/1 6= ∅, i.e.

• PEint1/2 ⊆ PEint2/1 ⇒ IP1/2 ⊆ IP2/1.

Figure 4.17 depicts all three cases plus a cases which is hidden in an
intersection between PEint-s and can not be expressed through a simple
set relation.
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Figure 4.17: Overlapping kinds

Definition 4.7 (Adjacent relation) Adjacent relation is a relation when two
objects of different IPs have a direct reference between each over.

Rephrasing, we need to consider two factors: two objects should belong to
different IPs and objects should be directly coupled through a reference. In
other words, a link relation between two elements of different IPs creates
an adjacent relation between placements. Figure 4.17 presents two such
cases:

• objects 4 and 5 of p2 have the adjacent relation with object 3 in p1 of
the figure in the left top corner (a), i.e. p1, and p2 are fragments of the
kind adjacent placements;

• objects 1 and 4 have the reference, which defines the adjacent relation
in the left bottom corner (c) of the figure.

Definition 4.8 (Crossing relation) Crossing relation is a relation, when
different IPs share objects.

Figure 4.17 shows three cases, where two placements conform to the
definition of crossing placements. The case in the left bottom corner (c)
in Figure 4.17 satisfies both definitions 4.7, 4.8.
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Definition 4.9 (Contained relation) Contained relation is a crossing rela-
tion, when all elements of one placement belong to another placement.

Two placements in Figure 4.17 on the preceding page (d) have the
contained relation, since the objects of the placement p2, i.e. 2 and 3 are
contained in p1. To sum up, there are three cases where two kinds, i.e.
adjacent and crossing placements; crossing placements, are hidden in an
intersection of PEint. Therefore, we have found four overlapping kinds
overall.

1. PEint1/2
⋂

PEext2/1 6= ∅ ∧ PEint1/2
⋂

PEint2/1 = ∅⇒ IP1/2
⋂

OP2/1
6= ∅ - adjacent placements;

2. PEint1/2
⋂

PEext2/1 6= ∅ ∧ PEint1/2
⋂

PEint2/1 6= ∅⇒
IP1/2

⋂
IP2/1 6= ∅ - adjacent and crossing placements or crossing

placements;

3. PEint1/2 ⊆ PEint2/1 ⇒ IP1/2 ⊆ IP2/1 - contained placements.

We intend to discuss these cases further in the thesis and tackle during a
resolution process.

4.4 Adjacent placements

4.4.1 Overview

Figure 4.18 shows the placements (a) with the adjacent relation together
with the possible replacements (b) and the expected result (c). We
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Figure 4.18: Adjacent placements and expected resolution

characterize a relation between placements of the kind adjacent by an
overlap in PEext and PEint sets, where PEext ⊆ OP1/2 while PEint ⊆ IP2/1.
Figure 4.18 also shows all boundary elements with its references. We define
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how the replacement fragments (b) substitute the placement fragments (a)
via the binding process of the boundaries in Figure 4.18 on the preceding
page. There are seven boundary elements overall, but for simplicity we
just bind pa of the kind FromPlacement to ra of the kind FromReplacement
and pb (toPlacement) to rb (toReplacement). The rest boundary elements
are bound to NULL. It means the in a final product we do not want
the presence of some references. In the example, a resolution result is
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Figure 4.19: Actual result of the resolution

well understood, i.e. it conforms with our expectations and common
sense. The resolution of the placements and corresponding replacements
in Figure 4.18 on the facing page should result in the model that is shown
in the same figure on the most right (c). However, an actual result of
the MoSiS CVL tool [22] is different comparing to the expected result in
Figure 4.18 on the preceding page (c), i.e. the element r12 of the resolved
product misses the link down to r23. The problem occurs because the
base model changes during the substitution of p1 onto r1. If we do not
modify the variability model accordingly, then the boundary elements of
p2 may still point to the elements in p1. However, the elements of p1 do
not exist in the base model any more. We demonstrate the described case
in Figure 4.19. Figure 4.18 on the preceding page shows that boundary
pb of the kind ToPlacement has the outsideBoundaryElement reference (the
arrow in red with the filled large head) which points to the object 3.
In addition, the boundary pb element defines p2; therefore, it does not
take part in the resolution of p1. The resolution of p1 comprises 1) the
deletion of all elements in p1 together with the object 3 and 2) copying
of the elements of r1 onto the placement fragment. Figure 4.19 shows
the result of the p1 resolution. Note, that the boundary element pb has
the outside reference to the object 3, which does not exist anymore in the
model. The given configuration will lead to an incorrect resolution of the
second placement p2. During a resolution of p2, the MoSiS CVL engine uses
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Figure 4.20: Variability model modifications

the pb.outsideBoundaryElement reference to reach the element (object 3) and
change its reference to point to r23 using rb.insideBoundaryElement. While
the placement p2 is successfully removed, MoSiS CVL attempts to establish
reference between the elements 3 and r23. Since the object 3 does not exist
anymore, the reference is not created. But MoSiS CVL should try to create
reference between r12 and r23 instead of 3 and r23. Hence, we get a model
in Figure 4.18 on page 46 (c), but without the reference from r12 down to
r23.

4.4.2 Solution

A solution for the problem would be a modification of the variab-
ility model during an execution of MoSiS CVL. In the example, if
pb.outsideBoundaryElement was pointing to the object r12 then the resolution
would end up with the proper result. Figure 4.20 shows required modific-
ations. We can have this change by adding an extra step to the variability
resolution process. An algorithm should check whether for a given place-
ment and any other placement Criterion 4.1 holds. The criterion recaps the

Criterion 4.1 Adjacent placements
OP1/2

⋂
IP2/1 6= ∅ ∧ IP1/2

⋂
IP2/1 = ∅.

implication of PEint1/2
⋂

PEext2/1 6= ∅ ∧ PEint1/2
⋂

PEint2/1 = ∅ from
Section 4.3.2 on page 43, but we strengthen the criterion by adding an extra
condition, i.e. IP1/2

⋂
IP2/1 = ∅. An overlap in IPs indicates a crossing

relation between placements; thus, we rule it out. If Criterion 4.1 holds
for any two placements then we can argue that the placements have the
adjacent relation. Therefore, we need to find all boundaries which com-
prise the adjacent relation between the placements. We may do this by
testing the outsideBoundaryElement references of the boundaries of the adja-
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cent placements. Thus, we should test Criterion 4.2 against each binding of
the adjacent placement. Given that two placements are adjacent (two place-

Criterion 4.2 Boundary elements: adjacent placements
Pl0,Pl1 - adjacent placements;
Boundaries - boundary elements of Pl0 and Pl0;
B - boundary element;
B.oBE - outsideBoundaryElement reference of a boundary
element;
getPEint(Pl0/Pl1) - function that returns PEint0/PEint1

Pl0, Pl1, ∀ B ∈ Boundaries | B.oBE ∈ getPEint(Pl0/Pl1)

ments conform to Criterion 4.1 on the preceding page) and Criterion 4.2 for
a boundary element holds, i.e. the outsideBoundaryElement reference of the
boundary element (where the boundary element belongs to the first ad-
jacent placement) points to an element of the second adjacent placement,
then we should modify the outsideBoundaryElement reference of the corres-
ponding boundary element. A boundary element, which conforms to Cri-
terion 4.2, is an adjacent boundary, e.g. pa and pb are adjacent boundaries
in Figure 4.18 on page 46 (a). We may say also that the boundary element
pa belongs to the placement p1 and cuts off the adjacent relation between
elements 3 and 5.

Definition 4.10 (Adjacent boundary) Adjacent boundary is a boundary ele-
ment which cuts off an adjacent relation between placement/replacement frag-
ments.

We say that the adjacent boundaries pa and pa constitute the adjacent pair.

Definition 4.11 (Adjacent pair) Adjacent pair is a pair of adjacent boundaries
which cut off the same adjacent relation.

We should modify adjacent boundaries every time an adjacent placement
is substituted. Thus, we keep a variability model consistent all the way
through the resolution process. In the example from Figure 4.18 on page 46,
p1 represents Pl0 while p2 represents Pl1. The set Boundaries contains all
boundary elements from Pl0 and Pl1, i.e. pa, pb and two others without
names though we do not consider them (bound to NULL). IP0 is a set of 1,
2, 3 and OP0 is 1, 2, 3, 4, 5, while IP1 equals to 4, 5, and OP1 contains 3, 4, 5.
OP0

⋂
IP1 = 4, 5 and OP0

⋂
OP1 = ∅; therefore, Criterion 4.1 on the facing

page holds and the placements p1 and p2 are adjacent. Criterion 4.2 asserts
true for both pa and pb because pa.outsideBoundaryElement points to 5, which
belongs to p2, and pb.outsideBoundaryElement references 3 of p1. Once we re-
solve the placement p1 we should modify pb.outsideBoundaryElement such a
way as pb.outsideBoundaryElement points to r12. In other words, given that
the adjacent pair includes the boundaries pa and pb the following should
always hold pb.outsideBoundaryElement == pa.insideBoundaryElement, where
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pa.insideBoundaryElement references r12 after the substitution in our ex-
ample.

4.5 Kinds of crossing placements

4.5.1 Crossing placements

Overview

An overlap of the kind crossing placements occurs, when same elements
constitute two or more different placements. In other words, when PEint
of one OP intersects PEint of another OP. Figure 4.21 shows a possible
case. In the given example, two views (b, c) (each view has a placement)
represent the same model (a). Thus, the model in Figure 4.21 illuminates
an overlap of the kind crossing placements, i.e. the object 3 in views 1 (a)
and 2 (b) is a representation of the object 3 in the model (a). Hence, we
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Figure 4.21: The crossing fragments

can observe that these two placements defined in the views overlap in the
model. We should mention that it is also can happen to replacements, i.e
their definitions can lead to an overlap of the crossing kind. Figure 4.21
shows the crossing replacements underneath the placements. An attempt
to resolve these two placements one by one, will lead to broken references,
an incorrect resolution process and a broken final model. Moreover, we
can argue that the result depends on an order in which the placements are
resolved. We would like briefly to describe possible challenges having an
overlap of the kind crossing placements:

• there is a pragmatic need to define placements in a way when it
causes an overlap (see our motivation example in Figure 1.1 on
page 2);
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• an overlap in placements can indicate that a user probably is trying
to accomplish something inconsistent or illegal;

• the property of commutativity does not always hold, meaning that if
we change the resolution order, the result is different;

• two placements can simultaneously have two kinds of overlaps, i.e.
adjacent placements and crossing placements.

We argue that crossing placements (replacements) may be considered
as a single placement (replacement). Thus, we introduce an unionization
procedure as a solution for such kind of the relations between two
placements. Since the overlap of the kind crossing can indicate both
a pragmatic need and erroneous in a variability definition, we should
be able to distinguish such cases. We believe that required information
for the decision is already in a variability model. For example, in
Figure 4.21 on the facing page the overlaps between placements and
corresponding replacements seem to have the same look; therefore, the
placement and corresponding replacements can be merged together. By
testing a possibility to unionize crossing fragments, we 1) spot erroneous
variability definitions and tackle cases where the unionization operation
is possible, 2) reduce the overall amount of substitutions which way
facilitate the derivation process and 3) widen the semantics of the
placement/replacement definition which may enhance the variability
specification process.

Solution

Figure 4.22 (a) shows a case, where we have the pure crossing relation
between two placements. An overlap in IPs characterizes a case of the kind
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crossing placements, i.e.
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• IP1/2
⋂

IP2/1 6= ∅.

We have mentioned that two different placements with the crossing
relation between each other should be resolved as a single operation,
meaning that we should attempt to unionize the given placements. In CVL
boundary elements fully define placement and replacement fragments;
therefore, we can manipulate with boundary elements in order to adjust
fragments. Thus, the unionization of crossing fragments implies a deletion
of some boundary elements which appear to be internal with respect to
the unionized fragment. In other words, some boundary elements become
meaningless because their outsideBoundaryElement references point to the
elements inside the unionized placement. It contradicts to the definition
of the outsideBoundaryElement, i.e. "The outsideBoundaryElement refers
to the model elements on the outside of the placement fragment [12].".
Criterion 4.3 should detect bindings to delete. In the example in Figure 4.22

Criterion 4.3 Boundary elements: crossing placements (initial)
Pl0,Pl1 - overlapping placements;
Pl1/0.Boundaries - boundary elements of Pl1/0;
B - boundary element;
B.oBE - outsideBoundaryElement reference of a boundary
element;
getPEint(Pl0/Pl1) - function that returns PEint0/PEint1

Pl0, Pl1, ∀ B ∈ Pl1/0.Boundaries | getPEint(Pl0)
⋂

getPEint(Pl1) 6= ∅ ∧
B.oBE ∈ getPEint(Pl0/1)

on the previous page (a) we bind pa to ra, pb to rb, pc to rc and pd to
rd. Using Criterion 4.3, we can identify that boundary elements pb and
pc in Figure 4.22 on the previous page (a) ought to be removed and rb
and rc accordingly. Thus, we have defined a new placement with just
two boundary elements, i.e. pa and pd which are bound to ra and rd
of the recently formed replacement (see the placement/replacement in
Figure 4.22 on the preceding page (b)).

Let us consider another two placements and replacements in Figure 4.22
on the previous page (c, d). We bind all boundary elements as in the
previous example, i.e. pa to ra, pb to rb, pc to rc and pd to rd. Criterion 4.3
asserts a removal of pb and rb, pc and rc which leaves the variability
model in an inconsistent state. The replacements have dangling boundary
elements (ra and rd) which do not define valid replacements. It happens
because the replacements, i.e. corresponding boundary elements of the
replacements (rc, rb), are not in the same relations as the placements are,
meaning they do not overlap. The given configuration should indicate an
error in a variability model, but should not be mixed up with the case in
Figure 4.22 on the previous page (a). Thus, we need to develop a criterion to
spot this situation, which can look as Criterion 4.4 on the facing page. The
criterion highlights all bindings and corresponding boundary elements,
which should be removed, but negative resolution of the criterion, when
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Criterion 4.4 Boundary elements: crossing placements (advanced)
Pl0,Pl1 - overlapping placements;
Rl0,Rl1 - overlapping replacements;
Pl1/0.Boundaries - boundary elements of Pl1/0;
Bpl - boundary element of a placement;
Brl - boundary element of a replacement;
Bpl/rl.oBE - outsideBoundaryElement reference of a boundary
element;
Bpl/rl.iBE - insideBoundaryElement reference of a boundary
element;
getPEint(Pl0/Pl1) - function that returns PEint0/PEint1

Pl0/1, Pl1/0, Rl0/1, Rl1/0, ∀ (Bpl ,Brl) ∈ (Pl1/0.Boundaries,Rl1/0.Boundaries)
| Bpl .oBE ∈ getPEint(Pl0/1) ⇒ Brl .iBE ∈ (getPEint(Rl0/1)

⋂
getPEint(Rl1/0)) ∧ Brl .oBE ∈ getPEint(Rl0/1)

the left side is true, indicates an error in a variability definition.
Criterion 4.4 asserts an error since the implication equals to false for (c)

and (d) in Figure 4.22 on page 51. The overlap of Pl0 (p1) and Pl1 (p2) is 2,3,
both outsideBoundaryElement references of pb and pc point to elements in the
corresponding opposite placement, i.e. 5 and 1 respectively in Figure 4.22
on page 51(c). Thus, the left hand side of the implication is true while the
right hand side of the implication is false because the replacements do not
overlap in Figure 4.22 on page 51(d). According to Criterion 4.4 we should
remove pc and rc, pb and rb in Figure 4.22 on page 51(a) yielding (b).

4.5.2 Crossing and adjacent placements

Overview

Figure 4.23 on the next page shows an example which has the overlap of
both kinds, i.e. crossing and adjacent placements. The boundary elements
pc and pb define the overlap of the kind crossing placements while pe and pf
constitute the adjacent case. The recently defined Criterion 4.4 for resolving
crossing fragments assert an error for boundary elements pe (bound to
re) and pf (bound to rf ). It happens because the insideBoundaryElement
references of re and rf do not point to any elements inside the overlap (r2,
r31, r3). It deems the model in Figure 4.23 on the next page erroneous.
We know also from Section 4.4 on page 46, that an overlap of the kind
adjacent placements can be resolved, i.e a removal of pe and pf is not
required. However, we can not use the approach to resolve the adjacent
relation in the crossing placements case, because Criterion 4.1 on page 48
for adjacent placements does not hold due to the overlap of the placements.
Thus, we can not apply either of the proposed criteria for the composition
of the overlapping kinds. At the same time, we argue that the unionization
should be still feasible in this cases.
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Figure 4.23: The crossing and adjacent placements, unionization and
resolution

Solution

We need to develop a criterion which do not raise an error or instruct
to remove pe, pf. There is a fundamental difference between pc and pf,
which we can exploit. The reference insideBoundaryElement of pc points
to element 2 which belongs to the intersection of p1 and p2. While the
insideBoundaryElement of pf references element 5 which is just internal w.r.t.
p2. Thus, the criterion for the crossing and adjacent case should look
as Criterion 4.5 on the facing page. The criterion is a modified version
of the criterion from Section 4.5.1 on page 50, but we check that the
insideBoundaryElement reference points to an element from the intersection
of fragments. An algorithm should remove all bindings, which comply
with the criterion. This should result in a brand new placement and
replacement as in Figure 4.23 (b), which should contain elements of the
initial fragments. The reference in Figure 4.23 (b) (which creates the
adjacent relation between p1 and p2), is just internal w.r.t. the recently
formed placement. Hence, the adjacent relation is removed and the current
model should not result in any inconsistency during a resolution, which we
describe in Section 4.4 on page 46. The model on the most right (c) is the
fully resolved model, see Figure 4.23. We should also note that an overlap
of both kinds (crossing and adjacent) is a generalization of the pure crossing
case; thus, Criterion 4.5 on the facing page is applicable for an overlap of
the kind crossing placements.
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Criterion 4.5 Boundary elements: adjacent and crossing placements
Pl0,Pl1 - overlapping placements;
Rl0,Rl1 - overlapping replacements;
Pl1/0.Boundaries - boundary elements of Pl1/0;
Bpl - boundary element of a placement;
Brl - boundary element of a replacement;
Bpl/rl.oBE - outsideBoundaryElement reference of a boundary
element;
Bpl/rl.iBE - insideBoundaryElement reference of a boundary
element;
getPEint(Pl0/Pl1) - function that returns PEint0/PEint1

Pl0/1, Pl1/0, Rl0/1, Rl1/0, ∀ (Bpl ,Brl) ∈ (Pl1/0.Boundaries,Rl1/0.Boundaries)
| Bpl .oBE ∈ getPEint(Pl0/1) ∧ Bpl .iBE ∈ (getPEint(Pl0/1)

⋂
getPEint(Pl1/0))

⇒ Brl .iBE ∈ (getPEint(Rl0/1)
⋂

getPEint(Rl1/0)) ∧ Brl .oBE ∈
getPEint(Rl0/1)

4.5.3 Contained placements

Overview

Figure 4.24 on the next page (a) shows the possible replacement fragments
with their boundary elements and references together with the placements.
Two placements in Figure 4.24 on the following page (a) are in the
contained relation. In order to spot two contained placements, we need
to check that all elements of one placement are elements of another one, i.e.
Criterion 4.6. We expect to get a model in Figure 4.24 on the following page

Criterion 4.6 Criterion - Containd placements
IP1/2 ⊆ IP2/1

(b) after a resolution of both placement fragments. In the given example,
we bind p2a to r2a, p2b to r2b and p1a to r1a correspondingly. Other
boundary elements are bound to NULL for the sake of simplicity. We are
trying to resolve p2 and then p1. Figure 4.24 on the next page (c) highlights
a broken reference once the p2 placement fragment is resolved. Even
though we have the broken reference, where the insideBoundaryElement of
p1a points to element 3 (removed as a part of the p2 resolution), it does not
break the resolution of p1. The reference insideBoundaryElement of p1a does
not take part in the resolution of p1. When we perform the resolution of p1,
the outsideBoundaryElement reference of p1a is used to reach the element 5
and change its reference to r5. Thus, the binding process succeeds, but at
the same time, the object r2 (constitutes p2 after the substitution) is not
reachable through the insideBoundaryElement reference of p1a. It points
to the element 3 which does not exist in the model anymore. However,
in the given example there are other references which we may exploit to
remove all elements of the placement p1, but by all means, we should adjust
the reference to point to the correct element. Thus, we can use a similar
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Figure 4.24: Contained placements

algorithm from Section 4.4 on page 46. We show in Figure 4.24 (b) the final
model. If we perform the resolution other way around (p1 and then p2),
we end up with the same final model. However, the resolution of p2 is not
executed since p2 is removed together with the elements of p1.

Solution

We can conclude the following for fragments with the contained relation:

• if a resolution process begins with a containing placement then a
contained one is meaningless;

• if a resolution process begins with a contained placement then we
may have broken insideBoundaryElement references of a containing
placement;

• the order of resolution process does not affect a final model.

Even though the MoSiS CVL tool implementation can tackle the contained
placement case, we believe that it is a erroneous situation due to the
ambiguity and pragmatical useless of the set up. Moreover, if we test
Criterion 4.5 on the preceding page against the boundary elements of
the contained placements, it asserts an error for the cases, even than
replacements are in the crossing relation too.

4.6 Summary: overlapping placements

Table 4.2 on the next page summarizes all our findings in the previous
sections.
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Table 4.2: The overlapping kinds - overview

Overlapping kind Description Suggested solution

Adjacent
2

4

1

5

3

p2
p1

pa

pb

Two placements
have the adjacent
relation if the
placement do not
share any com-
mon elements. i.e.
OP1/2

⋂
IP2/1 6= ∅

∧ IP1/2
⋂

IP2/1 =
∅

We should adjust boundar-
ies which conform to Cri-
terion 4.2 on page 49 - the
criterion finds all boundar-
ies where the outsideBound-
aryElement reference points to
any element of the another
placement.

Crossing and
adjacent

2

1

5

3

p2
6

0
pap1

pc

pb

pd

pe

pf

r2

r1

r5

r3

r6

r0

rar1

rc

rb

rd

r31

r10

r11
rf

re

r2

The overlap of this
kind is a generaliz-
ation of the cross-
ing relation, an in-
tersection of IPs
implies the over-
lap of this kind.
IP1/2

⋂
IP2/1 6= ∅

We should try to unionize the
placements. Replacements
should have the crossing re-
lation too to unionize place-
ments, otherwise it is a fail-
ure in a variability model.
Boundaries which conform
to Criterion 4.5 on page 55
should be removed. If the cri-
terion resolves to false when
the left-hand side is true then
it indicates a failure in the
variability model.

Crossing

2

1

5

3

p2

6

0

pa

p1
pc

pb

pd

r2

r1

r5

r3

r2

r6

r0

ra

r1
rc

rb

rd

r31

The crossing rela-
tion is a special
case of the cross-
ing and adjacent
relation, thus an
intersection of IPs
indicates the over-
lap of this kind.

The crossing relation
between two placements
should be resolved through
the unionization procedure.
We use the same criterion
and approach to tackle such
placements as for the cross-
ing and adjacent relation.

Contained
2

4

1

5

3

p2
p2b

p1a

p2a

p1

The overlap of
the kind happens
when one place-
ment is contained
by another.

We consider this situation
as a failure in a variability
model.

From Table 4.2 one may notice that we apply the unionization
procedure for crossing fragments while we adjust a broken reference for
adjacent placements. We may notice also that in case of the crossing
and adjacent relation, the unionization process yields a new placement;
therefore, it removes the adjacent relation between two initial placements.
One may argue that it is a solution for a pure adjacent relation between
two placements. However, the unionization procedure requires that the
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corresponding replacements should have the same relation as the given
placements. If the requirement does not hold we assert a failure in a
variability model. Hence, the unionization limits a set of potentially valid
variability definitions. Therefore, it is not an efficient way to unionize
purely adjacent placements. In addition, we have shown that adjacent
fragments can be handled by adjusting broken references. We do not have
to take into account a relation between replacements.
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Chapter 5

Implementation: CVL fragment
substitution engine

5.1 Design goals and requirements

We set the following functional, non-functional and implementation
requirements on the substitution fragment engine outlined as follows:

1. the substitution engine should take as a starting point the OMG CVL
metamodel;

2. the substitution engine should utilize exception/logging capabilities
to give a feedback on operations;

3. the substitution engine should detect fragments which are in the
adjacent relation;

4. the substitution engine should be able to resolve the adjacent relation
between fragments;

5. the substitution engine should be testable;

6. the substitution engine should be built on Eclipse Modeling Frame-
work;

7. the substitution engine should utilize means and technologies to
build and manage the engine;

8. the substitution engine should utilize development patterns and
frameworks to achieve the goal of scalability, configurability;

The substitution engine is a part of the OMG CVL tool which SINTEF
is currently developing. Thus, the substitution engine should fits in the
OMG CVL infrastructure. Therefore, we implement the engine as a library
that provides API and reports back on a substitution. The engine utilizes
the following part of the OMG CVL metamodel, see Figure 5.1 on the next
page.

The current version of the engine implements fragment substitution,
detection and resolution of the adjacent relation. However, the suggested
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Figure 5.1: The fragment substitution matamodel

design supports the further enlargement of the substitution engine to
implement the unionization approach to tackle the crossing relation
between fragments.

We implement two basic methods to provide a feedback on an
execution of the engine. Firstly, we integrate logging capabilities for the
engine. Secondly, we introduce exceptions and an exception handling to
respond on an incorrect execution of the engine. The combination of both
these approaches improves the system response and facilitates a failure
investigation.

We test the functionality of the substitution engine applying the unit
testing approach. With help of the Node DSL and the elaborated approach
we are able to build a moderate amount of small variability models. Thus,
it enables creating test cases which are tailored to a specific functionality of
the engine. We ensure also that a further development does not break or
affect already created functionality.

The substitution engines uses Eclipse Modeling Framework (EMF) to
implement substitution. EMF includes ECore is a mean for metamodeling
where ECore is an EMF implementation of the EMOF standard issued
by OMG. EMF provides a reach set of API which allows manipulating
on models. Therefore, the engine is able to operate on any instance of a
metamodel defined in ECore. It serves the main goal of the engine, i.e.
substitute different fragments of a model.

We try to stick to modern, well supported frameworks and patterns
which should help to achieve the goal of scalability and further support.
We distinguish two kinds of frameworks: project management frameworks
and development frameworks. A project management framework should
enable efficient handling of possible third-party dependencies between
different components of the engine, facilitate the compilation and building
processes with further integration. While development frameworks should
help to apply design patterns to the engine. We use Maven and Git to

60



manage and build the engine and the Spring development framework to
introduce design patterns, scalability and configurability.

5.2 Technologies

5.2.1 Eclipse Modeling Framework

Eclipse Modeling Framework (EMF) is an open-source Eclipse based
framework that provides modeling and code-generation facilities. EMF in-
cludes the ECore metamodeling functionality which is an implementation
of the OMG EMOF standard (a variation of the MOF specification). In addi-
tion, EMOF gives a straightforward framework for mapping MOF models
to implementations such as XMI and uses UML 2.0 constrained class dia-
grams to define metamodels [42].

The OMG CVL metamodel is built using EMOF in UML 2.0. Thus,
we are able to convert the OMG CVL metamodel to the ECore format
and generate the partially implemented metamodel using the EMF code
generating facilities. EMF framework includes continuously supported
and well documented APIs as well as facilities to serialize models to the
XMI format. Hence, EMF provides the off-the-shelf functionality enabling
rapid development of the engine and can serve our main goal, namely the
model manipulation goal.

5.2.2 Programming language

EMF is based on JVM platform and written in Java. Thus, we have decided
to use Java as a base language for the OMG CVL substitution engine. EMF
does not leave room for other possibilities; meanwhile, one may argue
that the languages such Scala or MOFScript are available alternatives.
MOFScript is a model to text transformation language based on EMF;
thus, this language can be used for the engine. However, MOFScript is
not currently supported by any vendor and the lack of tooling makes the
development challenging. Scala is a general purpose language based on
JVM which is actively developing now. Thus, one may use a full set of
frameworks and libraries written in Java including EMF. However, Scala
provides its own typing system that is compatible with Java, but anyway
a function call of a Java library requires some type conversions. Thus, we
may come across potential problems during implementation. In addition,
we do not set a goal to utilize any functional programming capabilities and
integrated design patterns of Scala. Therefore, we prefer using the native
language of the EMF implementation to operate with API.

5.2.3 Maven

Maven is a project management tool which supports building, testing,
reporting and documentation compilation from a single source. We use
maven in the project for the dependency management, compilation and
test execution. Even relatively small projects can have many dependencies
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to third party libraries. The substitution engine has over twenty third party
dependencies. Maven automates the process of downloading required

(a) dependency-graph without the test scope (b) dependency-graph with the test scope

Figure 5.2: Maven dependency graphs (different scopes)

libraries, resolving of their dependencies and setting class paths for a
project, where an engineer just needs to specify a library. In addition,
Maven supports dependency scopes. We can specify a different set of
libraries for different lifecycles of an application, e.g. compilation, testing,
runtime. Figure 5.2 shows two dependency graphs for the substitution
engine. The graph (a) is a dependency graph without the test scope, while
the graph on the right (b) includes the test scope. One may notice that
the graph on the left (a) has fewer nodes than the graph on the right
(b). Each node is an external library where the node in the center is the
substitution engine. The test scope includes libraries which we use only
to test the engine and do not use during a normal execution of the engine.
In other words, Maven allows excluding libraries in the final build which
are not required for a normal execution. It would be problematical and not
efficient to manage such dependencies manually. We also utilize the maven
capabilities to run test cases and organize the failure reporting.

5.2.4 Spring

The Spring framework is an open source development framework build
on the Java platform. The framework is scalable and can be used for a
simple Java application as well as for developing enterprise applications.
The Spring allows a straightforward way to integrate following popular
design patterns, e.g. Inversion of Control (IoC) or Dependency injection
(DI), Aspect-Oriented programming (AOP), Model View Control (MVC)
etc.

Neither of these patterns are currently used by the substitution engine.
However, we utilize the bean factory of the Spring framework to integrate
logging functionality. For example, we may change easy a logging
handler without changing the sources of the substitution engine using a
configuration file of the Spring framework.
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5.2.5 JUnit

JUnit is a testing framework for Java applications. We use JUnit to
incorporate testing capabilities in the substitution engine. The framework
introduces a test environment which includes advanced features to run test
cases and analyze failures. It introduces also the test-driven development
approach. The framework can be integrated with the Spring and Maven to
ensure more efficient quality assurance of the substitution engine. For our
substitution engine we have developed around 60 test cases.

5.3 Fragment substitution engine

5.3.1 Engine architecture

The overall project architecture of the engine is aligned to a simple Maven
project. Therefore, one may find a typical folder structure:

• src/main/jave - source code folder of the engine;

• src/main/resources - non-code artifacts, which are related to the
source, reside in this folder;

• src/test/java - test case folder of the engine;

• src/test/resources - non-code artifacts for test cases.

The suggested structure helps to stick to the dry principle, i.e. we do not
mix together the engine and test-case sources. In addition, we separate the
code and non-code artifacts. It is especially important due to the amount
of test cases and their samples.

We try to support modularity of the engine. Thus, we put the code,
which is responsible for different functional parts of the engine, in various
packages. One may found the following packages in Figure 5.3. We do

Figure 5.3: Substitution engine packages

not show dependencies and relationships between packages in order to
keep the figure clean and readable. Table 5.1 on the following page lists
all packages with short descriptions of the functionality encapsulated in a
package.

63



Table 5.1: The packages and their descriptions

Name Description

no.sintef.cvl.engine.adj-
acent

The package contains interfaces outlining
the functionality for finding and resolution
of the adjacent relation between fragments.
One may find the following interfaces Ad-
jacentFinder, AdjacentFragment and Adja-
centResolver.

no.sintef.cvl.engine.adj-
acent.impl

The package contains implementation of the
interfaces in no.sintef.cvl.engine.adjacent.

no.sintef.cvl.engine.co-
mmon

The package contains common utilities for
the substitution engine. We can list the
following classes:

• CVLFragmentCopier is an extension of
the EcoreUtil.Copier. The class encap-
sulates means to copy model elements.
We use the copier to create copies of a
replacement fragment.

• SubstitutionContext is a context for
the substitution engine, implements
the singletone pattern and contains
currently just a logging handler and
creates the application context of the
Spring framework.

• The Utility class encapsulates small
common utilities which are used across
the substitution engine.

no.sintef.cvl.engine.err-
or

The package contains all exceptions which
the substitution engine throws.

no.sintef.cvl.engine.fra-
gment

The package includes interfaces outlining the
concepts of IP, OP, PEint and PEext. The in-
terfaces describe holders which are wrappers
for the basic OMG CVL concepts, e.g. place-
ment, replacement, fragment substitution.

no.sintef.cvl.engine.fra-
gment.impl

The package provides the imple-
mentations for the interfaces in
no.sintef.cvl.engine.fragment

no.sintef.cvl.engine.lo-
gging

The package contains a basic logging inter-
face.

no.sintef.cvl.engine.lo-
gging.impl

The package contains implementations of the
interface in no.sintef.cvl.engine.logging (de-
fining how and where to output messages).

Continued on the next page
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Table 5.1 – Continued from the previous page
Name Description

no.sintef.cvl.engine.op-
eration

The interfaces in the package outline the ba-
sic operations which the engine may per-
form. For example, it defines the Operation,
Substitution interfaces.

no.sintef.cvl.engine.op-
eration.impl

In the package, we implement the fragment
substitution operation. The fragment substi-
tution is the only and core operation avail-
able currently for the engine which substi-
tutes a placement fragment with a replace-
ment.

5.3.2 Fragment substitution module

Architecture overview

The class FragmentSubOperation implements a basic and core operation
of the engine, namely the substitution operation. It removes elements
of a placement fragment, copies a replacement fragment and insert
elements of the replacement into the placement fragment. Figure 5.4
shows the FragmentSubOperation class and its main associations to another
functional elements of the substitution engine. The figure shows that

Figure 5.4: The fragment substitution operation - class diagram

the class FragmentSubOperation implements the Substitution interface
which has a single public method execute(boolean replace) that runs
the substitution operation. In order to perform a substitution, one
should create an object of the type FragmentSubOperation and call the
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method execute, where the replace parameter defines whether we want to
replace (replace = true) or augment (replace = false) the current placement
fragment with the replacement fragment. FragmentSubOperation has
associations to classes FragmentSubstitutionHolder, PlacementElementHolder,
ReplacementElementHolder and CVLFragmentCopier.

FragmentSubstitutionHolder is a wrapper for the FragmentSubstitution
class defined by the OMG CVL specification, see Figure 5.1 on page 60.
The class is created in response to further needs to modify a substitution
fragment. For example, the unionization procedure involves deletion of
some bindings. In addition, the wrapper performs some pre-calculations
which we use across the engine, e.g. a list of To-/FromBinding elements.
It also keeps some additional information along an execution of the
engine. For example, we need to store some references when we
augment a placement fragment since the insideBoundaryElement reference
of a boundary element may point to several elements in this case, but it is
not possible according to the OMG CVL metamodel.

PlacementElementHolder and ReplacementElementHolder are wrappers
for PlacementFragment and ReplacementFragmentType respectively, see Fig-
ure 5.1 on page 60. Both classes implement the same interfaces, namely Ele-
mentHolder and ElementHolderOIF which utilize the notions of PEint, PEext
and IP, OP correspondingly and provide methods to calculate elements.
Thus, we are able to implement the criteria to detect different relations
between placement and replacement fragments.

Substitution operation

The implementation of the fragment substitution in FragmentSubOperation
executes the operation in three steps:

1. copying - make a copy of the replacement fragment;

2. instrumenting - set references of the placement neighboring elements
to the neighboring elements of the copied replacement.

3. deletion - remove all elements of the placement fragment (when we
want to replace a placement fragment).

The class CVLFragmentCopier implements the copying capabilities of of the
engine and extends default EMF means to copy elements of a model. Thus,
the copier functionality allows creating copies of a replacement fragment
achieving the first goal of the substitution operation, i.e. copying. We reach
the second goal (instrumenting) via a loop over to/from boundary elements
of a placement and corresponding replacement. Boundaries define
neighboring elements of placement and replacement fragments. Thus, we
can adjust corresponding references of the placement neighboring elements
such as they point to elements of the copied replacement. We do not have to
remove any elements of the placement explicitly, but we achieve the third
step (deletion) by manipulating containment relations, i.e. elements, which
are not contained by any element, are removed automatically.
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5.3.3 Adjacent resolution module

Architecture overview

Figure 5.5 shows an architecture of the adjacent resolution module. The fig-
ure clearly shows that the adjacent resolution module includes three main
classes, i.e. AdjacentFragmentImpl, AdjacentFinderImpl and AdjacentResolv-
erImpl which implement respective interfaces. AdjacentFragmentImpl holds

Figure 5.5: Adjacent resolution module - class diagram

fragments which are adjacent to a given substitution fragment. It encapsu-
lates setter and getter methods to retrieve all required information (related
to a particular fragment) for a further resolution. For example, one can
find methods to set/retrieve adjacent fragments and their adjacent bound-
aries. AdjacentFinderImpl implements a logic to find the adjacent relation
between fragments, wraps them into AdjacentFragmentImpl and calculates
all required information for a further resolution. While the class AdjacentRe-
solverImpl implements the adjacent resolution process.

Adjacent finder

AdjacentFinderImpl implements Criterion 4.1 on page 48 and Criterion 4.2
on page 49. The adjacent finder receives a list of substitution fragments to
be processed and roughly speaking test each fragment in the list against
each other to find out the adjacent relation. The function isAdjacent
implements Criterion 4.1 on page 48; thus, we spot an existence of the
adjacent relation between fragments. Listing 5.3-1 gives a pseudo code of
the implementation for the isAdjacent method.

Listing 5.3-1: Pseudo code: implementation of Criterion 4.1 on page 48

private boolean i sAdjacent ( plcmnt , plcmnt1 ) {
HashSet<EObject > iP = plcmnt . getIPElmnts ( ) ;
HashSet<EObject > iP1 = plcmnt1 . getIPElmnts ( ) ;
/ / i n t r s ( iP , iP1 ) − i n t e r s e c t i o n
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/ / i s E − i sEmpty ( )
i f ( i n t r s ( iP , iP1 ) . i sE ) {
HashSet<EObject > oP = plcmnt . getOPElmnts ( ) ;
HashSet<EObject > oP1 = plcmnt1 . getOPElmnts ( ) ;
i f ( ! i n t r s ( iP , oP1 ) . i sE || ! i n t r s ( iP1 , oP ) . i sE ) {

return true ;
}

}
return f a l s e ;

}

The function checks if IPs of two placements do not overlap, while corres-
ponding IP and OP do overlap. We wrap adjacent fragments in Adjacent-
FinderImpl and create a map of fragments which are adjacent to a given
one. The map is implemented as a simple list that stores adjacent place-
ments. Further, we need to find boundaries which have to be modified. We
call such boundaries adjacent, i.e. their outsideBoundatyElement references
point to elements of adjacent placements. Listing 5.3-2 gives a pseudo code
for the function which implements Criterion 4.2 on page 49.

Listing 5.3-2: Pseudo code: implementation of Criterion 4.2 on page 49

private HashMap getAdjacentBindings ( fHolder , fHolder1 ) {
boundariesMap = new HashMap<FromBinding , ToBinding > ( ) ;
fromBindings = fHolder . getFromBinding ( ) ;
for ( FromBinding fromBinding : fromBindings ) {

fromPlacement = fromBinding . getFromPlacement ( ) ;
/ / iBElmnt − i n s i d e n e i g h b o r i n g e l e m e n t
/ / oBElmntS − o u t s i d e n e i g h b o r i n g e l e m e n t s
iBElmnt = fromPlacement . getIBElmnt ( ) ;
oBElmntS = fromPlacement . getOBElmnt ( ) ;
toBindings = fHolder1 . getToBindings ( ) ;
for ( ToBinding toBinding : toBindings ) {

toPlacement = toBinding . getToPlacement ( ) ;
/ / oBElmnt − o u t s i d e n e i g h b o r i n g e l e m e n t
/ / iBElmntS − i n s i d e n e i g h b o r i n g e l e m e n t s
oBElmnt = toPlacement . getOBElmnt ( ) ;
iBElmntS = toPlacement . getIBElmnt ( ) ;

/ / d i f f ( ) − symmetr i c d i f f e r e n c e
/ / i s E − i sEmpty ( )
i f ( iBElmnt==oBElmnt && d i f f ( oBElmntS , iBElmntS ) . i sE ) {
boundariesMap . put ( fromBinding , toBinding ) ;

}
}

}
return boundariesMap ;

}
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The if statement of the second loop checks whether the outsideBound-
aryElement reference of a boundary element points to an element of
the adjacent placement by testing the first condition in the statement
(iBElmnt==oBElmnt). At the same time, the second condition of the state-
ment (diff(oBElmntS,iBElmntS).isE) tests whether two boundary elements
cut the same references (such boundaries constitute the adjacent pair).
Thus, we are able to adjust broken references later, because the following
should always hold, i.e. the insideBoundaryElement and outsideBoundaryEle-
ment references of two adjacent boundaries in the adjacent pair should
point to the same element.

Adjacent resolver

AdjacentResolverImpl encapsulates the logic of adjusting broken references
in a variability model. Listing 5.3-3 shows a pseudo code of the
implementation for the function that adjusts broken references.

Listing 5.3-3: Pseudo code: adjacent resolver

public void r e s o l v e ( fragmentH ) {
/ / a F i n d e r − a d j a c e n t f i n d e r
aFrag = t h i s . aFinder . getAdjacentMap ( ) . get ( fragmentH ) ;
adjacentFragments = aFrag . getAdjacentFragments ( ) ;

for ( AdjacentFragment aF : adjacentFragments ) {
fragHolderAdjacent = aF . getFragmentHolder ( ) ;

/ / aBs − a d j a c e n t b i n d i n g s
/ / r e v − r e v e r s e a map
aBs = rev ( aFrag . getAdjacentToBindings ( aF ) ) ;

for (Map. Entry entry : aBs . e n t r yS e t ( ) ) {
/ / f r B − f rom Binding
/ / toB − t o Bind ing
f rB = entry . getKey ( ) ;
toB = entry . getValue ( ) ;

/ / a d j u s t b r o k e n o u t s i d e B o u n d a r y E l e m e n t r e f s
/ / ge t IBElmnt − g e t i n s i d e n e i g h b o r i n g e l e m e n t
/ / getOBElmnt − g e t o u t s i d e n e i g h b o r i n g e l e m e n t
iBElmts = toB . toPlacement ( ) . getIBElmnt ( ) ;
f rB . getFromPlacement ( ) . getOBElmnt ( ) . c l e a r ( ) ;
f rB . getFromPlacement ( ) . getOBElmnt ( ) . add ( iBElmts ) ;

}

aBs = aFrag . getAdjacentFromBindings ( aF ) ;
for (Map. Entry entry : aBs . e n t r yS e t ( ) ) {

/ / f r B − f rom Binding
/ / toB − t o Bind ing
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f rB = entry . getKey ( ) ;
toB = entry . getValue ( ) ;

/ / a d j u s t b r o k e n o u t s i d e B o u n d a r y E l e m e n t r e f s
/ / iBElmnts − i n s i d e n e i g h b o r i n g e l e m e n t
/ / oBElmnts − o u t s i d e n e i g h b o r i n g e l e m e n t
iBElmnts = frB . getFromPlacement ( ) . getIBElmnt ( ) ;
oBElmnts = toB . getToPlacement ( ) . getOBElmnt ( ) ;
oBElmnts . c l e a r ( ) ;
oBElmnts . add ( iBElmnts ) ;

}
}

}

In order to fix broken references, the algorithm has three loops, i.e.
one outer loop and two inner loops. The outer loop iterates over
adjacent fragments. Subsequently, two inner loops iterate over adjacent
bindings. Firstly, we go over fromBindings, which are adjacent to toBindings
of a current substitution fragment, and adjust outsideBoundaryElement
references of fromPlacement boundaries. We adjust references in such a
way as the outsideBoundaryElement reference of a fromPlacement boundary
equals to the insideBoundaryElement reference of a corresponding adjacent
toPlacement boundary. Secondly, we iterate over toBindings, which are
adjacent to fromBindings of a current substitution fragment, adjusting
outsideBoundaryElement references.

Listing 5.3-4 gives a pseudo code of the required operations to perform
several substitutions. Firstly, we need two retrieve fragments from a
variability model, wrap them in FragmentSubstitutionHolder and create a
list of fragments. In the example, we have just two fragments. Secondly,
we need to initialize an adjacent finder (it finds out whether there are any
adjacent fragments in the list) and create an adjacent resolver. Finally, we
iterate over the list with fragments and perform substitutions. Note, that
each call of execute is followed by the resolve call of the adjacent resolver
which adjusts references (if any). Therefore, we ensure that the variability
model is consistent after a single substitution step.

Listing 5.3-4: Pseudo code: two substitutions

. . .
/ / f ragSub <N> − f r a g me n t from a v a r i a b i l i t y model
fSH1 = new FragmentSubsti tutionHolder ( fragSub1 ) ;
fSH2 = new FragmentSubsti tutionHolder ( fragSub2 ) ;

fSHL = new Bas icELis t <FragmentSubstitutionHolder > ( ) ;
fSHL . add ( fSH1 ) ;
fSHL . add ( fSH2 ) ;

aFinder = new AdjacentFinderImpl ( fSHL ) ;
ad jacentReso lver = new AdjacentResolverImpl ( aFinder ) ;
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for ( FragmentSubsti tutionHolder f s : fSHL ) {
f so = new FragmentSubOperation ( f s ) ;
f so . execute ( t rue ) ;
ad jacentReso lver . r e s o l v e ( f s ) ;

}
. . .

5.3.4 Logging

The engine implements the logging functionality using the Spring devel-
opment framework. We utilize the bean factory of the Spring application
context. Figure 5.6 shows that there is a single implementation of the Logger
interface in the engine currently. ConsoleLogger is a simple logging handler

Figure 5.6: Logging - class diagram

that prints out all messages in the standard output. We wrap the logger
into a spring bean. Listing 5.3-5 shows a spring configuration file where
we define the defaultLogger bean. Further, we can retrieve the logging bean
from the spring application context using its id.

Listing 5.3-5: The simplified configuration file

<?xml version=" 1 . 0 " encoding="UTF−8" ?>
<beans xmlns=" . . . "

xmlns :xs i=" . . . "
xmlns:aop=" . . . "
xs i : schemaLocat ion=" . . . . . . ">

<bean id=" defaultLogger "
c l a s s =" . . . logging . impl . ConsoleLogger "/>
. . .

</beans>

Listing 5.3-6 gives an example how a logging bean can be retrieved from
the spring bean factory.

Listing 5.3-6: The logging bean

S t r i n g conf igLocat ion = "META−INF/beans . xml " ;
. . .
contex t = new ClassPathXmlApplicationContext (
new S t r i n g [ ] { conf igLocat ion } ) ;
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. . .
public Logger getLogger ( ) {

return ( Logger ) contex t . getBean ( " defaultLogger " ) ;
}

We store the logging bean in the application context which is available
for any module of the engine. The application context of the engine
implements the singletone pattern; therefore, it instantiates only once and
stores required information for the engine. Thus, we can retrieve the logger
handler on demand. Moreover, if we implement a new logger for the
engine, we do not have to change any source of the application. We simply
need to adjust the bean.xml file and recompile the engine.

5.3.5 Errors

Figure 5.7 depicts the architecture of all exceptions which the engine
throws. Table 5.2 lists all exceptions and their purposes.

Figure 5.7: Thrown exceptions - class diagram

Table 5.2: The engine exceptions

Name Description

BasicCVLEngineException
It is a superclass for all excptions the en-
gine throws. We never throw it directly
in the code.

GeneralCVLEngineExcept-
ion

It is a general exception, we throw the
exception for cases when it is difficult to
identify a source of a failure.

IllegalCVLOperation

The exception is thrown when some op-
eration can not been completed due to re-
strictions which are set by a metamodel.
This type of an exception may imply in
some cases that a variability model is in-
correct.

Continued on the next page
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Table 5.2 – Continued from the previous page
Name Description

IncorrectCVLModel
The engine throws the exception when
we may identify that a variability model
is incorrect.

UnexpectedOperationFail-
ure

The operation is thrown when an opera-
tion is not completed properly for some
reasons.

UnimplementedException

The engine throws the exception when
we try to execute operation which is not
currently implemented. It should not be
ever thrown in the final implementation.

5.3.6 Tests

We have implemented currently about sixty test cases to verify functional-
ity of the engine. The vast majority of the test cases verify the substitution
operation, but in general we can split all them in three main test plans. Each
package implements a test plan. Table 5.3 lists all packages with a concise
description for each of them.

Table 5.3: The test plans

Name Description

no.sintef.cvl.engine.operat-
ion

The package contains thirty five test
cases verifying the pure substitution op-
eration. The package contains negative
test cases. The vast majority test samples
are built using the Node language, how-
ever in some cases the metamodel of
the Node language has been changed
to test different edge conditions, e.g.
for example when an association has fi-
nite multiplicity or presence/absence of
a containment relation. We use UML for
same test samples.

no.sintef.cvl.engine.adjace-
nt

The package contains twenty two test
cases which verify different adjacent con-
figurations between placements. We use
the Node language to build test samples,
but there are some in UML.

no.sintef.cvl.engine.fragm-
ent

The package defines two test cases. The
test cases verify functionality of different
holders checking calculated information
such as IP, OP, PEint, PEext etc.
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5.3.7 Discussion

The implementation shows that the different elements of the engine are
fairly decoupled. Thus, it leaves room for further extension and refactoring.
In addition, we have woven the Spring development framework and some
design patterns, e.g. the singletone pattern. It should also ensure scalability
and customizability of the engine.

We pay special attention to the adjacent module which implements the
main contribution of the thesis. Generally speaking, a resolution of the
adjacent relation is a three-fold process:

• finding adjacent relations;

• finding adjacent boundaries;

• adjusting adjacent boundaries.

We store explicitly all adjacent fragments, since there is no any implication
or transitivity between adjacent fragments. Meaning, that the adjacent
resolution operation does not raise a need to adjust boundaries of
fragments in a transitive closure to a given fragment. In other words,
if the fragment A is adjacent to the fragment B which is adjacent to
C in return, then A is not adjacent to C through the transitive clause.
Thus, it is enough to adjust boundaries which are explicitly adjacent and
can be found in the adjacent founder. Adjacent placements should have
adjacent boundaries since boundaries are only elements which define the
relation between fragments. If it does not hold then there is a problem
in a variability model or failure in the implementation. The final step
is an adjusting of boundaries which should follow a single substitution
operation in order to keep the consistence of a variability model all
the way through the derivation process. The suggested methodology
and implementation provide means to hold the invariant of keeping a
variability model consistent.
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Chapter 6

Experiments and validation

6.1 Neighboring placements problem

We validate the approach to the adjacent relation using the simplified
example in the Node language which we use across the thesis. Figure 6.1
shows two placement fragments depicted by the ovals with the solid line.
We define also two replacement fragments which are outlined by the ovals
with the dashed line in Figure 6.2 on the following page. The dashed
arrows are outside/inside boundary references, where the red arrow with
the filled head is a reference to modify during the derivation process. In

sm:Lifeline:Nodesm:Property:NodeSafetyModule:Class:Node
pa

pb

sm:Lifeline:Nodesm1:Property:NodeSafetyModule:Class:Node
pa

pb

sm:Lifeline:Nodesm1:Property:NodeSafetyModule:Class:Node
pa

pb

(a)CplacementCfragmentsC-Cp1,Cp2

sm:Property:Node

(b)CplacementCfragmentsC-Cp1,Cp2

(c)CplacementCfragmentsC-Cp1,Cp2

p1 p2

p2

p2

p1

p1

Figure 6.1: The neighboring problem, placements - validation

order to define the substitution of p1 and p2, we bind pa to ra and pb to
rb. Further, we substitute the placement p1. Figure 6.1 (a, b, c) depicts
states which the base model goes through, i.e. (a) is an initial state, while
(b) shows the broken reference after the substitution of p1, finally, (c)
exemplifies the base model after the adjacent resolution process. Figure 6.1
clearly shows that an application of the developed algorithm leads to the
desired result. Subsequently, the substitution of the placement p2 yields
the correct result where the link between the elements sm1:Property and
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(a)CreplacementCfragmentC-Cr1,Cr2

sm1:Lifeline:Nodesm1:Property:NodeSafetyModule1:Class:Node ra

sm1:Lifeline:Nodesm1:Property:NodeSafetyModule1:Class:Node rb

(b)CreplacementCfragmentC-Cr1,Cr2

r2

r1

Figure 6.2: The neighboring problem, replacements - validation

sm1:Lifeline is established, because the outsideBoundaryElement reference of
pb points to the required element after the adjacent resolution process. We
also run the adjacent resolution algorithm against the SafetyDrive example
in UML and get the expected substitutions.

6.2 Evaluation

6.2.1 Strategies

In this section, we try to evaluate the quality of the implemented adjacent
resolution algorithm. EMF is a convenient environment for development
in the modeling realm, where one has off-the-shelf means to operate on a
model. A down side of EMF is that the framework is generally greedy with
respect to consumed resources. Therefore, we do not impose any resource
requirements on the engine so far while the execution time seems to be
a dominating factor at this point. The engine is a part of the OMG CVL
tool which is responsible for the substitution operation contributing to the
overall execution process. At the same time, the implemented semantics
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(b)0replacement0fragments

Figure 6.3: The test fragments - basic sample

is a relatively small part of the whole CVL execution semantics; therefore,
we are interested in performing a single substitution as fast as possible. We
try to find out factors which affect the resolution process in order to define
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strategies for further optimizations and improvements.
We define several test systems to measure time characteristics of the

implemented resolution algorithm. Figure 6.3 on the preceding page shows
a basic test sample for further experiments. It contains two placements with
the adjacent relation which is defined by the link between two neighboring
elements 6 and 7. One may find two replacements fragments with elements
we want to insert onto the placements. Each placement/replacement
fragment defines two boundary elements which we bind to the boundaries
of the corresponding replacement/placement fragment, i.e. pa is bound to
ra and pb to rb etc. Further, we modify given fragments and test execution
time for different operations in the engine. We measure the following
durations:

• finder execution duration - time required to find all adjacent relations;

• substitution execution duration - time required to perform a single
substitution;

• resolution execution duration - time required to resolve all adjacent
relations for a single fragment;

• overall substitution duration - time required to execute the substitu-
tion and resolution of a single fragment; thus, it aggregates the exe-
cution durations of the substitution and resolution operations.

We conduct an experiment on a given test sample ten times, e.g. we
measure the substitution duration for the placement p1 in Figure 6.3 on
the facing page ten times; further, we calculate a mathematical expectation
to get an average value of the conducted measurements and finally, we
compute a standard deviation to see how the measured values are different
with respect to an average to get the feel of a possible error.

We present four test strategies, where experiments are designed in such
a way that one can compare results. Measurements should give a picture
on the performance of the engine and how different factors affect the
derivation process. One may find all mean values and standard deviations
in Tables A.1 on page 95, A.2 on page 97, A.3 on page 99, A.4 on page 101,
but further, we work with the graphics which represent the data in the
tables from Appendix A on page 95 for the convenience. All measurements
are made on a machine with the following characteristics:

• OS: 32-bit Windows 7 Professional (SP1)

• Processor: Intel(R) Core(TM)2 Duo CPU P8600 @ 2.40GHz 2.40GHz

• Installed memory (RAM): 4.00GB (2.96GB usable)

Test strategy 1

We measure how the size of the placement/replacement affects the chosen
durations. In the experiment, we increase the size of the placement/re-
placement gradually by step fifty from the default placement/replacement
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p1/r1 up to a fragment which has one thousand elements. We increase the
number of elements by simple copying of the element 5/r5. Thus, we do
not create any extra elements or references (which may create boundaries
etc.) affecting measurements which is not desirable for the test strategy 1.

Test strategy 2

We would like to find out how the number of boundaries influences the
speed of substitution and resolution. There are several options here: we can
increase the number of adjacent boundaries (adjacent pairs), or boundaries
which do not form the adjacent relation between fragments. For the test
strategy 2 we copy boundaries and corresponding elements which do not
take part in the adjacent relation, i.e. we copy pa/ra, and the element 2/r2
in the placement/replacement p1/r1 in Figure 6.3 on page 76. We copy
the boundary pa/ra gradually in a loop by step fifty up to one thousand
boundaries.

Test strategy 3

We increase the number of adjacent boundaries (adjacent pairs) and
corresponding elements. In the placement p1 we copy the adjacent
boundaries pb and pc gradually in a loop by step fifty up to one thousand
adjacent pairs (which give two thousand adjacent boundaries overall, i.e.
one thousand adjacent boundaries per each placement). For each test
sample, we measure the finder, execution and resolution durations.

Test strategy 4

In the test strategy 4, we also increase the number of the adjacent
boundaries (adjacent pairs) as in the test strategy 3, but here we copy an
opposite adjacent fragment with all its references, such a way, we create
a new adjacent relation between two placements. In the sample from
Figure 6.3 on page 76, we copy the placement p2, thereby, the brand copied
placement creates the adjacent relation with p1. The adjacent boundaries
pb and pc are copied together with copying of the placement p2.

6.2.2 Results

Test strategies 1,2

Figure 6.4 on the facing page visualizes measurements made for the test
strategies 1,2. The test strategies 1 and 2 are the same in the sense of the
placement size. Both strategies replace the placement p1 (see Figure 6.3
on page 76). The figure clearly shows that the substitution time is hardly
affected by the size of the placements, which one may notice observing
the growth of the Single substitution - TS 1 line. Moreover, the calculated
standard deviations show that the graph can be approximated by the linear
function f(x)=K*x + C, where K equals to ~0.1 and C is roughly 400, meaning
that the growth is low. In contrast, the growth is high for the test strategy 2
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Figure 6.4: Test strategies 1,2 - data visualization

where we copy a non-adjacent boundary element together with an element
of the placement. Almost all values of Single substitution - TS 2 can be
approximated by a linear function and one can make sure that the order of
growth does not follow the power rule calculating empirical order using
the approach by Sedgewick and Flajolet [53]. In other words, we may
suggest that the order of growth for the algorithm follows the power rule,
i.e. ≈k∗xa, where we can calculate the coefficient a using the following
formula a=log(t2/t1)/log(n2/n1) if a is a constant for different ranges of n2,
n1 and corresponding t2, t1, then we have the power rule growth. Table 6.1
lists the calculated values for the coefficient a. One may observe the the
coefficient a varies for the different ranges; thus, the order of growth for
the Single substitution - TS 2 line does not follow the power rule. Figure 6.4
also shows that the other durations do not increase with the size of the
placement p1. The finder execution duration does not grow because we do
not add any adjacent placements and boundaries. At the same time, one
may observe the slight growth of the Single resolution - TS 2 line. It seems
to be logical since boundaries take part in a substitution; however, we may
conclude that the number of non-adjacent boundaries does not affect the
adjacent resolution process significantly.

Table 6.1: Empirical order of growth - substitution TS 2

Formula 1/7/13/19 2/8/14/20 3/9/15 4/10/16 5/11/17 6/12/18
Points 1 - 6

t=t2/t1 1.00 1.00 1.00 0.99 1.06 0.97
n=n2/n1 50 2 1.5 1.33 1.25 1.2
log(t)/log(n) 0.002 0.01 0.01 -0.01 0.26 -0.12

Points 7 - 12
t=t2/t1 0.99 0.91 1.09 1.06 0.98 1.09

Continued on the next page
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Table 6.1 – Continued from the previous page
Formula 1/7/13/19 2/8/14/20 3/9/15 4/10/16 5/11/17 6/12/18
n=n2/n1 1.16 1.14 1.12 1.11 1.1 1.09
log(t)/log(n) -0.01 -0.69 0.74 0.56 -0.20 1.05

Points 13 - 18
t=t2/t1 1.13 0.83 0.99 0.94 1.02 1.18
n=n2/n1 1.08 1.07 1.07 1.06 1.06 1.05
log(t)/log(n) 1.55 -2.39 -0.11 -0.88 0.41 2.98

Points 19 - 20
t=t2/t1 0.99 0.94
n=n2/n1 1.05 1.05
log(t)/log(n) -0.01 -1.05

Test strategies 3,4

Figure 6.5 on the facing page depicts mean values and standard deviations
calculated for the test strategies 3 and 4. Both strategies check how adjacent
boundaries influence the product derivation process. In each strategy,
we create adjacent boundaries to p1, substitute the placement p1 as well
as resolve adjacent boundaries to p1. One may notice straightforward
that adjacent boundaries affect the substitution process roughly the same
way as non-adjacent boundaries do. Thus, we may conclude that it does
not matter whether created boundaries are not adjacent at all or whether
adjacent relations are created by a single fragment with many adjacent
pairs or many adjacent fragments with a single adjacent pair (see Figure 6.4
on the previous page). Linear functions can approximate both graphics for
the substitution duration. However, the other durations, i.e. the finder
execution duration and the resolution execution duration (just for TS 4),
are influenced differently with respect to TS 1, 2.

The difference in the resolution execution durations between test
strategies 3, 4 is a catching eye feature on the line chart in Figure 6.5 on
the facing page. We can observe that boundaries, which belong to a single
adjacent placement (TS 3), almost do not affect the adjacent resolution
process as well as non-adjacent boundaries from TS 3 (see Figure 6.4 on the
previous page). At the same time, boundaries, which belong to different
adjacent fragments, increase the resolution time linearly (TS 4). We should
also pay attention to the graphics which show how the durations increase
for the finder process. The growth is steep for TS 4 while the TS 3 finder
execution duration increases gradually and represent a linear function.
One may argue the graphic for the TS 4 finder execution duration may
have the power rule growth, however, calculations based on the empirical
data do not prove the assumption, see Table 6.2 on the facing page.
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Figure 6.5: Test strategies 3,4 - data visualization

Table 6.2: Empirical order of growth - finder TS 4

Formula 1/7/13/19 2/8/14/20 3/9/15 4/10/16 5/11/17 6/12/18
Points 1 - 6

t=t2/t1 14.4 2.37 1.89 1.68 1.49 1.44
n=n2/n1 50 2 1.5 1.33 1.25 1.2
log(t)/log(n) 0.68 1.24 1.57 1.82 1.80 2.02

Points 7 - 12
t=t2/t1 1.50 1.36 1.16 1.34 0.97 1.18
n=n2/n1 1.16 1.14 1.12 1.11 1.1 1.09
log(t)/log(n) 2.63 2.33 1.30 2.80 -0.23 1.95

Points 13 - 18
t=t2/t1 1.22 1.05 0.83 0.95 1.06 1.00
n=n2/n1 1.08 1.07 1.07 1.06 1.06 1.05
log(t)/log(n) 2.49 0.72 -2.56 -0.73 1.06 0.17

Points 19 - 20
t=t2/t1 1.01 1.04
n=n2/n1 1.05 1.05
log(t)/log(n) 0.36 0.77

Moreover, some points include substantial errors; therefore, one may try to
approximate the graphic by a linear function which covers almost all value.
At the same time, the graphic has some picks with minor deviations, which
is not possible to explain by the given linear function. A nature of these
picks is deemed unclear for us currently.
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Chapter 7

Related works

7.1 MoSiS CVL

MoSiS CVL [22] is the first implementation of the CVL language. The
tool has been developed within the MoSiS project ITEA 2 - ip06035 part
of the Eureka framework [55]. Svendsen et al. [54] introduce the basic
CVL concepts and methodology of applying CVL to any domain specific
language on UML and Train Control Language (TCL) examples. We can
implement this methodology directly using the MoSiS CVL tool. The CVL
specification does not provide any conflict resolution semantics between
fragments in CVL. Our thesis proposes such semantics. We should point
out that Oldevik et al.[39] study conflicts and confluence of substitution
fragments in CVL. They define a fragment as the triple Eint, BEint,
BEext, where Eint represents elements internal to the fragment and not
referenced by insideBoundaryElement references, BEint contains elements
specified by insideBoundaryElement references, and BEext represents a set
of elements referenced by outsideBoundaryElement. The authors claim that

sm:Lifeline:Nodesm:Property:NodeSafetyModule1:Class:Node

sm1:Lifeline:Nodesm1:Property:NodeSafetyModule:Class:Node

sm1:Lifeline:Nodesm1:Property:NodeSafetyModule:Class:Node

(a)ubaseumodel

(b)uderivedumodelu-uMoSiSuCVL

(c)uderivedumodelu-uOMGuCVL

Figure 7.1: Substitutions in MoSiS CVL and OMG CVL

the confluence of substitution fragments follows only if an overlap exists in
the BEext sets. In our proposed classification, we consider such fragments
as parallel independent. BEext matches the definition of PEext while the
concatenation of Eint and BEint is equivalently to PEint in the thesis. MoSiS
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CVL implements partially the findings by Oldevik et al. Figure 7.1 on the
previous page depicts the well established and used example across the
thesis with two placements defining the substitutions of two neighboring
elements, i.e. sm:Property and sm:Lifeline elements. These neighboring
elements form the overlap between BEint of one placement and BEext of
another as well as create the adjacent relation between the placements
in the thesis terms. We call such placements adjacent. Oldevik et al.[39]
state that this overlap should lead to an inconsistent model. In Figure 7.1
on the preceding page, we show the base model (a) and two derived
products in the MoSiS CVL tool (b) and the implemented engine (c). The
MoSiS CVL tool derives an incorrect product if substitution fragments
have the adjacent relation. We can clearly see that the reference between
the elements sm1:Property and sm1:Lifeline does not exist in the derived
product. However, the engine presented in the thesis successfully resolves
the adjacent relation (see Figure 7.1 on the previous page (c)) between the
placements.

7.2 Confluence of graph transformations

Confluence of conflicting graph transformations plays a major role in the
graph rewriting theory. Conflicts between transformations occur when the
transformations share common elements, the graph rewriting theory calls
such transformation non-parallel independent.

Definition 7.1 (Parallel independence) Given two transformations G
p1(o1)
=⇒

H1 and G
p2(o2)
=⇒ H2, G

p1(o1)
=⇒ H1 is (weakly) parallel independent of G

p2(o2)
=⇒ H2

if the occurrence o1(L1) of the left-hand side of p1 is preserved by the application
of p2 [27].

Heckel, Küster and Taentzer [27] give theoretical bases for identifying a
parallel independence between transformations in terms of the rewriting
theory. If two transformations are parallel independent then the local
Church-Rosser theorem states that the transformations can be performed
in any order yielding the same result [19]. Thus, we can speak of confluence
of the parallel independent transformations.

Confluence is also feasible for non-parallel independent transforma-
tions. In order to check confluence for non-parallel transformations, it is
enough to test the confluence of all critical pairs. Where critical pairs are
conflicting pairs built from the mutually conflicting transformations. If
conflicting pairs (critical pairs) are confluent, that is, there are transform-
ation sequences leading to a common successor graph [27] then the cor-
responding non-parallel independent transformations are locally conflu-
ent [27]. It is a recap on the Critical Pair Lemma [29] developed for string
rewriting systems [34]. In other words, one may say a graph rewriting sys-
tem is confluent if all its critical pairs are strongly joinable [44]. We say that
critical pairs are strongly joinable if transformation sequences leading to a
common reduct graph keeps all nodes which are preserved by the very first
transformations yielding the critical pairs.
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We have shown in Section 4.2.3 that the graph transformation tool Hen-
shin does not solve the problem when one tries to substitute two neighbor-
ing elements independently. To be more precise one transformation dis-
ables another. Let us consider the following graph transformation system,
see Figure 7.2. The figure exemplifies the neighboring problem (see Section

SafetyModule:N smP:N sm:N SafetyModule:N smP1:N sm1:N

(a)-source-graph-G

smP:N sm:N smP:N sm1:N

(c)-LHS1

SafetyModule:N smP1:N sm:NSafetyModule:N smP:N sm:N

- SafetyModule:Class
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- sm1:Lifeline
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N

(b)-target-graph-H

(d)-RHS1

r1:

r2:

(e)-LHS2 (f)-RHS2

Figure 7.2: The neighboring problem - graph rewriting system

4.1.2) where the graph transformation system defines two transformations,
which should substitute two neighboring elements. The system defines
the source graph G (a) and the target graph H (b). The rule r2 substitutes
sm:Lifeline and the rule r1 defines the substitution of sm:Property. The left-
hand sides of both rules are in a conflict to each other, i.e. it is a delete-use
conflict. The first rule removes elements which are used by the second one.
We can check the confluence property of the given rewriting system by in-
troducing the following critical pairs, see Figure 7.3. Figure 7.3 (d) shows

- SafetyModule:Class
- sm:Property
- sm1:Property
- sm:Lifeline
- sm1:Lifeline
- Node

Legend
SafetyModule

smP
smP1
sm
sm1

N

(a)ncriticalnoverlap

SafetyModule:N smP:N sm:N

SafetyModule:N smP:N sm1:N
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(d)nCriticalnPairnLemma
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S:

C1:

C2:

C2C1

S

Figure 7.3: The neighboring problem - joinability of the critical pairs

that non of the rules r1 and r2 can reduce the critical pairs to the com-
mon graph. Thus, the critical pairs are not joinable; therefore, the graph
transformation system in Figure 7.2 is not confluent. It implies that both
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transformations from Figure 7.2 on the previous page will never yield the
graph H using the graph transformation approach. We have shown that
both these transformations can be executed in CVL sticking to the proposed
approach to resolution of the adjacent relation between fragments.

Triple Graph Grammars (TGG) [52] is another approach to graph
transformations. The approach defines rule based declarative formalism
to specify transformations. Rules are bidirectional in TGG, meaning that
the separation between source and target graphs is rather synthetic, i.e.
one may apply rules to a source graph deriving a target graph and
the other way around. A rule is defined as a production that contains
elements of source and target graphs together with an element that defines
a bidirectional mapping between the elements of the source and target
graphs. The approach has been mainly created to support the model-to-
model/out-place transformation [51], but seems to be feasible for in-place
transformations. TGG suggests an ordered application of rules as a mean
to tackle conflicts which is somewhat different with respect to the algebraic
graph transformation theory and CVL. For example in CVL, substitutions
are independent operations and can be applied generally in the arbitrary
order.

7.3 Conflicts in product line engineering

Oldevik et al.[39] analyze conflicts and confluence between substitution
fragments in CVL. The authors discuss cases when multiple fragments of
a variability model are in a conflict relation and suggest criteria to detect
conflicts in a variability model. Oldevik et al. introduce a confluence
checking procedure of fragment substitutions, discuss when confluence
follows. The paper states that the suggested transformations can be
mapped to the graph transformations and checked using the critical pair
analyzes. We took the work of Oldevik et al. as a starting point for
our research, classified overlaps, checked their confluence using graph
transformation based tools and defined solutions to tackle overlapping
fragments.

In [28] and [62] authors make a survey of challenges a user can come
across during a configuration process and suggest a novel approach to
fix conflicts in configurable software. Such system may use a constrain
notion to define limitations on available options during a configuration
process. These constraints may have a sophisticated nature in complex
and highly configurable systems. Thus, it may bring additional challenges
for a given particular configuration. In the thesis, we do not suggest any
constrain based notation, but rather suggest the approach which adjusts
a variability model to keep consistence all the way through a derivation
process. If it is not possible, we consider a failure in a variability model.

Hyunsik Choi and Kyo Chul Kang [10] discuss complex feature models
and tackling conflicts between different features during a configuration
process. A main idea is that some frequently selected features in a model
should be merged, making the feature model smaller. Configuration
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constraints should be defined on a group of features instead of targeting
a particular feature. They argue that the suggested transformation process
does not require any human interference. Thus, a configuration process
of the transformed model should become conflict-free and easier than the
configuration of the original one. The approach of Hyunsik Choi and Kyo
Chul Kang is somehow similar to the unionization approach for crossing
fragments described in the thesis. In addition, we show that an overlap
of the kind adjacent fragments can be tackled by adjusting references in a
variability model without the unionization procedure.

Diskin, Xiong and Czarnecki [17] state that development of software
involves several models, each of them may capture different aspects of a
system; therefore, models may have various metamodels. Such models
are called heterogeneous. A need of merging heterogeneous models
emerges when different teams develop such models independently. The
authors employ consistency-checking-by-merging (CCM) idea to merge
heterogeneous models. The idea involves two step procedure: specify
overlap between models and merge them with further check of the result
with respect to constraints in the global metamodel. The approach uses
the graph rewriting and category theories to specify transformations.
Therefore, it is not directly applicable when a graph transformation system
is not confluent, e.g. when the neighboring problem (see Section 4.1.2) pops
up.

7.4 Feature-oriented and Delta-oriented programming

Feature-oriented programming (FOP) [6] is an example of the Aspect-
oriented Programming paradigm (AOP) introduced as the step-wise
refinement approach by Batory et al. [5] to the development of complex
systems. A core idea of the step-wise refinement approach is that a product
may emerge by adding features incrementally to a simple base model.
Batory et al. show that the approach can be applied to both code and non-
code artifacts given that one defines the composition operation for each
kind of artifacts.

Delta-oriented programming (DOP) [47] is an extension of the FOP
paradigm and a novel programming language approach which operates
with deltas to derive a product. A SPL definition contains a core module
and set of delta modules in DOP. The core module represents a valid
product where further products can be derived applying deltas [47]. Deltas
allow removing elements from a product which is not generally allowed
in the feature modeling. One may define a SPL on any language using the
DOP paradigm. Deltas are specified as no class is added or removed in
more than one delta module, and fields or methods (added, modified and
renamed) are disjoint for every class, which are modified in more than one
delta module. The approach proposes to resolve all conflicts between deltas
by specifying the order of their resolution. The notion of deltas is somehow
similar to fragments in CVL. However, one may define several fragments
modifying the same elements in a model, which is a core distinction.
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Moreover, we consider a substitution as an independent operation which
CVL may apply potentially in the arbitrary order. Therefore, the ordering
is not a solution to overlapping fragments at least within the current CVL
semantics.

7.5 Aspect-oriented Programming

Aspect-oriented Programming (AOP) is an approach which allows weav-
ing cross-cutting concerns into a program. One of the most successful im-
plementations of the AOP concepts is AspectJ. Many frameworks (such as
Spring) use the AspectJ terminology, which is a successor of the AOP con-
cepts developed in Xerox PARC, in their implementations of AOP. AspectJ
defines the aspect term as a modular that defines and contains cross-cutting
concerns to cut across an application. A cross-cutting concern encompasses
a pointcut and advice. A pointcut defines a pattern to match in the applic-
ation, while an advice instructs how a cross-cutting concern should be in-
serted, e.g, before, after, within etc. A list of all available matches defined
by a pointcut comprises join points.

Aspects are developed as separate units which can be applied inde-
pendently. Therefore, AOP supports the separation of concerns principle.
Lauret et al. [35] state that AOP suffers form a well-known composition
issue i.e. several concerns are applied to the same join point. Conflicting
concerns may cause an undesirable result during an execution. The prob-
lem is known as the aspect interference issue. Lauret et al. suggest inserting
executable assertions to detect different kind of interference between aspects.
The implementation uses the AIRIA resolver construct introduced in As-
pectJ [35]. As a solution to avoid undesirable interferences, the authors sug-
gest ordering of conflicting advises. The notion of aspects is highly relev-
ant to fragments in CVL which can be applied to the same model elements.
However, the ordering of fragments to resolve conflicts is somewhat dif-
ferent with respect to CVL where substitution operations do not have any
particular order.

Grønmo [20] presents an aspect language for UML 2.0 sequence
diagrams. The author introduces the term aspect diagram to denote a
sequence diagram-based aspect. Grønmo uses concrete syntax of the UML
sequence diagram to weave in aspects. They state also that the sequence
diagram is a special graph where graph elements are ordered. Grønmo
adopts the graph transformation theory for the UML sequence diagram
formalizing their aspect language. They study termination and confluence
of the sequence diagram-based aspects system. The approach is limited
to UML sequence diagrams due to their specifics. In our thesis, we try to
generalize the problem and solution. In addition, we would like to tackle
cases, i.e. the adjacent and crossing relations which are appeared to be non-
confluent in terms of the graph transformation theory.
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Conclusion

89





Chapter 8

Results and Future work

8.1 Results

CVL is a language to define software product lines. The language has
the notion of fragments which allows specifying elements to substitute in
a model. Modern modeling languages may have complex metamodels;
therefore, the tools, which implement the corresponding metamodels, may
use different diagrams to represent a model and facilitate the development
process. Fragments defined in different diagrams may overlap in a model
causing unintended results during a product derivation. A variability
engineer may define overlaps intentionally, reflecting a pragmatic need to
specify substitution fragments in different diagrams, or by accident where
overlaps may indicate a failure in a variability model. In the thesis, we
addressed this issue and proposed the appropriate solutions.

In Chapter 4, the thesis shows that the old CVL implementation
struggles to obtain a product that conforms to the intentions of an engineer
if a variability model has overlaps between placement fragments. We relate
the problem to the graph transformation theory and show that a solution
is not directly feasible applying techniques from that realm. Subsequently,
we classify such overlaps and deduce the following kinds: the adjacent
fragments, the crossing fragments, the crossing and adjacent fragments
and contained fragments. We define the criteria to identify the mentioned
relations between fragments and means to tackle the issue. The approach
is based on modifying of the variability model, i.e. the unionization of
crossing fragments or adjustment of boundaries for adjacent fragments.

We implement the findings in the substitution engine discussed in
Chapter 5. The engine is able to perform the substitution operation and
has the functionality to detect and solve the adjacent relation between
placements. A basic idea of the approach to resolution of the adjacent
relation is to modify the variability model in such a way that it is consistent
all the way through the derivation process. The resolution process
of the adjacent relation includes the following steps: detection of the
adjacent relation, finding of adjacent boundaries, modifying of the adjacent
boundaries. The engine should run the adjacent resolution procedure after
a substitution operation to modify a variability model properly.
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We use the SafetyDrive UML example to test that the substitution and
resolution operations to adjacent fragments are feasible in the real world
settings. Subsequently, we validate the adjacent resolution operation on
the running example in the Node language which is the essence of the
SafetyDrive UML case. In addition, we have also developed around sixty
test cases and samples simulating different situations, which may occur
between two adjacent placements. This validates that the engine correctly
resolves the adjacent relation and can tackle various situations. The engine
utilizes the modern means of development and design patterns which
should increase scalability and customizability of the engine.

We have evaluated the execution time of the basic engine operations
and found out how different factors affect the execution process in Chapter
6. The size of a fragment has a small impact on the duration of the
substitution operation. The execution time linearly grows as the number
of boundaries increases. We have also found the resolution operation is
barely affected by the number of adjacent boundaries, which belong to a
single adjacent placement; however, the growth is evident if we increase the
amount of adjacent placements keeping the number of adjacent boundaries
constant. The function, which represents the time dependence to find
adjacent relations and boundaries, grows sharply with the increase of
adjacent fragments.

8.2 Discussion

We use the set formalism to deduce kinds of overlaps. It helps us to
emerge the exhaustive list of possible relations between fragments if we
consider a fragment as a set of elements, i.e. independent fragments
(fragments which do not intersect), crossing fragments (fragments which
intersect) and contained fragments (one fragments is a subset of another).
However, we have shown that relations between fragments in CVL is
somewhat more complicated than just the well-known relations between
sets due to possible references between elements of different fragments.
Thus, we empirically define two overlapping kinds in addition: adjacent
fragments, adjacent and crossing fragments. We have introduced our
elaborated practical approach which shows that we have found all
overlapping kinds. The approach exploits the set theory, the graph theory
and combinatorics. In addition, we define our formalism giving basic
definitions and providing the criteria to distinguish different overlapping
kinds and boundaries. However, one may argue though that it is not
obvious or clear enough that we have found all kinds of overlaps and the
criteria are sufficient. We can express such arguments in favor of having
a better math which may concisely and straightforward prove that 1) all
possible overlapping kinds are found, 2) our criteria to detect overlapping
fragments and classify boundaries cover all possible cases and sufficient
enough.

In the thesis, we propose solutions to different overlapping kinds
defining the overlapping resolution semantics in CVL. We use the real
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world example which is well established and covered in the thesis to
specify the adjacent resolution semantics. Thus, we are confident in
the proposed solution which is implemented and validated using the
numerous test samples. While the resolution semantics for the crossing
kinds is rather arbitrary at this point and based on the common sense,
observations and expectations. In Section 4.5, we have described the
approaches to tackle different crossing kinds. For example, we propose
the unionization procedure for the crossing placements, adjacent and crossing
placements kinds while the contained placements kind is deemed as a failure
in a variability model. However, the unionization procedure is applicable
to contained fragments as well. We currently miss also well established
and understood examples with overlaps of such kinds from the real world.
Moreover, we did not have enough time to implement and experiment with
the proposed crossing resolution semantics.

8.3 Future works

The thesis introduced the substitution engine with the adjacent resolution
functionality. We continue further testing of the engine to ensure that
all operations work as expected. We need also to find other real world
examples built on widely used modeling languages such as UML to verify
the engine thoroughly.

In the thesis, we have proposed the solutions for all overlapping kinds.
Meanwhile, the substitution engine currently implements resolution of the
adjacent relation between fragments. Thus, one of the future goals is to
realize the resolution functionality for other relations between fragments
based on the proposed solutions.

The substitution engine is developed independently; thus, a further
step is to integrate the engine with other parts of the OMG CVL tool and
examine how it fits in the tool infrastructure.

One may observe from the evaluation section that the substitution
does not take milliseconds and roughly can be measured by seconds,
especially if we have fragments with lots of boundary elements. It indicates
that the overall derivation process may be a time consuming operation.
Therefore, the process may negatively affect the user tool experience. Some
preprocessing can possibly reduce the derivation duration and improve the
usability of the tool in return.

The evaluation section shows that all relations for TS 3, 4 in Figure 6.5
on page 81 depend linearly on the number of adjacent boundaries and
placements. The substitution durations for TS 3 and TS 4 have almost the
same growth. In fact, one can observe the slight difference only when the
amount of adjacent boundaries is more than three hundred boundaries.
However, the corresponding finder and resolution relations of TS 3 and TS
4 differ significantly. The finder and resolution functions for TS 4 grow
faster than the respective graphs for TS 3. These dependencies affect the
overall performance of the substitution engine. Therefore, we may need to
improve the algorithms of finding adjacent relations and their resolutions
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in such case (when adjacent relations are created by different fragments) to
benefit the overall performance of the engine. We have also noticed some
picks of an unclear nature for TS 4. This may require further investigation.

In Section 8.2, we mention that there may be a math which may show
concisely and straightforward that our formalism covers all possible cases.
However, we have not investigated that due to time limitations. Thus, a
possible extension of the work is to find or develop a mathematical theory
which we can use to prove that the criteria are correct and sufficient. In
addition, we may benefit from such formalism by improving the criteria to
detect different relations and the product resolution process in return.

We have mentioned in the Section 8.2 that we have not had time to
implement and experiment with the crossing resolution semantics. In
addition, we currently do not have examples to validate the proposed
approach to tackle crossing fragments. Further, we should try to find
corresponding examples and verify the defined resolution semantics to
crossing fragments. Subsequently, it may lead to modifications and
improvements in the proposed crossing resolution semantics.
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Appendix A

Test strategies 1,2,3,4 -
measurements

The tables below contain the mean values and standard deviations for the
measurements we have conducted for all test strategies (see Section 6.2 on
page 76). For all experiments, we increase the number of elements inside
a placement or amount of boundaries gradually by step fifty up to one
thousand. For each step, we perform ten measurements and calculate the
mean value and standard deviation. We fill the corresponding columns
with such values in the tables below, where the very first row represents a
step (the number of elements).

Table A.1: Mean values and standard deviations - part 1

Durations
(ms)

1 50 100 150 200 250

Test strategy 1 - mean values
Finder execu-
tion

3.2 3.3 3.6 3.1 5.1 3.6

Single substi-
tution

443.1 446.7 450 451.8 449.9 477.7

Single resolu-
tion

3.1 0.7 1 1.7 1.4 1.2

Full substitu-
tion

446.2 447.4 451 453.5 451.3 478.9

Test strategy 1 - standard deviations
Finder execu-
tion

1.39 0.48 0.51 0.56 5.95 1.89

Single substi-
tution

34.04 16.59 17.32 21.02 18.25 24.72

Single resolu-
tion

5.50 0.48 0.47 0.82 0.51 0.42

Full substitu-
tion

34.59 16.58 17.25 20.84 18.55 24.86

Continued on the next page
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Table A.1 – Continued from the previous page
Durations
(ms)

1 50 100 150 200 250

Test strategy 2 - mean values
Finder execu-
tion

3.3 4.7 4.5 4.2 4.3 6.8

Single substi-
tution

432.3 561.9 565 545.9 584.9 607

Single resolu-
tion

0.6 6.4 7 10.6 11.2 8.9

Full substitu-
tion

432.9 568.3 572 556.5 596.1 615.9

Test strategy 2 - standard deviations
Finder execu-
tion

0.67 2.75 0.97 0.91 1.05 2.14

Single substi-
tution

89.85 77.33 52.06 37.39 28.29 71.73

Single resolu-
tion

0.51 0.69 1.69 5.35 2.39 1.85

Full substitu-
tion

89.99 77.39 53.15 41.15 28.94 72.07

Test strategy 3 - mean values
Finder execu-
tion

2.8 8.1 16 28.5 36.6 49.2

Single substi-
tution

353.9 367.5 372.6 386.8 388 395.8

Single resolu-
tion

0.8 3.8 4.7 6.1 7 8

Full substitu-
tion

354.7 371.3 377.3 392.9 395 403.8

Test strategy 3 - standard deviations
Finder execu-
tion

0.42 0.87 0.66 4.52 0.69 0.63

Single substi-
tution

3.87 3.86 5.01 29.99 4.29 3.11

Single resolu-
tion

0.42 1.03 0.67 0.31 0 0.66

Full substitu-
tion

4.00 4.59 5.29 29.96 4.29 3.04

Test strategy 4 - mean values
Finder execu-
tion

3 43.2 102.4 194.3 328 490.9

Single substi-
tution

354.1 363.4 363.2 390.7 396 414.6

Single resolu-
tion

0.8 10.3 34.5 61.6 99.6 156.5

Continued on the next page
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Table A.1 – Continued from the previous page
Durations
(ms)

1 50 100 150 200 250

Full substitu-
tion

354.9 373.7 397.7 452.3 495.6 571.1

Test strategy 4 - standard deviations
Finder execu-
tion

0.66 0.91 2.54 2.75 8.62 5.25

Single substi-
tution

5.15 2.54 3.29 25.84 6.48 10.57

Single resolu-
tion

0.42 0.48 0.97 1.64 2.01 8.94

Full substitu-
tion

5.15 2.49 3.12 25.78 6.11 18.89

Table A.2: Mean values and standard deviations - part 2

Durations
(ms)

300 350 400 450 500

Test strategy 1 - mean values
Finder execu-
tion

4.6 3.6 3.5 4.5 3.5

Single substi-
tution

467 465.7 424.3 463.1 491.3

Single resolu-
tion

1.6 1.4 2.1 2.1 2.9

Full substitu-
tion

468.6 467.1 426.4 465.2 494.2

Test strategy 1 - standard deviations
Finder execu-
tion

1.17 0.51 0.52 3.71 0.70

Single substi-
tution

24.41 58.80 49.37 53.29 173.48

Single resolu-
tion

0.51 0.51 1.10 0.31 2.07

Full substitu-
tion

24.26 58.88 49.48 53.38 175.50

Test strategy 2 - mean values
Finder execu-
tion

5.8 6 5.4 6.9 5.6

Single substi-
tution

642.5 633.1 672.4 721.8 743.4

Single resolu-
tion

10.6 11.2 13.5 15.5 15.7

Continued on the next page
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Table A.2 – Continued from the previous page
Durations
(ms)

300 350 400 450 500

Full substitu-
tion

653.1 644.3 685.9 737.3 759.1

Test strategy 2 - standard deviations
Finder execu-
tion

2.29 1.88 0.84 1.79 0.84

Single substi-
tution

59.00 68.47 44.30 53.24 55.24

Single resolu-
tion

1.17 1.31 2.36 2.75 2.66

Full substitu-
tion

59.30 69.61 44.17 52.70 55.90

Test strategy 3 - mean values
Finder execu-
tion

72.8 91.9 114 143 159.7

Single substi-
tution

403.2 419.9 435.7 449.9 467.1

Single resolu-
tion

8.9 9.8 11.1 12.5 12.6

Full substitu-
tion

412.1 429.7 446.8 462.4 479.7

Test strategy 3 - standard deviations
Finder execu-
tion

2.09 1.52 3.29 2.30 5.88

Single substi-
tution

9.36 3.98 11.59 6.64 6.48

Single resolu-
tion

0.56 0.63 1.19 2.67 0.96

Full substitu-
tion

9.60 4.37 11.20 6.00 6.53

Test strategy 4 - mean values
Finder execu-
tion

710 1065.7 1454.9 1697.4 2280.1

Single substi-
tution

427.9 472.3 516.4 514.7 575.2

Single resolu-
tion

218.4 294.8 399.7 463.7 671.5

Full substitu-
tion

646.3 767.1 916.1 978.4 1246.7

Test strategy 4 - standard deviations
Finder execu-
tion

17.15 174.82 400.98 229.21 450.64

Single substi-
tution

4.86 44.69 70.52 36.33 102.66

Continued on the next page
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Table A.2 – Continued from the previous page
Durations
(ms)

300 350 400 450 500

Single resolu-
tion

2.41 9.53 71.14 6.58 30.70

Full substitu-
tion

5.65 52.55 140.35 38.69 117.40

Table A.3: Mean values and standard deviations - part 3

Durations
(ms)

550 600 650 700 750

Test strategy 1 - mean values
Finder execu-
tion

3.6 4.2 4.3 10.3 3.7

Single substi-
tution

481.8 528.2 598.2 501.1 497

Single resolu-
tion

2.4 2.4 2.6 2.7 2.4

Full substitu-
tion

484.2 530.6 600.8 503.8 499.4

Test strategy 1 - standard deviations
Finder execu-
tion

0.96 1.13 1.25 4.98 1.25

Single substi-
tution

60.59 79.00 49.83 69.66 46.50

Single resolu-
tion

0.69 1.26 0.84 0.82 0.69

Full substitu-
tion

60.80 79.79 49.96 69.78 46.59

Test strategy 2 - mean values
Finder execu-
tion

5.5 5.6 5.6 5.5 5.7

Single substi-
tution

790.8 687.4 694.8 716.5 739.7

Single resolu-
tion

18.3 15.7 15.1 16.8 17

Full substitu-
tion

809.1 703.1 709.9 733.3 756.7

Test strategy 2 - standard deviations
Finder execu-
tion

0.97 2.27 0.96 1.26 0.82

Single substi-
tution

66.36 105.41 20.63 36.63 22.29

Continued on the next page
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Table A.3 – Continued from the previous page
Durations
(ms)

550 600 650 700 750

Single resolu-
tion

2.62 2.35 0.56 1.03 1.33

Full substitu-
tion

67.79 106.88 20.61 37.00 22.47

Test strategy 3 - mean values
Finder execu-
tion

194.4 220 256.3 292.8 359.8

Single substi-
tution

499.6 509.5 538.1 570.7 665.9

Single resolu-
tion

13.1 23 15.3 16.3 14.8

Full substitu-
tion

512.7 532.5 553.4 587 680.7

Test strategy 3 - standard deviations
Finder execu-
tion

15.03 1.88 3.91 3.73 19.17

Single substi-
tution

35.25 10.71 3.54 24.42 56.91

Single resolu-
tion

0.56 1.82 0.82 0.94 1.13

Full substitu-
tion

35.20 10.70 3.47 24.88 56.85

Test strategy 4 - mean values
Finder execu-
tion

2229 2642.5 3226.8 3405.3 2852.6

Single substi-
tution

581.7 683.2 836.9 902.8 797.4

Single resolu-
tion

642.6 800.5 1001.1 1067.9 895.8

Full substitu-
tion

1224.3 1483.7 1838 1970.7 1693.2

Test strategy 4 - standard deviations
Finder execu-
tion

90.46 429.25 45.90 52.40 516.43

Single substi-
tution

35.37 101.42 31.41 27.59 167.05

Single resolu-
tion

25.79 119.71 32.68 30.23 93.31

Full substitu-
tion

56.40 218.84 40.31 30.43 253.84
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Table A.4: Mean values and standard deviations - part 4

Durations
(ms)

800 850 900 950 1000

Test strategy 1 - mean values
Finder execu-
tion

3.7 3.6 4.3 4.4 3.7

Single substi-
tution

469.3 481.2 570.8 570.2 540.3

Single resolu-
tion

2.4 12.2 2.5 2.5 2.6

Full substitu-
tion

471.7 493.4 573.3 572.7 542.9

Test strategy 1 - standard deviations
Finder execu-
tion

0.48 0.51 0.67 1.77 0.67

Single substi-
tution

5.12 3.32 61.18 72.99 9.83

Single resolu-
tion

0.51 0.42 0.52 0.52 0.51

Full substitu-
tion

5.55 3.30 61.16 73.14 10.11

Test strategy 2 - mean values
Finder execu-
tion

5.8 6.9 6.3 6.4 6.2

Single substi-
tution

806.9 867.5 934.2 980.8 1012.8

Single resolu-
tion

28.3 20.8 21.2 31.8 22

Full substitu-
tion

835.2 888.3 955.4 1012.6 1034.8

Test strategy 2 - standard deviations
Finder execu-
tion

0.91 1.44 0.67 0.84 0.42

Single substi-
tution

35.34 45.59 49.98 46.38 39.22

Single resolu-
tion

1.41 2.57 1.61 1.75 1.88

Full substitu-
tion

36.34 47.14 51.00 47.61 39.71

Test strategy 3 - mean values
Finder execu-
tion

400.2 448.1 483 515.3 575.5

Single substi-
tution

682.7 706.8 720.7 748.5 784

Continued on the next page
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Table A.4 – Continued from the previous page
Durations
(ms)

800 850 900 950 1000

Single resolu-
tion

26 17.8 18.7 17.7 28.1

Full substitu-
tion

708.7 724.6 739.4 766.2 812.1

Test strategy 3 - standard deviations
Finder execu-
tion

10.89 13.37 18.34 8.90 29.81

Single substi-
tution

25.55 20.49 38.16 64.04 51.43

Single resolu-
tion

1.69 2.04 1.63 2.31 1.91

Full substitu-
tion

25.95 20.95 38.46 65.61 52.82

Test strategy 4 - mean values
Finder execu-
tion

2719.9 2901.5 2930.3 2988.3 3109.6

Single substi-
tution

812.4 846.6 886.6 944.4 1027.3

Single resolu-
tion

944.5 1007 1056 1113.2 1148

Full substitu-
tion

1756.9 1853.6 1942.6 2057.6 2175.3

Test strategy 4 - standard deviations
Finder execu-
tion

111.80 135.75 65.28 60.08 93.77

Single substi-
tution

54.04 32.43 20.42 19.27 24.22

Single resolu-
tion

48.08 16.04 16.65 18.82 21.77

Full substitu-
tion

56.85 27.80 8.15 28.66 33.22
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